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Chapter 1

Introduction

Computer aided simulations are increasingly being used in engineering. Simu-
lation allows the designer to reduce the development time of a product as well
as the number of prototypes. This makes it possible to work iteratively in an
efficient manner with reduced costs and capacity, as change-implementation time
decreases and less waste is produced.

Nowadays gear wheels are normally lightweight optimized parts (e.g. weight
reduction in automotive gearboxes is essential to minimize the weight of the
whole automobile) and should underlie high dynamic forces in order to ensure
fast response of the system. Consequently, rigid body models of gears are not
useful when precise simulations are needed. Elastic models are mandatory.

The elastic performance of gears can be simulated with different approaches: as
a finite-element system or as an elastic multibody system. In this thesis, the
latter is used. Using an elastic multibody system allows the researcher to reduce
computational times compared to an equivalent finite-element simulation, while
still achieving good quality results compared to the finite-element technique.

1.1 Objective

The main objective of this work is to simulate the contact between gears and
determine if the stress values on the flank of the gear computed with the elastic
multibody approach are similar to those obtained with the finite element ap-
proach. In order to do this, different model reduction techniques will be used.
The reduction matrices will be computed using the MatMorembs software. Differ-
ent reduction matrices will be assembled and tested in order to determine which
is most suitable to solve this problem.
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2 CHAPTER 1. INTRODUCTION

The time integration of the problem is done with the GTM software, i.e. Gear
Train Module, [Ziegler12]. GTM solves both the interaction between the gears
and integrates the equations of the elastic multibody system. In order to measure
the quality of the results obtained with GTM, a finite-element model is made and
solved in Abaqus. The results provided by Abaqus will be the benchmark with
which all the results obtained in GTM are compared.

1.2 Structure of this thesis

In Chapter 2, the theoretical background of this thesis is presented. An intro-
duction to elastic multibody mechanics and contact mechanics is undertaken and
an overview of all the reduction techniques used in this work is presented.

In Chapter 3, a simpler model, made with a beam and a single force acting at one
arbitrary node, is used as a first approach in order to discover which reduction
techniques are most suitable and have more potential. Also, it facilitates the
detection of errors and limitations that need to be taken into account later when
working with the gears.

In Chapter 4, the gears used in this thesis are introduced. Simulation work is
performed in two stages. In the first stage, one gear is loaded with a single force.
Once the results are satisfactory the contact problem is set up with two different
gears and the stresses are computed.

Finally, an overview of the results is presented in Chapter 5.



Chapter 2

Theoretical Background

In this chapter the main theoretical background for the thesis, which is necessary
to understand this work, is presented. Firstly, in Section 2.1, the concept of
multibody systems and the approach taken in this work to solve the problem
is introduced. Later in Section 2.2, an overview of all the reduction techniques
used in this thesis is carried out. In Section 2.3, a rough outline of the theory of
contact mechanics is given. Finally, in Section 2.4, the stress recovery techniques
are introduced.

2.1 Elastic Multibody System

In order to solve problems with gear interaction, a multibody system (MBS)
approach is used in this thesis. It is possible to define a multibody system as a
set of rigid solids interacting in different ways, for example, having contact.

In the case of this thesis, as the elastic deformation in the flanks of the gears
is not negligible, a generalization of the MBS formulation is needed. In this
generalization, the elastic deformation of the bodies has to be considered. This
necessity gives rise to the elastic multibody system formulation, from here on
referred to as EMBS. There are different ways of modeling an EMBS, primarily
two as stated in [NowakowskiEtAl12]: the absolute nodal coordinate formulation
and the floating frame of reference formulation.

Working with gear trains, elastic deformations are small in comparison with the
rigid body motion, so the floating frame of reference formulation has been chosen
and is used in this work. The idea behind this formulation is to model the absolute
displacement of a body as a combination of a nonlinear rigid body motion of a
reference frame attached to the body, and a linear elastic deformation with respect
to the reference frame.

3



4 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Floating frame of reference.

Therefore, if the movement of a solid is represented by the position variation of
one arbitrary point P of the solid, the following formula holds true (see Fig. 2.1)

rIP (t) = rIR(t) + rRP + up(t). (2.1)

Displacement with time of point P is obtained by superposing the classical rigid
motion displacement of P, rIR(t) + rRP and a movement associated with only
the linear elastic deformation of the body in the vicinity of P, up(t).

This elastic deformation is computed using the Ritz approach,
see [NowakowskiEtAl12] and [MeirovitchKwak90],

up(rRP , t) = Φ(rRP , t) · qe(t), (2.2)

where qe represents the elastic coordinates of a finite element model and Φ rep-
resents elastic shape functions [SchwertassekWallrappShabana99, Eberhard00].

The equation of motion of a general multibody system, [Shabana98], can be
represented as

M(q) · q̈ + k(q̇, q, t) = g(q̇, q, t), (2.3)

in whichM represents the mass matrix of the whole system, which is symmetrical
and positive definte (the kinetic energy, if the system has a non-zero velocity is
always greater than zero). Vector q is the set of generalized coordinates of the
system; k (gyroscopic forces) and g (applied forces) are the forces acting on the
system.

Focusing now on one body, the elastic movement can be characterized as

M e · q̈e +Ke · q̇e = f e, (2.4)
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in which qe is the set of elastic coordinates and M e and Ke are the elastic mass
and stiffness matrices, respectively. It is also possible to consider dissipative
effects introducing an elastic damping matrix in Eq. (2.4). Usually the Damping
matrix is computed as a combination of both the mass and stiffness matrices and
leads to

De = αM e + βKe where α, β > 0. (2.5)

In this work, the damping matrix, when considered, has been computed with
α = 0.

Combining the elastic and the rigid body motion Eq. (2.6) can describe the motion
of one body as [

M r M re

M er M e

]
·
[
q̈r
q̈e

]
=

[
hr
he

]
. (2.6)

The matrix M r is the mass matrix associated with the rigid body motion. Ma-
trices M re, and M er are the coupling matrices between the rigid body motion
and the elastic deformations. Vector q̈r refers to the translational and rotational
accelerations in the case of a rigid body motion. Finally, vector h represents the
forces acting on the body.

With the help of traditional rigid body equations, see [Agullo00], from a reference
frame attached to the body at point O

F = mac (2.7)

and

MO =
dHO

dt
+m(c× aO) (2.8)

it is possible to further develop the Eq. (2.6). In Eq. (2.7) and Eq. (2.8) ac is the
acceleration of the center of gravity of the body in the inertial frame. F , M are
the external forces and torques applied to the body. Vector c is the position of
the center of gravity, m is the mass of the body and H is the angular momentum
of the body characterized in O.

Finally, Eq. (2.6) is transformed into the following shape, see [JalonBayo94]mE mc̃ CT
t

mc̃ I CT
r

Ct Cr M e

 ·
 v̇ω̇
q̈e

 = h. (2.9)

In vector h, all the forces and torques acting on the body are considered. Matrix
I is the inertial tensor characterized at point O. Tensor c̃ is the tensor associated
with the position of the center of gravity (COG) of the body and E is the unitary
matrix. Ct and Cr are matrices associated with the coupling of the rigid body
motion and the elastic deformation. With this, integrating Eq. (2.9) is possible
to obtain the solution to the problem.
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2.2 Model order reduction

When modeling an elastic body with finite-element discretization, the immediate
consequence is the huge number of nodal coordinates that appear. Therefore, in
general, finite-element modeling is followed by a model order reduction process
before integrating the system equations. The main idea behind model reduction
is to eliminate some of the elastic coordinates of the system in a way that all the
relevant information is approximated within the new reduced model:

qe ≈ V · qred. (2.10)

Matrix V is the reduction matrix and its columns span the sub-space in which
the original set of coordinates is projected. Combining Eq. (2.10) and Eq. (2.4),
supposing V to be time invariant, it is possible to obtain the elastic equation of
the reduced model

V T ·M e · V · q̈red + V T ·Ke · V · qred = V T · f e, (2.11)

M red · q̈red +Kred · qred = f red. (2.12)

2.2.1 Reduction by projection

If the set of original elastic coordinates is contained in RN , the idea is to project
the vector qe into a lower dimension subspace ν contained in Rn in an effort to
minimize the error between the original and the projected vector.

One matrix P is a projector (see [Griffer10]), if, and only if,

P = P 2 (2.13)

holds true. If P is a projector then every vector v ∈ RN can be projected into ν
being premultiplied by P . In the case of the elastic coordinates, it is possible to
write

q̂e = P · qe (2.14)

and
qe = P · qe + (E − P ) · qe = q̂e + ε (2.15)

where ε is the residual.

As the only condition for being a projector is Eq. (2.13) it is possible to define
P in the following manner:

P = X ·
[
En 0
0 0N−n

]
·X−1. (2.16)
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Matrix X can be decomposed in two additional sets,

X =
[
V Q

]
, (2.17)

in which the columns of V span ν = range(P ) and the columns of Q span the
complementary subspace of ν which is equal to ker(P ), [Griffer10].

In this thesis, only orthogonal projections are used. A projection is orthogonal if
and only if range(P ) and ker(P ) are orthogonal between each other. So, using
Eq. (2.13), Eq. (2.16) and Eq. (2.17), the projector P can be written as

P = V · (V T · V )−1 · V T . (2.18)

If V is orthogonal, Eq. (2.18) can be transformed into

P = V · V T . (2.19)

2.2.2 Eigenmodes and modal truncation

It is possible, by superposition and modal decoupling, to describe elastic response
with the time of a discretized body by a linear combination of all its shape vectors.

As explained in [GimenezJalon84], analyzing the work of the elastic forces in a
mechanical system, this is equal to the elastic energy stored in the system, which
can only be positive or zero when the displacements of the system are rigid body
displacements and there is no elastic deformation. Therefore, the stiffness matrix
Ke can only be a positive definite matrix or a positive semi-definite matrix.
Similarly, as a negative or zero kinetic energy makes no sense when there are
non-zero velocities, the mass matrix M e should be positive definite.

Taking into account these properties and studying the eigenproblem

(−M eλi +Ke) · φi = 0, (2.20)

all the eigenvalues λi will be positive or zero, so

λi = ω2
i (2.21)

holds true. Taking all this into account, the eigenproblem of Eq. (2.20) can be
written for all the eigenvectors at the same time:

Ke ·Φ = M e ·Φ ·Ω, (2.22)

Φ =
[
φ1 φ2 ... φi ... φN

]
, (2.23)
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Ω =

 ω2
1

. . .

ω2
N

 . (2.24)

These two matrices have useful properties. As the eigenvectors are orthonormal,
if scaled right, to the mass matrix and orthogonal to the stiffness matrix, it holds
true

ΦT ·M e ·Φ = E, (2.25)

ΦT ·Ke ·Φ = Ω, (2.26)

if a new set of coordinates, called natural coordinates is defined as

qe = Φ · qm (2.27)

and premultiplied with ΦT , then Eq. (2.4) is transformed into

E · q̈m + Ω · qm = ΦT · f e. (2.28)

It is possible to see that the original system has been decoupled and the response
of the system is a combination of the different modal responses associated to each
modal shape (eigenvector).

The easiest way to reduce a system is to assemble a reduction matrix with only
eigenmodes in the range of the interesting eigenfrequencies. If

Φ =
[
Φn ΦN−n

]
and qm =

[
qred
qN−n

]
, (2.29)

then it is possible to rewrite Eq. (2.27) into

qe = Φn · qred + ΦN−n · qN−n.
So, (2.30)

qe ≈ Φn · qred.

This is called modal truncation and is the easiest way to reduce the system.
However, as this matrix is assembled with only eigenmodes, which represent a
dynamic response, it is very difficult to obtain the static response or a response
to a very low frequency excitation.

2.2.3 Component Mode Synthesis: The Craig Bampton
method

The Component Mode Synthesis (CMS) technique, [CraigBampton68], was origi-
nally developed to model complex structures by dividing them into substructures
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to be solved separately. To do this, the nodes of each substructure are classified
into two groups: external (or boundary nodes) and internal nodes. The bound-
ary nodes are those which are loaded, bound or interact with other substructures.
With this classification Eq. (2.4) is rewritten as[

M ii M ib

M bi M bb

]
·
[
q̈i
q̈b

]
+

[
Kii Kib

Kbi Kbb

]
·
[
qi
qb

]
=

[
f i
f b

]
, (2.31)

in which the index i denotes the internal nodes. Index b indicates the set of
boundary nodes.

The Craig Bampton method combines eigenmodes and some static modes in or-
der to better catch the response of local deformations. These static or constrained
modes are defined in [CraigBampton68] as the static deformation of a structure
when a unit displacement is applied to one coordinate of a specific set of con-
strained coordinates, while the remaining coordinates of that set are constrained
and the rest of the nodes of the structure are force free. In the Craig Bampton
method, the set of constrained coordinates is the set of boundary coordinates.
Therefore, Eq. (2.31) is transformed into[

Kii Kib

Kbi Kbb

]
·
[
Ψib

Ebb

]
=

[
0ib
f bb

]
. (2.32)

Transforming the Equation 2.32 the constrained mode matrix is given as

ΨCB =

[
Ψib

Ebb

]
=

[
−Kii ·Kib

Ebb

]
. (2.33)

Finally, a Craig Bampton matrix, with k boundary coordinates and (N − k)
external coordinates can be assembled as

V CB =

[
ΦN−k Ψib

0 Ebb

]
, (2.34)

in which ΦN−k ∈ R(N−k)×n is part of the set of the (N −k) fixed interface normal
modes obtained by solving the eigenproblem

(−M iiλi +Kii) · φi = 0 (2.35)

and taking n from the (N−k) eigenvectors to assemble one matrix V cb ∈ RN×(n+k)

with (n+ k) < N .

The Craig Bampton method is usually more powerful than modal truncation
but, instead of the matrix assembled in Eq. (2.30), the Craig Bampton reduction
matrix is not mass or stiffness orthogonal. Software, such as GTM as used in this
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thesis, requires loading a reduction matrix orthogonal to the mass and stiffness
matrices. Therefore in some cases it is important to orthonormalize the modes.
If

M red = V T
cb ·M e · V cb and Kred = V T

cb ·Ke · V cb, (2.36)

then, it is possible to normalize the Craig Bampton modes solving

Kred ·Φ∗ = M red ·Φ∗ ·Ω∗. (2.37)

A new set of reduced modal coordinates is defined as

qred = Φ∗ · q∗red (2.38)

and the new reduction matrix yields

V ∗cb = V cb ·Φ∗, qe = V ∗vb · q∗red. (2.39)

It is worth mentioning that the orthogonalized eigenvectors in Φ∗ are not eigen-
vectors of the original system but eigenvectors of the Craig Bampton represen-
tation of the system. Therefore, a physical explanation of these vectors is more
difficult but, see [CraigBampton68], the following can be said:

• Fixed boundary normal modes, as computed in Eq. (2.35), are replaced by
an approximation of the eigenvectors of the unconstrained body. Out of
these modes, 6 are usually the rigid body modes.

• Constrained modes are replaced with a boundary eigenvector, a concept
best illustrated by comparing the modes and after orthogonalization of a
rectangular plate which has Craig Bampton boundary points along one
of its long edges. The Craig Bampton mode in Fig. 2.2 featured a unit
displacement of one of its edge nodes; all the other nodes of the edge being
fixed. After orthonormalization, we see modes like the one depicted in
Fig. 2.3 which has a sinusoidal curve along the boundary.

Figure 2.2: Representation of a Craig Bampton constrained mode.
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Figure 2.3: Schematic representation of a boundary mode.

2.2.4 Dynamic condensation

Dynamic condensation is a generalization of the static one, used for example
to compute the static modes in the Craig Bampton reduction method. If the
mechanical system is expressed as a control system it is possible to write

M e · q̈e +Ke · qe = Be · u,
y = Ce · qe,

(2.40)

where u are the inputs to the system (f e = Be · u) and y are displacements
of interest extracted via matrix Ce. The mechanical impedance of the system,
see [Balmes05], can be expressed as

Z(ω) = −ω2M +K. (2.41)

If a transformation matrix T is given such that

qe = T · qb (2.42)

holds true, an analogy with the constrained modes calculation is established[
Zii Zib

Zbi Zbb

]
·
[
Θib

Ebb

]
=

[
0ib
f bb

]
(2.43)

and the transformation matrix T can be expressed as

T =

[
Θib

Ebb

]
=

[
−Z−1ii ·Zib

Ebb

]
. (2.44)

These new modes contained in T can be assembled in a more general reduction
matrix in a similar fashion to the Craig Bampton reduction matrix (Eq. (2.33),
Eq. (2.34), and Eq. (2.35))

V dc =

[
ΦN−k Θib

0 Ebb

]
. (2.45)
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2.2.5 CMS-Gram reduction method

One of the major drawbacks of the modal truncation and the Craig Bamp-
ton reduction techniques is that it is usually difficult to determine the most
relevant modes in order to assemble the reduction matrix. As proposed
by [HolzwarthEberhard], the decomposition in Gramian matrices enables one to
rank the importance of the deformation patterns from an energy point of view.
The controllability and observability matrices, P , Q, are related to the excita-
tion energies (how much energy is needed to excite one state of the system) and
output energy (how much energy it is possible to observe at one output of the
system), respectively.

According to [HolzwarthEberhard], a quantification of system properties from
this point of view can be expressed with the system invariant Hankel Singular
Values (HSV), σi, defined as square roots of the spectrum of the product of P
and Q

σi :=
√
λi(P ·Q), with (P ·Q) · χ = diag(λi) · χ, i = 1, ..., N. (2.46)

The transformation matrix T needed to obtain this representation is calculated
with two Cholesky decompositions and a singular value decomposition, SVD. For
symmetric systems, the observability and controllability matrices are identical
and the transformation matrix T can be obtained solving the eigenproblem

P · T = diag(ξi) · T , (2.47)

where the eigenvalues are equivalent to the Henkel singular value (HSV), e.g.
ξi = σi, of the system. If the eigenvectors are sorted according to the HSV in
descending order and the first n are chosen to assemble the reduction matrix V
this is equivalent to eliminating those states of the system which are difficult to
excite or are difficult to observe. Therefore, the problem of determining which
modes are more important in the system is greatly reduced.

There are several definitions for Gramian matrices for second order systems.
In [HolzwarthEberhard] if

L(ω) = −ω2M e + iωDe +Ke, (2.48)

the Gramian matrices are defined as

P p =
1

2π

∫ +∞

−∞
L−1(ω) ·Be ·Bt

e ·L−H(ω)dω, (2.49)

Qpv =
1

2π

∫ +∞

−∞
L−H(ω) ·Ct

e ·Ce ·L−1(ω)dω, (2.50)
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where Be and Ce are the input and observation matrix from Eq. (2.40)

For mechanical applications, the behavior of the system is usually interesting for
a special range of frequencies. In these cases it is possible to define the Gramian
matrices as

P p =
1

π

∫ ω2

ω1

L−1(ω) ·Be ·Bt
e ·L−H(ω)dω. (2.51)

The main drawback of Gramian matrices-based reduction techniques is the
computational effort needed to compute the Gramian matrices and they are
usually not computed exactly but approximately.More research has been done
in [LehnerEberhard07] and [FehrLehnerEberhard07].

2.2.6 MatMorembs

Before creating a reduction matrix, MatMorembs needs to build a standard data
structure with all the relevant information of the system. To do this, it is neces-
sary to provide the software with three files:

• system.fil, which contains the information about the modes and the mesh
of the model.

• system MASS.mtx, which contains the mass matrix of the system.

• system STIF.mtx, which contains the stiffness matrix of the system.

Listing 2.1: Modifications of the imput file required to obtain the mass and
stiffness matrices and the modal information.

1 **----------------------------------------------------

2 *Step , name=Step -0

3 *matrix generate , stiffness , mass

4 *matrix output , stiffness , mass

5 *End Step

6 **----------------------------------------------------

7 *Step , name=Step -1, perturbation

8 *Frequency , eigensolver=Lanczos , acoustic coupling=on,

normalization=mass , bias =1.

9 Number of Eigenmodes , Inital Eigenmode , , , ,

10 ...

11 *Node file

12 u

13 *End Step
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These files are provided via Abaqus running a modified version of the model input
file. In this file some code lines need to be added, presented in the Listing 2.1,
before running the simulation again. Once the simulation is completed the three
files described above will be available. By running the functions abaqus to matlab
and femdata to systemdata in MatMorembs a database containing all the infor-
mation of the system is created. When the data structure sysdata is generated
it is possible to run all the reduction functions.

The sysdata structure stores information such as the mass matrix, stiffness matrix
and damping matrix (if defined), mode matrix and their related frequencies. All
this information is stored for the free model (without restriction) with a dimension
of N̂ DOF and for the constrained model, whose dimension is N DOF. Later,
when the reduction matrix is assembled, it is exported to GTM.

A post processing step is needed because the model used to compute these ma-
trices is the bounded model, and GTM needs matrices with the full system
dimension. This information is stored in a constraint matrix, T c defined in such
a way that if {M con, Kcon} are the matrices of the constrained system, and
{M free, Kfree} are the matrices of the free system, then

{M con, Kcon} = T T
c · {M free, Kfree} · T c (2.52)

holds true. So, if the reduction matrices for the full and the constrained system
are V free and V con respectively then

V free = T c · V con (2.53)

holds. Therefore it is possible to transform the reduction matrix easily.

Another extra preprocessing step related to numerical difficulties is also needed.
Sometimes the modes used are almost linearly dependent and as a consequence
numerical problems occur. An orthogonalization process of one set of modes with
another (e.g. the dynamic modes and the normal modes) of the reduction matrix
seem to solve that problem.

Finally, to fulfill the other two conditions (i.e. being mass and stiffness orthog-
onal), the orthonormalised reduction matrix should be decoupled. To do this,
the function decouple system.m is implemented in MatMorembs. Again, some
numerical problems may occur when elements in the reduced matrices, with non
zero and not negligible values, appear outside the diagonal. The function was
modified to disregard those elements, so outside the main diagonal of the mass
and stiffness matrix only zeros or elements with a very low value appear.
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2.3 Mechanical contact theory

In order to study contact dynamics it is necessary to proceed in two steps. One
to determine whether the contact has been produced or not, see Section 2.3.1
and another consecutive step to compute the interaction, in the form of a contact
force acting between two bodies. In this thesis, the penalty method has been
used (Section 2.3.2) to model these forces. It is possible to model the interaction
between contact surfaces with or without friction. In the case of frictional contact,
tangential forces will appear on the contact surfaces. In this work only contact
without friction is considered. Thus only forces normal to the contact surfaces
can be expected.

2.3.1 Contact mechanics

As explained in [SeifriedSchiehlenEberhard10], if ΓI represents the whole surface
of the first body and ΓII the surface of the second body, then for every possible
pair of points P I

i ∈ ΓI and P II
i ∈ ΓII it is possible to define two reference frames

attached to each point {P i, ni, t1i, t2i}, where vectors t1i and t2i define a
plane tangential to the surface Γ at point P i and ni is the surface normal vector
(pointing outside) at point P i.
If two points P I and P II are determined in such a way that they yield the
smallest normal distance of all surface points, then the distance vector g, from
P I to P II is normal to both tangential planes. In this case the smallest distance
in normal direction is given as

gN = nTI · g = −nTII · g = nTI · (rOP II − rOP I ), (2.54)

where rOP I and rOP II are the position vectors of P I and P II in the inertial
reference frame. Using Eq. (2.54), three situations can be differed:

gN =


> 0 No contact

= 0 Contact

< 0 Penetration

. (2.55)

Differentiating gN it is possible to obtain the relative velocity between the bodies

ġN = nTI · (JP II − JP I ) · ẏ + nTI · (vP II − vP I ), (2.56)

where ẏ are the generalized velocities, J are the Jacobian matrices evaluated
at points P I and P II and v are their local velocities.These local velocities only
appear in rheonomic systems, see [SeifriedSchiehlenEberhard10]. If ġN < 0, the
bodies move towards each other and contact can occur.
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2.3.2 Penalty factor

In order to model the contact interaction, different strategies could be used. In
this work, the penalty factor approach is selected. With this technique the contact
force is proportional to the penetration distance of one point of a body into the
surface of another. The proportionality factor is called contact penalty factor.
So the normal force can be expressed as

FN =

{
cpng if g ≤ 0

0 if g > 0
(2.57)

where cp is the contact penalty factor and n is a normal vector to the surface.
The potential energy of an elastic body without contact interaction between the
bodies can be expressed as (see [BednarekKowalczyk11])

Π =
1

2
qTe ·Ke · qe − qTe · f e (2.58)

where qe represents the nodal coordinates of the elastic body, Ke is the stiffness
matrix and f e the external forces acting on the body. If a contact in only one
node appears, Eq. (2.58) is transformed into

Π =
1

2
qTe ·Ke · qe − qTe · f e +

1

2
gTN · cpgN , (2.59)

where gN is the distance vector defined in Eq. (2.54) and cp is the contact penalty
factor that Eq. (2.57) verifies. In the case of this work, when there is contact
interaction no external forces will be applied, so Eq. (2.59) is transformed into

Π =
1

2
qTe ·Ke · qe +

1

2
gTN · cpgN = Πnc + qe +

1

2
gTN · cp (2.60)

and minimizing the potential energy, see [BednarekKowalczyk11], yields

∂Πnc

∂qe
+ cpgN ·

∂gN
∂qe

= 0. (2.61)

It is possible to see in the equation the effect of the penalty factor. A small
penalty factor implies that the first term of Eq. (2.61) gains importance and
it results in large penetrations, which are physically not real. The bigger the
penalty factor, the smaller the penetration, and the system will converge to a
solution closer to reality. However, increasing the penalty factor over a certain
limit may have some negative consequences.

Going deep into analyzing the penalty contact effect in the accuracy of the solu-
tion, research was performed in [Nour-OmidWriggers87]. The contact condition
can be expressed with a set of linear constraint equations as

BT · q = u, (2.62)
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where B is an m×N matrix. With Eq. (2.62) it is possible to rewrite Eq. (2.60)
as:

Πc = Πnc +
cp
2

[(BT · q − u)T · (BT · q − u)] (2.63)

and minimizing the potential energy, it yields to

(K + cpB ·BT ) · q = cpB · u, (2.64)

Kmod = K + cpB ·BT (2.65)

In Eq. (2.65) the modified stiffness matrix remains symmetric and posi-
tive definite but its structure depends on the value of the cp. As stated
in [Nour-OmidWriggers87], there are two sources of error that affect the accuracy
based on the penalty method. Both errors depend strongly on the penalty pa-
rameter, but in two different ways. The first error was mentioned before: small
penalty parameters badly enforce the constraint equations. In fact, the exact
solution will only be obtained when cp → ∞. If the solution of Eq. (2.64) is
computed, then

q = [K−1 − cpK−1 ·B · (E + cpB
T ·K−1 ·B)−1 ·BT ·K−1] · cpB · u (2.66)

and the exact solution is

qE = K−1 ·B · (BT ·K−1 ·B)−1 · u. (2.67)

To estimate the error, in [Nour-OmidWriggers87] the following expression is pro-
posed, retaining only terms of order 1/cp

q − qE ≈
1

cp
K−1 ·B · (BT ·K−1 ·B)−1 · (BT ·K−1 ·B)−1 · (−u) (2.68)

and taking norms

‖q − qE‖ ≈
1

cp
‖K−1 ·B · (BT ·K−1 ·B)−1 · (BT ·K−1 ·B)−1 · (−u)‖

≤ ‖(B
T ·K−1 ·B)−1‖

cp︸ ︷︷ ︸
1

‖K−1 ·B · (BT ·K−1 ·B)−1 · (u)‖︸ ︷︷ ︸
2

. (2.69)

In Eq 2.69, 2 is the contribution to qE due to the contact forces and it can be
assumed equal to c‖qE‖. Here, c is a constant and can be considered the unity
in most cases. Then

‖q − qE‖
‖qE‖

≤
c‖(BT ·K−1 ·B)−1) ‖

cp
(2.70)
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measures the first error. The second source of error is due to the loss of informa-
tion when a larger quantity is added to a small one in the computer. Representing
the example in [Nour-OmidWriggers87], if a coefficient k of the stiffness matrix
K is k = 1/3, in an environment with 8 digits of accuracy, it is represented as
k = 0.33333333. If a penalty parameter, cp = 103 is added to this term the result
is 0.10003333 × 104 and half of the digits in k are lost. Such errors are studied
in [Wilkinson63] and are bounded by

‖q − qE‖
‖qE‖

≤ nε
cp
k
. (2.71)

In Eq. (2.71) it is possible to see that the larger the cp the larger the error may
be. If the cp is too large, small perturbations in the initial conditions can lead to
large differences in the solution, i.e., the larger the penalty factor, the worse the
modified stiffness matrix Kmod is conditioned.

2.3.3 GTM

GTM is divided basically into three modules: two pre-processing functions and
then, the integration skin. The first preprocessing function, called gtm prep 1,
reads the Abaqus input file and stores the geometry of the model, with all
the nodal information (i.e. nodal position, nodes contained in the flanks, bore
nodes...). GTM will establish a kinematic coupling condition between the refer-
ence frame and the bore nodes. It also writes an Abaqus input file in order to
compute the modal matrix and the vector of eigenfrequencies associated to each
mode. In a similar way as the procedure to import to MatMorembs, the new
input file is run in Abaqus and the .fil, MASS.mtx and STIF.mtx are created.

The function gtm prep 2 will read these matrices and with all the information
(geometry, mass and stiffness matrices and modal matrices) will determine all
the standard data needed to assemble the movement equations. If a reduction
matrix should be loaded, the modal matrix data file must be substituted by the
reduction matrix file.

Once the preprocessing is finished, it is possible to set up the model determining
its initial position, how it is bounded and the initial conditions for integration.
GTM uses a standard integrator from Matlab, in this case the @ode45. This
integrator can solve equations with the form

ẋ = f(t, x), (2.72)

so the original equation of motion (Eq. (2.9)) described in Chapter 2 should be
modified and adapted. The new state variable, x is defined as

xT =
[
r p qred v ω q̇red

]
and

ẋT =
[
ṙ ṗ q̇red v̇ ω̇ q̈red

]
.
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All the variables stored in x and their derivatives are projected in the reference
frame, so after integration, a base change to the inertial frame (whose origin
is at OI = 0) is performed. Vector r represents the position of the origin of
the reference frame, v and ω are the translational and rotational velocities with
respect to the inertial frame. Vector p represent the quaternions of the body and
finally qred are the reduced elastic coordinates.

2.3.4 GTM contact algorithm

The contact routine in GTM can be approached in two steps: one to determine
which teeth are in contact and a second to compute the contact force. The first
part of the routine starts to resolve which tooth from one gear is closer to the
center of the other gear. This is solved by computing the distance from the node
closest to the center of gravity of each tooth to the center of the other gear. Once
this tooth has been obtained, the contact candidates are selected. The way these
candidates are selected is determined by the user in the model setup script.

From here on, in order to improve computational efficiency, the software takes
into account only the nodes of the candidate teeth. The second step is to establish
the positions and the velocities of the candidate nodes. Velocities are needed in
case frictional contact is considered, which is not the scope of this thesis. The
deformed state of the nodes is computed with the help of the modal matrix and
the values of the modal coordinates. As the linear and angular velocities of the
reference frame are computed in every integration step, once the position of the
nodes is determined, velocity computation is straightforward.

Having completed this preliminary step, the contact routine starts a loop over all
the candidate teeth to detect where the collision occurs in the first place. One
surface, right or left, of one tooth is chosen and its counterpart from the other
gear is selected. Depending on the weighting factor wf , the roles of master and
slave surfaces is assigned:

• if wf = 1 the surface from first gear is selected as master surface.

• if wf = 0 the surface from first gear is selected as slave surface.

• for wf ∈ (0, 1) each surface acts as an master and slave surface. The result
is computed by weighting both results obtained: if f Ic is the contact force
setting the first surface as master surface and f IIc is the force with the first
surface acting as the slave surface, the contact force will be computed as
f c = wff Ic + (1− wf)f IIc

By definition, one node contained in the slave surface tries to penetrate the
master surface. The real continuous, geometrical surface is approximated in the
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model by a determined number of squared faces defined by its apex nodes. To
resolve whether a slave node can penetrate the surface, a bounding sphere test
is performed. In this test each face is surrounded by a sphere whose center is
located at the geometric mid-point of the face and the radius is the maximal
distance from the mid-point to the apex nodes. If the slave node is not within
this distance another node will be considered until one stands inside the sphere.
If no slave node satisfies this condition, the same procedure is repeated with
another face.

Figure 2.4: Domain of the ξ, η parametrization.

Once a slave node satisfies the bounding sphere condition, the penetration point
should be calculated. To do this, the master face is parameterized in the following
way, see Fig 2.4,

ϕ : R2 −→ R3 (2.73)

[ξ, η] ∈ [0, 1]× [0, 1] → f(ξ, η).

The function f ∈ R1×3 is different for each face considered and can be written
with the help of an ansatz function Â ∈ R1×4

f = u = Â · ûT , (2.74)

where u is the position vector of one point of the face and û is the matrix
assembled with the position vectors of the apex nodes.

û =
[
u1 ... u4

]
. (2.75)
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If Equation 2.74 holds true, see [Eberhard00], the ansatz function Â is defined
as:

A(1) =
1

4
(1 + ξ)(1 + η) A(2) =

1

4
(1− ξ)(1 + η)

(2.76)

A(3) =
1

4
(1− ξ)(1− η) A(4) =

1

4
(1 + ξ)(1− η)

and

Â =
[
A(1) ... A(4)

]
. (2.77)

Figure 2.5: Penetration point and slave node.

The penetration point (see Fig. 2.5), up(ξp, ηp) = fT (ξp, ηp), is defined as the
point of the surface closest to the slave node defined by its position vector S ∈
R3×1. Therefore up is the normal projection of S onto the surface, mathematically

F1(ξ, η) =
∂f

∂ξ
[S − fT (ξ, η)] = 0 and F2(ξ, η) =

∂f

∂η
[S − fT (ξ, η)] = 0,

(2.78)
where ∂f

∂ξ
and ∂f

∂η
are the two vectors tangent to the surface at the point up.

GTM will use the Newton algorithm to approximate a solution of Eq. (2.78). If
X = [ξ, η]T and F = [F1, F2]

T , then, the numerical problem can be expressed
as

X0 = [0, 0]T (2.79)

Xn = Xn−1 − J−1F (Xn−1) · F (Xn−1)
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From Equation 2.78 the Jacobian matrix can be assembled

JF =

[
−∂f

∂ξ
(∂f
∂ξ

)T ∂f2

∂ξ∂η
(S − fT )− ∂f

∂ξ
(∂f
∂η

)T

∂f2

∂η∂ξ
(S − fT )− ∂f

∂η
(∂f
∂ξ

)T −∂f
∂η

(∂f
∂η

)T

]
. (2.80)

As f = Â · û and û is invariant during each integration step, the derivatives of
f are the derivatives of Â, which are easily obtained, multiplying by û

After the penetration point has been computed, it only remains to calculate and
store the contact force and torques. The normal vector to the surface at up is
defined as

n =

∂f
∂ξ
× ∂f

∂η

‖∂f
∂ξ
× ∂f

∂η
‖

(2.81)

and finaly the force acting on the slave node will be computed

F s = ngNcp (2.82)

if the penetration gN is negative. The contact force reacts on the master face
with the same force acting in opposite direction. This force is distributed at
the four nodes that define the contact face proportionally to the ansatz function
evaluated at penetration point:

F i = F · Â(i)(ξp, ηp), i = 1, ... 4. (2.83)

2.4 Stress recovery

It is possible to recover the stress of an arbitrary point of the body P , in a similar
fashion as the nodal displacements are computed. If [σ](P ) is the stress tensor
at point P

[σ](P ) =

σ11 τ12 τ13
τ21 σ22 τ23
τ31 τ32 σ33

 , where τij = τji ∀i 6= j, (2.84)

its elements can be rearranged in a vector

σ(P ) =
[
σ11 σ12 σ33 τ12 τ13 τ23

]T
. (2.85)

The objective is to relate this vector with the elastic coordinates vector qe. The
longitudinal, [ε11, ε22, ε33]

T and shear strains, [γ12, γ13, γ23]
T are related to the
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elastic deformation u(P ) = [u1, u2, u3]
T in the following way

ε(P ) = D · u(P ) =


ε11
ε22
ε33
γ12
γ13
γ23

 =


∂/∂x

∂/∂y
∂/∂z

∂/∂y ∂/∂x
∂/∂z ∂/∂x

∂/∂z ∂/∂y

 ·
u1u2
u3

 . (2.86)

With the generalized Hooke’s law it is possible to relate the strains and the
stresses, in the linear elastic phase, with a material matrix H

ε = H · σ. (2.87)

Combining Eq. (2.86) and Eq. (2.87) yields to

σ(P ) = H−1 ·D · u(P ) = H−1 ·D ·ΦR(P ) · qe. (2.88)

If Υs(P ) = H−1 ·D ·ΦR(P ), then, σ(P ) = Υs(P ) · qe, (2.89)

where Υs(P ) is the stress modal matrix and ΦR(P ) is the modal matrix that
relate the elastic deformations of the continuum body with the elastic coordi-
nates, following the Ritz approach, Eq. (2.2)). Equation 2.89 shows that, under
the assumption of linear elastic behavior, stresses at a particular point can be ex-
pressed as a linear combination of global shape functions and generalized, nodal,
coordinates.

As mentioned in [TobiasEberhard09], the derivation of the stresses for the entire
finite element model and the reduced model are slightly different. For the entire
model, each nodal DOF has to be loaded with a unit displacement while the
remaining ones have to be set to zero. The stress distribution in the flexible
body has to be calculated with the help of a finite-element solver. Usually, to
reduce the information contained in the stress distribution, only stress values in
nodal points are recorded. These values can be interpreted as stress mode Υei

belonging to the DOF i loaded with the unit displacement. All of these modes
are assembled in a matrix

Υe = [Υe1, ...,Υei, ...,ΥeN ] ∈ R2N×N , (2.90)

where N is the number of DOF of the entire model. If σe ∈ R2N×1 is a vector
containing the stresses for all the N/3 nodes of the model,

σe = [1σ11,
1σ22,

1σ33, ,
1 τ12,

1τ13,
1τ23,

...,N/3 σ11,
N/3σ22,

N/3σ33, ,
N/3 τ12,

N/3τ13,
N/3τ23]

T ,
(2.91)
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it is possible to express the stresses as

σe = Υe · qe. (2.92)

In the case of stress computation for the reduced model, each column of the
projection matrix can be interpreted as a displacement field of the entire finite-
element model, that belongs to a configuration, where the ith DOF of the reduced
model is set at one and the others are set at zero. Therefore, the entire FE
model can be loaded with the ith column of the reduction matrix V and the
resulting stress distribution, computed only in the nodes, is the stress mode
Υei,red belonging to the reduced DOF i, which was loaded.

By analogy it is possible to assemble a matrix Υe,red ∈ R2N×n which computes
the nodal stresses as a combination of the reduced coordinates

σe ≈ σe,red = Υe,red · qred = Υe · V · qred. (2.93)

So a relation between the full and reduced stresses matrices is established

Υe,red = Υe · V . (2.94)

It is possible to compute the stress matrix Υe,red in GTM with the functions
gtm writeAbqRedInp and gtm MakeStress. The first one creates an Abaqus job
input file. Running this file will solve the stress finite element problem explained
before. Once the solver is finished a .fil file will be created with all the information
of the stress matrix. The second function reads the .fil file and assembles the final
stress matrix.

In order to improve efficiency, not all the nodal stress distribution is computed.
Stresses are only computed at the nodes of interest and those in the vicinity with
the intention of providing an accurate result. That is, if stresses for a surface
node is required, the stress matrix will be computed for 18 nodes. The one of
interest and the other 17 nodes nearby, but only the stresses for the original node
are valid.



Chapter 3

Preliminary investigations using
a simple beam model

In this chapter, simulations with a simpler model than the gears are made in
order to obtain the first results in a faster way. The main objective of working
with the beam model is to learn about the behavior of GTM and the stress results
delivered by the used tool chain with different types of reduction matrices. In all
the simulations made, an arbitrary node, see Fig. 3.1, is loaded with a sinusoidal
force. Displacements and stresses on the node are computed.

Figure 3.1: Beam models and nodes loaded used in this chapter.

The structure of this chapter is the following: First of all, the procedures followed
during all simulations are explained. Then, in Section 3.1, the first beam model
is introduced and its main characteristics presented. Finally, in Section 3.2, a
second model is introduced see Fig. 3.1(b). In each section results from the
simulations are shown and discussed.

25
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Figure 3.2: Flow diagram of all the processes.

In Fig. 3.2, the scheme adopted in order to compute the problem and reduce the
matrices is presented.

First of all, a model is set up in Abaqus and solved. This model is the benchmark
which is used to compare all the simulations in GTM against.The input file of
this model is the one that will provide all the relevant information, i.e. geometry
and modes, to MatMorembs and GTM.

After integration, GTM by default provides the position, quaternions and veloc-
ities, translational and rotational, of the reference frame. The contact forces, if
contact exists, other forces and torques, like the single force used with this model,
and the set of reduced coordinates are also computed. In order to recover the
nodal stresses, a post-processing step is required, see Section 2.4.

3.1 Squared section beam model

The first beam model used has a squared section beam and is loaded at node 924
with a sinusoidal force of 1 kN in Y -direction, see Fig. 3.1(a). The beam has a
length of 200 mm and its normal section is a 50 × 50 mm2 square. The finite
element model, set up in Abaqus, has the following characteristics: The beam
is made of standard steel with a density of 7850 kg/m3, a Young’s modulus of
2.1 · 1011 Pa and a Poisson’s coefficient of 0.3.

The geometry is meshed with hexahedral C3D8R elements. The model has a
total of 5760 elements and 6929 nodes. Each node has 3 DOFs; therefore, the
free system has 20787 degrees of freedom. The bore of the beam is defined by
the 69 nodes of its central section. A reference frame is attached to the center of
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gravity and coupled kinetically with the bore. Consequently 507 DOF are locked
during simulations.

For the EMBS model simulations performed with different reduction matrices,
see Table 3.1, no stresses could be recovered. Numerical errors seem to appear
during the integration on GTM. Those problems are attributed to symmetries on
the model: Modes are symmetrical, see Fig. 3.3, and half of the beam remains
static while the other half is excited.
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Figure 3.3: Qualitative representation of the 1st and 3rd flexing modes of the
model.

Table 3.1: Reduction matrices used to integrate the symmetric model.

Model Ansatz function

Model 1 100 eigenmodes.
Model 2 Craig Bampton with 100 normal modes and 3 constrained modes

(at node 924).
Model 3 200 eigenmodes.
Model 4 Craig Bampton with 200 normal modes and 3 constrained modes

(at node 924).

To illustrate the behavior of this beam, results from Model 1 and Model 2 are
shown in Fig. 3.4. Nodal displacements and normal stresses are computed at
node 924. A clue that something unusual is happening during the simulation can
be observed in normal stress in the Y -direction, see Fig. 3.4(d). Eigenmodes are
unable to recover local deformations and stresses. They can only image global
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Figure 3.4: Results for Models 1 and 2 (see Table 3.1) Nodal displacements are
shown on the left side. Normal stresses on the right side.
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stresses. Therefore, when these kinds of matrices are used to recover stresses,
the computed stress is much lower than the one obtained from the FE model.
However, in this case, the opposite happens. Also, looking at the other two stress
components, there is no resemblance between the stresses recovered with GTM
and those computed with Abaqus.

In summary, it can be said that each four modes of the model, in theory, share the
same eigenfrequency. This anomaly leads to numerical problems when the model
is integrated in GTM and the results obtained are not reliable or representative.
In consequence, another model is set up to try to bypass this situation. The new
beam is bounded differently and symmetries are avoided. A more dense mesh is
also used.

3.2 Rectangular section beam model

A rectangular section beam is chosen in order to perform the new simulation.
Again, a sinusoidal vertical force in Z-direction has been applied at the node
seen in Fig. 3.1. Simulations are done using two forces with the same amplitude
of 100 N with different frequencies of 2500 Hz and 5000 Hz in order to measure
the behavior of the system with different excitations. The beam dimensions are
the following: in X-direction, 0.5 m; in Y -direction, 1 m and in Z-direction,
0.2 m.

The reference frame is attached at the center of the beam at point, O = [0, 0, 0].
The beam is made of steel with an elastic modulus E = 2.1 · 1011 Pa, a density
ρ = 7850 kg/m3 and a Poisson coefficient ν = 0.3.

Figure 3.5: Loaded node and bore nodes. All DOF of the bore nodes are locked
during the simulations.

The finite element model has been set up in Abaqus with the following char-
acteristics: the mesh is made with hexahedral C3D8R elements with a total of
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Figure 3.6: External nodes used in the Craig Bampton reduction.

14586 nodes. Each node has 3 degrees of freedom (displacements in X-, Y - and
Z-directions). Accordingly, the free model has 43758 degrees of freedom.

The reference frame, attached to the model used in all the simulations, is locked.
Therefore, all the bore nodes, 42 nodes, are locked as there is a kinematic cou-
pling between these nodes and the reference frame. Consequently, in the bounded
model there are 43632 degrees of freedom. The constrained mass, M e and stiff-
ness Ke, matrices are of size (43623× 43623). The force is acting on node 11266
in the negative Z-direction, as seen in Fig. 3.1(a).

Table 3.2 summarizes the different assembled models. Model 5 is assembled
with the first 100 eigenmodes. The first eigenfrequency is 298.5 Hz, the 100th is
11230 Hz. For the Craig Bampton reduction matrices node 11266, in the case
of Model 6 and Model 8 is chosen as external node. Node 11266 and the eight

Table 3.2: Reduction matrices used to integrate the symmetric model.

Model Ansatz function

Model 5 100 eigenmodes.
Model 6 Craig Bampton with 10 normal modes and 3 constrained modes.
Model 7 Craig Bampton with 50 normal modes and 27 constrained modes.
Model 8 Craig Bampton with 100 normal modes and 3 constrained modes.
Model 9 Craig Bampton with 100 normal modes and 27 constrained modes.
Model 10 Dynamic condensation with 50 normal modes and 3 dynamic modes.
Model 11 Gram reduction with 50 modes.
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nodes surrounding it, see Fig. 3.6, are set as boundary nodes in Model 7 and 9.

For Model 10, the condensation frequency is 5000 Hz, and finally, the CMS-Gram
Matrix of Model 11 is assembled with node 11266 set as interface node. The
condensation frequency is set as 0 Hz, i.e. Craig Bampton constrained modes are
computed. The frequency range for the gramian matrices computation is set to
be [0; 6000] Hz. Finally, for the intermediate Krylov reduction 6 equally spaced
shifting points, [0 to 6000] Hz, are chosen. Six moments are matched at each
shifting point.

3.2.1 Simulation results and discussion

As one of the objectives of this work is to find a set of reduction modes which
allow efficient computation, it is interesting to note how much time the FE solver
needs in comparison with GTM. A summary of the integration results with both
frequencies is presented in the following table (Table 3.3):

Table 3.3: Integration times for the FE solver and the different GTM reduction
matrices.

Model Alias frequency: 2500 Hz frequency: 5000 Hz

FE model FE 2.003 min 2.020 min
Model 5 EM (100) 0.354 min 0.441 min
Model 6 CB (3&10) 1.3296 min 1.723 min
Model 7 CB (27&50) 2.100 min 2.340 min
Model 8 CB (3&100) 1.705 min 1.990 min
Model 9 CB (27&100) 2.324 min 2.071 min
Model 10 DC (3&50) 1.2016 min 1.4477 min
Model 11 CMS-G (50) 1.5508 min 1.756 min

It can be observed that, as expected, all except two reduction methods employ
less time to complete the integration than the FE solver. Using only eigenmodes
it is possible to save between 94 and 99 seconds approximately in each simula-
tion. However, as simulations have shown, using only eigenmodes it is feasible to
model correctly the contact force and the kinematics of the gear but, unless an
impractical number of eigenmodes is used, it seems impossible to investigate the
stress recovery, see Fig. 3.7.

The reason is that eigenmodes are able to image global deformations and, there-
fore, stresses very well but not local deformations and stresses. Nevertheless,
computational time is also saved with other reduction matrices: as many as 48
seconds, a 39.94 %, can be saved if a dynamic condensation is used. Although it
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may not seem very much, if 48 seconds can be saved working with a very simple
model, greater and meaningful savings can be expected when researching with
more complex models.

In the following figures, Fig. 3.7 and Fig. 3.8, it is possible to observe the quality
of the stresses computed with GTM for the two forces with different frequencies.
To avoid redundancies only the normal stresses in X-direction, σ11 and in Z-
direction, σ33 are shown. The conclusions obtained with this stress can be used
for the other normal stress σ22, but not for the shear stresses:

Unlike nodal displacements, which are computed directly at the nodes, Abaqus
computes strains and stresses at the Gauss integration points which depend on
the used element type. Subsequently, these values are extrapolated to the nodes
if nodal stress is computed. Throughout this process, shear stresses are not
correctly obtained and are not reliable.

On the other hand, if centroidal stress is computed, Abaqus proceeds in a slightly
different way. In this case only one Gauss integration point is used per element.
This point coincides with the centroid of the element, so the strains and stresses
can be directly computed and no extrapolation is needed. As a consequence, all
the stresses computed in this way are reliable.

More research needs to be done in order to establish the exact differences between
the computation of nodal and centroidal stresses and why only unreliable results
are obtained with shear stresses. In this thesis, it is accepted that for nodal
stresses, shear components are not properly computed in Abaqus and, therefore,
are not displayed in the results.

Looking at the results obtained, it is possible to extract some general conclusions.
In all the cases computed, a high frequency component appears which is not
present in the FE result. In the case of the stresses computed with GTM, almost
no material damping is included (βR = 1−12). However the integrator scheme of
the FE solver is able to smooth these oscillations. Nevertheless, all the reduction
techniques shown can follow the stress curves provided by the finite element
software.

No more research on this topic has been done in this thesis, but it would be
interesting to investigate how, despite introducing no numerical damping, the
FE integration scheme solves the problem avoiding the high frequency oscillations
that appear in the same setup when GTM is used.

In order to determine which reduction type delivers most accuracy, an error
estimation is performed. If σGTMii and σFEii are vectors which store the normal
stresses of each time step in X-, Y -, and Z-directions computed with GTM and
the FE solver respectively. Then, if there are m time steps, the error is calculated
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Figure 3.7: On the left results for the normal stress in X-direction are displayed
for a frequency of 2500 Hz. On the right, force amplitude is maintained, but the
frequency is doubled.
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Figure 3.8: Normal stresses on Z-direction. On the left, those obtained for a
force frequency of 2500 Hz. On the right, the force frequency is 5000 Hz.
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as

Eii =

∑m
k=1 (|σFEii, m − σGTMii,m |)

m
,

E =

∑3
ii=1Eii

3
.

(3.1)

In Fig. 3.9 and Fig. 3.10, it is possible to observe that the dynamic condensation
and the CMS-Gram method seem to have the greatest potential. With a smaller
number of modes the results are better than those obtained with the two Craig
Bampton reduction matrices. However, the main drawback of the CMS-Gram
method is the noticeably greater computational effort required to assemble the
reduction matrix in comparison with the Craig Bampton method: despite being
twice as big, the Craig Bampton matrix is assembled in less time than the CMS-
Gram reduction matrix. This is the main reason for continuing to use Craig
Bampton matrices in the following steps of this work.
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Figure 3.9: Error estimation for a force frequency of 2500 Hz

Focusing on the Craig Bampton method, it can be seen that those matrices
with 9 nodes being set as constrained modes seem to recover stresses better
than those with only three constrained modes. Also, the higher the number of
eigenmodes, the better the results are, but only up to a certain limit. During the
simulations, it was observed that the larger the number of constrained modes, a
larger number of eigenmodes is needed to produce good results. But once this
criterion is reached, increasing the number of eigenmodes does not bring any
further benefit, as it can be seen with Model 7 and 9. However, it is true that
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Figure 3.10: Error estimation for a force frequency of 5000 Hz

with larger numbers of eigenmodes, the oscillations observed are smaller, which
leads to shorter integration times (as seen in Fig. 3.10 with Models 7 and 9).

Dynamic condensation, Model 10, provides good results because in this case
the interaction force is well-known since it is a defined parameter. Presumably,
the best results should be provided when the force frequency is the same as
the condensation frequency, but this case it is difficult to judge. Errors are
significantly larger when the 5000 Hz force is applied, so a direct comparison
is not valid. If Model 2, which is by far the worse in both cases, is taken as a
reference and a relative error is computed as

Er =
E10

E2

. (3.2)

Then,

Er,2500 = 0.6236 and Er,5000 = 0.6030.

From Eq. (3.2), it is possible to see that when the force frequency matches the
condensation frequency, the dynamic condensation provides a slightly better re-
sult. Nevertheless, when the interaction is unknown it is difficult to establish the
space of frequencies in which to perform the dynamic condensations. If a very
large range is used, it will also become computationally expensive.



Chapter 4

Stress recovery in gear
simulations

Because it was possible to compute local deformations and stresses in the beam
model, more complex models can be tested. Before beginning simulations with
two gears, a preliminary investigation has been performed with one gear and a
single load in order to verify that the results obtained with the beam can be
carried over to a bigger and more complex model. After results are confirmed,
the final model with two gears in contact is assembled and studied.

4.1 Ritzel loaded with a single force

The gear used in this preliminary step is a pinion gear called Ritzel. It has 18 teeth
and is made of standard steel. This steel has Young’s modulus E = 2.1 · 1011 Pa,
Poisson ratio ν = 0.3 and density ρ = 7850 kg/m3 The finite-element model
characteristics are as follows:

The gear is modeled with 103419 nodes and 86064 elements. These elements have
hexahedral geometry and are of C3D8R type. Each node has 3 degrees of freedom
active, that are three displacements in X-, Y - and Z-directions. So the free model
has 310257 active DOF. The 960 nodes that form the bore are kinematically
coupled with a reference frame whose origin coincides with the center of gravity
of the gear. In these simulations, the reference frame is locked, so no rotational or
translational movement is permitted. Therefore the constrained model is bonded
by 2880 DOFs to the surrounding environment and 307377 remain active.

The force is acting at node 27788,which is located on one flank, see Fig. 4.1, on

37
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Node 27788

Figure 4.1: Ritzel and node loaded with the sinusoidal force.

the negative X-direction. It is again an harmonic force function given by:

Fx = −100sin(2π2500t) N. (4.1)

Five reduced models, see Table 4.1, have been tried with this gear. The con-
strained modes for Model 2 and 3 are computed at the node 27788. Constrained
modes for Model 4 are computed at the loaded node and the eight surrounding
nodes. To assemble the CMS-Gram reduction matrix, node 27788 is set as in-
terface node. The frequency range in which the Gramian matrices are computed
is from 0 to 6000 Hz. Six matching points are defined in this range and at each
point, 6 moments are matched in the intermediate Krylov reduction.

In order to compare the computational efficiency of GTM and the FE solver, all

Table 4.1: Reduced models used in the simulation.

Model Alias Ansatz function

Model 1 EM (300) 300 eigenmodes.
Model 2 CB (3&61) Craig Bampton reduction with

61 normal modes and 3 constrained modes.
Model 3 CB (3&300) Craig Bampton reduction with

300 normal modes and 3 constrained modes.
Model 4 CB (27&300) Craig Bampton reduction with

300 normal modes and 27 constrained modes.
Model 5 CMS-G (64) CMS-Gram reduction.
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the integration times are summarized in Table 4.2. The three normal stresses at
node 27788 have been computed and are displayed in Fig. 4.2.

Looking at the results of Figs. 4.2(a), 4.2(b) and 4.2(c), is possible to observe that
a very high frequency component, that does not exist in the FE solution, appears
when the integration is done with GTM. This can be associated with instabilities
during the integration as no significant material damping is included. These
instabilities are more significant when the system is reduced with the CMS-Gram
technique, hence the higher computational time shown in Table 4.2.

As mentioned with the beam model, the difference related to the high frequency
noise observed in GTM is that the FE solver somehow damps out the system,
making it more stable than the one integrated with GTM.

Nevertheless, for the other two stress components, σ11 and σ33, the CMS-Gram
reduction matrix seems to fit better than the stresses computed with the Craig
Bampton reductions.

If an error estimator is worked out from the data in Eq. (3.1) and is plotted,
Fig. 4.3 shows the result. As Fig. 4.3 illustrates, when comparing the two methods
globally, the CMS-Gram reduction technique error estimator has a lower value
than the one using data from a Craig Bampton reductions.

In Fig. 4.2(d), a comparison between Model 3 and Model 4 is done. Both models
have the same number of eigenmodes but differ in the constrained modes: while
Model 3 has only three constrained modes computed at the loaded node,the node
27788 of Model 4 and the eight surrounding nodes are set as external nodes.
Different behavior can be obtained between both models: the high frequency
component is more intense in Model 4. Also, the error, see Fig. 4.3, is noticeably
larger when Model 4 is used. Results get worse when nodes with no interaction
are set as external nodes in the Craig Bampton method. These oscillations have
an effect on the integration time, which increases significantly due to a smaller
integration step.

Nevertheless, with these tests performed it is possible to state that it is still pos-

Table 4.2: Integration times for the FE solver and the different GTM reduction
matrices.

Model time Model time

FE model 22.100 min Model 3 4.8236 min
Model 1 0.6228 min Model 4 92.1461 min
Model 2 2.045 min Model 5 13.786 min
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Figure 4.2: Normal stresses are computed with four reduction matrices.
Fig. 4.2(a) shows stresses in the X-direction. Fig. 4.2(b) represents the nor-
mal stresses in Y -direction. Figure 4.2(c) displays the stresses in Z-direction.
Finally, Fig. 4.2(d) presents a comparison of the stress in Y -direction between
Model 3 and Model 4.
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Figure 4.3: Error estimation for the two reduction techniques.

sible to recover the local stresses in a more complex model and with significantly
more degrees of freedom than the beam. So, when working with a gear pair, if
the contact force is modeled correctly, these types of reduction matrices should
make it possible to recover the stresses of the flank of the contact teeth.

4.2 Ritzel and Grossrad system

Finally, in this section the model is assembled with two gears that are in contact.
As the Ritzel is the same gear as used in Section. 4.1, only the characteristics
of the finite-element model of the Grossrad are presented. The Grossrad is also
made of the same steel as the Ritzel, so its density is ρ = 7850 kg/m3, its Poisson’s
ratio ν = 0.3 and its Young’s modulus E = 2.1 · 1011 Pa.

The discretized model of the Grossrad has 208270 nodes and 173696 hexahedral
C3D8R elements. Each node has associated 3 degrees of freedom, so the whole
free model has a total of 624810 DOFs. A reference frame is attached to the center
O, of the gear and is kinematically coupled with the 704 nodes that conform the
bore of the gear. Both reference frames, the one attached to the Ritzel and the
one attached to the Grossrad, are allowed to rotate in Z-direction, but are locked
with respect to the remaining five degrees of freedom.

As all the bore nodes are coupled with the reference frame, they behave as a
rigid body, they rotate only with the reference frame but no relative deformation
between them is allowed. Therefore, when any type of mode is computed, the
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Figure 4.4: Gears used in contact research. Ritzel on the left and Grossrad on
the right.

system is indeed locked. Consequently, the constrained model of the Grossrad
has 622698 of 624810 degrees of freedom active.

4.2.1 Model setup

First of all, the model needs to be assembled in a way that the gears engage
correctly. The main condition for two spur gears, i and j, to engage is that both
have the same module and should engage with a distance between the centers
equal to

DOO′ =
(φi + φj)

2
(4.2)

where O and O
′
are the centers of the gears and φi and φj are the pitch diameters

of both gears respectively. The data provided for these gears are the number of
teeth z and the tip diameter Φo. The first gear, the Ritzel, has 18 teeth and 100
mm of tip diameter. The second gear, the Grossrad, is a gear with 37 teeth and
its tip diameter measures 195 mm. With these numbers it is possible to compute
the module, m, of a gear as

m =
Φo

z + 2
(4.3)

Thus, the Ritzel ’s module is mr = 4.9 mm and the Grossrad has mg = 4.9 mm.
The pitch diameter is by definition:

φ = mz (4.4)

and in consequence, φr = 88.2 mm, φg = 181.3 mm. With Eq. (4.2), the distance
between the gear centers should be DOO′ = 134.75 mm.
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Once the distance between the centers is computed, the relative rotation between
the gears is left to be determined. It is important to set this angle in a way
that the contact is produced in the shortest space of time, in order to reduce
computational time, but avoiding penetration. After the relative position of the
gears has been set, the contact penalty factor cp needs to be established. This
penalty factor is selected by the user and it should be noted that each cp is only
valid for a specific set of modes. In this thesis, the cp parameter is selected in
such a way that the contact force from the EMBS simulation matches the one
provided by the FE solver.This process is summarized in Fig. 4.5.

No

Figure 4.5: Block diagram of the penalty factor adjustment process.

Figure 4.6 shows the simulation results for a model assembled with 300 eigen-
modes for each gear. The different forces and kinematics, labeled each with the
number of eigenmodes used for simulation, are the result of using different penalty
factors. In Fig. 4.6(a), it is possible to observe that an optimum penalty factor
exists in order to match the contact force. As explained in Section 2.3.2, low
penalty factors result in inaccurate enforcement of the contact constraints and
therefore the contact force and kinematics do not match.

On the other hand, excessively large values result in an ill-conditioned modified
stiffness matrix, see Eq. (2.65), and numerical instabilities appear. These insta-
bilities are reflected as larger oscillations in the nodal coordinates, see Fig. 4.6(b)
and Fig. 4.6(c), and consequently oscillations in the contact force.

It is also observed that, when reduction matrices are assembled with con-
strained modes, larger penalty factors should be used. Constrained modes have
much larger associated pseudo-eigenfrequencies than the original eigenfrequen-
cies. Hence, numerical errors described in Section 2.3.2 are less critical and it is
possible to use a larger penalty factor.
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Figure 4.6: Contact force and first modal coordinate for different penalty factors.
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4.2.2 Simulation results and discussion

Once the model is setup, a preliminary step is needed in order to compute the
reduction matrices. As seen in Section 4.1, when the reduction matrix is com-
puted with nodes with no interaction set as external nodes, greater instabilities
appear. So, knowing the contact nodes, i.e., the nodes at which a contact force
appears during the simulation, becomes critical to assemble the Craig Bampton
or CMS-Gram reduction matrices.

To do this, a reduction matrix is assembled with the first 300 eigenmodes and
a simulation in GTM is performed. When completed, the contact nodes are
extracted and other reduction matrices, summarized in Table 4.3, can be con-
structed.

Table 4.3: Reduced models and their abbreviation used in the simulation.

Model Alias Ansatz function

Model 1 EM(300) 300 eigenmodes.
Model 2 EM(600) 600 eigenmodes.
Model 3 FE-M 50 eigenmodes and the nodal deformation pattern

from Abaqus.
Model 4 CB(81&300) Craig Bampton reduction with 300 eigenmodes and

CB(108&300) 81 normal modes(Ritzel) or 108 constrained modes
(Grossrad).

Model 5 DC(81&300) Dynamic condensation. 300 normal modes
DC(108&300) and 81 or 108 constrained modes.

Model 6 CMS-G(162) GMS-Gram reduction with 162 (Ritzel) modes
CMS-G(213) and 123 modes (Grossrad).

Model 7 CMS-G(381) CMS-Gram reduction with 381 (Ritzel)
CMS-G(408) and 408 modes (Grossrad).

For the Craig Bampton method, the dynamic condensation and the CMS-Gram
methods, Models 4, 5, 6 and 7, the contact nodes are set as external nodes. In
Model 5, the condensation frequency based on the duration of the contact force
has been set as 5 kHz. The Gramian matrices for Models 6 and 7 have been
computed with a range of frequencies from 0 to 6 kHz. For Model 6, two shifting
points are defined and two moments are matched at each one. For Model 7, three
shifting points with 3 matching moments each are defined.
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Figure 4.7: Contact forces computed with no damping and constrained modes in
the reduction matrices.

The first set of simulations is done without introducing damping in the elastic
formulation, as the default β-Rayleigh, βR = 10−12, is close to zero. Even though
when only eigenmodes are used no problems appear, the inherent stiffness of
the constrained modes causes the appearance of high frequency oscillations in
the contact force, see Fig. 4.7(a). In this case, oscillations have a much higher
frequency and higher amplitudes than the ones observed for the beam or the Ritzel
with only one node loaded, and the stresses cannot be recovered in a meaningful
way to be compared against the FE simulation.

However, in an attempt to bring the setup more in line with the previous models,
the reduction matrix of one gear is assembled with constrained modes of the con-
tact area. On the other hand, for the other gear there are no constrained modes
computed for the contact nodes. The idea is to reduce the high frequency oscilla-
tions in the set of reduced coordinates, abandoning the possibility of recovering
the stresses of one gear, where no local deformations are measured.

Several reduction matrices for the second gear, combinations of constrained modes
and eigenmodes, are tried. These simulations show no improvement or very little
improvement. In fact, if the second gear is reduced with only eigenmodes, the
contact force, see Fig. 4.7(b), is even less representative than when the second
gear is reduced with a Craig Bampton or a CMS-Gram method.

Model 3 represents another attempt to avoid oscillations. This model is assembled
in a completely different way. The deformation pattern of the whole gear is
taken from the FE software when the force is at its maximum. This pattern
is considered as a new shape function and is combined with 50 eigenmodes to
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assemble the reduction matrix. In the results, Fig. 4.8, it is possible to observe
that the oscillations have been considerably reduced. Nevertheless, the practical
utility of this type of reduction is very limited, as the FE model needs to be
solved first. Hence, the system should be damped in order to recover stresses
with more usual techniques.

In order to damp these oscillations, the β-Rayleigh is increased from 10−12 to
3.9 ·10−7 and a new penalty factor is set accordingly. It is worth mentioning that
setting the right βR is not straightforward. There is an optimum value of the
damping parameter: with lower values, oscillations on the contact force are still
very noticeable, and, higher values generate the appearance of new oscillations
and significantly increases (at least in one order of magnitude) the integration
time. Therefore, the value βR = 3.9 ·10−7 is set by trial and error after simulating
with a range of βR between 10−12 and 10−8.

Nevertheless, this new damping parameter is enough to get rid of the oscillations
and makes it possible to perform some comparison between the different reduction
matrices. The following table (4.4) summarizes the computational efficiency of
all the approaches used for an integration time of 0.3 ms. It is possible to see the
noticeable increase in computational time due to the increase of the β Rayleigh,
even when it is at its optimum value.

Table 4.4: Integration times for the FE solver and the different GTM reduction
matrices.

Model time

FE model. (βR = 10−12) 48.567 min
Model 1. (βR = 10−12) 16.188 s
Model 2. (βR = 10−12) 30.768 s
Model 3. (βR = 10−12) 16.446 s
Model 4. (βR = 3.9 · 10−7) 55.638 min
Model 5. (βR = 3.9 · 10−7) 51.755 min
Model 6. (βR = 3.9 · 10−7) 40.121 min
Model 7. (βR = 3.9 · 10−7) 116.154 min

As centroidal stresses are computed this time, the problem with shear stresses,
that appear when nodal stresses are computed, do not exist anymore and the
results for all the stresses obtained are reliable. Hence, with the aim of condensing
the information, an equivalent stress can be computed. In this case, the von Mises
stress has been chosen to make the comparisons. This stress is defined as:

σVM =
√
σ2
11 + σ2

22 + σ2
33 − (σ11σ22 + σ11σ33 + σ22σ33) + 3(τ 212 + τ 213 + τ 223).

(4.5)
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The following graphs, Fig. 4.8, presents the computed Von Mises stresses for
both gears. Stresses are computed on elements 47823 and 47828 in the case of
the Ritzel, and on elements 5704 and 12363 for the Grossrad. Elements 47823
and 5704 are located in the respective contact area. Elements 47828 and 12363
are located at the dedendum of the respective teeth. Stresses obtained with the
FE solver are compared with those recovered with GTM for all the different
reduction matrices.
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Figure 4.8: Von Misses stress comparisons. Continuous lines refer to contact
stresses. Slashed lines refer to dedendum stresses.
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In Fig. 4.8 it is observed that, if only eigenmodes are used, only dedendum
stresses can be recovered. However, for the other reduction matrices, stresses in
the contact area can also be recovered.

In order to establish which reduction technique deliver the best stress result, an
error estimator is defined in a similar way as in Chapter 3: If σGTM

VM, i and σFEVM, i

are the values of the Von Mises stress for each i of the m-GTM integration step,
the error estimator is defined as

E =

∑m
i=1 (|σFEVM, i − σGTM

VM, i|)
m

. (4.6)

This estimator is calculated and plotted for all the reduced models.
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Figure 4.9: Comparison of error estimator for the Ritzel. Blue line represents the
contact stresses. The green one, represents the dedendum stresess.

In Fig. 4.9 and Fig. 4.10, it is possible to observe the error for the dedendum stre-
ses (green) and the contact stresses (blue) for both gears. It should be noticed
that the matrices assembled as a combination of eigenmodes and other modes
provide the best results in both, dedendum and contact stresses. Focusing on
these matrices, in the case of Model 6, the reduced number of modes, in com-
parison with the 300 eigenmodes, results in a worse image of global deformations
and therefore global stresses.

As expected, the CMS-Gram models provide the best results, followed by the
dynamic condensation and the Craig Bampton model. It is possible to see that
assembling a CMS-Gram reduction matrix with more modes does not provide a
tangible improvement.
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Figure 4.10: Comparison of error estimator for the Grossrad. Blue line represents
the contact stresses. The green one, represents the dedendum stresess.

The extra modes computed in Model 7 do not contribute so much recovering
the contact stress, but improves a little the dedendum stress recovery. In the
end, it should also be noted that the CMS-Gram reduction matrix from Model 6
provides the best result both in accuracy and time efficiency.



Chapter 5

Conclusions

Before finishing this work, the results are analyzed and some conclusions must be
extracted. Firstly, an assessment of the results obtained is carried out by compar-
ing them with the objectives established at the outset of the thesis. Afterwards,
the most troublesome aspects in the development of the thesis are highlighted
with the aim of improving them in future works.

The main objective of the thesis is to validate EMBS simulations as an alter-
native, and computationally cheaper, way of stress recovery compared to the
classical finite-element formulations, in particular, stresses as a result of gear
contact. During the development of the work, it has been proved that, choosing
the reduction matrices correctly, it is possible to recover local stresses associated
to local deformations with reasonable quality.

However, it must be said that this objective has not been achieved completely,
only partially. It has been observed that the more complex the model, the worse
the computational efficiency, and the advantages of performing an EMBS simu-
lation against a finite-element simulation are much less significant. Also, in this
thesis, with the more complex model, some parameters, such as the cp and the
βR, are determined by trial and error, which reduces the efficiency of the whole
process.

To assemble the EMBS models, four different model order reduction techniques
have been used: Modal truncation, a Craig Bampton method, dynamic condensa-
tion and CMS-Gram methods. In short, it can be said that the modal truncation
allows the researcher to integrate the problem in a very efficient manner but only
the kinematics and the contact forces can be recovered.

The other three techniques are able to recover local deformations and stresses
in an area in which a force is applied in a similar way. Comparing these three
techniques, the matrices computed with the CMS-Gram algorithm provides the
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best results in terms of accuracy with the three models tested (Beam, single gear
and the gear pair). However, accuracy is achieved at the expense of a signifi-
cantly greater pre-processing step, both in computational time and resources, to
assemble the reduction matrix.

To conclude the work, attention should be drawn to two aspects in order to im-
prove EMBS simulations in future jobs. During the development of this thesis
it could not be explained in detail why a significant level of material damping is
needed when the EMBS simulation is performed but not when the same simu-
lation is done with the FE solver. It is known that the FE integration scheme
somehow damps the system even though no damping has been explicitly defined.
Nevertheless, since introducing significant levels of damping in the EMBS simu-
lations entails an increase in the computational time, it would be interesting to
research into different types of reduction matrices that minimize the problem.

In this sense, the deformation pattern of the gear obtained with the FE solver is
fed back to assemble a reduction matrix in combination with eigenmodes. With
this kind of matrix it is possible to image stresses better than with a modal
truncation and still reduce the oscillations in comparison with other reduction
techniques. However, the results obtained are not satisfactory and obviously,
these kinds of matrices do not have practical utility.

Finally, more in-depth research needs to be done into the strength of the EMBS
software, i.e. GTM, in the face of numerical problems and singularities, e.g. the
squared section beam model. In this case, neither nodal deformation nor stresses
could be recovered. It would be interesting to know if this is a particular case
or if it is worth reinforcing the EMBS software against these kinds of numerical
hitches.



Appendix

A.1 Content of the CD-ROM

The attached CD-ROM contains the following data structure:

• DIPL-MSC 215.pdf : pdf file of the master thesis DIPL-MSC–215.

• DIPL-MSC 215/:directory with the *.tex files of the report DIPL-
MSC–215 composed with LaTeX as well as all the corresponding *.eps and
*.svg figures.

• DATA/: a directory with all the relevant data used in this work

Additional information is found in the readme.txt files of the directories.
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