MASTER’S THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

at the University of Applied Sciences Technikum Wien.
Department of Embedded Systems

The Lipmouse: A Labially Controlled Mouse
Cursor Emulation Device for People with
Special Needs

By: Ibafiez Flamarique, Alberto

Supervisor 1: Dipl.-Ing. Veigl, Christoph
Supervisor 2: MSc, Deinhofer, Martin

Vienna, June 07, 2014

~ FACHHOCHSCHULE

TECHNIKUM WIEN

Declaration

"I confirm that this thesis is entirely my own work. All sources and quotations have been
fully acknowledged in the appropriate places with adequate footnotes and citations.
Quotations have been properly acknowledged and marked with appropriate punctuation.
The works consulted are listed in the bibliography. This paper has not been submitted to
another examination panel in the same or a similar form, and has not been published. |
declare that the present paper is identical to the version uploaded.”

Vienna, July 14th, 2014 etz ~f

Place, Date Signature

Kurzfassung

Menschen mit Behinderungen sind Teil unserer Gesellschaft. Fir manche dieser Menschen
kénnen einfache Tatigkeiten des Alltags unitberbriickbare Hirden darstellen - z.B. die
Verwendung eines Computers. In vielen Fallen ist die Hilfe weiterer Personen notig, um
diese Hurden zu Uberbricken. Unterstitzungstechnologien dienen dazu, Menschen mit
Behinderung mehr Autonomie und Unabhangigkeit zu geben.

Im Jahr 2010 wurde das "AsTeRICS" Projekt gestartet, mit dem Ziel, ein frei verfiigbares
Open-Source System zu Erstellung flexibler Assistenzlésungen zu entwickeln. Das
AsTeRICS Projekt wurde von der Europdischen Kommission finanziell unterstiitzt und in
Zusammenarbeit 9 internationaler Partnerorganisationen umgesetzt. Im Zuge des AsTeRICS
Projektes wurde ein lippengesteuertes Eingabegerat fir Computer entwickelt, die
sogenannte "Lipmouse". Die Lipmouse dient dazu, einer Person mit Einschrédnkungen der
oberen Extremitaten einen alternativen Zugang zur Verwendung eines Computers, Tablets
oder Notebooks zu ermdglichen. Die Lipmouse konnte im Zuge des AsTeRICS Projektes
nicht fertiggestellt werden und wurde in der vorliegenden Arbeit verbessert und erweitert.

Die durchgefuhrten Verbesserungen kénnen in 3 Hauptaufgaben zusammengefasst werden:
Im ersten Teil der Arbeit wurde eine portable Version des Lipmouse-Prototypen entwickelt
(die originale Version musste via USB-Kabel angebunden werden). Zu diesem Zweck
wurden ein Bluetooth-Modul und eine aufladbare Batterie zum bestehenden Design
hinzugefiigt. Der zweite Teil der Arbeit beschéftigt sich mit der Planung und dem Layout
einer Leiterplatte fir das Lipmouse-System. Im letzten Teil der Arbeit wurden die Software
bzw. Fimware des Limouse-Moduls in folgender Weise verbessert: die Verwendung der neu
hinzugefiigten Hardware-Funktionen wurde in die Firmware eingearbeitet, und fur die
Verwendung der Lipmouse im AsTeRICS System wurde ein geeignetes Software Plugin
erstellt.

Abstract

People with disabilities are part of the society. However, simple actions in their daily life, such
as using a computer become a challenge. In many cases they need the assistance of
another person. Assistive technologies help performing these tasks and help people with
special needs to live more independently. In 2010, a collaborative project called "AsTeRICS"
(Assistive Technology Rapid Integration and Construction Set) was initiated and partly
funded by the European Commission, where 9 international partner organisations worked
together to develop a free, open-source, flexible and affordable assistive technology tool.

A mouse cursor emulator controlled through the lips was developed for the AsTeRICS
platform. This device was called "Lipmouse" and was intended to provide a way of accessing
a computer, tablet or notebook to a person with an impairment in her/his upper limbs. This
thesis is a continuation and enhancement of the Lipmouse development.

The improvements accomplished can be summarized in three blocks: The first part of this
thesis consisted of the development of a portable version of the Lipmouse. The initial version
worked via USB cable. For that purpose, the new version incorporates a Bluetooth module
and a battery power supply system. The second part was focused on the design of a PCB
where all electronic components of the Lipmouse were integrated. Finally, the Lipmouse
source code was enhanced in two ways: The firmware of the Lipmouse was modified for
supporting the new functionalities described above. On the other hand, a specific software
plugin for the integration of the Lipmouse into the AsTeRICS framework has been developed.

Keywords: Mouse emulator, Lipmouse, Assistive Technologies, AsTeRICS

Acknowledgements

First of all, | would like to express my most sincere gratitude to Mr. Dipl.-Ing. Veigl for trusting
and believing in me to accomplish this incredible project. It has been an honour for me to
work under his supervision. Without his guidance, support and wisdom, it would not have
been possible.

A special mention for his invaluable help during the PCB design and the soldering process
deserves Benjamin Aigner, MSc. He has my most honest gratefulness.

| should thank the University of Applied Sciences Technikum Wien for accepting me as an
exchange student and allowing me to develop this Master Thesis, especially the Embedded
System Department for giving me this opportunity.

| also will not forget and thank all the marvellous people | got to meet this year in Vienna.
Thanks for being always there.

Table of Contents

11
1.2
1.3
14

2.1
2.2
221
222
223
224
2.3
24
25
251
252
253
254
255
25.6
2.6

3.1
3.1.1
3.1.2

3.2
3.2.1
3.2.2

INEFOTUCTION ...ttt e e e e e e e e e e e e s 6
ASSIStIVE TECNNOIOGIES ... e 6
STALE OF TNE AT .. 7
First Version of the LIPMOUSEccoiiiiiiiiiie et 10
IMOTIVAITION ...ttt e e e e e et e e e e e e et r e e e e e e e a 11
IMIEENOMS ... e 12
INtroduction t0 ASTERICS PrOJECT.......uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeiieieeeeeeeeeeeeeeeeneaees 12
ASTERICS PIAFOIMN ...ttt eeesneeenes 12
AsSTeRICS Runtime ENVIFONMENT ...t 13
ASTERICS Configuration SUILEcccoviiiiiiiiii e 14
Communication Interface Modules ProtoColoeviiiiiiiiiiiiieeiiiiiieeeeen 17
PlIUGIN DESIGN TOO ... e e e e e e e e e 19
Programming Tools: AVR Studio and EClipSe.........cccoooieiiiiiiiiiiii e, 20
PCB Design: EAGLE CAD SOftWare........ccoiiieiiiiiiices et 22
Electrical COMPONENTS........cuiiiiii e e e e e e 23
Teensy++ 2.0 and ATOOUSBL286cccoeiiviiiiiiiiie et e e et e e e e e eanees 23
Bluetooth 4.0 LOW ENergy DEVICESuuiiiiiieiieecee et 24
Sip and puff SENSOr: MP3VT7007oouuiieiii e 26
Force Sensors: FSRAOD0Duu e 26
= 11 (= 1Y/ PP 27
(O T o =] PP 29
Mechanical COMPONENTSuuiii i e e e e e 29
IMIPIEIMENTALION ...ttt 30
The Bluetooth RAdiO-LiNKcooiiiiiiiiiiiie 31
INtroduction t0 the StANAANuuuuuiiiiiiiiiiiiiiiii bbb eeeaee 31
HM10 BLE module and BLE-receiver USB dongle configuration 35
THE BAEIY...coi i 42
Battery SEIECTION ... 42
Circuit Protection DeSIGNcooeveieeeeeeeeeeeee e a7

3.3 PCB DBSIGN ... 56

R N A e [€5 BV =T €] T o PP PP PPPPPPPPPPPPPPI 56
3.3.2 Second and Third VEISIONouuvviiiiiiiiiiiiiiiiiiieeeeee ettt 63
3.3.3 FOUIMN VEISION.....coiiiiiiiiiiiiiiieeeeeee ettt 63
3.4 TRE PIUGIN ..o 69
3.5 FIMMWETE ... e 72
3.5.1 PreViOUS FIMMWAIEcooviiiiiiiiiiiiiieeee ettt ettt et e e e e eeees 72
3.5.2 Firmware IMPrOVEMENTScouviiiiiiiiiiiiiiiee ettt ee e 74
3.6 Fuses and Memory Lock Bits Configurationccccccoueememmmmmmmmmniiiiiiineiniennns 79
4 Tests, Evaluations and RESUIESc.uiieiieie et e e e eae e 80
4.1 Board ASSembBIliNg @and TeSt......cii i e 80
4.2 SOMWANE TEST ...eeeiieieeeiie ettt e e e et e e e e e e e s 82
4.3 CUIENt MEASUIEIMENT........uiuiii ettt e e e 83
4.4 The BIUEtOOth COVEIAQE. ... oo i et e e et e e e e e eanees 85
4.5 PN o] o] o= 11 o] 13T 87
4.6 REMAINING ISSUBS ...ttt e e e e e e e et r e e e e e e e e e e ar e e e eaaes 90
CONCIUSION <. 91

1 Introduction

1.1 Assistive Technologies

Society is very complex and each human being has different necessities than the others. A
part of the community has difficulties carrying out daily and simple tasks, like using a
computer, reading a book, opening a door, getting up stairs, switching on lights, making a
phone call, and so on. Such people with special needs require dedicated tools which allow
them to equally participate in our society. They need special devices and tools in order to
perform their regular activities. These accessories are called "Assistive Technology
devices".

Official organisations like the Assistive Technology Industry Association (ATIA), [1],
Assistive Technology Partnership (ATP), [2], or the Individuals with Disabilities Education
Act (IDEA) American federal law, [3] , define "Assistive Technology" like the field involved
in developing "any item, piece of equipment, software or product system that is used to
increase, maintain or improve the functional capabilities of individuals with disabilities. Not
including a medical device that is surgically implanted or the replacement of such device".

This field has seen a great development in recent years. Despite their efforts, many
manufacturers work on particular aspects of an impairment solving only a part of the issue.
For example an on-screen keyboard can facilitate the access to a computer for a
guadriplegic person, but this application does not help him/her in switching on the light of
the room. In addition, each person with disabilities has different necessities than someone
else with the same problem. Therefore these devices need to be flexible and adaptable.
The lack of versatility makes these solutions inappropriate for creating a single, unique
system.

Another problem is the price. In most cases the devices are not affordable by the fact that
only a small group of people need them so the market is small compared to mainstream
consumer electronics. Accordingly, these gadgets are very expensive or are not easy to
get.

There is a diversity of types of impairment with different grades of disability. As a result, the
range of available AT solutions is very wide. They can be categorized in four general
classes: mobility (including muteness), auditory, vision, and psychology/neuronal (learning
disabilities, memory problems, narcolepsy).

This project is considered being part of the computer access field. Its goal is to guarantee
computer access for people who have their upper-limbs paralysed, who can only move
their lips or for whom a computer input solution based upon lip/mouth interaction is more
comfortable than for example an eye gaze system. A computer is not limited to surfing the

6

up

Internet like on-line shopping, checking emails and such activities. It is also capable of
either interaction or taking control over other systems, e.g. controlling an “intelligent house”
or using a wheelchair as well as a radio or TV via remote control. Thus, providing computer
access opens a door to an easier, more independent, and more comfortable life for people
with special needs.

1.2 State of the Art

There is a range of alternative ways to access a computer apart from the common tools,
such as keyboards and mice. Switches are the simplest solution for accessing all types of
electronic devices. Many of them are just buttons. There is a great variety of them: dual or
multi switches, foot switches, sip-puff switches, wireless switches, and so on as can be
seen in Figure 1.1.

(a) Dual switch (b) Bluetooth dual switch (c) Foot switch
(d) Pal Pad switch (e) Sip-puff switch

Figure 1.1: Different types of switches

The keyboard combined with the mouse is one of the most important input peripherals for
computer access. However, a lot of people with problems in their upper limbs cannot use
them. There is a wide spectrum of alternative keyboards, from an ergonomic keyboard to
an on-screen keyboard. Some of them are depicted in Figure 1.2.

Another example would be the joystick, which is commonly known as controller for playing
video games, but it also can replace a mouse, a switch or a keyboard, i.e. a simple joystick
becomes an AT device. Like these previous devices, there are also adapted joysticks for
people with disabilities, from a regular hand used joystick to a mouth controlled joystick.
Besides computer access, joysticks can be found in wheelchairs or adapted cars. Some
examples are illustrated in Figure 1.3.

up

(a) Ergonomic keyboard (b) Alternative keyboards (c) Mouth stick keyboard

ool [

000083 . Lo e
O G
2 I Ol O 0 O O)
I D S i Gl N 0 0 O ol 0 G

(d) Single hand keyboard (e) On-screen keyboard

&5 On-Screen Keyboard

Figure 1.2: Different types of keyboards

(c) Mini joystick

(e) Head joystick (f) Wheelchair with chin joystick (g) Steering wheel adapted with joystick
Figure 1.3: Different types of joysticks

There are also other products like touchscreens or voice recognition input systems. The
touchscreens do not necessarily need the use of fingers; they could also be accessed with
a special stick held in the mouth. The voice recognition devices are promising systems,
because they can be configured in many ways to perform different actions with a computer.

8

up

Focusing on the mouse cursor solutions, there is also a great variety of these devices
depending on the users’ necessities. As depicted in Figure 1.4, there are ergonomic mice,
trackball solutions, head or eye controlled, switch adapted, touchpads, and so on.

(a) Roll-mouse (b) Foot mouse (c) Head controlled

(d) Button-mouse (e) Touchpad

Figure 1.4: Different types of mice

(The images of switches, joysticks, adapted keyboards and mice were taken from the
following AT vendor web pages: Infogrip [4], EnableMart [5], AbleData [6], Attainment
Company [7], Enabling Devices [8], and AbleNet [9]).

However, the Lipmouse user profile is very specific. It was designed for individuals who
cannot move their arms and head-camera mouse solutions do not fully satisfied them.
Nowadays, similar solutions can be found on the market. An example would be the
IntegraMouse Plus from LIFEtool [10], the Jouse?2 or the Jouse3 from Compusult [11], the
Lipsync from Adaptive Computer Control Technologies Inc [12], the QuadJoy 3 from
QuadJoy [13] or the TetraMouse XS or TetraMouse XA from TetraLite Products [14]. A
picture of each one is shown in Figure 1.5. These solutions are characterized by a plastic
mobile stick that the user controls with the lips. Thus, the movement is reflected in a
movement on the computer screen cursor. Additionally there are clicking features. Many of
these devices incorporate either a sip and puff sensor to emulate the click or just a simple
switch. Most of them are wired and plugged through a USB cable. Nevertheless, the
IntegraMouse device has a wireless version. Several of them have replacements for the

up

mouthpiece due to saliva and bacteria accumulation. The QuadJoy costs approximately
800% and the IntegraMouse nearly 2500$.

<

(a) IntegraMouse, [10] (b) Josue 2, [11] (c) Lipsync, [12]

(d) QuadJoy 3, [13] (e) TetraMouse XA, [14]

Figure 1.5: Different types of mouth controlled mice

1.3 First Version of the Lipmouse

A first version of the Lipmouse was developed in 2013. The device was especially
designed for one person, although it had multiple future possible users. The person
mentioned can only use his facial muscles, so he needed a dedicated and specific solution.
The device and the person using it are depicted in Figure 1.6

Although devices like IntregraMouse were available on the market, the IntregraMouse was
designed for people who can move their head and the strength required for moving the
mouth pieces is higher than the Lipmouse. In addition, the sensitivity is lower. (Reference
[15])

The current Lipmouse has a mouth stick made from plastic that is connected to an acrylic
glass plate. When the mouth piece is moved with the lips, the plate accordingly follows the
movement. It transmits the force through four screws to another plate where the pressure
sensors are placed. The force between the plates is adjusted with four springs. The tail of
the sensors is wired with air wires to the Teensy microcontroller (see Section 2.5.1) via a
voltage divisor made with 10kQ resistors. The mouth stick is hollow inside allowing the air

10

up

flux to the sip and puff sensor. The stick end is connected to the sensor through a plastic
tube. The values measured in the five sensors are transmitted to the microcontroller, which
processes and sends them to the computer. The electrical components are mounted and
soldered in a perfboard. The board and the plates are covered and fixed to an acrylic
enclosure.

(a) The first prototype build of the Lipmouse (b) A person testing the first prototype in his
home

Figure 1.6: The first prototype of the Lipmouse

In order to be operative, this device needs a special software tool, the AsTeRICS
framework, described in the Sections 2.1 and 2.2.

1.4 Motivation

The purpose of the Lipmouse prototype was providing a device to emulate a computer
mouse for people with severe motor conditions who can only move the lips. The computer
mouse is one of the most important peripheral devices for interacting with computers.
Therefore, these people are not able to use a computer. Nowadays many tasks of our
daily life involve using a computer: work, media, communication via email or
videoconference, checking bank accounts, shopping and so on. Therefore it is very
important to develop an AT device to facilitate computers access also for people with
severely reduced motor capabilities. In addition, the Lipmouse could be also used together
with a tablet or a notebook.

This thesis is a continuation of work in the Lipmouse project, accomplished by Robert
Haderer, (Reference, [15]), as it was described in the previous section. The particular
targets were improving some parts of the written software code, designing a portable
solution (a wireless communication plus a battery powered system), implementing power
saving techniques, designing a printed circuit board (PCB), and testing it. The modification
of the existing enclosure, anti-bacteria and saliva membrane protection for the stick of sip
and puff sensor, and other enhancements will be achieved in a future project.

11

2 Methods

In this section the different tools for the development of the project will be presented.

2.1 Introduction to AsTeRICS Project

This work builds upon a research initiative which has been
started in 2010 and was co-funded by the European
Commission: the “Assistive Technology Rapid Integration & \

Construction Set”, abbreviated AsTeRICS, [16]. AsTeRICS is

an international free open-source project which allows creating AsTeRICS
customisable tailored Assistive Technologies (AT) solutions.

This system provides an alternative way of interacting with Figure 2.1 AsTeRICS
electronic devices like a PC, a tablet, a smartphone, a TV logo (Source: [16])
remote control or a home environment control for people with

disabilities.

The AT market is still very small and narrow. Many solutions just satisfy a single specific
purpose. They cannot be combined or adapted for other similar situations. In fact, two
users with the same impairment may require different solutions depending on their wishes
or needs. Moreover, the available solutions are usually expensive. The AsTeRICS platform
was developed in order to address all these issues.

AsTeRICS can combine the simplest input systems like switches, buttons and adapted
keyboards with novel methods such as brain computer interfaces, head- and eye tracking,
inertial measurements and proximity sensors under a unique system covering multiple
scenarios.

The measurements of these sensor modules are delivered to an embedded platform where
they are processed. Depending on the configured solution, the embedded platform sends a
response over the corresponding actuators to perform an action or shows it on a display.
There is also a wide range of actuators that allow the emulation of a keyboard, phone calls,
a stereo control or a KNX home environment regulation.

In summary, AsTeRICS is endowed with a high level of flexibility, which makes it possible
to develop high adapted solutions for the users’ necessities in an economic way.

2.2 AsTeRICS Platform

The main component of the AsTeRICS framework is the computing platform, where the AT
application is hosted and executed. For this purpose, a specific OSGi based middleware

12

was created, the AsTeRICS Runtime Environment (ARE). The Open Services Gateway
Initiative (OSGi) defines a set of specifications in order to create a dynamic modular Java
system. The ARE model is composed of smaller independent sub-blocks, which represent
the sensor-, the processor- and the actuator-modules. The performance of each part is
independent, taking advantage of the modularity and the flexibility that OSGi provides. The
ARE loads and deploys the entire configured model. It acquires the sensors data,
processes it and generates the actuators response. Any device running a Windows
operating system, like a PC or a tablet can be used to host the ARE.

The models are created with the AsTeRICS Configuration Suite (ACS). It is a graphical
model based editor. The developer establishes which sub-blocks will be used for the
model, its properties and the relationship between sub-blocks. After the creation of a
model, the ACS sends the model to the ARE. The communication runs over a TCP
network connection, so the ACS and the ARE can operate in the same device or in
different devices which are connected through the Internet. Therefore, a developer can
configure a users’ model from distant locations. Moreover, the ACS can receive information
and modify some properties during the ARE’s execution.

The ACS also provides an auto-guided tool for the creation of these sub-blocks called
"plugins”. The plugin is the software part that interacts directly with the actuator or the
sensor. In addition, some processing functions are encapsulated in these sub-blocks. This
system allows building complex and customizable solutions only with dragging and
dropping the blocks and interconnecting them. The user does not need to know how these
blocks work internally, in the same way as other model based editors like LabVIEW or
Simulink work.

The external hardware modules, i.e. the sensors and actuator, must implement a special
interface called Communication Interface Module (CIM) which allows the communication
with the ARE, described in Section 2.2.3. These devices are connected to the ARE via
USB, Bluetooth, ZigBee or other communication systems implementing this protocol in
their upper layer. Figure 2.2 shows an overview of the AsTeRICS framework.

2.2.1 AsTeRICS Runtime Environment

As mentioned, the ARE is the core of the AsTeRICS software, where all sensors, actuators
and processors source code is executed. The ARE was built in Java and needs a Java
Virtual Machine installed in the embedded platform. It requires at least JAVA 1.7 (JDK/JRE
7).In most cases the embedded platform is a variant of the Windows operating system. A
basic version of the ARE already runs on Linux and for other operating systems, a
Windows virtual machine could be installed and runs over it. The OSGi framework and the
ARE middleware are responsible for loading and deploying the model designed in the ACS
as plugins and their interconnections. Some modules may need additional software (i.e.
drivers) for working. They may require a legacy code and the Java Native Interface can be

13

used for the interoperability. The ARE coordinates the CIM modules through the CIM
protocol: it detects the virtual COM port or a serial interface, identifies the CIM, manages
and controls the exchange of data between the module and the ARE.

Display,
Touchscreen
(optional)

-....-'-...-A- ----------- 4
\d
AsTeRICS
Personal Platform
embedded computing system

| Sensor modules P
EMG, accelerometer, ete

Environment
and Services
Mabile Phone
Personal Computer
Smart Home etc

|

Actuator modules
» Gateway. HID,
Gripper, etc.

Configuration Suite :
+ running on Personal Computer }
(optional) H

Figure 2.2: AsTeRICS system outline (Source: [17] , page 7)

Furthermore, the ARE disposes a desktop front panel, which allows the user to interact
with the system. For example: pressing a button to begin the execution, pause or stop it. It
can also show the status of the ARE: disconnected, connected, synchronized, running and
paused. Depending on how the model was configured and which GUI plugins it contains,
the ARE can also display the results of calculations, the signals acquired, messages, etc.
to inform about the execution process. Two examples of front panels can be seen in Figure
2.3. Image (a) corresponds to the front panel, showed at the beginning when the ARE is
launched. Picture (b) shows the front panel during the execution of a model. The user can
change some parameter values via this panel and modify the behaviour of the model. For
instance, during a mouse emulation model, it is possible for the user to change the
sensitivity or speed of the cursor. If the user needs more accuracy in his/her movements,
he/she can reduce the velocity during execution. In addition, the user may need special
functions, such as double click or hold the click for dragging and dropping items. This can
be done by placing buttons and by pushing them during the execution in order to perform
the associated action. (References [17] and [18]).

2.2.2 AsTeRICS Configuration Suite

The creation and configuration of the ARE's models are made with the ACS editor. All
sensor-, processor-, and actuator-modules available can be selected, configured in their
parameters, or interconnected with other plugins, defining the relationship between them.
The ACS can be connected directly to the ARE. Thus, the ARE can be controlled from the
ACS. The designed model can be uploaded to the ARE, or the current loaded model can
be downloaded to the ACS in order to save or modify it. The ACS can launch, pause,

14

resume and stop the model execution in the ARE. Moreover, the status of the ARE is
displayed inside the ACS. Errors, logging information and status messages are sent from
the ARE to the ACS, allowing debugging the model.

Kq AsTeRICS Auntime Ervironment 22 Host: chrisveigl-PC 1P:10002

[el

Welcome to the AsTeRICS Runtime Environment !

please Deploy a Model

(a) At the beginning of the execution

Window/Frame Decorations
(show/hide by double-clicking the ARE Desktop background)

T =
. ASTERICS Runtime Emviecament 22 Host: ehrisveighPC P100.0.2 [F=s 850 ==

t— Deploy Model

—— Play

—— Pause

— Stop

F— Help, Options

—— Status display

— Quit

canClicked_eveniizplay
WDk play

l Control Panel

ARE Desktop with GUI elements (according to model) (showy/hide by right-clicking
the ARE Desktop background)

(b) During execution of a model
Figure 2.3: ARE front panel (Source: [17], page 7 and 9)

Each plugin has one or more ports classified as input-, output-, event listener- and event
trigger-ports. The input- and output-ports are used to exchange data between the modules.
The event listener- and event trigger ports are employed to control and synchronize. When
a defined condition is reached in one module, it can send a signal to inform another plugin
to perform an action. One of the aims of this thesis was the creation of a specific plugin for
the Lipmouse, see Section 3.4. Until now, the previous prototype used the Arduino plugin,
for implementing the proof-of-concept with this generic microcontroller. An example of a
plugin is shown in Figure 2.4

15

up

GUI Designer (Ctrl-G) | = Properties (Ctrl-P) v Q
Component: Comparator.1

@

4 Internal Properties

Component Class =, v
Comparstor.1 Component Name Comparator.l
Component Type
EinA sutcu @D Component Descriptic Comparator for two inputs
Cine “ Properties
condition a greater b L* |
outputMode output a if condition met L
4'_4 eventMode create event only if condition changes L
threshold 1
threshold2 10
1 » ¥ Properties (Ctrl-P) | # Event Trigger | ¥ Output Ports | ¥ Input Ports .

Figure 2.4: Module example (Source: [17], page 21)

The output ports (red) can only be connected with input ports (blue); event trigger ports
(purple) can be connected with event event listener ports (green). After each connection,
the established channel must be configured accordingly. For example, if the input signal
must be synchronized with other incoming signals or an event trigger signal is paired with
an event listener in the other module. Moreover, the default module properties can be
defined. Many of them can be modified when the model is running. An example of a
finished model is depicted in Figure 2.5.

x =] Icamaa_muu;e_dwellcl\clc_GU]-AsTeKICS Configuration Suite =N Eon =
] Systam Comgponents Edit Misc.
. - = ~ - LS ~
2o & ‘. 3 = E = =28]] " 3
» > > = =) N D! | /
Disronnect Upload Download Stare Load Model Activate 3 Deletsa Seras Mew Open Ssve Save
from ARE Model Madel Model on ARE from Storage Stored Model Stored Model Autorun Model Model Mode! Model as

Deployment (Ctrl-0) * GUI Designer (C1il-G) |

= | Properties (Ctd-P) '
componentType: String Cispatcher.1

sioar1

4 Internal Propertes

m

Component Descriptic Send test from chosen slot
walue Component Name Stringlisoatcher

ComponentType -
4 Properties

delay [3c0 =
siofl DIMOUSEnextclick right
shotd EMOUSEnastclick dauble
slo3 EMOUSEnextclick drag
siotd

shotd

shoth

shotT

sioid

siotd

clotld

skotll

slotl2

FacetrackerlK1

nosal
nogeY

chidi

chan

AN
‘ Sni-gn?av

doiDispatch
cueput

ButtonGricl L

shotld
sioild
shotl3

slo1lf

A

- k]

m

T Pr.. | TIn. | TOU..| ¥ B

ARE Status: Connected 100% [i+

Figure 2.5: Example of a finished model (Source: [17])

16

Apart from the "Deployment" area in the ACS editor, there is another tab called "GUI
Designer" where the ARE window layout shown during runtime can be set. The size and
the appearance of the displayed elements can be arranged and adjusted, depending on
the users’ preferences.

For more specific information about the model creation consult [17].

2.2.3 Communication Interface Modules Protocol

As previously mentioned, the ARE model plugin and the firmware of the device must
implement a protocol named Communication Interface Modules (CIM). This provides a way
of exchanging data between the running firmware in the module and the ARE. The protocol
runs over a serial communication, such as (virtual) COM port using USB, UART, RS-232,
etc. If the device cannot support it or the developer does not want to implement it, the
plugin can use other external protocols like the raw port implementation, providing the
standard I/O stream classes of Java to communicate with the device. The devices which
implement the CIM-protocol are simply called CIMs.

The ARE-middleware provides a separate interface called CIM Communication, where all
CIM communication services for device communication are managed.

Each plugin has its own commands, called features. Each feature can be read to know the
state of the feature and/or written to perform an action. For instance, a CIM can have a
temperature sensor, which has to read the temperature value (the feature) periodically.
The ARE processes the value and sends it for example to another plugin such as a
threshold detector. Thus, if the temperature reaches a critical level, the threshold detector
sends a signal to the CIM, and writes to another CIM device to switch on the fan (another
feature). An example of this feature list is on Figure 2.6. It is the feature list of the HID-
actuator CIM, a module which can emulate mouse/keyboard/joystick devices on USB HID
level.

CIM-ID Feature- Access Descritption Data
address
ox0101: Ox0000 r Unigue serial number 4 bytes
HID Ox0001 w MOUSE w'y pos 4 bytes: xxyy
actuator (relative change)
version 1 0x0002 w MOUSE buttonstate 1 byte:
Bit O=left click, Bit 1=right click,
Bit3=middle click
0x0003 w MOUSE wheel 1 byte: wheel displacement
0x0010 w KEYBOARD keypress 2 bytes: keycode, modifier
0x0011 w KEYBOARD keyhold 2 bytes: keycode, modifier
Ox0012 W KEYBOARD keyrelease | ———
0x0020 w JOYSTICK joy1pos-analog 4 bytes: xxyy
Ox0021 W JOYSTICK joy2pos-analog 4 bytes: vy
Ox0022 w JOYSTICK joy3pos-digital 1 byte:
Bits 0-3: leftright/up/dwn
0x0023 w JOYSTICK joybuttonstate 2 bytes:
Bits 0-9: button pressed 0/1

Figure 2.6: Example of a CIM feature list, the HID actuator (Source: [18], page 56)

17

The ARE must know which features are implemented by the device. According to this,
when the device is plugged in, the first step is its identification. Each CIM has a unique
identification number and a unique serial number. The identification number identifies the
type of CIM such as an accelerometer, an HID device, a Lipmouse, an Arduino
microcontroller, and so on. The serial number identifies the device. It is like the MAC
address of the device. The ARE sends a packet making a request and the device must
answer it with a reply packet. The ARE acts like a master and the device as a slave, only
answering when the ARE sends a reply. However, there is one option for sending
periodical information from the CIM to the ARE without an ARE request packet. There are
6 pairs of request/reply packet types and one more type for these periodical updates.
These categories are shown in Figure 2.7.

Request / Direction Description Expected Data

Reply code

0x00 ARE—CIM request feature list -

0x00 CIM—ARE reply feature list list of supported features
(eq. 8 bytes for 4 feature
addresses)

0x10 ARE—CIM request write feature bytes according to feature

Ox10 CIM—ARE reply write feature bytes according to feature

0x11 ARE—CIM request read feature bytes according to feature

Ox11 CIM—ARE reply read feature bytes according to feature

0x20 CIM—ARE event reply bytes according to feature

0x80 ARE—CIM request reset CIM -

0x80 CIM—ARE reply reset CIM -

0x81 ARE—CIM request start CIM -

0x81 CIM—ARE reply start CIM -

0x82 ARE—CIM request stop CIM -

0x82 CIM—ARE reply stop CIM -

Figure 2.7: Different types of CIM packets (Source: [18], page 55)

The reply/request code identifies the type of packet. Thereby, the ARE and the CIM know
which kind of information is contained in the packet, the data format and how to manage
the data according to the packet's type. The entire structure of the CIM protocol packets is
depicted in Figure 2.8.

The packet ID is always the same combination of two bytes. It identifies the beginning of a
CIM packet. Thus, the ARE and the CIM know when a packet is being received. It also has
a synchronization purpose. These bytes are 0x4054, in ASCII format "@T". The next field
is the ARE ID or the CIM ID. The ARE ID identifies the ARE version. If the CIM detects that
the version of the ARE is below the minimum required version for compatibility, it can
refuse to reply to some features. The CIM ID identifies the CIM type and its version. The
data size notifies to the ARE/CIM how many bytes are in the optional data field, because it
can have different amounts. The minimum value is 0 (0x0000) and the maximum is 2048

18

(Ox0800). If a device receives a value out of this range, it will consider the packet as
defective. All request packets are enumerated sequentially with a packet number, which is
incremented in each request. The reply packets have the same number as their
corresponding request, identifying each request with its reply. As the event replies do not
need a request, they have their own sequence. The request/reply packets sequence
ranges from 0x00 to Ox7f and the event replies range from 0x80 to Oxff. The CIM feature
address identifies the corresponding CIM feature. The request/reply field is subdivided in
two parts. The high-byte identifies the mode in the ARE-to-CIM packets and the error
status in the CIM-to-ARE packets. The mode informs if a CRC checksum is implemented
or not, and the error status reports to ARE if an error was detected by the CIM and which
type of error (lost packet, invalid ARE version, CRC mismatch, and so on). Despite the
error detection, the ARE does not resend faulty packets. The low byte consists of the
request/reply code. The optional data is the data sent according to the feature and the
desired action to perform. The optional CRC checksum is only added in the respective
mode. The minimum size of a packet is 11 bytes (without the optional fields) and the
maximum size is 2063 bytes. The fields with two or more bytes are stored in little-endian
format. The complete information about the CIM protocol is in the Section 5 and 6 of the
AsTeRICS Developer Manual, [18].

<9

Packet ID

(2 bytes)

ARE ID

(2 bytes)

Data size

(2 bytes)

Serial packet
number

(1 byte)

CIM feature
address

(2 bytes)

Request code

(2 bytes)

Optional data

(0-2048 bytes)

Optional CRC
checksum

(0 or 4 bytes)

(a) ARE-to-CIM packet

Packet ID

(2 bytes)

CIMID

(2 bytes)

Data size

(2 bytes)

Serial packet
number

(1 byte)

CIM feature
address

(2 bytes)

Reply code

(2 bytes)

Optional data

(0-2048 bytes)

Optional CRC
checksum

(0 or 4 bytes)

(b) CIM-to-ARE packet

Figure 2.8: CIM packets field structure

2.2.4 Plugin Design Tool

In this project, a specific plugin for the Lipmouse was developed. The plugin’s internal
structure contains information of where the code is stored, the descriptor files, the
directories paths or the programming of common part as the output, inputs functions (the
source code skeleton) can be complex to accomplish. For creating it, the ACS has a tool

19

up

that helps the developer: the Plugin Creation Wizard. Figure 2.9 shows a screenshot of the
Plugin Creation Wizard.

1] &sTeRICS Plugin Creation Wizard [=x=n =" |
Exit
Batup
Flugiri-ame: MEiugn Tepe: [processce v Suboeegone HANEs Piath 10 exdsting et folcier Ciostencelarsizomponentsl,
Inpui Fartz Cutpul Fartg Eent Lisiener Farz Everd Trigger Fane
|n§uﬁm 'douueE E ryEipPor
%lgpnﬂ?
Mermie: |'"‘d"p°d Marme: [rduiFoe?
: {
DeType [dauble = DoloType: [mble] Mame: [ElpFor Nerme: [ryEtpFon
Diascption: |inpul por cescripli Description |nuq:u| ot dazoip Daseripion: elp descngion Descriplion; |eip descrplion
add Input Font delals add Ouiput Form =2 | aold EvariListanerPorl | dalsts mdd Evant Tigger Foit | delete
Erie= Flugin-Dascription: Wty Flugin descriptian
L] niage i Hams: myProperyE
] Flugi is & Singleton O
Dafa:Type: intagar hd Flugin hes a GLI O
Difeuh Yalue: [wate [0 vsize[20 (% of somen size)
ComborBocEnties: fieanrase e [m]
(]
Dieseription |p|openydesc|iplinn
add Fiopety | delele | CREATE PLUGIM |

Figure 2.9: The Plugin Creation Wizard (Source: [18], page 20)

The developer has to fill the gaps according to its necessities and the whole structure of
folders, files and the source code skeleton are created automatically. Then the developer
only has to program its own functions and features in the main file.

After the creation of a new plugin, the last step is activation and registering the plugin in the
ACS/ARE repository for being used. This can be done manually or using the Plugin
Activation Tool.

2.3 Programming Tools: AVR Studio and Eclipse

The Lipmouse has an integrated Atmel microprocessor, the AT90USB1286. This
microprocessor belongs to the AVR family implementing a RISC architecture. For Windows
platforms there is an open source software tool that allows application development for this
series of microprocessors, the WinAVR ([19]). This project provides the compiler (avr-gcc),
the programmer (avrdude), basic libraries (avr-libc), the assembler (avr-as), the make utility
for the source code generation, the debugger (avr-gdb), and much more tools. The AVR
Studio is an Integrated Development Environment (IDE) which uses the WinAVR tools. All
source files and header files needed for the Lipmouse's firmware were created with the
AVR Studio 4. The AVR Studio facilitates the task of programming and offers additional

20

up

functionalities, such as code debugging and simulations. In addition, the
microprocessor can be flashed using supported programmer tools. The

AVR Studio also allows loading files that contain definitions and functions ’#‘
to facilitate the programming task, such as the use of interrupts, /O
peripherals, the EEPROM memory management, sleep modes, Q
mathematical functions, types definitions, and so on.

After programming the code, it must be compiled. If the compilation is < :
successful, the WinAVR GCC will assemble and link the files. Then it will

create the .hex file for the microprocessor. Before the compilation and the

building process, some parameters must be specified: the frequency used Figure 2.10:
by the microcontroller CPU, if the project uses a Makefile or not, if the AVR Studio
compiler has to make any optimization or not, the type of device 1090
(ATO0USB1286) and the path where the output files will be stored. The

last step is downloading the firmware to the microprocessor.

The first setups where made using a Teensy++ 2.0 microcontroller. This board has its own
program for flashing and rebooting the microprocessor. However, for the final prototype that
only uses the AT90USB1286 chip, the Atmel FLIP tool was employed. It is a tool for
flashing the microprocessor through a USB, CAN or RS232 interface. The chips must
contain a special bootloader for this process and if it is erased or the CPU does not jump to
the bootloader section, the firmware cannot be actualized. Moreover, there are other
options for downloading the firmware to the microcontroller as via SPI or JTAG interfaces.
The JTAG also provides on-chip debugging and allows changing the fuses values of the
microcontroller. With the FLIP or the Teensy flashing program, the fuses cannot be
modified. Therefore, the final prototype board incorporated a JTAG interface. For that
purpose, the AVR Dragon programmer was used. It is a development tool from Atmel that
allows programming an AVR microprocessor using AVR Studio. It has various types of
interfaces supporting different ways of programming, like In-System Programming or JTAG.
Figure 2.12 shows a picture of the AVR Dragon used for programming the fuses.

As seen in the previous section, the ARE was programmed in
Java and runs in a Java Virtual Machine. One of the
objectives of this thesis was creating a new plugin for the
ARE. For this task, the Eclipse software was employed.
Eclipse is an IDE that can be used for programming in Java
and other languages and it facilitates the ARE framework
management, [20]. The ARE folder can be loaded including
all subfolders and files in order to provide an easy access to
the all ARE source code.

Figure 2.11: Eclipse logo
(Source [20])

21

up

After the plugin creation through the Plugin Creation Wizard tool, the subfolders structure
of the plugin will appear in the workspace containing the descriptor files and the source
code skeleton for the plugin instance which has been created by the Plugin Creation
Wizard as described in Section 2.2.4 \ARE\components\sensor.lipmouse). From this point,

the plugin programming process can continue using Eclipse.

The descriptor files: build.xml, the bundle_descriptor.xml and the manifest.mf can also be
edited from Eclipse. The Eclipse provides a debugging functionality that can be used for
debugging the ARE and all plugins. The last step is compiling the project and building it.

After that, the plugin is ready for operation.

Figure 2.12: The AVR Dragon

2.4 PCB Design: EAGLE CAD Software

For designing the Printed Circuit Board (PCB), there was the
need of a special computer-aided design (CAD) software. For
this project, the free version of EAGLE CAD [21] was chosen.
EAGLE CAD has three main tools: the EAGLE Schematic
Editor, the Layout Editor and the Autorouter functionality. To
create the schematics and the board layout, EAGLE procures a
set of libraries with the most common electrical components
from many manufacturers. Apart from the default libraries, there
are many projects on the Internet and these components can be
downloaded and integrated in the EAGLE repository. The
element14 community (from Farnell) has a wide list of libraries

Figure 2.13:EAGLE logo
(Source: [21])

with many components. If a component is not available in any library, EAGLE provides a
tool for creating new libraries, allowing the user to create its own components. The EAGLE

free version has some restrictions: the board cannot have a size over 100 x 80 mm and no

22

more than two layers (top and bottom). Though, it was enough for designing the Lipmouse
board.

Returning to the Schematic Editor subject, the first step is to add all essential components
for the project to the workspace. Then the electrical connection between them must be
drawn, including the ground and supply traces. The appropriate names and the values for
the components must be defined. When the electrical circuit is finished, the Design Rules
for the circuit must be checked. EAGLE has a checking tool to test if all connections are
right to satisfy the design rules (DRC — design rule check).

After the schematic design, the next task is the layout process. The board dimensions must
be defined according to the board requirements. Afterwards, the components must be
placed in their exact positions on the correct layer (top or bottom). The following step is
routing all components. The physical traces must be drawn in the board layout. The
process must be realised regarding to some consideration, such as avoiding right angles
traces, the thickness of the traces (for example the supply traces must be thicker because
they carry more power), placing the decoupling elements as close as possible to their
corresponding components, providing an adequate heat dissipation, and so on. A good
recommendation is to cover the entire board with a ground plane. In the same way of the
schematic, the last part is checking if the design satisfies the design rules.

When the design was finished, the last step was to send the EAGLE design to a board
manufacturer for the elaboration of the physical board.

2.5 Electrical Components

For the development of this thesis, some integrated electronic components were used for
creating the new Lipmouse prototype. This section will introduce and describe these
elements and their most important characteristics.

2.5.1 Teensy++ 2.0 and AT90USB1286

A microcontroller was necessary to sample the signals of the sensors, convert them to the
digital domain (with an analog-to-digital converter), process the data and interact with the
embedded platform. The first prototype employed the Teensy++ 2.0 microcontroller from
PJRC, [22]. This microcontroller uses as core an AT90USB1286 microprocessor from
Atmel. A picture of both can be seen in Figure 2.14. The Teensy was a good option
because it facilitates the access if a protoboard or perfboard solution is used. Besides, it
provides the USB connector, a 16 MHz crystal for clocking the system and a reset button.
Moreover, it has a solder pad for a 3.3 V regulator (MCP1825 from Microchip) to optionally
supply the board with 3.3V instead of 5 V. However, for this new version, a PCB was built
and it was considered that it was better to use the AT90USB1286 chip without any kind of

23

evaluation PCB. Anyway, the main characteristics of this microprocessor are reported in
Table 2.1.

(a) Teensy ++ 2.0 board (b) AT90USB1286 microcontroller

Figure 2.14: The eval board and microcontroller employed during the project development.

| Parameter | Value |
Flash (Kbytes) 128
Pin Count 64
Max Operating Freq (MHz) 16 MHz
CPU 8-bit AVR
RAM (Bytes) 8192
EEPROM (Bytes) 4096
Max 1/O Pins 48
External Interrupts 16
SPI 1 interface
TWI (12C) 1 interface
UART 1 interface
USB 1 interface, Full Speed, USB 2.0 compliance
ADC channels 8, 10-bits resolution, 15 ksps
Timers 2 x 8-bit and 2 x 16-bit
Comparators 2
Temperature Range (°C) -40 to 85
Operating Voltage Range (V) | 1.8 to 5.5
PWM channels 9
Debug Interface JTAG

Table 2.1: Main features of AT90USB1286 microprocessor (Source: [23])

2.5.2 Bluetooth 4.0 Low Energy Devices

The communication between the microprocessor and the software running in the PC in the
first prototype was done via USB. However, in this project a wireless solution was
incorporated in order to elaborate a portable solution. The technology chosen was
Bluetooth 4.0 Low Energy. Depending on the users’ necessities, the Lipmouse could be
used either connected with the USB cable or with the Bluetooth wireless link.

24

Two devices were used for the Bluetooth connection, both from JNHuaMao Technology
Company, [24]. One was the HM-10 BLE 4.0 module, [25]. The other device employed was
the HM-15 BLE USB dongle. The dongle is similar to the HM-10, but it has already
soldered a male USB connector and it is ready to use (see Figure 2.15). The key features
of these devices are:

¢ RF transmission power of -23dBm, -6dBm, 0dBm or 6dBm.
e 6kBps speed, both synchronous and asynchronous.

e Master (central) or slave (peripheral) role configuration.

¢ Authentication and encryption security.

¢ Point-to-point serial communications (UART and/or USB).

Moreover, the module supports a "sleep mode" in slave role. The module needs to be
supplied with +3.3V and 50mA. The dongle incorporates a LED that blinks when it is not
paired and lights when it is paired. The module has an output pin configured for this
purpose, but the LED has to be provided from the user. This way, it can be quickly noticed
when there is a problem with the connection establishment.

(a) HM-10 BLE 4.0 module (Source: modified (b) HM-15 BLE USB dongle (Source: [26])
from [25])

Figure 2.15: The BLE devices employed for the wireless communication

The main component of both devices is the chip CC2540 form Texas Instrument. This chip
integrates a large part of the modules needed for developing BLE applications: a
radiofrequency transceiver, an 8051 microcontroller unit, an in-system-programmable flash
(128 KB or 256 KB), an 8 KB SRAM, a 12-bit Analog-to-Digital Converter (ADC), a UART
and a USB interfaces, three general purpose timers, among other characteristics. This
integrated circuit only needs a few external components as the antenna or a crystal
oscillator to build a BLE device. Furthermore, a vendor specific firmware was programmed
in the chip developed by JNHuaMao that implements the BLE protocol stack.

25

2.5.3 Sip and puff Sensor: MP3V7007

The Lipmouse was built to be controlled only with the lips and the mouth. Therefore, the
clicking function was accomplished with a sip and puff sensor. It needs a mouth piece for
inhaling and exhaling the air and a plastic tube for conducting the air flux from the mouth
piece to the sensor. The requirements for the sensor were being capable of measuring
negative and positive pressure values and using a voltage supply of 3.3 V. The pressure
range should have been approximately between -5 and 5 kPa. Unfortunately there was a
lack of available solutions on the market, which would fit these conditions. There were
many different pressure sensors, which were able to measure the difference of pressure
between two inputs. The first Lipmouse prototype used the MPXV7007GP device (with 5V
supply voltage) from Freescale Semiconductor. Nevertheless, for this project, the
MP3V7007GP device was used, which has the same pressure range between -7 and 7
kPa, but features a voltage supply of 3.3V as needed. Figure 2.16 shows a picture of the
utilized device. The most important characteristics of this sensor are illustrated in Table
2.2.

2.5.4 Force Sensors: FSR400

Mouse cursor movements are performed via the mouth piece: The user moves this piece
with the lips. The movement is transmitted to a small plastic plate, where four pressure
sensors convert the mechanical movements into electrical signals. The sensors chosen
were FSR400 physical force sensors from Interlink Electronics. These are basically
resistors, which decrease the resistance according to the force applied to sensor. The
range is approximately between almost infinite (i.e. an open circuit) to 1 kQ. For a proper
operation they must be connected with another resistor to form a voltage divider
configuration. A variation in the resistance produces a change in the voltage that can be
converted into digital data by the microcontroller's ADC peripheral. Therefore, the
measured values depend on the used resistor and the voltage supply. The sensors are
depicted in Figure 2.17 and the main characteristics are summarized in Table 2.3.

Figure 2.16 MP3V7007GP sip and puff sensor

26

|Parame‘cer | Min |Typ | Max |

Pressure Range (kPa) -7 - 7
Supply Voltage (V) 27 | 3.0 | 33
Output Voltage (V) 0.2 - 2.8
Supply Current (mA) - 7.0 10
Accuracity (%) - - | £5.0
Sensitivity {mV\kPa) - 171 -
Response Time (ms) - 1 -
Warm-Up Time (ms) - 20 -
Temperature Range (*C) | 0 - 80

Table 2.2: MP3V7007GP main features (Source: [27])

If it would have been possible, a sensor with shorter tail would have been used, because
the tail had to be bended, so it could be attached to the plate and also hindered the
assembly inside the enclosure. Nevertheless, it was not possible to find such shorter
sensors during the realization of this project.

Figure 2.17: FSR400 pressure sensors

| Farameter | Value |
Force Sensitivity Range 02Nto20 N
Force Resolution Continuous (analog)
Mon-Actuated Resistance | =10 M)
Rise Time 3 us
Operating Temperature -40 °C to 85 °C
Durability 10 million actuations

Table 2.3: FSR400 main features (Source: [28])

2.5.5 Battery

A portable solution requires also a portable power supply. In other words, the new
Lipmouse prototype needs a battery system. There are many types of batteries from
diverse chemistries with different performances for different applications. The discussion of
the election will be given in Section 3.2. In this subsection, the selected battery will be
described briefly.

27

The aim was to power the system as long as possible. This means the battery should have
a large capacity. Higher capacity means bigger in size. One of the purposes of the
Lipmouse project was to keep the physical dimensions as small as possible. Therefore, the
space inside the enclosure was limited. Due to its dimensions, a 1000mAh Lithium-
Polymer battery was chosen. Its features are illustrated in Table 2.4 and a picture of it can
be seen in Figure 2.18.

Figure 2.18: The battery employed for powering the Lipmouse

| Farameter | Value
Nominal Capacity 1000mAh
Mominal Voltage 3TN
Charge Current (standard) 200 mA
Maximum Charge Current 1000 mA
Charge Cut-off Voltage 4.20+0.03 V

Discharge Current (standard) | 200 mA
Maximum discharge Current | 2000 mA

Discharge Cut-off Voltage 2.75 V

Impedance =300 mi)

Operating Temperature -20 %C to 60 °C

Weight 20 g.

Dimensions 6 mmx 34 mm x 50 mm

Table 2.4: Battery specifications (Source: [29])

This battery provides a built-in protection circuit to avoid overcharge and over-discharge.
The voltage range should be between 2.75 — 4.25 V. Moreover, this circuit has a short
circuit protection. However, the battery is charged via a USB connector (5 V). Therefore, it
is required another circuit to adjust the voltage from 5 V to battery’s voltage. This function
is accomplished by the charger as will be explained in Sections 3.2 and 3.3. Moreover,
nowadays chargers regulate the charging voltage and integrate other protection features

28

as overcharge and over-discharge. Hence, this built-in protection circuit is not necessary
and any single cell li-polymer battery can be used to power the system.

2.5.6 Charger

A battery requires a charging solution. When the battery is depleted, it must be charged.
There are many commercial electronics devices in which the user must remove the battery
and connect it to an external charger. It would not be practical for the Lipmouse user to
retire the enclosure, to disconnect the battery and to plug it into an external charger.
Therefore, the idea was to integrate the charging circuit with the rest of the electronic
components. The aim was to build a device which allows charging the battery through a
USB cable. Thereby, when the device is plugged into a USB port, the device is powered by
USB and charges the battery simultaneously. So of course if the USB is disconnected, the
system is again powered by the battery. The charger itself needs protections against
undervoltage, overvoltage or overheating. There are specific integrated circuits that
facilitate this type of designs. These types of topics will covered more deeply in Section
3.2.

2.6 Mechanical Components

The Lipmouse does not only consist of electronic components and software, it also has
mechanical components: an enclosure, a mouth piece stick, three plastic plates for placing
the sensors, a plastic tube, studs, springs, screws and nuts. As mentioned, this work was a
continuation of another one. The new version reused the same mechanical structure. To
provide an overview of the Lipmouse project, the physical design will be shortly described
in this subsection.

The enclosure, the three plastic plates, the screws and the nuts were made of acrylic
glass. It is a cheap material and very easy to manipulate. The acrylic glass was cut with a
laser cutter. The design was elaborated using the Inkscape and Corel Draw X6 software.
Then the patterns were loaded to the laser cutter, which cut and engraved the pieces. One
of the aims was to make the Lipmouse as small as possible. The final housing dimensions
were 80 mm x 35 mm x 35 mm, which gave enough space to fit all the internal parts.

ESE sensod

Figure 2.19: Lipmouse's scheme (Source: [15])

29

The Lipmouse's structure is depicted in Figure 2.19. The mouth piece breaks through the
enclosure and is glued to the second plate. The movements in this part are transmitted to
the small plates and the studs, applying a slight force over the FSR sensors surface. The
other purpose of the mouth piece is to conduct the air flux to the sip and puff sensor. The
mouth piece has a gap and at the end of it there is plastic tube connected to the sip and
puff sensor. The four springs guarantee that after any movement, the mouth piece
recovers its original position. The screws hold the springs and support the inner plastic
plates. When they are adjusted via the nuts, a default force is applied to each sensor.
Unequal forces at diametral sensors produce a slight drift. This undesired drift must be
neglected, so these values should be corrected via a default offset value via the software.
Behind the plate with the sensors, the PCB is placed above the battery. In the first
Limpouse version, the FSR sensors where connected to the microcontroller through an air
wire. However in this project, the plate where the FSR sensors are located, was modified
to add the resistors of the voltage divisor and a connector for the Lipmouse PCB was
installed.

3 Implementation

One main goal for this new model of the Lipmouse was wireless operation. Inside of the
Wireless Personal Area Networks (WPANSs) standards, (i.e, the wireless networks of a few
meters of coverage) there are various technologies: Bluetooth, ZigBee, Wireless USB
(WiMedia), RFID, Z-Wave, IrDA, NFC, etc. For this project, the technology chosen was
Bluetooth, in its new version 4.0 Low Energy specification. However, that does not imply
that it is impossible to use another technology instead. Each standard has its own
advantages and disadvantages.

For the power supply system, there are many types of batteries of different chemistries and
architectures. The space inside the Lipmouse limits the solution chosen, but the capacity
must be big enough to operate during various hours, because the user cannot recharge the
battery continuously.

When the Lipmouse is connected through a USB cable, there is no concern for power,
because the USB port can usually supply up to 500 mA at 5 V (2.5 Watts). However, when
it is unplugged, the device employs the battery as a source of energy. For enhancing the
life cycle of the battery, adopting power saving strategies were needed. There are two
types of strategies: software and hardware strategies. The microcontroller can be entered
in a "sleep” mode out of a reduced power consumption state when the device is not being
used. The unused microcontroller’s internal peripherals (timers, TWI and SPI interface and
the USB module) can be disabled for saving more energy. In addition to this, some actions,
like disabling the brown-out detector, the watchdog and the internal voltage reference or
configuring the port pins to use the minimum power help to reduce the total power
consumed by the system. Otherwise, taking into account this issue in the electrical design

30

can also save energy. The new version of the Lipmouse worked at 3.3 V versus the 5 V of
the first prototype. Another essential consideration was to switch off the Bluetooth module
during the "sleep" state.

Though, there is the issue of charging the battery when it is depleted. The charger must be
designed and be incorporated with the rest of the electronics of the Lipmouse. Beside the
charging circuit, there is the safety protections cited in Section 2.5.6 that the battery needs
for a proper operation.

The other purpose of this thesis was to design and build a PCB for the electronic
components of the device instead of a perfboard like the previous version of the Lipmouse,
as was mentioned in Section 1.3 and 2.6.

The other part of this project was to improve the source code of the Lipmouse. On one
hand, there was the necessity of developing a specific Lipmouse plugin for the ARE. A new
plugin was created based on the Arduino plugin. On the other hand, the microprocessor’s
firmware was reedited according to the new improvements discussed in Section 3.5.2.

3.1 The Bluetooth Radio-Link
3.1.1 Introduction to the Standard

Bluetooth is a standard of WPAN developed by a consortium of enterprises: the Bluetooth
Special Interest Group (SIG). Part of its specification is regulated by the IEEE in the
802.15.1 standard. The main purpose is to create a short range wireless communication
technology for removing the electronic device’s cables. The most important features are
robustness, low complexity, small and low cost electronics, security, interoperability with
other devices and low power consumption. Many parameters are optional and depend on
the manufacturer's implementation, allowing a wide range of possibilities. Nowadays, more
than 20000 companies are members of the SIG. (References [30] and [31])

The number of applications of Bluetooth technology is very large. It is used in many
industries, like in the automotive sector, for consumer electronics, healthcare devices,
mobile telephony, home automation or tools for sports and fithess monitoring.

With the version 4.0 of Bluetooth, a new concept appeared: the Bluetooth Low Energy
(BLE) standard, also called Bluetooth Smart. Although Bluetooth Classic, i.e. Bluetooth
Basic Rate (BR) and Enhanced Data Rate (EDR) share a lot of characteristics with the
BLE specification, there are still many differences. In fact, the BLE version is not
compatible with the previous ones. However, devices can implement both standards
(Bluetooth Smart Ready), allowing a dual-mode communication.

31

up

The Bluetooth technology implements an entire protocol stack from the physical layer up to
the application layer following the OSI model as shown in Figure 3.1.

7 Application Applications/Profiles
6 Presentation
Sl TCS SDP

5 Session LLC RFCOMM

4 Transport

Logical Link Contol
Adaptation Protocol
Audiofl| ocap)

3 Network

Loglcal Link
Cortiol (LLC) Link Manager
2
comml (MAC) Baseband
<
Ph
? ‘ (Py:ll:)d Physical Radio
— N
ISO OsI IEEE 802 IEEE 802.15.1
Layers Standards Bluetooth WPAN

Figure 3.1: The BT protocol stack (Source: [32], page 23)

The Bluetooth system operates in the unlicensed 2.4GHz ISM band, between 2.400-
2.4835GHz. In BT Classic, there are 79 physical channels with a bandwidth of 1MHz (all
channels are not available in all countries, e.g. France and Spain). Nevertheless, in the
BLE specification the bandwidth of the channels is 2MHz, allowing only 40 channels. The
modulation in the BR case is a GFSK (Gaussian Frequency Shift Keying). In the EDR, the
access code and packet header employs the same GFSK modulation (EDR is compatible
with BR), whereas the rest of the packet uses a PSK (Phase Shift Keying) modulation (for
enhance the data rate). The BLE also uses a GFSK modulation, but the range of the
modulation index is different. In other words, BLE and BT Classic are incompatible. Their
own radio specifications make them incompatible. All specifications define a Frequency
Hopping Spread Spectrum (FHSS) modulation technique for avoiding interferences and
fading. The transceiver changes the RF channel 1600 times per second. These
specifications were fixed by the Bluetooth Core Specification, [33] and must be followed by
all Bluetooth devices’ manufacturers. A complete description about the GFSK and PSK
modulation schemes and FHSS technique is in [34], chapters 6 and 7.

Based on the transmitted power, three power classes were defined in BT Classic. The

main characteristics are summarized in Table 3.1, whereas in the BLE specification, the
allowed power range is different (to reduce the power consumption), see Table 3.2.

32

Power | Maximum Output | Nominal Minimum

Class Power (Pmax) Output Power | Output Power'

Power Control

Pmin<+4 dBm to Pmax
1 100 mW (20 dBm) | N/A 1 mW (0 dBm) Optional:
Pmin? to Pmax

Optional:
2 25 mW (4 dB 1 mW (0 dBm) | 0.25 mW (-6 dB
mW (m) mW (m) mW (m) PminZ to Pmax
Optional:
3 1 mW (0 dBm) N/A N/A prioha

Pmin? to Pmax

1. Minimum output power at maximum power setting.

2. The lower power limit Pmin<-30dBm is suggested but is not mandatory, and may be
chosen according to application needs.

Table 3.1: BT Classic power classes (Source: [33], page 320)

Minimum OQutput Power Maximum Qutput Power

0.01 mW (-20 dBm) 10 mW (+10 dBm)

Table 3.2: BLE power range (Source: [33], page 2483)

The Bluetooth specification determines two possible network architectures: point-to-point
or point-to-multipoint. In a point-to-point scenario, two BT units establish a physical
channel, where one device is the master and the other the slave. In a point-to-multipoint
scenario the physical medium access is shared by various devices, up to 7 active devices.
In this topology, one is the master which coordinates the communication and the rest are
slaves. These network architectures are called piconets. The communication is always
master to slave, never slave to slave. Nevertheless, one slave device can be connected to
two different masters, i.e. it can be a member of two piconets. This situation produces a
physical connection between two piconets and is denominated scatternet. In addition to a
scatternet, one device can be a master in one piconet and a slave in another piconet.
There can never be two masters in the same piconet. The scenario described above is
depicted in Figure 3.2.

33

@ Master ‘,..
@® Slave
O . . O, P
¢ i e |
= Wl e.
..... .o ; 4‘
® [
a b c

Figure 3.2: The BT network architecture (Source: [33], page 348)

The (a) situation corresponds to a point-to-point scenario, (b) represents a point-to-
multipoint scheme and (c) is a plot of a scatternet. In this project, the devices employed
only support a point-to-point configuration.

The BT specification defines a Time Division Duplex (TDD) scheme for the medium
access. Each physical channel is divided in time slots. The duration of the time slots is 625
Us and each time slot has assigned one RF frequency (FHSS). The BT packets starts at
the beginning of a time slot and can occupy 1,3 or 5 time slots. The channel is used
alternatingly between the master and a slave. Moreover, BT distinguishes at the logic level
two types of traffic, synchronous or asynchronous: Synchronous Connection Oriented
(SCO) and Asynchronous Connection-Less (ACL), depending if it is Circuit Switching or
Packet Switching traffic.

The BT state diagram specifies three principal states: standby, connection and park; and
nine substates: page, page scan, inquiry, inquiry scan, synchronization train,
synchronization scan, master response, slave response and inquiry response. The state
diagram is depicted in Figure 3.3. The master response, slave response and inquiry
response substates do not appear to simplify the picture. For a detailed analysis of how the
connection process is established, consult the core specification [33] page 441 and ff. In
addition, inside of the connection state, there are three modes: active mode, sniff mode
and hold mode. The active mode is when the devices are actively involved in the
communication. The sniff mode and hold mode are two states for reducing the activity and
consequently the power consumption decreases. For example, the slave only listens the
channel at certain points of time or the master refuses the asynchronous traffic during a
period of time. For stopping transmitting for a long period but remaining synchronized in
the channel, there is the park state. (Reference [33], page 457 and ff.)

34

up

Figure 3.3: The BT state diagram (Source: [33], page 441)

Finally, at the top of the protocol stack, there are the BT Profiles. A BT profile is a set of
particular definitions and specifications of possible BT application functions and features.
Examples of profiles are:

¢ Advanced Audio Distribution Profile (A2DP)
e Basic Imaging Profile (BIP)

e File Transfer Profile (FTP)

e Headset Profile (HSP)

¢ Human Interface Device Profile (HID)

e Serial Port Profile (SPP)

¢ Video Distribution Profile (VDP)

The data sheets of the BT devices employed do not specify which profile implements.
However, Serial Port Profile is usually the profile implemented by Bluetooth applications
which emulate a serial communication.

3.1.2HM10 BLE module and BLE-receiver USB dongle
configuration

The HM10- BLE module was placed in the designed Lipmouse's PCB and wired with the
Atmel microcontroller via the UART interface. Thereby, the microcontroller had to be
programmed in order to send the configuration commands. These commands are vendor-
specific and depend on the device’s firmware developed by the vendor, JNHuaMao
Technology Company.

35

Moreover, the BLE-receiver USB dongle, [35], has to be plugged to the embedded platform
or the PC, where the ARE is running, in order to use the Lipmouse. When the ARE detects
a newly connected USB device, it launches a scan process to detect if it is a new CIM
device. The scan process mainly consists of sending a CIM packet to every COM port,
asking for the device identification. If the receiver is a CIM device, it will answer to the
identification packet and the ARE will register it. This fact is important, because if the
Bluetooth connection is not established before the scan process starts, the CIM packet will
not arrive to the device and the ARE cannot register it. If the Lipmouse is being used by the
running model, the ARE stops automatically. Therefore, the Lipmouse’s BLE module and
the BLE-receiver USB dongle must be paired before clicking the ARE's start button.

The configuration of the HM10 BLE module and the BLE-receiver USB dongle is done by
AT commands. The commands must be sent in upper-case string format without spaces
and without any other symbol. In the case of the BLE-module, the serial communication is
by default set to 9600bps, 8 data bits, 1 stop bit and no parity bit. The BLE-receiver USB
dongle adjusts the data parameters automatically, since it opens a virtual serial COM port
through the USB connection. Some AT commands are the same for the module and the
dongle. However, there are only a few commands available for the module or the dongle.
The most important commands are shown in Table 3.3. For more information, please
consult the datasheets of the devices, [25] and [35].

One problem of the AT commands, which was not noticed in the datasheets, refers to the
time needed to wait between sending two AT commands. It was proven empirically, that if
two commands are sent too fast, the device does not interpret them and no response is
received. The conclusion reached is, that e.g. if AT+ROLE? and immediately AT+IMME?
are sent, the device receives AT+ROLE?AT+IMME?, which is not a valid command.
Commands cannot be delimited by including special characters like for example \r
(carriage return) or \n (new line). The solution for this problem was solved by waiting a few
milliseconds, before sending a second command. For almost all commands waiting 50ms
would be enough for a correct sending process. However, for commands which result in a
device reset, as AT+RESET, more waiting time is needed.

There are two ways for the establishment of the BT link: automatic (default) or manual. In
the automatic mode a master device detects the availability of slave devices (devices in
slave mode which are not paired with another device); if found, the pairing is established
immediately. When the connection is lost, the master will start again looking for the same
slave. If the same slave is available, the connection will be successful (this statement was
not defined in the datasheet but was deduced empirically by observing how the JNHuaMao
devices work).

36

up

| Send | Response | Parameter (Para) | Device | Brief description
Al OK / OK+LOST | Mone Both | If the medule is not
paired, it will be re
ceived OK. It is paired
the connection will be
ost and it will be re-
ceive OK+LOST only if
the notifications are set.
(see: AT+NOTI)
AT+ADDR? OKA4+ADDR:MAC | Mone Both | Ask the MAC address of
the device
AT+BAUD? OK+Get:[Para] 0—29600 Module | Query/Set the baud rate
AT+BAUD[Para] | OK+Set:[Para] 1—19200 of the module. By
2——38400 default, the baud rate is
3—57600 9600bps.
4—115200
5—4800
6—2400
—1200
8—230400
AT+CON[MAC] | OK+CONN[Para] | A: Connecting IModule | Try to connect to the
E: Connect error device with that MAC,
F: Connect Fai Only master role devices.
If the target is not a slave
or is already connected,
the attempt will fail.
AT+COMN[Para] | OK+CONM[Para] | 0-1: Target Dongle | Use it after AT+DISC?
device. In the Iry to connected in the
response also: "|Para]" position listed
E: Link error by the AT+DISC?
F: Link failed command.
AT+DISC? OK+DISC[Para] | S: Start discovery | Dongle | Scan all available slave
Address string devices. The information
E: End discovery about them is listed in
the "Address string".
AT +IMMET OK+Get:[Para] 0: Connect Both | Connect automatically
AT+IMME[Para] | OK+Set:[Para] automatically after power on the
1: Connect after device or wait unti! the
AT command corresponding command
is received [Af—f-s TART,
AT+CON/AT +CONN
or AT+CONNL).
AT+RENEW OK+RENEW Mone Both Restore all default set-
tings
AT+RESET OK+RESET Mone Both Reset the device
AT+ROLE? OK+Get:[Para] 0: Slave Both | Query/Set the role of the
AT+ROLE[Para] | OK+Set:[Para] 1. Master device. Slave by default.
AT+SLEEP OK+SLEEP Mone Both | Send to sleep the de-
vice. Only is supported
31 by slave devices.

Table 3.3: Most important AT commands extracted from the datasheets. To see the whole list,
consult [25] and [35]

37

In the manual case, the connection process is done by sending AT commands. Here, there
are also two possibilities to establish the connection manually. The first way is sending the
command, AT+CONNL (this is, connect to the last device paired successfully). This
command is available for both: module and dongle.

If it is the first time that the connection is established (no previous device was memorized),
the second way of manual connection has to be used. In this case the command
AT+CON[MAC ADDRESS] must be sent for the module. For example, if the MAC address
of the device was 00:11:22:33:44:55, the command would be AT+CON001122334455.

For the BLE-receiver USB dongle, the utilized command for manual connection is
AT+DISC. After receiving this command, the dongle will first search for all BLE slave
devices inside its cover range. Secondly, the dongle sends a list with the available devices
via the USB interface. Then a second AT command has to be sent for choosing a device of
the list, AT+CON[POSITION ON THE LIST - 1]. If the connection to the first device is
required, the command must be AT+CONO. If it is for the second device, the command
would be AT+CONL1, and so on. The command AT+DISC only displays the 6 first devices
found.

Both solutions have disadvantages. In the automatic configuration, if more than one BLE
slave device is available, the selection of the slave by the master is unpredictable. It could
be a problem if there are other BLE applications (which are not AsTeRICS CIM devices)
inside the cover range. The advantage is that, if the first pairing is successful, the device
will always try to connect to this first device, avoiding the connection to other available
slave devices.

The main drawback of the manual case is that during the connection process, if the module
is the master, the MAC address of the dongle needs to be known. In order to find out the
MAC address of the dongle, the user should open a virtual serial COM port with the dongle
using a program which allows the serial communication with the COM ports, e.g HTerm
[36]. After the COM port is opened, the MAC address query command has to be sent.
Finally, incorporation of the address to the microcontroller's firmware code is mandatory.

In case of configuring the dongle as the master, first of all it is necessary to know the
module MAC address or to change the device's name for a recognizable one. Secondly,
the AT+DISC hast to be sent to look for the module. Finally the command for the
connection is required. An additional problem is how to send the AT commands. In case of
the module as master, it is easy via the microcontroller. However, in the case of the dongle
as master, the use of a program as HTerm or a suitable configuration application (.exe file)
is required. If instead of AT+DISC, the AT+CONNL command is used, the previous
configuration process is required for the first pairing. In addition, if one of the devices
breaks down and must be replaced by another, the procedure must be repeated. In

38

conclusion, in order to facilitate the use of the Lipmouse configuration procedure, the
automatic option was selected.

Another critical decision is the determination of which device is the master and which is the
slave. If the module is configured as master and the dongle as the slave, the dongle can be
used with the default settings (in other words, it does not need any configuration).
However, the appropriate baud rate and the master role have to be configured in the
module. This can be done at the microcontroller's firmware. In addition to this, once the
first connection is established, the module can only be paired with the same dongle, with
which it was paired the first time. Therefore, if the dongle is substituted, the user should
restore the module default factory settings for erasing the address of the previous dongle.
This action involves modifying the firmware and flashing the Lipmouse’s firmware again.

If the dongle is configured as master and the module as the slave, the baud rate and the
role configuration also has to be done by the microcontroller's firmware. Moreover, the
dongle has to be configured via HTerm or another similar program. As previous case, once
the dongle has established the first connection, it will always try to connect to the same
device. The command AT+RENEW, is used for restoring the default factory settings and
forgetting the address of the device. Thereby, the dongle could establish another
connection to a different device.

A reasonable requirement is that the firmware of the microcontroller should not need any
changes even if a connection with a different USB dongle is required. Therefore, the
dongle should be configured as a master and the module as a slave instead of the other
way around. The resulting configuration process of the dongle is described in Appendix A.

The next configuration issue concerns the module's UART baud rate: The ARE opens the
virtual serial ports at 115200 bps. Thus, the logic procedure would be to set the interface
UART's baud rate at 115200 bps. Nevertheless, it cannot be done, because the
microcontroller was supplied with 3.3V. At this operating voltage, the ALU's frequency
clock should be prescaled from 16MHz (external's crystal frequency clock) to 8MHz in
order to avoid over-clocking according to the AT90USB1286 specifications. On the other
hand, the microcontroller's UART could not work properly at 8MHz and a speed 0f115200
bps. As it can be seen in Table 3.4, the error is too high at 115200 at this baud rate for
both Normal and Double Speed modes. The speed of 76800 bps in Double Speed mode
has a slight error (0.2 %). However, the BLE module cannot support this baud rate (see
Table 3.3). Therefore, the best option was choosing 57600 bps in the Double Speed mode.
As shown in Table 3.5, in the Double Speed mode, the recommended maximum error for 8
data bits and non-parity bit is £1.5 %. At this speed the error is 2.1 % which is better than
the -3.5 % error at 115200 bps and it is still inside the maximum range of total errors for a
working data communication. Testing if the microcontroller's UART could support 115200
bps was performed elucidating that it was impossible to establish a communication at this

39

baud rate. Selecting a speed of 38400 bps has an error inside of the recommended range,
but it would lead to a low baud rate which would limit the nhumber of Lipmouse coordinated
updates per second.

f,.. =8.0000 MHz f,.. = 11.0592 MHz f..=14.7456 MHz

paud U2Xn =0 U2Xn =1 U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn =1
(bps) UBRR | Error UBRR | Error UBRR | Error UBRR | Error UBRR | Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 00% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 3 0.0% 63 0.0%
38.4k 12 0.2% 25 02% 17 0.0% 35 0.0% 23 00% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 5 -7.0% 12 0.2% 8 0.0% 17 0.0% 1 0.0% 23 0.0%
1152k 3 8.5% 8 -3.9% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
2304k 1 8.5% 3 8.5% 2 0.0% 5 00% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 53%
0.5M 0 0.0% 1 0.0% - - 2 -1.8% 1 -f.8% 3 -7.8%
™ - - 0 0.0% - - - - 0 -.8% 1 -7.8%
Max. (¥ 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR =0, Error =0.0%

Table 3.4: Baud rate errors at 8MHz. Normal Speed mode (U2Xn = 0) and Double Speed mode
(U2Xn = 1). (Source: [37] , page 205)

Apparently there was a speed mismatch problem. The maximum baud rate for the
microcontroller was 57600 bps and the ARE worked at 115200. The ARE baud rate could
not be modified, because this would affect the other CIM devices developed until that
moment. All CIMs work at 115200 bps and when the ARE opens a serial communication
port, it does not know which type of CIM is plugged in. Hence all communications have to
be compulsory work at 115200 bps from the ARE side. One idea was to send a special
sequence at 115200 bps, which could be recognised by a device working at 57600 bps. If
the device detected this sequence, it would send a message to the ARE. Then the ARE
would have realized that the CIM device was working at 57600 bps. Therefore, the ARE
would change the speed of this port to 57600 bps allowing the communication with a
slower CIM without affecting other possible CIMs attached.

However, this speed mismatch was not actually a problem. When the data arrives at the
serial interface of the BT device, it is encapsulated in a BT frame. The frame will travel at
various Mbps (in the air). As a consequence, the data is buffered between the layers of the
protocol stack. Thereby, a BT channel in the application layer can work at one speed, but
in the lower layers the data travels at more speed. Besides, the channel is not always
transmitting. Due to these facts, one side of the communication can work faster than the

40

other side, if the data rate (the total amount of data per time, no the serial velocity) can be
absorbed by the slower side of the communication. Otherwise, it will overflow and the
communication will fail. It turned out that the baud rate specification is only necessary for
the UART side (the microcontroller interface connecting to the BLE-module on the PCB) —
and that the baud rate specification for the Virtual COM Port (for the connected USB
dongle) is completely obsolete. Therefore, the BT module was configured to a baud rate of
57600 bps and the ARE still opens the VCP with 115200 bps. A test of the communication
revealed that there was not any problem working at different speeds.

Finally, the definitive solution was: if it is the first connection, the role of the dongle must be
set as a master. After changing the role, the device will try to connect to the module
automatically when the two devices will be switched on. The procedure can be seen in
Appendix A. The configuration settings are not cleared when the device is switched off.
Thus, the configuration process has not to be repeated for future uses.

For the module, the configuration commands were programmed in the microcontrollers’
firmware and they will be sent to the module via the UART interface. Therefore, the user
does not have to intervene in the module’s configuration. The configuration commands are
sent every time that the firmware is reset / the Lipmouse is powered on. If the module was
already configured, the configuration commands could be bypassed. However, it was
easier to send the commands every time than to detect if the configuration was already
done. In addition, in the unusual case that the Lipmouse (or BLE-module) would be
replaced, it will also be configured without performing any special action. The resulting
commands sequence is:

o Start the UART at 9600 bps (module’s factory speed)

¢ Send the AT command for changing the baud rate to 57600 bps and wait 50 ms.

¢ Send the AT command for changing the baud rate to 57600 bps and wait 50 ms
again. It was noticed in several cases that the baud rate change was not done
properly if the command is only sent one time.

¢ Send the AT command for resetting the module. When the baud rate is changed,
this it is not effective until the device is not reset.

¢ Wait 1000ms for the module restarting.

e Restart the UART at 57600 bps.

41

D Recommended Max
(DatatParity Bit) | R, (%) | Rigi(%) | Max Total Error (%) Receiver Error (%)

5 9320 106.67 +6. 67/-6.8 +30

6 94 12 10579 +5.79/-5.88 +25

7 94 81 10511 +511/-5.19 +20

8 95 36 104 .58 +4 58/-4 54 +20

9 95 81 10414 +4 14/4.19 +15

10 96 17 103.78 +3.78/-3.83 +15

(a) Baud rate error depending of the number of data bits in Normal Speed mode (U2Xn = 0)
(Source: [37], page 197)

D Recommended Max
(Datat+Parity Bit) | Ry, (%) | Rig (%) | Max Total Error (%) Receiver Error (%)

3 04 12 105 66 +5 66/-5.88 +25

6 94 92 104.92 +4.92/-5.08 20

7 95 52 104,35 +4.35/4 48 +15

8 96 .00 103.90 +3.90/-4 .00 +15

9 96.39 103.53 +3.53/-3.61 15

10 96 70 103.23 +3.23/-3.30 +10

(b) Baud rate error depending of the number of data bits in Double Speed mode (U2Xn = 1)
(Source: [37], page 197)

Table 3.5: Baud rate errors

3.2 The Battery

3.2.1 Battery Selection

Developing a portable solution involves two topics: a wireless communication system and a
battery power supply. To understand why some batteries are better than others, it is
necessary to define the principal parameters that characterize them.

The first two questions to solve concern the suitability: a primary or a secondary battery
and which type of battery is better. In other words, what is to prefer: a non-rechargeable or
rechargeable battery and which chemistry is the best concerning specific capacity, specific
voltage, safety, life span, maintenance and self-discharge. The question of choosing a non-
rechargeable or a rechargeable variant is indirectly related to chemistry. Although primary
batteries have better performance and reliability in some aspects, the price (considering a
longer timespan) and the convenience of a rechargeable solution led to choosing a
secondary battery.

42

A rechargeable battery can be acquired for less than 15 € and an alkaline AA or AAA cell
can cost around 0.35 € (if they are bought in large amounts). This means, that for more
than 43 uses, it is cheaper than a non-rechargeable solution. If the Lipmouse was used for
a year, the increased cost would be amortized. Moreover, many users see an
inconvenience in changing the cells or having new cells available when needed. It is easier
for them to connect the device to the computer via a USB cable or to plug it in a local jack
for recharging the battery, rather than to change the alkaline cells. Nowadays, many
consumer electronics are recharged through a USB cable plugged in a computer. Hence, it
was reasonable to develop a solution of this type since this project involves using a PC or
another embedded platform with USB connectors. In addition, there was also the
environmental issue with the chemical recycling problems of the batteries.

The battery characteristics are derived from the inner electrochemical process. Thereby
batteries with the same chemistry, but with different internal designs have different
performance parameters. The principal chemistries are:

e Lead-acid

¢ Nickel-cadmium

¢ Nickel-iron

¢ Nickel-zinc

¢ Nickel-hydrogen

¢ Nickel-metal hydride

e Zinc-silver oxide

e Zinc-bromine

e Sodium-sulphur

e Sodium-metal-chloride

o Cadmium-silver oxide

e Lithium-ion-cobalt

e Lithium-ion-manganese

e Lithium-ion-phosphate

e Lithium-ion polymer

¢ Redox batteries

Moreover, there are solutions based on supercapacitors and ultracapacitors used as power
supply sources. Depending on the requirements of the application, some are more suitable
than others. The most important parameters are:

o Electrical characteristics. The nominal voltage value of the battery determines the
number of cells needed. The microcontroller chip needs a voltage supply of 2.7-
5.5V. Thus, it would be necessary to use more than one battery cell for some types
of chemistries. In addition, the minimum and maximum voltage range tolerable
must be taken into account. A mismatch in the voltage between the battery and the
rest of the circuit could damage some electronic components of the system,
including the battery. Analogous considerations must be done for the electrical

43

current. Therefore, the charging and discharging I-V curve of the battery would
affect the electronic design of the PCB.

Capacity. The capacity of a battery is usually expressed in ampere-hour (or
milliampere-hour). This capacity is given for a specific discharge rate (the C-rate),
temperature, and cut-off voltage. The duration and the amount of current delivered
to the load can be calculated using this value. For example, a 1000 mAh battery
rated at a discharge current of 200 mA entails 5 h of autonomy. This means that if
the battery was used at a discharge rate of 100 mA, the battery would supply the
device during more or less than 10 hours, because, as cited above, the capacity
also depends on the discharge rate. In addition, the battery has its limits and
perhaps it cannot provide a high discharge rate, e.g. 2000 mA during 30 minutes.
Another way of expressing the capacity is determined by the energy stored in the
battery (in watt-hours). This quantity is defined in terms of mass and volume:
specific energy or gravimetric energy density and energy density or volumetric
energy density. Therefore, a battery with low specific energy and low energy
density will be large and have high weight. In other words, the battery selected
should have the highest possible specific energy and energy density.

Duty cycle. The current supply can be continuous or intermittent. Some batteries
are optimized for delivering a considerable amount of power during a short period
of time, for example the flash of a camera. For this project, the application demands
a continuous flux of energy.

The temperature. The specific energy of a battery depends on the temperature.
Batteries do not work properly below or above a certain temperature. For extreme
conditions special batteries have to be used. This application is thought to be used
by a person inside a building. Thus, the battery selected must work correctly
between 15 to 30 °C.

Lifetime. Some batteries can be recharged more often than others. The more
cycles, the longer the life of the battery. However, some batteries are more
resistant to overcharging and deep discharging than others. These situations can
decrease the battery's performance dramatically. Also, there is always a risk of
catastrophic failure, i.e. suddenly, the battery breaks down due to a failure in the
cell. Therefore, all batteries have a medium lifetime.

Physical dimensions. The weight and the size of the battery are among the most
critical aspects in this project. At the moment of the realization of this work, the
enclosure design had the dimensions of 35 x 35 x 80 mm. The sensors, the PCB,
and a part of the mouth stick had to fit inside the enclosure together with the
battery. There are many types of packages available in the market, as some battery
chemistries allow building different form factors.

Self-discharge. The batteries have internal losses and some types are sold with a

protection circuit that consumes a small amount of energy. Thus, these batteries
are discharging if they are not used over a long period of time.

44

¢ Environmental conditions. Besides the temperature, other factors, such as the air
pressure or the humidity affect the battery’s performance. Moreover, if the
application involves vibration, spinning, high accelerations or decelerations, an
effect in the battery’s life could be induced. However, this is not an issue for this
project, since the Lipmouse will be stored under normal conditions of humidity and
pressure and the device will not be exposed to excessive movements.

e Safety and reliability. As noted above, some batteries can be damaged out of
inappropriate use. The batteries can break down and liberate corrosive and
hazardous gases or liquids. In addition to this, the battery can overheat due to a
malfunction and may damage other parts of the device. Also, some batteries are
sensitive to deep discharge or under-/overvoltages. Hence, batteries need some
electronic protections.

¢ Maintenance. Some components of the batteries need to be replaced after a
prolonged use or cleaning of the electronic contacts may be required. Several
battery chemistries imply the voltage depression effect (also called memory effect),
which forces the user to perform a full charge and discharge cycle to recover the
capacity of the battery.

e Cost. There is always a trade-off between performance and price. The best battery
is usually the one that has good characteristics (not necessarily the best ones) at a
reasonable cost, as one aim of the project is to develop a cost-effective solution.

Table 3.6 summarizes the most important parameters for typical battery chemistries.

The Li-ion batteries have a high energy density, high specific energy, more than 1000
charge/discharge cycles, low charge time and the cell voltage is higher than in other types.
These batteries are good for portable and small devices like mobile phones, tablets, digital
cameras, laptops, mp3 players, and others. Therefore, they became very popular in recent
years. However, they have an important drawback: they need a protection circuit due to
safety reasons. This battery technology does not tolerate overcharging or low voltages
(undervoltage problems). All types of Li-ion chemistries are similar in performance and only
have slight differences among them. However, in particular the Li-ion polymer batteries
have greater energy density and they are more stable than the rest of Li-ion battery types.
Moreover, one of the best advantages is that they are more flexible in cell sizes.
Consequently, a wide variety of these batteries in different sizes is available on the market.
(Reference [38] and [39])

Hence, the battery chosen was a Lithium-ion polymer battery. The battery was bought from
SparkFun Electronics, [40] and it has a capacity of 2000mAh. It offers a low self-discharge
rate and the nominal voltage is 3.7 V, so that only one cell is necessary. In addition, it was
not too expensive ($8.95, without taking into account the possible shipping expenses), and
its dimensions fit the requirements: 50.8 x 33.5 x 5.9 mm. As a result, it fitted perfectly in

45

46

modified from [38], chapter

%0F ™ 000°0F 00001008 00L~00€ 000Z-00§ 000T-008 00S-0ST - 00st 00L-00T
+0001 T¢I 009-00€ 0009-00S1 008-00€ 001-0€ g 00070002 smak
(poreas) ¥ ¢ T or-¢ 8 8T T8I 9 9 ¢ 21 JepuRE)
5 — (patuax) ¢ T - ST8 (oa1y e
2PN
£ m
dwa) mo| @ (9d-98) S
z sTsl waoxa ysiy Koy < ¢ = (e 101 0z=¢1 ol < End - L 05702 Jtow)
1od ss0] 3,
4007 ®) 21 S
aRmyosip-jiog ~
sudisap 0
opewsud uy iy o iy iy @
yiny tawapoy ARIPORY 01 JRIBpO BB T Y31y o aIapopy yiiy mo] o1 eidpopy y3ny Ky amPpO LELE] ysiy Y3y KjamIpop] Apamapopy y3y Ansuap 1amog ..rU
(annmp) K]
Fuidojg Fudolg k| wy Apmaapopy neajepd ajqnogy neawid ajgnocy RLE| wy Apmriapopy o[o Aoy wp Ay ALE| LIE] RLE| LLE W m
00F 0sT wT ozl 081 oT1-08 &8 08¢l 1 96788 oy 06 oL-os 08 0L m
0s1 <8 SL 0L »S01 09-08 (3 0701 Le—0g o 0g oz-o1 ST 33 O —~
—
@ N
AB1aua aproadg S
2. ‘sameradway o
0§ 010z~ oF O 0z~ 0c ™ 07— LIS] 0L o €T~ 09 O 0z~ 0caor-— Sronor— 09 O 0E— S 01 0F— 0¢ o 0F— SF 01 07— 09 0 0v— EUNI B 0F 01 0T~ €6 01 07— Sunesadg ..WJ
(vonmiado —
Furyuess Fuump [%2]
(201128 1RO} adejon pua pue @)
(pajodo asaym) Funesado 1amor) m
e 01 01 Tl o1 01 ol SL1 SL'1 b
0e0F orr-sti €1 191 00°T-6TT 00 1-ST1 00'1-ST1 81-0T 0T Buneiadg ()]
'y vl 98’1 L1 6Tl 6Tl 6T'1 I'T uadg =
ot Tl <1 1 Tl Tl Tl 0T [pUIWON +—
A (oA a—
afmon 123 o)
(2]
LSwagsis QU uZ. apupky uafapiy (feuon N paeag ared ajqeuog Amuonmg uorRI], s aurey uowWwWoy =
ot wanpry sadfy oo YN apro “uanuo3) pasaqus Pysod Q
Arewnd,| oaprs faurz voIHERIN pajuay pemap 5]
ajEaimyany Jwnpry =
wniwpEs-EYRIN proe-pea] <
pas
o}
o
P
j
Q
—
=
@
oM

Table 3.6

the enclosure. In addition, the connection with the rest of the circuit was made by a
standard 2-pin JST connector, which was simpler than, for instance, the use of metallic
contacts. In conclusion, this battery suited for the project.

3.2.2 Circuit Protection Design

Not only the selection of most the suitable battery was important, but also the design of the
charger for it. The Li-ion batteries need a protection circuit, which is directly related to the
charging system. The operating principle of this type of batteries and their requirements will
be discussed below, in order to understand how the charger and the protection circuit
should be designed.

Most lithium batteries follow a constant current-constant voltage charging algorithm,
depicted in Figure 3.4.

4,50 1200
4.00 Cell-Voltage
350 ‘ ' 1000 :;f:
T [2~]
S 3.00 Capgcity 800 §_
=
S 2.50 ==
£ 600 55
= 2.00 S<
3 SE
o 1.50 400 &
Charge Current <
1.00 =
050 200 ©
0.00 0

00 05 1.0 15 2.0 25 3.0 35 4.0 45
Time (Hours)

Figure 3.4: The Li-ion charging cycle (Source: [41])

The charging cycle can be subdivided in three stages. The first stage only occurs if the cell
is completely depleted and the voltage of the battery cell is below 3 V. During this stage the
cell must be supplied with a small constant current, until the threshold voltage is reached.
In the second stage the current is raised up to the desired charging current value. This
current must be maintained constantly during the whole stage, while the voltage of the
battery is increasing. When the voltage is equal to the float voltage level, 4.2 V, the
constant current phase finishes. In the third stage the current starts to diminish and the
voltage remains constant. The charge cycle ends when the current is equal to a minimum
level. After several recharging cycles, the battery may not achieve this minimal value.
Thus, a timeout or other external mechanism is necessary to terminate the charge.

47

Notice that in the constant-current phase (second stage), the higher the current is, the
sooner the float voltage will be reached. However, this does not shorten the charge cycle
time significantly, since in the next phase more time will be required to reduce the current
to the minimum level due to the charging current is higher. (References [41] and [42])

The battery must be protected in case of: under/overvoltage situations, battery overheating
or when the minimum termination current is not reached. Therefore, the major electronics
manufacturers have developed a wide range of integrated circuits (ICs), which control the
charging process. These solutions can be classified in three groups, depending on the
charging method performed: linear, switch-mode, and pulse charger. (Reference [44])

A linear charger is easy to implement, more compact and cheaper than the other two types
of chargers. It uses a pass transistor to supply the voltage from the source to the battery.
This configuration has a low efficiency, since the transistor dissipates a lot of heat. One
advantage of this type of charger is that it needs only a few external components. In
addition, it is immune to electrical noise. Figure 3.5 (a) shows an example of a linear
charger, the MAX1898 by Maxim Integrated.

The switch-mode option is more efficient, seen from the energetic viewpoint and it can be
used with a wide range of voltage inputs. However, it needs more external components, for
example a LC filter, increasing the size of the PCB significantly. Another disadvantage is
that the switching action produces electrical noise and the inductor generates spurious
radiations, both potentially leading to interferences. An example of this type of solution is
depicted in jError! No se encuentra el origen de la referencia. (b), the MAX1737 by
Maxim Integrated.

The third type, the pulse charger, is a combination of the two previous charging
technologies. It works more efficiently than a linear charger, but less than the switch-mode
option. The pulse charger also needs a pass transistor that connects the source with the
battery. When the cell is depleted during the trickle charge, the transistor supplies the
current like in the linear mode. However, in the constant voltage phase, the transistor acts
as a switch (it operates by allowing or blocking the conduction of the current). The power
dissipation is reduced, but it needs more time to charge. This configuration does not
require a LC filter, so the space on the board is even more reduced than in the switch-
mode configuration. The main problem with using this class of chargers is that the input
source has to be current-limited and accurate. Consequently, these solutions are usually
more expensive than the other charger types. The Figure 3.5 (c) shows an example of a
pulse charger, MAX1736, also by Maxim Integrated.

48

up

System

Input
Voltage % L 1 [J_
: I IN cs
LI ST
CHG BATT
+

on MAX1898 I
—L | ENOK = :_E
on ~ _ Charging

ISET
Current

RSTRT cr
J_~_ GND
L

=

(a) Linear charger (Source: [44]) (b) Switch-mode charger (Source: [44])

CURRENT-LIMITED
VOLTAGE SOURCE
PFET

GATE

IN BATT

At

BATTERY

; MAX1736 ‘?L

ON L OFF P—EN GND

I

=
R o 154
T

(c) Pulse charger (Source: [44])

Figure 3.5: The different charger types

The resulting size of the PCB was crucial in this project. The solution had to be as simple
as possible. The linear chargers use less components and they do not need a LC filter.
Also the charging time is much shorter than in the pulse configuration. Thereby, the best
option was to search for a linear charger IC. In case the linear charger solution did not fulfil
all requirements or the heat dissipation was a problem, a pulse or switch-mode chip would
be selected.

Four of the major electronics manufacturers were consulted for the charger IC: Analog
Devices, Texas Instruments, Maxim Integrated and Microchip Technology. The possible
solutions and their main characteristics are summarized in Table 3.7.

The first column in Table 3.7 refers to the name of the chip and the second to the final

charge voltage. Depending on the cell design, this voltage is different in each case. Most of
the chargers work at 4.1 V or 4.2 V, but of course there are other types, too. As the charge

49

(swd v1) (22un0s Jamod JasIp /€ pue
ped pasodx3 T098XYN
2658 0101 AOY pue smels uoNeULIOJUL 10N SIA SIA SaA Fuidueyd z'p) Asaneq Fuueys AT MNOO'L-AST't (8sn) vwssy/vwse asn/ov | suojepuels Jeaur] AV
naaL Suidiey) omp au up a8e3j08 3 0058XYIN
WIWE X WWg
324N0S JAMO uonIAN0I Buidieyasip /' pue
(swidg) ¢ ? BUIIES LE P SSSTXVIN
2558 0101 ASE'E pue smejs SIA [ewiay) oN Sap uidieyd z'p) Aianeq Suueys UONBULIOJUI 1ION | ADD'L-ADL'E Vw0t asn/ov | suojepuers ATV
£2105 Guidseya) omy sey ng oN 3y vl aderjon ayy TSSTXVIN
s umh (92un0s Jamod uonpajosd (Buidieydsip - pue
ped pasodx3
N4aL D558 010 vLT Ppue smes SN WYy OoN SaA Buiieyd z'p) Aaneq Suleys AST NOS'9-AST't? Ywsof asn/ov auojepueis Jeaun AT Z/A/XBOBBXVIN
Buidsep) omp seyng oN a1 u adeijon ays
wwig X wwg
(sud v1) (92unos Jamod
ped pasodxg | o : ue snjels 59, 59, (erqeandyuca 59, (eqA yum) a1e|os : Weq 5C¢ pue shs Ya auojepue
NdaL 558 M1 0% AOO'? P ey A A ou) saj Ak AE'E = 18qA Y) AS'E pajejos| AT NOS'SAST? 057 <INdul VWS Yum asn/ov auojepuels AT 9098XYIN
Guidseya) omy
WIWE X WIWE
suid
{ vz) (92un0s Jamod
ped pasodxg
NdaL 2558 010 ADD'? pue smeis oN SaA SOA Sap ASED paiejos| A9T AD9'9-AOT YWOSZT-YWO0E asn/ov | auojepuers Jeaur] AV /¥ £L98XVIN
Auidieya) om)
Wy X Wiy
m?:_aanmhx (22unos Jamod uonaajoud (Buidieyasip £°g pue sas|nd oy
P .n_hwm_h 3 2558 010t puE sMEes E7Y |ewIay) oN Sap BuiBieyd z'p) Aaneq Bueys N8BT AOO'L-AST'V |euas Ag ajqesn8yuod asn/ov auo|epuels Jeaun ATt WDMWONP
Guidseyp) om sey ng o| ayy ul adeyjon 3l neja w
wwg x wwg p)omL 119 oN D 1j0n Ay 00£-05t (INe}ap) ywoos
) (Buidaeyosip £ pue
ped pasodxy (a2un0s Z
NdQL 2558 01 0 ON samod) aug SIA ON N SaA Buidieyd z'y) Maneq Suleys NBT NOB'9-AST't YWo/S-Yw/0T asn/ov auojepueis Jeaun AT PTBBXVIN o
ay vl a8erjon ay) 3
wwig X wwg =
o
EEn) 9
u
(suid vt (92unos Jamod m
ped pasodx3 ; . . . 1eq G77 pue shs . o
2558 01 0 ADO'Y pue sme3s SIA S3A ON S3aA (AE°E = 1BGA LIM) AS'E pajejos| APT AB'S-AD'P asn/ov auojepuels ATV 9583XYIN
N4aL 057 <-Indul ywgps yum
Buidseyd) omy
WWE X Wwe
suid Xaa ue
{ vi) (22an0s Jamod uonaaosd NS8Y-Ly 00TP
ped pasodx3 (Buidieyasip £°¢ pue R
558 01 0t ON pue smeis SIA [ewayy ON SaA Buieys N8BT AOLATY VWory-ywag asn/ov auojepuels Jeaury AV Z/AUEBEXYIN
N4aL Fuidieyd zy) Asaneq
Suidiey) omp seqIng oN
WIWE X WWE ayy uy a8eyjon ayy
(suid 71) ped (a0unos Jamod uonsanoud »m-ﬁ L7 001 pue
dulgieydsi b ue
pasodx3-N4D | D558 01 O ON Ppue smeis S3A [ewiayy ON SaA { 5P LE P Suleys Jyt:14 ADLATY YW0S-vwootT asn/ov auojepuels Jeaury AT z
WIWE X Wig Buidieyp) omy sey Ingq oN Fuidieyd z'p) Aaneq AIX/MSEBEXYIN
‘ ! 1nq auy ur a8eyjoA Ay
“;,meé (90an0s samod (BuiBaeypsip £°¢ pue
P __,H_n_._. 2558 0101 AOOt pue snels uonewoul oN SAA SAA Sap Fuidieyd 'y) Aaneq Buueys AVT NO'G-AT'F VWo0T-YWooe asn/ov auojepuels Jeaur Y4 V0098XVIA
WIWE X WIE Auidieya) omp ayy uy a8eyjon ayy
suid w ‘Nr6" ue
(otl (22unos Jamod uonaaod VI0OT "AveE 04T P (sasind
ped pasodxy . (BuiBseyosip L€ pue Jpow IS3L NSO
558 M1 0% NOB'E pue smejs SIA [ewayy ON SaA X Suueys NOE NNST'Y Mo Aq) ywpoT pue asn/ov auojepuels AT
N4aL Suidieyn) omy sey ng oN Buidieys z'p) Asaneq VWIOOT ‘(INEJ3p) YooY Ym, TZZ6BXVIN
3 2
WWZ X wwig ayy ul adeyjon ayy Inejap
A
suid 558 01 53, sa, eS| '9-¢ w “Xew auojepuey Jeaur :
(ST) 1M | 2558 9101 A A pajejos| AT A9 YwossT asn/ov |epuels 1 AT 1%/ MINSEBEXVIN
(suid (auop Suidieya
. (e1qeandyjuod (3/a/o/a) . 3/a
87) NJDL 558 01 0t AOO'F pue smeis uonewojul oN SIA SaA . ; paiejos| (gsn) ns ASO-AT'? YWpOST-vwog asn/ov auojepuels Jeaury AT
ou) sax SEvpue(v) €' /2/8/vreesxynN
wwy x wwy Suidiey) omp
UONEUILLID! EE) JOjSISUB Buneys/paie|o
(on) HEuRL2} HeulLIE} v " (wansAs ayy o1 HeUs/pare|os] (a8e3j0n Indur 8yoi (aseyd uand a2n0s azepaUl Agojodor | (Az'v) a8eajon
Supped [o3ues-dway] noypo) suid smeys Juonpajoud assanay| Sunonuopy Suigieyy ssed peo| wayshs AS < Xew uip, aweu)|
a9e310n 1ndino) mop Gunesado) uip [rueisuos) afieys wauny | agieys jou0y Jonuoy adeyy
adejjoriapun “dway Jawn A1ajes paiesdaqu] pue Alaneg

50

up

(22un0s 81T0vZbq
(suid OT) N3O sawod pue uonaajoud (uiieyasip £ g pue @t »T0VZbG
s i 558 01 Of OoN smiess Suieys oN |ewayy Sap E=TY duidieyd z'y) Aaneq Juueys uonewlojul 10| AS9T-A00E YWOQOT-YWO0T asn/ov auojepuels Jeaur] o __>N.w P
N?h:_t i seyang oy a1 ug adeon A . NEEL
otovebg
Lzovzbyg
9zopzba
Bul3. :
(swid 0T) NOS (smeis (a1qeansyuod (BuiBeudsip L' pue szovzbg
L€ x ww-g 1558 01 Ot NOST Suisieyd 7)omL oN ou) sa4 SaA SAA Buidieys z'v) Aanieq Fuueys UONEWLOJUIION| AD'9-ASER WWID0OT-YWO0S asn/ov AUOJEPUEIS Jeaun AT vzovzbq
ayy u adeljon ayy €zoyzbq
zzovzby
ozovzbg
feud (smess (a192andyuoa (Buidiewpsip £ € pue
O0T) NOSM. | D558 01 0F ON Juidieys Zjomy SIA ou) sai SIA SIA dugiey z'y) AManeq UONBULIOJUIION| AD'G-ASE'Y VYWIQOOT-¥WoS asn/ov | auojepuers [eaur Ny 859EIN1
W g X ww g i - ay1 ur adeyon ayy
£ b
{suid (22.n0s reE 8e0vZbq
02) NJDA ww | 7558 01 0F A0S'T samod pue S9A 594 saA 594 0a1(T€, PUe 08,)A0'9 ateos| AST AO'IT-ASE Y leoidia asn/v | suojepuels | eaun (1=, Seovzba
. I smess Suidieyd X + PUE D& RO ponel vwo00T) YWooST-Ywoot auorep : AT'P) ATR vzeorzha
S x WW G'E ., Ppue (8E PUB VZE AV Teovzbq
ogovzbg —
[ooinos H
(suid 0T) NOS. 1amod pue (9, pue 09,) (8uiB1eyasip £ '€ pue g
g x w-g| 2058 OOV | AQUEAOST | (oo oN S9A pue (€9, SA S9A duidieya z'y) Aaneq Juneys ABT NOIT-NSE'Y YWO0ST-YWooT 4sn/ov | auoepues [eaun NV ¥/€/1/090vTbq B
ey pue T9,} oN ay1 U adeon oy E
7)331yL 3
3
T@31nos 3
(surd Z
1amad pue (le1dky
02) NJOA ww | 3558 01 OF A0S'T Su3 SIA S9A SaA SOA (1£)A0°9 pue (0L)y v paiejos| AST NOGTASE Y asn/ov | auojepuels | eaur Ny T/0c0vebq
§'p x W §'E smess uigieyd \VLU000T) YWOOST-YWOOT
z)aauyL
[ERLTH
(swd 0T) NOS J1amod pue (18,) 594 (2]qenSyuo> (BuiBieupsip ' pue
7558 01 0F A0S'T oN ' EEN Auiduey z'y) Aaneq Funeys AL AOS'9-NOS T WWOOT-YWOT asn/ov | auojepuers [ueaun Nt T/080vZba
- x ww-g snels Suisieyd pue (08,) ON ou) sap
2)sanL ayy u adeyjon ayy
(a2unos
(suid 07) NOS Jomod pue (8uiSeyasip £°€ pue
g x wg| 295ET OO | AOOEAOST | ooy oN SA SA S9A duidieya z'y) Aaneq Juneys NOT NOS'9-NSE'Y YWOSL-YWOS 4sn/ov | auoepues [eaun Y 8/1/9/s80vTbq
N?h:_t i a1 uj adeon au
(a21nos
(surd 0T) NOS samoad pue uonoajoxd (a1qen3yuos (Buideyostp L' pue
. 5 - & duid ") A g : g 3 3 .
g x w-g|2702F 1 0F A0S'T smess Sufbiey ON [eutiay ou) sap SIA uidsey z'y) Aaneq uLeys AL A0S'9NDS'¥ YWOOOT-¥WOS 4sn/ovy | auojepuers [eaur Ny £80vzby
Lt seyIng oN a1 ur adeyon ay
(93n05 Jomod (8/S20vTba)nS'S
sutd 9T) N4D b/ELOVIDAALY PLIAPOT/Y'S ajqesnipe 6L,
¢) 558 01 0F NOE'E pue smeis =N SIA EEN W/) paiejos| N8BT el . 4 A=snip asn/ov | suojepuels | Jeaun ,. .. |6/stv/Efziovzba
W £ x Ww € Suiiew) omL (z20pba) ASE'Y pue (85N) YWSLb/¥wse AT'bo) ATE
AWSZZ+ 18N
d5741 (Buieyasip £°g pue Azt J01sI5UR SSEd A1)
WL € X € PUB [D557T 03 OF OoN (Buiieya) aug oN SaA Sap |ewsaixa ‘on | Buifieyd z'y) Aaneq W) ¢ ATT-AS'? pue Indur a1 Jo spuadap payads jou| auojepuels Jeaur] ATV 1677daY
dOSW pea|-g ay1 u adeyjon ayy >
2
5 &
dSITM wwz Blqengyuos
i 2558 01 01 ASE'T f1eya) auQ SaA SIA (eiqemdl SA (a1qeweidosd) AS-€'p paieos| Aoz ACGAY WWODET-VWOS asn/ov ozl Jeaun] AT T90sday g
X W97 ou) s 2
FISFE - (21gendyuod . . : m
55T 01 0 ASE'T (Auidseys) sup SIA 594 594 (a1qewelBold) NS paiejosi Aoz AL AY YWOOET-¥WOS asn/ov ozl Jeaun 44 7905dav
Wiy X Wil ou) saj
4541 PIqendyuoy
55T 01 0 ASE'T (Auidseys) sup SIA 594 (ergemBu 594 (aiqewelBosd) AS-€'F paiejosi AOT AL AY VYWOOET-Y00Y asn/ov ozl Jeaun |(pOJP4M) AY'E| £90SdaY
wwp X wwy ou) sax
(o1An) voneuway | voneuwssy | oisisuen Suiieys/paiejost
WAISAS AL} O agejjon ndul 8y (aseyd Juaind 22403 ERLIVE] Agojodo: ") a8ejjon
Bupped |eBues-dwar| ooy suidsmers Juonaroud assonay| Sunonuow | swsseys ssed (ks aup o1 peojwashs | ns<xewup | PEEHONY 121 (aseyd 3 e fodor §(Az'v) 28ey
agejoa Indino) Inop Bunesado) uip |aueisuod) a8ieys uain) afueyd jonuo) |[oauo) agieyy
adeyonsapun “dway sown Aages | paressow pue Aianeg

—
o

(ASEY
suid pz) N4D
M:c_ b x w\;c_ v Ja58 O10¥ AT SIA SAA S\ SIA uonewojul ION paiejos| UORBULOJUIION | ADD'9 - AOY' Y (asn) vwost/vwoe asn/ov auojepuRg Jeaun PUe AST'Y TL8ELdOW
z)aaayL ‘NOT'®) AT
suld smes
(ss, o1) (ss.) (BuiBieyosip £°€ pue
N4Q Ww gXg Suidieyd aug (£5,) saA .
598 0101 ey SIA SaA SIA duidiey z'y) AManeq Supeys UORBULOJUIION | ADS'S “AOS'V (gsn) vuwsp/iwoot asn/ov auojepuers Jeaun (ATv)ATY SS/€S8ELdDN
(g5, suid g7) (es, smers pue (s5,) oN ayy u ageyjon ayy
N4D W pxy Suidieyd z)om) ©
t4 b,
?n,:y suid (v, pue fev. (BuiBaeyosip /'€ pue pue Mq,io.: (o pue
: smels pue Tt,) SaA) AT'S/AT'E
0T) dOSW | D558 010%- | Z1.)A09°8 (€, 1eyo aup ON pue (pp,pue SaA SAA Buidieyd z'y) Aaneq Suueys UOIeWLIOJUI JON NOL'8 134 13 + asuasy spuadap asn/ov suojepuels Jeaun (£, pue V/E/T/TYBELLIN
(b, PUe £p, pue Te,) A0k v IO ay ur adeyjon ayy (€, Pue TH,) .
£1.) ON ; ! TRIAZ VAT E
suid g) dOSW ADTT - A0SV
wéa b310.d (8uiSaenasip £-€ pue (_
0T) dOSW smels rOd241
2358 0101 ASO'F S3aA |ewJayy Sap SAA SuiBieyd z'y) Aaneq Suneys ABT AO'9T-ADO't YWOOTT-YWOET asn/ov auojepuels Jeaun . . ETT/ETTELDOW
(suid pT) N4 Jeyd auQ ATLING'E
sey Ing oN ayy ut ageyjon ayy
W g X ww g
(9mn0s .
(BuiBseysip /'€ pue (nosv
(swd o1) NdQ Jamod pue
W g X wu g 598 0101 (asn) Ase'e smieys Suidieys SIA SaA SaA ST\ duidiey z'y) Aaneq Suueys UOEULIOJUIION | ADO'9 - ASL'E (gsn) vwost/vwoe asn/ov suojepuels Jeaun PUE AOD'Y 8/LERELAON
ayy uradeyjon ayy ‘ASE’ :
Z)amayL § oA ay ASEB) AT
a10ud 3 -
(sund 07) 4G smes uonIal0l (Burdseydsip £ € pue (novv
ww g x ww g 2558 010t ASO' SuiSiey aug SIA [ewiayy SaA SIA AuiBieyd z'y) Aaneq Suueys ABT AO'ST-ADD'¥ YWOOTT-VWOET asn/ov auojepueis Jeaun PUB AGER P/ETTELAON =
sey g oN aun ur ageyjon auy ASTH)ATY 3
(o151 (BuiSaeydsip £ '€ pue S
a19/dwoa
(suid g) dOSWI| D558 0101 ON uSEuuu su0 OoN SaA OoN [eusaixa ‘oN | Suidieyd z'y) AManeq Buueys UoNPULIOJUIION | AQS'S - AOSY | 134 X3 + asuasy spuadap asn/ov auojepueis aeaur] (ATPIATZ Y LTBELADW =
° EMUEE T
- TBurdieosip 7 € pue
a12/dwoa
(suid 8) 40SIAI| 2558 01 O oN ja_ug au0 oN SaA oN lewaixa ‘on | BuiBieyd z'y) Alaneq Suueys UONPULIOJUI ION| ADS'S - AOS'y | 134 X3 +asuasy spuadap| @sn/oy | suojepuels seaur] (AT'BYATE 8T8ELAIN
© ay ul adeyjon ayy
; (Buieysip 7 € pue
fsut 2558 0101 oN auo oN oN OoN oN lewaixa ‘on | BuiBieyd z'y) Alaneq Suueys UONPULIOJUI ION | ADS'S - AOS'y | 134 X3 +asuasy spuadap| @sn/ov | suojepuels seaur] (AT'BYATE 9Z8ELdIN
9) VEZ-10S a1 u a8eyjon gy
suid 90unas
E“amms_ :ﬁsa pue (BurBaeysip /'€ pue (A0SY
0558 010t ASP'E) SIA SaA Sap S\ duidiey z'y) Aaneq UOREBULOJUIION | ADO'9 - ASL'E YWwpooT-vWwoot asn/ov suojepuels Jeaun] pue AOF ¢ v/EEBELADN
(suid 0T) N4Q smeys Juidieys a1 ur 98en0n 3 , b) AT
W € X W g 2)aaayL 1 u adeyjon ayy ASEV) ATY
uonvaioid (Buiaeysip £ '€ pue
{suid 9) nisa 2558 010t NOE'E e S9A ewIay) Sap S3A SuiBiey 7'p) Aane Buneys UONEWIOJUIION | ADOG - AGL'E {10E,) s1000t-vru100¢ asn/ov | auojepuels Jeaun ATY 1/0£8ELON
ww zx wwyg | ~° Fuidieyd aug ! K © : + oneq Hed g (0€,) YWwooz-ywoz ouolepue o
sey inq o ayy ur adeyjon ayy
(suid
(uoissan uondajosd (durdieyasip £ pue (nos v
:mc,_wmw_kmo 9558 01 01 ASE'E N4Q) sniels sap Jewuaty oN san fuiiey z'y) Aaneq Suueys UonEeWLOJUIION | ADO'9 - ASLE VWSOS VWS b asn/ov | suojepuers | eaun pue oy | Z/TE8ELdOM
w7 Suidiey aug sey g oN ayy w1 ageyjon ayy ASTD) ATV
uondajo.d (3wBaeyosip £ € pue
fsurd 2598 0101 oN auo oy S9A Jewayy oN SaA duidiey z'y) Aaneq Juueys UORBULIOJUIION| ADD'9 - ASLE {z.)wwoos asn/ov auojepuURIS deaun ATV T/TT8ELDN
s)ezlos | - Vs (1.) vwosy/vwsg) o
SeY Ing oN ayy uradeyjon ayy
uoneUIWId) UONRUILIS) J015ISUR N Suueys/paie|os!
(o140} (warshs aug o) 15/pe (a8eyionndur | 8ypi (aseyd yuarno annos | asepayn | ASodor | (azv) aBenon
afues dwa) NoXI0| suid smeis Juonaajoad asianay| Sunonuow fuiieyn ssed peo] wasks AG < XEW UIA aweu J|
adejjon indino) Inop Supesado) uip | ueisuod) adieyd uauny | adieyy [ou0) [onuo) adieyd
adeyjomapun dwaj 1auwn Ayajes pajesdaju| pue Aianeg

IC charger proposal

Table 3.7

52

up

voltage of the selected battery (see Section 2.5.5) is 4.2 V, the charger chip should work
for this voltage in order to obtain a proper performance of the battery.

Column 3 of Table 3.7 exposes the type of charger: linear, switch-mode or pulse. The most
common approach was the linear solution, so the solutions shown are only linear chargers,
although there were also switch-mode and pulse ICs.

Column 4 describes the control interface. Some chargers offer configurable parameters or
can report some information about the state of charge. These chips have 12C, SMBus or
other types of control interfaces. For this project these kinds of interfaces were not needed.
The solution designed had to be as simple as possible. Therefore, a standalone solution
was a better option.

Column 5 depicts the IC power supply type. This can be an AC wall adapter, a USB port or
a direct connection to the mains. However, the last type was not very popular due to the
fact that such designs are more complicated than in the other two cases. Some chips could
be used with either AC wall adapter or USB topologies. Others were optimized for one of
these cases. For this project, the battery had to be charged through a USB cable, since
this application involved a PC or an embedded platform with USB ports. Therefore, it was
more convenient to use USB.

The charge current (the current during the constant current phase) can be set by an
external resistor or by digital inputs, depending on the chip design. Many of the chips
designed for USB applications have two digital inputs that allow choosing between the
USB standard current values: 100mA or 500mA.

The next characteristic is the voltage range of the input source. The minimum voltage is
approximately around 4 V and the maximum value depends on the chip design: 6 V, 7 V or
12 V. The USB electrical specification is inside these ranges. The following parameter is
the maximum input voltage and it is related to the voltage input source. The voltage input
source is the voltage in which the charger operates correctly. However, sometimes sudden
overvoltages appear. Many ICs tolerate high voltages to a certain maximum value. This
value constitutes the maximum input voltage and if it is exceeded, the circuit could be
damaged or broken. The other dangerous situation is the exact opposite. If the voltage
applied to the battery is below a minimum level, the cell could be damaged as well. Thus,
the most ICs also feature an undervoltage lockout protection that stops the charging when
the voltage reaches this minimum. This voltage is typically between 2.5V and 4 V. In order
to avoid unstable situations (e.g. a fluctuating signal around this value would constantly
activate / deactivate the charger), many chips implement a hysteresis cycle. This means
that for switching off the charger, the voltage has to be equal to the undervoltage lockout.
But for switching the device on again, the voltage has to be above the undervoltage value
plus a fixed threshold.

53

The manufacturers have implemented two variants of charging IC’s: The first variant
provides just one output pin which is directly connected to the battery. This results in two
design options for the application: either both the charger and the rest of the circuit are
separated or the charger is integrated into the system. The separate solution is less useful,
because when the user needs to recharge the battery, he/she has to detach it from the
device and plug it into the charger. After the charging, he/she must again connect the
battery to the system. Therefore, many designers have developed a solution to include the
charger inside the device. The charger has to be connected to the system load and to the
battery, but it only has one output pin. As a consequence the designer has to build a switch
circuit to select between supplying the power to the system load through USB or through
the battery. Besides of supplying the power to the system load when the USB supply is
connected, it must also charge the battery. The circuit will consume a part of the supply
current provided to the charger. Thus, if the system load varies, the consumed current is
modified which could be a problem for the battery in an integrated charging solution. The
charging current must be constant during the constant current phase and the in trickle
phase the current must remain low. Therefore, in such designs the battery and the rest of
the circuit should not be directly connected. A regulation circuit must be placed between
the battery and the system load. This circuit is also connected with the input source,
thereby when the input source is active, the system load takes the power from the source
and the battery is charged independently. If the input source is disconnected, the
regulation circuit will switch to the supply source of the battery.

The other solution developed by the manufactures is the integration of the regulation circuit
into the chip. In this case the charger IC has two output pins, one for the battery and
another for the system load. Therefore, the designer can implement the charger into the
system without regulation and switching circuit. The manufactures have patented their own
solutions. Texas Instruments calls it "Dynamic Power-Path Management" and Maxim
Integrated calls it "Smart Power Selector". This solution is rather preferred than the first
one, since it is simpler and saves space on the board. The solutions shown in the tables
differ in "sharing" when the chip has one output pin that must be shared by the battery and
the system load and "isolated" when the chip has independent pins for the battery and the
system load. Therefore, the output voltage (the voltage to the system load) will depend on
the solution implemented. In the "sharing" configuration the voltage will be 4.2 V during the
charge and 3.7 V when the battery is being discharged. The “isolated” case depends on
the specification of the chip, although these values are usually in the range of 3.5 V and
4.5 V. This feature was important, because the BT module and the microcontroller operate
at 3.3V. Consequently, the output voltage had to adapt this value through a low-dropout
voltage regulator (LDO). (Reference [45])

The suitable solutions found were all linear chargers. As mentioned, they need a pass
transistor to regulate the current from the input source to the battery. This transistor can or

54

cannot be integrated within the chip. A chip with the pass transistor integrated would be
preferred, but this feature would not be essential for the design.

The following parameters in Table 3.7 refer to the protection features of the ICs. The first
characteristic is the possibility of including a safety timer. As explained, after many uses,
the battery might not reach the minimum level fixed by the charger IC in the last phase of
the charge. Therefore, if the charge is not cut off by an external method, it will continue
indefinitely. One solution is to finish the charge after a timeout determined by a timer. Many
chips have a timer with a fixed value, but others can configure this value by an external
capacitor. Another safety measurement refers to a possible overheating of the system. If
the power dissipation is high and the chip cannot dissipate it fast enough, the charger
starts to overheat. Moreover, when a Li-ion battery is not working properly or is damaged,
overheating is also a possible outcome. Thus, many chips have a thermal protection,
consisting of an input pin for monitoring the temperature of the battery through a
thermistor. If the battery is too hot, the charger will stop the charging cycle. This rarely
happens, so many manufacturers include only a thermal protection, instead of a
temperature monitoring. The temperature monitoring is usually included in systems
submitted to stress, where the battery cell could result in damage. The last protection
parameter is the reverse blocking diode. Many pass transistors have a diode between the
drain and the source pins that allow a reverse current flowing back to the input source. In
order to avoid this situation, some chips have an integrated reverse blocking diode. Others
do not have it, so that the designer must be aware of placing one diode between the input
source and the charge IC input pin.

Moreover, these chips have output pins for showing the status of the charge through one
or more LEDs. They usually incorporate one output pin for a “charging status”-LED and/or
an output pin for a “power-on”-LED that displays the connection of a power supply (in this
case the USB). The charging status LED starts to blink to indicate an error in the charge in
most sophisticated solutions. This characteristic was not critical for the project, so if the
chosen IC did not have these LED output pins, it would be a minor concern.

ICs chargers have a temperature operating range. If it is taken outside the limit boundaries,
it could be permanently damaged. Thus, the application must work inside this range. The
requirement was not a problem, because many of these chips have a range between -40 to
85 °C. The critical parameter was the battery temperature.

Finally, the last parameter of the table is the IC package. The chips are encapsulated in
standardized packages, but the offer is large: QFN, TDFN, DFN, SOT-23 (among others).
In general the dimensions for charger ICs are very small (not bigger than 4 x 4 mm). As
these packages are standardized, they also have a fixed number of pins, but not all of
them are used. There are solutions with 8, 12, 14, and up to 28 pins.

55

Some charger ICs also incorporate a special metallic pad that has to be soldered to the
ground plane of the board in order to faster dissipate the heat from the chip.

There are also other types of characteristics which are not shown in Table 3.7, for example
the prize. The prize is important when it comes to cost effectiveness. However, the final IC
was chosen because it fulfilled the previous requirements, even if it was not the cheapest
one.

The best options were the MAX8606 from Maxim and one type of the bq2403X family from
Texas Instruments, although there were other possible solutions, too. These circuits can be
used with USB power supply; they are systems with "isolated" system loads and have an
internal pass transistor, thermal monitoring, safety timers and a reverse blocking diode.
Moreover, the current range for the charge is meets the project requirements and both
solutions offer under- and overvoltage protections.

Nevertheless, the final selection was the MCP73831 from Microchip Technology. The
electrical design of the charger and the problems appeared during the design phase will be
discussed in Section 3.3

3.3 PCB Design

In this section, the different PCB versions which have been designed in course of the work
will be explained. The whole process and the problems that emerged until the definitive
version was created will be discussed.

3.3.1 First Version

For the first design, some ideas were taken from the AsTeRICS Open EEG project made
by Fabian Schiegl. Both projects have the BLE module in common as well as the utilized
microcontroller (AT90USB1286) and a battery powered system. For the first version of the
PCB, the selection and the connection of the components will be explained in detail. In the
following versions, only the changes will be discussed.

The previous Lipmouse prototype used the Teensy++ 2.0 microcontroller board. However,
this board would occupy too much space on the PCB. For this project, only the
AT90USB1286 microcontroller from Atmel (this microcontroller is also the core of the
Teensy++ 2.0) was used. . Thus, the reset line, the decoupling caps, the USB connection
and the external oscillator needed to be provided separately on the PCB.

The design was done using the EAGLE CAD software (see Section 2.4). The first part

consisted of the elaboration of the schematic. All decisions about the electrical components
and their interconnection with the other components were made during the schematic

56

design. Therefore, the considerations made concerning each component will be discussed
one by one in the following pages.

As it was seen in Section 3.2, the Lipmouse had to incorporate a USB connector which
would allow charging the battery and communicating from the device to the ARE through a
USB cable instead of using the Bluetooth radio-link, which could be desired due to the fact
that the wired connection is more reliable than the wireless one. A mini USB connector was
chosen, since it is smaller than the common “Type B”-USB connector. This connector has
five pins: VCC, D+, D-, ground and the mode pin. The mode pin is used by mini- and micro
connectors to support the USB On-the-go specification where the device could act like a
host. For this project, the Lipmouse had to work in a "device" mode, so this pin remains
unconnected. The VCC or +5 V pin had to be connected to the charging system and the
microprocessor USB VCC pin. In addition, a LED with its corresponding current limiting
resistor was connected to the VCC trace, in order to show if the system is powered by the
USB. However, the VCC line was connected to the rest of the circuit through a 1 pH ferrite
bead to remove the high frequency noise that could come from the USB cable. The ground
pin had to be wired to the device's ground line and the D+ and D- pins had to be connected
to their corresponding microcontroller pins through a 22 ohms resistor.

When the first version of the schematic was designed, the MAX8606 from Maxim
Integrated was chosen for the charging system. The characteristics are summarized in
Table 3.7 and the complete description can be found in the datasheet [46] . This chip did
not have an EAGLE model. Therefore, the symbol and footprint had been designed using
the EAGLE library creation tool. A footprint of the component following the physical
dimensions of the datasheet was made for the board design. After that, the schematic
symbol was created, assigning the pin connections to their corresponding pins in the
layout. The footprint is depicted in Figure 3.6.

name

Figure 3.6: IC charger footprint

This charger chip had 14 pins. The input pin was routed to the supply net through the
ferrite bead and a decoupling capacitor of 4.7 pF was needed. There were two output pins
for the battery and two other output pins to connect the system load. The battery pins were
wired to a 2 pin SMD JST connector where the battery was connected. The connector has
one terminal connected to the IC charger that had to be connected to ground via a 10 puF
capacitor. The other pin was directly connected to ground. The IC charger has two digital

57

inputs to select the input current or to suspend the IC (both via low level inputs). The input
current is distributed for supplying the charging and supplying the load system. Thus, the
current absorbed by the system had to be known in order to calculate the charging current.
The EN1 and EN2 configurations and the corresponding current are illustrated in Table 3.8.

EN1 | EN2 | MODE
0] 100 mA
] 1 500 mA
1 0 | 8000 x 2.1V] Rspri
1 1 Suspend

Table 3.8: EN1 and EN2 control signals (Source: [46], page 9)

The USB standard values, 100 mA or 500 mA, can be chosen. If none of them were
suitable for the application, the current could be set by a resistor connected to Rggr; pin.
The value of this resistor can be calculated according to the desired current (system
current + charging current) following the formula shown on the third line of Table 3.8. The
USB port by default only can supply until 100 mA. If the application requires a higher value,
it must be negotiated during the USB enumeration process. In the first design, a current of
500 mA was selected, so that EN1 pin was connected to the ground and EN2 to the supply
trace. The Rggr; pin was left unconnected.

The chip has two open-drain output pins, CHG and POK, that display the charging status
and connection/disconnection according to the input source (the USB). These pins could
be routed to a LED or to a microcontroller's input (through a pull-up resistor) in order to
control the charge. In this case, the pin CHG was connected to a LED and its
corresponding resistor to indicate the charge status. The POK pin was left unconnected,
since it shows if a power source is connected and this function was accomplished by the
LED connected to the USB power supply trace. The safety timer was not used in this
design, thus, the pin for this function, TMR, was wired to ground. In addition, the thermal
protection was implemented. According to the datasheet, the pin for the temperature
measurement had to be connected to a 10 kQ NTC thermistor with a B value of 3500 K.
The VL pin had to be connected to a 0.1 puF bypass capacitor. Finally, there were two
output pins where the system load was connected. These pins also needed a decoupling
capacitor of 4.7 pF. In the first schematic version, the decision was to place a mechanical
switch between these pins and the rest of the circuit to, manually turn the power supply on
and off.

The system output voltage was around 3.5 V. Nevertheless, the BLE module needed a
supply voltage of 3.3 V. Therefore, the output from the charger had to be regulated to this
value. This function was accomplished by a LDO regulator. The chosen component was
the MCP1703 from Microchip Technology, specifically the 3302E/DB version, which has a

58

3.3 V output voltage. The input pin was connected to one of the switch terminals and
needed a 1 pF decoupling capacitor. The output pin had to be decoupled with another 1 pF
capacitor. Thus, the supply pins of the microprocessor, the BLE module and the sensors
had to be connected to this 3,3V net.

The sip and puff sensor, MP3V7007GP, has 8 pins where only 3 are actually used (see
Section 2.5.3 and [27]). One is the supply input, so it was connected to the 3.3 V supply
trace. The second pin is the output voltage that was connected to the PFO pin of the
microcontroller, which corresponds to the first Analog-Digital Converter (ADC) pin. The
sensor’s ground pin was connected accordingly to the ground trace and the rest of the pins
needed to remain unconnected. The MP3V7007GP sensor did not have an EAGLE model.
Therefore, it was created in using the Eagle design tool. The footprint can be seen in
Figure 3.7.

The pressure sensors, FSR149, were connected in a way that one pin connects with the
3.3 V supply net and the other one with the corresponding microcontroller pin (see Section
2.5.4 and [28]). For a right measurement value, the sensor had to be connected through a
voltage divisor, so this pin was also routed to a 10 kQ resistor, which was leaded to
ground. The connection pins with the microcontroller were PF4, PF5, PF6 and PF7 pins,
which correspond to ADC input pins.

Apart from the mentioned connections, the microcontroller needed some components for a
proper operation. First of all it needed a power supply via a connection of the two VCC pins
to the 3.3 V voltage supply trace. These pins also need a 100 nF decoupling capacitor. The
microcontroller has another supply input, the analog voltage supply (AVCC). This pin
needed to be connected to the voltage supply trace, but with a ferrite bead between the
traces in order to reduce the possible high frequency noise. Moreover, this pin also
required a 100 nF bypass capacitor. Also, the pins UCAP and AREF pins had to be
connected to ground through a 100 nF decoupling capacitor. The microcontroller provides
a reset signal, which lets the user restart the device. The reset is an “active low” signal, so
a button connected to the ground via a series resistor and wired to a pull-up resistor and
the reset pin was installed. The values of the resistors were 330 Q for the series resistor y
4.7 kQ for the pull-up resistor. The reset pin also needed 10 nF decoupling capacitor to
reduce the electrical noise. In addition, this reset signal was connected to the BLE reset
pin. The clock signal was provided by an external 16 MHz crystal which had to be
connected to the XTAL1 and XTALZ2 pins. Each crystal pin had to be wired to an 18 pF
capacitor routed to ground. The UART pins, that allow the communication with the BLE
device, had to be connected to their corresponding pins on the Bluetooth module. The
UART transmission pin (TX), PD3, had to be wired with the BLE module’s UART reception
(RX) pin. In the same way, the UART reception pin (PD2), should be wired with the BLE
module’s UART transmission pin. Finally, the four ground pins had to be connected to the
ground trace and the rest of the pins remained unconnected.

59

The BLE module has 34 pins. However most of them remained unconnected. The voltage
supply pin had to be routed to the 3.3 V voltage supply trace with a 100 nF decoupling
capacitor and the four ground pins connect to the ground net. The UART transmission pin
had to be wired with the microcontroller's UART reception pin (the same reception UART
pin of the module). The reset pin was wired to the reset circuit described above, so if the
button is pressed, both microcontroller and the BLE module will receive a valid reset signal.
Furthermore, the BLE module has a pin, PIO1, that can be connected to a LED,which will
blink when searching for a pairing device (to establish a connection), and will shine as a
pairing is achieved. (It does not shine when the BLE is not powered). Thus, a LED and a
470 kQ series resistor were connected to this pin.

The whole components wired are shown in Figure 3.8.

After finishing the schematic, the components had to be placed in the board layout and the
traces had to be drawn. The microcontroller was the component with most connections.
Hence, it makes sense to places this part in the center of the PCB and arranges the other
components around the microcontroller. The USB connector was placed in one of the
narrow borders, just in the middle, since the enclosure had the hole for the USB cable at
this point. The bypass capacitors had to be placed as close as possible to the
corresponding pins. The height of the BLE module was similar to the board width. Thus,
the best option was to place it in one of the borders. The sip and puff sensor and the pin
header for the pressure sensor were also located in one of the boards’ corners. While the
components were placed in the PCB, the physical traces were drawn. Some traces cross
each other and in some cases two connected components were on different layers.
Consequently, these traces were conducted from the top side to the bottom side through
vias. Ultimately, the whole board was covered by a ground plane on the bottom and
another ground plane on the top layer. The ground planes provide an easier
interconnection with all ground traces. Moreover, a ground plane reduces the electrical
noise and the crosstalk noise between two adjacent traces. Few more vias were needed in
order to connect the two ground planes. The result of the first PCB design run is displayed
in Figure 3.7. The top layer corresponds to Figure 3.7(a) and the bottom layer to Figure 3.7

(b).

60

(a) Board top layer of the first design (b) Board bottom layer of the first/design

Figure 3.7: First board design

up

61

R

Jzo
Tuoot

80/320e€-£0LLdON

€037

0l¥

—
Jx]

ity

EAE+

LNoA

NIA

LANS-WNZLSr-20W

cn

ilqeg 318
0L-WH

EAE+

age
ano
-
m %
o, .
(2% LY mwm
Ny
T qf
~ —!
B
LX
v M
B
o
&
Va
zz sl
—
——
by

a D_Mw WHL (
012 _swo ¢
" Toev o 2
—1 Bt
EAE+ €y LY
ilrl’
L- C .
£ s
odzeL
NVv-98219SN06LY 5]
— SON
— eon
B)
LNOA
HOL
64
0 O
0 o
7O O
0 Oy
zar
ano
anNe
2
) 70 _L b2
dgL] d
il 1
TWAX LIVLX

First schematic design

Figure 3.8

N
[{e]

3.3.2 Second and Third Version

Before finishing the first design, some errors were detected. The errors found were:

The antenna of the BLE module had to remain free of metallic elements, as for
example traces, pads or planes. The metallic parts disturb the emission pattern of
the antenna if they are too close, reducing the quality of the Bluetooth connection.
Therefore, the pressure sensor had to be moved to the left and the ground plane
had to be removed from the surroundings of the antenna.

The pin PE2 could be used for the hardware bootloader activation. Accordingly, this
pin had to connect to the ground in order to use the bootloader for flashing the
microcontroller’s firmware. First, this was done via a 10 kQ resistor. However, this
resistor was not necessary and the HWB pin could be wired to ground directly.

The voltage supply traces had to be thicker, because they need to conduct high a
current.

The package of the ferrite bead was 0603. Nevertheless, there was no 1 pH
inductor of this size available at the vendors consulted. Hence, it had to be changed
to a 0805 size.

The switch to turn on and off the system was through-hole and interfered with the
microcontroller mounted on the bottom size. The solution was to change it to a

SMD right angle switch.

Placing the three LEDs together in a row would seem better than putting them on
the board without any certain order.

The capacitors and resistors package size chosen was 0805. However, using the
0603 packages would be possible and it would save space in the board.

In spite of avoiding the sharp traces in the routing process, there were some of
them that must be rearranged.

All together some components could be better placed.

The first design needed a review. The problems encountered were corrected and the
improvements were applied during the second and the third versions of the PCB desing.

The components were placed more efficiently. However, the third version could be further

improved, leading to the fourth (and final) version.

3.3.3 Fourth Version

After starting the fourth design iteration, some design considerations changed. In the first
Lipmouse version, FSR sensors were mounted on a small plastic plate as can be seen in

Figure 2.19. The two terminals of each pressure sensor were routed to the PCB through a
loose air wire. To improve this situation, the idea was to mount a small PCB (a daughter-
board) behind the sensor plate. The metallic contact of the sensor would be soldered to
this small PCB and it would wire to the main PCB through a flatband cable. The resistors
for the voltage divider for the pressure sensors were also included on the new PCB. This
solution was more compact, did not have loose wires and looked more professional that
the solution accomplished in the first prototype. In addition, the supply and the ground
traces had to be available on this small board. The daughter-board EAGLE design is
shown in Figure 3.9.

Furthermore, a JTAG interface was added to the main PCB. The JTAG allows testing and
debugging the electrical connections of a microcontroller to the PCB. For further
information about JTAG interface consult [43].Moreover, the microcontroller can be flashed
through the JTAG interface. The board's JTAG connector also has another function. As the
JTAG is not necessary when the Lipmouse is working and the JTAG signals share the pins
with the ADC inputs, the small PCB could be connected to the main PCB via the JTAG
connector. Therefore, these pins are shared by the JTAG and the FSR pressure sensors.

BN|

3

(a) Schematic design (b) Board design

Figure 3.9: Daughter board design

Moreover, it was noticed that the charger IC, it could be difficult to solder it without special
equipment. As it can be seen at Table 3.7 most of the single chip charger solutions have
small sized packages and could not be used if easy reproduction of the design is a goal.

Consequently, the charger IC was changes to the MCP73831 from Microchip, which was
available in a SOT23-5 package. This package can be soldered to the PCB even by hand.

64

The drawback was that this chip has a "sharing" load system. Therefore, a regulation
circuit which makes the battery charge section and the system supply independent was
designed. This circuit followed the recommendations exposed in [45] and is depicted in
Figure 3.10.

RpuLL
10
Vot e 1
Thermistor %
THERM |2 Cour System

L Li-lon Load
- I Cell

5 -

VSS _-L § é

Figure 3.10: Load sharing circuit (Source: [45])

In Figure 3.10, the superior trace was routed to the supply voltage. When the USB is not
connected, the Rpy;; resistor pulls down the Q1 gate to zero. Thereby, the current flows
from the battery to the system load. If the USB is plugged in, the transistor's gate is 5 V
and the transistor switches off. Therefore, the current cannot flow from the battery to the
system load. Instead, the current flows from the USB supply to the system load through
the diode D1. Simultaneously, the battery is charged from pin V4. The value of Rpy;; had
to be high, otherwise a lot of current would be wasted. A decent value was 100 kQ.

According to the Section 3.5, the microcontroller’s sleep modes were used to reduce power
consumption in idle mode. For that purpose, a button was needed for the microcontrollers’
wake-up and standby mode control. This was implemented via an external interrupt, so the
button was wired to PBO (INTO) pin. Furthermore, some landing pads where drawn and
connected to other external interrupt pins (PE4, PE5 and PEB6) in case of the necessity of
more external buttons in a future prototype.

Finally, it was decided that it would be better to turn on and off the BLE module by software
instead of a mechanical switch. Therefore, a MOSFET transistor was placed between the
BLE ground pins and the ground trace. The transistor's drain was wired to the BLE
module’s ground pins and the transistor's source was wired to the PCB ground net. The
gate was connected to an I/O pin of the microprocessor, PA3. Thereby, when this pin has a
high level, the transistor is ‘on’ and the BLE ground is connected to the device’s ground
trace. In case of low pin level, the transistor is ‘off’, so the BLE ground floats, switching off
the BLE module.

The final schematic design is depicted in Figure 3.12

The board layout was updated according to the following considerations: The USB
connector had to be placed in the middle of one of the narrower edges, like in the previous

65

designs. The microprocessor had to be mounted in the center of the board, because many
components were wired to it. The USB connections were routed to the microprocessor D+,
D-, VBUS and GND. The best way to orientate the chip was facing these pins to the USB
connector. The BLE module was placed in the opposite edge of the USB connector, in
order to not disturb the rest of the components and traces. In this design, the module was
allocated sideways too. The orientation chosen is shown in Figure 3.11 (b) to facilitate the
routing with the microcontroller. The LDO regulator and the charger IC were situated next
to the board edges in each side of the USB connector due to the availability of free space.
The decoupling capacitors were allocated as close as possible to the corresponding
components. The sip and puff sensor had to be connected at the furthest border in order to
bend the plastic tube properly during the assembly of the PCB inside the enclosure.
Therefore, it was situated on the top layer. The JST connector, the LEDs and the buttons
were also placed at this layer, because there was not enough space at the bottom layer.
The light of the LEDs has to cross the enclosure and the edge of the PCB should touch the
enclosure. Hence, 90° LEDs were chosen and were placed close to the edge to avoid
using light pipes to conduct the light outside of the enclosure. The buttons for the reset and
sleep/wake-up, the device were also 90°-types for the same reason. They were mounted
close enough to the case so that they can be pushed from the outside without any
extension. The connectors for the JTAG and the daughter board were through-hole types,
so both sides of the PCB had to be free of elements. The connector had to be placed on
the top layer, because it had to be connected to the daughter board. The location chosen
was between the microprocessor and the BT module, due to the free space for the holes.
In addition, three solder pads were allocated on the top layer, connected with three
microcontroller pins, allowing external interrupts to provide additional functions in a future
(if needed). Finally, as explained in the first design, a ground plane was added to cover
both sides of the board. The final board design is shown in Figure 3.11.

All components and the electrical connections were correct and the board design was fine.
It constituted a valid version. Thereby, the board design was sent to manufacture and the
components were ordered from the corresponding vendors. The bill of materials which
have been ordered is shown in Appendix B.

66

PUEPES PP
v
—

MO AOLRE0N |

T
a—
|__4
E!

—
=

up

(a) Board top layer of the fourth design (b) Board bottom layer of the fourth design
Figure 3.11: Fourth board design

67

R

Jzo
Tuoot

80/320e€-£0LLdON

€037

0l¥

—
Jx]

EAE+

LNoA

NIA

LANS-WNZLSr-20W

cn

ilqeg 318
0L-WH

EAE+

age
ano
-
m %
o, .
(2% LY mwm
Ny
T qf
~ —!
B
LX
v M
B
o
&
Va
zz sl
—
——
by

a D_Mw WHL (
012 _swo ¢
" Toev o 2
—1 Bt
EAE+ €y LY
ilrl’
L- C .
£ s
odzeL
NVv-98219SN06LY 5]
— SON
— eon
B)
LNOA
HOL
64
0 O
0 o
7O O
0 Oy
zar
ano
anNe
2
) 70 _L b2
dgL] d
il 1
TWAX LIVLX

Fourth schematic design

Figure 3.12

(v}
©

3.4 The Plugin

Although the previous version of the Lipmouse used the Teensy++ 2.0 microcontroller, the
plugin employed in the ARE model was the Arduino plugin. The reason was that both the
Arduino Uno and the Teensy use an Atmel microcontroller, so they are compatible in many
aspects. The Arduino plugin can configure the microcontroller
digital pins as inputs or outputs and read and write the values of
these pins. Moreover, there are six analog inputs which were
used in the previous Lipmouse for reading the 4 sensors values
through the ADC (so 2 ADC input were unused). In addition, this
plugin offers a series of listeners for detecting changes in the pin
values.

Arduino.l

However, a new plugin was needed for the Lipmouse. Despite
the fact that the Arduino plugin can be used for communicating
with the Lipmouse's firmware, the Lipmouse is a different CIM
which does preprocessing of the sensor values and thus needs
its own plugin. If using the generic Arduino plugin for interfacing,
the connections with the rest of the plugins in the ACS to create the Lipmouse model would
not be very intuitive, as shown in Figure 3.13. The ADC outputs are A0, Al, A2, A3 and A4,
however, the correspondence between sensor value and output is not explicit. A user who
wants to use this plugin with Lipmouse hardware needs to know how it was implemented.
The simpler and more intuitive the design of a plugin is, the easier will it be for a person to
use it. Moreover, the Arduino plugin has functionalities that were not required and could
confuse the user. Thus, one goal of this project was to develop a specific plugin for the
Lipmouse.

Figure 3.13: Arduino
plugin

First of all, the characteristics of the new plugin were defined: how many inputs, outputs
and properties; how the data is displayed and its format; if it needs event listeners and/or
triggers; among other features. In this case, the CIM emulates a mouse cursor. The
requirements were:

e 3 outputs ports: one for the X value, other for the Y and other for clicking functions
(pressure value).

e 1 property: for increasing or decreasing the frequency of the periodical updates.

A new CIM requires a new CIM ID, a new unique serial number and a new CIM feature list.
The CIM ID is formed by four bytes. The two most significant bytes identify the type of CIM
and the two less significant represent the version of the Lipmouse. The last CIM registered
before the Lipmouse was the proximity sensor with a CIM ID of OxA301. Therefore, to
identify the Lipmouse, the unique CIM value 0xA4 was chosen and the version (of the

69

plugin), was set to 0x01. Hence, the complete CIM ID chosen was 0xA401. For the unique
serial number, 0x12345678 was chosen. In case of two Lipmouse CIMs with the same
address running in the same ARE, collisions could appear. In that case, one of the
Lipmouse CIMs must use a different address (which can only be changed in the firmware
source code), but this case is practically impossible.

The feature list is composed by three features. The first feature (command) returns the
unique serial number to the ARE. This feature is compulsory in all CIMs since the ARE
must know the unique serial number of each connected CIM device. The ARE sends one
packet containing this command to each communication port at the beginning of the
execution. If there is a CIM attached, it will respond to the ARE with a reply packet,
containing its unique serial number. Thereby, the ARE registers the CIM device. The
second feature refers to the time between two periodical updates of the sensor data. The
frequency of the updates can be regulated depending on the users’ requirements. This
value is in the range of 0 to 65535 milliseconds. The O value means that the CIM should
not send any periodic update. The last feature is defined for reading the values of the
sensors. The Lipmouse emulates a mouse cursor, so these values correspond to the X-
and Y positions and the pressure value (to implement the clicking characteristics or similar
functions in the ARE model).

The difference between the right and left sensor value forms the X value and the top
sensor minus the bottom sensor compounds the Y value. This operation had to be done in
the ACS model when the Arduino prototype was used. However, in the new plugin, the
subtraction is done in the Lipmouse’s firmware. Thus, the X and Y values are already
available to be used in the ACS model. The feature list is depicted in Table 3.9 .

CIM-ID Feature- Access Description Data
address
0xA401 0x0000 r Unique serial number 4 bytes
Lipmouse |0x0001 W Set ADC value report period]2 bytes: period time O (off) to 65535
version 1 miliseconds
sensor
0x0002 r ADC value report 6 bytes: 3 channels of ADC values

Byte 1: X low byte
Byte 2: X high byte
Byte 3:Y low byte
Byte 4: Y high byte
Byte 5: pressure low byte
Byte 6: pressure high byte

Table 3.9: Lipmouse feature list

As it was shown in Section 2.2.4, the first step in the creation of a plugin is the creation of
the subfolders and directories, the descriptor files and the source code skeleton. The
plugin was made by using the Plugin Creation Wizard tool, in which the three output ports
and their corresponding names, data types and descriptions were defined. Also the

70

periodic ADC update frequency property must be defined in the corresponding field of this
tool. The name for the plugin was defined as "Lipmouse" and the category selected was
"Sensor" inside the "Standard Input Devices" subcategory. After clicking in "Create plugin",
the plugin was created containing this basic structure.

The descriptor files are build.xml, descriptor.xml and manifest.mf. Technically, these files
did not have to be modified. In case that some parameters configured in the Plugin
Creation Wizard tool need to be redefined, this can be done in the descriptor.xml file. (for
example changing the name of the output ports, the data type or the description text box).

The source code of the plugin resides in the Lipmouselnstance.java file. After the plugin
creation, it contained a basic skeleton code. However, the functions were not complete and
the code for the CIM protocol management and other auxiliary functions had to be included
in this file. Some parts of the implementation of the CIM protocol were taken from Arduino's
plugin code and adjusted to the Lipmouses’ requirements, due to the similarities with the
Arduino's plugin. All CIMs must implement the JAVA-interface
class CIMEventHandler. This interface contains two methods that
must be defined in each plugin for the implementation of the CIM
protocol: handlePacketReceived and handlePacketError (see the
page 36 from [18]). The ARE will send request packets to the CIM
and the CIM will reply to them, or it can send the periodic updates
without a request. When these packets arrive at the ARE, it
processes them, and forwards dedicated packets to the registered
listener functions residing in the plugin code. If an error is

detected, it must be managed by the handlePacketError method. If

the received packet is correct, it must be processed by the

handlePacketReceived method. One or more actions must be

performed, depending on the type of packet. If a reply to a “read feature” packet has been
received, there are only two options: the reply contains a unique serial number packet or it
contains an ADC report value packet. In the case of a received ADC report value packet,
the data (the X, Y and pressure values) must be sent to their corresponding output ports of
the plugin. When the CIM sends ADC values periodically in multiple event reply packets
the X, Y and pressure values are sent to the output ports as well.

Lipmouse.l

Figure 3.14: Lipmouse
plugin

There is just one type of write feature packet contains the property value of the periodic
ADC update frequency. Changing the ADC frequency property is handled by the
setRuntimePropertyValue method of the plugin. This method sends the corresponding
write feature packet to the CIM's firmware for changing the ADC frequency when the
property has been changed during runtime.

Furthermore, the ADC data sent by the microcontroller must be converted to the format
used by the other plugins connected to the Lipmouse plugin, in order for a proper

71

communication. The data of the plugin output ports must be integer, i.e. 4 bytes. However,
the data sent by the microcontroller has two byte length (short integer). Therefore, two of
the bytes must be padded with O to convert the short integer into an integer. If the short
integer contains a negative value, the two bytes left must be padded with ones, i.e. Oxffff.
The process of sending packets to the CIM device firmware is supported by the
CIMPortManager instance. This class is responsible for managing and controlling all
communications with the CIMs. In addition, CIMPortManager is in charge of delivering the
CIM packets from the Lipmouse to the plugin.

Finally, the start, pause, resume and stop method stubs provided during the plugin creation
had to be completed. When one of these methods is called, the plugin must send the
corresponding packet to the CIM to start / stop the periodic data transfers. This action must
be implemented inside these methods. Furthermore, in the start method, the plugin code
needs to get the connection to the COM port via the CIMPortManager and register it. In the
case of the stop method, it closes the connnection. Moreover, the start method must send
the write features command for setting the ADC update report frequency.

After the plugin programming, the last step was the registration of this plugin in the ARE.
The activation was done by adding the line: "asterics.sensor.Lipmouse.jar" to the loader.ini
file (\AsTeRICS\bin\ARE\profile\loader.ini). Now every time the ARE is launched, it will
start the Lipmouse OSGI bundle. The Lipmouse plugin is depicted in Figure 3.14. If a
person wants to create his/her own ACS model and the Lipmouse plugin is not available in
the ACS, the component collection (containing all available plugins of the ARE) has to be
updated. There are two options: After activating the plugin in the ARE by modifying the
loader.ini file and connecting ACS and ARE the tab "Download Component Collection" in
the "System" allows all plugins loaded by the ARE to be displayed in the ACS. The other
option is to use the "Plugin Activation Wizard" tool available in the "Misc." menu.

3.5 Firmware

3.5.1 Previous Firmware

As mentioned, the first version of the firmware was based on the Arduino firmware, due to
the similarities between the Teensy and Arduino microcontrollers. In fact, the plugin used in
the first prototype was the Arduino one. In the same way, some auxiliary files were reused
in the firmware creation since the Lipmouse CIM also employs the ADC, the timers and the
USB in a similar manner as the Arduino CIM’s firmware does. In addition, the
implementation of the CIM protocol was the same.

The flow structure of the Arduino firmware is summarized in Figure 3.15. The firmware
starts configuring the parameters of the ADC, the timer and the USB interface. The clock
frequency is set to 16 MHz. After the setup, the main loop, which is continuously executed,
begins. The first step is checking if a new byte has been received. When an ARE packet is

72

received, the bytes are processed one by one using a protocol parse state machine. If the
data is correct (the data fits to the specifications), the byte will be stored until the whole
frame is received. If during the reception an error is encountered, the protocol will start
again from the beginning to search a new frame. In other words, at first, the protocol parser
is looking for the "@" (0Ox40) that marks off the beginning of a frame. When this byte is
detected, the protocol knows that the next byte must be the "T" character (0x54). If the
second byte was "T", means that a new frame is being received. The third byte should be
the ARE ID low byte and the fourth one the ARE ID high byte. The next field expected will
be the data length. First, the low byte will be received and -then the high byte. If the value
is correct (inside the allowed range), the protocol parser continues to the next field.
Thereby, the protocol parser is storing the successive fields of the packet until it is
complete.

Byte
received?

Last byte of a
frame?

Process frame

Send reply packet

New ADC
frame readv?

Figure 3.15: Firmware flow graph

73

When an entire packet was received, it must be processed. During this operation, the ARE
reply packet is built parallel, in order to answer the request packet. The first processing
task is to identify the type of packet (i.e. the request/reply code). There are 6 possibilities
(Figure 2.7): the feature list request, the write feature request, the read feature request, the
reset CIM request, the start CIM request and the stop CIM request. For the reset packet no
action is necessary. However, if a start packet has been received, the timer must be
enabled which triggers the periodic ACD event replies. If a stop packet has been received
the timer must be disabled (in order to stop the event replies). After performing these
actions, the required reply packet must be sent (to acknowledge the reception of the
packet). In case of receiving a feature list request, the feature list is copied to the data field
of the reply packet and it is sent to the ARE. For the read/write features, the corresponding
CIM feature address must be read from the packet. The Arduino CIM features are:

Read feature
e Unique number
o Get pin values
e ADC report

Write feature
e Set pin direction
e Set pin state
e Set ADC period
e Set pin mask
e Set PWM

Nevertheless, only the uniqgue number, ADC report and the set ADC period features are
used for the Lipmouse.

The next step in the main iteration is to check if a CIM event packet must be sent or not. As
the first version of the Lipmouse CIM inherited the Arduino source code, there were two
types of CIM event packets. One was the pin change status checking. This type of event is
not employed by the Lipmouse, so it was erased in the new version. The other was the
ADC periodical report. This CIM event is used by the Lipmouse for sending periodically the
sensor values to the ARE. The frequency of these events can be set by the user through
the plugin property “update period”. By default, this value is 0, so it has to be changed in
the ACS model; no report will be sent until this value is different from 0. The time between
two events is measured by a timer unit of the microcontroller. When the counter reaches
the desired value, the timer creates an interrupt and the ADC event reply frame is
generated (by reading the relevant ADC input pins) and transmitted to the ARE.

3.5.2 Firmware Improvements

In this subsection only the improvements fulfilled will be discussed, since the rest of the
code is inherited from the Arduino firmware. The CIM ID and the unique number were

74

substituted by the Lipmouse values. The feature addresses were modified accordingly. The

unused features, like “get pin values”, “set pin direction”, “set pin state”, were removed.

The new Lipmouse prototype can be used with a USB cable or through a Bluetooth
connection. So there are two operation modes: the USB mode and the BT mode. When a
packet is to be sent, it must be delivered by the USB or by the UART interface which is
directly connected to the BT module. Consequently, this part of the code was re-written. At
the beginning of the code, during the configuration process, the selection of the operation
mode was added. The detection consists on: switch on the microcontroller's USB
peripheral; if the USB port is connected to USB host, it will detect a new device attached
and it will try to enumerate the device. Therefore, after switching on the USB peripheral
and waiting a second (for completing the enumeration process), the availability of the USB
connection can be checked. If the USB is operative, the USB mode must be selected. It is
preferable to use the USB, rather than the BT, since it is more robust and reliable.
Otherwise, the BT mode hast to be employed. Moreover, additional configurations had to
be implemented for the BT mode. First, a new Lipmouse features the BT module with the
default factory parameters, so it must be configured. This process is repeated every time
the firmware starts, although one time would be enough. Alternatively, the configuration
status could be saved in the EEPROM memory and checked every startup. The
configuration consists of changing the baud rate speed from 9600 bps to 57600 bps,
resetting the module and setting the role using AT commands (explained in the Section
3.1.2). The other configuration settings are: to disable the unused functions and
peripherals in order to save power and enlarge the life cycle of the battery (it is also done
with the USB mode, although in this mode the power consumption is not a problem). The
disabled peripherals are the TWI (Two-wire interface), the SPI (Serial peripheral interface)
interfaces and the Timer 3. The analog comparator, the brown-out detector and the
watchdog functions are also disabled. If the USB is employed, the UART is disabled and if
the BT is used, then the USB is disabled.

When the BT mode is being used and the USB is plugged in, the operation mode should
change. However, the availability of the USB cannot be checked in each iteration. It would
mean switching on the microprocessor's USB peripheral; wait to the enumeration and to
examine if the configuration was done correctly. The probability of connecting the USB per
iteration is too low, so in a long term, this process would consume too much power. In
order to save energy of the battery, it was preferred to select between USB or BT at the
beginning of the firmware execution and if the user wants to change the selection, he/she
would only have to stop the ARE, reset the firmware, wait a few seconds for the
configuration and launch the ARE again.

One or more FSR sensors could deliver wrong force values (due to mechanical or
electrical problems), leading to a drift in the X- or Y-values (and the mouse cursor

respectively). The best way to counteract this effect is by adding an opposite offset value to

75

the current X and Y values. In other words, the device must be calibrated. As mentioned in
the PCB design, Section 3.3, a button was wired to an external pin change interrupt of the
microcontroller. The firmware was programmed to make a calibration each time the
interrupt is triggered, i.e. each time the button is pressed or released. The calibration
consists of reading all ADC sensor ports. These values correspond with the drift.
Therefore, the values must be subtracted in each future value to compensate the drift. The
user does not have to touch the mouth piece during the calibration in order not to alter the
measurements. The calibration only removes the constants drifts. The variable drift due to
the electronic noise cannot be suppressed with the calibration. Therefore, when the
Lipmouse is not touched, there will be values near to zero that may produce a slight drift.
These values must be removed or converted to zero by other plugins for example,
“AdjustmentCurve” plugin.

The Limpouse does not have a turn on/off button. When the USB is plugged in, since it
supplies the device, this is not a problem, but when it is unplugged, the Lipmouse is
running until the battery is depleted. In that moment, there will not be enough energy to
power the system, so it stops working. Hence, when the Lipmouse is not being used
anymore, it must reduce its activity to the minimum, in order to consume the lowest energy
possible. The two actions developed for this purpose were to switch off the BT module and
to enter the microcontroller’s "deep sleep” mode. As shown on the PCB design, Section
3.3, a MOSFET was placed between the BT ground and device ground to switch on/off the
BT module. The activation/deactivation is done via a microcontroller pin, i.e. it is done by
software. When this pin is low, the transistor does not conduct the current (the BT ground
is floating), so that the BT module is off. When the pin is high, the transistor allows the flux
of current and the BT is power on.

The sleep modes halt the different clock systems and the modules associated with these
clocks. Depending on which modules are turned off, there are 6 types of possible sleep
modes: Idle Mode, ADC Noise Reduction Mode, Power-down Mode, Power-save Mode,
Standby Mode and Extended Standby Mode. The ways of waking up the microprocessor
are different in each sleep mode: external interrupts or pin change interrupts, TWI, Timer2,
ADC, among others (Reference [37]). Figure 3.16 summarizes the active clock domains
and the wake-up sources.

The CPU clock controls the general operations, calculations, the Status Register or the
Stack Pointer, among other functions. The flash operations are regulated by the flash
clock. The I/O clock governs the peripherals like SPI, USART, port pins, timers, and so on.
It is also employed by the synchronous external interrupts. The Asynchronous clock is
used by the microprocessor's asynchronous operations. The ADC clock controls the ADC
module.

76

The USB clock is independent to the rest of the clocks and it is only running when the USB
is enabled. The difference between Power-down and Power-save and between Standby
and Extended Standby is that in the first ones the Timer2 is disabled and in the second
ones, it is enabled, so it can be used as a wake up source.

When the Lipmouse is not being used anymore, no operation, calculation, register or
peripheral is needed. Therefore, the sleep mode, which had to be employed, was the
Power-down mode, since it is the one that switches off more modules and, consequently, it
is the mode that consumes less power. The same external button was used to make the
calibration and to sleep or wake up the microcontroller. The Lipmouse cannot be
suspended if the user touches the button by accident. He/she must be aware of what it is
doing. Thus, it was established to sleep/wake up the Lipmouse if the user is pressing the
button during at least five seconds. If it is pressed shorter, the Lipmouse will not to perform
any action (only the calibration).

Active Clock Domains Oscillators Wake-up Sources
"
- 3 |3
° - c £
@ 3 g 2 2_
3 o T §= @ x N S oa|l B
w
3 . Ss¥ 03| S5 2| of B £ 25EZ%
z 5 ° 8 B c2d B3| 20| <5 5| s o = 5|m E|lm E
= = = = =538 EB|l £=| 28 E| Ew =) o HIR- IR
Sleep Mode ° ° ° © o= FuW| Z&2| F= | oW < = O|o =D =
Idle X X X2 X X X X X X X X
ADCNRM X X X2 x® X X X X X
Power-down X3 X X X
Power-save X X2 x® X X X X
Standby'" X X3 X X X
Extended 2 (2) 3
Standby X X X X X X X X
Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2 If Timer/Counter?2 is running in asynchronous mode
3. For INT7:4, only lavel interrupt.
4. Asynchronous USB interrupts are VBUSTI, WAKEUPI, IDTI and HWUPI.

Figure 3.16: Active clock domains and wake up sources in the different sleep modes (Source: [37],
page 53)

The implementation for entering the sleep mode was done as follows: when the user
presses the button, a pin-change interrupt is triggered. In the Interrupt Service Routine
(ISR), the timer is set and starts counting until five seconds are elapsed. At the end of the
counting, the corresponding ISR for the timer is triggered. There, the timer is disabled
(stops running). An auxiliary variable is used to store the result - if the 5 seconds have
elapsed or not. When the button is released, this variable is checked. If the button is
released before 5 seconds, the timer stays disabled and the normal execution must
continue. Therefore, the Lipmouse will not enter in the suspend mode.

77

If the timer reaches 5 seconds, which means that the button is still pressed, the Lipmouse
must be suspended. Before sleeping/waking up the microprocessor, the BT module is
either turned off or on. In fact, this is done in the timer’s ISR.

Additional considerations had to be taken into account. The microcontroller cannot be sent
to sleep mode inside the timer ISR, since when the user will release the button, this action
will wake up the microcontroller again. In the pin change ISR, as well as in the timer ISR
case, the code for sending the microcontroller to sleep mode could not be inside the ISR ,
since the program execution would be halted inside the ISR. When the button is pressed
again, the interrupt would not be triggered, because a previous one is still being processed.
In conclusion, the sleep mode management must be done outside of the ISRs, i.e. in the
main program. This is done through another auxiliary variable. Another issue to consider is
the bounce effect of the button. When a mechanical button is pressed, the signal produced
does not change from one level to another level immediately. Due to the components
elasticity and the vibrations, there is an unstable interval during a short period of time. The
bounce effect is depicted in Figure 3.17.

0.01-100mS
>

Switch off moment
4

5V

+=+

v

Figure 3.17: Bounce effect (Source: [47])

The bounces may trigger undesired pin-change interrupts. The solution implemented to
avoid these unintentional interrupts, was to add a delay to the pin change ISR, to ignore
subsequent pin changes. The time cannot be set too long, because if the button is
released during this delay, the interrupt will be missed. The delay chosen for this
application was 50 ms. However, a delay is not an optimal solution. The CPU is idle during
the delay and cannot continue the normal execution of the firmware. There are hardware
solutions, for instance a simple RC filter or there are specific ICs that filter the signal as
MAX6816 from Maxim Integrated. These solutions need to modify the PCB design. Thus, it
was preferable a software solution. A simple counter that is incremented (or decremented)
until reach a value that is bounce-free. Nevertheless, the number of transition is not
constant. If the value selected is too high, the count will not be reached. Consequently, the
calibration will not be done or the sleep mode will not be set. Another option is when a

78

transition is detected, sample the button output. When a representative number of samples
have the same level, the signal is stable and bounce-free. Thus, the calibration or the sleep
mode action can be performed. This solution requires a firmware modification. It should be
developed in a future work since the delay solution was kept in this thesis.

3.6 Fuses and Memory Lock Bits Configuration

After downloading the firmware, the microcontroller fuses must be configured according to
application requirements. The fuses cannot be (un)programmed using FLIP program. This
must be done with the AVR Studio using the AVR Dragon. The fuses which should be
configured are:

e Once the microcontroller was flashed, the fuse HWBE had to be activated and the
reset button had to be pushed for downloading other firmware. When the HWB fuse
is programmed (HWBE = 0), it obliges the bootloader execution after a reset,
instead of starting to execute the firmware. The bootloader allows flashing the
microcontroller with new firmware. When the definitive version of the firmware was
downloaded, the HWBE function had to be disabled, in order to reset the device
without starting the bootloader (HWBE = 1).

o The fuse CKDIV8 is programmed (CKDIV8 = 0) by default. This fuse determines an
initial value for the Clock Prescale Register. If it remains “programmed” the system
clock will be prescaled by 8 at star up. Therefore, the fuse must be set as
unprogrammed (CKDIVS8 = 1).

e The microcontroller uses a 16 MHz ceramic crystal oscillator as a clock source. The
clock source is selected by the fuses CKSEL3, CKSEL2, CKSEL1 and CKSELO.
The default values are: CKSEL3 = 1 (unprogrammed), CKSEL2 = 1
(unprogrammed), CKSEL1 = 1 (unprogrammed) and CKSELO = 0 (programmed).
These values correspond to a ceramic resonator (slowly rising power) with a
frequency range between 8.0 — 16 MHz. Therefore, these fuses should not be
modified.

For further information about microcontroller fuses consult [37], page 367 and ff.

Besides fuses bits, there are other special bits that must be taken into account, the data
memory lock bits (see [37], page 366). If the bootloader lock (memory protection in boot
section) bits are disabled, the bootloader will be erased during the firmware download.
Therefore, the FLIP tool cannot be used for subsequent firmware downloads. In this case
the AVR Dragon connected via JTAG is the only way to change firmware. By default, the
bootloader lock is disabled. Hence, if a user wants to use the FLIP for flashing the
microcontroller, he/she must enable the bootloader lock using also the AVR Studio and the
AVR Dragon.

79

up

4 Tests, Evaluations and Results
4.1 Board Assembling and Test

The PCB designs described in Section 3.3 were sent to a board manufacturer to build the
daughter and the main boards. The components for the boards were also ordered. When
all components arrived, they were soldered to the corresponding boards. Four copies of
each board were requested in order to make four prototypes.

The first board was soldered by hand. The components were placed in their corresponding
positions on the PCB. The metallic contacts had to touch the solder pad. Then both parts
were heated with the soldering iron and when they were hot enough, the tin was melted
with the head of the soldering iron connecting the component to the solder pad. The
components were soldered one by one. First, the most difficult ones were soldered (the
more elements surround the target component, the more difficult it is to solder). The
soldering process is depicted in Figure 4.1.

o,
e
Ty

" Qe o o o
oxe Unttimunnng OF JwS o

: -
T

o
-

[-]
an

_ TNy \‘) : .;.'.-:.-,'.'u':‘mm:

2 R i

.
R
=

o

18083899a0000800° O o N

I
e @) ~of
B g G k] u(,’ﬂ.‘cu':. 2
. DS Y T ¢ 1 Ow g
LERR CLe- L LT

a n 923 o

(a) Main board during the soldering (b) Main board finished
process

Figure 4.1: The soldering process of the main board

The next step was to check if all electrical connections were right. If there was a short
circuit and the board is powered, the board or USB supply could be damaged. This
inspection was done with a multimeter and some faults were discovered. The first error
was a via that was close to a solder pad with an excessive amount of tin. The amount of tin
was enough to short circuit the solder pad and the via. The surplus material was removed
from the via with solder wick. Another problem found was that the Schottky diode was
incorrectly soldered. The direction of the diode was wrong. The diode was removed and
soldered in the correct position. The LEDs did not have any mark to guess the correct
direction and they were also soldered in the wrong direction. Hence, they had to be re-
soldered in the suitable direction.

The other three boards left were soldered using a reflow oven. This process consisted of
applying a solder paste to the solder pads of the board through a metallic mask. Once the
solder paste had been applied to all solder pads, the components were placed in their
corresponding positions on the solder paste.

80

After that, the board was put into the reflow oven. The oven heats the board until the solder
paste is melted, using a pre-defined heat profile for about 10 minutes. Then the board is
cooled, solidifying the tin between the solder pads and the metallic connectors of the
components. All components cannot be soldered with this technique and some of them
had to be soldered by hand, as for example the BT module. A better, robust, effective,
faster and more professional result was achieved with this technique, rather than using the
traditional hand soldering.

The components of the daughter board were also soldered. The resistor and the FSR
sensors were soldered in their corresponding places. Afterwards, one of the small plastic
plates was glued to the board and the head of the sensors was glued in front of the plate.
Finally, the connector for plugging it to the main board was soldered. The result is
displayed in Figure 4.2. For connection of the board to the AVR Dragon, a JTAG adapter
cable was made. A male JST-connector compatible with the board connector was soldered
to a 2x5 pin header which plugs it into the JTAG cable of the AVR Dragon. Figure 4.2
shows a picture of this cable.

Figure 4.2: The daughter board finished Figure 4.3: JTAG transition cable

When all electrical connections were correct, the USB cable could be plugged into the
Lipmouse CIM to test the software. The first time, drivers for the USB were installed and
the USB was enumerated correctly. There was no previous firmware flashed on the
microprocessor, so the bootloader was executed and the microprocessor could be flashed
with the Atmel FLIP tool.

81

4.2 Software Test

As will be explained in Section 4.6, there was a problem in the board that could not be
solved satisfactorily. This malfunction causes a reset in the firmware when the BT module
is switched on via the MOSFET transistor. After the firmware execution the BT module is
turned on originating an infinite loop resetting continuously the firmware.

Therefore, the board was tested without the MOSFET transistor. The solder pads of the
source and the drain were soldered through an air wire. Thus, the BT module ground was
connected directly to the device's ground and the BT module was always ‘on’. Then, the
board was working without any problem. The USB and the BT mode both worked as
expected. The calibrations were done properly and when there was an unintentional drift,
the user button was pressed and the measures became zero, showing that the calibration
worked. The Lipmouse suspension was also checked. When the button was pressed for 5
seconds or longer, after releasing it, the microprocessor was sent to sleep. No sensor
value was sent anymore, the activity of the Lipmouse stopped. If the button was pushed
again for 5 seconds or longer, after releasing the button, the Lipmouse continued with its
normal operation. If the button was pressed for less than 5 seconds, the Lipmouse kept on
sleeping or running, respectively.

The sensitivity of the sensors was also tested in the ARE. According to the sensor pressed,
the mouse cursor moved following the desired direction. Therefore, with this set-up, the
Lipmouse plugin software and the board firmware worked as intended.

As the firmware works when bypassing the MOSFET transistor terminals with an air wire,
the following step was to simulate the switch operation in a manual way. The air wire was
modified with a pin header connector in order to connect and disconnect the ground by
hand. The board was tested again. When the suspension button was pressed during five
seconds, the microcontroller went to sleep and the air wire was disconnected manually.
Thus, the BT module was shut down and the activity at the ARE was stopped. Before
waking-up the microcontroller, the air wire was connected again. Then, the button was
pressed for five seconds to wake up the controller. However, the Lipmouse plugin did not
react. This occurs because the firmware switches off the Bluetooth module during the
“sleep mode”. After establishing again the normal operation, the module is switched on so
a reset is triggered due to the problem mentioned above. The solution was to stop the
ARE, to reconnect the air wire, to wait for the establishment of the BT connection, to
launch the ARE again and to press the user button in order to wake up the microcontroller.
The result was that the ARE worked again since the switch-on function was done manually
instead of by software and the reset only happened once.

Finally, the USB mode never showed a problem again. The USB mode worked correctly as
expected. To change between the USB mode and the BT mode, the USB cable must be

82

plugged (for USB) or unplugged (for BT) and the board must be reset through the reset
button. Then the firmware starts again and detects if the USB is available. Otherwise, BT
mode is selected. In order to change the mode, the following actions should be performed:
the ARE must be stopped, the USB cable should be dis/connected and the ARE should be
restarted. In the case of the BT, the ARE cannot be launched again until the Bluetooth
connection is established.

4.3 Current Measurement

The current consumed by the Lipmouse was measured in the different types of scenarios.
A multimeter with a resolution of milliamperes was used for the empirical measurement of
the current and the battery cable was manipulated, in order to place the multimeter in
series with the battery cable. Thus, the current flowing in/out of the battery could be
measured. The measures were taken only in the BT mode since the power consumption is
not a critical issue when connected to USB.

The theoretical current consumption is:

e The microcontroller (active, 8 MHz and V.. = 3 V): 5 mA typical, 10 mA maximum.

e The microcontroller (power-down mode, watchdog and brown-out detector
disabled, V. = 3 V): 2 pA typical.

e The Bluetooth module (active): 8.5 mA.

e The LDO: 2 pA typical, 5 pA maximum.

e The charger IC (charging): 2500 pA typical, 3750 HA maximum.

e The charger IC (charge complete): 260 pA typical, 350 pA maximum.
e The charger IC (standby): 180 pA typical, 300 pA maximum.

e The charger IC (shutdown): 28 PA typical, 50 HA maximum.

e The LED and the resistor of the BT module status (assuming that PIO1 has an
output voltage of 3.3 V; not specified in the data sheet): 7.02 mA.

e The transistors: A transistor, when conducts, part of the current is dissipated as
heat. It means that a small part of the current is absorbed by the transistor showing
a resistive behaviour. It is described by the R,s (ON) parameter. The graphs of the
data sheet do not offer enough resolution since the current is very small. In the
case of the FD360P, Rps (ON) = 100 mQ. Thus, Vps = 0.3 mV (calculated
approximately with transistor equations), implies that the current absorbed by the

83

transistor is 3 mA. An analogous result for the TSM2306 transistor shows a
consumption of 2 mA. These values are approximations.

e The ferrite beads and the capacitors do not dissipate electric power. The resistive
effect is low, so it can be neglected.

e The power dissipated by the voltage divider of the pressure sensors was also
neglected. The FSR resistance is >10 MQ (no pressed) or several kQ (pressed),
plus the 10 kQof the voltage divisor resistor. In the worst case, it is below 0.3 mA.

The current measures were done with the air wire version board due to the problems with
the BT power switching which have been described in the previous section. The
measurements were done without the MOSFET transistor. The Lipmouse in the active
mode should consume theoretically: 5to 10 mA + 85 mA + 0.3 mA + 7 mA + 3 mA = 23.8
to 28.8 mA. If the microcontroller was in the power-down mode and the BT was powered,
the consumption would be: 2 pA + 8.5 mA + 0.3 mA + 7 mA + 3 mA = 18.8 mA. If the BT
system was switched off (BT module + LED), it would be: 2 pA + 0.3 mA + 3 mA = 3.3 mA.
The issue is that the 7 mA of the BT module status LED and the 3 mA consumed by the
load sharing system transistor may not correspond with the reality.

According to the empirical results, when the Lipmouse is running in normal operation, it
consumes almost 25 mA, Figure 4.4 (a). When the microprocessor is sent to sleep and the
BT is still powered on, the current measured in this case was approximately 15 mA, Figure
4.4 (b). If the BT system is shut down, the consumption goes down to 3.75 mA, Figure 4.4
(c). These results agreed with the theoretical values: 25 mA is inside the range 23.8 to 28.8
mA, 15 mA = 18.8 mA and 3.75 mA = 3.3 mA.

Furthermore, the current during the battery charge was measured. The resistor for setting
the current in the fast charge period was selected in order to have a current of 200 mA
during this phase. The precondition current, i.e. trickle charge period before the fast charge
phase, is between 7.5 - 12.5 % of the value of the fast charge current. This leads to a
current value between 15 mA - 25 mA. The measures were: 23 mA during the precondition
period and 199 mA during the fast charge phase matching with the theoretical values.

The duration of the battery can be determined approximately through the power
consumption. The capacity of the battery is 1000 mAh. This value decreases slightly with
the number of dis/charging cycles. The Lipmouse consumes 25 mA. Therefore, the
duration of the battery will be 40 hours. The Lipmouse has enough autonomy to be used
for a couple of days. Moreover, a current of 200 mA means that the battery will be
completely charged in approximately 5 hours. In conclusion, the Lipmouse will be always
ready to use since it can be used during the day and charged during the night.

84

m 289 TRUE AMS MULTIMETER # ——
. NT"3=1 289 TRUE AMS MULTIMETER II

%

(c) Current consumed by

(a) Current consumed by (b) Current consumed by _ _
the Lipmouse running in the Lipmouse in the sleep the Lipmouse in the sleep
mode and the BT switched mode and the BT switched

normal operation on
off

Figure 4.4: Current measurement

4.4 The Bluetooth Coverage

Another fact of interest is the range where the device can be used. The different types of
obstacles cause: diffractions, reflections (multipath effect), scattering, absorptions or guide
wave effects. These effects and other applications using the same frequency-bands inside
the Lipmouse coverage, degrade the RF signal. Moreover, the media is not static and is
continuously changing (shadowing and fading). There are not two identical scenarios.
Therefore, the coverage values are always estimations.

The typical scenario of the Lipmouse usage is inside a room where the user handles the
computer from a few meters distance according her/his necessities. Since the user needs
to see the computer screen, in most cases the Lipmouse and the dongle receiver will be in
line-of-sight, i.e. without obstacles between them.

There are more or less complex models for RF coverage and many of them were deducted
from collections of empirical measurements. These models offer good approximations

85

under certain conditions as for instance Okumura-Hata or Walfisch-lkegami (chapter 4 of
COST Action 231, [48]). On the one hand, the simplest models do not offer accurate
values, only a general idea of the maximum distance between the transmitter and the
receiver. On the other hand, the most complex models have a lot of variables to take in
account and a deep analysis of the whole parameter space is required. These models are
difficult to compute. However, they offer better results.

The path loss computation using the simplest model of indoor propagation models from
COST 231, the "one-slope model" ([48]), is:
L=Ly+ 10 n-log(d)
where
Ly = the path loss at 1 meter of distance,
n = power decay index,
d = distance between transmitter and receiver in meters.

The power emitted by the transmitter is 0 dBm. The sensitivity of the receiver is not
explicitly given in the data sheet of the BT devices. Nevertheless, the BT standard says
that the minimum sensitivity of a receiver must be at least -70 dBm for a bit error rate of 0.1
%. Taking these parameters into account and assuming L, = 33.3 dB and n = 4.0, (the
same values that the Table 4.7.2 of [48]), leads to:

L=Ly+ 10 -n-log(d)
70 dB = 33.3dB + 10 - 4.0 - log(d)
d=827m

8.27m is the maximum theoretical distance between the transmitter and the receiver. This
result is not accurate, but gives an idea about how much the maximum distance between
the Lipmouse and the PC with a direct line-of-sight.

Moreover, some empirical measurements of the Lipmouse coverage were done. For that,
various samples were taken among different points of two different rooms. The rooms
tested were a 4 m x 3 m bedroom and a 8 x 14 mm hall. The Figure 4.5 shows an image of
the test realized in the hall. The result obtained was that the Lipmouse worked properly
without any failures in the different points tested in both rooms. The range was also
measured between rooms. With only one wall between the PC and the Lipmouse, it was
still running. But with 2 or more walls, the application began to lose packets.

86

up

Lipmouse (without the enclosure)

Computer + Dongle

Figure 4.5: Test of the indoor coverage

The coverage was measured outdoors in order to measure the limit of the range. It was
observed that with a separation distance of 40 meters the application begins to receive
faulty packets. An example of the defective packets received is depicted in Figure 4.6. This
produces a loss of sensitivity in the cursor movements. The stumbling movements make it
impractical for the use of the Lipmouse when the ARE is continuously receiving faulty
packets. However, the dongle and the BT module were still paired. To lose the BT
connection, a distance of at least 60 meters was necessary (these measurements were
done with direct line-of-sight.)

The test revealed that the BT connection works well and the Lipmouse could be used
without any problem in a wide range of applications.

\
B CA\Windows\system32\cmd.exe | (B |

packets,. AreCinID: BxadBl,. serialNumber: -183. featuleﬂ(l(lle....: Ix2 eum flags: [N
;5 requestsreply code: Bx20 . crc:off, data lg: 6, ta: 1, B 2,

|jun B84, 2014 8:26:54 PM eu.asterics.muw.cimcommunication.CIMSer 1aan1tCnntlnllel
run

Advertencia: eu.asterics.mw.cimcommunication.CIMSerialPortController.run: Did no
t receive correct packet serial number on CIM generated packet. potentially lost|
packets, AreCinID: Bxa4Bl. serialNumber: -B8, featurefddress: Bx2.error flags:

;5 requestsreply code: Bx28 . crc:off,. data lg: 6. d 1, 8. 8. I, 8, 2.

ji H4, 2014 B:26:56 PM eu.asterics.muw.cimcommunication.CIMSerialPortController

;5 request/reply code: lle’,“ o . D6, d 1, B, 8. 8. B, 2, =
B4, 2014 8:26:56 PM eu.asterics.mu.cimcommunication.CIMEerialPortController

Advertencia: eu.asterics.mu.cimcommunication.CIMSerialPortController.run: Did no
lt receive correct packet serial number on CIM generated packet, potentially lost
packets, AreCinID: Bxa4Bl, serialMNumber: -15. featur eﬁddl RN BxZ eum flags:

[5) i

; request/reply code: Bx2B , crcioff, data lg: 6, data: 1, @, B, B, 1, 2,
B4, 2014 8:27:02 PM eu.asterics.mu.cimcommunication. CIHSe} 1a1Pthont1011e1

Advertencia® eu.asterics.mw.cimcommunication.CIMSerialPortController.run: Did no
[t receive correct packet serial number on GIM generated packet. potentially lost
packets, AreCinlD: BAxad4Pl,. serialMumber: —61,. featurefddress: Bx2.error flags: [

Figure 4.6: Faulty packets received

4.5 Applications

The objective of the Lipmouse is to provide a mouse emulator for people with motor
problems in their upper limbs. A way of interacting with a computer will be provided to such

87

individuals. For that purpose, the required elements are the Lipmouse, a computer with the
AsTeRICS software installed, and a suitable AsTeRICS model which interconnects the
Lipmouse plugin with other suitable plugins to provide the desired functionality to the user.
This section will focus on how a user or a developer must configure such a model.

For setting a simple model, the steps required are:

e Open the ACS editor.
e When the ACS is ready, click on the tab "Components".

o Select "Sensors" —"Standard Input Devices" — "Lipmouse" and drag the Lipmouse
icon to a suitable position.

e Select "Processors" — "Basic Math" — "Threshold" and move it next to the
Lipmouse.

e Select "Actuators" — "Input Device Emulation" — "Mouse" and move in front of the
Lipmouse.

e Connect the output "x" of the Lipmouse with the input "mouseX" of the Mouse. An
analogue step must be performed for the "y" output and the "mouseY" input.

e Connect the "pressure" output with the input "in" of the Threshold plugin. Connect
the event trigger of the Threshold with the event listener of the Mouse. Select the
event channel created, and for the "leftClick" event listener, choose
"eventNegEdge".

e Select the Lipmouse and set the property "periodicADCupdate” to 30.

e Select the Threshold and set the properties as: "thresholdHigh" to 490,
"thresholdLow" to 490 and "eventCondition" to "above->below". The rest of the
properties do not need to be modified.

e Select the property "enableMouse" of the Mouse properties.

¢ Launch the ARE and connect it to the ACS through the tab "System" — "Connect to
ARE" in the ACS editor.

e Click "Upload Model" and the "Start Model".

e Now the mouse cursor will be controlled via the Lipmouse and left mouse clicks can
be generated via sip/puff actions.

The result obtained is depicted Figure 4.7.

88

Deployment (Ctrl-D) ¢ GUI Designer (Ctrl-G) S |Properties (Ctrl-P) v

Properties (Ctrl-P)

ARE Status: Connected 20% Chr +1-

Figure 4.7: The example ACS model

Due to the electrical noise, this model does not work optimally, since there is a slight
tremor in the cursor. As the electrical noise is fluctuating continuously, it could not be
suppressed with the calibration. This problem can be solved with the AdjustmentCurve
plugin ("Processors" — "Signal Shaping" — "AdjustmentCurve"). With this plugin, samples
near to zero, caused by the electrical noise could be rejected. An example of this is the
model showed in Figure 4.8.

The Figure 4.8 is a functional model and can be used without any tremor problem. At this
point, the Lipmouse is ready for operation. The steps to follow are: first of all the ARE must
be launched and the ACS model must be uploaded. Secondly, the Lipmouse hardware
must be powered on or if it is already turned on, it must be reset. Then the model can be
started. If a problem occurs during the execution or the user wants to wake up the device,
the user must stop the ARE. After that the user must reset the Lipmouse and, in the case
of the BT mode, he/she has to wait until the BT connection is established. Finally the ARE
should be started. More sophisticated models can be developed including the use of other
sensors and actuators. The combinations and the possibilities are wide.

89

—= = ~
Y 5 & & & & 8 % RESAC N
o -z o j = =) = 0] =
s New Open Save Save
Model Model Model Modelas

S |Properties (Ctrl-P) vq

 Properties (Ctrl-P)

ARE Status: Connected 70% Ctr +1-

Figure 4.8: A more complex ACS model to use the Lipmouse

4.6 Remaining issues

During the software test, it was discovered that when the BT module is switched on
through the MOSFET transistor, the board is apparently reset. Therefore, the firmware
restarts and when the BT module is switched on again, the firmware is reset for a second
time. This issue happens again and again, causing an infinite loop that does not allow to
continue with the firmware execution. This problem could be caused by short breakdown of
the supply voltage. When the BT module is turned on, the supply trace suffers a change in
its impedance. Moreover, the bypass capacitor of the module must be charged. This may
cause the power supply instability and thus the malfunction of the microcontroller.

One attempt to solve the problem was to change the resistor between the MOSFET's gate
and the microcontroller pin by another resistor with a larger value. The resistor was
substituted by a 1 kQ (the value was multiplied by ten). Technically, this action will reduce
the speed of the transistor response and the instability in the supply voltage trace should
be lower. This attempt did not solve the problem, the resets continued to happen. As the
problem was switching on the BT module, the code for performing this action was moved
to the beginning of the program in order to do it as soon as possible. It worked in the hand
soldered board. Nevertheless, when the same firmware was downloaded to one of the
reflow boards, the reset problem was still there. So the problem was solved in one case,
but not in all assembled devices. At the time of the conclusion of this thesis, it could not be
found an explanation to why works in the hand soldered board and no in the other boards.
Furthermore, a satisfactory solution to this issue was not found.

90

5 Conclusion

The results achieved were positive. The PCB design and construction were successfully
accomplished. The battery system offers enough autonomy. The firmware and the plugin
run as expected. Hence, Lipmouse is a device ready to use.

The Lipmouse project is not finished yet. Although it is a functional device and can be used
without any problem, the project is still going on. The problem with the power supply trace
and switch on/off of the BT module must be reviewed. In addition, other types of
improvements could be incorporated. For example the clicking system of the Mouse plugin
cannot be directly connected with the pressure output of the Lipmouse. It must be done
through a threshold component. Therefore, the threshold could be integrated inside the
Lipmouse plugin. A remodelling of the enclosure and the incorporation of a membrane for
the mouthpiece, in order to avoid the accumulation of saliva and the proliferation of
bacteria, must be accomplished in a future work.

This project offers the possibility of a computer access to people with physical problems in
their upper limbs. The Lipmouse can be combined with other systems, based on the
AsTeRICS platform and personalized solutions for these people could be created. It will
allow them to be more independent and to enhance their quality of life. In summary, the
prospects of the Lipmouse project are very promising.

91

Bibliography

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ATIA, "What is Assistive Technology? How Is It Funded?"
http://www.atia.org/ida/pages/index.cfm?pageid=3859 [Available on 07.05.2014].

ATP, "1, Definitions and legal requirements”, 2008,
http://www.atp.ne.gov/techassist/def-legal.html [Available on 07.05.2014].

IDEA, "Definition:; Assistive technology device", 2004,
http://idea.ed.gov/explore/view/p/,root,statute,l,A,602,1, [Available on 07.05.2014].

Infogrip, "Infogrip web page", http://www.infogrip.com/[Available on 08.05.2014].

EnableMart, "Enablemart web page", http://www.enablemart.com/ [Available on
08.05.2014].

AbleData, "AbleData web page", http://www.abledata.com/ [Available on
08.05.2014].

Attainment Company, "Attainment Comapnay web page",
http://www.attainmentcompany.com/assistive-technology [Available on 08.05.2014].

Enabling Devices, "Enabling Devices web page",
http://enablingdevices.com/catalog[Available on 08.05.2014].

AbleNet, "AbleNet web page", http://www.ablenetinc.com/Assistive-Technology
[Available on 08.05.2014].

LIFEtool, "IntegraMouse", http://integramouse.com/index_en.html [Available on
08.05.2014].

Compusult Limited, "Josue 2 and Josue 3", http://www.jouse.com/jouse3/home
[Available on 08.05.2014].

Adaptive Computer Control Technologies Inc, "Lipsync”, the official web page
seems not exist, taken from
http://www.abledata.com/abledata.cfm?pageid=113583&top=0&productid=192238&
trail=0 [Available on 08.05.2014].

QuadJoy, "QuadJoy 3", http://quadjoy.com/ [Available on 08.05.2014].

TetraLite Products, "TetraMouse Xs and TetraMouse XA", http://tetramouse.com/
[Available on 08.05.2014].

R. Haderer, "Application, extension and evaluation of AsTeRICS", 2014, Master
Thesis, University of Applied Science Technikum Wien.

AsTeRICS, "AsTeRICS logo", 2010, http://www.asterics.eu [Available on
15.04.2014].

92

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

AsTeRICS, "AsTeRICS User Manual version 2.2", 2013,
http://www.asterics.eu/index.php?id=51 [Available on 12.05.2014].

AsTeRICS, "AsTeRICS Developer Manual version 2.2", 2013,
http://www.asterics.eu/index.php?id=51 [Available on 12.05.2014].

WInAVR, "WInAVR official web page", http://winavr.sourceforge.net/ [Available on
27.05.2014].

The Eclipse Foundation, "Eclipse project official web page", http://www.eclipse.org/
[Available on 27.05.2014].

CadSoft Computer, "EAGLE offcial web page", http://www.cadsoftusa.com/
[Available on 28.05.2014].

PJRC, “Teensy++ 2.0 vendor’, http://www.pjrc.com/teensy/ [Available on
28.05.2014].
Atmel Corporation, "Key parameters for AT90USB1286",

http://www.atmel.com/devices/at90usb1286.aspx?tab=parameters [Available on
28.05.2014].

JNHuaMao Technology Company, “Bluetooth Low Energy devices vendor”,
http://www.jnhuamao.cn/bluetooth.asp?ID=1 [Available on 28.05.2014].

JNHuaMao Technology Company, "HM Bluetooth module datasheet", 2014.

ITEAD Intelligent Systems Co.Ltd, "Serial Port BLE Module (Master/Slave) : HM-
10", http://imall.iteadstudio.com/im130614001.html [Available on 17.04.2014].

Freescale Semiconductor, "MP3V7007 data sheet",
http://www.freescale.com/les/sensors/doc/data_sheet/MP3V7007.pdf [Available on
29.05.2014].

Interlink Electronics, "FSR400 data sheet",
http://media.digikey.com/pdf/Data%20Sheets/Interlink%20Electronics.PDF/FSR400
_Series.pdf [Available on 29.05.2014].

Everwin Tech Co., "Battery data sheet",
https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf
[Available on 30.05.2014].

Bluetooth SIG, Inc., "Technology Overview",
https://developer.bluetooth.org/TechnologyOverview/Pages/Technology-
Overview.aspx [Available on 16.04.2014].

N. Gupta, "Inside Bluetooth Low Energy", Artech House, 2013.

93

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

IEEE, "IEEE Standard 802.15.1: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specications for Wireless Personal Area Networks
(WPANS)", 2002, http://standards.ieee.org/findstds/standard/802.15.1-2002.html
[Available on 22.04.2014].

Bluetooth SIG, Inc., "Bluetooth Core Specication, version 4.1", December 2013,
https://www.bluetooth.org/en-us/specification/adopted-specifications/ [Available on
16.04.2014].

S. Haykin, “Communication Systems”,4th ed. John Wiley & Sons, 2000.
JNHuaMao Technology Company, "HM BLE USB Dongle datasheet", 2013.

Tobias Hammer, "HTerm version 0.8.1 beta", 2006, http://www.der-
hammer.info/terminal/ [Available on 18.04.2014].

Atmel Corporation, "ATI90USB1286 manual”, 2012,
http://www.atmel.com/Images/doc7593.pdf [Available on 22.04.2014].

D. Linden and T. B. Reddy, "Handbook of batteries", 3rd ed. McGraw-Hill, 2002.

R. M. Dell and D. A. J. Rand, "Understanding Batteries", 1st ed. The Royal Society
of Chemistry, 2001.

SparkFun Electronics , "Polymer Lithium lon Battery - 1000mAh, product number
PRT-00339", https://www.sparkfun.com/products/339 [Available on 30.04.2014].

S. Dearborn, "Charging Li-ion Batteries for Maximum Run Times", April 2005.
G. Paparrizos, "Fundamentals of battery charging: Part 1", May 2011.

IEEE, “IEEE Standard 1149.1: Standard for Test Access Port and Boundary-Scan
Architecture”, 2013, http://standards.ieee.org/findstds/standard/1149.1-2013.html
[Available on 30.04.2014].

Maxim Integrated, "Application Note 913: Switch-Mode, Linear, and Pulse Charging
Techniques for Li+ Battery in Mobile Phones and PDAs", 2002,
http://www.maximintegrated.com/en/app-notes/index.mvp/id/913 [Available on
09.06.2014].

B. Chu, "Application Note 1149, AN1149", Microchip Technology Inc., 2008,
http://ww1.microchip.com/downloads/en/AppNotes/01149c.pdf [Available on
06.05.2014].

Maxim Integrated, "MAX8606ETD+ data sheet”, Maxim Integrated Products Inc.,
2008, http://datasheets.maximintegrated.com/en/ds/MAX8606.pdf [Available on
04.05.2014].

94

[47]

[48]

M. Verle, "PIC Microcontrollers - Programming in C", 1st edition mikroElektronika,

2009 http://www.mikroe.com/chapters/view/17/chapter-4-examples/ [Available on
03.06.2014].

European Commission, Directorate General XIIl " Telecommunications, Information
Market, and Exploitation of Research ", "COST Action 231: Digital Mobile Radio
Towards Future Generation Systems : Final Report", 1999,
http://www.cost.eu/domains_actions/ict/Actions/231 [Available on 06.06.2014].

95

List of Figures

Figure 1.1: Different types Of SWItCHES.......ccco oo 7
Figure 1.2: Different types of KEYbOards............oovvuiiiiiii i 8
Figure 1.3: Different types Of JOYSTCKScoooi i 8
Figure 1.4: Different types of MICE........ouuuiiiii i 9
Figure 1.5: Different types of mouth controlled mice............cooooiiiii, 10
Figure 1.6: The first prototype of the LIPMOUSEccoiiiiiiiiiiiiicei e 11
Figure 2.1: ASTERICS 1090 (SOUICE: [16]) coieeeeiiiieiiiiii e ee et e et e e e 12
Figure 2.2: AsTeRICS system outline (Source: [17], PAgE 7) «oooveeeeeeeeieieeeeeeeeeeeeeeeeeeee e 14
Figure 2.3: ARE front panel (Source: [17], page 7 and 9)coeeeeeeeeiiieeeeeeeeeeeeeeeeeeee e 15
Figure 2.4: Module example (Source: [17], PAgE 21) ...c.ccceeviiiiiiiiiiii e 16
Figure 2.5: Example of a finished model (Source: [17]) ...ccooeeieeeieeeeeeeeeeen 16
Figure 2.6: Example of a CIM feature list, the HID actuator (Source: [18], page 56).......... 17
Figure 2.7: Different types of CIM packets (Source: [18], page 55)cccoeeveeeiiiiiieeiieeeen. 18
Figure 2.8: CIM packets field StrUCIUMEccoeiiiieicee e 19
Figure 2.9: The Plugin Creation Wizard (Source: [18], page 20).......cccooeeeeeiiiiiiieieeeeeeeeeen, 20
Figure 2.10: AVR STUAIO 1000 oo e e e e 21
Figure 2.11: Eclipse 10g0 (SOUICE [20]) .oooeeeeieeeeeeee e 21
Figure 2.12: The AVR DIAgONccoiiiiiiiiiie et s e e et e e e e e e e et e e e e e e e e e e aaraaaas 22
Figure 2.13:EAGLE 1090 (SOUICE: [21]) cooieiieieieeeeeeeee e 22
Figure 2.14: The eval board and microcontroller employed during the project development.
.. 24
Figure 2.15: The BLE devices employed for the wireless communication 25
Figure 2.16 MP3V7007GP sip and puff SENSOTcccooiiiieieeeeeeeeeeee e 26
Figure 2.17: FSRA00 PreSSUMNE SENSOIS ..uuuuiieeeeieiitiiiiaeeeeeeeeeetttiaaaaaeaeesssasttaaaaeesesessnnnnnnn 27
Figure 2.18: The battery employed for powering the LipmouSeccooovviiiiiiiiieeiieeeee, 28
Figure 2.19: Lipmouse's scheme (Source: [15]) ..ouuiioiiieiiiiieiiie e 29
Figure 3.1: The BT protocol stack (Source: [32], Page 23) ..ccuvieeeieeeeiiieiiiiieee e 32
Figure 3.2: The BT network architecture (Source: [33], page 348)ccceeeeeiiiiieeeeeeeeenn. 34
Figure 3.3: The BT state diagram (Source: [33], page 441)....cccceeeiieeiiiiiiiiiiiiee e, 35
Figure 3.4: The Li-ion charging cycle (Source: [41]) ..o a7
Figure 3.5: The different Charger tyPesS.o 49
Figure 3.6: IC charger fOOTPIiNT......ccooeeeeeeeee e 57
Figure 3.7: First DOard deSigN........coooeiiiiiiii e 61
Figure 3.8: First SCNeMAtiC GeSIGN . ..coii i 62
Figure 3.9: Daughter board deSigN oo e 64
Figure 3.10: Load sharing circuit (SOUrce: [45]) ...cccooiiiiiieeeeeeeee e 65
Figure 3.11: Fourth board deSIgnccouuiiiiiiiii e e e e e e e e aea s 67
Figure 3.12: Fourth SChematic deSIgNccooiiiieieeee e 68
Figure 3.13: ArdUiNO PIUGIN ...eee e e e et e e e e e e e eeaneen s 69

Figure 3.14: LIPMOUSE PIUGIN ... 71

Figure 3.15: Firmware flow graph ... 73
Figure 3.16: Active clock domains and wake up sources in the different sleep modes
(S0 TN ot S I o= To L= TR 1<) PSS 77
Figure 3.17: BOUNCE effeCt (SOUICE: [47]) coiiiii i 78
Figure 4.1: The soldering process of the main board..............cooooeeiii, 80
Figure 4.2: The daughter board finisShed..............oiiiiii i 81
Figure 4.3: JTAG transition CabIEccooiieiieeeeeeeee 81
Figure 4.4: CUurrent MEASUIEIMENTuuuuiii e e e et e e e e e et s e e e e e e e et e e e e e e e e eaarreas 85
Figure 4.5: Test of the INd0Or COVEIAGEccii i 87
Figure 4.6: Faulty packets reCEIVEA..........cciii i 87
Figure 4.7: The example ACS MOAEL........ccooi oo 89
Figure 4.8: A more complex ACS model to use the LipmouSe.........cccovvviiiiiiieieeeeccceiiiinnnn. 90
Figure A.1: The dongle COM POtoouiiiiiii e e e e e e 101
iU AL 2 HT O M 102
Figure A.3: Restoring the factory default settings of the dongle...........ccccoeeeeiiiiiiiinnnnn. 102
Figure A.4: Setting the dongle as a master devViCeccooeeeeeieieeeeeeeeeee e, 103

97

List of Tables

Table 2.1: Main features of AT90USB1286 microprocessor (Source: [23])......ccevvvvveerrennnn. 24
Table 2.2: MP3V7007GP main features (SOUrce: [27])....cuceiiieeeiieiiiei e 27
Table 2.3: FSR400 main features (SOUrce: [28])ccuvviieiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 27
Table 2.4: Battery specifications (SOUrCe: [29]) ...ooiieeriiieiiiiiii e 28
Table 3.1: BT Classic power classes (Source: [33], page 320).........cccieeeiieeeriieiriiiiiiieaeennn, 33
Table 3.2: BLE power range (Source: [33], page 2483).......ccouviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 33
Table 3.3: Most important AT commands extracted from the datasheets. To see the whole
liSt, CONSUIL [25] NG [B5]... oo 37
Table 3.4: Baud rate errors at 8MHz. Normal Speed mode (U2Xn = 0) and Double Speed
80 o [ST UUP TR 40
Table 3.5: BAUA rAte ©ITOIScciiieeiiiiiiee e e et e s e e e e ettt aa s s e e e e e e e e et a s e e e e eeeeeerenaaaaeaaes 42
Table 3.6: Battery parameters of the most typical chemistries (Source: modified from [38],
CRAPLET 22) .. e 46
Table 3.7: IC charger ProOPOSAL..........cciiiieeiiieeiee e e e e e e e e e 52
Table 3.8: EN1 and EN2 control signals (Source: [46], page 9).......ccovvvveiiiieiiiiiiiiiieiininnnnn, 58
Table 3.9: The bill of materials ordered.............cccceoevvevnns iError! Marcador no definido.
Table 3.10: Lipmouse feature IStoovvviiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeee e 70
Table B.1: Table B.1: The bill of materials ordered forthe PCB..............ccooiiiiiiiniiinnnn. 104

98

List of Abbreviations

ACS

ADC

ALU
AsTeRICS
AT

AT (command)
BLE

CAD

CIM

CRC

CPU
EAGLE
GFSK

HID

JTAG
LED
LDO
MAC
NFC
NTC
(ON]|
PSK
PC
PCB
RISC
RF
RFID
SIG
SMD
SPI
TDD
TDMA

AsTeRICS Configuration Suite
Analog-Digital Converter

Aritmetic Logic Unit

Assistive Technology Rapid Integration & Construction Set
Assitive Technology

ATtention (Hayes command terminology)
Bluetooth Low Energy

Computer Aided Design
Communication Interface Module
Cyclic Redundancy Check

Central Processing Unit

Easily Applicable Graphical Layout Editor
Gaussian Frequency Shift Keying
Human Interface Device

Integrated Circuit

Identification

Integrated Development Environment
Institute of Electrical and Electronics Engineers
Input and Output

Infrared Data Association

Industrial, Scientific and Medical
Intensity (electrical current) vs Voltage
Interrupt Service Routine

Joint Test Action Group

Light Emitting Diode

Low Drop Out (regulator)

Media Access Control

Near Field Communication

Negative Temperature Coefficient
Open Systems Interconnection

Phase Shift Keying

Personal Computer

Printed Circuit Board

Reduced Instruction Set Computer
Radio Frequency

Radio Frequency Identification
Special Interest Group

Surface Mount Device

Serial Peripheral Interface

Time Division Duplex

Time Division Multiple Access

99

TWI
uUSB
uwB
WPAN
WWw

Two Wire Interface

Universal Serial Bus

Ultra Wide Band

Wireless Personal Area Network
World Wide Web

100

up

A: Configuring the Bluetooth Dongle

As mentioned, the Bluetooth dongle needs to be configured before being used. It must be
set as a master device. The first step is to install a terminal program for opening the BLE-
dongle’s virtual COM port and sending the commands to this COM port. There are many
free terminal programs available. Here, the configuration will be explained using the HTerm
program (Reference [36]). This software can be downloaded for free and runs on Windows
and Linux platforms.

The first step is to plug the BLE USB dongle into the computer and to open the "Device
Manager". After the enumeration, the device will be visible in the COM port section, see
Figure A.1. In the example, the port number is COM4. The next task is to open the terminal
program.

&4 Administrador de dispositivos =[5 e S

Archivo Accion Ver Ayuda
&= | @ HEl

a {= Alberto-PC
b B Adaptadores de pantalla
:: -F Adaptadores de red
s % Baterias
b 9 Bluetooth
» g Controladoras ATA/ATAPIIDE
- § Controladoras de bus serie universal
b -%| Controladoras de sonido y video y dispesitivos de juego

b 1:-“. Dispositivos de imagen

b M| Dispositivos del sistema

b M| Equipo

-2 Junge

. .Ml Monitores

b I Mouse y otros dispositivos sefialadores
b -3 Otros dispositivos

» [0} Procesadores

4 YT Puertos (COM y LPT)
.77 USB Serial (Communication Class, Abstract Control Modg
» 25 Teclados

-+ Unidades de disco
> -L__,,', Unidades de DVD o CD-ROM

Y

Figure A.1: The dongle COM port

In the case of HTerm, a window similar to Figure A.2 should appear. The first step is to
select the corresponding COM port from the list, in this case COMA4. If it has not appeared,
click on the "R" button in order to refresh the COM ports. After selecting the suitable COM
port, click on "Connect".

If there was no problem, the AT commands can be sent now. The first command to be sent
must be "AT+RENEW", to delete a previous configuration in the dongle. This command
restores the factory default settings. The dongle will respond "OK+RENEW", see Figure
A.3. For the change to be effective, the dongle must be powered off and powered on again.

101

For that purpose, click the "Disconnect" button, unplug the dongle, plug it again and click
the "Connect" button again. Now, the command for changing the role to master must be
sent, "AT+ROLEL". If the dongle answers with "OK+Set:1", the dongle is configured and
ready to be used, see Figure A.4. It will try to pair with the first slave device available.

'
o1 HTerm 0.8.1beta E=E

File Options View Help

& | Connect | Port COM4 v [R aud 115200 v Dawm [a ~| swp 1 | parity

: i Rx 0 | Reset |Tx 0 | Reset ‘ Count 0 | Reset | Newline at]
WI lnm [JHex [oec Clain Mﬂ Dc.mt o B e o

Received Data

1 B 10 15 20 25 30 39 40 45 S0

Selection ()

Input control x

Input options

| [¥]asci [[|Hex [|pec [T]Bin Send on enter | Send filg
Type [asc «|| | Asend

Transmitted data x
L 2 10 15 20 25 30 35 40 45 50
Histary -/0/10 Not connected

Figure A.2: HTerm

”
o HTerm 0.8.1beta [E=NEER™
File Options View Help

Disconnect | Port COM4 - E] Baud 115200 ~ Data [a | stop[1 | Parity
| Rx 8 | Reset |T)< 8 | Reset ‘ Count O 0 | Reset ‘ Newline at]
(i) 9 e o (mm o] [Bmen G o8

Received Data
4] 15 20 25 30 35 40 45 50

OK+RENEW

Selection (-)

Input control x
Input options

| [¥] Asdi [“|Hex [[|Dec [C]Bin | Send on enter |Mone v] | [Sendﬁ.le

Type |ASC - c ASen

| Transmitted data X
lw 15 20 25 30 35 40 435 50
History -/1/10 Connect to COM4 (b:115200 d:8 s:1 p:None)

Figure A.3: Restoring the factory default settings of the dongle

102

up

-

-
o1 HTerm 0.8.1beta [E= =
File Options View Help
Port COM4 v [R] Bad 115200 v paa[s v| swp[t v] Py
Rx 16 Tx 16 Count 0O = 0 Newling at]
 Uines Elvr Eloee Do [f (somat o) | Dewrst 0 2 "y o 2
Sequence Overview x Received Data
1 = " 20 25 30 35 40 45 50
OK+RENE @
Selection (-)
Input control x
Input options
Clear transmitted [#] Asci [“|Hex [|Dec [C]Bin | Sendonenter |Mone v] [Send fille
e [asc <] ASend
Transmitted data X
1 5 il 20 25 30 35 40 45 50
AT+REN @
History -/2/10 Connect to COM4 (b:115200 d:& s:1 p:None)

Figure A.4: Setting the dongle as a master device

Note: At the first time of use or after a renew command (AT+RENEW), the dongle will
search for any available slave and will try to establish a connection with this device. If the
connection is done successfully, the dongle will save its MAC address and, in a future
connection, will only search for that device. It will not pair with another device. Therefore, if
the dongle has to connect with a different device, it must delete the previous address. An
easy way to delete this address is to send a renew command as it was explained in this

appendix.

103

Bill of materials

B

90d 9y} 10} pa49pJo S[elsrew Jo |iq syl :1°d slqel

LLGT9ST et | LAASOW [SUueys b AGE v} £T1085 HIGDETWGS | HIGOETWGS | I
SEQLEPT et | donng pEiemay Spig | WS SIMETUnaanng TAAS TANS oY oW 121 155 oY 121 1585 T
et | JOSUSE SINEES | L0008 AE AN L0018 W A DIDOIAE e A SO0 IAE S W I
JOEEIIE Fuiey lopsuas g 850 T I0E GOOCE T0E SO00EE 8950 | T0E SO0EE SS0 IMIW T
PSS ALt et | O vIPSIE T/ O POPSEIT 9 OT Y ox OT HI LW oM OT HI LW oM 1 OT HO 1w WOMD I
SSICEET et | TESELAD 5 dmroiayy on SETLIOS ITESELADM IESELAD W I
et | WWOST AEE QA7 934 31 EDLTADN Mt 8T X00LA0ETLIOS A0/ IATOEE E0L Tl DN A0/ ATOEE EOL T2 W I
sjuzucdweos oy i = £a37 AFTAANE WSO A373015037 9LgA 57 I
suzuadwas gy O ENER 03 a3730IS WvHS0 EREIIEER] Giak 07 | 1
siuzusdwas gy uzai® 9] 1037 373415 WYHS0 3713415031 arga 81 | 1
swied | 134500 (M) YIus Eme) sy o #Fug 10 £10%5 835 A OFE N JdOSENOD | T
TOOPTSOETINL soipmIsE ER| anpew 37 ' 4it9iEni 150 01 WiH 374 01 H 374 of WH 3749 | 1
P IE9ST et | AP A4110435 A0S0 a4 JJECTO0S MOES0H MOESDH I
SErEPLT et | SETTAS NS LW [y T2 bl 4.1 Nv 99 T95N06 1% NW9atTasNI61L v I
SELTEED et | ueadainy ‘Yo 15153 £ TH 090y E090M N3 M 4T T
ECLTEED et | sdouny ‘w1 5153 ar 090y E090M N3 M HOLp I
GEMESLT et | doung ‘Yol ldvdwd L 50902 5080003 2 nL't T
TTLTEED et | downg ‘Yol 5153 ITd 84 'TH 090y E090M N3 M HOEE £
EOLTEED et | doung ‘yo 5153 gy LM 090y E090M N3 M HITLD T
PIS0EET et | doung ‘Yol ldwdvd o T v 0902 E0900 03 2 I £
£8tPETT et | dainy ‘WOl IDWdY D £33 93 0902 E0900 03 2 dat T
LT0L99T et | 5 E35413 PIEPUCIS SAOUEA IWLSAHD WEDWL IWILSAHD WE DR IIWISAMD THWST I
PILTEED et | ueadauny ‘Yo 15153 54 090y E090M N3 M HOTT I
S8 L0TET et | doung ‘Yol ldwdvd] 0902 E0900 03 2 I
LEOGSLT et | dainy ‘WOl IDWdY D ST ETD 'vD ED ED 0902 E0900 03 2 5
ESLTEED et | ueadainy ‘Yo 15153 Y 090y E090M N3 M I
[L598TC et | AIMECT S 50490 Yriaja £1 11 G080 AI1HEDT S 5040 HIHE0T Sel T
- = HIAAWINOC 1#pas Qs Irs rs rs I
s | 103 US| uandiiasag 51E sEeqIeg | EEEERE| snes | A |

104

	Master Thesis Alberto Ibanez

