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ABSTRACT 

 

This project arises from the fact that nowadays the engineering process is 

becoming more experimental, so the knowledge on design software is very important in 

order to save money and time. 

 From this point of view, new mathematical methods are applied to design 

software to develop new tools for solving a huge number of design analyses.  

 In this case Abaqus software is based on the Finite Element Method, which is a 

numerical technique for solving models in differential form. For a given design, the 

FEM requires the entire design, including the surrounding region, to be modelled with 

finite elements. 

 The final purpose of this project is to develop techniques to model cracks in 2-D 

and 3-D structures using Abaqus CAE. To develop this project the techniques proposed 

have to be compared and the data obtained validated with published data. 
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1. INTRODUCTION 

The analysis of the behaviour of cracks is very important nowadays due to the 

need to know because the components of a structure fail to avoid or prevent a 

subsequent failure. The failures caused by cracks may be due to two types of situations. 

Firstly, the material is subjected to a fixed load and therefore the crack opens and grows 

due to this effort. And secondly, the piece is submitted to cyclical loads that open and 

close the crack while it grows. Learn how a crack behaves in a material submitted to a 

certain effort or to a few cyclical loads helps us to be able to anticipate possible 

accidents. 

This project arises from this need to know the behaviour of a crack and the 

intensity factor submitted to a fixed load. The modelling of cracks by finite elements 

allows us to estimate the behaviour of the crack with amazing accuracy, and this 

information can be exported then to the practice to obtain the correct prediction. 

As this method could improve stress analyses it is important to have the 

necessary tools to perform them. So the development and the purpose of making know 

this method to new engineers acquire in this project the same importance than the stress 

analysis.  

 The number of complete engineering software (Electric, magnetic, thermal, 

structural…) that uses finite element method is very large. In this project the software 

selected is Abaqus 6.9-1. 

The concrete program used is the Abaqus 6.9-1, specifically Abaqus CAE. 

Abaqus is a finite element program that approximates the solution by dividing the 

problem in a finite number of points, called nodes. Abaqus obtains the solution in these 

points and interpolate the solution for the rest of the points. 

To do this project, it is very important to have fracture mechanics knowledge, 

because I will model cracks subjected to a big load. Fracture mechanics refers to a 

phenomenon where the breaking of materials occurs under big loads. Other important 

way of collapse is fatigue. Fatigue of materials occurs when the materials collapse under 

cycle dynamics loads. 
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To sum up, the principal aims of this project are two: the first is make more 

common the use of software based on finite element method and the second is make an 

exhaust modelling of 2D and 3D cracks.  

It is important to have these two goals clearly defined because both can develop 

the skills to design pieces safest and without doing practical test with real pieces, what 

means less waste of time and money. 
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2. AIMS OF THE PROJECT 

As it is known this project arises from the need to develop techniques to model 

cracks in 2D and 3D with Abaqus. 

The most immediate objective is to and shape cracks in different geometries 

both in 2-D and 3-D. Develop different techniques of meshing and analysis depending 

on the type of geometry of the piece and on the type of crack. 

The other main objective is to initially understand and install single edge cracks 

in plates and compare S.I.F. values with published data. Once created and installed the 

cracks, the data obtained with the program should be contrasted with published data to 

be able to validate them. This is a very important point because if the data does not 

match up the analysis will have to be realized again. 

To further this work to more complexes published geometric and compare. Once 

finished with simple geometries I will go on to more complicated geometries, both of 

piece and of crack. In this step as in the previous one the data obtained will have to be 

also validated. 

As personal experience, this project has helped me go deeper into the design of 

pieces from a different angle to the common. It means, not only the design of a concrete 

piece, it has been the design with a view to its use and functionality. So I have to 

develop skills to analyze a piece form the point of view of a complete structure, whole 

scaffolding instead of only a plate whit a crack. 

Finally, this project has helped me in the aspect of collecting and interpreting 

data. This is important because the behaviour of a crack can be described and what is 

more important, predicted. 
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3. REVIEW OF LITERATURE 

3.1. INTRODUCTION 

In this section I will make a brief statement of the theoretical foundations that 

must be clear to make a project of this nature. I will treat from the theoretical 

foundations of the Fracture mechanics up to the operation of the finite elements method 

that use programs like ABAQUS. 

3.2. FRACTURE MECHANICS 

 Introduction 

Fracture mechanics and particularly the linear elastic fracture mechanics is a 

science that studies the mechanisms and processes of crack propagation in solids, as 

well as the distribution of stresses and strains that occur in a cracked material or 

material with discontinuities, subjected to certain external tension. This science arose 

with Griffith’s fundamental works on criteria of spread of cracks in solid, based on 

concepts of transformation of elastic energy in surface energy and for this reason it is 

known as an energetic formulation of fracture mechanics. 

In simple terms, the energetic formation of fracture mechanics consists of 

comparing the available energy for propagation of a crack in a structure with the energy 

required to produce its cracking. The available energy for the advance of crack per unit 

area is called the energy release rate (G) and the energy required for cracking is called 

the critical rate of energy release or energy of cracking (GIC). 

Irwin introduced a breakthrough in fracture mechanics and raised the analysis in 

terms of tensions, which had not been able to do before due to the fact that theoretically 

at the tip of a crack the stress tend to infinity, independently of the magnitude of the 

applied load. For his formulation, Irwin argues that the fracture process cannot be 

concentrated on a single point, as deducted from a purely elastic analysis, but if appears 

in a small but finite zone, which names plastic zone in which the tensions stop being 

infinite because part of the elastic energy is consumed in the plastic deformation of the 

material near the tip.  The main concept introduced here is that the stress intensity factor 
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(K) of great application in the mechanics of fracture. The parameter K is related to the 

parameter G by the elastic properties of the material and for the condition of crack 

initiation is considered that K becomes a critical value and for such a reason is called 

critical stress intensity factor or fracture toughness KIC. 

One of the important aspects that make it different from a conventional analysis 

of resistance of materials to a fracture mechanics analysis is that in the first case the 

resistance or tensile strength is independent from the size of the structure or element 

under load, whereas in the second one, the resistance can change depending on the size 

or the structure. This type of behaviour is studied by the so-called size effect and allows 

to know if a certain material adjust of not to the criteria of the LEFM of if it is necessary 

to introduce alterations for effects of size to the parameters GIC and KIC in order to be 

considered as real material constants, independently of its size. 

 Principles of fracture mechanics 

The resistance to the fracture of a solid material is a function of the cohesive 

forces that exist between the atoms. On this base, the theoretical cohesive strength of a 

brittle elastic solid has been estimated and is approximately equal to E/10 where E is the 

modulus of elasticity. The resistance to the experimental fracture of the majority of the 

materials in engineering normally is between 10 and 1000 times lower than the 

theoretical value. Griffith suggested that this discrepancy between the cohesive 

theoretical resistance and the resistance of the observed fracture could be explained by 

the presence of microscopic cracks, which exist in normal conditions on the surface and 

inside a piece of material. These flaws go the detriment of the resistance to the fracture 

due to the fact that an applied tension can be amplified or concentrated at the tip of the 

defect, in a degree that depends on the orientation of the crack and on the geometry. 

This phenomenon is shown in the figure below which shows the magnitude of the stress 

across the section containing a crack. As illustrated is the profile, the magnitude of the 

located tension decreases with the distance from the tip of the crack. At positions far 

removed, the stress is exactly the rated tension σ0, or the load divided by the area of the 

section. Due to the ability to amplify in their surroundings an applied stress, these 

defects are sometimes called stress concentrators or stress raisers. 
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Figure 3.1 

Assuming that the crack has an elliptical shape and is orientated with its axis 

perpendicular to the applied stress, the maximum stress at the end of the crack, σm, it 

can be approximated by 

       
 

  
 
   

  Equation 3.1 

Where σ0 is the magnitude of the rated stress applied, ρt is the radius of 

curvature of the tip of the crack and represents the length of a surface crack, or half the 

length of an internal crack. So for a relatively long micro-crack has a radius of curvature 

small, the factor  
 

  
 
   

 can be very large. This will give a value of σm many times 

greater than σ0. 

Often the coefficient       is called stress concentration factor Kt: 

   
  

  
   

 

  
 
   

   Equation 3.2 

That is simply a measure of the degree to which an external voltage is amplified 

at the tip of a small crack. 
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 Griffith theory of Brittle Fracture 

During the propagation of a crack, there is a release of what is termed the elastic 

strain energy, some of the energy that is stored in the material as it is elastically 

deformed. Furthermore, during the crack extension process, new free surfaces are 

created at the faces of a crack, which give rise to an increase in surface energy of the 

system. Griffith developed a criterion for crack propagation of an elliptical crack by 

performing an energy balance using these two energies. He demonstrated that the 

critical stress σc required for crack propagation in a brittle material is described by 

    
    

  
 
   

 Equation 3.3 

Where 

E = modulus of elasticity 

γs = specific surface energy 

a = one half the length of an internal crack 

The previous development is applied to materials completely fragile which has 

no plastic deformation. The majority of the metals and many polymers experience some 

plastic deformation before the fracture; this produces an increase in the radius of the tip 

of the crack therefore increase resistance to fracture. Mathematically, this can be taken 

into account by replacing γs for γs + γp where  γp represents the plastic formation energy 

associated with the extension of the crack. 

Irwin then suggested grouping the two terms in a single term, G, so 

           Equation 3.4 

and it is called the energy available for fracture. The crack extension occurs when G 

exceeds a critical value Gc. 

 Stress analysis of cracks 

There are three ways of applying a force to enable a crack to propagate: 
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 Mode I crack: Opening mode (a tensile stress normal to the plane of the 

crack) 

 Mode II crack: Sliding mode (a shear stress acting parallel to the plane of 

the crack and perpendicular to the crack front) 

 Mode III crack: Tearing mode (a shear stress acting parallel to the plane 

of the crack and parallel to the crack front) 

 

Figure 3.2 

The model I is the most frequently occurring. 

For the model I configuration, the stresses acting on an element of material 

appear in the following figure. Using the principles of the theory of elasticity, the tensile 

(σx, σy) and shear (τxy) stresses are functions of distance r and angle θ. 

 

Figure 3.3 

http://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg


Modeling cracks with ABAQUS  Miguel Arbeloa Ronco 
 
 

13 | P á g i n a  
 

   
 

    
      Equation 3.5 

   
 

    
      Equation 3.6 

    
 

    
       Equation 3.7 

If the plate is enough thin compared with the dimensions of the crack, then σz=0, 

and it is said that there exist conditions of plane stress. In the other hand, (in a case of a 

relatively thick plate), σz=υ (σx +σy) and the condition is called plane strain (since εz=0); 

in this expression υ is the Poisson’s ratio. 

In the previous equations, the parameter K is called the stress intensity factor; 

determines the magnitude of the stress distribution around a crack. It should be noted 

that the stress intensity factor and the stress concentration factor Kt of the previous 

equation, though similar, they are not equivalent. 

 Fracture toughness 

The fracture occurs when the level of the stress applied is greater than a critical 

value σc. Similarly, since the tensions in the proximities of a crack tip are defined in 

terms of stress intensity factor, there exists a critical value of this parameter. This 

critical value is called fracture toughness KC and may be used to specify the conditions 

of brittle fracture. In general, it can be expressed as 

          Equation 3.8 

Where Y is a parameter without dimension that depends on the geometry of the 

piece and the crack. 

By definition, the fracture toughness is a property that is a measure of material 

resistance to brittle fracture when a crack is present. 

For relatively thin specimens, the value of KC will depend on the thickness of the 

specimens and decrease as show in the Figure 3.4. From a certain thickness, KC is 

independent of the thickness, is at that point when we are in plane strain conditions. 

This value of KC is called strain fracture toughness KIC, which follows the expression 
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           Equation 3.9 

The KIC value is always less than that of KC. The subscript I indicates that is for 

the mode I displacement of the crack. 

 

Figure 3.4 Fracture Toughness vs. Thickness [1] 

 Plastic yielding at crack tip 

To determinate the plastic zone at the crack tip, Irwin presented a simple mode 

assuming the material is elastic-perfectly plastic. Consider the distribution of tensile 

stress σyy acting across a line extending, ahead of and in the same direction as the crack. 

The local y-stress near the crack tip is, 

    
  

    
     Equation 3.10 

Where r is the distance from the crack tip. As a first approximation, we can 

assume that the boundary between elastic and plastic behaviour occurs when the stress 

given by the above equation satisfies a yield criterion. For plane stress conditions, 

yielding occurs when σyy = σys, the uniaxial yield strength of the material. Then the 

distance ahead of the crack tip over which this happens is 

   
  
 

     
       Equation 3.11 
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Figure 3.5 Estimated plastic zones [2] 

 J-integral 

In the analysis that I will realize with Abaqus, the program will give back a 

value called J-integral. 

The J-integral represents a way to calculate the strain energy release rate, or 

work (energy) per unit fracture surface area, in a material. The theoretical concept of J-

integral was developed in 1967 by Cherepanov and in 1968 by Jin Rice independently, 

who showed that the energetic contour path integral (called J) was independent of the 

path around a crack. 

 

The form of the J-integral for two-dimension is:  

             
  

   
   

 
  Equation 3.12 

Where W(x1,x2) is the strain energy density, x1,x2, are the coordinate 

directions, t=n ·σ is the traction vector, n is the normal to the curve Г, σ is the Cauchy 

stress tensor, and u is the displacement vector. The strain energy density is given by 

       
 

 
  Equation 3.13 

   
 

 
             Equation 3.14 
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Figure 3.6 

The J-integral is equal to the strain energy release rate for a crack in a body 

subjected to monotonic loading. This is true, under quasistatic conditions, both for 

linear elastic materials and for materials that experience small-scale yielding at the 

crack tip. And both are related to the stress intensity factor “K” in the following fashion: 

 Plane stress 

  
  

 
     Equation 3.15 

 Plane strain 

  
  

 
           Equation 3.16 
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3.3. FINITE ELEMENT METHOD (FEM) 

The employment of numerical analysis technique known as Finite Element 

Method (FEM) has been spreading in the last decades at the same rate that was 

imposing the use of computers due to the capacity and speed of calculation. 

This technique allows us to solve common problems in 

engineering such as mechanical problems, thermal, etc. These entail 

the integration of complex systems of partial differential equations 

(PDE’s), which until then were unapproachable, except in very 

simplified cases and, in most cases, slightly representative of the 

reality. 

In outline, the FEM manages to turn the PDE’s system into another system of 

algebraic linear equations (or not), whose resolution in computers, or even by hand if 

they are few, is relatively simple. As expected, this changes results in an error, which 

we always assume. 

Initially, the procedure to follow consists of replace a domain 

formed by an infinite number of points, for a finite number that the 

user considers to be enough under his criteria. This process is called 

discretization that gives place to a mesh formed by nodes and 

elements. 

On that domain, there exist a few equations of government that 

describe the behaviour of the physical phenomenon in question 

(mechanical balance, transmission of heat, water flow, etc.). As it 

happens in the analytical resolution, in order that solution exists and 

this one is unique, we must impose boundary conditions. 

The unknown function (displacement, temperature, etc.) can be interpolated 

through the points obtained in the discretization which support each elementary 

function, called shape functions. These functions may be linear, parabolic, etc. 
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The weak of the variational form of the governing equations allows us to obtain 

the above mentioned system of equations that we will have to solve once imposed the 

boundary conditions, which allow us to invert the system matrix. 

All this is done in a first step in each element then go on to describe the global 

behaviour through a process called assembly. 

In mechanical problems the fundamental unknown are the displacements. The weak 

form of governing equations (the equation of internal equilibrium) is called the 

Principle of Virtual Works that not only involves the deformations (easily deducible of 

the displacements) but also depends on the tensions. Here appears the constitutive 

equation of the medium in which we are. This equation relates in a linear way or not, 

the tensions with the deformations. Thus, after application of the law, we are able to 

formulate the problem exclusively in terms of the displacements. Then, from the 

displacements, we can obtain the deformations and the tensions. 

 Finite element formulation for plane stress/strain analysis 

For plane stress and strain elasticity there are three equations which are: 

Kinematic relationship: 

    

  
  
  
    

     

     

            
  Equation 3.17 

Constitutional law: 

    

  
  
   

    

     
     

  
 

 
       

  

  
  
  
     Equation 3.18 

Equilibrium equation: 

                      Equation 3.19 

                      Equation 3.20 
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Where u is the displacement in the x direction and v is the displacement in the y 

direction, qx and qy are distributed body forces in the x and y directions, respectively; εx 

and εy are extensional strains in the x and y directions and εz is the shear strain; σx and 

σy are extensional stresses in the x and y directions and τxy is the shear stress; E is the 

Young’s modulus, and υ is the Poisson’s ratio. The boundary conditions that I have 

supposed are: 

 

Displacement boundary conditions: 

                    Equation 3.21 

Force boundary conditions: 

                Equation 3.22 

Where tn and ts are tractions in the normal and tangential directions of the 

boundary, and an overbar represents the prescribed value. 

I will only derive a four-node quadrilateral element for plane stress or strain 

analysis. The geometrical domain of the element is defined in terms of shape functions 

and its nodal coordinates, as follows: 

    
 
             

  
  
  

             Equation 3.23 

Where x = (x , y)
T
 is the coordinate system, (xi , yi) (i = 1,2,3,4) is the coordinate 

of the i
th

 node of the element, X = [x1, y1, x2, y2, x3, y3, x4, y4]
T
 is the vector of element 

nodal coordinates, N(   ) is the shape function matrix defined as 

         
       

 

 
       

       
 

                 

                       
      

         
 

 
                , i= 1,2,3,4 Equation 3.24 

Where ξ and η consist of the local coordinate system associated with the 

element, and (ξi ,ηi) is the local coordinate of the i
th

 node of the element. The 
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displacements in the element are interpolated by the same expressions as for the 

coordinates: 

   
 
 
            

  
  
  

              Equation 3.25 

Where (ui, vi) (i = 1,2,3,4) is the displacement of the i
th

 node of the element, and 

                            
  is the vector of the element nodal degrees of 

freedom. The element with the same interpolation expressions for the displacements and 

the coordinates is called the isoparametric element. 

Substituting equation 3.25 into equation 3.17 gives the strain vector in terms of 

the shape functions and the nodal degrees of freedom: 

     Equation 3.26 

Where 

                        

       

       

            
    i=1,2,3,4 Equation 3.27 

B is called the strain matrix. The principle of minimum potential energy applied 

to the element requires 

    
 

 
                  

  
           

 
       

  
      Equation 3.28 

Where A is the area of the element, ∂A is the boundary of A, q = (qx , qy)
T
 is the 

vector of body forces, and t
0
 and t

i
 are boundary tractions due to the externally applied 

load and the inner forces between adjacent element. Substituting equation 3.23 and 

equation 3.26 into equation 3.28 gives  

   
 

 
                 Equation 3.29 

Where k is the element stiffness matrix, and p
0
 and p

i
 are equivalent nodal 

forces of externally applied load and boundary tractions between adjacent elements, 

respectively. They read, 

            
 

 Equation 3.30 
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 Equation 3.31 

           
  

 Equation 3.32 

Minimizing equation 3.29 results in the following element-level finite element 

equation: 

            Equation 3.33 

Again, after assembling all element equilibrium equations, the inner force terms 

are eliminated from each other due to the principle of action and reaction between 

adjacent elements. The global finite element equilibrium equation is then written as 

KU = F Equation 3.34 

Where K is the global stiffness matrix, U is the global vector of all nodal 

degrees of freedom, and F is the global vector of all equivalent nodal applied forces. 
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4. DESIGN PROCESS 

4.1. INTRODUCTION 

In the following section I will introduce how I have realized the modelling of 

cracks in both 2D and 3D. It shows the way of creating cracks on plates and meshes in 

2D and 3D. This section is very important as it is showed how to degenerate mesh 

elements to analyse the behaviour of the cracks. The following sections have form of 

tutorial as they have been written in this form to send it to ABAQUS since the program 

lacks a tutorial about cracks. 

In the modelling of cracks, at the crack tip, four –side elements (in 2D) are 

degenerated down to triangles as we can see in Figure 4.1. Note that three nodes occupy 

the same point in space. Figure 4.2 shows the situation for 3D, where a brick element is 

degenerated to a wedge. 

 

Figure 4.1 

 

Figure 4.2 [3] 
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For elastic problems, the nodes at the crack tip are normally tied, and the mid-

side nodes moved to the 1/4 points as we can see in Figure 4.1. Such a modification 

results in a 1/√r strain singularity in the element, which improve numerical accuracy.  

When the plastic zone appears, the 1/√r singularity no longer exists at the crack 

tip and elastic singular elements are not appropriate for these analyses. Now, the 

element is degenerated to a triangle as before, but the nodes at the crack are not tied and 

the location of the mid-side nodes still being at 1/4 point . This element geometry 

produces a 1/r strain singularity, which corresponds to the actual crack tip strain field 

for fully plastic materials. 

The most benefit of the plastic singular element derives from the fact that allows 

the crack tip opening displacement to be computed from the deformed mesh as it is 

shown in Figure 4.3. The untied nodes stay initially in the same point but then, they 

move as the element deforms. 

 

Figure 4.3 

For mainly problems, the most efficient mesh design for the crack tip region 

belongs to the “spider web” configuration. This configuration consists of concentric 

rings of four sided elements that are focused toward the crack tip. The close ring is 

formed by quadrangular elements degenerated to triangles. Since the crack tip region 

contains steep stress and strain gradients, the mesh refinement should be greatest at the 

crack tip. Whit this configuration we can obtain a smooth transition from the fine mesh 

near the crack tip to a rude mesh far away to the tip. 
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In the modelling of cracks that I will show then, I have degenerated 

quadrilaterals in 2D and hexahedron in 3D until triangles and triangular prisms 

respectively. 

This degeneration of the elements is performed to exhibit a 1/√r strain 

singularity, which improves the accuracy and reduces the need for a high degree of 

mesh refinement at the crack tip. 

 

4.2. BUILDING 2D CRACKS 

 CREATING AND ANALYZING A 2D CRACK 

The following section leads you through the ABAQUS/CAE modelling process 

by visiting each of the modules and showing you the basic steps to create and analyze a 

2D crack. To illustrate each of the steps, you will first create a model of a steel sheet 

with an edge crack and load its top and bottom surface as it is shown in the figure. 

 

Figure 4.2.1: A loaded sheet with a crack edge 

1) Creating a part 

To create the sheet: 
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1) In the Model Tree, double-click the Parts container to create a new part. 

2) Name the part Sheet Accept the default settings of a two-dimensional, 

deformable body and a solid, extruded base feature. In the Approximate size 

text field, type 1000. And click Continue. 

3) Draw a rectangle of size 200 x 400 mm using  

You should obtain these figures: 

 

Figure 4.2.2: Sketch of the rectanle 

4) Then you must draw the size of the crack you want to analyze. For do it go click 

on  and draw a line of length 50mm. 

 

Figure 4.2.3: View of the sheet with the crack 
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5) After drawing the crack, you must draw a circle around the crack tip. Inside this 

circle is where you will create the degenerated mesh. 

Tools  Partition  Face  Sketch 

 

Figure 4.2.4: Sketch of the circle 

As a result of doing this, you should obtain: 

 

Figure 4.2.5: View of the sheet with the crack and the circle 

2) Creating a material 

1) In the Model Tree, double-click the Materials container to create a new 

material. 
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2) Name the material Steel. 

 

Figure 4.2.6: Submenus available under the Mechanical menu. 

3) From the material editor's menu bar, select Mechanical Elasticity Elastic. 

4) Type a value of 200 for Young's modulus and a value of 0.3 for Poisson's ratio 

in the respective fields, as shown in Figure 7. 

 

Figure 4.2.7: Entering data values for the elastic material properties. 

5) Click OK to exit the material editor. 

 

3) Defining and assigning section properties 

i) Defining a homogeneous solid section 

1) In the Model Tree, double-click the Sections container to create a section. 

2) In the Crate Section dialog box: 

a. Name the section SheetSection. 

b. In the Category list, accept Solid as the default category selection. 

c. In the Type list, accept Homogeneous as the default type selection. 

d. Click Continue 
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3) In the dialog box: 

a. Accept the default selection of Steel for the Material associated with the 

section. 

b. Accept the default value of 1 for the Plane stress/strain thickness. 

c. Click OK. 

i) Assigning the section to the sheet. 

1) From the main menu bar, select Assign  Section 

2) Click on the different regions to select the region to which the section will be 

applied. 

3) Click Done in the prompt area to accept the selected geometry 

4) Accept the default selection of SheetSection as the section, and click OK. 

 

4) Assembling the model 

1) In the Module list locate under the toolbar, click Assembly to enter the 

Assembly module 

2) From the main menu bar, select Instance  Create 

3) In the dialog box, select Sheet and make sure that you are in Independent 

instance type. Then click OK. 

 

5) Defining your analysis steps 

i. Creating an analysis step 

To create a general, static analysis step: 

1) In the Module list located under the toolbar, click Step to enter the Step module. 

2) From the main menu bar, select Step  Create to create a step 

3) Name the step Sheetcrack 

4) From the list of available general procedures in the Create Step dialog box, 

select Static, General and Continue. 

5) The Basic tab is selected by default. In the Description field, type Crack of the 

sheet. 

6) Click OK to create the step and to exit the Edit Step dialog box. 
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ii. Requesting data output 

You should do this step after doing the point 6 of this tutorial because you need to 

create the crack before requesting the data output in the History Output Request. 

To examine your output requests: 

1) From the main menu bar, select Output  Field Output Request  Manager. 

2) Review the default output request that ABAQUS/CAE generates for the Static, 

General step you created and named Sheetcrack. 

3) On the right side of the Field Output Request Manager, click Edit to view 

more detailed information about the output request. 

4) On the Edit History Output Request dialog box select Contour Integral in the 

Domain Tree and select the Crack you have created. 

5) Type 3 in the Number of contours and J-integral as Type. 

6) Click OK to close the field output editor and save the changes. 

7) Click Dismiss to close the History Output Request Manager. 

 

6) Creating the crack and the seam 

1) In the Module list located under the toolbar, click Interaction to enter the 

Interaction module. 

2) From the main menu bar, select Special  Crack  Create. 

3) Name the crack Crack and click Continue. 

4) Pick the end of the crack and then Done. 

 

Figure 4.2.8: View of the crack tip. 

5) Select q-vector as method to specify the crack extension direction. 

6) Select the beginning of the crack length and the crack tip. 
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Figure 4.2.9: View of the Edit crack box 

7) Then click Singularity and type 0.25 as Midside node parameter and select 

Collapsed element side, duplicate nodes. Click OK. 

 

Figure 4.2.10: Entering singularity properties of the crack 

8) From the main menu bar select Special  Crack Assign Seam… 

9) Select the crack line and click Done two times. 

 

Figure 4.2.11: View of the crack seam 

10) Remember to come back to step 5.ii. 
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7) Applying a boundary condition and a load to the model 

i. Applying a boundary condition 

1) In the Module list located under the toolbar, click Load to enter the Load 

module. 

2) From the main menu bar, select BC  Create 

3) In the Create Boundary Condition dialog box: 

a. Name the boundary condition Articulated 

b. From the list of steps, select Sheetcrack as the step in which the 

boundary condition will be activated. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Displacement/Rotation and 

click Continue 

4) Select the two corners in which you will put the boundary conditions and click 

Done 

5) Type U1 value equal zero to restrict X direction movement. 

 

Figure 4.2.12: Entering Boundary Conditions 

6) Click OK. 

7) Now you have to repeat the steps before to restring the displacement in Y 

direction.  

8) From the main menu bar, select BC  Create 

9) In the Create Boundary Condition dialog box: 

a. Name the boundary condition Articulated y 
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b. From the list of steps, select Sheetcrack as the step in which the 

boundary condition will be activated. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Displacement/Rotation and 

click Continue 

10) Select the middle point of the edge opposite to the crack in which you will put 

the boundary conditions and click Done 

11) Type U2 value equal zero to restrict Y direction movement. 

12) Click OK. 

 

ii. Applying loads 

 

1) From the main menu bar, select Load  Create 

2) In the Create Load dialog box: 

a. Name the load Stress 

b. From the list of steps, select Sheetcrack as the step in which the load will 

be applied. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Pressure, and click Continue. 

3) In the viewport, select the top and bottom edge of the sheet as the surface to 

which the load will be applied. Click Done. 

4) In the Edit Load dialog box: 

a. Enter a magnitude of -200 for the load. The sign minus is because it is 

the way of put and stress using pressure. The direction of the load is 

opposite to the pressure. 

b. Accept the default Amplitude selection 

c. Click OK to create the load and to close the dialog box. 
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Figure 4.2.13: View of the finished model 

8) Meshing the model 

i. Assigning mesh controls 

1) In the Module list located under the toolbar, click Mesh to enter the Mesh 

module 

2) From the main menu bar, select Mesh  Controls 

3) Select firs the circular region to assign Mesh controls and click Done 

4) In the dialog box, select Quad-dominated as element shape and Sweep as 

Technique. Click OK. 

 

Figure 4.2.14: Assigning mesh controls 

5) Select now the other region and click Done. 

6) In the dialog box, select Quad as element shape, Free as Technique and Medial 

axis as algorithm. Click OK. 
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Figure 4.2.15: Assigning mesh controls 

7) You should obtain the following figure 

 

Figure 4.2.16: View of the sheet with the assigned mesh controls 

ii. Assigning an ABAQUS element type 

1) From the main menu bar, select Mesh  Element Type. Select both regions 

and click Done. 

2) In the dialog box, select Quadratic as Geometric Order click off Reduced 

integration. You should obtain CPS8 elements (An 8-nodes biquadratic plane 

stress quadrilateral). 
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Figure 4.2.17: Assigning element type 

3) Click OK and then Done. 

iii. Creating the mesh 

1) From the main menu bar, select Seed  Edge by number or click . 

2) Select the circle from the viewport and click Done 

3) Type 20 as Number of elements along the edges  

4) Click Constrains and put Allow the number of element to increase only. 

 

Figure 4.2.18: Assigning edge seed constraints 

5) Click OK and the puss Enter and then Done. 

6) From the main menu bar, select Mesh  Instance  

7) Click Yes. 

You should obtain this kind of mesh: 
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Figure 4.2.19: View of the special mesh around the crack tip 

9) Creating and submitting an analysis job 

1) In the Module list located under the toolbar, click Job to enter the Job module. 

2) From the main menu bar, select Job  Create to create a job 

3) Name the job Deform. 

4) Click Continue to create the job 

5) In the Description field, type Crack tutorial. 

6) Click OK to accept all the default job settings and to close the dialog box 

7) From the main menu bar, select Job  Manager to start the Job Manager. 

8) From the buttons on the right edge of the Job Manager, click Submit to submit 

your job for analysis. 

9) When the job completes successfully, you are ready to view the results of the 

analysis. 

10) Click Monitor. 

11) Click Data File and down you can read the J-values. 

 

Figure 4.2.20: View of the J-integral values 

12) Click Dismiss 
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13) Click now Results and you will see the deformed sheet. 

 

Figure 4.2.21: View of the deformed sheet 

4.3. BUILDING 3D CRACKS 

 CREATING AND ANALYZING A 3D CRACK 

The following section leads you through the ABAQUS/CAE modelling process 

by visiting each of the modules and showing you the basic steps to create and analyze a 

3D crack. To illustrate each of the steps, you will first create a model of a steel sheet 

with an edge crack and load its top and bottom surface as it is shown in the figure. 

 

Figure 4.3.1: A loaded sheet with a crack edge 
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4) Creating a part 

To create the sheet: 

1) In the Model Tree, double-click the Parts container to create a new part. 

2) Name the part Brick. Accept the default settings of a three-dimensional, 

deformable body and a solid, extruded base feature. In the Approximate size 

text field, type 1000. And click Continue. 

3) Draw a rectangle of size 200 x 400 mm using  

4) Type a thickness of 100 mm. Click Done. 

You should obtain these figures: 

     

Figure 4.3.2: Sketch of the rectanle 

5) Then you must draw the size of the crack you want to analyze and the circle in 

which you will create the special mesh. For do it go to shape  shell  

extrude or click on . 

6) Select the plane for the shell extrusion 

7) Select an edge or axis that will appear 

8) Draw the crack and the circle at the same time. 

9) Put the Extrude direction in the right direction. Type the thickness of your 

sheet and click Keep internal boundaries. 
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Figure 4.3.3: View of the Edit Extrusion dialog box and the Extrude direction. 

As a result of doing this, you should obtain: 

 

Figure 4.3.4: View of the sheet with the crack and the circle 

 

5) Creating a material 

1) In the Model Tree, double-click the Materials container to create a new 

material. 

2) Name the material Steel. 
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Figure 4.3.5: Submenus available under the Mechanical menu. 

3) From the material editor's menu bar, select Mechanical Elasticity Elastic. 

4) Type a value of 200 for Young's modulus and a value of 0.3 for Poisson's ratio 

in the respective fields, as shown in Figure 6 

 

Figure 4.3.6: Entering data values for the elastic material properties. 

5) Click OK to exit the material editor. 

 

6) Defining and assigning section properties 

i) Defining a homogeneous solid section 

1) In the Model Tree, double-click the Sections container to create a section. 

2) In the Create Section dialog box: 

a. Name the section BrickSection 

b. In the Category list, accept Solid as the default category selection 

c. In the Type list, accept Homogeneous as the default type selection. 

d. Click Continue. 
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3) In the dialog box: 

a. Accept the default selection of Steel for the Material associated with the 

section. 

b. Accept the default value of 1 for the Plane stress/strain thickness. 

c. Click OK. 

 

ii) Assigning the section to the sheet. 

1) From the main menu bar, select Assign  Section 

2) Click on the different regions to select the region to which the section will be 

applied. 

3) Click Done in the prompt area to accept the selected geometry. 

4) Accept the default selection of BrickSection as the section, and click OK. 

7) Assembling the model 

1) In the Module list locate under the toolbar, click Assembly to enter the 

Assembly module 

2) From the main menu bar, select Instance  Create 

3) In the dialog box, select Sheet and make sure that you are in Independent 

instance type. Then click OK. 

8) Defining your analysis steps 

iii. Creating an analysis step 

To create a general, static analysis step: 

1) In the Module list located under the toolbar, click Step to enter the Step module. 

2) From the main menu bar, select Step  Create to create a step 

3) Name the step Brickcrack 

4) From the list of available general procedures in the Create Step dialog box, 

select Static, General and Continue. 

5) The Basic tab is selected by default. In the Description field, type Crack of the 

Brick. 

6) Click OK to create the step and to exit the Edit Step dialog box. 

iv. Requesting data output 

You should do this step after doing the point 6 of this tutorial because you need to 

create the crack before requesting the data output in the History Output Request. 
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To examine your output requests: 

1) From the main menu bar, select Output  Field Output Request  Manager. 

2) Review the default output request that ABAQUS/CAE generates for the Static, 

General step you created and named Brickcrack. 

3) On the right side of the Field Output Request Manager, click Edit to view 

more detailed information about the output request. 

4) On the Edit History Output Request dialog box select Contour Integral in the 

Domain Tree and select the Crack you have created. 

5) Type 3 in the Number of contours and J-integral as Type. 

6) Click OK to close the field output editor and save the changes. 

7) Click Dismiss to close the History Output Request Manager. 

 

9) Creating the crack and the seam 

1) In the Module list located under the toolbar, click Interaction to enter the 

Interaction module. 

2) From the main menu bar, select Special  Crack  Create. 

3) Name the crack Crack and click Continue. 

4) Pick the edge of the crack and then Done. 

 

Figure 4.3.7: View of the crack edge. 

5) Select q-vector as method to specify the crack extension direction. 

6) Select the beginning of the crack length and the crack tip. 
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Figure 4.3.8: View of the Edit crack box 

7) Then click Singularity and type 0.25 as Midside node parameter and select 

Collapsed element side, duplicate nodes. Click OK. 

 

Figure 4.3.9: Entering singularity properties of the crack 

8) From the main menu bar select Special  Crack Assign Seam… 

9) Select the crack surface and click Done two times. 

 

Figure 4.3.10: View of the crack seam 

10) Remember to come back to step 5.ii. 
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10) Applying a boundary condition and a load to the model 

iii. Applying a boundary condition 

1) In the Module list located under the toolbar, click Load to enter the Load 

module. 

2) From the main menu bar, select BC  Create 

3) In the Create Boundary Condition dialog box: 

a. Name the boundary condition Articulated 

b. From the list of steps, select Brickcrack as the step in which the 

boundary condition will be activated. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Displacement/Rotation and 

click Continue 

4) Select the four corners of the surface in which you will put the boundary 

conditions and click Done 

5) Type U1 value equal zero to restrict X direction movement. 

 

Figure 4.3.11: Entering Boundary Conditions 
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6) Click OK. 

7) Now you have to repeat the steps before to restring the displacement in Y 

direction.  

8) From the main menu bar, select BC  Create 

9) In the Create Boundary Condition dialog box: 

a. Name the boundary condition Articulated y 

b. From the list of steps, select Brickcrack as the step in which the 

boundary condition will be activated. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Displacement/Rotation and 

click Continue 

10) Select the middle point of the edges opposite to the crack in which you will put 

the boundary conditions and click Done 

11) Type U2 value equal zero to restrict Y direction movement. 

12) Click OK. 

iv. Applying loads 

1) From the main menu bar, select Load  Create 

2) In the Create Load dialog box: 

a. Name the load Stress 

b. From the list of steps, select Brickcrack as the step in which the load will 

be applied. 

c. In the Category list, accept Mechanical as the default category 

selection. 

d. In the Types for Selected Step list, select Pressure, and click Continue. 

3) In the viewport, select the top and bottom surface of the sheet as the surface to 

which the load will be applied. Click Done. 

4) In the Edit Load dialog box: 

a. Enter a magnitude of -200 for the load. The sign minus is because it is 

the way of put and stress using pressure. The direction of the load is 

opposite to the pressure. 

b. Accept the default Amplitude selection 

c. Click OK to create the load and to close the dialog box. 
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Figure 4.3.12: View of the finished model 

11) Meshing the model 

iv. Assigning mesh controls 

1) In the Module list located under the toolbar, click Mesh to enter the Mesh 

module 

2) From the main menu bar, select Mesh  Controls 

3) Select firs the circular region to assign Mesh controls and click Done 

4) In the dialog box, select Wedge as element shape and Sweep as Technique. 

Click OK. 

 

Figure 4.3.13: Assigning mesh controls 

Note: In a 3D model, when you try to create the deformed mesh around the 

crack tip, you must use Wedge Element Shape. ABAQUS know that you are 
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working with quadrangular elements and will analyze it as degenerated 

quadrangular elements. Also, with 3D geometry, it is difficult to get the mesh to 

sweep around the singularity and then sweep from one face to another. To force 

this you need to make sure that there is just one element along the length of the 

line within the circular region. As it is a swept mesh you only need to assign an 

element number along this line on one side as the seeding scheme will propagate 

to the other side. 

5) Select now the other region and click Done. 

6) In the dialog box, select Hex as element shape, Sweep as Technique and Medial 

axis as algorithm. Click OK. 

 

Figure 4.3.14: Assigning mesh controls 

7) You should obtain the following figure 

 

Figure 4.3.15: View of the sheet with the assigned mesh controls 
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v. Assigning an ABAQUS element type 

1) From the main menu bar, select Mesh  Element Type. Select both regions 

and click Done. 

2) In the dialog box, select Quadratic as Geometric Order click off Reduced 

integration. You should obtain C3D20 elements (A 20-node quadratic brick). 

 

Figure 4.3.16: Assigning element type 

3) Click OK and then Done. 

vi. Creating the mesh 

1) From the main menu bar, select Seed  Edge by number or click . 

2) Select the circle from the viewport and click Done 

3) Type 20 as Number of elements along the edges  

4) Click Constrains and put Allow the number of element to increase only. 

 

Figure 4.3.17: Assigning edge seed constraints 

5) Then select the line inside the circular region and click Done. 

6) Type 1 as Number of elements along the edge 

7) Click Constrains and put Do not allow the number of elements to change. 
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Figure 4.3.18: Assigning edge seed constrains 

8) Click OK and the puss Enter and then Done. 

9) From the main menu bar, select Mesh  Instance  

10) Click Yes. 

You should obtain this kind of mesh: 

 

Figure 4.3.19: View of the special mesh around the crack tip 

12) Creating and submitting an analysis job 

1) In the Module list located under the toolbar, click Job to enter the Job module. 

2) From the main menu bar, select Job  Create to create a job 

3) Name the job Deform. 

4) Click Continue to create the job 

5) In the Description field, type Crack tutorial. 

6) Click OK to accept all the default job settings and to close the dialog box 

7) From the main menu bar, select Job  Manager to start the Job Manager. 

8) From the buttons on the right edge of the Job Manager, click Submit to submit 

your job for analysis. 

9) When the job completes successfully, you are ready to view the results of the 

analysis. 

10) Click Monitor. 

11) Click Data File and down you can read the J-values. 
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Figure 4.3.20: View of the J-integral values 

12) Click Dismiss 

13) Click now Results and you will see the deformed sheet. 

 

Figure 4.3.21: View of the deformed sheet 
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5. RESULTS AND DISCUSSION 

5.1. INTRODUCTION 

 

The program that I have used to develop the project, Abaqus, is an extremely 

sophisticated finite element program, designed first and foremost to model the 

behaviour of solids and structures under externally applied loading. Abaqus includes the 

following characteristics: 

 Capabilities for static and dynamic problems 

 The ability to model very large shape changes in solids, in 2D and 3D. 

 A very large element library, with a lot of continuum elements, beam elements, 

shell and plate elements, among others. 

 A sophisticated capability to model contact between solids 

 An advanced material library, including the usual elastic and elastic-plastic 

solids; models for foams, concrete, soils, piezoelectric materials, and many 

other. 

 Capabilities to model a number of phenomena of interest, including vibrations, 

coupled fluid/ structure interactions, acoustics, buckling problems, and so on. 

The main strength of Abaqus, however, is that it is based on a very sound theoretical 

framework. As practicing engineer, you may be called upon to make crucial decisions 

based on the results of computer simulations. While no computer program can ever be 

guaranteed free of bugs, Abaqus is among the more trustworthy codes. For this reason, 

Abaqus is used by a wide range of industries, including aircraft manufactures, 

automobile companies, oil companies and microelectronics industries, as well as 

national laboratories and research universities. 
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5.2. 2D CRACKS 

 EDGE CRACK IN A FINITE WIDTH SHEET: UNIAXIAL 

TENSILE STRESS WITH TENSILE STRESS WITHOUT 

BENDING CONSTRAINS 

The first modelling of a 2D crack is a sheet of width b and height 2h containing 

a crack of length a in the middle of one side. It is subjected, at the ends, to a uniform 

tensile stress σ perpendicular to the direction of the crack. 

The published data of this kind of crack are take from Stress intensity factors 

book and shows the results for KI as a polynomial in a/b which is accurate to within 1% 

for all h/b≥ 1.0 and a/b ≤ 0.6; it is 

  

  
           

 

 
                                      Equation 5.1 

Where K0 is the stress intensity factor for an isolated crack of length 2a in a 

sheet subjected to a uniform stress σ, and is given by  

         Equation 5.2 

To develop this analysis I have created several sheets of different sizes. To 

analyse this crack I have to assume some boundary conditions to create the same 

conditions as the published data. The boundary conditions that I have assumed are: 

 The right corners, top and base have the restriction of no movement in x 

direction 

 The middle point of the right edge has the restriction of no movement in y 

direction. 

With the first boundary conditions I let the sheet to open freely but I do not let 

the right corners to move along the y direction. It is needed because the sheet does not 

have to rotate. And the second boundary condition is needed to do not let the sheet to 

move up or down. 
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Figure 5.1 

The conditions that I have assumed that are the same for all the performed tests 

are: 

 Uniform tensile stress σ of 200 MPa perpendicular to the crack length 

 Common engineering material with Young’s Modulus E=200 GPa and Poisson’s 

ratio υ=0.3.    

 

 200 x 400 mm sheet with a crack of 50 mm 

For this kind of sheet and crack, the published data shows that Y=1.5 ± 0.025 

and following the equation for the stress intensity factor, 

          Equation 5.3 

Where Y=1.5, σ=200 N/mm
2
 and a=50mm is the crack length. So KI takes the 

value of, 

KI = 3759.94 ± 62.67 N/mm
3/2
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Modelling now the crack with Abaqus, I have used a circle around the crack 

with 25mm of ratio where I want to create the degenerated mesh. 

         

Figure 5.2 

 

Figure 5.3 
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As we can see in the picture, the values of the J-integral are 7.0549e+04, 

7.0522e+04 and 7.0539e+04 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.4 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 3756.04 N/mm
3/2

 

As we can see the values are very close, the error is smaller than 1% so we can 

conclude it is a great approximation. 

 100 x 300 mm sheet with a crack of 40 mm 

For this kind of sheet and crack, the published data shows that Y=2.11 ± 0.025 

and following the equation for the stress intensity factor, 

         Equation 5.5 

Where Y=2.11, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 4730.61 ± 56.05 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 
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Figure 5.4 

 

Figure 5.5 
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As we can see in the picture, the values of the J-integral are 1.1207e+05, 

1.1198e+05 and 1.1202e+05 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.6 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 4733.27 N/mm
3/2

 

As we can see the values are very close, the error is smaller than 1% so we can 

conclude, like in the previous test, that it is a great approximation. 

The results that I have obtained in this first modelling are really good. The data 

obtained are in truth close to the published one, with errors smaller than 1%. So I can 

conclude that this is the way to be followed to analyse this kind of crack. 

 

 EDGE CRACK IN A RECTANGULAR SHEET: UNIFORM 

NORMAL DISPLACEMENT 

In the second analysis a sheet of width b and height 2h containing a crack of 

length a in the middle of one side is subjected at the ends to a uniform displacement in a 

direction perpendicular to the crack line. No rotation of the ends of the sheet is assumed. 

The published data are obtained for the Stress intensity factors book that 

obtained the result using conformal mapping techniques and the results for the stress 

intensity factor are shown as curves KI/K0 vs. a/b in Figure 5.7 for various values of 

h/b. K0 is given by 

         Equation 5.7 

where σ is the average stress on the ends of the sheet. 

To develop this analysis I have created several sheets of different sizes. To 

analyse this model I have to assume some boundary conditions to create the same 
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conditions as the published data. Because of the sheet must move only in the 

perpendicular direction, I have created two plates that have two functions. The plates 

have also high Young’s Modulus because I want they not affect the results. Therefore,  

 The plates with the rails does not allow the sheet to bend 

 The plates also simulate the towing hooks that probably were used in the real 

experiments. 

 The middle point of the right edge has the restriction of no movement in y 

direction. Consequently, the sheet will not translate in this direction.  

 

Figure 5.6 

The conditions that I have assumed that are the same for all the performed tests 

are: 

 Uniform tensile stress σ of 200 MPa perpendicular to the crack length 

 Common engineering material with Young’s Modulus E=200 GPa and Poisson’s 

ratio υ=0.3 for the sheet part. 

 Material with Young’s Modulus E=20000 GPa and Poisson’s ratio υ=0.3 for the 

plates. 
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Figure 5.7  
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 200 x 184 mm sheet with a crack of 40 mm 

For this kind of sheet and crack, the published data shows that Y=1 ± 0.02 and 

following the equation for the stress intensity factor, 

          Equation 5.8 

Where Y=1, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 2241.99 ± 44.84 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 

 

      

Figure 5.8 
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Figure 5.9 

As we can see in the picture, the values of the J-integral are 2.241e+04, 

2.239e+04 and 2.2398e+04 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.9 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 2116.51 N/mm
3/2

 

As we can see the values are close but not as close as the model before. The 

error that I have obtained is around 4%. However, this could be because of the edge 

effects, so in the next analysis I will introduce more material around the crack.  

 200 x 520 mm sheet with a crack of 50 mm. 

For this kind of sheet and crack, the published data shows that Y=1.32 ± 0.02 

and following the equation for the stress intensity factor, 

          Equation 5.10 
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Where Y=1.32, σ=200 N/mm
2
 and a=50mm is the crack length. So KI takes the 

value of, 

KI = 3308.75 ± 66.18 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 25mm of ratio where I want to create the degenerated mesh. 

     

Figure 5.10 

 

Figure 5.11 
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As we can see in the picture, the values of the J-integral are 4.7670e+04, 

4.7613e+04 and 4.7636e+04 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.11 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 3086.62 N/mm
3/2

 

As we can see the values are close but not as close as the model before. The 

error that I have obtained is around 5%. This is quite interesting because I have 

introduced more material around the rack so the errors owing to the effect of the 

approximation that I have done with the plate with the rails should be lower; but the 

error is bigger than the analysis before. 

This could be due to the fact that the published data are not too recent or that the 

effect of the plates is bigger than what I had thought before. Apart from that the result 

are quite good. 

 SLANT EDGE CRACK IN A RECTANGULAR SHEET: UNIFORM 

UNIAXIAL TENSILE STRESS 

A rectangular sheet of width b and length 2.5b, containing an edge crack of 

length a, is subjected to a uniform uniaxial tensile stress σ at the ends. The crack is 

located eccentrically a distance b from one end and inclined at an angle β towards the 

other end. 

The published data are obtained for the Stress intensity factors book that 

obtained the result using boundary collocation and the results for the stress intensity 

factor are shown as curves KI/K0 vs. a/b in Figure 5.13 for several values of β. K0 is the 

stress intensity factor for an isolated crack in a sheet under a uniform uniaxial tensile 

stress σ and is given by 

          Equation 5.12 
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To develop this analysis I have created several sheets of different sizes. To 

analyse this crack I have to assume some boundary conditions to create the same 

conditions as the published data. The boundary conditions that I have assumed are: 

 The top corners have the restriction of no movement along y direction 

 The middle point of the top edge has the restriction of no movement along x 

direction. 

With the first boundary conditions I let the sheet to open freely but I do not let 

the tops corners to move along the y direction. It is needed because the sheet does not 

have to rotate. And the second boundary condition is needed to do not let the sheet to 

move left or right. 

 

Figure 5.12 

The conditions that I have assumed that are the same for all the performed tests 

are: 

 Uniform tensile stress σ of 200 MPa perpendicular to the crack length 

 Common engineering material with Young’s Modulus E=200 GPa and Poisson’s 

ratio υ=0.3.    
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Figure 5.13  
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 200 x 80 mm sheet with a 40 mm crack with an inclination of 45˚. 

For this kind of sheet and crack, the published data shows that Y=1.2 ± 0.025 

and following the equation for the stress intensity factor, 

          Equation 5.13 

Where Y=1.2, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 2690.40 ± 56.05 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 

 

 

Figure 5.14 
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Figure5.15 

As the figure shows, the values of the J-integral are 4.4903e+04, 4.4851e+04 

and 4.4872e+04 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.14 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 2995.73 N/mm
3/2

 

The error that I obtain with this modelling is around 9%, which is a not to big 

error but larger that one I expected. In the next analysis I will put more material around 

the crack to see what change. 
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 250 x 100 mm sheet with a 40 mm crack with an inclination of 45˚. 

For this kind of sheet and crack, the published data shows that Y=1.02 ± 0.025 

and following the equation for the stress intensity factor, 

          Equation 5.15 

Where Y=1.02, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 2286.84 ± 56.05 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 

 

 

Figure 5.16 
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Figure 5.17 

As we see in the picture, the values of the J-integral are 3.2457e+04, 3.2418e+04 

and 3.2434e+04 N/m. Following the equation showed in the literature, 

      
 

   
    

 

  
  Equation 5.16 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 2546.92 N/mm
3/2

 

The error that I obtain with this modelling is around 9% again. It still being large 

but at least it is as big as the modelling before, that it is a good sign. Because the error is 

always the same, the problem may lie in the published data or in the Abaqus iterations. 
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 200 x 80 mm sheet with a 40 mm crack with an inclination of 67.5˚. 

For this kind of sheet and crack, the published data shows that Y=2.27 ± 0.025 

and following the equation for the stress intensity factor, 

          Equation 5.17 

Where Y=2.27, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 5089.33 ± 56.05 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 

 

 

 

Figure 5.18 
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Figure 5.19 

As we see in the picture, the values of the J-integral are 1.3537e+05, 1.3521e+05 

and 1.3527e+05 N/m. Following the equation showed in the literature, 

      
 

   
    

 

  
  Equation 5.18 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 5201.35 N/mm
3/2

 

In this case, the error that I have obtained is near 2%, which is a great value. As 

in the previous analysis, I will introduce more material around the crack, and observe 

what happen. 
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 250 x 100 mm sheet with a 40 mm crack with an inclination of 67.5˚. 

For this kind of sheet and crack, the published data shows that Y=1.775 ± 0.025 

and following the equation for the stress intensity factor, 

          Equation 5.19 

Where Y=1.775, σ=200 N/mm
2
 and a=40mm is the crack length. So KI takes the 

value of, 

KI = 3979.54 ± 56.05 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 20mm of ratio where I want to create the degenerated mesh. 

 

 

Figure 5.20 
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Figure 5.21 

As we see in the picture, the values of the J-integral are 8.1671e+04, 8.1574e+04 

and 8.1612e+04 N/m. Following the equation showed in the literature, 

      
 

       
 

  
  Equation 5.20 

I have taken the last value because it belongs to the third integral and takes more 

elements to do the approximation. So the result that I have obtained is, 

KI = 4040.10 N/mm
3/2

 

In this case, the error that I have obtained is near 2% again, which is also a great 

value and happens the same as the two previous analysis, where the error remains 

constant. This result affirms the thing supposed previously. The error may be due to the 

fact that the published data are too little recent or that Abaqus iteration method for this 

kind or cracks is not so accurate. 
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The last two analyses have more accurate results. That could be due to the fact 

that the conditions of this two analysis are nearer to the conditions of the first analysis 

(Edge crack in a finite width sheet: uniaxial tensile stress with tensile stress without 

bending constrains), in which I have obtained great results. 

 

 ACCURACY DUE TO THE KIND OF MESH 

The following analysis that I have done is to determinate the appropriate mesh 

that should be used in the analysis of cracks. 

I have taken into account two parameters that can affect the accuracy of the 

results. 

 The number of elements along the crack 

 The number of elements around the circle 

 

 Accuracy due to the number of elements along the crack 

To develop this analysis I have chosen two of the tests made before. I have 

changed the number of elements along the crack in either case and studied the change 

on the accuracy that occurs with these changes. 

1. Edge crack in a finite width sheet: uniaxial tensile stress with tensile stress 

without bending constrains 

 

As we can see in the following graph, I have needed 10 elements to converge to 

the final solution. The differences between the values are rather small and the value 

obtained with 6 elements and the value obtained with 10 elements are more or less the 

same. The differences in the time needed to solve the problem are quite similar. So for 

this case, with 6 elements we obtain the accuracy needed.  
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Graph 5.1 

 

 

Number of 

elements 

Abaqus K value 

[N/mm
3/2

] 

Real K value 

[N/mm
3/2

] 

Distance  

[%] 

1 3745,82 3759,94 0,38 

2 3753,43 3759,94 0,17 

3 3756,01 3759,94 0,10 

4 3751,77 3759,94 0,22 

5 3752,68 3759,94 0,19 

6 3755,98 3759,94 0,11 

7 3756,01 3759,94 0,10 

8 3755,98 3759,94 0,11 

9 3756,01 3759,94 0,10 

10 3756,04 3759,94 0,10 

Table 5.1 

 

2. Edge crack in a rectangular sheet: uniform normal displacement 

 

In this case, the number of elements needed to converge to the finally solution 

are more than in the previous one. This could be due to the fact that the model is a little 

bit more complicated.  
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The data show that the differences between the values in each case are rather 

short and the time needed to solve the problems is also quite similar in every case. In 

this case, with 6 or 9 nodes we can obtain the accuracy needed. 

 

 

Graph 5.2 

Number of 

elements 

Abaqus K value 

[N/mm
3/2

] 

Real K value 

[N/mm
3/2

] 

Distance 

[%] 

1 3086,29227 3308,75 5,72 

2 3085,48213 3308,75 5,75 

3 3087,13459 3308,75 5,7 

4 3086,71346 3308,75 5,71 

5 3086,94023 3308,75 5,7 

6 3087,19938 3308,75 5,7 

7 3086,64867 3308,75 5,71 

8 3087,06981 3308,75 5,7 

9 3087,39372 3308,75 5,69 

10 3086,94023 3308,75 5,7 

11 3087,19938 3308,75 5,7 

12 3088,07383 3308,75 5,67 

13 3088,75379 3308,75 5,65 

14 3088,49478 3308,75 5,66 

15 3089,07753 3308,75 5,64 

16 3088,94804 3308,75 5,64 

17 3089,07753 3308,75 5,64 

Table 5.2 
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 Accuracy due to the number of elements around the circle 

1. Edge crack in a finite width sheet: uniaxial tensile stress with tensile stress 

without bending constrains 

 

This case is different because I started the analysis with 8 nodes because Abaqus 

cannot create the degenerated mesh around the tip with fewer elements. As the data 

show, I have needed 18 elements to converge to the final solution. However, the 

differences since the 14 elements and the time needed are very small so with 14 

elements it is enough to obtain a good result. 

 

 

Graph 5.3 

Number of 

elements 

Real K value 

[N/mm
3/2

] 

Abaqus K value 

[N/mm
3/2

] 

Distance  

[%] 

8 3759,94 3749,27 0,28 

9 3759,94 3751,05 0,24 

10 3759,94 3755,13 0,13 

11 3759,94 3755,21 0,13 

12 3759,94 3755,13 0,13 

13 3759,94 3755,08 0,13 

14 3759,94 3756,06 0,10 

15 3759,94 3755,88 0,11 

16 3759,94 3755,85 0,11 

17 3759,94 3755,80 0,11 

18 3759,94 3756,30 0,10 

Table 5.3 
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2. Edge crack in a rectangular sheet: uniform normal displacement 

 

As in the case before, I have started the analysis with 8 elements around the 

crack tip and I have needed 24 elements instead of 18 to converge to the solution. In this 

case, the differences between the values in all the cases are extremely short and the time 

needed to solve problem is approximately the shame. Therefore in this case, with 11 

elements is enough.  

 

 

Graph 5.4 

 

Number of 

elements 

Real K value 

[N/mm
3/2

] 

Abaqus K value 

[N/mm
3/2

] 

Distance  

[%] 

8 3308,75 3085,16 5,76 

9 3308,75 3085,29 5,75 

10 3308,75 3085,71 5,74 

11 3308,75 3086,23 5,73 

12 3308,75 3086,39 5,72 

13 3308,75 3086,62 5,71 

14 3308,75 3086,58 5,71 

15 3308,75 3086,62 5,71 

16 3308,75 3086,81 5,71 

17 3308,75 3086,52 5,72 
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18 3308,75 3086,55 5,72 

19 3308,75 3086,52 5,72 

20 3308,75 3086,68 5,71 

21 3308,75 3086,55 5,72 

22 3308,75 3086,29 5,72 

23 3308,75 3086,52 5,72 

24 3308,75 3086,62 5,71 

Table 5.4 

In the analyzed cases, the K factor values do not change very much when I 

change the number of elements. This is due to the fact that the analyzed cases are quite 

simple. If we rely on the theory, if we increase the number of elements, the solution will 

be more accurate because it takes into account many more points. It is therefore 

advisable to increase the number of elements when you want more precision. However, 

it is necessary to bear in mind that the more nodes we put more resources need the 

program to solve the problem and therefore need more time to obtain the solution. As in 

all cases of engineering, this is a problem of making decisions depending on what more 

we are interested in every moment, if more precision or to finish earlier. 
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5.3. 3D CRACKS 

 EDGE CRACK IN A FINITE WIDTH PLATE: UNIAXIAL 

TENSILE STRESS WITH TENSILE STRESS WITHOUT 

BENDING CONSTRAINS 

The first modelling of a 3D crack is a plate of width b, height 2h and thickness t 

containing a crack of length a in the middle of one side. It is subjected, at the ends, to a 

uniform tensile stress σ perpendicular to the direction of the crack. 

The published data of this kind of crack are take from Stress intensity factors 

book and shows the results for KI as a polynomial in a/b which is accurate to within 1% 

for all h/b≥ 1.0 and a/b ≤ 0.6; it is 

  

  
           

 

 
                                            Equation 5.21 

Where K0 is the stress intensity factor for an isolated crack of length 2a in a 

sheet subjected to a uniform stress σ, and is given by  

          Equation 5.22 

This equation of KI/K0 is only suitable for Plane Stress conditions where the 

edge effects not affect to the J value. 

To develop this analysis I have create a plate with the same conditions of one of 

the 2D sheets that I have analyse before so I can compare both data and determinate 

where start the Plane stress conditions and where is Plane strain conditions.  

The boundary conditions that I have assumed for my analysis are the same than 

in the 2D analysis but now in 3D. 

 The right corners, top and base have the restriction of no movement in x 

direction 

 The middle points of the edges of the right surface have the restriction of no 

movement in y direction. 
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With the first boundary conditions I let the plate to open freely but I do not let 

the right corners to move along the y direction. It is needed because the sheet does not 

have to rotate. And the second boundary condition is needed to do not let the sheet to 

move up or down. 

 

 

Figure 5.22 

The conditions that I have assumed are: 

 Uniform tensile stress σ of 200 MPa perpendicular to the crack length 

 Common engineering material with Young’s Modulus E=200 Gpa and Poisson’s 

ratio υ=0.3.    

 

 200 x 400 x 100 mm plate with a crack of 50 mm 

In Plane stress conditions and for this kind of plate and crack, the published data 

shows that Y=1.5 ± 0.025 and following the equation for the stress intensity factor, 
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          Equation 5.23 

Where Y=1.5, σ=200 N/mm
2
 and a=50mm is the crack length. So KI takes the 

value of, 

KI = 3759.94 ± 62.67 N/mm
3/2

 

Modelling now the crack with Abaqus, I have used a circle around the crack 

with 25mm of ratio where I have created the degenerated mesh. Ç 

In the first test that I have done to model this crack, I have used a uniform 

distributed mesh along the thickness. I have done this to analyse to have a initially 

approximation of how changes the intensity factor along the thickness and to can do 

later a better mesh. I have put fifteen elements along the thickness. 

 

     

Figure 5.23 
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Thickness 

[mm] 

Abaqus K value 

[N/mm
3/2

] 

2D K value 

[N/mm
3/2

] 

Distance  

[%] 

0 3107,31 3756,04 17,27 

3,33 3493,68 3756,04 6,99 

6,66 3701,24 3756,04 1,46 

9,99 3691,15 3756,04 1,73 

13,32 3732,96 3756,04 0,61 

16,65 3732,48 3756,04 0,63 

19,98 3745,96 3756,04 0,27 

23,31 3749,16 3756,04 0,18 

26,64 3755,69 3756,04 0,01 

29,97 3758,27 3756,04 -0,06 

33,3 3762,53 3756,04 -0,17 

36,63 3764,09 3756,04 -0,21 

39,96 3766,86 3756,04 -0,29 

43,29 3767,47 3756,04 -0,30 

46,62 3768,95 3756,04 -0,34 

49,95 3768,55 3756,04 -0,33 

53,28 3768,95 3756,04 -0,34 

56,61 3767,47 3756,04 -0,30 

59,94 3766,86 3756,04 -0,29 

63,27 3764,09 3756,04 -0,21 

66,6 3762,53 3756,04 -0,17 

69,93 3758,27 3756,04 -0,06 

73,26 3755,69 3756,04 0,01 

76,59 3749,16 3756,04 0,18 

79,92 3745,96 3756,04 0,27 

83,25 3732,48 3756,04 0,63 

86,58 3732,96 3756,04 0,61 

89,91 3691,15 3756,04 1,73 

93,24 3701,24 3756,04 1,46 

96,57 3493,68 3756,04 6,99 

100 3107,31 3756,04 17,27 

Table 5.5 



Modeling cracks with ABAQUS  Miguel Arbeloa Ronco 
 
 

84 | P á g i n a  
 

 

Graph 5.5 

The graph shows the distribution of the stress intensity factor along the 

thickness. We can realise that there is a part in which the K value changes very fast. In 

the next test I will create a special mesh to focus on this part. In the middle of the plate, 

we can see that there is Plane strain conditions and that the values are very close to 

those obtained in 2D analysis, which is a great result.  

In my second analysis I have used an especial kind of mesh to differentiate the 

parts in which there are Plane stress conditions from those in which there are Plane 

strain conditions. It is known that the plane stress conditions comes up to the 10% of the 

thickness, thus I have created a finer mesh in this zone and a rude mesh in the middle of 

the plate. 
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Figure 5.24 

Thickness 

[mm] 

Abaqus K value 

[N/mm
3/2

] 

2D K value 

[N/mm
3/2

] 

Distance  

[%] 

0 2.907,13 3756,04 22,60 

1 3.226,48 3756,04 14,10 

2 3.426,84 3756,04 8,76 

3 3.521,70 3756,04 6,24 

4 3.577,65 3756,04 4,75 

5 3.618,20 3756,04 3,67 

6 3.650,07 3756,04 2,82 

7 3.668,46 3756,04 2,33 

8 3.680,41 3756,04 2,01 

9 3.698,57 3756,04 1,53 

10 3.710,88 3756,04 1,20 

23 3.744,57 3756,04 0,31 

37 3.772,43 3756,04 -0,44 

50 3.766,67 3756,04 -0,28 

63 3.772,43 3756,04 -0,44 

77 3.744,57 3756,04 0,31 

90 3.710,88 3756,04 1,20 

91 3.698,57 3756,04 1,53 

92 3.680,41 3756,04 2,01 

93 3.668,46 3756,04 2,33 

94 3.650,07 3756,04 2,82 

95 3.618,20 3756,04 3,67 

96 3.577,65 3756,04 4,75 

97 3.521,70 3756,04 6,24 
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98 3.426,84 3756,04 8,76 

99 3.226,48 3756,04 14,10 

100 2.907,13 3756,04 22,60 

Table 5.6 

 

Graph 5.6 

The graph shows the distribution of the Intensity factor along the thickness. As I 

have supposed, the part in which there is Plane Stress conditions is around 10 % of the 

thickness and in the rest of the plate there is Plane Strain conditions, where the K value 

is more or less constant. 

If I compare the K value in 2D with the K value en 3D, we can see that the 

closer value appears in the middle of the plate, that it is something obvious. But if I take 

the first point, in which I have considered that the Plane strain conditions star, we can 

see that the distance is 1.2 %, so we can consider that the K value is constant in the zone 

with Plane Strain conditions and approximately the same value as the 2D model. 
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6. CONCLUSIONS 

This project has been carried out with lot of software problems that have slowed 

the analysis and it is more difficult to reach a complete conclusion without a great 

number of analyses. However, these problems have help to deepen in this part of the 

study that is the development of cracks installing and cracks meshing in Abaqus. 

 The first part of the project was to develop the techniques to create cracks and 

mesh these cracks with Abaqus. It has been done perfectly, as prove of this are the 

tutorials both 2D and 3D. It was a really hard work because there is no tutorial about 

how to create a crack or how to create the deformed mesh, so they have to be 

developed. 

 The second part of the project was to develop techniques of analysis for different 

kind of cracks and different geometries. Several cracks have been tested and modelled 

with great accuracy. 

 Prove of it is that the first 2D crack modelled has an error smaller that 1%, that 

shows that approximation of the solution with the finite element method is really huge. 

The other analyses that have been done in 2D are also excellent. 

 In the second one, where the displacement of the sheet is restricted, and only can 

move in the perpendicular direction of the crack length, the result obtained are also fine. 

The error estimated is around 4%, which is not as great as the analysis before but I have 

proved that the error is always constant, so the problem could lie on the published data. 

 In the slant one, the two first analyses where the crack is very slant the error is 

lightly large, but it is constant as happen in the analysis before. As we are removing the 

crack inclination and we are coming up to the first analysis, the error is getting smaller 

and I have obtained errors smaller that 2%. 

 As a conclusion of this part, it must be said that the analysis of the accuracy 

doing after shows the ideal mesh to use in both case. Although these cases are simple 

geometries and the variations in the precision is not very large, in subsequent cases with 

more complicated geometries, the mesh type to use means that we obtain high accuracy 

but also can lead that the computer needs more resources and the time needed increase.  
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 The last part of the project was to develop techniques of analysis for different 

kind of cracks in 3D models. As I have not enough time I could only do one analysis. 

However, the results obtained of this analysis are great and shows the way of continuing 

with my work. 

 ABAQUS software is widely used in engineering but the resources to create 

models and perform analysis are complicated to understand and it is very difficult to 

create them. But what makes ABAQUS an interesting toll is that, as a lot of software 

based on Finite Element Method, can give us very many information about analyses. 

 Although computational methods are very useful in fracture mechanics, they 

cannot replace experiments. A numerical fracture simulation of a cracked body can 

compute crack tip parameters, but such an analysis alone cannot predict when fracture 

will occur. Finite element analysis relies on continuum theory, and it does not contain 

voids, microcracks, second-phase particles, dislocation, or any of the other microscopic 

or submicroscopic features that control fracture behaviour in engineering materials. 

 As a conclusion, it is important to take into account that finite element analyses, 

as boundary element analyses, are just tools to help the engineer, because the engineer 

must know how to interpret the results given by these programs. 
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7. RECOMMENDATIONS 

First of all, I would like to remark that this project has provided the basis and 

foundations of an exhaust 3D crack analysis. This project can be used to acquire the 

necessary acknowledge to perform a complete study.  

 A initial analysis of the crack behaviour in 2D and 3D is already done, but to 

improve the analysis some changes could be done, this includes new geometries or 

different kind of mesh could be apply, to make the mesh more accurate for complex 

geometries. A part from that, new processes should be run, this means that for example 

analyses with different loads or different geometries could have help predicting much 

better the behaviour of the cracks inside the plates. 
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