Universidad Pública de Navarra	Nafarroako Unibertsitate Publikoa
--------------------------------	-----------------------------------

ESCUELA TECNICA SUPERIOR NEKAZARITZAKO INGENIARIEN

DE INGENIEROS AGRONOMOS GOI MAILAKO ESKOLA TEKNIKOA

ESTUDIO REGIONAL DE LAS PRECIPITACIONES DIARIAS EXTREMAS EN NAVARRA

presentado por

IBAN SAN MARTÍN GONZÁLEZ (e) k

aurkeztua

GRADO EN INGENIERÍA AGROALIMENTARIA Y DEL MEDIO RURAL

GRADUA NEKAZARITZAKO ELIKAGAIEN ETA LANDA INGURUNEAREN

INGENIARITZAN

JUNIO, 2015

2015eko EKAINA

Agradecimientos

La elaboración del siguiente Trabajo Final de Grado no habría sido posible sin la ayuda de mi tutor, José Javier López Rodríguez, al cual le agradezco su dedicación, conocimientos y organización a la hora de establecer plazos.

A Javier García González, por ayudarme a valorar desde otro punto de vista la síntesis del trabajo y por sus aportaciones.

A Juan Erro Eslava al cual le agradezco enormemente su ayuda y disposición a la hora de afrontar problemas y aportar soluciones.

A J. R.M. Hosking por sus recomendaciones y ayuda siempre que la he necesitado.

A todos los compañeros de clase, especialmente a aquellos con los que he pasado estos últimos días en los que hemos compartido problemas, dudas, prisas de última hora, pero sobre todo y especialmente buenos momentos.

A mis amigos, a todos y cada uno de ellos, que en mayor o en menor medida han contribuido.

A toda mi familia, especialmente al *aita* y a la *ama* por estar siempre a mi lado apoyándome y animándome en todo. A ellos les debo el haber llegado a estar escribiendo estas líneas tan importantes en mi vida, y en la suya, que cierran una etapa pero hacen que otra nueva se abra.

"And last but not least" a Cristina Erice, mi tutora en bachiller, que fue la persona que me animo a no dejar los estudios cuando peor estaban las cosas.

A todos ellos MILA ESKER!

Resumen

El análisis de frecuencia regional (AFR) es una metodología estadística utilizada para la predicción de la frecuencia con la que se producen ciertos valores de una variable, en este caso, los valores de las precipitaciones diarias máximas.

El objetivo del presente trabajo es estimar los cuantiles de precipitación máxima de Navarra partiéndose de 86 estaciones manuales de precipitación con una serie de registro superior a 20 años.

El AFR está basado en el índice de avenida y los *L-Moments*, resolviendo los problemas de escasez de datos en el tiempo con la abundancia en el espacio. El método consta de los siguientes apartados: Filtrado primario de las observaciones; Identificación de las regiones homogéneas; Elección de la función de distribución de frecuencias; Estimación de los cuantiles de frecuencia.

De esta forma se obtienen cinco regiones aceptablemente homogéneas en las que las distribuciones que mejor se ajustan son la General normalizada (GNO) en la región 5 y la Pearson tipo III (PE3) en las regiones 1,2,3 y 4.

Para estas regiones se obtienen los valores de los cuantiles regionales adimensionales correspondientes a determinados periodos de retorno, que en combinación con el valor del índice de avenida de cada estación permite calcular los valores estimados de precipitación de cada estación individualmente.

Palabras clave: *L-Moments*, análisis de frecuencia regional, índice de avenida, regionalización pluviométrica, precipitaciones máximas en Navarra

Abstract

Regional Frequency Analysis (AFR) is a statistical tool that predicts the frequency at which certain values of a known variable occur. In this particular case, maximum daily precipitation values.

The aim of this study is to estimate the maximum rainfall quantiles in Navarre, taking as the starting point the 86 manual weather stations with records that span 20 years or more.

The ARF is based on the index -flood and *L-Moments*, and compensates the problems associated with data gaps in rain records by using adequate area related data.

The method consist of the following sections: Filtering primary data; Identification of homogeneous regions; choosing the frequency distribution function; Estimating the frequency quantiles.

Five acceptably homogenous regions are obtained. The best statistical distributions are General Normalized (GNO) for region five and Pearson type III (PE3) for regions 1, 2, 3 and 4.

The non-dimensional regional quantiles obtained for given return periods, combined with the flood-index allow to estimate the precipitation value for each individual weather station.

Keywords: *L-Moments*, regional frequency analysis, index -flood, rainfall regionalization, maximum rainfall in Navarra

Índice general

1.	Int	roducc	ión y objetivos	1
	1.1.	Intro	oducción	1
	1.2.	Ante	ecedentes	1
	1.2	.1.	El método del índice de avenida	2
	1.2	2.	Introducción al concepto de los <i>L-Moments</i>	3
	1.3.	Obje	etivos	5
2.	Ma	terial	y métodos	6
	2.1.	Desc	cripción de las series de datos	6
	2.2.	Desc	cripción del análisis de frecuencia regional	7
	2.2	.1.	Filtrado primario de las observaciones	7
	2.2	2.	Identificación de las regiones homogéneas	9
	2.2	3.	Elección de la distribución de frecuencia	. 13
	2.2	.4.	Estimación de los cuantiles de frecuencia	. 16
	2.2	.5.	Programa estadístico R	. 20
3.	Res	sultado	os y discusión	. 21
	3.1.	Filtr	ado primario de las observaciones	. 21
	3.2.	Iden	tificación de regiones homogéneas	. 23
	3.3.	Elec	ción de la distribución de frecuencias	. 27
	3.4.	Esti	mación de los cuantiles de frecuencia	. 31
4.	Co	nclusio	ones	. 35
5.	Bib	oliogra	fía	. 37
A	nexo d	de dato	s I	. 41
Δ	nexo d	le dato	us II	67

Índice de tablas

Tabla 1. Estaciones ordenadas alfabéticamente y numeradas junto a su longitud de la serie en años	7
Tabla 2 . Valores críticos de discordancia D_I (Hosking & Wallis, 1997)	9
Tabla 3. Homogeneidad de regiones según valores de H (Hosking & Wallis, 1997)	12
Tabla4. Valores de la discordancia de las estaciones	22
Tabla 5. Coeficientes de ponderación y estandarización para los descriptores físicos de las estaciones	23
Tabla 6. Resultados de la media de heterogeneidad H para la alternativa 2 / definitiva	25
Tabla 7. Valores de D_l Para las regiones de la alternativa 2 / definitiva	25
Tabla 8. Valores del estadístico Z DIST para las distribuciones candidatas de las 5 regiones	28
Tabla 9. ECM relativo de las distribuciones candidatas de las 5 regiones	30
Tabla 10. Parámetros de la curva regional de frecuencias de las distribuciones para cada región	31
Tabla 11. Resultados de las estimaciones regionales: cuantiles de frecuencia, ECM medio absoluto y límites de error al 90 por ciento	32
Tabla 12 Índices de avenida (û:) de las todas las estaciones ordenadas según su región	34

Índice figuras

Figura 1. Localización de las estaciones manuales empeladas en el análisis.	6
Figura 2. Representación gráfica del concepto de discordancia (Hosking & Wallis, 1997)	8
Figura 3. Comparativa entre datos observados y datos simulados (Hosking & Wallis, 1997)	11
Figura 4. Representación gráfica del método de bondad de ajuste (Hosking & Wallis, 1997)	14
Figura 5. Representación gráfica de los ratios de los <i>L-Moments</i> enfrentados. <i>L-CV</i> vs. <i>L-asimete kurtosis</i> vs. <i>L-asimetría</i>	
Figura 6. Localización de las regiones.	26
Figura 7. Diagrama de los <i>L-Moments</i> de las distribuciones que mejor se ajustan para las 5 regio	nes27
Figura 8. Curva regional de frecuencias de las distribuciones candidatas de las 5 regiones	29
Figura 9. Representación gráfica de las estimaciones regionales de las 5 regiones	33

1. Introducción y objetivos

1.1. Introducción

Se conoce como análisis de frecuencia a la metodología estadística utilizada en la predicción de la frecuencia con la que ocurren ciertos valores de una variable. Dentro del ámbito del diseño hidrológico se aplica en muchas variables, especialmente para determinar la frecuencia con la que ocurren ciertos valores extremos de una variable como: caudales instantáneos, aportaciones máximas y mínimas en un periodo de tiempo, las precipitaciones diarias máximas anuales para un determinado periodo de tiempo, etc...

Es en esta última variable, precipitaciones máximas diarias, en la que nos centramos en el presente Trabajo Final de Grado (TFG).

Debido a la extensión territorial de la red pluviométrica como a la amplitud de los periodos de registro de las precipitaciones diarias, la estimación de los valores de esta variable asociados a determinados T, llamados cuantiles, son el primer paso en la metodología en el diseño de infraestructuras hidráulicas.

1.2. Antecedentes

Tanto en Navarra como en otras comunidades, tradicionalmente, los métodos de análisis de frecuencia de los eventos extremos correspondientes a los registros pluviométricos máximos de precipitación diaria, se fundamentan en el uso local de las series de precipitación. Uno de los métodos más utilizados en la práctica es el que emplea la función biparamétrica de Gumbel, por medio del método del factor de frecuencia propuesto por Chow (1951). Su utilización es y ha sido común en la actividad cotidiana en los análisis de precipitaciones máximas diarias, dentro de diversos ámbitos de la ingeniera (Gobierno de Navarra, 2001; Gómez, Sánchez, & Sánchez, 1996; MMA, 1998; MOPTMA, 1995) .No obstante, el empleo de datos locales en el cálculo de cuantiles tiene sus limitaciones, principalmente debido a la escasez de registros y a la incertidumbre existente en la determinación de valores de precipitación asociados a periodos de retorno, con un elevado sesgo muestral.

El principal objetivo de los Análisis Regionales de Frecuencia (ARF) es la estimación de aquellos sucesos extremos de una variable, como las mencionadas anteriormente, para diferentes periodos de retorno (T). Se entiende como T a la frecuencia, en número de años promedio, con la que un evento puede ser igualado o excedido al menos una vez (Mejía, 2015).

La ocurrencia excepcional de las precipitaciones junto a la su corta longitud de registros hacen que la estimación de frecuencias de estos eventos extremos sea compleja de calcular con precisión. Según Hosking y Wallis (1997), el problema se corrige "paliando la carencia en el tiempo con la abundancia en el espacio", es decir, la ausencia de datos de una determinada estación no resulta problemático siempre y cuando esta falta sea compensada por registros de otras estaciones correspondientes a la misma zona.

Por esta razón, en la actualidad es uno de los métodos que más se ha extendido en el ámbito de la ingeniería hidrológica a la hora del cálculo de la frecuencia de valores extremos. Ha sido aplicado

en diversos estudios en Australia (Pearson, McKerchar, & Woods, 1991), Estados Unidos (Vogel, Thomas Jr, & McMahon, 1993), Nueva Zelanda (Madsen, Rasmussen, & Rosbjerg, 1997), Italia (Norbiato, Borga, Sangati, & Zanon, 2007), China (Yang et al., 2010), o Suráfrica (Kjeldsen, Smithers, & Schulze, 2002). En España también se han realizado diversos trabajos como: los propuestos por los investigadores del Centro de estudios Hidrográficos del CEDEX que caracterizan los ríos de la península (A. J. Álvarez & Orduña, 2014), o los trabajos que caracterizan las precipitaciones de Galicia (M. Álvarez, Puertas Agudo, Soto, & Díaz-Fierros, 1999) y Andalucía (García-Marín, 2007).

Previo a la explicación del método propuesto por Hosking y Wallis (1997), se definen los siguientes términos en los que se basa el método, necesarios para la correcta compresión del mismo.

1.2.1. El método del índice de avenida

El denominado "*índice de avenida*" fue utilizado por primera vez en el estudio de las avenidas de Dalrymple (1960). Desde entonces, su uso se ha expandido en el análisis de frecuencias de otras variables diferentes a la original, entre ellas las precipitaciones máximas. El principio surge del método en el que se menciona como la distribución de los eventos máximos de una región considerada homogénea es idéntica, salvo por un factor de escala, índice de avenida, que refleja las características propias de precipitación de cada estación (Dalrymple, 1960).

El método del índice de avenida supone una región con N estaciones, siendo cada una de ellas i con un tamaño muestral de n_i . Q_{ij} son los datos observados de cada estación i, donde j=1,...i. El método se basa en que la función cuantil de la distribución de frecuencia de la estación i es:

$$Q_i(F) = \mu_i q(F), \quad i = 1, ... N$$
 (1)

 μ_i es el valor del índice de avenida, establecido como el valor medio de la distribución de frecuencia de la estación i considerada. El estimador del índice de avenida, $\hat{\mu}_i$, es la media de las observaciones de dicha estación i. Por otro lado, q(F) representa la curva regional de frecuencias, función cuantil adimensional común a todas las estaciones i de la región.

La curva regional de frecuencias, está en función de un conjunto, p, de determinados parámetros que requieren ser establecidos, $\widehat{\theta_k}$, donde k=1,...,p pudiéndoles asignar momentos de orden superior, además de determinados cocientes de L-Moments.

La determinación de la curva regional de frecuencias se realiza en base a observaciones adimensionales $q_{ij} = Q_{ij}/\hat{\mu}_i$, donde j = 1, ..., n e i = 1, ..., N.

Estimados los parámetros de cada estación, se combinan con objeto de dar como resultado una estimación regional de cada parámetro $\widehat{\theta^R}_k$, de manera ponderada a la media. De ese modo cada estación i tiene un peso proporcional al tamaño de su muestra n_i

$$\widehat{\theta^R}_k = \frac{\sum_{i=1}^N n_i \theta_k^{(i)}}{\sum_{i=1}^N n_i}$$
(2)

La curva regional de frecuencias, $\hat{q}(F; \widehat{\theta_1^R}, ..., \widehat{\theta_p^R})$, se logra sustituyendo los p parámetros regionales estimados.

Finalmente, una vez estimados los valores del índice de avenida, $\widehat{\mu}_l$, como el valor de $\widehat{q}(F)$ de la curva regional de frecuencias, los cuantiles estimados para cada una de las estaciones surge de la aplicación de:

$$\widehat{Q}_{i}(F) = \widehat{\mu}_{i}\widehat{q}(F) \tag{3}$$

El método del índice de avenida parte desde los siguientes supuestos:

- i. Las observaciones de cualquier estación están idénticamente distribuidas
- ii. Las observaciones de cualquier estación son independientes
- iii. Las observaciones entre estaciones también son independientes
- iv. Las distribuciones de frecuencia de diferentes estaciones son iguales salvo por un factor de escala, específico para cada una de ellas
- v. La forma matemática de la curva regional de frecuencias está correctamente especificada

Generalmente, los dos primeros supuestos se cumplen para la mayoría de los casos, especialmente en los casos de los valores acumulados anuales y en los valores extremos, que suelen estar libres de variaciones temporales. Es evidente que los análisis regionales de frecuencia deben basarse en los registros pasados para determinar que puede ocurrir en un futuro.

Según vieron Greenwood, Maciuns Landwehr, Matalas, y Wallis (1979), y MacMahon y Srikanthan (1982), la dependencia serial en el AFR, genera un leve aumento del sesgo y el error estándar de los cuantiles estimados.

Por último, las tres últimas suposiciones del método, raramente se cumplen. Se espera cierta correlación entre estaciones próximas, como por ejemplo, en estudios de precipitación, de caudales o en sequias. Además, las dos últimas suposiciones mencionas nunca se van a cumplir en la práctica.

1.2.2. Introducción al concepto de los L-Moments

El empleo de *L-Moments* supone el uso de un sistema alternativo a los métodos tradicionales a la hora de describir las formas de las funciones de distribución. Surgen por combinaciones lineales de momentos ponderados probabilísticamente. Fueron introducidos por primera vez por Greendwood, Maniuns, Landwehr y Wallis (Greenwood et al., 1979).

Los momentos ponderados probabilísticamente de la variable aleatoria x, que presenta una función de distribución F (.), son utilizados a la hora de estimar los parámetros de las distribuciones, y se definen de la siguiente manera:

$$M_{nks} = E[X^{p}\{F(X)\}^{k}\{1 - F(X)\}^{s}]$$
(4)

E hace referencia al valor de la esperanza, p, k y s son números reales y F hace alusión a la función de distribución acumulada.

En los supuestos en los que p = 1 con k = 0 y p = 1 con s = 0, denotados desde ahora como $\alpha_r = M_1$, α_r , α

Los cuatro primeros momentos lineales λ_i se definen de la siguiente manera:

- $\lambda_1 = \alpha_0 = \beta_0$,
- $\bullet \quad \lambda_2=\alpha_0\text{-}2\alpha_1=2\beta_1\text{-}\beta_0,$
- $\lambda_3 = \alpha_0 6\alpha_1 + 6\alpha_2 = 6\beta_2 6\beta_1 + \beta_0$,
- $\lambda_4 = \alpha_0 12\alpha_1 + 30\alpha_2 20\alpha_3 = 20\beta_2 30\beta_2 + 12\beta_1 \beta_0$

donde el momento lineal de primer orden, λ_1 , es la media de la variable localización, el segundo momento, λ_2 , se refiere a la escala de distribución en el que se indica el grado de dispersión de los datos, el momento lineal de tercer orden, λ_3 , representa la asimetría y finalmente el cuarto momento lineal, λ_4 , se refiere al apuntamiento de la distribución, *kurtosis*.

La comparación de estaciones se realiza por contraste de los *L-Moments* de manera adimensional. Para ello se calculan los ratios. Estos se obtienen dividiendo aquellos momentos lineales de mayor escala, λ_3 y λ_4 , por la escala de distribución, λ_2 (Hosking & Wallis, 1997).

$$\tau_r = \frac{\lambda_r}{\lambda_2}, \qquad r = 3, 4 \dots \tag{5}$$

de esta manera se logra obtener una forma de la distribución independiente a su escala de medida, lo que permite evaluar equitativamente estaciones con diferentes registros de series. Los valores más importantes son los siguientes:

- *L-CV*: $\tau = \frac{\lambda_2}{\lambda_1}$
- L- asimetría: $\tau_3 = \frac{\lambda_3}{\lambda_2}$
- *L-kurtosis:* $\tau_4 = \frac{\lambda_4}{\lambda_2}$

En el presente TFG, los *L-Moments* con los que se trabaja son la media λ_1 , la escala λ_2 , el *L-CV* τ , *L-asimetría* τ_3 , y *L-kurtosis* τ_4 , representados como l_I , l_2 , t_3 y t_4 en los casos en los que se haga referencia a los valores muestrales.

1.3. Objetivos

Los principales objetivos que se plantean durante el desarrollo del presente TFG, son los siguientes:

- Desarrollar un AFR, de los valores de precipitación diaria máxima anual, de las estaciones manuales en la Comunidad Foral de Navarra, aplicando el método del índice de avenida y los *L-Moments*, propuesto por Hosking y Wallis (1997).
- Regionalizar la Comunidad Foral de Navarra en zonas homogéneas con respecto a la precipitación diaria máxima anual.
- Aplicar el AFR en una zona homogénea.
- Obtener los cuantiles de precipitación máximos diarios estimados para cada estación.

2. Material y métodos

2.1. Descripción de las series de datos

Se parte de las series de precipitación diaria de todas las estaciones manuales que tengan una serie de registro superior o igual a 20 años hasta el año 2014 (Hosking & Wallis, 1997). Las automáticas no se han tenido en cuenta ya que tienen series cortas.

Los valores pluviométricos empleados en el estudio se han tomado de la página web de Meteorología y climatología de Navarra, servicio coordinado por los departamentos de Desarrollo Rural y Medio Ambiente e Innovación, Empresa y Empleo del Gobierno de Navarra (Meteo Navarra, 2014) (http://meteo.navarra.es/).

De todas las estaciones manuales existentes se han seleccionado un total de 86 estaciones, Figura 1, que cumplen con los criterios anteriormente mencionados.

En la Tabla 1 se indica la longitud de años de la serie.

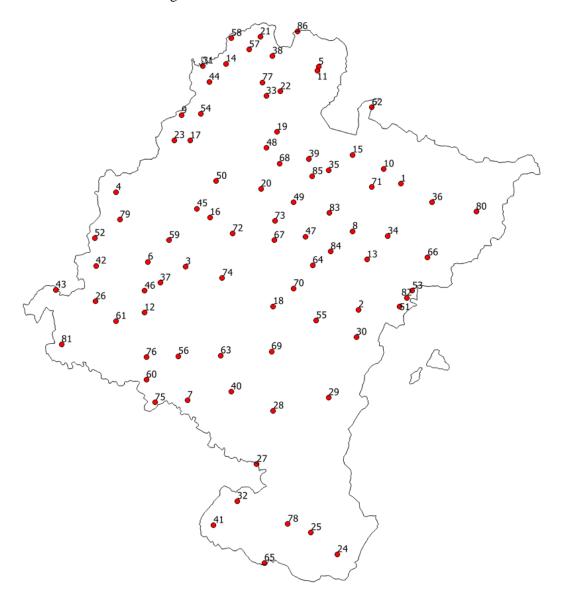


Figura 1. Localización de las estaciones manuales empeladas en el análisis.

Tabla 1. Estaciones ordenadas alfabéticamente	y numeradas ji	unto a su lo	ongitud de la	serie en años

Estación	Longitud (años)	Estación	Longitud (años)	Estación	Longitud (años)	Estación	Longitud (años)
Abaurrea.A (1)	60	Betelu (23)	38	Goñi (45)	40	Noáin (67)	38
Aibar (2)	41	Buñuel (24)	85	Igúzquiza (46)	32	Olagüe (68)	40
Alloz (3)	58	Cabanillas (25)	33	Ilundaín (47)	36	Olite (69)	83
Altsasu (4)	102	Cábrega (26)	20	Iraizotz (48)	44	Olóriz (70)	33
Amaiur (5)	39	Cadreita (27)	48	Irotz (49)	36	Oroz.B (71)	22
Amillano (6)	40	Caparroso (28)	84	Irurtzun (50)	40	Otazu (72)	39
Andosilla (7)	24	Carcastillo (29)	82	Javier (51)	64	Pamplona (73)	129
Aoiz (8)	22	Cáseda (30)	41	Larraona (52)	40	P.Reina(74)	43
Areso (9)	27	C. Arrambide (31)	28	Leire (53)	37	Sartaguda (75)	91
Aribe (10)	44	Corella (32)	47	Leitza (54)	29	Sesma (76)	27
Arizkun (11)	38	Doneztebe (33)	85	Lerga (55)	40	Sunbilla (77)	36
Arróniz (12)	48	Epároz (34)	41	Lerín (56)	42	Tudela (78)	29
Artieda (13)	48	Erro (35)	40	Lesaka-S.Antón (57)	24	Urbasa (79)	28
Artikutza (14)	33	E.Salazar (36)	41	Lesaka (58)	34	Urzainqui (80)	34
Aurizberri (15)	43	Estella (37)	23	Lezáun (59)	27	Viana (81)	33
Azanza (16)	27	Etxalar (38)	27	Lodosa (60)	36	Yesa (82)	81
Azpirotz (17)	27	Eugi (39)	47	L.Arcos (61)	32	Zalba (83)	22
Barásoain (18)	36	Falces (40)	46	Luzaide (62)	41	Zuazu (84)	28
Belate (19)	28	Fitero (41)	82	Miranda (63)	32	Zubiri (85)	47
Belzunce (20)	27	Galbarra (42)	40	Monreal (64)	35	Zugarramurdi (86)	25
Bera (21)	35	Genevilla (43)	25	Monteagudo (65)	85		
Bertiz (22)	23	Goizueta (44)	47	Navascués (66)	35		

2.2. Descripción del análisis de frecuencia regional

La metodología utilizada en el AFR de este trabajo, corresponde a la establecida por Hosking y Wallis (1997), y consta de los siguientes apartados:

- 1. Filtrado primario de las observaciones
- 2. Identificación de regiones homogéneas
- 3. Selección de la función de distribución de frecuencia
- 4. Estimación de los cuantíles

2.2.1. Filtrado primario de las observaciones

El método requiere de un análisis de los datos con el fin de tratar de encontrar aquellos valores anómalos o erróneos que han de ser eliminados, tratando de obtener una región homogénea y representativa con respecto a la variable estudiar.

La comparación de valores de los *L-Moments* de estaciones próximas o la inspección individualizada de los mismos, resulta ser un método de filtrado previo en el que se propone un análisis de datos que busca estaciones discordantes. En este análisis se comparan, uno a uno, todos

los valores de los *L-Moments* de cada una de las estaciones, con el resto de valores de las otras estaciones y con los valores medios del conjunto.

Se pretende identificar las estaciones que son discordantes con el resto. Se consideran discordantes aquellas estaciones que más se alejen del centro de la nube de puntos.

En la Figura 2 se muestra un ejemplo. En ella se representan gráficamente los valores enfrentados de *L-CV* frente a los valores de *L-asimetría*. El símbolo representado con una cruz (+), hace referencia al valor medio del grupo, mientras que los valores de cada una de las estaciones se representan en círculos. En torno al punto central de la región, se construyen elipses concéntricas, de modo que los valores que quedan fuera de la elipse más externa son aquellos considerados como discordantes

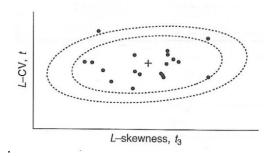


Figura 2. Representación gráfica del concepto de discordancia (Hosking & Wallis, 1997).

La apreciación gráfica es un método subjetivo, por lo que se propone un método numérico que determine la discordancia. Suponiéndose que la región presenta N estaciones, donde $u_i = [t^{(i)} t_3^{(i)}]^T$ es el vector que contiene los valores de t, t_3 y t_4 de los L-Moments de cada estación i, donde el superíndice T indica la transposición del mismo vector. Siendo la media del grupo:

$$\bar{u} = \frac{\sum_{i=1}^{N} u_i}{N} \tag{6}$$

la matriz de sumas de cuadrados y productos cuadrados,

$$A = \sum_{i=1}^{N} (u_i - \bar{u})(u_i - \bar{u})^T.$$
(7)

se define la media de las discordancia, D_i , de cada estación, i, como

$$D_i = \frac{1}{3}N(u_i - \bar{u})^T A^{-1}(u_i - \bar{u}).$$
(8)

Para evaluar si la estación es discordante o no Hosking y Walis (1997), establecen unos valores de referencia de D_i que se presentan en la Tabla 2.

Tabla 2. Valores críticos de discordancia D_i (Hosking & Wallis, 1997)

Nº estaciones en la región	Valor crítico	Nº estaciones en la región	Valor crítico
5	1,333	10	2,491
6	1,648	11	2,632
7	1,917	12	2,757
8	2,140	13	2,869
9	2,329	14	2,917
		>15	3,000

En aquellas estaciones en las que el valor de D_i sea superior al establecido, se recomienda realizar un análisis más exhaustivo en el filtrado de datos de partida, tratando de detectar valores atípicos, o errores.

2.2.2. Identificación de las regiones homogéneas

Se entiende por región aquella zona en la que se puede asumir que la distribución de frecuencias que rige la precipitación extrema es la misma en todas ellas. Se considera como la unidad fundamental del AFR. El objetivo de este apartado es el de formar regiones (regionalizar) que satisfagan la condición de homogeneidad, es decir que todas las estaciones de la región presente una distribución de frecuencias idéntica, salvo por un factor de escala específico (Dalrymple, 1960).

Los datos que se disponen para la regionalización suelen ser las observaciones registradas en cada estación y una serie de descriptores físicos que consideran las características físicas de cada estación (latitud, altitud...). Hosking y Wallis (1997), basan la identificación de regiones en los descriptores físicos mientras que las observaciones se reservan para comprobar la homogeneidad de la región.

El establecimiento de las regiones se realiza mediante el cálculo de diversos estadísticos, *L-Moments*, de cada estación. Estos valores son cotejados con los valores del resto de estaciones, de modo que pueden calcularse valores de homogeneidad para las regiones generadas. Una buena herramienta para su cálculo es el empleo de los *L-Moments*.

En el AFR los conjuntos, *clusters*, se forman por agrupamientos de estaciones de características físicas similares. Al compararse características físicas con escalas de medición diferentes éstas se estandarizan con el fin de lograr un escenario de dispersión idéntico, ya que los algoritmos de *cluster* miden las distancias euclídeas en el espacio. Como cada variable no influye de igual modo se les otorga diferentes pesos de ponderación (Hosking & Wallis, 1997). La estandarización y ponderación se realiza según la ecuación 9 donde; P representa el valor de ponderación asignado, X la variable y s(x) la desviación estándar de la variable

$$Y = P \frac{X}{s(X)} \tag{9}$$

El número de *clusters* está en función de las necesidades de la región, razón por la que se emplea el método de Ward. El método se define como "un procedimiento jerárquico en el cual en cada etapa, se unen dos *clusters* para los cuales se tenga un menor incremento en el valor total de la suma de los cuadrados de las diferencias, dentro de cada *cluster*, de cada individuo al centroide del *cluster*" (Ward Jr, 1963).

Los resultados que se obtienen por medio del análisis *cluster* no tienen por qué ser definitivos. Se pueden realizar ajustes subjetivos con el fin de mejorar la cohesión física de las regiones y para reducir la heterogeneidad *H* de las regiones, como:

- Mover estaciones de una región a otra
- Eliminar estaciones
- Subdividir regiones
- Romper regiones por medio de traslados de estaciones de un cluster a otro
- Fusionar regiones entre si
- Obtener nuevos datos y redefinir las regiones

Tras definirse el conjunto de las regiones, se evalúa si éstas cumplen con el criterio de homogeneidad. Precisa de una cantidad δ que mide un aspecto de la distribución de frecuencias, siendo constante para toda la región. δ puede ser un evento de 10 años escaldo por la media, (Dalrymple, 1960; Stedinger, Vogel, & Foufoula-Georgiou, 1993; Fill & Stedinger, 1995), el coeficiente de variación (Wiltshire, 1986), una combinación de L-CV y L-asimetría (Chowdhury, Stedinger, & Lu, 1991). En este caso se trata de una combinación de L-CV, L-asimetría y L-kurtosis (Hosking & Wallis, 1993). Se calculan las estimaciones para δ : $\hat{\delta}^{(i)}$ que es la estimación local de la estación i en base a sus observaciones y $\hat{\delta}^{(R)}$ que es la estimación regional de todas las estaciones asumiéndose homogeneidad. Por medio del estadístico S se determina la diferencia entre estimaciones locales y regionales:

$$S = \sum_{i=1}^{N} (\hat{\delta}^{(i)} - \hat{\delta}^{(R)})^{2}$$
(10)

Se compara el valor observado de *S* con el que tendría si la distribución fuese homogénea, lo que implica sumir una determinada forma para la distribución de frecuencias. En el AFR se recomienda asumir una distribución Kappa, descrita en el *Anexo I*, en test que se basan en los *L-Moments*.

Se considera una región homogénea si las estaciones de la región tienen los mismos valores de *L-Moments* poblacionales, aunque no tengan los mismos valores para los *L-Moments* muestrales como consecuencia del muestreo. La Figura 3 plantea si la dispersión entre *L-Moments* observados es mayor que los *L-Moments* simulados.

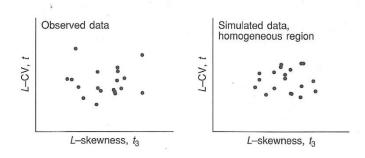


Figura 3. Comparativa entre datos observados y datos simulados (Hosking & Wallis, 1997).

La representación gráfica de los valores de *L-Moments* de las estaciones se puede obtener para la comparación de los valores de *L-asimetría* frente a los de *L-CV* y *L-kurtosis*. La media se obtiene por la distancia media del punto de una estación al punto de la media grupal. Para medir la dispersión se realiza una representación gráfica de los *L-Moments* de las estaciones, en las que se comparan los valores de *L-CV* frente a los valores de *L-asimetría* y los valores de *L-CV* frente a los de *L-kurtosis*. Para obtener los valores de la media y de la desviación estándar de la región simulada, se emplean simulaciones repetidas de regiones homogéneas con una longitud de registros idéntica y con el mismo número de estaciones que para el caso real. La comparación entre los datos observados y los simulados emplea el estadístico

Valores elevados indican que los *L-Moments* observados están más dispersos que los correspondientes a una región simulada.

Para establecer que distribución se va a utilizar a la hora de generar los datos simulados Hosking y Wallis, (1997), recomiendan el uso de la distribución Kappa. Su elección se justifica por el hecho de que en ella se incluyen, como casos particulares, las distribuciones General Logística (GLO), General de valores extremos (GEV), General de Pareto (GPA), Logística y Gumbel. Los *L-Moments* pueden ser seleccionados igualándolos con la media regional de *L-CV*, *L-asimetría* y *L-kurtosis*.

Numéricamente la metodología se define suponiendo que la región propuesta tiene N estaciones para cada estación i con una longitud de registros de n_i y con unos ratios de L-Moments definidos como $t^{(i)}$, $t_3^{(i)}$ y $t_4^{(i)}$. Siendo t^R , t_3^R y t_4^R los valores de los L-Moments regionales de L-CV, L-asimetría y L-kurtosis respectivamente, ponderados proporcionalmente en función de la longitud muestral

$$t^{R} = \frac{\sum_{i=1}^{N} n_{i} t^{(i)}}{\sum_{i=1}^{N} n_{i}}$$
 (12)

la desviación estándar ponderada de los *L-CV* locales es:

$$V = \left\{ \sum_{i=1}^{N} n_i (t^{(i)} - t^R)^2 / \sum_{i=1}^{N} n_i \right\}^{\frac{1}{2}}$$
 (13)

Se ajusta la distribución Kappa a los ratios medios regionales 1, t^R , t_3^R y t_4^R . Se establece un valor de 1 para la media regional ya que la media de los valores reescalados q_{ij} de cada una de las estaciones es también 1. Se realizan N_{sim} simulaciones de una región con N estaciones, teniendo en cuenta para cada una de ellas la función de distribución de frecuencias Kappa. Para cada región simulada se calcula un valor V. Además para cada simulación se calcula la media (μ_V) y la desviación estándar (σ_V) de los valores de N_{sim} . La heterogeneidad H se calcula como

$$H = \frac{(V - \mu_V)}{\sigma_V} \tag{14}$$

Las regiones son calificadas en función de varemos de *H* (Tabla 3).

Tabla 3. Homogeneidad de regiones según valores de H (Hosking & Wallis, 1997).

Clasificación	Valores		
Aceptablemente	<i>H</i> <1		
homogénea	11<1		
Posiblemente	1 < <i>H</i> < 2		
heterogénea	$1 \le H \le 2$		
Definitivamente	H > 2		
heterogénea	11 > 2		

La comparación entre valores observados y simulados se realiza por medio del estadístico H, con un número de simulaciones adecuado, 500, siendo mayor en n_i de simulaciones en el caso de que H sea cercano a 1 y 2 (Hosking & Wallis, 1997).

En el caso de que el ajuste a la distribución Kappa no pueda realizarse por los *L-Moments*, una solución es el empleo de la distribución GLO, caso particular de la distribución Kappa, en la que el parámetro h=-1. Que no se pueda ajustar a la distribución Kappa se debe por las diferencias entre t_4 ^R con respecto a t_3 ^R que son muy elevadas (Hosking & Wallis, 1997).

La caracterización de *H* por medio de la ecuación 14, se basa en que los *L-CV* tienen un poder discriminatorio mayor que *L-asimetría* y *L-kurtosis* y en que tienen mayor capacidad de comparación de estaciones por el método del índice de avenida.

Si la región no es calificada como "aceptablemente homogénea" se debe considerar la posibilidad de volver a regionalizar realizando nuevos análisis cluster o repitiendo el proceso. Puede ocurrir que se den H aparentes entre estaciones de una región que a pesar de tener descriptores físicos similares con la región, tengan valores atípicos. Aquí es donde los argumentos físicos prevalecen sobre los estadísticos y por lo tanto, donde el AFR aporta su mayor potencial.

2.2.3. Elección de la función de distribución de frecuencia

El objetivo es encontrar una distribución que proporcione estimaciones precisas para cada estación. La distribución elegida no tiene por qué ser la que más se aproxime a las observaciones ya que no garantiza que los valores futuros de la variable estén relacionados con los del pasado debido a factores físicos que tienden a generar valores *outliers*. Por esta razón se antepone la elección de la distribución por medio de un modelo robusto en vez de en función de la distribución que mejor se ajusta.

Para establecer que distribución de frecuencias regional es la más adecuada, Hosking y Wallis (1997), proponen diversas funciones candidatas: GLO, GEV, General Normalizada (GNO), Pearson tipo III (PE3) y General de Pareto (GPA), la información detallada de cada una se incluye en el apartado 4 del *Anexo I*. Estas distribuciones son las elegidas para el análisis debido a que entre sus casos particulares se incluyen las distribuciones más empleadas en el cálculo de variables ambientales.

Obsérvese como la elección de las distribuciones de frecuencia también se basa en función de los parámetros de cada una. La ventaja del AFR es que al empelar distribuciones de tres a cinco parámetros se logra más fiabilidad que en los métodos clásicos, con distribuciones de dos parámetros, en los que los cuantíles estimados más extremos aumentan su error, siendo lo más adecuado para Hosking y Wallis (1997).

Si hay varias distribuciones que se ajustan bien, se selecciona la más robusta, es decir, aquella que mejor se ajuste a valores futuros, en función de los parámetros de bondad de ajuste. La bondad de ajuste se calcula por medio de los *L-Moments* regionales. Otra modalidad de bondad de ajuste definida por Hosking y Wallis (1997), por simulaciones tipo Monte Carlo, evalúa hasta qué punto una distribución concreta se aproxima a los datos observados y seleccionar la que mejor se ajuste.

Siendo una región aceptablemente homogénea, los ratios de los *L-Moments* de las estaciones que forman la región se resumen en los *L-Moments* regionales. Los parámetros de la localización y escala de la distribución que se evalúa se calculan igualándolos con los valores de la media y *L-CV* de la región respectivamente. La bondad de ajuste determina cuanto se acercan los valores de *L-asimetría* y de *L-kurtosis* de la distribución a los de la región.

La estimación de la bondad de ajuste se realiza asumiendo que la distribución GEV es la distribución candidata, en la que los valores de *L-asimetría* y *L-kurtosis* son insesgados. La distribución es ajustada por medio de los *L-Moments* en la que sus valores de *L-*asimetría son iguales a los de la media regional. La determinación de la bondad del ajuste se realiza por comparación de los valores de *L*-kurtosis de la distribución GEV, τ_4^{GEV} , con los de la media regional, t_4^R , Figura 4.

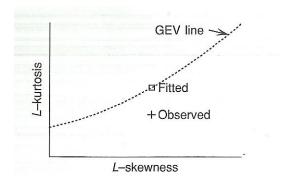


Figura 4. Representación gráfica del método de bondad de ajuste (Hosking & Wallis, 1997).

Determinar si la diferencia es significativa entre τ_4^{GEV} y t_4^R requiere el cálculo de la desviación estándar (σ_4) de t_4^R . Esta se calcula por medio de la simulación de una región homogénea en la que las estaciones están ajustadas a una GEV con las longitudes muestrales similares a las observadas.

$$Z^{GEV} = \left(t_4^R - \tau_4^{GEV}\right)/\sigma_4 \tag{15}$$

El método presenta la dificultad de que para distribución candidata se debe realizar un conjunto de simulaciones para determinar σ_4 . Por ello se asume que los valores de σ_4 son iguales para todas las distribuciones debido a que los datos de *L-asimetría* son iguales garantizando resultados de σ_4 similares. En base a esto se recomienda emplear las simulaciones de la distribución Kappa utilizadas en el cálculo de la medida de la heterogeneidad (Hosking & Wallis, 1997).

En el caso en el que L-asimetría y L-kurtosis se asuman como insesgados, esta aproximación puede ser buena para t_3 , pero no para t_4 en los casos en los que las longitudes muestrales sean cortas (menores de 20 años) en caso de que el valor regional de L-asimetría sea elevado (τ_3) . Una solución es corregir el sesgo de t_4 comparando el coeficiente de L-kurtosis ajustado, τ_4^{GEV} , con el de la versión corregida $t_4^R - B_4$. B_4 es el sesgo de la media regional de L-kurtosis en regiones con el mismo número de estaciones y longitudes muestrales, calculándose para las mismas simulaciones utilizadas para σ_4 .

Numéricamente el procedimiento se compone de una región de N estaciones en la que cada estación, i, con una longitud muestral, n_i , tiene como ratios de L-moments $t^{(i)}$, $t_3^{(i)}$ y $t_4^{(i)}$, donde t^R , t_3^R y t_4^R son los ratios medios regionales de L-CV, L-asimetría y L-kurtosis, ponderados proporcionalmente en función de la longitud muestral, como en el caso de la ecuación 12. Las distribuciones candidatas son: GNO, GEV, GPA, PE3 y GLO.

Cada una de las regiones es ajustada por separado a los ratios medios regional, 1, t^R y t_3^R , denotándose como τ_4^{DIST} al coeficiente de *L-kurtosis* de la distribución ajustada, en el que DIST hace referencia a las distribuciones GNO, GEV, GPA, PE3 y GLO.

Paralelamente se ajusta una distribución Kappa a los ratios medios regionales 1, t^R , t_3^R y t_4^R realizándose N_i simulaciones para una región de N estaciones cada una. Para la m-ésima región simulada se obtiene el valor regional de L-asimetría, $t_3^{[m]}$, y de L-kurtosis, $t_4^{[m]}$. El sesgo de t_4^R se calcula

$$B_4 = N_{sim}^{-1} \sum_{m=1}^{N_{sim}} \left(t_4^{[m]} - t_4^R \right). \tag{16}$$

y la desviación estándar de t₄^R

$$\sigma^4 = \left[(N_{sim} - 1)^{-1} \left\{ \sum_{m=1}^{N_{sim}} \left(t_4^{[m]} - t_4^R \right)^2 - N_{sim} B_4^2 \right\} \right]^{\frac{1}{2}}, \tag{17}$$

para cada distribución candidata la medida de bondad de ajuste viene dada por

$$Z^{DIST} = (\tau_4^{DIST} - t_4^R - B_4)/\sigma_4 \tag{18}$$

El ajuste es adecuado si Z^{DIST} es cercano al cero y si se establece dentro de los límites de $Z^{DIST} \le |1,64|$ que proponen Hosking y Wallis (1997).

En el caso de la medida de la bondad de ajuste, son aceptables todas aquellas estaciones que cumplan con el criterio de $Z^{DIST} \le |1,64|$. Para cada una de ellas se calcula la curva regional de frecuencias. Si las curvas son iguales, cualquiera de las distribuciones puede considerarse como adecuada, aunque se opta por determinarla por el método más robusto.

2.2.4. Estimación de los cuantiles de frecuencia

Seleccionadas las regiones y las distribuciones de frecuencia más apropiadas para cada caso se procede a determinar los parámetros necesarios para el cálculo de los cuantíles. La relación entre las distribuciones de las estaciones de una región aceptablemente homogénea son la justificación del AFR, ya que permite estimar con mayor precisión los valores de los cuantíles obtenidos de todas las estaciones que los logrados estación por estación.

Para determinar los parámetros de la distribución se utiliza lo expresado en la ecuación 1 referente al índice de avenida en el que se supone una región con N estaciones, siendo cada una de ellas i con un tamaño muestral de n_i . Q_{ij} son los datos observados de cada estación i, donde j=1,...i. μ_i es el valor del índice de avenida, el estimador del índice de avenida, $\hat{\mu}_{i}$, q(F) representa la curva regional de frecuencias y los parámetros adimensionales son $q_{ij} = Q_{ij}/\hat{\mu}_i$, donde j = 1, ..., n e i = 1, ..., N

En el ejemplo del apartado 1.2.1 se utilizan los descriptores estadísticos de los datos de cada región. En el caso de que los estadísticos utilizados sean los ratios de L-Moments suponen una alternativa razonable a la hora de combinar la información entre estaciones de la región. Su cálculo no requiere del tratamiento simultáneo de todos los datos ya que los ratios medios regionales de los L-Moments aglutinan las características de las estaciones que componen la región.

Estas razones hacen que el método del índice de avenida junto a los algoritmos regionales de L-Moments sea la opción más conveniente y eficiente a la hora de estimar los parámetros correspondientes de la distribución así como para el cálculo de los cuantíles de interés (Hosking & Wallis, 1997).

Se trata de ajustar a los datos de una región homogénea una distribución regional de frecuencias particularizada para cada estación por medio del índice de avenida, para después estimar los cuantíles mediante la distribución local.

El ajuste de la distribución se realiza a través del método de L-Moments en el que los parámetros se estiman igualando los L-Moments poblacionales de la distribución a los de la muestra. Asumiendo una región homogénea los ratios muéstrales de L-Moments logrados desde los datos reescaldos q_{ij} de las estaciones son combinados para lograr los ratios medios regionales de L-Moments, que son ponderados de manera proporcional a la longitud de la muestra para logar más variabilidad en los ratios de muestras pequeñas (Hosking & Wallis, 1997).

El índice de avenida se asume como la media de las observaciones, por lo que la media de los valores rescaldados q_{ij} sea 1, al igual que la media regional de las medias.

La metodología numérica supone una región de N estaciones, cada estación i, con longitud muestral n_i , media muestral, $l_1^{(i)}$, y ratios de *L-Moments* $t_1^{(i)}$, $t_2^{(i)}$, $t_3^{(i)}$, $t_3^{(i)}$, $t_4^{(i)}$. Siendo como t_1^R , t_3^R , t₄^R... los ratios medios regionales de *L-Moments* ponderados proporcionalmente en función de la longitud muestral:

$$t^{R} = \sum_{i=1}^{N} \frac{n_{i} t^{(i)}}{\sum_{i=1}^{N} n_{i}},$$

$$t_{r}^{R} = \sum_{i=1}^{N} \frac{n_{i} t_{r}^{(i)}}{\sum_{i=1}^{N} n_{i}},$$
(19)

$$t_r^R = \sum_{i=1}^N \frac{n_i t_r^{(i)}}{\sum_{i=1}^N n_i},\tag{20}$$

Estableciéndose como valor de la media regional el 1, por lo que $l_1^R=1$.

La distribución se ajusta igualando sus ratios de *L-Moments* λ_1 , τ , τ_3 , τ_4 ... a los ratios medios regionales de *L-Moments* l_1^R , t_2^R , t_3^R , t_4^R ,..., calculados. Se expresa como $\hat{q}(.)$ la función Cuantil de la distribución de frecuencia ajustada.

La estimación de los cuantiles en la estación i se logra por combinación de las estimaciones μ_i y q (.). De este modo el cuantil de probabilidad de no excedencia F es:

$$\widehat{Q}_{i}(F) = \widehat{\mu}_{i}\widehat{q}(F) \tag{21}$$

Como en todo análisis estadístico los valores estimados han de ser incluidos dentro de un rango de incertidumbre que ha de determinarse para maximizar la utilidad de los datos estimados. Dentro del AFR el uso de intervalos de confianza no es muy útil ya que rara vez se puede asegurar que los supuestos se cumplan, supuestos referentes al método del índice de avenida. Es necesario una forma de evaluar que tenga en consideración; la dependencia entre estaciones, que la región sea moderadamente heterogénea o que la distribución de frecuencias no esté perfectamente caracterizada.

Así se establecen las simulaciones tipo Monte Carlo como mejor opción, ejecutándose de modo que tengan en consideración las características de los datos con los que se calculan las estimaciones. La región simulada debe tener el mismo número de ratios medios de *L-Moments*, estaciones y longitudes muestrales.

La elección de los ratios de los *L-Moments* locales se realiza de manera que la región simulada alcance un valor de heterogeneidad equilibrada con la heterogeneidad real. Por esta razón se realizan diversas simulaciones hasta conseguir variabilidad para dichos ratios siendo necesario cierta arbitrariedad y criterios subjetivos de decisión. Es importante destacar como la variación interstacional de los ratios de los *L-Moments* de la región simulada no pueden ser superior a los de la observada ya que la variabilidad del muestreo implica mayor dispersión en los *L-Momentos* muestrales que en los poblacionales.

En el caso de que la dependencia entre estaciones resulte problemática, puede incluirse en la simulación modificando el algoritmo. Una manera de estructurarla es asumiendo que cada distribución de frecuencia local se transforme en una distribución normal, llamada transformación T. Para la generación de datos se siguen los siguientes pasos: generar una matriz de correlación R entre estaciones de la misma región, generar un vector aleatorio x de distribución normal multivariada y covarianza de la matriz R y aplicar la inversa de la transformación T para obtener los datos de la distribución marginal requerida.

La estructura de la matriz R debe ser coherente con las observaciones. Si no existe correlación entre las estaciones serán consideradas como equicorrelacionadas; así el valor de correlación entre los sitios i y j es $\rho_{ij} = \rho$ para $i \neq j$ con la matriz R con la siguiente forma

$$R = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \rho & \rho & 1 & \dots & \rho \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho & \rho & \rho & 0 & 1 \end{bmatrix}. \tag{22}$$

Donde el valor de ρ se estima por medio de las correlaciones entre cada par de estaciones, siendo Q_{ik} el dato de la estación i en el punto temporal k. La correlación para cada par de estaciones i y j se define

$$r_{ij} = \frac{\sum_{k} (Q_{ik} - \overline{Q}_{t}) (Q_{jk} - \overline{Q}_{j})}{\left\{ \sum_{k} (Q_{ik} - \overline{Q}_{t})^{2} \sum_{k} (Q_{jk} - \overline{Q}_{j})^{2} \right\}^{1/2}}$$
(23)

donde

$$\overline{Q}_i = n_{ij}^{-1} \sum_{k} Q_{ij}. \tag{24}$$

hace referencia a las sumas sobre k extendidas a todos los puntos temporales en los que ambas estaciones, i y j, tienen datos y n_{ij} es el número de dichos puntos. El valor de la correlación medio se define:

$$\bar{r} = \left\{ \frac{1}{2}N(N-1) \right\}^{-1} \sum_{1 \le i} \sum_{j \le N} r_{ij}. \tag{25}$$

El empleo de simulaciones hace que el cálculo de las estimaciones de los cuantíles se calculen para ciertas probabilidades de no excedencia. En la repetición m-ésima de la estación i, denótese la estimación del cuantil de probabilidad de no excedencia F como $\widehat{Q_i^{[m]}}(F)$. Su error relativo es $\{\widehat{Q_i^m}(F) - Q_i(F)\}/Q_i(F)$, pudiendo ser cuadrada o promediada sobre las N_i repeticiones para lograr el error cuadrático medio (ECM) relativo de los estimadores. En los casos de valores elevados de N_i el error se expresa como:

$$R_{i}(F) = \left[N_{i}^{-1} \sum_{m=1}^{N_{i}} \left\{ \frac{\widehat{Q_{i}^{[m]}}(F) - Q_{i}(F)}{Q_{i}(F)} \right\}^{2} \right]^{\frac{1}{2}}.$$
 (26)

La precisión de las estimaciones de los cuantíles de todas las estaciones de la región depende del valor medio regional del ECM

$$R^{R}(F) = N^{-1} \sum_{i=1}^{N} R_{i}(F).$$
(27)

Además se pueden calcular los valores análogos para estimar a curva de frecuencias, en la que $q_i(F)$ se la estación i definida por:

$$Q_i(F) = \mu_i q_i(F).. \tag{28}$$

Los valores $q_i(F)$ se calculan para la simulación de regiones heterogéneas, mientras que en las homogéneas los valores $q_i(F)$ son iguales a la curva regional de frecuencias q(F). En la repetición m-ésima, la curva regional de frecuencias se denota como $\hat{q}^{[m]}(F)$. Las medidas de precisión de las estimaciones de las curvas se definen por medio de las ecuaciones 26 y 27 en las que se reemplaza, $Q_i(F)$ y $\hat{Q}_i^{[m]}$ por $q_i(F)$ y $\hat{q}^{[m]}(F)$ respectivamente.

Cuando la distribución de los estimadores es asimétrica, se emplean los cuantiles empíricos de la distribución como medidores.

Estos se obtienen por medio del cociente entre valores estimados y observados, tanto para cuantíles como para la curva $\hat{Q}_i(F)/Q_i(F)$ y $\hat{q}(F)/q_i(F)$ respectivamente. Como ejemplo, una probabilidad de no excedencia F puede determinarse que el 5 por ciento de los valores simulados de $\hat{Q}(F)/Q(F)$ está por debajo del valor $L_{0,05}(F)$, mientras que el 5 por ciento restante se encuentra por encima de $U_{0,05}(F)$; de tal modo que el 90 por ciento de la distribución de $\hat{Q}(F)/Q(F)$ está incluido en el intervalo:

$$L_{0,05}(F) \le \frac{\hat{Q}(F)}{Q(F)} \le U_{0,05}(F),$$
 (29)

invirtiéndolo para expresar Q en términos de \hat{Q} :

$$\frac{\hat{Q}(F)}{U_{0.05}(F)} \le Q(F) \le \frac{\hat{Q}(F)}{L_{0.05}(F)} \tag{30}$$

Los límites de $\hat{Q}(F)/U_{0,05}(F)$ y $\hat{Q}(F)/L_{0,05}(F)$ reciben el nombre de "límites de error al 90 por ciento", para $\hat{Q}(F)$, pudiendo ser de gran utilidad en la cola inferior de la distribución.

2.2.5. Programa estadístico R

El procesado de los datos del presente TFG, han sido realizados mediante el uso del programa estadístico R.

Desarrollado inicialmente por Robert Gentleman y Ross Ihaka del Departamento de Estadística de la Universidad de Auckland en 1993, el programa estadístico R es un lenguaje y entorno de programación para el análisis estadístico y grafico de datos (http://www.r-project.org/). Se trata de un proyecto GNU, software libre, similar al lenguaje S, al que se le considera como una implementación del mismo. Aunque existen diferencias entre ambos, muchos de los códigos para S pueden ser ejecutados también en R (Pinheiro, 2013).

R y S-Plus, versión comercial de S, probablemente sean los dos lenguajes más utilizados en investigación por la comunidad estadística, siendo muy popular en diversos ámbitos como por ejemplo en la investigación biomédica, la bioinformática o en matemáticas financieras, entre otros. (R Development Core Team, 2015).

R se trata de un conjunto integrado de servicios de software que permite la manipulación, cálculo y representación gráfica de datos en las que se incluyen diferentes herramientas. Algunas de estas herramientas pueden ir desde el manejo y almacenamiento de datos de manera eficaz, hasta las representaciones gráficas para la visualización y análisis de datos, etc...

Del mismo modo que S, R, al ser un lenguaje de programación, permite que los usuarios puedan ampliar el lenguaje definiendo sus propias funciones. Gran parte de las funciones de R están descritas en el paquete básico, aunque para el empleo de diversos algoritmos es necesario el uso de bibliotecas como; C, C++ o Fortan.

El hecho de ser un software libre permite a los usuarios publicar paquetes que puedan extender los paquetes básicos de R. Para facilitar la visualización de la gran cantidad de paquetes existentes, estos se organizan de manera que son agrupados según su naturaleza y función.

Los datos correspondientes a los valores de precipitación diarios máximos anuales del presente TFG han sido procesados por medio de tres paquetes estadísticos de R, *lmom (Hosking, 2015a)*, *lmomRFA (Hosking, 2015b)* y *Rcommander* (Fox et al., 2015)

3. Resultados y discusión

3.1. Filtrado primario de las observaciones

Se parte de las series de precipitación diarias máximas anuales de las estaciones indicadas en la Tabla 1 del apartado 2.1 y en la Tabla 13 del *Anexo I*.

Tal y como ha explicado en el punto 2.2, en primer lugar se representan gráficamente los valores de L-CV, t frente a L-asimetría, t_3 y los valores de L-kurtosis, t_4 frente a los de L-asimetría, t_3 , como se observa en la Figura 5.

De forma inmediata se puede observar que las estaciones de Cabanillas, Corella, Urbasa y Lesaka – San Antón pueden ser discordantes con respecto al resto de observaciones, debido a que los valores de *L-Moments* de estas difieren con el valor medio del grupo representado con el símbolo +.

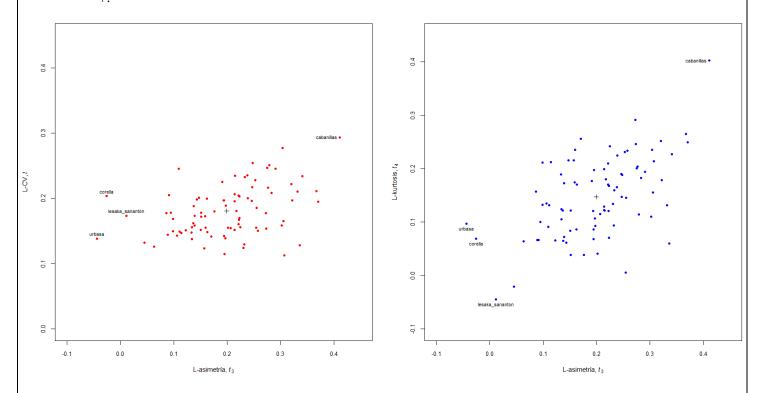


Figura 5. Representación gráfica de los ratios de los *L-moments* enfrentados. *L-CV* vs. *L-asimetría* y *L-kurtosis* vs. *L-asimetría*

Los valores de discordancia, D_i , obtenidos para cada estación a partir de la ecuación 8 del apartado 2.2.1 se presentan en la Tabla 4.

En función de los datos de la Tabla 2 del punto 2.2.1 las estaciones de Cabanillas (5,23), Corella (3,31) y Lesaka (4,01) resultan ser discordantes con el resto, al superar el límite establecido para un grupo de 15 o más estaciones fijado en 3.

En cada una de la estaciones discordantes se procedió a analizar de manera más exhaustiva los datos de dichas estaciones con el fin detectar posibles datos anómalos.

En el caso de la estación de Cabanillas se observó como el valor máximo de precipitación del año 2004 resultó ser extremadamente elevado, en comparación con el resto de registros de la serie, con valor de 175 mm, registrado el día 6 de septiembre de dicho año. Ante este presunto valor anómalo, se procedió a analizar los registros de estaciones cercanas. Para este caso se comparó con las observaciones de Buñuel. En esta estación, para la misma fecha, se registró un dato idéntico, por lo que no se descartó el dato de Cabanillas.

En la estación de Corella se observó un dato extremadamente bajo para el año 2010, de 9,3 mm de precipitación máxima registrado el día 24 de marzo, valor muy por debajo de la media de la estación (34,24 mm véase la Tabla 13 del *Anexo I*). Se comparó con las observaciones de Cadreita en la que se corroboró la presencia de dicho registro, por lo que no se descartó para el análisis.

Para la estación de Lesaka, se compararon sus registros con los de las estaciones de Bera y Sunbilla. La elección de estas estaciones y no otras se fundamentaron por el hecho de que todas tienen en común, además de su proximidad, ser estaciones situadas en fondo de valle. Durante su inspección no se constataron valores anómalos entre estaciones.

Tabla4. Valores de la discordancia de las estaciones

Estación	D_i	Estación	D_i	Estación	D_i
Abaurrea.A	0,82	Cáseda	1,11	Lezáun	0,21
Aibar	0,55	C. Arrambide	0,46	Lodosa	0,74
Alloz	0,13	Corella	3,31	L.Arcos	0,87
Altsasu	0,47	Doneztebe	0,50	Luzaide	1,89
Amaiur	1,58	Epároz	0,20	Miranda	0,62
Amillano	0,59	Erro	0,24	Monreal	0,23
Andosilla	0,74	E.Salazar	1,41	Monteagudo	0,63
Aoiz	1,34	Estella	0,71	Navascués	1,20
Areso	1,00	Etxalar	0,93	Noáin	0,42
Aribe	0,19	Eugi	0,29	Olagüe	0,37
Arizkun	1,79	Falces	0,99	Olite	0,45
Arróniz	0,15	Fitero	0,69	Olóriz	1,08
Artieda	0,41	Galbarra	0,93	Oroz.B	0,92
Artikutza	0,79	Genevilla	0,11	Otazu	0,33
Aurizberri	1,16	Goizueta	0,41	Pamplona	0,38
Azanza	1,43	Goñi	0,73	P.Reina	0,36
Azpirotz	1,52	Igúzquiza	0,15	Sartaguda	1,00
Barásoain	0,39	Ilundaín	1,10	Sesma	0,29
Belate	0,67	Iraizotz	1,20	Sunbilla	0,55
Belzunce	0,07	Irotz	0,55	Tudela	2,19
Bera	1,11	Irurtzun	0,48	Urbasa	2,94
Bertiz	0,26	Javier	1,41	Urzainqui	1,50
Betelu	2,68	Larraona	0,94	Viana	0,41
Buñuel	2,16	Leire	1,13	Yesa	0,15
Cabanillas	5,23	Leitza	0,60	Zalba	2,71
Cábrega	1,42	Lerga	1,72	Zuazu	0,12
Cadreita	1,00	Lerín	0,88	Zubiri	0,48
Caparroso	1,26	Lesaka-S.Antón	2,78	Zugarramurdi	1,39
Carcastillo	0,71	Lesaka	4,01		

3.2. Identificación de regiones homogéneas

Como se mencionó en el punto 2.2.2 la identificación de las regiones se realiza por medio de análisis tipo *cluster*.

Para ello se establecieron cinco diferentes descriptores físicos para todas las estaciones, relacionados con los valores de precipitación máxima diaria. Estos descriptores son: latitud, longitud, altitud, temperatura media anual y precipitación media anual. Todos los descriptores de las estaciones, así como las longitudes de las series finales de las estaciones, se recogen en la Tabla 14 del *Anexo I*.

Cada una de las cinco variables se estandarizó dividiendo por el valor de su desviación típica. El hecho de realizar este tipo de estandarización se fundamentan en que los análisis de tipo *cluster* basan los agrupamientos según las distancias euclídeas entre puntos. La estandarización se realizó según la ecuación (9).

Por otro lado, cada uno de los descriptores físicos se ponderó con un determinado peso (Tabla5). Los criterios de ponderación empleados sobre los descriptores físicos son aplicados en función de la influencia que estos tengan en los valores de las series de precipitación máxima diaria. Son valorados con un mayor valor de ponderación aquellos descriptores más influentes (Chorley & Barry, 1980; Cueva, 1983; Erro Eslava, 2011).

Tabla 5. Coeficientes de ponderación y estandarización para los descriptores físicos de las estaciones

Variable física x	Factor de ponderación		
Latitud	1,0		
Longitud	0,5		
Altitud (m)	1,5		
Temperatura media anual (°T)	0,5		
Precipitación media anual (mm)	1,5		

La regionalización se realizó utilizando el análisis *cluster* por medio el método de Ward. La comprobación de la heterogeneidad *H* se hizo atendiendo a la ecuación 14 correspondiente al punto 2.2.2 en la que se emplearon 500 simulaciones para su cálculo (Hosking & Wallis, 1997).

Se realizaron diversas pruebas de regionalización comenzando por una única región. En ella se observó como la H de la región resultante era de 9,98. Los valores D_i de las estaciones fueron los mismos que los de la Tabla 3. Se prescindió de las estaciones de discordantes de Corella, Cabanillas y Lesaka por tener unos valores de D_i 3,31, 5,23 y 4,01 respectivamente. La heterogeneidad de la región no se modificó en exceso pasando del 9,98 inicial al 9,94 obtenido tras la retirada de las tres estaciones. En cuanto al nivel de D_i de las estaciones restantes Betelu, Lesaka – San Antón, Urbasa y Zalba, con valores de 3,03, 3,13, 3,36 y 3,27 respectivamente, pasaron a ser discordantes. Ante esta situación se decidió descartar la opción de considerar a Navarra como una única región homogénea.

Se realizó un *cluster* para dos regiones, Norte y Sur, donde las estaciones de la mitad norte se diferenciaron del resto obteniendo valores de *H* de 2,11, tras la retirada de las estaciones de Lesaka y Lesaka – San Antón. La otra región, con las estaciones de la mitad sur, obtuvo un valor de *H* de 2,7 que se alcanzó tras retirar las estaciones de Cabanillas, Corella y Tudela. Ante la retirada de

estas tres últimas estaciones y debido a los valores de *H* que se obtienen se optó por descartar la posibilidad de dividir Navarra en dos regiones.

Se comprobó el comportamiento de las estaciones para un *cluster* de tres regiones. En esta ocasión, se lograron dos regiones con valores de *H* por debajo de 1, una con las estaciones de la vertiente Cantábrica, en la que Zugarramurdi fue la única estación discordante de la región, y otra con las estaciones del sur de Navarra. No obstante, la otra región resultante obtuvo un valor de *H* de 3,72, en la que estaciones como Urbasa y Zalba eran discordantes por lo que se descartó la idea de tres regiones.

En el caso de un *cluster* para cuatro regiones se obtuvieron dos regiones con valores de *H* por debajo de 1, 0,18 y 0,09 respectivamente. La primera de las otras dos regiones obtuvo un valor de *H* de 1,57 a la que se le retiraron las estaciones de Javier y Zalba. La otra región no disponía de estaciones discordantes pero alcanzo un valor de *H* de 2,1. Las razones por las que se descarta la regionalización en cuatro zonas se basan en diferentes aspectos:

- Los valores de *H* que se obtienen, principalmente el valor de 2,01, confirma la posibilidad de que las estimaciones que se consiguen no sean precisos.
- La retirada de series de registro en la región con valor de *H* 1,57.

Se continuó con el análisis *cluster* para cinco regiones. Los resultados de la alternativa 1 fueron reestructurados de manera que las regiones de la alternativa 2 / definitiva se ordenaron en base a la latitud de norte a sur desde la región 1 hasta la 5 respectivamente. Los valores de *H* muestran como las regiones 1, 2, 4 y 5, con valores de 0,77, 0,42, 0,80 y 0,09 respectivamente, son calificadas como "*aceptablemente homogéneas*". La región 3 tiene un valor de *H* de 1,19 lo que supuso que fuese calificada como "*posiblemente heterogénea*". La decisión de contar con una región calificada como "*posiblemente heterogénea*" se fundamente en varios aspectos:

- El movimiento de estaciones de la región 3 a otras regiones, como la 2 o la 4, afecta a los valores de *H* de las otras regiones.
- Excluir estaciones de la región 3 no garantiza que se redujera el valor de *H*. Se prefiere prescindir de cierta heterogeneidad en vez de series de registros.
- Al tratarse de un valor próximo al límite de H, 1,19 para un límite de 1, en una región con más de 15 estaciones, se considerara que en el peor de los casos se logre una heterogeneidad moderada, lo que a efectos prácticos supone obtener estimaciones precisas.

Los valores de *H* y la composición de las diferentes regiones se muestran en la Tabla 6.

Paralelamente al cálculo de H, se realizó una nueva medida de la discordancia tras la regionalización para cada estación. Los valores de D_i de la alternativa 2 / definitiva para las estaciones dentro de las regiones definitivas se presentan en la Tabla 7. Las representaciones graficas de cada región enfrentando los valores L-CV y L-asimetría y L-kurtosis y L-asimetría se recogen en las Figuras 15, 16, 17, 18 y 19 del documento Anexo I.

Los valores de D_i de la alternativa 1 así como sus representaciones graficas enfrentando los valores L-CV y L-asimetría y L-kurtosis y L-asimetría se muestran en la Tabla 21 y en las Figuras 10, 11, 12, 13 y 14 del $Anexo\ I$.

La composición de las regiones, los valores de H de cada región así como los valores de D_i de cada estación de los casos realizados se recogen en las Tablas 15 y 16 para el supuesto de dos regiones, Tablas 17 y 18 para el supuesto de tres regiones y en las Tablas 19 y 20 para el supuesto de cuatro regiones, del $Anexo\ I$.

Tabla 6. Resultados de la media de heterogeneidad H para la alternativa 2 / definitiva

Cluster	Tamaño	Estaciones	Heterogeneidad
Región 1	19	Amaiur, Areso, Arizkun, Artikutza, Azpirotz, Belate, Bera, Bertiz, Betelu, Central Arrambide, Doneztebe, Etxalar, Goizueta, Leitza, Lesaka – San Antón, Lesaka, Luzaide – Valcarlos, Sunbilla y Zugarramurdi	0,77
Región 2	22	Abaurrea Alta, Altsasu, Aribe, Aurizberri, Azanza, Belzunce, Erro, Esparza De Salazar, Eugi, Goñi, Iraizotz, Irotz, Irurtzun, Larraona, Lezáun, Olagüe, Oroz – Betelu, Otazu, Urbasa, Urzainqui, Zalba y Zubiri	0,42
Región 3	27	Aibar, Alloz, Amillano, Aoiz, Arróniz, Artieda, Barásoain, Cábrega, Epároz, Estella, Galbarra, Genevilla, Igúzquiza, Ilundaín, Javier, Leire, Lerga, Los Arcos, Monreal, Navascués, Noáin, Olóriz, Pamplona, Puente La Reina, Viana, Yesa y Zuazu	1,19
Región 4	11	Andosilla, Caparroso, Carcastillo La Oliva, Cáseda, Falces, Lerín, Lodosa, Miranda, Olite, Sartaguda Y Sesma	0,80
Región 5	7	Buñuel, Cabanillas, Cadreita, Corella, Fitero, Monteagudo y Tudela	0,09

Tabla 7. Valores de D_i para las regiones de la alternativa 2 / definitiva

Estación Di		Estación	Di	Estación	Di	Estación	Di
			R	egión 1			
Amaiur	0,95	Belate	0,44	Doneztebe	0,18	Lesaka	2,82
Areso	0,40	Bera	0,43	Etxalar	0,86	Luzaide	1,36
Arizkun	1,13	Bertiz	0,73	.73 Goizueta		Sunbilla	0,12
Artikutza	0,39	Betelu	1,36	Leitza	0,39	Zugarramurdi	3,68
Azpirotz	0,82	C. Arrambide	0,15	Lesaka.S.Antón	2,59		
	-	-	R	egión 2		-	
Abaurrea.A	0,63	Erro	0,09	Irurtzun	0,47	Urbasa	1,94
Altsasu	0,51	E.Salazar	1,08	Larraona	1,13	Urzainqui	1,04
Aribe	0,08	Eugi	0,30	Lezáun	0,39	Zalba	2,62
Aurizberri	3,04	Goñi	0,99	Olagüe	0,37	Zubiri	0,25
Azanza	1,67	Iraizotz	1,85	Oroz.B	2,27		
Belzunce	0,18	Irotz	0,79	Otazu	0,32		
	-	-	R	egión 3	-	-	
Artieda	0,40	Genevilla	0,28	L.Arcos	0,94	P.Reina	0,48
Barásoain	0,65	Igúzquiza	0,10	Monreal	0,27	Viana	0,67
Cábrega	2,60	Ilundaín	1,65	Navascués	1,51	Yesa	0,24
Epároz	0,39	Javier	2,13	Noáin	0,71	Zuazu	0,21
Estella	0,86	Leire	2,26	Olóriz	2,35		
Galbarra	1,69	Lerga	2,28	Pamplona	0,49		
	-	-	R	egión 4		-	
Andosilla	0,52	Cáseda	2,02	Lodosa	1,32	Sartaguda	0,63
Caparroso	1,12	Falces	2,35	Miranda	0,42	Sesma	0,70
Carcastillo	0,69	Lerín	0,80	Olite	0,32		
			R	egión 5			
Buñuel	0,73	Cadreita	0,31	Fitero	0,47	Tudela	1,29
Cabanillas	1,80	Corella	1,83	Monteagudo	0,58		

En función de los nuevos valores de D_i (Tabla 7) que se obtuvieron tras la regionalización, las regiones 1,2 y 3 tienen establecido el valor critico en 3, por tener más de 15 estaciones en ella. La región 4 con 11 estaciones tienen un valor critico de D_i de 2,632. Finalmente la región 5 con 7 estaciones tiene como D_i límite un valor de 1,917. Es en la región 1, con la estación de Zugarramurdi (3,68) y en la región 2 con Aurizberri – Espinal (3,04) en los únicos casos en los que no se cumple con el criterio de discordancia. En el caso de Aurizberri – Espinal con un valor cercano al crítico no se consideró su retirada del análisis. En el caso de Zugarramurdi que resulte discordante se debe a que debería pertenecer a otra región compuesta por estaciones de la vertiente Cantábrica.

La composición final de las regiones resultantes se representa en la Figura 6.

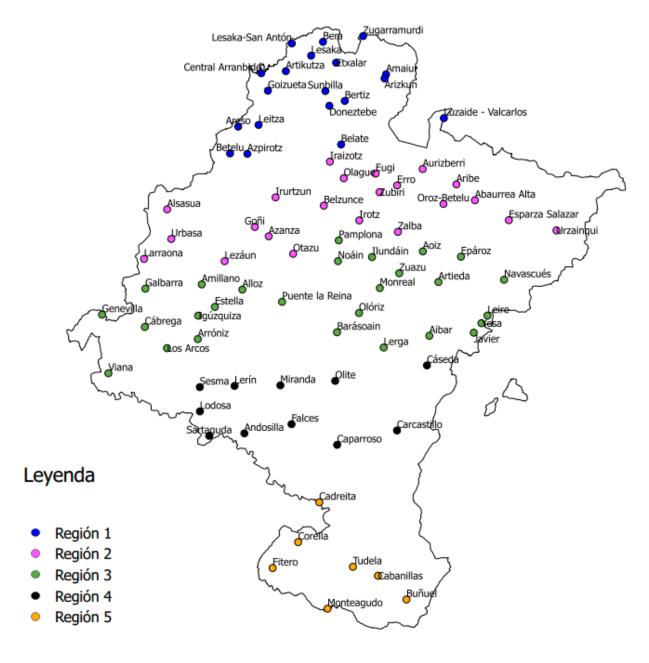


Figura 6. Localización de las regiones.

3.3. Elección de la función de distribución de frecuencia

La elección de la distribución de frecuencias que mejor se ajusta se realiza por medio del método de bondad de ajuste Z^{Dist} , explicado anteriormente en el apartado 2.2.3. Se representan gráficamente los valores de L- asimetría frente a L-kurtosis de cada una de las regiones Figura 7, para obtener aproximaciones iniciales.

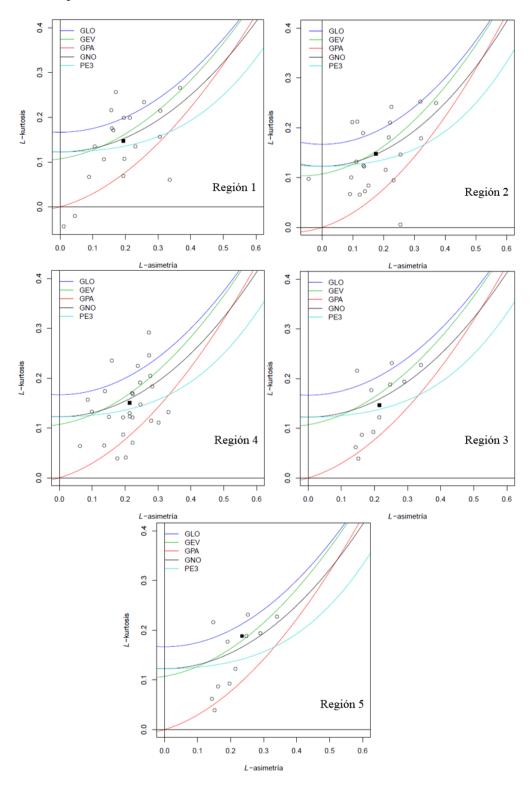


Figura 7. Diagrama de los *L-Moments* de las distribuciones que mejor se ajustan para las 5 regiones

En los diagramas se muestran las relaciones entre los momentos muestrales de *L-asimetría* y *L-kurtosis*, líneas; los valores de cada una de las estaciones, círculos; y el valor de la media regional ponderada, cuadrado negro. Para determinar que distribuciones son las que mejor se ajustaron se observó cuales quedaban más próximas al valor de la media regional ponderada.

Numéricamente los valores del estadístico Z^{DIST} empleados para el cálculo de los valores de bondad de ajuste se muestran en la Tabla 8 y son calculados en base a la ecuación 18. La determinación de las distribuciones que mejor se ajustan en función de lo establecido por el método se realizó en base al criterio del valor Z^{DIST} fuese cercano al cero y si se establece dentro de los límites de $Z^{DIST} \le |1,64|$ (Hosking & Wallis, 1997).

Tabla 8. Valores del estadístico Z^{DIST} para las distribuciones candidatas de las 5 regiones

	\mathbf{Z}^{GLO}	Z^{GEV}	\mathbf{Z}^{GNO}	\mathbf{Z}^{PE3}	\mathbf{Z}^{GPA}
Región 1	3,04	0,71	0,21	-0,85	-4,65
Región 2	3,25	0,29	-0,13	-1,18	-6,33
Región 3	4,01	1,35	0,56	-0,98	-4,95
Región 4	3,3	1,26	0,64	-0,55	-3,58
Región 5	0,85	-0,55	-1,1	-2,12	-3,98

En la región 1 las distribuciones que mejor se ajustaron fueron la GNO, PE3 y la GEV, mientras que la GLO y la GPA fueron las dos descartadas debido a que eran las que más alejadas se encontraban con respecto a la media regional.

En la región 2 las distribuciones más próximas a la media regional fueron la GNO, la GEV y la PE3 en este orden. Las distribuciones de GLO y de GPA fueron las descartadas.

En la región 3 las distribuciones que mejor se ajustaron fueron; la GNO, la PE3 y la GEV. GLO y GPA fueron las descartadas.

En la región 4 las distribuciones PE3, GNO y GEV fueron las que mejor se ajustaron.

En el caso de la región 5, las distribuciones que mejor se ajustaron fueron la GLO, la GEV y la GNO, quedando las GPA y PE3 como las descartadas.

Las distribuciones que cumplieron con lo establecido por criterio de $Z^{DIST} \le |1,64|$ fueron las siguientes. Para el caso de las regiones 1, 2, 3 y 4 GEV, GNO y PE3. En el caso de la región 5 la GLO, GEV y GNO.

Se representan los valores de la curva regional de frecuencias de las distribuciones candidatas para compararlas en la Figura 8.

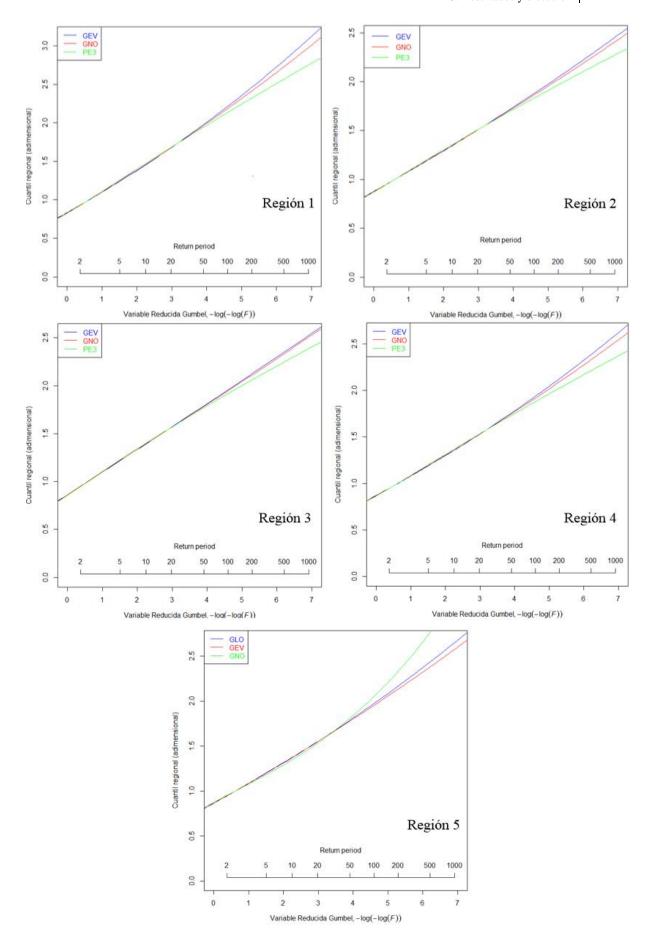


Figura 8. Curva regional de frecuencias de las distribuciones candidatas de las 5 regiones

En las representaciones graficas (Figura 8) se expresan los cuantíles regionales adimensionalizados frente a los periodos de retorno determinados. En los 5 casos la forma de las curvas es similares hasta un T de 50 años a partir del cual se aprecian desviaciones generadas por los diferentes cuantíles extremos a cola de distribución. Como se aprecia en las regiones 1, 2, 3 y 4 las diferencias estaban más acentuadas en la distribución PE3 frente a las distribuciones GEV y GNO.

La elección de cualquiera de las tres distribuciones seria correcta debido a su similitud. Se recomienda el uso del método más robusto. La elección de la mejor distribución de frecuencias para cada región se determinó en base a valores de ECM relativos más reducidos para los T más elevados según la ecuación 26. Los valores de los ECM relativos se muestran en la Tabla 9.

Tabla 9. ECM relativo de las distribuciones candidatas de las 5 regiones

ECM relativo										
	T (años)	2	5	10	20	50	100	200	500	1000
	GEV	0,027	0,029	0,035	0,052	0,086	0,118	0,153	0,202	0,242
Región 1	GNO	0,029	0,027	0,036	0,054	0,084	0,107	0,132	0,163	0,187
	PE3	0,032	0,024	0,039	0,056	0,079	0,094	0,108	0,125	0,137
	GEV	0,033	0,023	0,034	0,061	0,105	0,142	0,181	0,233	0,274
Región 2	GNO	0,035	0,021	0,038	0,065	0,102	0,131	0,158	0,194	0,220
	PE3	0,038	0,020	0,043	0,068	0,097	0,116	0,134	0,155	0,170
	GEV	0,030	0,024	0,041	0,067	0,108	0,142	0,179	0,230	0,271
Región 3	GNO	0,032	0,023	0,044	0,070	0,105	0,131	0,157	0,191	0,216
	PE3	0,034	0,024	0,048	0,072	0,099	0,117	0,134	0,154	0,167
	GEV	0,044	0,050	0,090	0,127	0,172	0,205	0,238	0,283	0,318
Región 4	GNO	0,046	0,052	0,093	0,128	0,167	0,194	0,220	0,252	0,276
	PE3	0,048	0,056	0,097	0,129	0,162	0,184	0,203	0,225	0,240
	GLO	0,056	0,019	0,036	0,078	0,140	0,193	0,250	0,333	0,403
Región 5	GEV	0,057	0,021	0,038	0,085	0,156	0,213	0,272	0,356	0,423
	GNO	0,061	0,016	0,046	0,090	0,148	0,191	0,233	0,289	0,331

En las regiones 1, 2, 3 y 4 se observó cómo, salvo para los periodos de retorno de 2, 5, 10 y 20 años, la distribución PE3 es la que logró un menor error para periodos de retorno más extremos estando por debajo de los obtenidos por la distribución GEV y GNO. En la región 5 la distribución GNO, salvo en los periodos de retorno de 2, 5, 10 y 20 años, fue la que menor error obtuvo para periodos de retorno extremos.

Por las razones descritas se concluyó que las distribuciones que mejor se ajustaron a cada una de las regiones en base a los criterios del método más robusto fueron:

- PE3 para las regiones 1, 2, 3 y 4
- GNO para la región 5

3.4. Estimación de los cuantiles de frecuencia

Seleccionadas las distribuciones que mejor se han ajustado a cada una de las regiones se procedió a calcular los parámetros de cada una de ellas con el fin de obtener los valores de los cuantiles de precipitación diaria.

El cálculo de los valores de los parámetros de las curvas regionales de frecuencia de las distribuciones se obtuvo igualando los ratios medio regionales de los *L-Moments* de las observaciones a los de las distribuciones. Los valores de los diferentes parámetros de las distribuciones para cada una de las regiones se muestran en la Tabla 10.

Tabla 10. Parámetros de la curva regional de frecuencias de las distribuciones para cada región

Región	Parámetro	Parámetros de la curva regional de frecuencia						
Región 1	μ 1	σ 0,2661	γ 1,172	Pearson Tipo III				
Región 2	μ 1	σ 0,3002	γ 1,0593	Pearson Tipo III				
Región 3	μ 1	σ 0,3537	γ 1,2908	Pearson Tipo III				
Región 4	μ 1	σ 0,4121	γ 1,2979	Pearson Tipo III				
Región 5	ζ 0,9073	α 0,2252	γ -0,2346	General Normalizada				

Los cuantiles regionales adimensionales de precipitación diaria para determinados T, junto a los valores de incertidumbre de cada región por medio de la determinación del ECM medio absoluto y los límites de error al 90 por ciento, se realizó como se estableció en la ecuación 30. El cálculo se efectuó con 1000 simulaciones de una región en la que las estaciones y la longitud muestral eran similares a las de referencia, con la distribución correspondiente para cada región, con los L-Moments por debajo de los observados en la región.

Los valores de las estimaciones de los cuantiles de frecuencia, así como los valores de ECM medio absolutos y los límites de error al 90 por ciento, se recopilan en la Tabla 11 y en la Figura 9.

Tabla 11. Resultados de las estimaciones regionales: cuantiles de frecuencia, ECM medio absoluto y límites de error al 90 por ciento

Región	T (años)	2	5	10	20	50	100	200	500	1000
	Cuantil regional	0,95	1,20	1,36	1,51	1,70	1,83	1,97	2,14	2,27
Dagión 1	ECM	0,03	0,03	0,05	0,08	0,13	0,17	0,21	0,27	0,31
Región 1	Límite 0,05	0,89	1,15	1,29	1,40	1,53	1,62	1,70	1,81	1,88
	Límite 0,95	0,99	1,25	1,48	1,74	2,07	2,32	2,57	2,90	3,15
	Cuantil regional	0,95	1,23	1,40	1,57	1,77	1,92	2,06	2,25	2,39
Dagión 2	ECM	0,04	0,02	0,06	0,11	0,17	0,22	0,28	0,35	0,41
Región 2	Límite 0,05	0,87	1,19	1,32	1,43	1,57	1,66	1,75	1,86	1,94
	Límite 0,95	0,99	1,26	1,52	1,80	2,17	2,45	2,73	3,09	3,37
	Cuantil regional	0,93	1,25	1,47	1,68	1,94	2,13	2,32	2,57	2,75
Región 3	ECM	0,03	0,03	0,07	0,12	0,19	0,25	0,31	0,39	0,46
Kegion 3	Límite 0,05	0,87	1,20	1,36	1,49	1,65	1,75	1,85	1,98	2,07
	Límite 0,95	0,98	1,29	1,58	1,89	2,28	2,57	2,86	3,25	3,54
	Cuantil regional	0,91	1,30	1,55	1,79	2,10	2,32	2,54	2,83	3,04
Dagión 1	ECM	0,04	0,07	0,15	0,23	0,34	0,43	0,51	0,64	0,73
Región 4	Límite 0,05	0,83	1,20	1,36	1,51	1,68	1,81	1,92	2,06	2,16
	Límite 0,95	0,97	1,45	1,89	2,33	2,91	3,34	3,77	4,35	4,78
	Cuantil regional	0,91	1,28	1,55	1,86	2,34	2,77	3,27	4,07	4,80
Dagión 5	ECM	0,05	0,02	0,06	0,14	0,33	0,53	0,82	1,36	1,94
Región 5	Límite 0,05	0,83	1,23	1,45	1,60	1,81	1,96	2,11	2,32	2,49
	Límite 0,95	1,00	1,30	1,63	2,09	2,90	3,72	4,80	6,76	8,74

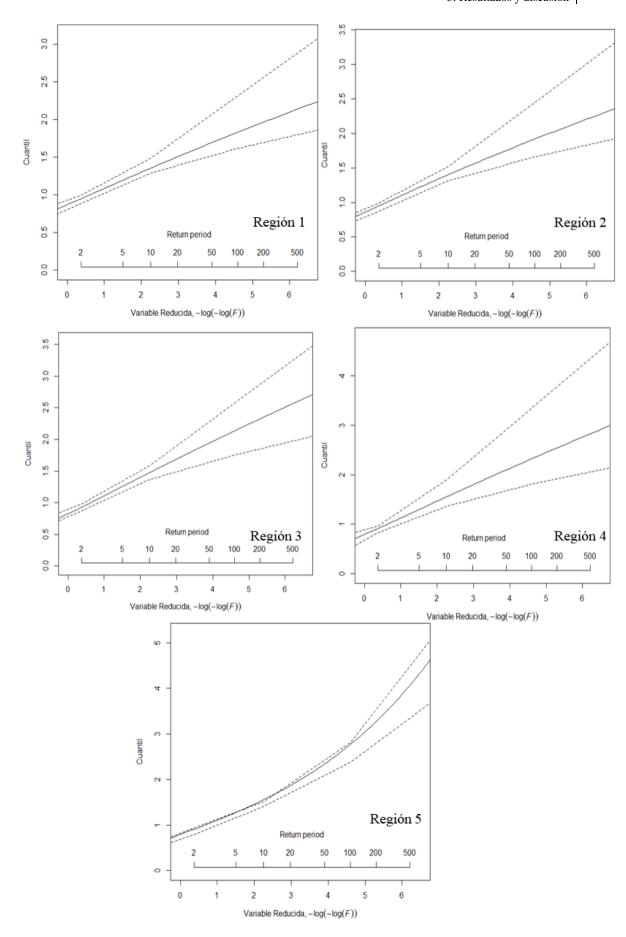


Figura 9. Representación gráfica de las estimaciones regionales de las 5 regiones

Como se puede observar en la Figura 9 y en la Tabla 11, los valores de incertidumbre aumentan a la vez que lo hacen los valores de los cuantiles regionales, en las regiones 1, 2, 3 y 4. En la región 5 se observa como para un T próximo a 10 años los valores de ECM están por encima del límite al 0,95. Estos valores por encima de los límites se deben a errores derivados de las simulaciones tipo Monte Carlo. Las representaciones graficas de las estimaciones de cada estación se incluyen en el $Anexo\ II$ ordenadas en regiones de manera alfabética.

Se calcularon los valores particularizados de cada estación correspondiente al índice de avenida, $\hat{\mu}$, para lo que se asumió la media de las observaciones. Los valores del índice de avenida de todas las estaciones figuran en la Tabla 12.

Tabla 12. Índices de avenida ($\hat{\mu}_i$) de las todas las estaciones ordenadas según su región

Estación $\widehat{\mu}_{\mathrm{i}}$		Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$
			R	egión 1			
Amaiur	89,50	Belate	68,50	Doneztebe	77,16	Lesaka	78,21
Areso 84,32		Bera	86,00	Etxalar	73,64	Luzaide	70,92
Arizkun	91,87	Bertiz	73,83	Goizueta	81,80	Sunbilla	76,62
Artikutza	107,93	Betelu	67,20	Leitza	92,07	Zugarramurdi	74,68
Azpirotz	78,71	C.Arrambide	94,84	Lesaka-S.Antón	113,48		
	=		R	egión 2	-		
Abaurrea.A	62,34	Erro	65,05	Irurtzun	63,72	Urbasa	61,77
Altsasu	61,71	E.Salazar	58,35	Larraona	59,10	Urzainqui	57,97
Aribe	60,56	Eugi	69,89	Lezáun	55,60	Zalba	52,49
Aurizberri	67,30	Goñi	72,97	Olagüe	58,21	Zubiri	57,68
Azanza 54,92		Iraizotz	62,56	Oroz.B	71,05		
Belzunce	57,81	Irotz	48,68	Otazu	47,14		
Región 3							
Aibar	47,87	Cábrega	42,14	Javier	44,93	Olóriz	49,87
Alloz	47,74	Epároz	49,53	Leire	54,49	Pamplona	53,03
Amillano	44,76	Estella	39,50	Lerga	52,89	P.Reina	39,96
Aoiz	55,43	Galbarra	59,89	L.Arcos	36,66	Viana	34,80
Arróniz	45,40	Genevilla	40,51	Monreal	49,02	Yesa	51,89
Artieda	47,37	Igúzquiza	39,39	Navascués	56,73	Zuazu	51,54
Barásoain	42,26	Ilundaín	49,81	Noáin	47,05		
			R	egión 4			
Andosilla	35,52	Cáseda	47,15	Lodosa	35,32	Sartaguda	44,71
Caparroso	41,68	Falces	36,99	Miranda	38,05	Sesma	33,81
Carcastillo	43,42	Lerín	35,21	Olite	41,49		
			R	egión 5			
Buñuel	44,55	Cadreita	39,57	Fitero	35,56	Tudela	42,03
Cabanillas	43,74	Corella	34,24	Monteagudo	37,89		

Finalmente se calculan los valores de los cuantiles de precipitación diarios para cada estación. Los valores se determinan en base a la ecuación 21, en la que se los valores del índice de avenida de cada estación, $\hat{\mu}$ se multiplica por el valor regional adimensional estimado de su región correspondiente. Los valores de los cuantiles de precipitación diaria para las diferentes regiones se agrupan en los apartados *Cuantiles de P (mm) de la región* correspondientes al documento *Anexo II*.

4. Conclusiones

Los resultados obtenidos por la aplicación del método AFR de las precipitaciones diarias máximas anuales en Navarra con el método del inicie de avenida y basado en los *L-Moments* nos permite extraer las siguientes conclusiones:

- La regionalización que proporciona mejores resultados con índices de homogeneidad aceptables en todos los casos es de cinco regiones con las siguientes estaciones en cada una de ellas: (Figura 6).
 - La región 1, con 19 estaciones (Amaiur, Areso, Arizkun, Artikutza, Azpirotz, Belate, Bera, Bertiz, Betelu, Central Arrambide, Doneztebe, Etxalar, Goizueta, Leitza, Lesaka San Antón, Lesaka, Luzaide Valcarlos, Sunbilla y Zugarramurdi) abarca la zona Noroeste de la comunidad.
 - O La región 2 por su parte, con 22 estaciones, (Abaurrea Alta, Altsasu, Aribe, Aurizberri, Azanza, Belzunce, Erro, Esparza De Salazar, Eugi, Goñi, Iraizotz, Irotz, Irurtzun, Larraona, Lezáun, Olagüe, Oroz Betelu, Otazu, Urbasa, Urzainqui, Zalba y Zubiri) comprende las zonas de la Barranca, norte de la Estella oriental, valle de la Ulzama, norte de la comarca de Pamplona, zona norte de Auñamendi (salvo Luzaide Valcarlos), norte de Lumbier y casi la totalidad de la zona de los valles de Roncal y Salazar.
 - La región 3, con 27 estaciones, (Aibar, Alloz, Amillano, Aoiz, Arróniz, Artieda, Barásoain, Cábrega, Epároz, Estella, Galbarra, Genevilla, Igúzquiza, Ilundaín, Javier, Leire, Lerga, Los Arcos, Monreal, Navascués, Noáin, Olóriz, Pamplona, Puente La Reina, Viana, Yesa y Zuazu), contiene a las estaciones de la mitad de la zona de tierra Estella, zona sur de la cuenca de Pamplona y Aoiz, Puente la Reina, y Navarra media oriental.
 - La región 4, con 11 estaciones, (Andosilla, Caparroso, Carcastillo La Oliva, Cáseda, Falces, Lerín, Lodosa, Miranda, Olite, Sartaguda y Sesma) comprende las estaciones del sur de tierra Estella y de la ribera alta.
 - La región 5, con 7 estaciones, (Buñuel, Cabanillas, Cadreita, Corella, Fitero, Monteagudo y Tudela) incluye el área de la ribera baja.
- La regionalización en cinco regiones es debida a la riqueza y variabilidad climática que caracteriza a Navarra.
- En el caso de las regiones 1, 2,3 y 4, las distribuciones que mejor se ajustan son tres: GEV, GNO y PE3. En todos los casos, las diferencias entre unas y otras son ínfimas, pero la PE3 es la que menor ECM presenta, a pesar de no ser la que mejor se ajuste en ninguno de los cuatro casos. Por esta razón se trata de la distribución seleccionada para cada una de estas regiones.
- Para la región 5, las distribuciones que mejor se ajustan también son tres: GLO, GEV y
 GNO. En este caso la distribución que menor ECM presento fue la GNO, que al igual que
 en los casos anteriores, no era la que mejor ajuste presentaba. Por esta razón fue la
 distribución elegida para la región 5.

- A medida que se desciende latitudinalmente de región, los valores del índice de avenida comienzan a reducirse de manera general. Excepcionalmente, varios valores de la región 5 son superiores a los de la región 4. Este es debido a que los episodios convectivos de la época estival son más comunes en la región 5 que en la 4. No obstante estos episodios habría que estudiarlos más en profundidad.
- El cálculo de los límites de error al 90 por ciento se realiza mediante la distribución General logística, debido a que el ajuste a la distribución Kappa no se puede realizar por los *L-Moments*.

5. Bibliografía

Álvarez, A. J., & Orduña, L. M. (2014). Caracterización del comportamiento estadístico de los caudales máximos estacionales en la España peninsular: Propuesta metodológica para su cálculo. Ingeniería Civil, (174), 51-69.

Álvarez, M., Puertas Agudo, J., Soto, B., & Díaz-Fierros, F. (1999). Análisis regional de las precipitaciones máximas en Galicia mediante el método del índice de avenida. Ingeniería Del Agua, 1999, Vol.6, Núm.4.

Ahmad, M., Sinclair, C., & Werritty, A. (1988). Log-logistic flood frequency analysis. Journal of Hydrology, 98(3), 205-224.

Chorley, R. J., & Barry, R. G. (1980). Atmósfera, tiempo y clima. Omega SA, Barcelona.

Chow, V. (1951). A general formula for hydrologic frequency analysis. Eos, Transactions American Geophysical Union, 32(2), 231-237.

Chowdhury, J. U., Stedinger, J. R., & Lu, L. (1991). Goodness-of-fit tests for regional generalized extreme value flood distributions. Water Resources Research WRERAQ, 27(7), 1765-1776.

Cueva, A. J. P. (1983). Precipitaciones extraordinarias en España peninsular. Agricultura Sociedad, 28, 189-203.

Dalrymple, T. (1960). Flood frequency analyses. Water Supply Paper, 1543

Erro, J. (2011). Análisis regional de las precipitaciones diarias extremas en la cuenca del río Arga con R.

Fill, H. D., & Stedinger, J. R. (1995). Homogeneity tests based upon gumbel distribution. Water Policy and Management: Solving the Problems, 790-793.

Fox, J., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Lancelot, R. (2015). Rcmdr: R Commander.R Package Version 2.1-7.

García-Marín, A. P. (2007). Análisis multifractal de series de datos pluviométricos en Andalucía Universidad de Córdoba, Servicio de Publicaciones.

Gobierno de Navarra. Estudio agroclimático de navarra. servicio de estructuras agrarias. CD. (2001).

Gómez, P., Sánchez, R., & Sánchez, C. (1996). "As precipitacións". en: As "Augas de Galicia", ponencia de patrimonio natural. In F. Díaz-Fierros (Ed.), (pp. 43-105). Santiago de Compostela: Consello da Cultura Galega.

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15(5), 1049-1054.

Hosking, J. (2015a). Regional Frequency Analysis using L-Moments, Lmom R Package, Version 2.5.

Hosking, J. (2015b). Regional Frequency Analysis using L-Moments, lmomRFA R Package, Version 3.0-1.

Hosking, J., & Wallis, J. (1997). Regional frequency analysis: An approach based on L-moments Cambridge University Press.

Hosking, J., & Wallis, J. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29(2), 271-281.

Kjeldsen, T. R., Smithers, J., & Schulze, R. (2002). Regional flood frequency analysis in the KwaZulu-natal province, south africa, using the index-flood method. Journal of Hydrology, 255(1), 194-211.

MacMahon, T., & Srikanthan, R. (1982). Log pearson type 3 distribution effect of dependence, distribution parameters and sample size on peak annual flood estimates. J.Hydrol, 52, 815-826.

Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. at-site modeling. Water Resources Research, 33(4), 747-757.

Mejia, L. (2015). Estudio hidrológico para el colector pluvial denominado, el sumidero en Xalapa, Veracruz.

Meteo Navarra. (2014). Meteorología y climatología de Navarra. Retrieved from http://meteo.navarra.es/

Mielke Jr, P. W., & Johnson, E. S. (1973). Three-parameter kappa distribution maximum likelihood estimates and likelihood ratio tests. Monthly Weather Review, 101(9), 701-707.

MMA. (1998). Ministerio de Medio Ambiente (Ed.), Las precipitaciones máximas en 24 horas y sus períodos de retorno en España. Un estudio por regiones (INM Trans.).

MOPTMA. (1995). Ministerio de Obras Públicas Transportes y Medio Ambiente (Ed.), Valores normales estadísticos de estaciones principales (1961-1990). Observatorio meteorológico de la Coruña.

Norbiato, D., Borga, M., Sangati, M., & Zanon, F. (2007). Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. Journal of Hydrology, 345(3), 149-166.

Pearson, C., McKerchar, A., & Woods, R. (1991). Regional flood frequency analysis of western Australian data using L-moments. National Conference Publication- Institute of Engineers. Australia. (631-632).

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2013). R development core team (2012) nlme: Linear and nonlinear mixed effects models. R package version 3.1-103. R Foundation for Statistical Computing, Vienna.

R Development Core Team. (2015). The R project for statistical computing. Retrieved from http://www.r-project.org/

Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Frequency analysis of extreme events.

Vogel, R. M., Thomas Jr, W. O., & McMahon, T. A. (1993). Flood-flow frequency model selection in southwestern united states. Journal of Water Resources Planning and Management, 119(3), 353-366.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.

Wiltshire, S. (1986). Regional flood frequency analysis I: Homogeneity statistics. Hydrological Sciences Journal, 31(3), 321-333.

Yang, T., Shao, Q., Hao, Z., Chen, X., Zhang, Z., Xu, C., & Sun, L. (2010). Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the pearl river basin, china. Journal of Hydrology, 380(3), 386-405.

Índice general del Anexo I

1.	Filtı	Filtrado primario de las observaciones							
2.	2. Regionalización								
3.	Res	sultados	48						
	3.1.	Dos regiones	48						
	3.2.	Tres regiones	49						
	3.3.	Cuatro regiones	50						
	3.4.	Cinco regiones	51						
	3.4.	.1. Alternativa 1	51						
	3.4.	.2. Alternativa 2 / definitiva	54						
4.	Fun	nciones de distribución	56						
	Distrib	bución Kappa (KAP)	56						
	Logíst	tica generalizada (GLO)	58						
	Genera	ral de valores extremos (GEV)	59						
	Genera	ral de Pareto (GPA)	61						
	Pearso	on tipo III (PE3)	62						
	Genera	ral normalizada (GNO)	65						

1. Filtrado primario de las observaciones

Tabla 13. Valores de los L-Moments en cada estación

Estación	Media, l1	L-CV, t	L- asimetría, t3	L- kurtosis, t4	Estación	Media, l1	L-CV, t	L- asimetría,	L- kurtosis, t4
Abourroo A	62.24	0,1480	0,1336	0,1894	Goizueta	81,80	0,1485	0,1631	0,1705
Abaurrea. A Aibar	62,34 47,87	0,1480	0,1330	0,1694	Goizueta Goñi	72,97	0,1463	0,1031	0,1703
Alloz	47,87 47,74	0,1884	0,1370	0,0647	Igúzquiza	39,39	0,1968	0,3218	0,1787
Altsasu	61,71	0,2041	0,2211	0,1703	Iguzquiza Ilundaín	49,81	0,1551	0,2141	0,1229
Amaiur	89,50	0,1236	0,1569	0,2159	Iraizotz	62,56	0,1299	0,2322	0,0941
Amillano	44,76	0,1496	0,0989	0,1328	Irotz	48,68	0,1780	0,0947	0,1002
Andosilla	35,52	0,2281	0,2528	0,2312	Irurtzun	63,72	0,1514	0,1224	0,0655
Aoiz	55,43	0,2107	0,3322	0,1316	Javier	44,93	0,1775	0,2725	0,2911
Areso	84,32	0,1503	0,2574	0,2341	Larraona	59,10	0,1557	0,2251	0,2419
Aribe	60,56	0,1622	0,1368	0,1216	Leire	54,49	0,1536	0,2732	0,2458
Arizkun	91,87	0,1419	0,1706	0,2564	Leitza	92,07	0,1430	0,1064	0,1346
Arróniz	45,40	0,1973	0,1937	0,1207	Lerga	52,89	0,2512	0,2794	0,1141
Artieda	47,37	0,1968	0,1943	0,0863	Lerín	35,21	0,2346	0,2150	0,1219
Artikutza	107,93	0,1423	0,1941	0,0684	Lesaka- S.Antón	113,48	0,1734	0,0109	-0,0446
Aurizberri	67,30	0,2049	0,0910	0,0664	Lesaka	78,21	0,1284	0,3359	0,0597
Azanza	54,92	0,1949	0,3707	0,2496	Lezáun	55,60	0,1853	0,2552	0,1456
Azpirotz	78,71	0,1149	0,1950	0,1980	Lodosa	35,32	0,1723	0,1516	0,0388
Barásoain	42,26	0,2006	0,2387	0,2245	L.Arcos	36,66	0,1801	0,1764	0,0387
Belate	68,50	0,1441	0,0889	0,0664	Luzaide	70,92	0,1319	0,0452 0,1907	-0,0207
Belzunce Bera	57,81 86,00	0,1805 0,1240	0,2172 0,2306	0,1805 0,1345	Miranda Monreal	38,05 49,02	0,2251 0,2061	0,1907	0,1766 0,1293
Bertiz	73,83	0,1240	0,2300	0,1343	Monteagudo	49,02 37,89	0,2001	0,2138	0,1293
Betelu	67,20	0,1728	0,1389	0,1748	Navascués	56,73	0,2323	0,2329	0,1355
Buñuel	44,55	0,2768	0,3071	0,2358	Noáin	47,05	0,1333	0,1377	0,2046
Cabanillas	43,74	0,2936	0,4112	0,4025	Olagüe	58,21	0,1585	0,1389	0,0723
Cábrega	42,14	0,1585	0,3018	0,1103	Olite	41,49	0,1999	0,1619	0,0865
Cadreita	39,57	0,2466	0,2751	0,2005	Olóriz	49,87	0,1260	0,0631	0,0639
Caparroso	41,68	0,2546	0,2476	0,1884	Oroz.B	71,05	0,2218	0,3199	0,2521
Carcastillo	43,42	0,1984	0,1435	0,0619	Otazu	47,14	0,1516	0,1508	0,0841
Cáseda	47,15	0,2339	0,3408	0,2270	Pamplona	53,03	0,2173	0,2466	0,1470
C. Arrambide	94,84	0,1374	0,1342	0,1054	P. Reina	39,96	0,2086	0,2829	0,1831
Corella	34,24	0,2035	-0,0257	0,0688	Sartaguda	44,71	0,2453	0,2904	0,1940
Doneztebe	77,16	0,1520	0,2138	0,199	Sesma	33,81	0,1890	0,1973	0,0926
Epároz	49,53	0,1674	0,2223	0,1212	Sunbilla	76,62	0,1388	0,1970	0,1069
Erro	65,05	0,156	0,1342	0,1243	Tudela	42,03	0,2455	0,1094	0,0912
E. Salazar	58,35	0,1471	0,1145	0,2121	Urbasa	61,77	0,1383	-0,0437	0,0969
Estella	39,50	0,1703	0,2227	0,0706	Urzainqui	57,97	0,1688	0,0984	0,2112
Etxalar	73,64	0,1650	0,3058	0,1558	Viana	34,80	0,1732	0,1386	0,1732
Eugi	69,89	0,1546	0,2067	0,1150	Yesa	51,89 52.40	0,1965	0,2461	0,1905
Falces Fitero	36,99 35,58	0,2007	0,1476 0,2376	0,2158 0,1655	Zalba Zuazu	52,49 51.54	0,1550 0,2031	0,2545	0,0056
Galbarra	55,58 59,89	0,2354 0,1771	0,2376	0,1633	Zuazu Zubiri	51,54 57,68	0,2031	0,2232 0,1114	0,1677 0,1318
Genevilla	39,89 40,51	0,1771	0,0863	0,1369	Zugarramurdi	74,68	0,1492	0,1114	0,1318
Genevina	40,31	0,1//0	0,1310	0,1222	Zugarrannurul	74,00	0,4114	0,5075	0,2034

2. Regionalización

Tabla 14. Descripción de las estaciones meteorológicas. (Fuente: http://meteo.navarra.es/)

Estación	Latitud*	Longitud*	Altitud (m)	To media anual (°C)	P media anual (mm)
Abaurrea Alta	4.751.729	646.634	1.050	9,1	1503,0
Aibar	4.716.649	634.836	556	13,3	664,7
Alloz	4.728.604	634.836	476	13,4	677,4
Altsasu	4.749.586	567.134	522	11,4	1307,6
Amaiur	4.784.300	623.639	300	12,7	1988,5
Amillano	4.729.948	575.969	498	12,2	746,0
Andosilla	4.691.406	586.998	309	14,0	387,4
Aoiz	4.738.493	633.160	513	12,9	845,8
Areso	4.770.782	585.395	524	12,4	1768,3
Aribe	4.755.831	641.840	701	10,3	1386,9
Arizkun	4.783.246	623.254	261	12,8	2040,7
Arróniz	4.715.798	574.955	583	13,1	624,8
Artieda	4.730.559	637.191	456	12,5	729,7
Artikutza	4.785.132	597.721	313	12,2	2526,7
Aurizberri	4.759.793	633.116	871	9,4	1554,8
Azanza	4.742.391	593.289	828	10,8	931,1
Azpirotz	4.763.740	587.771	548	12,1	1611,3
Barásoain	4.717.563	610.961	524	12,7	562,4
Belate	4.766.139	612.005	823	10,5	1753,4
Belzunce	4.750.325	607.543	530	10,3	994,1
Bera	4.792.708	607.332	50	14,2	1850,5
Bertiz	4.777.420	612.961	147	13,7	1529,9
Betelu	4.763.827	583.269	240	13,4	1574,1
Buñuel	4.648.421	628.919	244	14,4	378,7
Cabanillas	4.654.554	621.534	259	14,2	379,9
Cábrega	4.766.139	612.005	823	11,9	580,0
Cadreita	4.673.571	606.367	268	13,9	380,2
Caparroso	4.688.426	610.989	303	14,2	428,6
Carcastillo	4.692.142	626.471	343	13,4	474,8
Cáseda	4.708.970	634.180	439	13,5	573,3
C. Arrambide	4.718.922	561.258	598	12,7	1954,1
Corella	4.663.263	600.901	373	14,0	361,4
Doneztebe	4.776.161	608.989	125	13,8	1712,3
Epároz	4.736.455	642.971	565	11,7	869,4
Erro	4.755.543	626.500	672	9,7	1305,6
Esparza Salazar	4.746.564	655.400	695	10,7	1177,7
Estella	4.724.111	579.364	468	12,9	596,0
Etxalar	4.792.293	599.262	305	13,6	1657,3
Eugi	4.758.617	620.936	617	10,5	1504,7
Falces	4.693.778	599.197	295	14,1	423,7
Fitero	4.656.556	594.296	423	13,8	377,6
Galbarra	4.728.883	550.185	601	12,0	881,4
Genevilla	4.722.123	550.185	612	11,9	730,2
Goizueta	4.780.068	593.080	323	13,6	1969,0
Goñi	4.744.813	589.686	864	10,6	1430,2
Igúzquiza	4.721.856	575.054	526	13,0	595,1
Ilundaín	4.736.982	620.014	555	12,4	822,5
Iraizotz	4.761.703	609.120	550	10,7	1290,7
Iratzotz	4.761.703	616.713	330 479	10,7	874,3
Irotz Irurtzun	4.752.459	595.070	479 447	12,2	1200,5
Javier	4.732.439	646.328	447	13,2	623,5
Larraona	4.717.449	561.052	770	11,3	1155,2
Leire	4.730.341	649.876	770 759	12,1	864,6
Leitza	4.771.202	590.659	668	11,6	2055,7
LCILZA	7.771.202	370.033	000	11,0	2033,1

Lerga 4.713.610 623.026 612 12,6 708,3 Lerín 4.703.678 584.461 425 14,2 440,0 Lesaka - San Antón 4.792.293 599.262 305 13,0 2347,1 Lesaka 4.789.129 604.260 65 14,0 1701,6 Lezáun 4.735.949 581.897 817 11,1 995,5 Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Lerín 4.703.678 584.461 425 14,2 440,0 Lesaka - San Antón 4.792.293 599.262 305 13,0 2347,1 Lesaka 4.789.129 604.260 65 14,0 1701,6 Lezáun 4.735.949 581.897 817 11,1 995,5 Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Lesaka - San Antón 4.792.293 599.262 305 13,0 2347,1 Lesaka 4.789.129 604.260 65 14,0 1701,6 Lezáun 4.735.949 581.897 817 11,1 995,5 Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Lesaka 4.789.129 604.260 65 14,0 1701,6 Lezáun 4.735.949 581.897 817 11,1 995,5 Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Lezáun 4.735.949 581.897 817 11,1 995,5 Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Lodosa 4.697.085 575.495 321 14,4 423,2 Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Los arcos 4.713.435 566.988 469 13,3 485,8 Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
Luzaide - Valcarlos 4.772.980 638.585 320 13,0 1650,5	
MC 1. 4702706 F0620F 24F 120 420 F	
Miranda 4.703.786 596.295 345 13,9 429,5	
Monreal 4.728.992 622.028 528 13,0 797,6	
Monteagudo 4.646.031 608.506 415 13,6 366,0	
Navascués 4.731.155 654.163 615 12,0 904,9	
Noáin 4.735.961 611.216 456 12,7 697,7	
Olagüe 4.757.226 613.250 577 11,1 1196,9	
Olite 4.704.973 610.487 389 13,5 504,7	
Olóriz 4.722.544 616.650 706 12,3 782,2	
Oroz Betelu 4.763.827 583.269 240 13,4 1574,1	
Otazu 4.737.850 599.632 387 12,5 769,9	
Pamplona 4.741.482 611.310 450 12,4 762,3	
Puente la Reina 4.725.423 596.748 348 13,4 560,0	
Sartaguda 4.690.757 577.899 311 13,6 474,4	
Sesma 4.703.357 575.465 438 13,3 438,3	
Sunbilla 4.779.980 607.941 117 14,1 1696,7	
Tudela 4.656.880 615.056 300 14,6 378,6	
Urbasa 4.741.708 568.095 887 9,7 1331,8	
Urzainqui 4.743.913 667.714 722 11,4 1244,4	
Viana 4.706.952 551.818 436 13,8 452,1	
Yesa 4.719.911 648.316 487 13,2 773,1	
Zalba 4.743.538 626.707 565 11,9 939,4	
Zuazu 4.732.838 627.054 631 12,2 810,6	
Zubiri 4.753.802 621.938 526 11,5 1209,1	
Zugarramurdi 4.794.196 617.700 137 14,5 1598,0	

^{*} Coordenadas en el sistema de referencia ETRS89, proyección UTM huso 30

3. Resultados

3.1. Dos regiones

Tabla 15. Resultados ajustados de la media de heterogeneidad H en dos regiones

Cluster	Tamaño	Estaciones	Heterogeneidad
		Aibar, Alloz, Amillano, Andosilla, Arróniz, Artieda,	
		Barásoain, Buñuel, Cadreita, Caparroso, Carcastillo, Estella,	
Región 1	31	Falces, Fitero, Genevilla, Lerga, Lerín, Lodosa, Los Arcos,	2,11
		Miranda, Monreal, Monteagudo, Noáin, Olite, Otazu,	
		Pamplona, Puente la Reina, Sartaguda, Sesma, Viana y Yesa	
	50	Abaurrea Alta, Altsasu, Amaiur, Areso, Aribe, Aoiz, Arizkun,	
		Artikutza, Aurizberri, Azanza, Azpirotz, Belate, Belzunce,	
		Bera, Bertiz, Betelu, Cábrega, Cáseda, Central Arrambide,	
Dogića 2		Doneztebe, Epároz, Erro, Esparza De Salazar, Etxalar, Eugi,	2.7
Región 2		Galbarra, Goizueta, Goñi, Igúzquiza, Ilundaín, Iraizotz, Irotz,	2,7
		Irurtzun, Javier, Larraona, Leire, Leitza, Lezáun, Luzaide -	
		Valcarlos, Navascués, Olagüe, Olóriz, Oroz - Betelu, Sunbilla,	
		Urbasa, Urzainqui, Zalba, Zuazu, Zubiri y Zugarramurdi	

Tabla 16. Valores de D_i para el supuesto de 2 regiones

Estación	Di	Estación	Di	Estación	Di	Estación	Di			
	Región 1									
Aibar	0,99	Carcastillo	1,29	Monreal	0,05	Yesa	1,12			
Alloz	0,19	Estella	2,16	Monteagudo	0,30					
Amillano	1,78	Falces	1,94	Noáin	1,08					
Andosilla	0,82	Fitero	0,35	Olite	0,61					
Arróniz	0,06	Genevilla	0,37	Otazu	1,28					
Artieda	0,38	Lerga	1,67	Pamplona	0,23					
Barásoain	1,39	Lerín	0,87	Puente la Reina	1,49					
Buñuel	1,91	Lodosa	1,15	Sartaguda	0,75					
Cadreita	0,65	Los Arcos	1,24	Sesma	0,39					
Caparroso	1,09	Miranda	0,72	Viana	1,23					
	-		Regi	ón 2		-	-			
Abaurrea Alta	0,47	Bera	1,11	Goizueta	0,16	Navascués	0,82			
Altsasu	0,23	Bertiz	0,30	Goñi	0,90	Olagüe	0,46			
Amaiur	1,21	Betelu	2,91	Igúzquiza	0,73	Olóriz	1,00			
Areso	0,69	Cábrega	1,20	Ilundaín	1,13	Oroz.B	1,86			
Aribe	0,20	Cáseda	2,41	Iraizotz	1,20	Sunbilla	0,45			
Aoiz	1,80	C. Arrambide	0,33	Irotz	0,98	Urbasa	2,52			
Arizkun	1,28	Doneztebe	0,23	Irurtzun	0,53	Urzainqui	1,34			
Artikutza	0,77	Epároz	0,19	Javier	1,25	Zalba	2,66			
Aurizberri	2,60	Erro	0,16	Larraona	0,62	Zuazu	0,83			
Azanza	1,41	Esparza de Salazar	0,95	Leire	0,82	Zubiri	0,30			
Azpirotz	1,42	Etxalar	0,71	Leitza	0,37	Zugarramurdi	1,78			
Belate	0,66	Eugi	0,19	Lezáun	0,38					
Belzunce	0,19	Galbarra	1,17	Luzaide	2,12					

3.2. Tres regiones

Tabla 17. Resultados ajustados de la media de heterogeneidad H en tres regiones

Cluster	Tamaño	Estaciones	Heterogeneidad
Región 1	17	Amaiur, Arizkun, Artikutza, Belate, Bera, Bertiz, Betelu, Central Arrambide, Doneztebe, Etxalar, Goizueta, Leitza, Lesaka, Lesaka - San Antón, Luzaide - Valcarlos, Sunbilla y Zugarramurdi	0,94
Región 2	60	Abaurrea Alta, Aibar, Alloz, Altsasu, Amillano, Andosilla, Aoiz, Areso, Aribe, Arróniz, Artieda, Aurizberri, Azanza, Azpirotz, Barásoain, Belzunce, Cábrega, Carcastillo la Oliva, Cáseda, Epároz, Erro, Esparza de Salazar, Estella, Eugi, Galbarra, Genevilla, Goñi, Igúzquiza, Ilundaín, Iraizotz, Irotz, Irurtzun, Javier, Larraona, Leire, Lerga, Lerín, Lezáun, Lodosa, Los Arcos, Miranda, Monreal, Navascués, Noáin, Olagüe, Olite, Olóriz, Oroz - Betelu, Otazu, Pamplona, Puente la Reina, Sartaguda, Sesma, Urbasa, Urzainqui, Viana, Yesa, Zalba, Zuazu y Zubiri	3,72
Región 3	9	Buñuel, Cabanillas, Cadreita, Caparroso, Corella, Falces, Fitero, Monteagudo y Tudela	0,09

Tabla 18. Valores de Di para el supuesto de 3 regiones

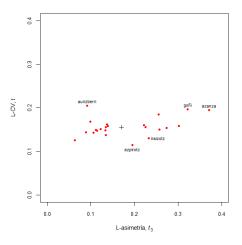
Estación	Di	Estación	Di	Estación	Di	Estación	Di	
Región 1								
Amaiur	1,10	Bertiz	0,66	Goizueta	0,19	Sunbilla	0,10	
Arizkun	1,23	Betelu	1,48	Leitza	0,36	Zugarramurdi	3,49	
Artikutza	0,32	C.Arrambide	0,14	Lesaka	2,42	_		
Belate	0,37	Doneztebe	0,22	Lesaka-S.A	2,50			
Bera	0,44	Etxalar	0,77	Luzaide	1,21			
		-	Re	gión 2		-		
Abaurrea.A	0,86	Cábrega	1,97	Javier	1,79	Otazu	0,51	
Aibar	0,69	Carcastillo	0,90	Larraona	1,16	Pamplona	0,49	
Alloz	0,24	Cáseda	1,53	Leire	1,60	P. Reina	0,46	
Altsasu	0,61	Epároz	0,29	Lerga	2,06	Sartaguda	1,55	
Amillano	0,68	Erro	0,31	Lerín	1,29	Sesma	0,28	
Andosilla	1,29	E.Salazar	1,43	Lezáun	0,23	Urbasa	3,44	
Aoiz	1,33	Estella	0,81	Lodosa	0,87	Urzainqui	1,63	
Areso	1,42	Eugi	0,49	Los Arcos	0,94	Viana	0,46	
Aribe	0,24	Galbarra	1,16	Miranda	1,16	Yesa	0,23	
Arróniz	0,19	Genevilla	0,15	Monreal	0,28	Zalba	3,33	
Artieda	0,42	Goñi	0,87	Navascués	1,25	Zuazu	0,20	
Aurizberri	1,73	Igúzquiza	0,14	Noáin	0,64	Zubiri	0,56	
Azanza	1,96	Ilundaín	1,43	Olagüe	0,51			
Azpirotz	2,25	Iraizotz	2,07	Olite	0,58			
Barásoain	0,58	Irotz	0,76	Olóriz	1,53			
Belzunce	0,11	Irurtzun	0,70	Oroz - B	1,37			
		<u> </u>	Re	gión 3				
Buñuel	0,54	Caparroso	0,36	Fitero	0,51			
Cabanillas	2,17	Corella	1,73	Monteagudo	0,62			
Cadreita	0,15	Falces	1,83	Tudela	1,10			

3.3. Cuatro regiones

Tabla 19. Resultados ajustados de la media de heterogeneidad H en cuatro regiones

Cluster	Tamaño	Estaciones	Heterogeneidad
Región 1	25	Abaurrea Alta, Altsasu, Areso, Aribe, Aurizberri, Azanza, Azpirotz, Belate, Cábrega, Central Arrambide, Erro, Esparza De Salazar, Eugi, Goñi, Iraizotz, Irurtzun, Larraona, Leire, Leitza, Lezáun, Olagüe, Olóriz, Urbasa, Urzainqui y Zubiri	0,18
Región 2	35	Aibar, Alloz, Amillano, Andosilla, Aoiz, Arróniz, Artieda, Barásoain, Belzunce, Carcastillo La Oliva, Cáseda, Epároz, Estella, Galbarra, Genevilla, Igúzquiza, Ilundaín, Irotz, Lerga, Lerín, Lodosa, Los Arcos, Miranda, Monreal, Navascués, Noáin, Olite, Otazu, Pamplona, Puente la Reina, Sartaguda, Sesma, Viana, Yesa y Zuazu	1,57
Región 3	15	Amaiur, Arizkun, Artikutza, Bera, Bertiz, Betelu, Doneztebe, Etxalar, Goizueta, Lesaka - San Antón, Lesaka, Luzaide - Valcarlos, Oroz - Betelu, Sunbilla y Zugarramurdi	2,1
Región 4	9	Buñuel, Cabanillas, Cadreita, Caparroso, Corella, Falces, Fitero, Monteagudo y Tudela	0,09

Tabla 20. Valores de Di para el supuesto de 4 regiones


Estación	Di	Estación	Di	Estación	Di	Estación	Di		
	Región 1								
Abaurrea.A	0,44	Belate	0,60	Iraizotz	1,81	Olóriz	1,08		
Altsasu	0,34	Cábrega	1,64	Irurtzun	0,59	Urbasa	1,93		
Areso	0,78	C. Arrambide	0,36	Larraona	0,79	Urzainqui	1,63		
Aribe	0,15	Erro	0,08	Leire	0,94	Zubiri	0,15		
Aurizberri	3,32	Esparza Salazar	1,01	Leitza	0,22				
Azanza	2,09	Eugi	0,32	Lezáun	0,80				
Azpirotz	1,79	Goñi	1,60	Olagüe	0,54				
			R	egión 2					
Aibar	0,85	Carcastillo	1,14	Lerga	2,13	Otazu	1,05		
Alloz	0,13	Cáseda	1,83	Lerín	1,35	Pamplona	0,26		
Amillano	1,48	Epároz	1,04	Lodosa	1,00	P.Reina	0,67		
Andosilla	1,18	Estella	1,37	L.Arcos	1,02	Sartaguda	1,28		
Aoiz	2,15	Galbarra	2,00	Miranda	1,23	Sesma	0,22		
Arróniz	0,05	Genevilla	0,27	Monreal	0,09	Viana	0,96		
Artieda	0,31	Igúzquiza	0,04	Navascués	2,98	Yesa	0,49		
Barásoain	0,90	Ilundaín	2,27	Noáin	0,67	Zuazu	0,11		
Belzunce	0,61	Irotz	1,26	Olite	0,61				
			R	egión 3					
Amaiur	1,09	Bertiz	0,45	Goizueta	0,24	Oroz-B	1,83		
Arizkun	1,22	Betelu	1,23	Lesaka- San Antón	2,41	Sunbilla	0,11		
Artikutza	0,30	Doneztebe	0,16	Lesaka	2,20	Zugarramurdi	1,67		
Bera	0,36	Etxalar	0,44	Luzaide	1,27				
			R	egión 4					
Buñuel	0,54	Caparroso	0,36	Fitero	0,51				
Cabanillas	2,17	Corella	1,73	Monteagudo	0,62				
Cadreita	0,15	Falces	1,83	Tudela	1,10				

3.4. Cinco regiones

3.4.1. Alternativa 1

Tabla 21. Valores de Di para la alternativa 1

Estación	Di	Estación	Di	Estación	Di	Estación	Di	
Región 1								
Abaurrea.A	0,41	Azpirotz	1,72	Goñi	1,56	Lezáun	0,79	
Altsasu	0,31	Belate	0,60	Iraizotz	1,84	Olagüe	0,55	
Areso	0,74	Cábrega	1,69	Irurtzun	0,60	Olóriz	1,06	
Aribe	0,14	C.Arrambide	0,37	Larraona	0,75	Urbasa	1,84	
Aurizberri	3,18	Erro	0,07	Leire	0,90	Urzainqui	1,57	
Azanza	2,01	E. Salazar	0,96	Leitza	0,20	Zubiri	0,14	
		-	Reg	ión 2	-	-		
Aibar	1,03	Belzunce	0,49	Ilundaín	1,24	Zalba	2,57	
Amillano	0,93	Epároz	0,46	Irotz	1,09	Zuazu	0,30	
Aoiz	1,50	Galbarra	1,10	Lerga	2,46			
Arróniz	0,13	Genevilla	0,16	Monreal	0,25			
Barásoain	1,18	Igúzquiza	0,07	Navascués	2,04			
_		-	Reg	rión 3	-	-		
Alloz	0,09	Cáseda	0,85	Los Arcos	1,07	Sartaguda	0,49	
Andosilla	0,32	Corella	4,40	Miranda	0,26	Sesma	0,39	
Artieda	0,39	Estella	1,41	Monteagudo	0,17	Tudela	2,04	
Buñuel	1,27	Falces	1,80	Noáin	0,24	Viana	1,62	
Cabanillas	3,32	Fitero	0,20	Olite	0,28	Yesa	0,39	
Cadreita	0,37	Javier	3,26	Otazu	1,26			
Caparroso	0,59	Lerín	0,51	Pamplona	0,18			
Carcastillo	0,52	Lodosa	0,93	Puente la Reina	0,41			
		-	Reg	ión 4	-	· -		
Amaiur	1,09	Bertiz	0,45	Goizueta	0,24	Oroz - Betelu	1,83	
Arizkun	1,22	Betelu	1,23	Lesaka-S.Antón	2,41	Sunbilla	0,11	
Artikutza	0,30	Doneztebe	0,16	Lesaka	2,20	Zugarramurdi	1,67	
Bera	0,36	Etxalar	0,44	Luzaide	1,27			
			Reg	rión 5				
Eugi	1,00			•				

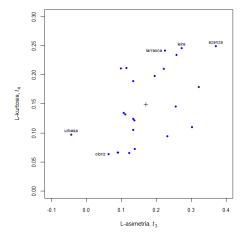
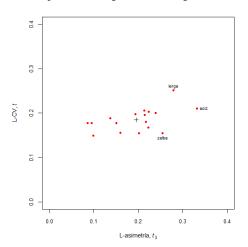
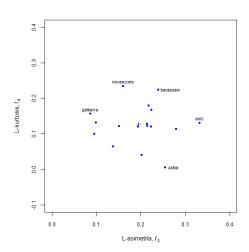
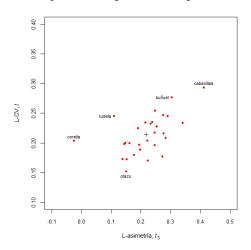





Figura 10. Representación gráfica de la región 1

Figura 11. Representación gráfica de la región 2

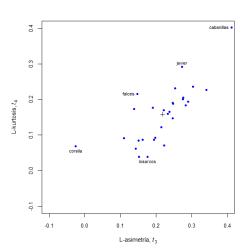
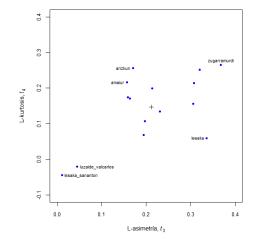
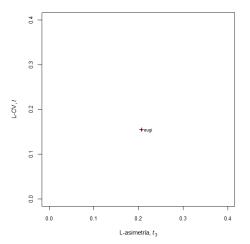
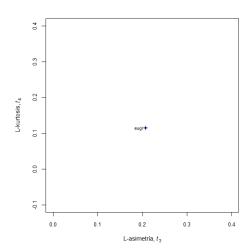


Figura 12. Representación gráfica de la región 3

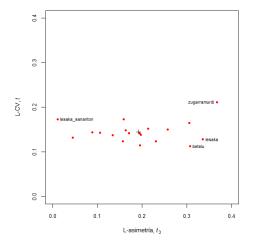

Figura 13. Representación gráfica de la región 4

Figura 14. Representación gráfica de la región 5

3.4.2. Alternativa 2 / definitiva

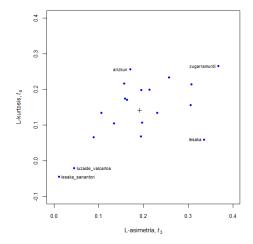
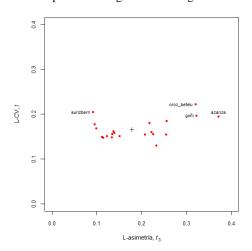



Figura 15. Representacion grafica de la región 1

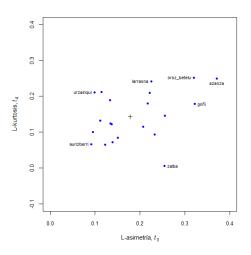
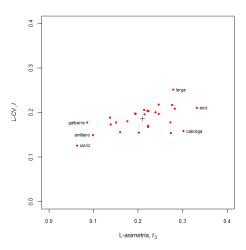
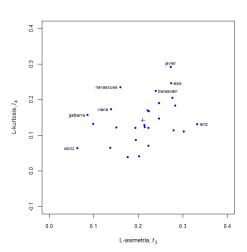
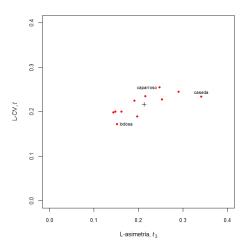





Figura 16. Representación gráfica de la región 2

Figura 17. Representación gráfica de la región 3

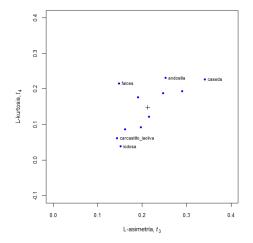
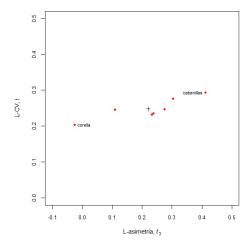
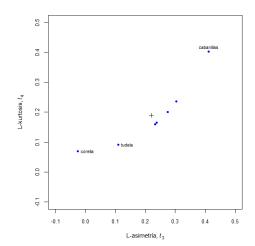




Figura 18. Representación gráfica de la región 4

Figura 19. Representación gráfica de la región 5

4. Funciones de distribución

La caracterización de las siguientes distribuciones se ha desarrollado siguiendo las indicaciones establecidas por Hosking y Wallis (1997).

Distribución Kappa (KAP)

Formada por cuatro parámetros: el parámetro local ξ , parámetro de escala α y los parámetros k y h como cuantiles de distribución y en la que su función de distribución se expresa como:

$$x(F) = \xi + \frac{\alpha}{k} \left\{ 1 - \left(\frac{1 - F^h}{h} \right)^k \right\} \tag{1}$$

Rango de x: el límite superior es $\xi + \alpha/k$ para k > 0, o bien ∞ para k \le 0; el límite inferior $\xi + \alpha$ (1 h^{-k})/k para h > 0, $\xi + \alpha/k$ para $h \le 0$ y k < 0, o bien $-\infty$ si $h \le 0$ y $k \ge 0$.

$$f(x) = \alpha^{-1} [1 - k(x - \xi)/\alpha]^{1/k - 1} [F(x)]^{1 - h}$$
 (2)

$$F(x) = \left\{1 - h[1 - k(x - \xi)/\alpha]^{1/k}\right\}^{1/h} \tag{3}$$

La distribución Kappa consta de cuatro parámetros y dentro de ella pueden darse casos especiales de otras distribuciones como; Logística Generalizada (GLO) h=-1, General de Valores Extremos (GEV) h=0, General de Pareto (GPA) h=1, Logística k=0 y h=1, Gumbel e k=0 y h=0, Exponencial k=0 y h=1 y Uniforme cuando k=1 y h=1. Existe otra distribución Kappa de tres parámetros (Mielke Jr & Johnson, 1973) en la que su función de distribución se expresa como

$$x(F) = \xi + \frac{\alpha}{k} \left\{ 1 - \left(\frac{1 - F^h}{h} \right)^k \right\} \tag{4}$$

obteniéndose desde 2 tomando $\xi=b$, $\alpha=b/(a\theta)$, $k=-1/(a\theta)$ y h=-a

El rango de parámetros más útil es $h \ge -1$. Con esta condición los parámetros de los *L-Moments* de la distribución cubren una amplia área del plano. Por esto es de gran utilidad como distribución general con la que comparar el grado de ajuste de la distribución de dos o tres parámetros y también a la hora de simular datos para evaluar la precisión de los métodos estadísticos.

Los *L-Moments* están definidos para $h \ge 0$ y k > -1 o para h < 0 y -1 < k < -1/h.

$$\lambda_1 = \xi + \alpha (1 - g_1)/k \tag{5}$$

$$\lambda_2 = \alpha (g_1 - g_2)/k \tag{6}$$

$$\tau_3 = (-g_1 + 3g_2 - 2g_3)/(g_1 - g_2) \tag{7}$$

$$\lambda_{1} = \xi + \alpha (1 - g_{1})/k$$

$$\lambda_{2} = \alpha (g_{1} - g_{2})/k$$

$$\tau_{3} = (-g_{1} + 3g_{2} - 2g_{3})/(g_{1} - g_{2})$$

$$\tau_{4} = (-g_{1} + 6g_{2} - 10g_{3} + 5g_{4})/(g_{1} - g_{2})$$
(8)

Junio 2015

donde

$$g_r = \frac{r\Gamma(1+k)\Gamma(r/h)}{h^{1+k}\Gamma(1+k+r/h)}, \ h > 0$$
$$\frac{r\Gamma(1+k)\Gamma(-k-r/h)}{(-h)^{1+k}\Gamma(1-r/h)}, \ h > 0$$
 (9)

No existen expresiones simples para los parámetros en términos de sus L-Moments, las expresiones 7 y 8 devuelven τ_3 y τ_4 a partir de k y h de modo que dadas τ_3 y τ_4 se pueden obtener k y h por medio del método iterativo de Newton-Raphson. El Algoritmo es descrito en

Logística generalizada (GLO)

Formada por tres parámetros: ξ (localización), α (escala) y k (forma)

En la que la función de distribución se expresa como:

$$F(X) = \frac{1}{(1 + e^{-y})} \tag{10}$$

Rango de x: $-\infty < x \le \xi + \alpha/k$ si k > 0; $-\infty < x < \infty$ si k = 0; $\xi + \alpha/k \le x < \infty$ si k < 0.

donde:

$$f(x) = \frac{\alpha^{-1}e^{-(1-k)y}}{(1+e^{-y})^2}, \quad y = \begin{cases} -k^{-1}\log\left\{1 - \frac{k(x-\xi)}{\alpha}\right\}, & k \neq 0\\ (x-\xi/\alpha), & k = 0 \end{cases}$$
(11)

$$x(F) = \begin{cases} \xi + \alpha \left[1 - \frac{\left\{ \frac{1-F}{F} \right\}^k}{k} \right] & k \neq 0 \\ \xi + \alpha \log\{(1-F)/F\} & k = 0 \end{cases}$$
 (12)

Como casos especiales esta: k=0 es la distribución Logística, versión reparametrizada de la distribución LogLogistica (Ahmad, Sinclair, & Werritty, 1988). Adopta este nombre para reflejar la similitud con las distribuciones General de Parteo y General de Valores Extremos.

Los *L-Moments* vienen definidos para -1<k<1

$$\lambda_1 = \xi + \alpha \left(\frac{1}{k} - \frac{\pi}{\sin k\pi}\right) \tag{13}$$

$$\lambda_2 = \alpha k \pi / sink \pi \pi \tag{14}$$

$$\tau_3 = -k \tag{15}$$

$$\tau_4 = (1 + 5k^2)/6 \tag{16}$$

Sus parámetros son expresados como

$$k = -\tau_{3},$$
 $\alpha = \frac{\lambda_2 sink\pi}{k\pi},$ $\xi = \lambda_1 - \alpha(\frac{1}{k} - \frac{\pi}{sink\pi})$ (17)

General de valores extremos (GEV)

Formada por tres parámetros: ξ (localización), α (escala) y k (forma)

En la que la función de distribución se expresa como:

$$F(X) = e^{-e^{-y}} \tag{18}$$

donde:

$$f(x) = \alpha^{-1}e^{-(1-k)y}, \qquad y = \begin{cases} -k^{-1}\log\left\{1 - \frac{k(x-\xi)}{\alpha}\right\}, & k \neq 0\\ (x-\xi/\alpha), & k = 0 \end{cases}$$
(19)

$$x(F) = \begin{cases} \xi + \frac{\alpha \{1 - (-\log F)^k\}}{k}, & k \neq 0 \\ \xi - \alpha \log(-\log F), & k = 0 \end{cases}$$
 (20)

Como casos especiales: k=0 se trata de la distribución Gumbel; k=1 es una distribución exponencial revertida

Existen tres tipos de distribuciones GEV, caracterizadas por las siguientes funciones de distribución acumuladas:

Tipo I
$$F(x) = \exp(e^{-x}) \qquad -\infty < x < \infty$$
 (21)

Tipo I
$$F(x) = \exp(e^{-x})$$
 $-\infty < x < \infty$ (21)
Tipo II $F(x) = \exp(-x^{-\delta})$ $0 \le x < \infty$ (22)
Tipo III $F(x) = \exp(-|x|^{\delta})$ $-\infty < x \le 0$ (23)

Tipo III
$$F(x) = \exp(-|x|^{\delta}) \qquad -\infty < x \le 0$$
 (23)

Los diferentes tipos de distribución corresponden a k=0, k<0 y a k>0 respectivamente. La distribución de Weibull se define por

$$F(x) = 1 - exp\left[-\left\{\frac{x - \varsigma}{\beta}\right\}^{\delta}\right], \quad \varsigma \le x \le \infty$$
 (24)

siendo una distribución GEV revertida con parámetros

$$k = \frac{1}{\sigma}$$
 , $\alpha = \frac{\beta}{\delta}$, $\xi = \varsigma - \beta$ (25)

Los valores de los *L-Moments* están definidos para valores de k>1

$$\lambda_1 = \xi + \alpha \{1 - \Gamma(1+k)\}/k \tag{26}$$

$$\lambda_2 = \alpha (1 - 2^{-k}) \Gamma(1 + k) / k \tag{27}$$

$$\tau_3 = \frac{2(1-3^{-k})}{1-2^{-k}} - 3 \tag{28}$$

$$\tau_4 = \left\{ 5\left(1 - 4^{-k}\right) - 10\left(1 - 3^{-k}\right) + 6\left(1 - 2^{-k}\right) \right\} / (1 - 2^{-k}) \tag{29}$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \tag{30}$$

El valor del parámetro k se estima resolviendo la expresión (28). No es posible obtener una solución explicita, pero la aproximación siguiente tiene una precisión mayor que $9x10^{-4}$ para $-0.5 \le \tau_3 \le 0.5$

$$k \approx 7,8590c + 2,9554c^2$$
, $c = \frac{2}{3 + \tau_3} - \frac{log2}{log3}$ (31)

Los datos del parámetro se definen por

$$\alpha = \frac{\lambda_2 k}{(1 - 2^{-k})\Gamma(1 + k)}, \quad \xi = \lambda_1 - \alpha \{1 - \Gamma(1 + k)\}/k \tag{32}$$

General de Pareto (GPA)

Formada por tres parámetros: ξ (localización), α (escala) y k (forma).

Rango de x: $\xi \le x \le \xi + \alpha/k$ para k > 0; $\xi \le x < \infty$ para $k \le 0$.

En la que la función de distribución se expresa como:

$$F(X) = 1 - e^{-y} (33)$$

donde:

$$f(x) = \alpha^{-1} e^{-(1-k)y}, \qquad y = \begin{cases} -k^{-1} \log \left\{ 1 - \frac{k(x-\xi)}{\alpha} \right\}, & k \neq 0 \\ (x-\xi/\alpha), & k = 0 \end{cases}$$
(34)

$$x(F) = \begin{cases} \xi + \alpha \left[1 - \frac{\left\{ \frac{1-F}{F} \right\}^k}{k} \right] & k \neq 0 \\ \xi + \alpha \log\{(1-F)/F\} & k = 0 \end{cases}$$
 (35)

Casos especiales: k=0 distribución exponencial, k=1 distribución uniforme en el intervalo $\xi \le x \le \xi + \alpha$.

Los casos para los que se definen los *L-Moments* se definen para k>-1.

$$\lambda_1 = \xi + \alpha/(1+k) \tag{36}$$

$$\lambda_2 = \alpha / \{ (1+k)(2+k) \} \tag{37}$$

$$\tau_3 = (1 - k)/(3 + k) \tag{38}$$

$$\tau_4 = (1 - k)(2 - k)/\{(3 + k)(4 + k)\}\tag{39}$$

La relación entre τ_3 y τ_4 se define mediante

$$\tau_4 = \frac{\tau_3(1+5\tau_3)}{5+\tau_3} \tag{40}$$

Si ξ es conocido, los dos parámetros de α y k vienen dados por

$$k = (\lambda_1 - \xi)/\lambda_2 - 2 \qquad \qquad \alpha = (1 + k)(\lambda_1 - \xi) \tag{41}$$

Si ξ es desconocido, los tres parámetros vienen dados por

$$k = \frac{1 - 3\tau_3}{1 + \tau_2}, \qquad \alpha = (1 + k)(2 + k)\lambda_2, \qquad \xi = \lambda_1 - (2 + k)\lambda_2 \tag{42}$$

Pearson tipo III (PE3)

Formada por tres parámetros: μ (localización), σ (escala) y γ (forma)

En la que si $\gamma \neq 0$, sea $\alpha = 4/y^2$, $\beta = \frac{1}{2}\sigma|y|$, $\xi = y - 2\sigma/y$. Si $\gamma > 0$, el rango de x es $\xi \leq x < \infty$ en la que su función de distribución se expresa como:

$$f(x) = \frac{(x - \xi)^{\alpha - 1} e^{-(\alpha - \xi)/\beta}}{\beta^{\alpha} \Gamma(\alpha)}$$
(43)

$$F(X) = \begin{cases} \frac{G\left(\alpha, \frac{x - \xi}{\beta}\right)}{\Gamma(\alpha)}, & \gamma > 0\\ \frac{G\left(\alpha, \frac{x - \xi}{\beta}\right)}{\Gamma(\alpha)}, & \gamma < 0 \end{cases}$$
(44)

si γ =0, la distribución es Normal, donde el rango de x es $-\infty < x < \infty$, y

$$f(x) = \emptyset\left(\frac{x-\mu}{\sigma}\right), F(X) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
 (45)

Siendo Ø y Φ la función de distribución Normal y su acumulada respectivamente. Si γ <0, el rango de x es $-\infty < x \le \xi$, y

$$f(x) = \frac{(\xi - x)^{\alpha - 1} e^{-(\xi - x)/\beta}}{\beta^{\alpha} \Gamma(\alpha)}$$
(46)

$$F(x) = 1 - G\left(\alpha, \frac{\xi - x}{\beta}\right) / \Gamma(\alpha) \tag{47}$$

Γ es una función Gamma definida en 29, y

$$G(\alpha, x) = \int_0^x t^{\alpha - 1} e^{-t} dt \tag{48}$$

es la función Gamma incompleta

Como casos especiales están: γ =2 distribución exponencial; γ =0 Normal; γ =-2exponencial revertid La distribución Pearson tipo III se remite al coso de γ >0 y se suele parametrizar por medio de α , β y ξ , lo cual permite el uso de la distribución en los casos en los que los datos tienen posible asimetría positiva

Los *L-Moments*, se expresan en función de los parámetros estándar de la distribución. Se asume que γ >0. Para los casos de γ <0, se cambiarían los valores de λ_1 , τ_3 y ξ en la expresiones que van desde 46 hasta 54 inclusive. Se definen para los valores de α comprendidos entre 0 e ∞ .

$$\lambda_1 = \xi + \alpha \beta \tag{49}$$

$$\lambda_2 = \pi^{-\frac{1}{2}} \beta \Gamma(\alpha + \frac{1}{2}) / \Gamma(\alpha)$$
 (50)

$$\tau_3 = 6I_{1/3}(\alpha, 2\alpha) - 3 \tag{51}$$

donde:

$$I_{x}(p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_{0}^{x} t^{p-1} (1-t)^{q-1} dt$$
 (52)

No existe una expresión única para τ_4 . Tanto τ_3 como τ_4 se pueden aproximar por medio de funciones racionales en función de α. Las siguientes aproximaciones tienen una expresión del orden de 10^{-6} . Para $\alpha \ge 1$,

$$\tau_{3} \approx \alpha^{-1/2} \frac{A_{0} + A_{1}\alpha^{-1} + A_{2}\alpha^{-2} + A_{3}\alpha^{-3}}{1 + B\alpha^{-1} + B_{2}\alpha^{-2}}$$

$$\tau_{4} \approx \frac{C_{0} + C_{1}\alpha^{-1} + C_{2}\alpha^{-2} + C_{3}\alpha^{-3}}{1 + D\alpha^{-1} + D_{2}\alpha^{-2}}$$
(53)

$$\tau_4 \approx \frac{C_0 + C_1 \alpha^{-1} + C_2 \alpha^{-2} + C_3 \alpha^{-3}}{1 + D \alpha^{-1} + D_2 \alpha^{-2}}$$
 (54)

Cuando α < 1,

$$\tau_3 \approx \frac{1 + E_1 \alpha + E_2 \alpha^2 + E_3 \alpha^3}{1 + F_1 \alpha + F_2 \alpha^2 + F_3 \alpha^3}$$
 (55)

$$\tau_{3} \approx \frac{1 + E_{1}\alpha + E_{2}\alpha^{2} + E_{3}\alpha^{3}}{1 + F_{1}\alpha + F_{2}\alpha^{2} + F_{3}\alpha^{3}}$$

$$\tau_{4} \approx \frac{1 + G\alpha + G\alpha^{2} + G\alpha^{3}}{1 + H_{1}\alpha + H_{2}\alpha^{2} + H_{3}\alpha^{3}}$$
(55)

Los coeficientes de aproximación se muestran en la Tabla 22.

Tabla 22. Coeficientes de las aproximaciones de τ_4 y de τ_3 en función a α

$A_0 = 3,2573501 \times 10^{-1}$	$C_0 = 1,2260172 \times 10^{-1}$
$A_1 = 1,6869150 \times 10^{-1}$	$C_1 = 5,3730130 \times 10^{-1}$
$A_2 = 7,8327243 \times 10^{-2}$	$C_2 = 4,3384378 \times 10^{-2}$
$A_3 = -2,9120539 \times 10^{-3}$	$C_3 = 1,1101277 \times 10^{-3}$
$B_1 = 4,6697102 \times 10^{-1}$	$D_1 = 1,8324466 \times 10^{-1}$
$B_2 = 2,4255406 \times 10^{-1}$	$D_2 = 2,0166036x10^{-1}$
$E_1 = 2,3807576$	$G_1 = 2,1235833$
$E_2 = 1,5931792$	$G_2 = 4,1670213$
$E_3 = 1,1618371x10^{-1}$	$G_3 = 3,1925299$
$F_1 = 5,1533299$	$H_1 = 9,0551443$
$F_2 = 7,1425260$	$H_2 = 2,6649995 \times 10^1$
$F_3 = 1,9745056$	$H_3 = 2,6193668 \times 10^1$

Para estimar α se resuelve 51 reemplazando τ_3 por $|\tau_3|$ para posibilitar la resolución en caso de que τ_3 sea negativo. La siguiente aproximación tiene una precisión relativa mayor que $5x10^{-3}$ para cualquier valor de α . Para $0 \le |\tau_3| < 1/3$ y definiendo $z = 3\pi\tau_3^2$,

$$\alpha = \frac{1 + 0.2906z}{z + 0.1882z^2 + 0.0442z^2}$$
 (57)

Junio 2015

Para $1/3 \le |\tau_3| < 1$ y con $z = 1 - |\tau_3|$,

$$\alpha = \frac{0,36067z + 0,59567z^2 + 0,25361z^3}{1 - 2,78861z + 2,56096z^2 + 0,77045z^3}$$
 (58)

Dado α , los parámetros definidos al principio de la sección se obtienen como:

$$\gamma = 2\alpha^{-\frac{1}{2}} sign(\tau_3), \qquad \sigma = \lambda_2 \pi^{\frac{1}{2}} \alpha^{\frac{1}{2}} \Gamma(\alpha) / \Gamma(\alpha + 1/2), \qquad \mu = \lambda_1 \qquad (59)$$

General normalizada (GNO)

Formada por tres parámetros: ξ (localización), α (escala) y k (forma)

Rango de x: $-\infty < x \le \xi + \frac{\alpha}{k}$ para k > 0; $-\infty < x < \infty$ para k = 0; $\xi + \frac{\alpha}{k} \le x \le \infty$ para k < 0.

$$f(x) = \frac{e^{ky - y^2/2}}{\alpha \sqrt{2\pi}}, \quad y = \begin{cases} -\frac{1}{k} \log\left[1 - \frac{k(x - \xi)}{\alpha}\right], & k \neq 0\\ \frac{x - \xi}{\alpha}, & k = 0 \end{cases}$$
(60)

$$F(X) = \Phi(y) \tag{61}$$

Φ es la funcio de distribución acumulada de una distribución Normal estándar.

Caso especial: k=0 es la distribución Normal con parámetros ξ y α .

En la que la función de distribución se expresa como:

$$f(x) = \frac{\phi(y)}{\alpha - k(x - \xi)'}$$
(62)

Contiene como casos especiales a los tres parámetros habituales de la distribución LogNormal correspondientes a k<0 con un límite inferior y asimetría positiva, la distribución normal con k=0 y la distribución LogNormal inversa correspondiente a k>0 con limite finito superior y asimetría negativa. Los valores de la distribución LogNormal de dos parámetros con límite inferior cero y asimetría positiva se obtienen cuando k<0 y $\xi+\alpha/k=0$.

Sus *L-Moments* se definen para cualquier valor de *k*.

$$\lambda_1 = \xi + \alpha (1 - e^{\frac{k^2}{2}})/k$$
 (63)

$$\lambda_2 = \frac{\alpha}{k} e^{k^2/2} \left\{ 1 - 2\Phi(-k\sqrt{2}) \right\}$$
 (64)

No existen expresiones simples para los ratios de los *L-Moments* se utilizan aproximaciones basadas en funciones racionales. Las aproximaciones para τ_3 y τ_4 tienen mayor precisión que $2x10^{-7}$ y $5x10^{-7}$, para $|k| \le 4$, lo que corresponde a $|\tau_3| \le 0.99$ y $\tau_4 \le 0.98$.

$$\tau_3 \approx -k \frac{A_0 + A_1 k^2 + A_2 k^4 + A_3 k^6}{1 + B_1 k^2 + B_2 k^4 + B_3 k^6} \tag{65}$$

$$\tau_4 \approx \tau_4^0 + k^2 \frac{C_0 + C_1 k^2 + C_2 k^4 + C_3 k^6}{1 + D_1 k^2 + D_2 k^4 + D_3 k^6} \tag{66}$$

El parámetro de forma k es función de τ_3 . No existe solución explicita posible, pero las aproximaciones siguientes tienen una aproximación mayor que 2.5×10^{-6} para $|\tau_3| \le 0.94$, lo que corresponde a $|\mathbf{k}| \le 3$:

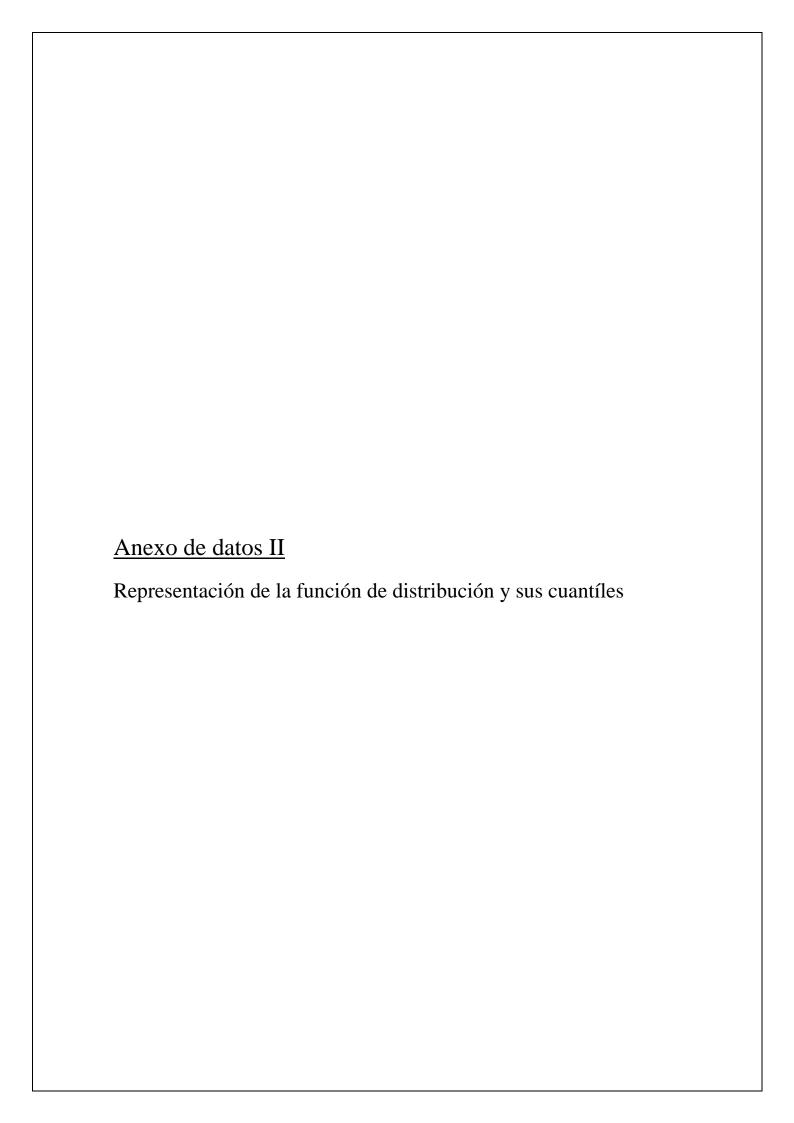

$$k \approx -\tau_3 \frac{E_0 + E_1 \tau_3^2 + E_2 \tau_3^4 + E_3 \tau_3^6}{1 + F_1 \tau_3^2 + F_2 \tau_3^4 + F \tau_3^6} \tag{67}$$

Tabla 23. Coeficientes de las aproximaciones 65 hasta 67

	$\tau_4^0 = 1{,}12260172x10^{-1}$	
$A_0 = 4,8860251 \times 10^{-1}$	$C_0 = 1,8756590 \times 10^{-1}$	$E_0 = 1,0466534$
$A_1 = 4,4493076 \times 10^{-3}$	$C_1 = -2,5352147 \times 10^{-3}$	$E_1 = -36544371$
$A_2 = 8,8027039 \times 10^{-4}$	$C_2 = 2,6995102 \times 10^{-4}$	$E_2 = 1,8396733$
$A_3 = 1,1507084 \times 10^{-6}$	$C_3 = -1,8446680 \times 10^{-6}$	$E_3 = -0.20360244$
$B_1 = 6,4662924 \times 10^{-2}$	$D_1 = 8,2325617 \times 10^{-2}$	$F_1 = -2,0182173$
$B_2 = 3,3090406 \times 10^{-3}$	$D_2 = 4,2681448 \times 10^{-3}$	$F_2 = 1,2420401$
$B_3 = 7,4290680 \times 10^{-5}$	$D_3 = 1,1653690 \times 10^{-4}$	$F_3 = -0.21741801$

Los coeficientes utilizados en la aproximación son los que se recogen en la Tabla 23, el resto de parámetros se definen mediante

$$\alpha = \frac{\lambda_2 k e^{-k^2/2}}{1 - 2\Phi(-\frac{k}{\sqrt{2}})}, \quad \xi = \lambda_1 - \frac{\alpha}{k} (1 - e^{\frac{k^2}{2}})$$
 (68)

Índice general del Anexo II

Región 1	73
Amaiur	74
Areso	75
Arizkun	76
Artikutza	77
Azpirotz	78
Belate	79
Bera	80
Bertiz	81
Betelu	82
Central Arrambide	83
Doneztebe	84
Etxalar	85
Goizueta	86
Leitza	87
Lesaka – San Antón	88
Lesaka	89
Luzaide – Valcarlos	90
Sunbilla	91
Zugarramurdi	92
Región 2	93
Abaurrea Alta	94
Altsasu	95
Aribe	96
Aurizberri	97
Azanza	98
Belzunce	99
Erro	
Esparza de Salazar	101
Eugi	
Goñi	103
Iraizotz	104
Irotz	

	Irurtzun	. 106
	Larraona	. 107
	Lezáun	. 108
	Olagüe	. 109
	Oroz – Betelu	. 110
	Otazu	. 111
	Urbasa	. 112
	Urzainqui	. 113
	Zalba	. 114
	Zubiri	. 115
Re	egión 3	. 116
	Aibar	
	Alloz	
	Amillano	
	Aoiz	
	Arróniz	
	Artieda	
	Barásoain	. 123
	Cábrega	
	Epároz	
	Estella	
	Galbarra	
	Genevilla	
	Iguzquiza	
	Ilundaín	
	Javier	
	Leire	
	Lerga	
	Los Arcos	
	Monreal	
	Navascues	
	Noáin	
	Olóriz	
	Pamplona	
	Puente la Reina	

Viana	141
Yesa	142
Zuazu	143
Región 4	144
Andosilla	145
Caparroso	146
Carcastillo la Oliva	147
Cáseda	148
Falces	149
Lerín	150
Lodosa	151
Miranda de Arga	152
Olite	153
Sartaguda	154
Sesma	155
Región 5	156
Buñuel	157
Cabanillas	158
Cadreita	159
Corella	160
Fitero	161
Monteagudo	162
Tudela	163
Cuantiles P (mm) de la Región 1	165
Cuantiles P (mm) de la Región 2	166
Cuantiles P (mm) de la Región 3	167
Cuantiles P (mm) de la Región 4	168
Cuantiles P (mm) de la Región 5	169

Región 1

Tabla 24. Valores del índices de avenida $(\widehat{\mu}_i)$ de las estaciones de la región 1

Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$
Amaiur	89,50	Bertiz	73,83	Lesaka-S.Antón	113,48
Areso	84,32	Betelu	67,20	Lesaka	78,21
Arizkun	91,87	C.Arrambide	94,84	Luzaide	70,92
Artikutza	107,93	Doneztebe	77,16	Sunbilla	76,62
Azpirotz	78,71	Etxalar	73,64	Zugarramurdi	74,68
Belate	68,50	Goizueta	81,80		
Bera	86,00	Leitza	92,07		

Tabla 25. Resultados de las estimaciones regionales de la región 1

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	0,95	0,03	0,89	0,99
5	1,20	0,03	1,15	1,25
10	1,36	0,05	1,29	1,48
20	1,51	0,08	1,40	1,74
50	1,70	0,13	1,53	2,07
100	1,83	0,17	1,62	2,32
200	1,97	0,21	1,70	2,57
500	2,14	0,27	1,81	2,90
1000	2,27	0,31	1,88	3,15

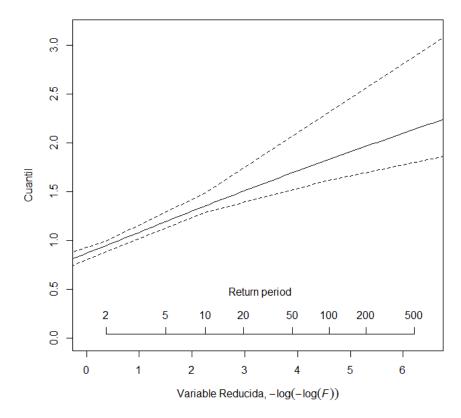


Figura 20. Representación gráfica de la función de distribución en la región 1

Amaiur

Tabla 26. Cuantiles de precipitación diaria en Amaiur

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	85,0	4,7	77,4	92,6
5	107,0	5,7	98,4	117,8
10	121,4	7,5	110,3	136,6
20	134,9	10,1	121,0	157,7
50	151,8	14,3	132,7	187,0
100	164,1	17,7	141,1	210,4
200	176,1	21,3	148,6	233,7
500	191,7	26,3	158,4	263,7
1000	203,2	30,2	164,9	285,3

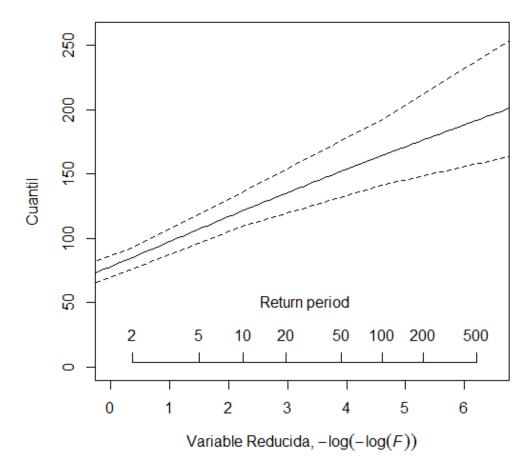


Figura 21. Representación gráfica de la función de distribución en Amaiur

Areso

Tabla 27. Cuantiles de precipitación diaria en Areso

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	80,0	5,2	71,6	88,0
5	100,8	6,3	90,9	112,0
10	114,4	7,9	102,8	128,7
20	127,1	10,2	112,9	147,3
50	143,0	13,8	125,0	174,5
100	154,6	16,9	133,0	195,3
200	165,9	20,2	140,4	215,6
500	180,6	24,7	150,0	243,7
1000	191,5	28,2	156,3	265,3

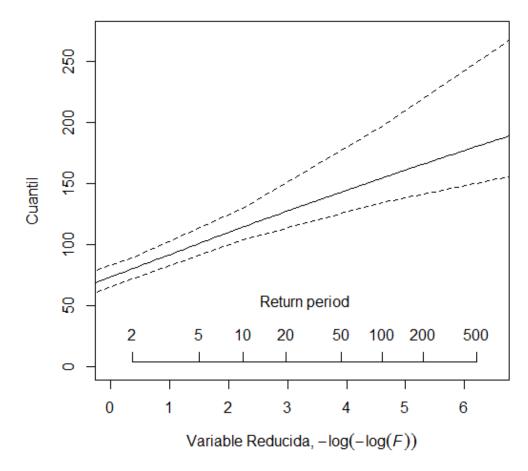


Figura 22. Representación gráfica de la función de distribución en Areso

Arizkun

Tabla 28. Cuantiles de precipitación diaria en Arizkun

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	87,2	4,9	79,0	94,5
5	109,9	5,7	100,3	118,9
10	124,6	7,4	113,8	137,9
20	138,4	10,0	124,4	158,2
50	155,8	14,0	137,1	186,7
100	168,4	17,5	145,6	208,3
200	180,8	21,1	153,8	229,9
500	196,7	26,1	162,7	259,4
1000	208,6	30,0	169,8	281,7

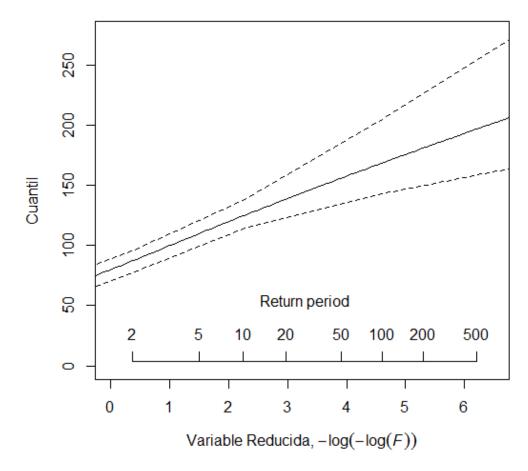


Figura 23. Representación gráfica de la función de distribución en Arizkun

Artikutza

Tabla 29. Cuantiles de precipitación diaria en Artikutza

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	102,5	6,3	92,4	112,6
5	129,1	7,5	118,4	142,9
10	146,4	9,6	133,8	166,1
20	162,7	12,6	146,2	191,8
50	183,0	17,5	161,5	229,0
100	197,9	21,6	171,6	256,6
200	212,4	25,9	180,9	285,9
500	231,1	31,9	191,7	323,5
1000	245,1	36,7	199,8	351,0

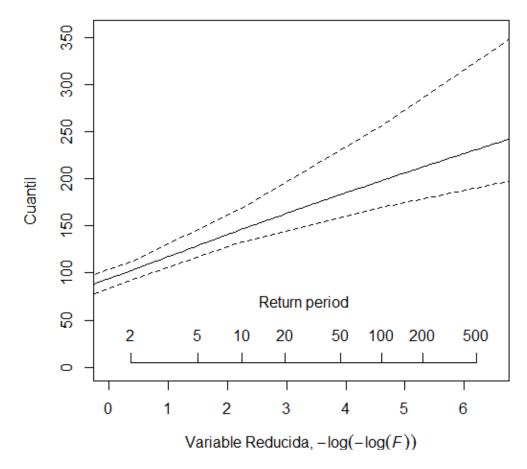


Figura 24. Representación gráfica de la función de distribución en Artikutza

Azpirotz

Tabla 30. Cuantiles de precipitación diaria en Azpirotz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	74,7	4,8	67,2	82,3
5	94,1	5,7	85,7	104,5
10	106,8	7,2	96,5	121,1
20	118,6	9,5	106,0	139,7
50	133,5	13,1	116,7	166,3
100	144,3	16,1	123,9	186,7
200	154,9	19,2	130,6	207,2
500	168,6	23,6	138,5	233,7
1000	178,7	27,0	144,1	253,2

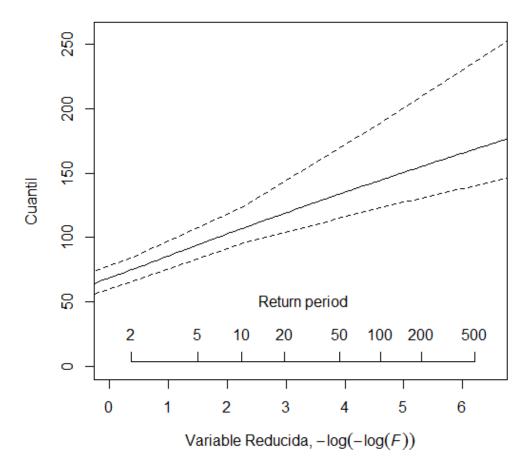


Figura 25. Representación gráfica de la función de distribución en Azpirotz

Belate

Tabla 31. Cuantiles de precipitación diaria en Belate

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	65,0	4,1	58,7	71,4
5	81,9	4,9	74,2	90,4
10	92,9	6,0	84,3	104,1
20	103,2	7,8	93,1	118,9
50	116,2	10,6	102,4	139,3
100	125,6	12,9	108,7	155,7
200	134,8	15,4	115,2	172,1
500	146,7	18,9	122,9	193,1
1000	155,5	21,6	128,2	209,1

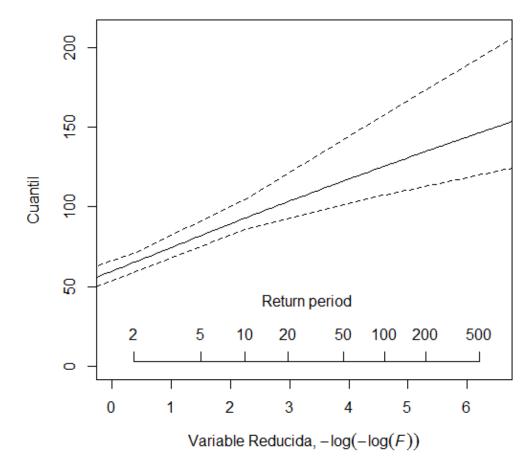


Figura 26. Representación gráfica de la función de distribución en Belate

Bera

Tabla 32. Cuantiles de precipitación diaria en Bera

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	81,6	4,8	73,8	89,4
5	102,8	5,7	93,9	113,0
10	116,7	7,3	106,0	131,1
20	129,6	9,7	116,7	151,1
50	145,8	13,5	128,5	178,2
100	157,7	16,7	136,1	200,2
200	169,2	20,0	143,3	222,5
500	184,2	24,7	153,2	251,5
1000	195,3	28,3	159,7	272,5

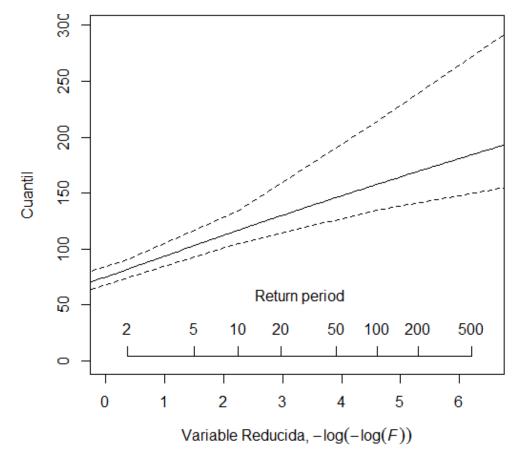


Figura 27. Representación gráfica de la función de distribución en Bera

Bertiz

Tabla 33. Cuantiles de precipitación diaria en Bertiz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	70,1	4,7	62,3	77,5
5	88,3	5,5	79,7	97,9
10	100,2	6,8	90,1	113,0
20	111,3	8,8	99,3	128,1
50	125,2	12,0	108,8	150,8
100	135,4	14,7	115,1	167,7
200	145,3	17,6	121,4	184,9
500	158,1	21,6	129,0	208,5
1000	167,6	24,8	134,1	226,6

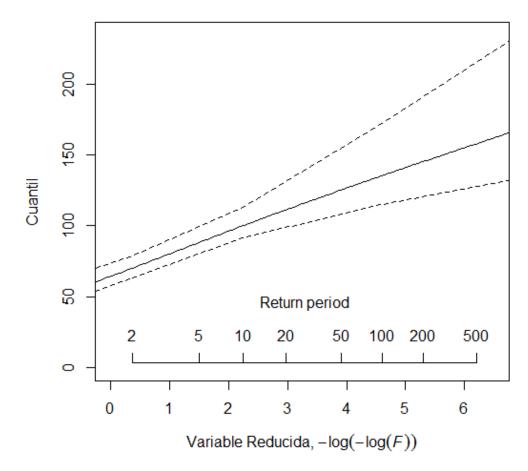


Figura 28. Representación gráfica de la función de distribución en Bertiz

Betelu

Tabla 34. Cuantiles de precipitación diaria en Betelu

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	63,8	3,7	57,9	69,7
5	80,4	4,4	73,5	88,1
10	91,2	5,6	83,0	102,1
20	101,3	7,4	91,0	116,3
50	113,9	10,2	100,3	136,9
100	123,2	12,6	106,7	153,0
200	132,2	15,2	112,5	169,1
500	143,9	18,7	119,6	189,5
1000	152,6	21,5	124,9	204,4

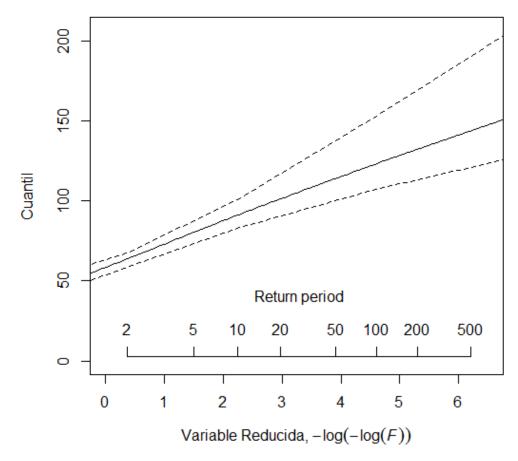


Figura 29. Representación gráfica de la función de distribución en Betelu

Central Arrambide

Tabla 35. Cuantiles de precipitación diaria en Central Arrambide

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	90,0	5,7	80,7	99,3
5	113,4	7,1	102,9	126,4
10	128,7	9,1	116,1	146,4
20	142,9	11,8	127,9	168,4
50	160,8	16,2	141,0	199,8
100	173,9	19,8	150,3	224,1
200	186,6	23,5	158,0	249,8
500	203,1	28,8	167,4	282,9
1000	215,3	32,9	174,5	308,1

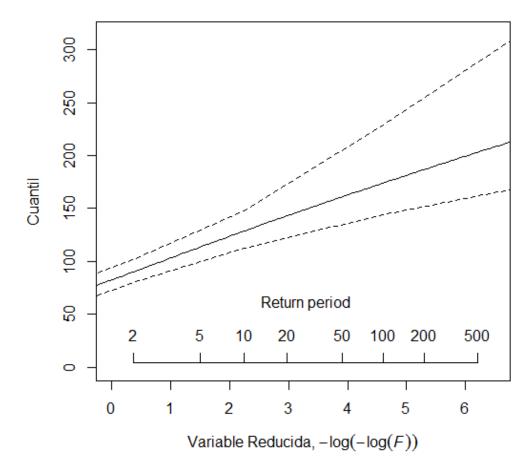


Figura 30. Representación gráfica de la función de distribución en Central Arrambide

Doneztebe

Tabla 36. Cuantiles de precipitación diaria en Doneztebe

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	73,2	3,2	67,8	78,1
5	92,3	3,5	86,9	98,8
10	104,7	4,9	97,8	114,3
20	116,3	7,1	107,0	132,0
50	130,8	10,4	117,5	156,9
100	141,5	13,2	124,3	175,4
200	151,8	16,1	130,7	194,2
500	165,2	20,1	138,7	218,9
1000	175,2	23,2	145,0	237,4

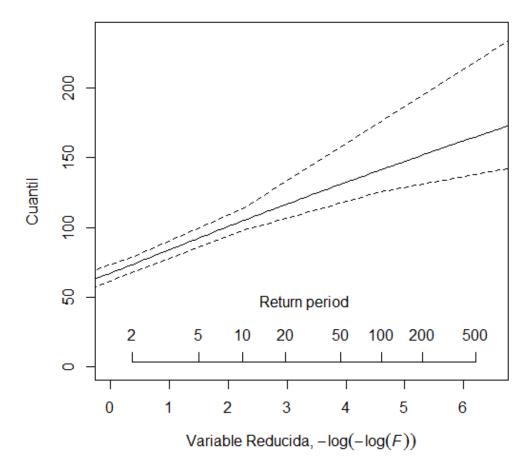


Figura 31. Representación gráfica de la función de distribución en Doneztebe

Etxalar

Tabla 37. Cuantiles de precipitación diaria en Etxalar

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	69,9	4,5	62,3	77,1
5	88,1	5,2	79,7	96,8
10	99,9	6,5	90,4	112,1
20	111,0	8,5	99,4	128,3
50	124,9	11,8	109,0	151,3
100	135,0	14,5	116,1	169,4
200	144,9	17,5	122,4	187,4
500	157,7	21,5	129,7	210,7
1000	167,2	24,7	135,1	229,1

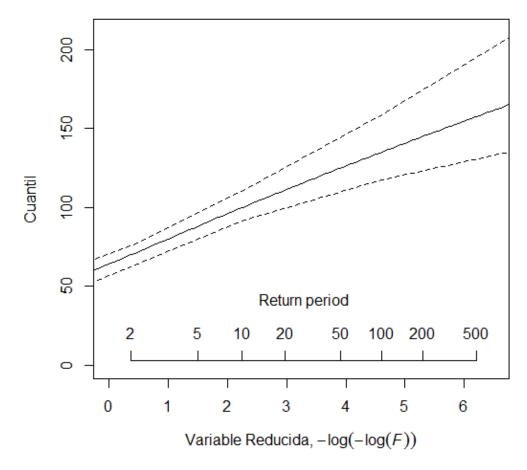


Figura 32. Representación gráfica de la función de distribución en Etxalar

Goizueta

Tabla 38. Cuantiles de precipitación diaria en Goizueta

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	77,7	4,1	70,8	84,0
5	97,8	4,8	90,3	106,8
10	111,0	6,4	102,0	122,8
20	123,3	8,6	111,8	141,4
50	138,7	12,3	122,7	167,7
100	150,0	15,3	130,4	188,5
200	161,0	18,5	137,6	207,6
500	175,2	22,9	146,2	232,0
1000	185,7	26,3	152,3	252,4

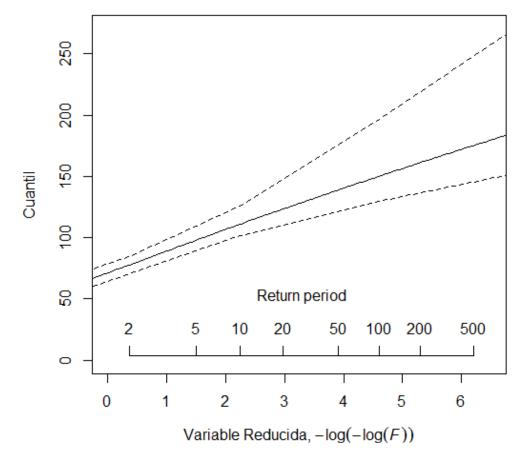


Figura 33. Representación gráfica de la función de distribución en Goizueta

Leitza

Tabla 39. Cuantiles de precipitación diaria en Leitza

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	87,4	5,5	78,9	96,5
5	110,1	6,7	100,2	122,1
10	124,9	8,4	113,2	141,1
20	138,7	10,9	123,8	162,0
50	156,1	15,0	136,6	190,1
100	168,8	18,4	145,2	211,6
200	181,2	22,0	153,4	234,2
500	197,2	27,0	163,2	264,9
1000	209,0	31,0	169,6	289,1

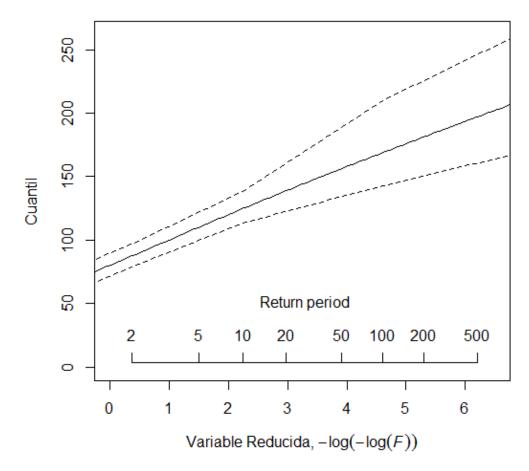


Figura 34. Representación gráfica de la función de distribución en Leitza

Lesaka – San Antón

Tabla 40. Cuantiles de precipitación diaria en Lesaka – San Antón

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	107,7	7,0	96,5	119,0
5	135,7	8,4	122,8	150,9
10	154,0	10,8	138,3	175,3
20	171,0	14,0	151,7	199,6
50	192,4	19,0	168,4	236,5
100	208,0	23,2	180,1	264,2
200	223,3	27,6	189,4	292,4
500	243,0	33,7	201,2	332,0
1000	257,7	38,5	210,3	362,1

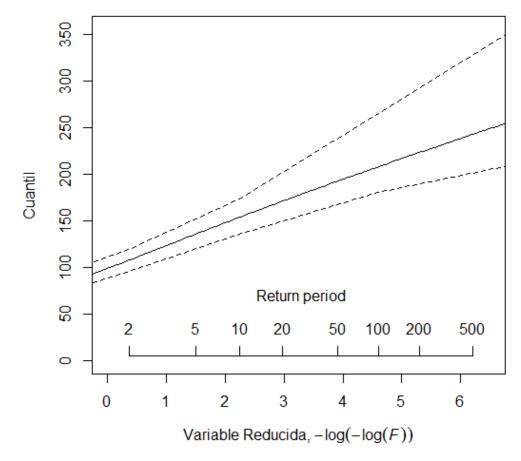


Figura 35. Representación gráfica de la función de distribución en Lesaka – San Antón

Lesaka

Tabla 41. Cuantiles de precipitación diaria en Lesaka

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	74,2	4,2	67,2	81,1
5	93,5	5,0	85,7	102,4
10	106,1	6,5	96,7	118,3
20	117,9	8,7	105,7	135,1
50	132,6	12,1	116,6	159,4
100	143,4	15,0	124,1	178,1
200	153,9	18,1	130,7	197,5
500	167,5	22,3	138,3	222,5
1000	177,6	25,6	144,4	240,9

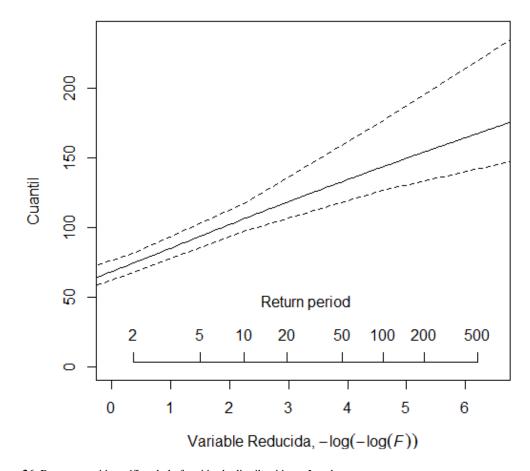


Figura 36. Representación gráfica de la función de distribución en Lesaka

Luzaide - Valcarlos

Tabla 42. Cuantiles de precipitación diaria en Luzaide - Valcarlos

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	67,3	3,9	61,6	73,9
5	84,8	4,4	78,6	92,9
10	96,2	5,6	88,6	107,2
20	106,9	7,6	97,2	122,9
50	120,3	10,7	106,8	144,5
100	130,0	13,3	113,0	161,3
200	139,6	16,2	119,0	178,1
500	151,9	20,1	126,1	201,1
1000	161,0	23,1	131,2	218,0

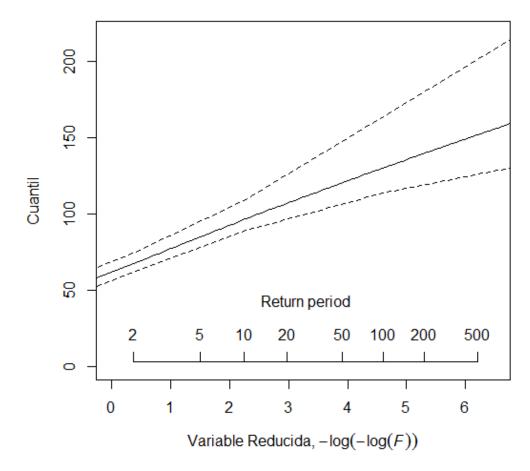


Figura 37. Representación gráfica de la función de distribución en Luzaide - Valcarlos

Sunbilla

Tabla 43. Cuantiles de precipitación diaria en Sunbilla

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	72,7	4,1	66,0	79,0
5	91,6	5,0	83,8	99,8
10	103,9	6,5	94,3	116,1
20	115,5	8,7	103,8	134,0
50	129,9	12,1	114,4	158,2
100	140,5	14,9	121,9	176,6
200	150,8	17,9	128,8	196,0
500	164,1	22,0	137,3	222,1
1000	174,0	25,3	143,6	240,6

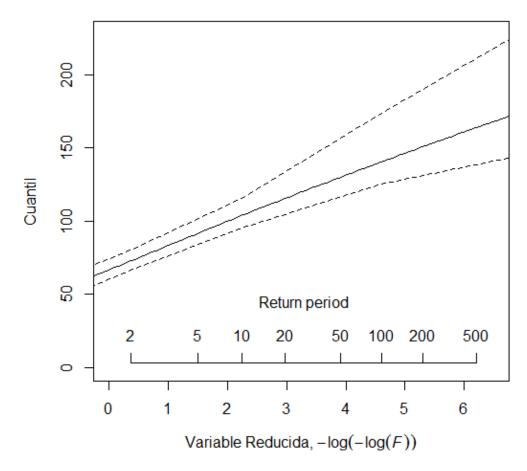


Figura 38. Representación gráfica de la función de distribución en Sunbilla

Zugarramurdi

Tabla 44. Cuantiles de precipitación diaria en Zugarramurdi

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	70,9	4,4	63,9	77,9
5	89,3	5,4	81,1	99,0
10	101,3	6,9	91,5	114,8
20	112,5	8,9	100,1	131,9
50	126,6	12,2	110,9	155,7
100	136,9	15,0	118,0	175,8
200	147,0	17,9	124,4	195,2
500	159,9	22,0	131,3	219,7
1000	169,6	25,2	136,4	239,2

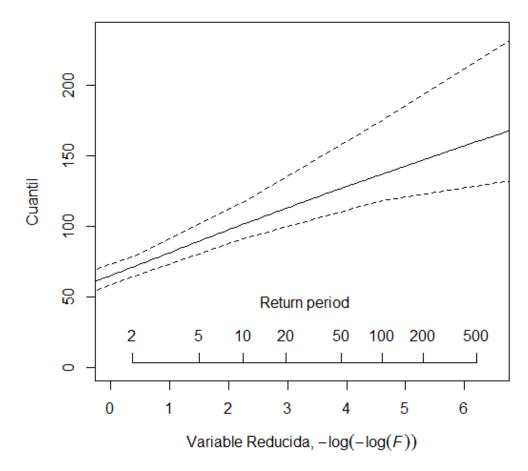


Figura 39. Representación gráfica de la función de distribución en Zugarramurdi

Región 2

Tabla 45. Valores del índices de avenida $(\widehat{\mu}_i)$ de las estaciones de la región 2

Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{m{\mu}}_{ ext{i}}$
Abaurrea.A	62,34	Erro	65,05	Irurtzun	63,72	Urbasa	61,77
Altsasu	61,71	E.Salazar	58,35	Larraona	59,10	Urzainqui	57,97
Aribe	60,56	Eugi	69,89	Lezáun	55,60	Zalba	52,49
Aurizberri	67,30	Goñi	72,97	Olagüe	58,21	Zubiri	57,68
Azanza	54,92	Iraizotz	62,56	Oroz.B	71,05		
Belzunce	57,81	Irotz	48,68	Otazu	47,14		

Tabla 46. Resultados de las estimaciones regionales de la región 2

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	0,95	0,04	0,87	0,99
5	1,23	0,02	1,19	1,26
10	1,40	0,06	1,32	1,52
20	1,57	0,11	1,43	1,80
50	1,77	0,17	1,57	2,17
100	1,92	0,22	1,66	2,45
200	2,06	0,28	1,75	2,73
500	2,25	0,35	1,86	3,09
1000	2,39	0,41	1,94	3,37

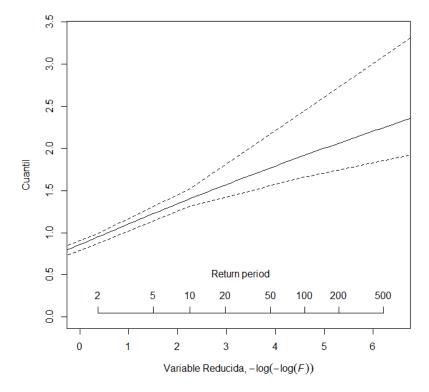


Figura 40. Representación gráfica de la función de distribución en la región 2

Abaurrea Alta

Tabla 47. Cuantiles de precipitación diaria en Abaurrea Alta

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	59,1	3,4	52,8	64,0
5	76,4	3,5	70,9	84,4
10	87,4	5,1	81,7	98,9
20	97,7	7,4	90,3	114,5
50	110,4	10,8	99,5	137,4
100	119,6	13,6	106,9	154,0
200	128,6	16,4	112,7	170,6
500	140,2	20,1	120,0	192,8
1000	148,7	23,0	125,9	209,6

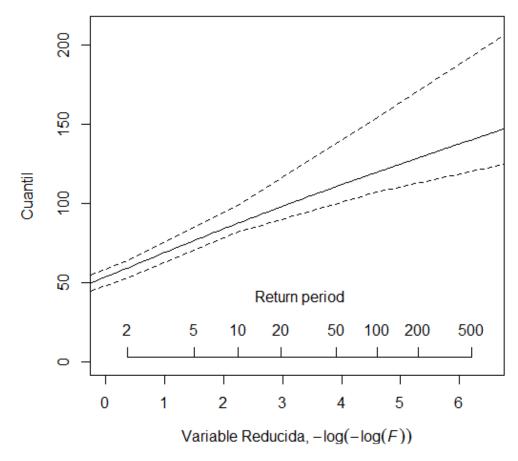


Figura 41. Representación gráfica de la función de distribución en Abaurrea Alta

Altsasu

Tabla 48. Cuantiles de precipitación diaria en Altsasu

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	58,5	2,5	53,7	62,2
5	75,6	2,7	71,4	80,0
10	86,6	4,3	80,0	95,3
20	96,7	6,5	88,1	110,7
50	109,3	9,8	97,7	132,0
100	118,4	12,4	104,1	148,6
200	127,3	15,1	110,5	164,8
500	138,8	18,7	118,8	186,1
1000	147,2	21,6	125,0	202,1

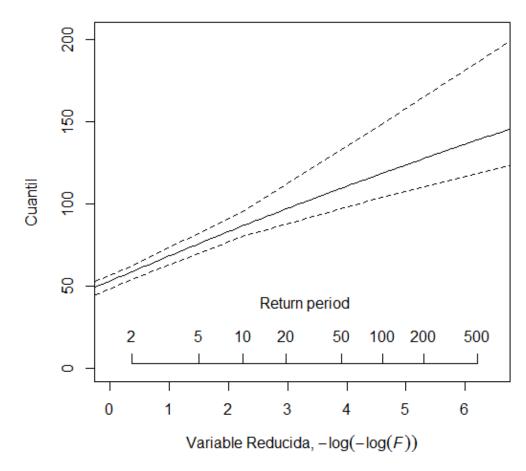


Figura 42. Representación gráfica de la función de distribución en Altsasu

Aribe

Tabla 49. Cuantiles de precipitación diaria en Aribe

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	57,4	3,6	51,0	62,5
5	74,2	3,9	68,1	81,7
10	84,9	5,6	76,7	96,2
20	94,9	8,1	82,4	113,4
50	107,2	11,8	93,0	136,1
100	116,2	14,8	99,5	152,1
200	124,9	17,8	105,2	166,9
500	136,1	22,0	112,3	189,9
1000	144,5	25,1	117,5	207,3

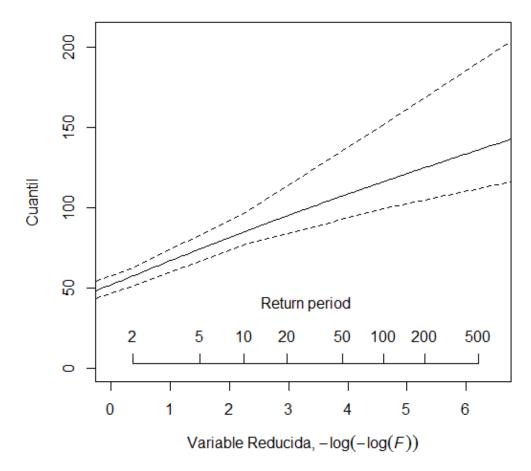


Figura 43. Representación gráfica de la función de distribución en Aribe

Aurizberri

Tabla 50. Cuantiles de precipitación diaria en Aurizberri

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	63,8	4,2	57,6	70,7
5	82,5	4,3	75,4	89,2
10	94,4	5,6	85,9	106,4
20	105,4	7,8	94,1	122,3
50	119,2	11,5	103,3	144,4
100	129,1	14,5	109,9	162,3
200	138,8	17,7	114,3	181,0
500	151,3	22,1	119,1	204,4
1000	160,6	25,6	124,4	221,1

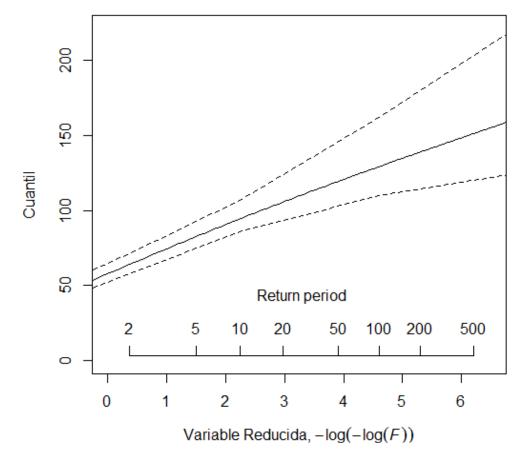


Figura 44. Representación gráfica de la función de distribución en Aurizberri

Azanza

Tabla 51. Cuantiles de precipitación diaria en Azanza

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	52,1	3,3	46,3	56,7
5	67,3	3,8	60,7	72,2
10	77,0	5,4	67,4	84,8
20	86,0	7,8	73,5	100,4
50	97,3	11,6	80,2	120,9
100	105,4	14,7	83,1	136,3
200	113,3	18,0	85,8	151,7
500	123,5	22,6	88,9	172,0
1000	131,0	26,2	91,0	187,3

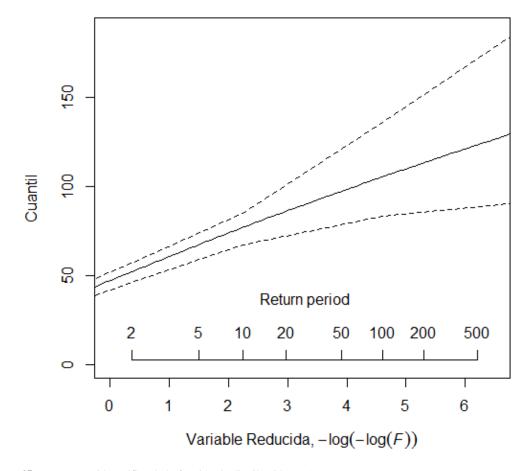


Figura 45. Representación gráfica de la función de distribución en Azanza

Belzunce

Tabla 52. Cuantiles de precipitación diaria en Belzunce

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	54,8	4,2	48,8	61,5
5	70,8	4,9	62,7	78,4
10	81,1	6,3	71,2	92,6
20	90,6	8,3	78,4	106,9
50	102,4	11,5	86,1	127,2
100	110,9	14,0	92,2	143,3
200	119,3	16,7	98,7	160,4
500	130,0	20,3	105,9	183,3
1000	137,9	23,2	110,8	200,7

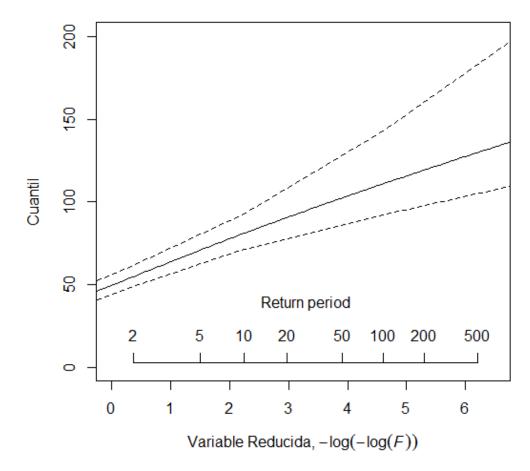


Figura 46. Representación gráfica de la función de distribución en Belzunce

Erro

Tabla 53. Cuantiles de precipitación diaria en Erro

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	61,7	3,6	54,7	67,5
5	79,7	4,4	73,4	88,9
10	91,2	6,3	82,6	106,0
20	101,9	8,8	90,6	124,5
50	115,2	12,5	100,1	149,4
100	124,8	15,5	107,1	169,0
200	134,2	18,7	113,9	188,6
500	146,3	22,9	122,4	214,5
1000	155,2	26,2	128,6	233,8

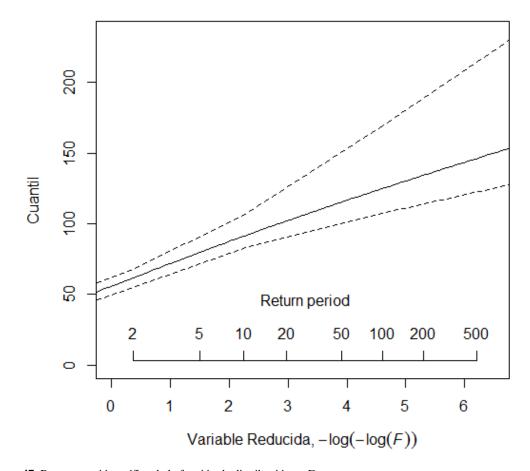


Figura 47. Representación gráfica de la función de distribución en Erro

Esparza de Salazar

Tabla 54. Cuantiles de precipitación diaria en Esparza de Salazar

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	55,3	4,7	46,8	61,1
5	71,5	4,8	64,9	81,9
10	81,8	6,2	73,3	96,5
20	91,4	8,6	80,9	113,8
50	103,3	12,5	88,3	137,2
100	112,0	15,6	93,1	155,2
200	120,4	18,9	96,4	173,3
500	131,2	23,4	100,5	196,7
1000	139,2	26,9	103,2	214,3

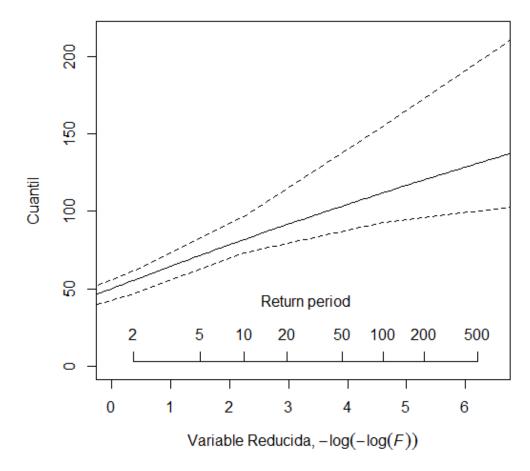


Figura 48. Representación gráfica de la función de distribución en Esparza de Salazar

Eugi

Tabla 55. Cuantiles de precipitación diaria en Eugi

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	66,3	3,9	58,4	72,7
5	85,6	4,4	78,9	94,0
10	98,0	6,3	88,8	112,2
20	109,5	9,1	97,4	131,4
50	123,8	13,2	107,8	158,0
100	134,1	16,5	113,7	178,0
200	144,2	19,9	120,3	198,0
500	157,1	24,5	128,8	223,7
1000	166,7	28,2	134,9	243,1

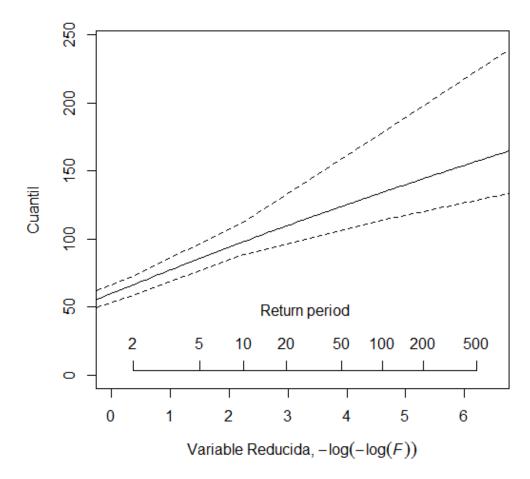


Figura 49. Representación gráfica de la función de distribución en Eugi

Goñi

Tabla 56. Cuantiles de precipitación diaria en Goñi

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	69,2	4,2	62,5	75,9
5	89,4	4,6	81,1	96,7
10	102,3	6,4	91,4	114,0
20	114,3	9,0	101,0	132,7
50	129,2	13,3	110,4	157,3
100	140,0	16,7	117,8	177,9
200	150,5	20,3	124,1	197,6
500	164,1	25,4	128,7	223,8
1000	174,1	29,3	131,9	243,0

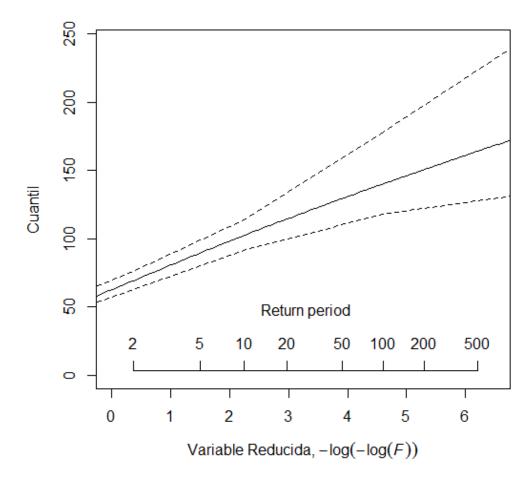


Figura 50. Representación gráfica de la función de distribución en Goñi

Iraizotz

Tabla 57. Cuantiles de precipitación diaria en Iraizotz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	59,3	3,9	53,1	65,9
5	76,7	4,0	71,4	83,9
10	87,7	5,7	80,1	99,0
20	98,0	8,4	87,2	115,9
50	110,8	12,6	94,5	139,0
100	120,0	16,0	98,3	157,6
200	129,0	19,5	101,6	176,1
500	140,6	24,5	105,5	199,1
1000	149,2	28,4	108,1	216,5

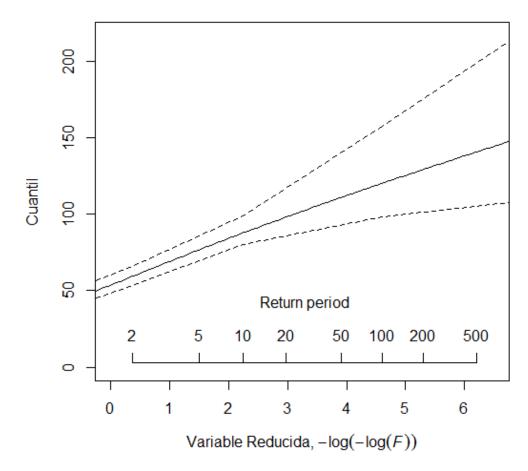


Figura 51. Representación gráfica de la función de distribución en Iraizotz

Irotz

Tabla 58. Cuantiles de precipitación diaria en Irotz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	46,2	3,4	40,8	51,3
5	59,7	3,3	54,0	65,1
10	68,3	4,4	61,8	76,2
20	76,3	6,3	67,9	90,1
50	86,2	9,4	72,6	108,5
100	93,4	11,9	76,8	122,4
200	100,4	14,5	79,3	136,3
500	109,5	18,2	82,3	155,7
1000	116,1	21,1	84,3	170,3

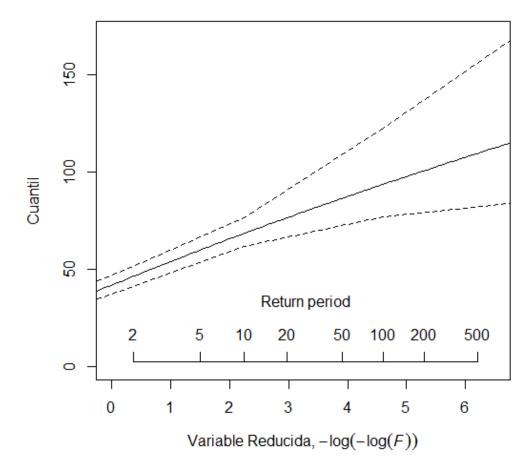


Figura 52. Representación gráfica de la función de distribución en Irotz

Irurtzun

Tabla 59. Cuantiles de precipitación diaria en Irurtzun

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	60,4	4,3	52,4	67,0
5	78,1	4,6	70,1	85,8
10	89,4	6,1	78,8	98,9
20	99,8	8,5	87,0	116,5
50	112,8	12,3	93,8	139,3
100	122,3	15,5	99,3	156,2
200	131,4	18,8	102,4	173,1
500	143,3	23,4	106,0	195,2
1000	152,0	27,0	108,4	213,7

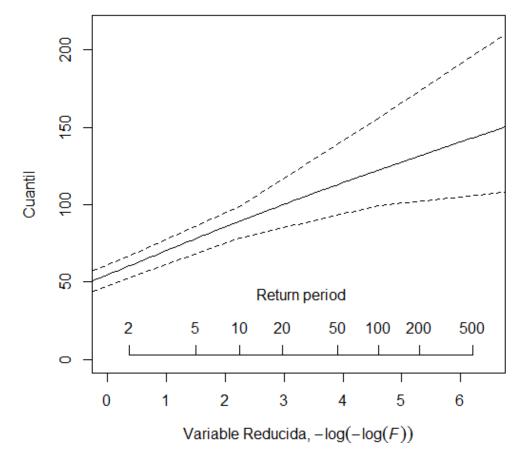


Figura 53. Representación gráfica de la función de distribución en Irurtzun

Larraona

Tabla 60. Cuantiles de precipitación diaria en Larraona

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	56,0	3,5	49,3	61,6
5	72,4	4,1	66,1	78,8
10	82,9	5,7	74,6	90,8
20	92,6	8,0	81,6	105,2
50	104,7	11,6	87,6	127,5
100	113,4	14,6	91,9	144,5
200	121,9	17,8	94,6	161,4
500	132,9	22,2	97,5	184,0
1000	141,0	25,7	101,4	201,0

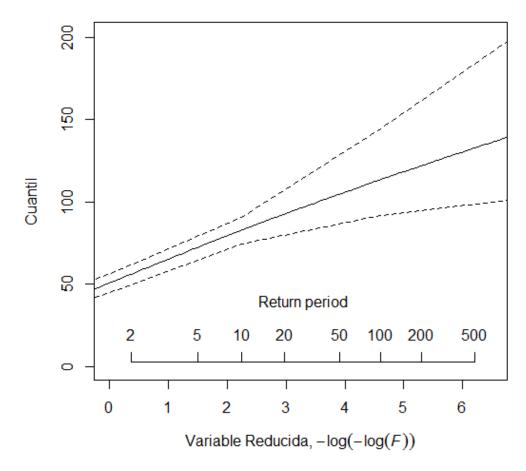


Figura 54. Representación gráfica de la función de distribución en Larraona

Lezáun

Tabla 61. Cuantiles de precipitación diaria en Lezáun

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	52,7	3,9	46,3	58,2
5	68,1	4,5	60,1	75,6
10	78,0	6,1	69,0	88,4
20	87,1	8,6	74,7	103,2
50	98,5	12,5	78,8	124,4
100	106,7	15,7	81,3	140,4
200	114,7	19,1	83,6	156,4
500	125,0	23,8	86,4	177,8
1000	132,7	27,6	88,2	194,1

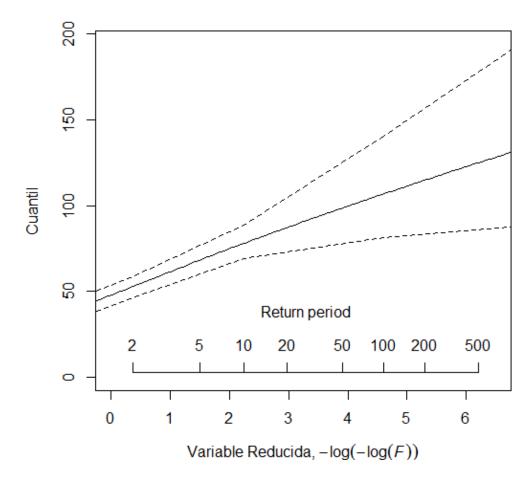


Figura 55. Representación gráfica de la función de distribución en Lezáun

Olagüe

Tabla 62. Cuantiles de precipitación diaria en Olagüe

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	55,2	3,5	49,7	62,0
5	71,3	4,0	65,2	81,3
10	81,6	5,6	73,0	95,6
20	91,2	8,0	79,7	112,3
50	103,1	11,8	85,7	132,6
100	111,7	14,9	88,4	147,7
200	120,1	18,1	90,7	164,1
500	130,9	22,6	93,4	187,1
1000	138,9	26,2	95,4	204,7

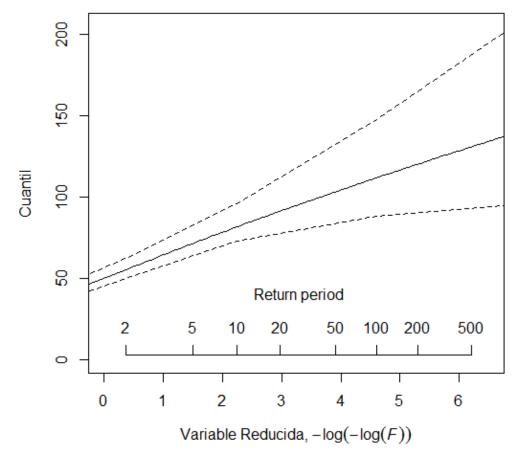


Figura 56. Representación gráfica de la función de distribución en Olagüe

Oroz – Betelu

Tabla 63. Cuantiles de precipitación diaria en Oroz - Betelu

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	67,4	6,1	58,3	77,7
5	87,1	6,4	77,9	100,2
10	99,6	7,9	89,6	118,0
20	111,3	10,4	98,2	135,2
50	125,8	14,5	108,0	161,0
100	136,3	18,0	114,7	182,0
200	146,6	21,6	118,3	203,2
500	159,7	26,7	123,0	231,1
1000	169,5	30,7	126,1	252,3

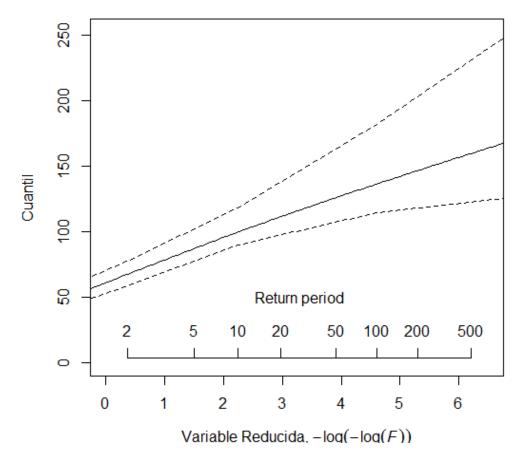


Figura 57. Representación gráfica de la función de distribución en Oroz - Betelu

Otazu

Tabla 64. Cuantiles de precipitación diaria en Otazu

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	44,7	2,9	39,4	50,1
5	57,8	3,1	51,9	63,8
10	66,1	4,4	59,8	74,0
20	73,9	6,3	64,6	86,9
50	83,5	9,4	68,7	104,8
100	90,5	12,0	71,1	118,3
200	97,3	14,7	73,2	131,9
500	106,0	18,6	75,7	149,9
1000	112,5	21,6	77,3	163,5

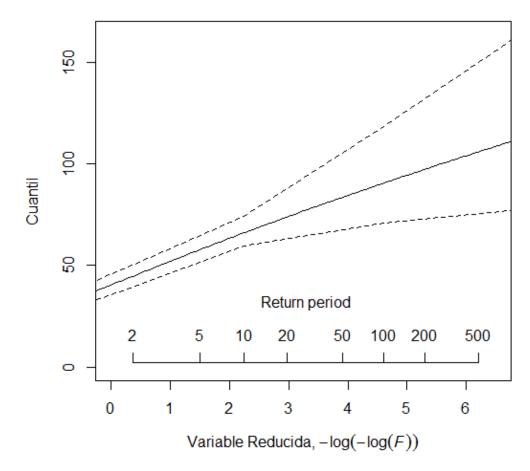


Figura 58. Representación gráfica de la función de distribución en Otazu

Urbasa

Tabla 65. Cuantiles de precipitación diaria en Urbasa

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	58,6	4,1	52,4	65,0
5	75,7	4,8	68,5	83,5
10	86,6	6,2	77,2	98,7
20	96,8	8,4	84,5	116,1
50	109,4	11,8	93,4	138,8
100	118,5	14,7	99,1	156,4
200	127,4	17,7	104,6	174,1
500	138,9	21,8	111,5	197,3
1000	147,4	25,1	116,6	214,9

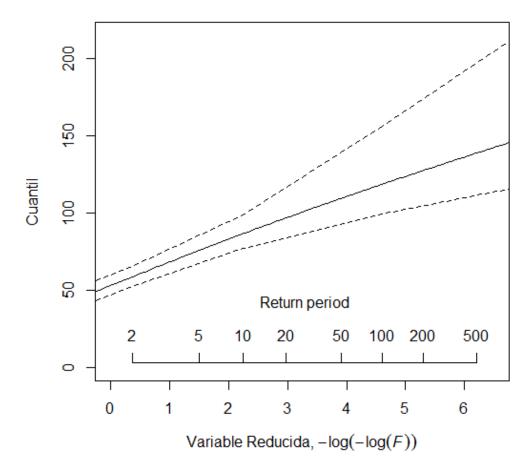


Figura 59. Representación gráfica de la función de distribución en Urbasa

Urzainqui

Tabla 66. Cuantiles de precipitación diaria en Urzainqui

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	55,0	3,9	49,9	61,9
5	71,0	3,9	64,6	78,0
10	81,3	4,8	73,3	88,9
20	90,8	6,6	80,0	102,7
50	102,7	9,7	84,3	121,2
100	111,2	12,5	89,5	136,7
200	119,6	15,5	92,0	152,3
500	130,3	19,7	94,8	172,8
1000	138,3	23,1	96,7	188,4

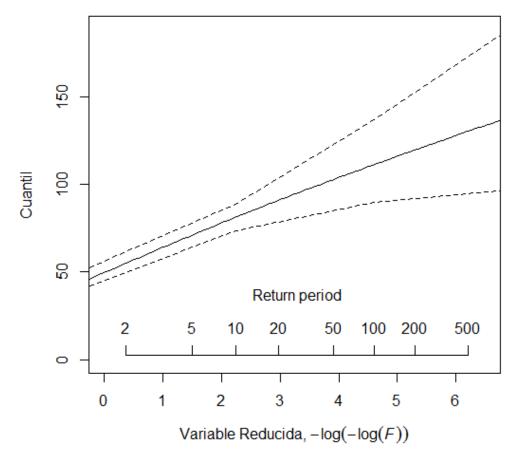


Figura 60. Representación gráfica de la función de distribución en Urzainqui

Zalba

Tabla 67. Cuantiles de precipitación diaria en Zalba

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	49,8	3,4	44,7	56,9
5	64,3	4,2	58,9	73,8
10	73,6	5,7	66,2	84,4
20	82,2	7,8	72,1	100,1
50	92,9	10,8	79,5	117,8
100	100,7	13,3	83,7	132,5
200	108,3	15,9	88,3	147,2
500	118,0	19,5	94,1	166,7
1000	125,2	22,2	98,4	181,3

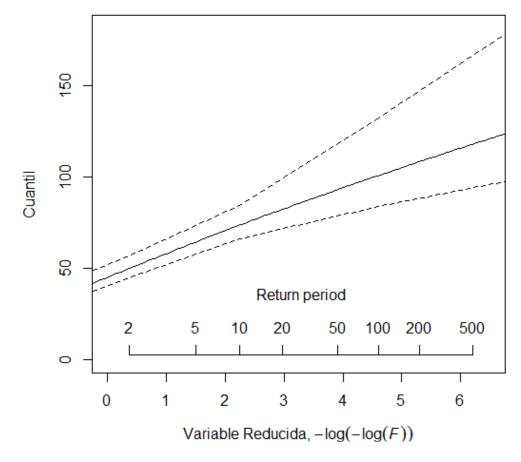


Figura 61. Representación gráfica de la función de distribución en Zalba

Zubiri

Tabla 68. Cuantiles de precipitación diaria en Zubiri

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	54,7	3,2	48,6	59,2
5	70,7	3,5	65,4	76,9
10	80,9	5,0	73,3	92,1
20	90,4	7,2	79,6	106,7
50	102,1	10,5	88,4	129,2
100	110,7	13,2	93,8	146,4
200	119,0	16,0	98,9	163,7
500	129,7	19,7	105,2	186,6
1000	137,6	22,6	109,8	204,0

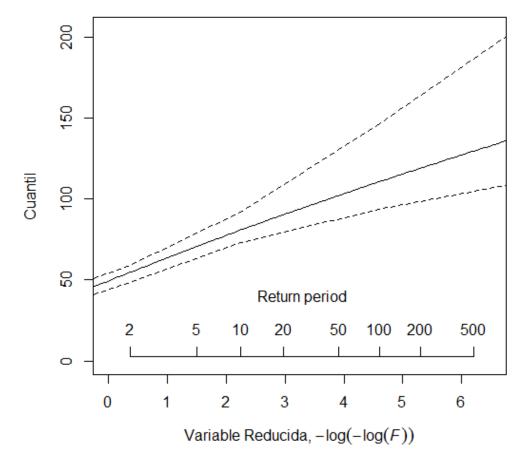


Figura 62. Representación gráfica de la función de distribución en Zubiri

Región 3

Tabla 69. Valores del índices de avenida $(\widehat{\mu}_i)$ de las estaciones de la región 3

Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$
Aibar	47,87	Cábrega	42,14	Javier	44,93	Olóriz	49,87
Alloz	47,74	Epároz	49,53	Leire	54,49	Pamplona	53,03
Amillano	44,76	Estella	39,50	Lerga	52,89	P. Reina	39,96
Aoiz	55,43	Galbarra	59,89	L. Arcos	36,66	Viana	34,8
Arróniz	45,40	Genevilla	40,51	Monreal	49,02	Yesa	51,89
Artieda	47,37	Igúzquiza	39,39	Navascués	56,73	Zuazu	51,54
Barásoain	42,26	Ilundaín	49,81	Noáin	47,05		

Tabla 70. Resultados de las estimaciones regionales de la región 3

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	0,93	0,03	0,87	0,98
5	1,25	0,03	1,20	1,29
10	1,47	0,07	1,36	1,58
20	1,68	0,12	1,49	1,89
50	1,94	0,19	1,65	2,28
100	2,13	0,25	1,75	2,57
200	2,32	0,31	1,85	2,86
500	2,57	0,39	1,98	3,25
1000	2,75	0,46	2,07	3,54

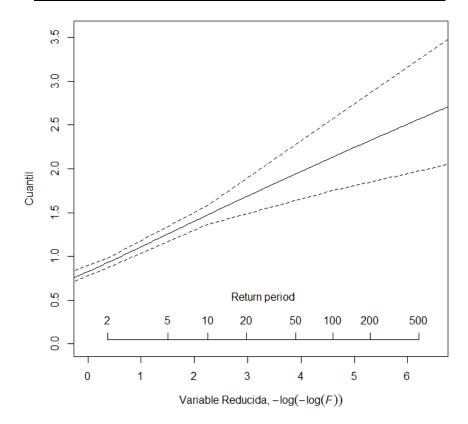


Figura 63. Representación gráfica de la función de distribución en la región 3

Aibar

Tabla 71. Cuantiles de precipitación diaria en Aibar

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	44,3	2,8	39,3	49,2
5	60,1	3,9	54,2	66,7
10	70,5	5,6	61,6	81,6
20	80,4	7,7	68,1	96,3
50	93,0	11,1	76,0	116,0
100	102,1	13,8	81,5	130,8
200	111,1	16,7	86,4	145,5
500	122,8	20,8	92,2	164,9
1000	131,6	24,0	96,3	179,5

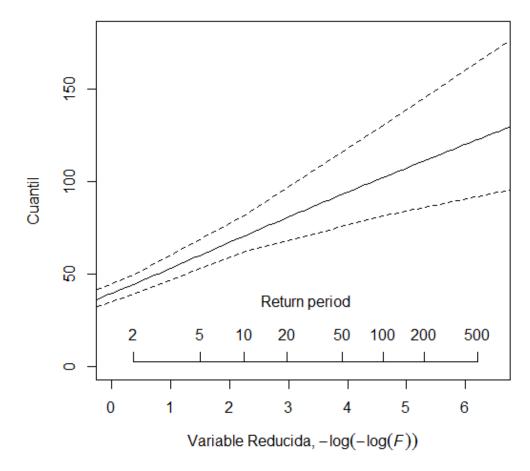


Figura 64. Representación gráfica de la función de distribución en Aibar

Alloz

Tabla 72. Cuantiles de precipitación diaria en Alloz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	44,2	2,4	40,8	48,6
5	59,9	3,3	55,0	65,5
10	70,3	4,9	63,7	78,3
20	80,2	7,0	70,5	91,5
50	92,7	10,2	77,9	111,9
100	101,9	12,8	83,3	127,5
200	110,8	15,5	88,5	143,1
500	122,5	19,3	94,5	163,7
1000	131,2	22,2	98,9	178,8

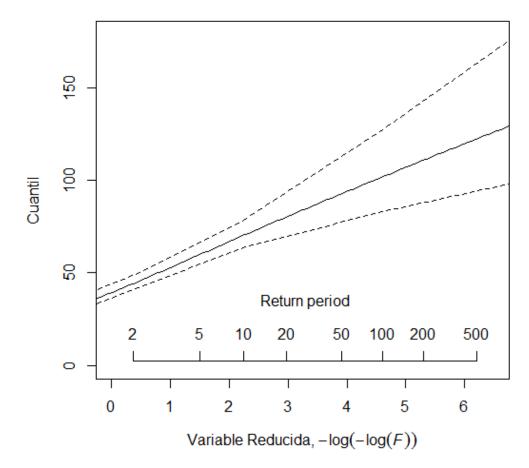


Figura 65. Representación gráfica de la función de distribución en Alloz

Amillano

Tabla 73. Cuantiles de precipitación diaria en Amillano

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	41,5	2,9	37,4	45,7
5	56,2	3,4	50,4	62,0
10	66,0	4,8	57,7	74,5
20	75,2	6,8	63,2	86,9
50	86,9	10,0	70,5	103,3
100	95,5	12,7	74,5	115,3
200	103,9	15,5	78,3	127,7
500	114,9	19,5	83,4	144,0
1000	123,0	22,6	87,3	157,3

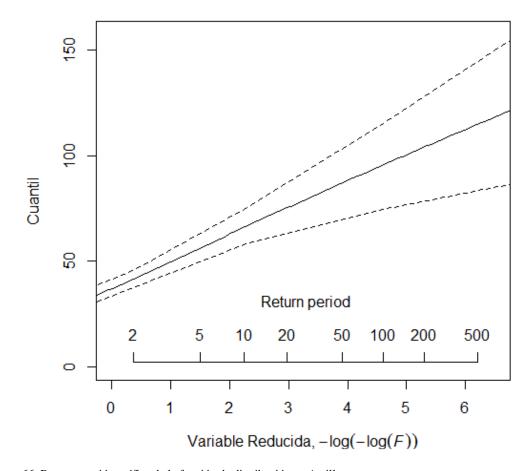


Figura 66. Representación gráfica de la función de distribución en Amillano

Aoiz

Tabla 74. Cuantiles de precipitación diaria en Aoiz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	51,3	3,9	45,3	58,6
5	69,6	4,6	64,1	80,0
10	81,7	6,2	74,0	93,6
20	93,1	8,5	81,6	108,6
50	107,6	12,3	91,1	129,6
100	118,3	15,5	98,3	145,8
200	128,7	18,9	104,0	161,9
500	142,2	23,6	111,1	183,1
1000	152,3	27,3	116,3	199,1

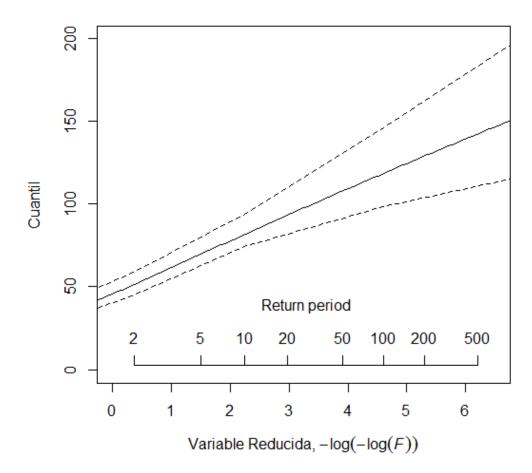


Figura 67. Representación gráfica de la función de distribución en Aoiz

Arróniz

Tabla 75. Cuantiles de precipitación diaria en Arróniz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	42,0	2,5	38,0	46,7
5	57,0	3,1	52,6	64,1
10	66,9	4,7	60,9	75,9
20	76,3	6,9	67,0	88,8
50	88,2	10,1	74,5	108,1
100	96,9	12,8	79,1	122,9
200	105,4	15,6	83,5	137,6
500	116,5	19,4	89,6	157,3
1000	124,8	22,5	93,5	172,1

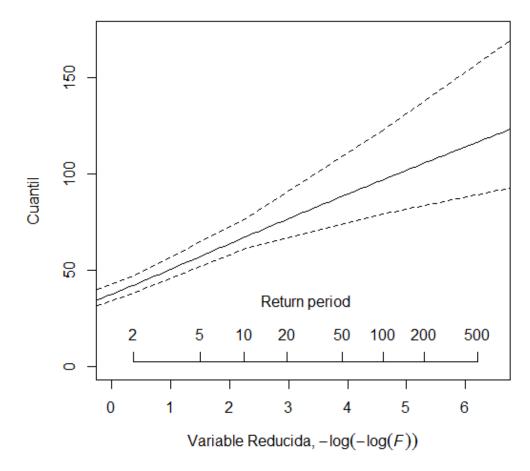


Figura 68. Representación gráfica de la función de distribución en Arróniz

Artieda

Tabla 76. Cuantiles de precipitación diaria en Artieda

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	43,9	2,8	39,6	47,3
5	59,4	3,6	55,2	66,0
10	69,8	5,3	61,8	80,6
20	79,6	7,4	69,3	96,1
50	92,0	10,7	76,5	117,2
100	101,1	13,3	81,1	133,2
200	110,0	16,1	85,5	149,3
500	121,6	19,9	90,9	170,2
1000	130,2	22,9	95,4	185,8

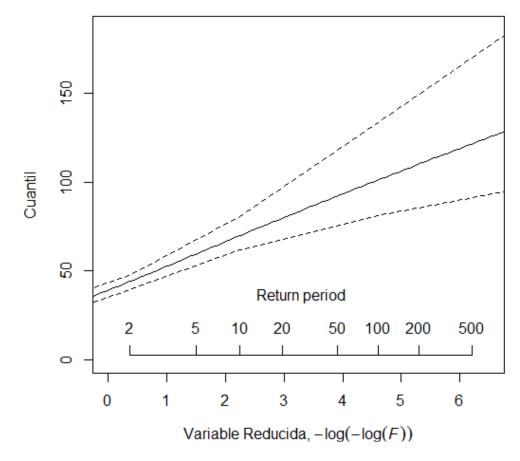


Figura 69. Representación gráfica de la función de distribución en Artieda

Barásoain

Tabla 77. Cuantiles de precipitación diaria en Barásoain

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	39,1	2,8	34,2	43,4
5	53,0	3,6	47,0	58,9
10	62,3	5,2	54,6	72,0
20	71,0	7,3	59,8	85,0
50	82,1	10,5	65,3	101,8
100	90,2	13,1	69,1	114,2
200	98,1	15,8	72,6	126,4
500	108,4	19,7	76,8	142,5
1000	116,1	22,7	80,2	155,8

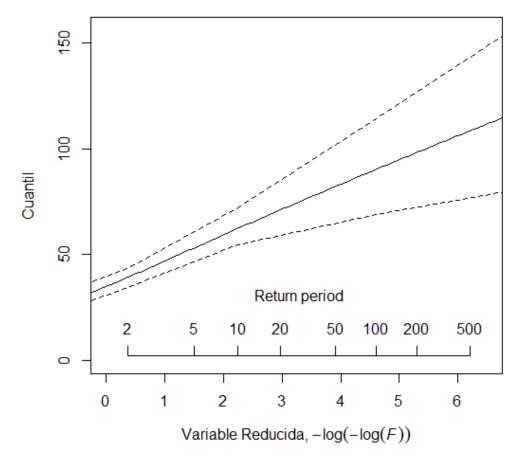


Figura 70. Representación gráfica de la función de distribución en Barásoain

Cábrega

Tabla 78. Cuantiles de precipitación diaria en Cábrega

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	39,0	3,9	32,9	45,6
5	52,9	5,0	45,3	62,5
10	62,1	6,3	52,6	77,3
20	70,8	8,1	59,4	90,1
50	81,8	10,9	67,1	106,9
100	89,9	13,2	71,2	119,9
200	97,8	15,6	75,0	132,4
500	108,1	19,1	80,3	149,0
1000	115,8	21,8	85,1	161,5

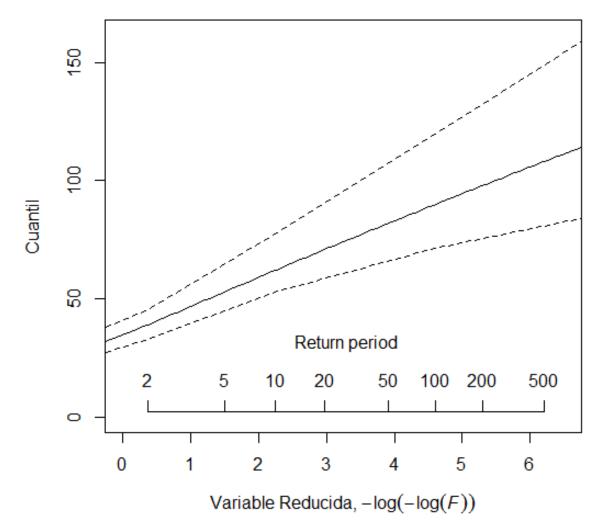


Figura 71. Representación gráfica de la función de distribución en Cábrega

Epároz

Tabla 79. Cuantiles de precipitación diaria en Epároz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	45,9	3,0	40,7	51,6
5	62,1	4,3	56,0	71,0
10	73,0	6,3	63,3	86,6
20	83,2	8,9	70,7	101,1
50	96,2	12,8	77,5	120,3
100	105,7	15,9	83,1	135,1
200	115,0	19,3	88,6	149,9
500	127,1	23,9	95,5	171,9
1000	136,1	27,6	100,0	188,6

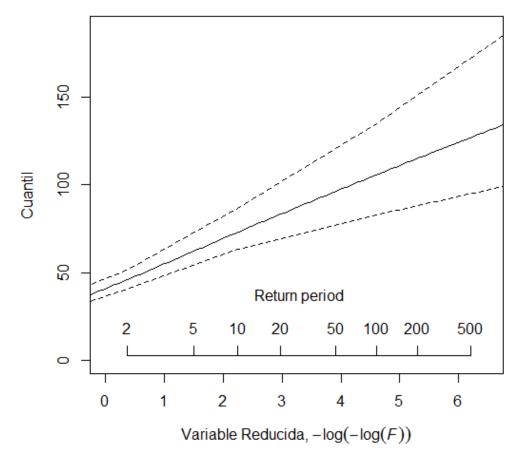


Figura 72. Representación gráfica de la función de distribución en Epároz

Estella

Tabla 80. Cuantiles de precipitación diaria en Estella

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	36,6	3,2	31,5	42,1
5	49,6	3,7	44,3	57,0
10	58,2	4,7	51,4	67,4
20	66,4	6,3	58,0	78,4
50	76,7	9,0	63,8	94,2
100	84,3	11,3	68,3	105,4
200	91,7	13,8	71,7	117,4
500	101,3	17,3	76,2	133,5
1000	108,5	20,1	79,9	145,8

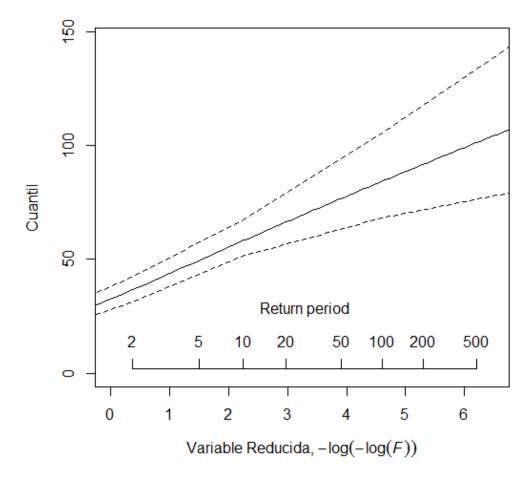


Figura 73. Representación gráfica de la función de distribución en Estella

Galbarra

Tabla 81. Cuantiles de precipitación diaria en Galbarra

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	55,5	4,1	47,7	60,4
5	75,1	5,2	67,5	85,3
10	88,3	7,1	78,7	104,4
20	100,6	9,6	87,3	124,6
50	116,3	13,5	95,6	148,8
100	127,8	16,6	100,3	166,6
200	139,0	19,9	108,0	184,2
500	153,7	24,5	118,9	207,5
1000	164,6	28,1	125,6	224,9

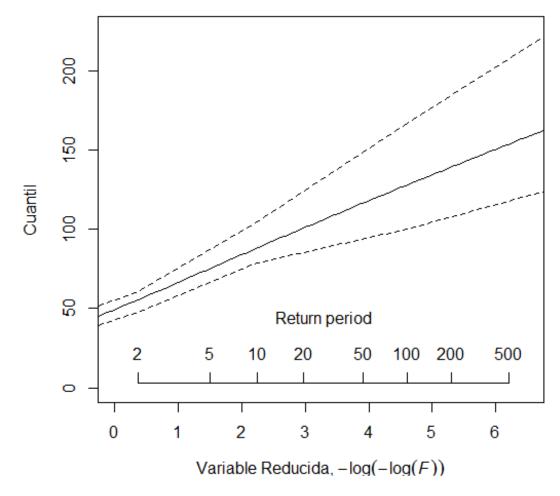


Figura 74. Representación gráfica de la función de distribución en Galbarra

Genevilla

Tabla 82. Cuantiles de precipitación diaria en Genevilla

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	37,5	3,2	32,6	43,1
5	50,8	4,3	45,1	60,5
10	59,7	5,6	53,0	73,2
20	68,1	7,3	58,2	84,6
50	78,7	9,8	66,6	101,6
100	86,4	11,8	72,2	115,7
200	94,1	14,0	76,5	129,0
500	104,0	17,1	81,3	145,8
1000	111,3	19,5	84,8	158,2

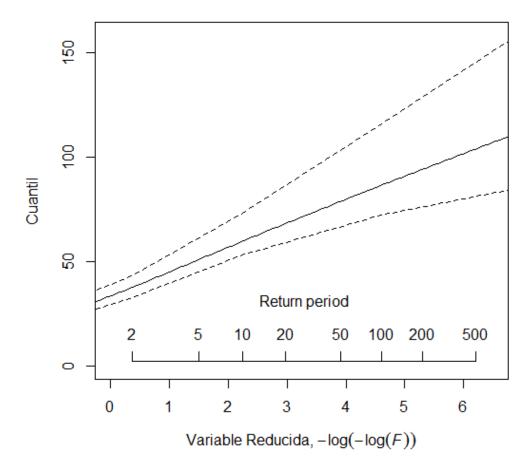


Figura 75. Representación gráfica de la función de distribución en Genevilla

Igúzquiza

Tabla 83. Cuantiles de precipitación diaria en Igúzquiza

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	36,5	2,6	31,8	39,8
5	49,4	3,1	44,1	53,6
10	58,1	4,2	51,4	63,7
20	66,2	5,7	56,4	74,0
50	76,5	8,3	62,3	87,9
100	84,1	10,5	66,5	97,5
200	91,5	12,9	70,1	107,1
500	101,1	16,2	74,5	122,3
1000	108,3	18,9	77,7	134,0

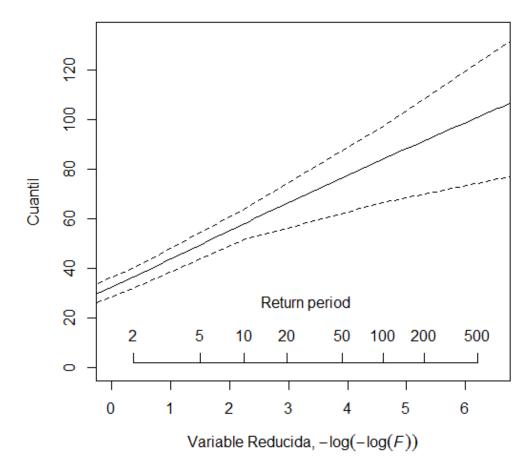


Figura 76. Representación gráfica de la función de distribución en Igúzquiza

Ilundaín

Tabla 84. Cuantiles de precipitación diaria en Ilundaín

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	46,1	3,2	41,2	51,6
5	62,5	4,2	56,8	71,4
10	73,4	6,1	64,7	86,5
20	83,7	8,4	69,8	102,6
50	96,7	12,1	79,1	123,3
100	106,3	15,1	84,0	140,8
200	115,6	18,2	90,1	158,1
500	127,8	22,6	95,2	178,5
1000	136,9	26,1	98,8	193,9

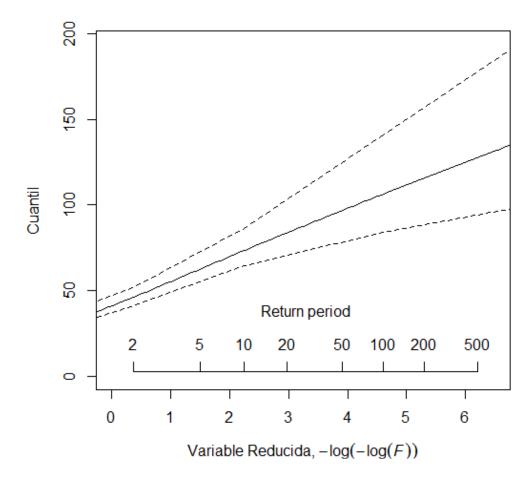


Figura 77. Representación gráfica de la función de distribución en Ilundaín

Javier

Tabla 85. Cuantiles de precipitación diaria en Javier

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	41,6	2,4	37,1	44,8
5	56,4	2,7	51,8	60,9
10	66,2	4,1	59,6	72,4
20	75,5	6,1	65,3	85,7
50	87,3	9,2	72,3	103,7
100	95,9	11,8	77,1	117,1
200	104,3	14,5	81,4	130,5
500	115,3	18,3	86,8	148,2
1000	123,5	21,3	90,8	161,5

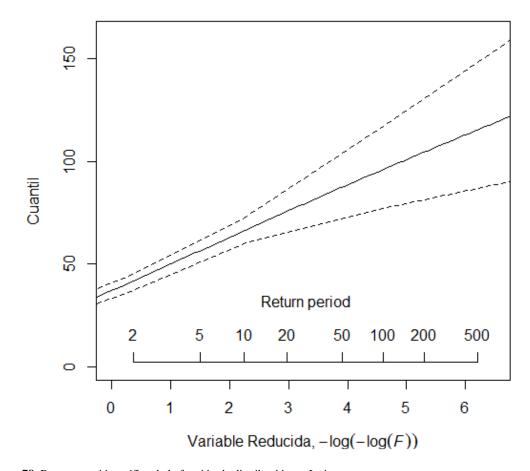


Figura 78. Representación gráfica de la función de distribución en Javier

Leire

Tabla 86. Cuantiles de precipitación diaria en Leire

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	50,5	3,9	43,0	56,3
5	68,4	4,8	60,9	76,9
10	80,3	6,5	70,5	93,2
20	91,6	8,9	78,4	109,8
50	105,8	12,5	86,4	132,0
100	116,3	15,6	92,3	148,7
200	126,5	18,8	98,7	164,8
500	139,8	23,4	106,9	185,1
1000	149,8	27,0	111,4	200,4

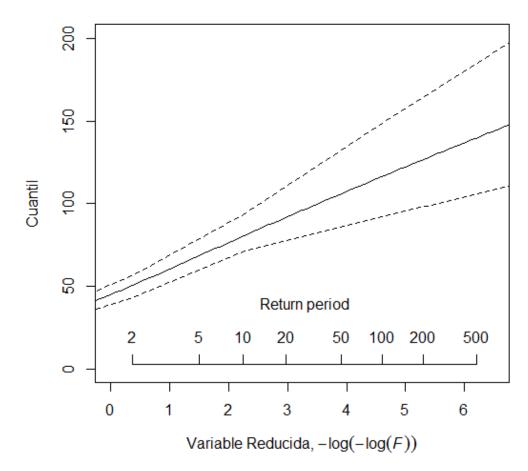


Figura 79. Representación gráfica de la función de distribución en Leire

Lerga

Tabla 87. Cuantiles de precipitación diaria en Lerga

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	49,0	3,4	43,4	53,9
5	66,4	4,0	59,0	71,3
10	77,9	5,6	69,1	87,4
20	88,9	7,9	77,3	103,6
50	102,7	11,5	84,6	125,3
100	112,9	14,5	89,6	142,0
200	122,8	17,7	94,4	158,6
500	135,7	22,1	100,3	180,4
1000	145,4	25,7	104,6	196,9

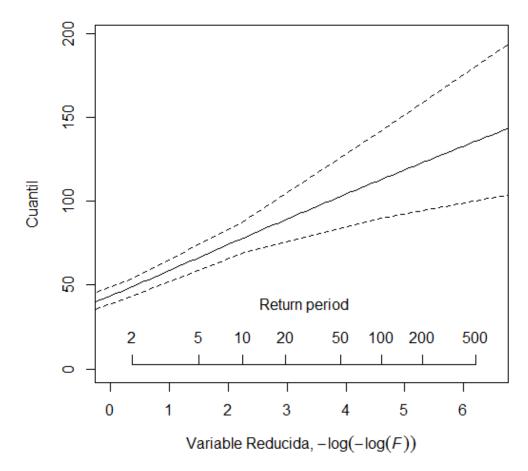


Figura 80. Representación gráfica de la función de distribución en Lerga

Los Arcos

Tabla 88. Cuantiles de precipitación diaria en Los Arcos

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	33,9	2,9	29,5	38,6
5	46,0	3,4	40,8	52,2
10	54,0	4,3	46,9	62,6
20	61,6	5,7	52,8	72,6
50	71,2	7,9	58,7	86,3
100	78,2	9,8	62,7	96,6
200	85,1	11,9	65,8	107,6
500	94,1	14,8	69,5	122,2
1000	100,7	17,1	72,5	133,0

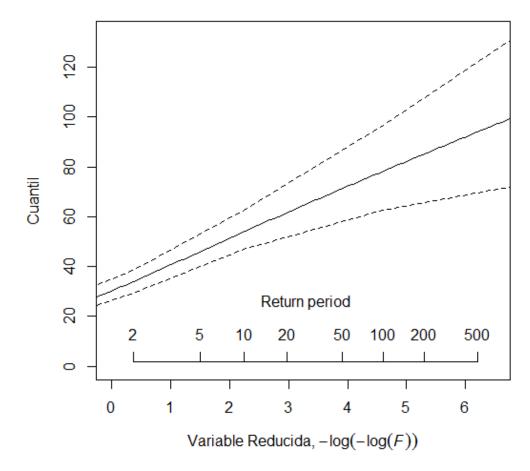


Figura 81. Representación gráfica de la función de distribución en Los Arcos

Monreal

Tabla 89. Cuantiles de precipitación diaria en Monreal

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	45,4	3,1	40,2	50,4
5	61,5	3,7	55,7	68,4
10	72,2	5,0	65,5	82,1
20	82,4	6,8	72,9	95,3
50	95,2	9,6	82,2	113,0
100	104,6	11,9	88,9	126,2
200	113,8	14,4	94,4	141,0
500	125,8	17,8	102,0	160,7
1000	134,7	20,4	107,9	175,7

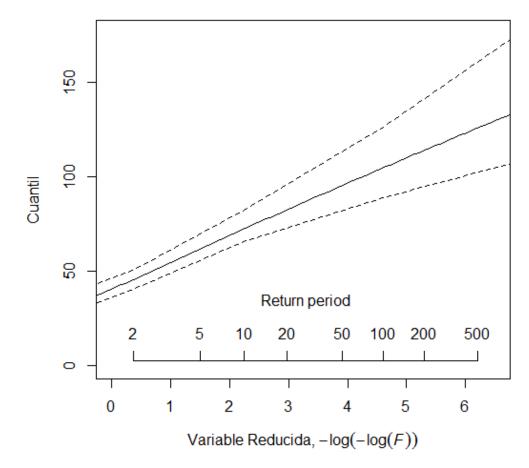


Figura 82. Representación gráfica de la función de distribución en Monreal

Navascués

Tabla 90. Cuantiles de precipitación diaria en Navascués

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	52,5	3,6	46,2	57,4
5	71,2	4,6	63,9	81,2
10	83,6	6,2	74,6	97,7
20	95,3	8,3	84,2	113,1
50	110,2	11,5	95,6	134,7
100	121,0	14,2	102,3	152,4
200	131,7	17,0	109,7	170,5
500	145,6	20,9	118,4	192,9
1000	155,9	24,0	124,8	210,2

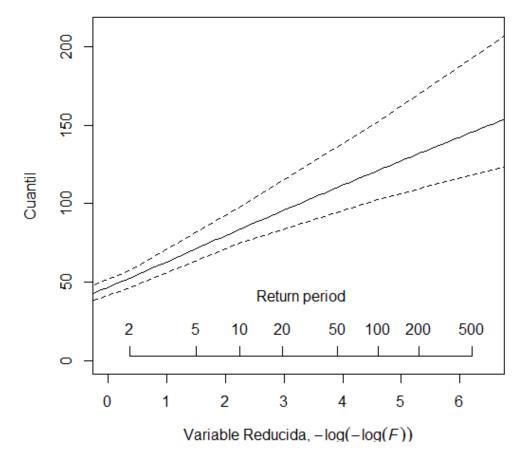


Figura 83. Representación gráfica de la función de distribución en Navascués

Noáin

Tabla 91. Cuantiles de precipitación diaria en Noáin

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	43,6	3,2	37,4	48,7
5	59,0	3,8	53,3	65,4
10	69,3	5,1	61,4	78,2
20	79,1	7,0	67,1	91,6
50	91,4	10,0	73,8	108,8
100	100,4	12,6	79,2	121,9
200	109,2	15,3	85,7	135,7
500	120,7	19,1	92,5	155,9
1000	129,3	22,1	97,0	168,4

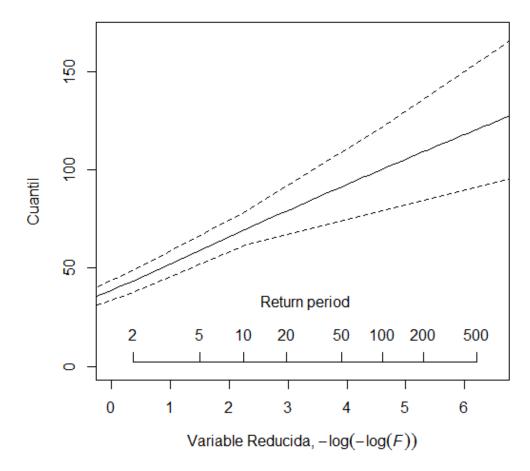


Figura 84. Representación gráfica de la función de distribución en Noáin

Olóriz

Tabla 92. Cuantiles de precipitación diaria en Olóriz

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	46,2	2,9	41,0	51,0
5	62,6	3,7	55,7	69,0
10	73,5	5,4	65,2	83,6
20	83,8	7,7	71,6	97,6
50	96,8	11,3	79,2	116,8
100	106,4	14,2	84,4	131,2
200	115,8	17,3	88,6	145,6
500	128,0	21,6	93,8	165,4
1000	137,1	24,9	97,6	179,9

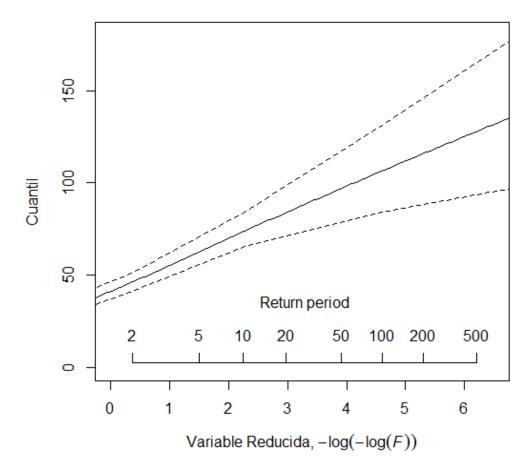


Figura 85. Representación gráfica de la función de distribución en Olóriz

Pamplona

Tabla 93. Cuantiles de precipitación diaria en Pamplona

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	49,1	2,4	45,6	52,7
5	66,5	2,9	61,4	71,4
10	78,1	4,5	71,6	86,8
20	89,1	6,6	79,3	103,3
50	103,0	9,8	89,7	124,6
100	113,1	12,3	96,3	141,1
200	123,1	15,0	101,7	157,7
500	136,1	18,7	108,8	179,5
1000	145,7	21,6	113,9	196,1

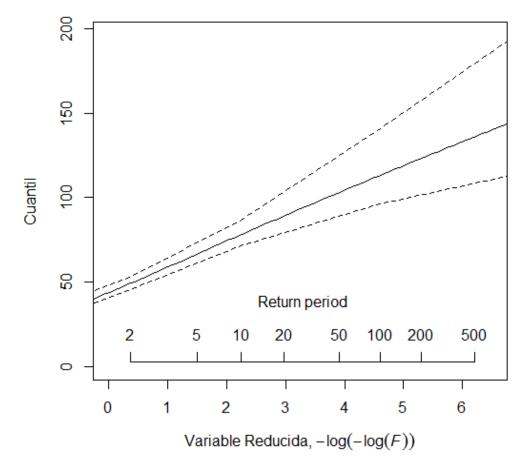


Figura 86. Representación gráfica de la función de distribución en Pamplona

Puente la Reina

Tabla 94. Cuantiles de precipitación diaria en Puente la Reina

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	37,0	2,3	33,9	40,9
5	50,1	3,1	45,5	57,5
10	58,9	4,5	52,3	70,1
20	67,1	6,4	58,3	81,8
50	77,6	9,3	64,9	96,9
100	85,3	11,6	68,6	108,6
200	92,8	14,2	72,0	121,1
500	102,5	17,7	76,7	136,1
1000	109,8	20,5	80,1	147,5

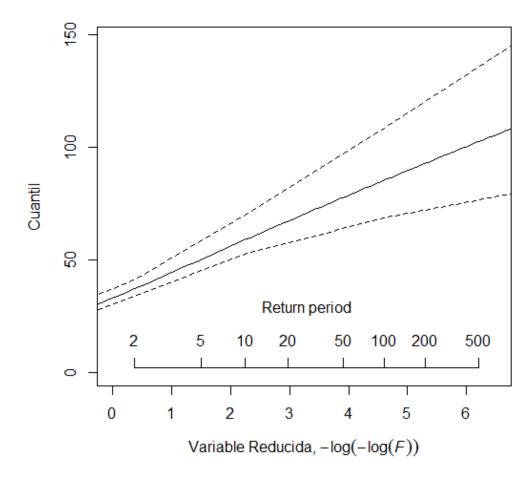


Figura 87. Representación gráfica de la función de distribución en Puente la Reina

Viana

Tabla 95. Cuantiles de precipitación diaria en Viana

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	32,2	2,4	28,1	36,3
5	43,7	3,1	38,6	50,5
10	51,3	4,1	45,6	60,8
20	58,5	5,4	51,1	72,1
50	67,6	7,4	57,8	87,3
100	74,2	9,0	62,0	98,9
200	80,8	10,8	65,7	110,0
500	89,3	13,2	70,4	124,5
1000	95,6	15,1	73,8	136,0

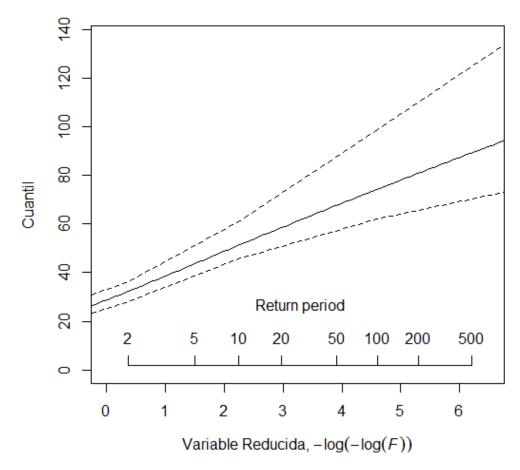


Figura 88. Representación gráfica de la función de distribución en Viana

Yesa

Tabla 96. Cuantiles de precipitación diaria en Yesa

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	48,1	2,0	44,9	51,5
5	65,1	2,8	61,0	70,2
10	76,5	4,7	69,5	85,2
20	87,2	7,1	77,8	101,7
50	100,8	10,5	86,2	122,2
100	110,7	13,3	91,7	136,3
200	120,5	16,2	96,9	150,3
500	133,1	20,2	103,4	170,0
1000	142,6	23,4	108,2	184,9

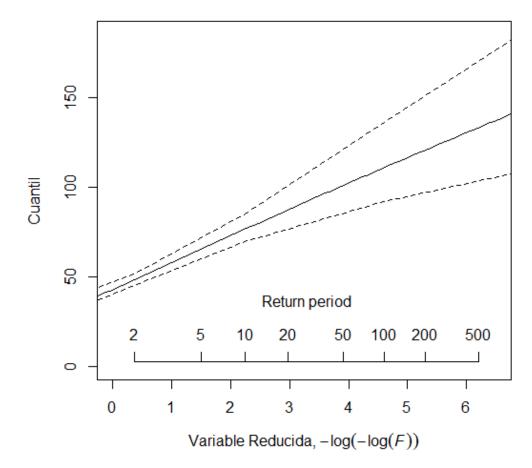


Figura 89. Representación gráfica de la función de distribución en Yesa

Zuazu

Tabla 97. Cuantiles de precipitación diaria en Zuazu

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	47,7	3,8	41,3	55,2
5	64,7	4,7	57,5	74,3
10	75,9	6,3	67,5	88,8
20	86,6	8,6	74,7	103,0
50	100,1	12,3	82,1	123,3
100	110,0	15,4	86,8	138,3
200	119,7	18,8	90,9	153,3
500	132,2	23,5	96,8	172,9
1000	141,6	27,3	100,7	187,7

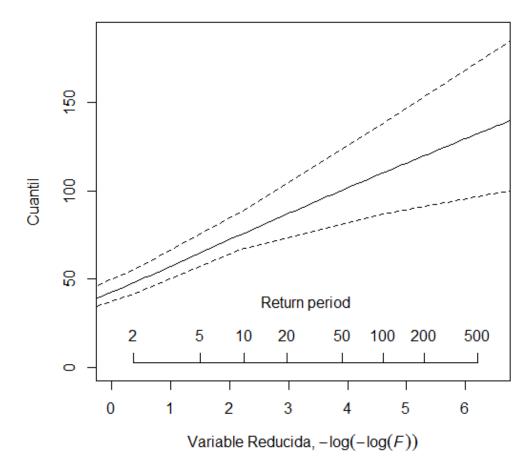


Figura 90. Representación gráfica de la función de distribución en Zuazu

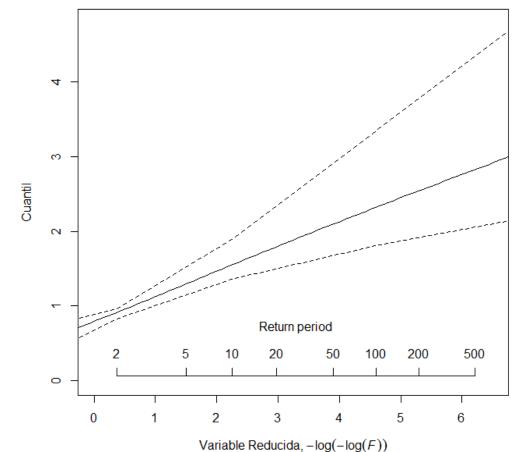

Región 4

Tabla 98. Valores del índices de avenida $(\widehat{\mu}_i)$ de las estaciones de la región 4

Estación	$\widehat{oldsymbol{\mu}}_i$	Estación	$\widehat{oldsymbol{\mu}}_i$	Estación	$\widehat{oldsymbol{\mu}}_i$	Estación	$\widehat{oldsymbol{\mu}}_i$
Andosilla	35,52	Cáseda	47,15	Lodosa	35,32	Sartaguda	44,71
Caparroso	41,68	Falces	36,99	Miranda	38,05	Sesma	33,81
Carcastillo	43,42	Lerín	35,21	Olite	41,49		

Tabla 99. Resultados de las estimaciones regionales de la región 4

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	0,91	0,04	0,83	0,97
5	1,30	0,07	1,20	1,45
10	1,55	0,15	1,36	1,89
20	1,79	0,23	1,51	2,33
50	2,10	0,34	1,68	2,91
100	2,32	0,43	1,81	3,34
200	2,54	0,51	1,92	3,77
500	2,83	0,64	2,06	4,35
1000	3,04	0,73	2,16	4,78

Figura 91. Representación gráfica de la función de distribución de la región 4

Andosilla

Tabla 100. Cuantiles de precipitación diaria en Andosilla

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	32,4	3,4	26,8	38,0
5	46,0	4,9	39,8	59,4
10	55,1	7,3	46,0	75,8
20	63,7	10,0	51,4	92,4
50	74,5	13,9	58,1	113,8
100	82,5	16,9	62,0	131,2
200	90,3	20,1	65,6	148,6
500	100,4	24,4	70,3	171,8
1000	108,0	27,8	73,6	189,4

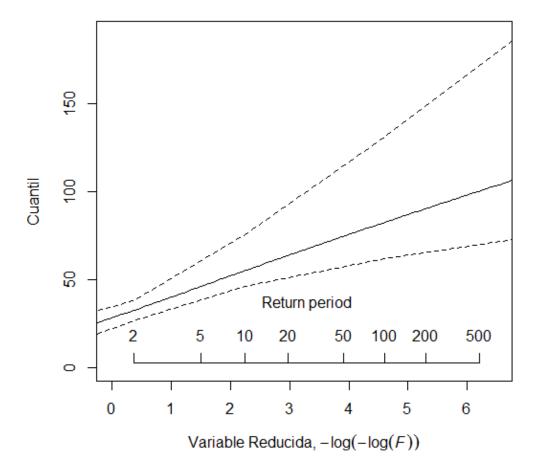


Figura 92. Representación gráfica de la función de distribución en Andosilla

Caparroso

Tabla 101. Cuantiles de precipitación diaria en Caparroso

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	38,1	2,6	33,2	40,8
5	54,0	3,4	48,8	60,8
10	64,7	6,0	56,7	75,9
20	74,7	8,8	63,5	91,5
50	87,5	12,7	71,6	113,4
100	96,8	15,8	77,1	129,9
200	106,0	19,0	82,2	146,2
500	117,9	23,3	88,9	167,8
1000	126,7	26,7	93,7	184,1

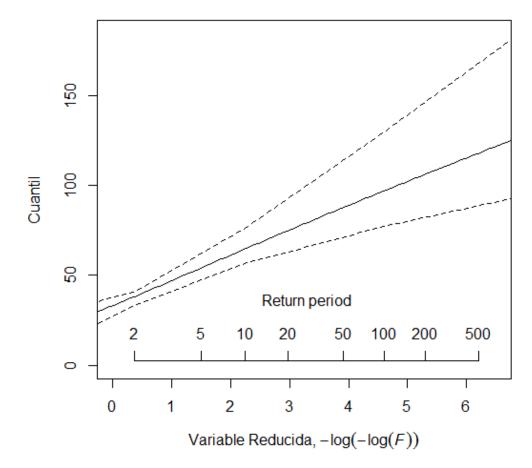


Figura 93. Representación gráfica de la función de distribución en Caparroso

Carcastillo la Oliva

Tabla 102. Cuantiles de precipitación diaria en Carcastillo la Oliva

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	39,7	2,5	35,2	44,1
5	56,3	3,4	51,0	62,0
10	67,4	5,8	59,4	79,1
20	77,9	8,6	66,0	96,8
50	91,1	12,5	74,7	119,8
100	100,9	15,6	80,2	137,1
200	110,4	18,8	85,5	153,5
500	122,8	23,1	92,5	175,8
1000	132,0	26,6	97,2	192,7

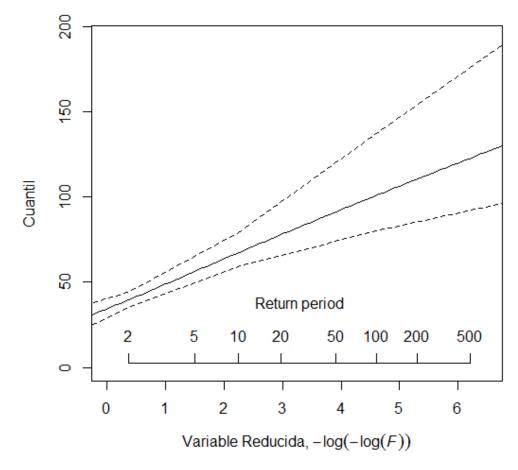


Figura 94. Representación gráfica de la función de distribución en Carcastillo la Oliva

Cáseda

Tabla 103. Cuantiles de precipitación diaria en Cáseda

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	43,1	3,4	37,4	48,2
5	61,1	5,7	53,8	72,1
10	73,2	9,2	61,4	95,0
20	84,5	13,1	68,9	112,9
50	98,9	18,6	78,0	136,1
100	109,5	22,9	84,0	156,5
200	119,9	27,4	88,9	177,2
500	133,3	33,5	94,6	201,2
1000	143,4	38,3	99,2	221,1

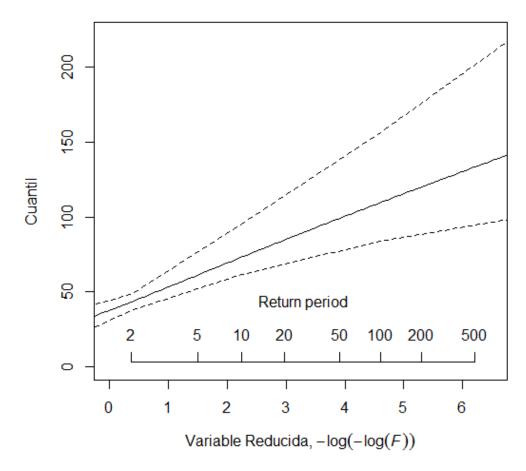


Figura 95. Representación gráfica de la función de distribución en Cáseda

Falces

Tabla 104. Cuantiles de precipitación diaria en Falces

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	33,8	3,0	28,7	38,8
5	48,0	4,3	42,6	55,7
10	57,4	7,1	48,6	73,9
20	66,3	10,1	53,6	91,8
50	77,6	14,2	61,1	114,6
100	85,9	17,4	66,0	131,8
200	94,0	20,8	69,9	149,0
500	104,6	25,3	75,3	171,7
1000	112,5	28,8	79,8	189,6

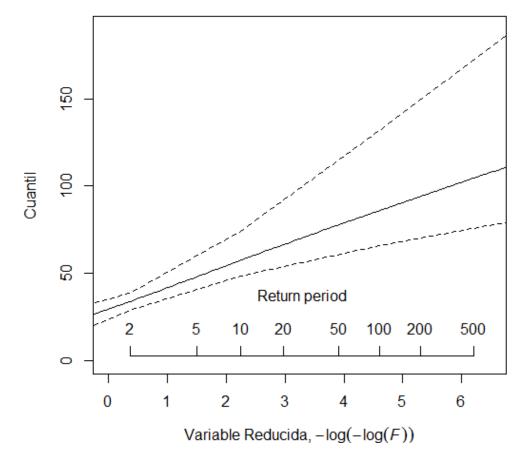


Figura 96. Representación gráfica de la función de distribución en Falces

Lerín

Tabla 105. Cuantiles de precipitación diaria en Lerín

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	32,2	2,7	26,8	36,8
5	45,6	4,1	41,2	56,0
10	54,6	6,5	46,7	71,0
20	63,1	9,2	52,0	85,0
50	73,9	13,1	57,8	104,2
100	81,8	16,1	62,2	119,4
200	89,5	19,3	66,4	136,5
500	99,6	23,6	71,4	159,0
1000	107,1	26,9	74,9	175,0

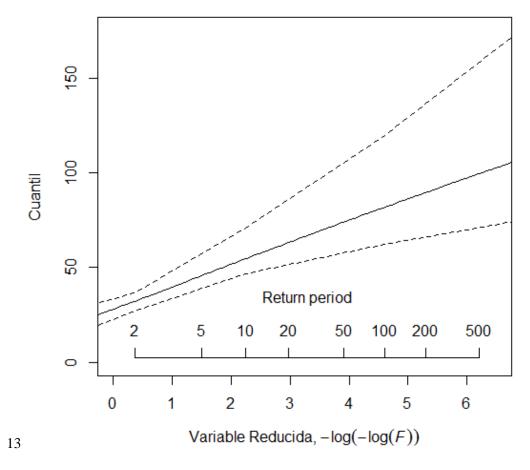


Figura 97. Representación gráfica de la función de distribución en Lerín

Lodosa

Tabla 106. Cuantiles de precipitación diaria en Lodosa

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	32,3	3,7	25,8	37,4
5	45,8	4,4	39,7	54,7
10	54,8	6,9	45,3	71,6
20	63,3	9,7	50,2	88,6
50	74,1	13,8	56,2	108,8
100	82,0	17,0	60,4	124,6
200	89,8	20,3	64,4	141,9
500	99,9	24,8	69,3	165,1
1000	107,4	28,3	73,0	182,8

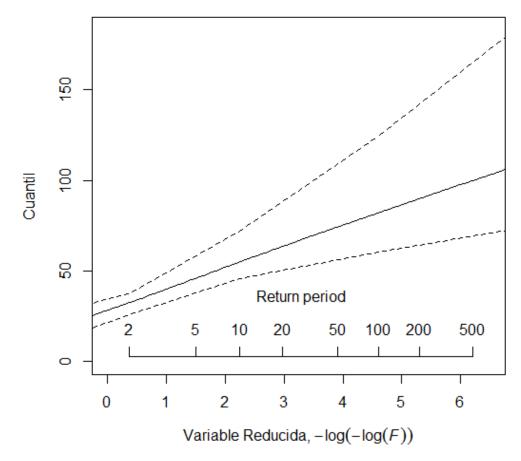


Figura 98. Representación gráfica de la función de distribución en Lodosa

Miranda de Arga

Tabla 107. Cuantiles de precipitación diaria en Miranda de Arga

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	34,8	3,0	30,3	39,3
5	49,3	4,3	43,3	57,0
10	59,0	7,0	49,2	72,5
20	68,2	10,2	55,5	87,5
50	79,8	14,6	61,9	107,3
100	88,4	18,2	66,0	122,3
200	96,7	21,9	69,9	137,3
500	107,6	27,0	74,7	157,2
1000	115,7	31,0	78,0	172,4

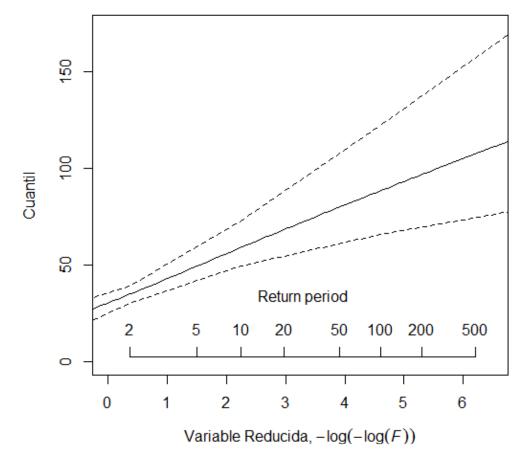


Figura 99. Representación gráfica de la función de distribución en Miranda

Olite

Tabla 108. Cuantiles de precipitación diaria en Olite

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	37,9	2,3	33,7	41,2
5	53,8	4,1	48,3	63,4
10	64,4	6,9	55,5	82,1
20	74,4	9,9	61,7	100,5
50	87,1	14,0	69,3	125,5
100	96,4	17,2	74,3	144,4
200	105,5	20,5	78,9	163,4
500	117,3	25,1	85,5	188,5
1000	126,2	28,6	90,4	207,1

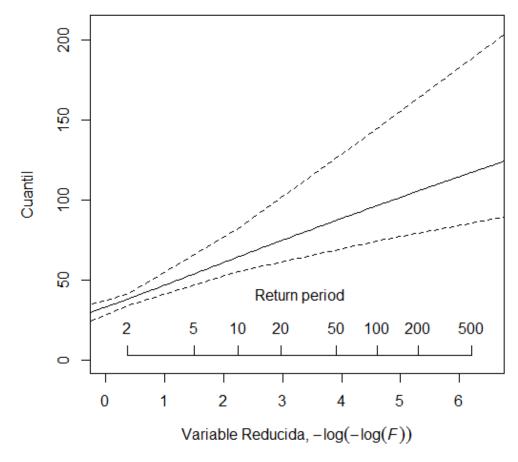


Figura 100. Representación gráfica de la función de distribución en Olite

Sartaguda

Tabla 109. Cuantiles de precipitación diaria en Sartaguda

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	40,8	2,3	36,2	44,0
5	58,0	4,0	52,6	65,5
10	69,4	7,2	60,3	83,9
20	80,2	10,6	67,0	101,6
50	93,8	15,3	76,1	125,1
100	103,8	19,0	81,8	142,5
200	113,7	22,8	87,1	159,9
500	126,4	28,0	93,7	182,7
1000	135,9	32,0	98,5	199,9

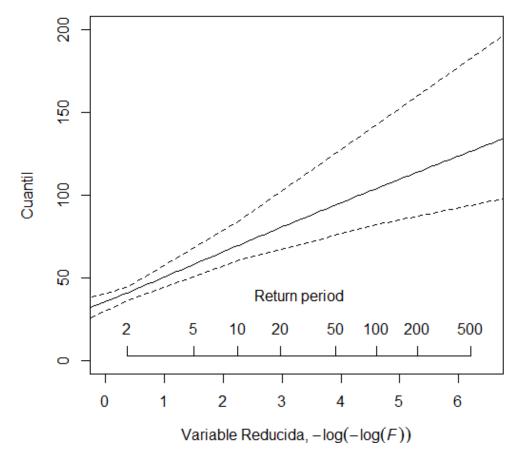


Figura 101. Representación gráfica de la función de distribución en Sartaguda

Sesma

Tabla 110. Cuantiles de precipitación diaria en Sesma

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	30,9	2,8	26,3	34,9
5	43,8	4,3	37,8	54,5
10	52,5	6,8	42,9	71,9
20	60,6	9,7	47,5	89,3
50	70,9	13,6	53,0	112,3
100	78,5	16,8	56,9	129,8
200	86,0	20,0	60,6	147,4
500	95,6	24,4	65,3	170,7
1000	102,8	27,9	68,8	188,5

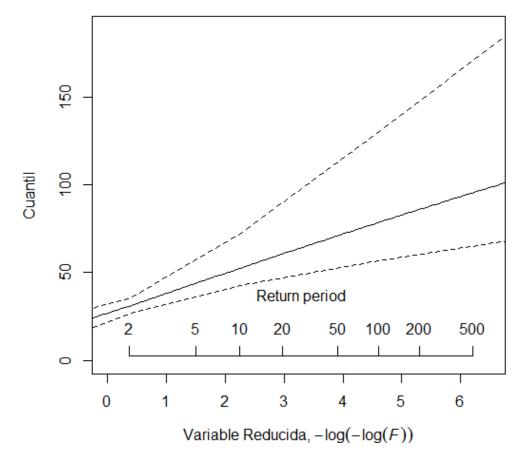


Figura 102. Representación gráfica de la función de distribución en Sesma

Región 5

Tabla 111. Valores del índices de avenida $(\widehat{\mu}_i)$ de las estaciones de la región 5

Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$	Estación	$\widehat{oldsymbol{\mu}}_{ ext{i}}$
Buñuel	44,55	Corella	34,24	Tudela	42,03
Cabanillas	43,74	Fitero	35,56		
Cadreita	39,57	Monteagudo	37,89		

Tabla 112. Resultados de las estimaciones regionales de la región 5

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	0,91	0,05	0,83	1,00
5	1,28	0,02	1,23	1,30
10	1,55	0,06	1,45	1,63
20	1,86	0,14	1,60	2,09
50	2,34	0,33	1,81	2,90
100	2,77	0,53	1,96	3,72
200	3,27	0,82	2,11	4,80
500	4,07	1,36	2,32	6,76
1000	4,80	1,94	2,49	8,74

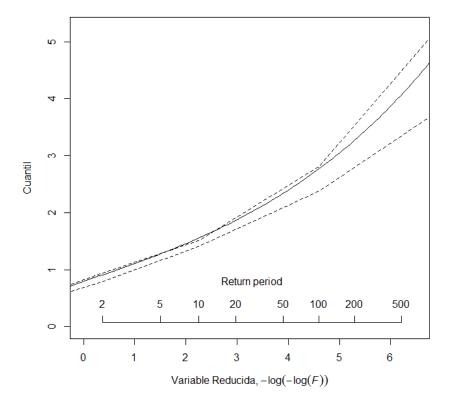


Figura 103. Representación gráfica de la función de distribución en la región 5

Buñuel

Tabla 113. Cuantiles de precipitación diaria en Buñuel

T (años)	P (mm)	ECM	Límite0,05	Límite0,95
2	40,0	2,7	36,2	45,2
5	58,4	3,0	54,6	64,9
10	71,4	4,9	65,1	82,8
20	84,5	8,3	72,4	102,8
50	102,3	14,6	80,4	132,3
100	116,3	20,6	86,1	159,9
200	130,8	27,6	91,6	192,3
500	151,0	38,5	98,2	237,4
1000	167,0	48,2	102,4	274,4

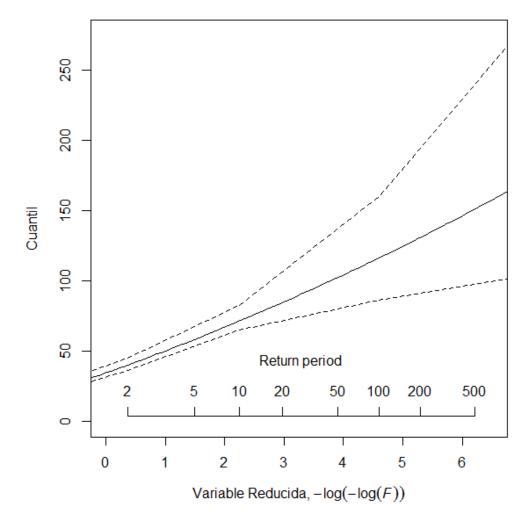


Figura 104. Representación gráfica de la función de distribución en Buñuel

Cabanillas

Tabla 114. Cuantiles de precipitación diaria en Cabanillas

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	39,3	4,0	32,8	45,6
5	57,3	4,9	47,4	67,1
10	70,1	6,7	59,3	83,1
20	83,0	10,3	67,4	104,4
50	100,4	17,4	74,5	136,2
100	114,2	24,4	78,4	163,5
200	128,4	32,8	82,0	196,7
500	148,2	46,2	86,2	251,1
1000	163,9	58,1	89,5	298,9

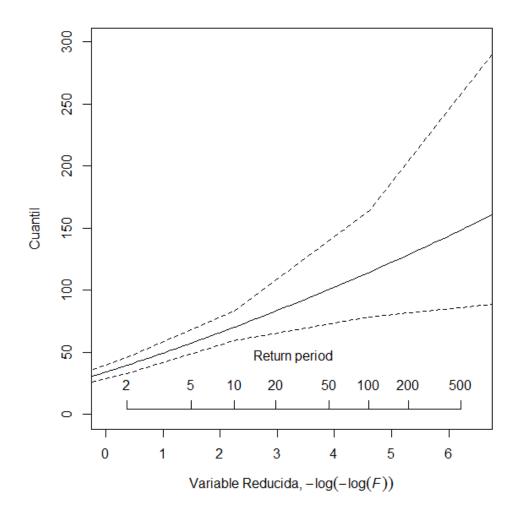


Figura 105. Representación gráfica de la función de distribución en Cabanillas

Cadreita

Tabla 115. Cuantiles de precipitación diaria en Cadreita

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	35,5	3,0	30,9	40,2
5	51,8	3,4	46,7	57,4
10	63,4	4,9	56,4	72,5
20	75,1	8,0	64,2	90,8
50	90,9	13,9	70,4	119,0
100	103,3	19,5	75,3	144,6
200	116,2	26,2	80,0	172,3
500	134,1	36,7	86,0	213,9
1000	148,3	46,0	90,4	249,4

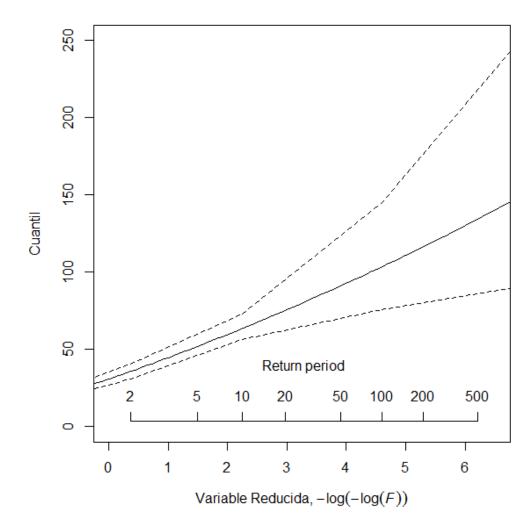


Figura 106. Representación gráfica de la función de distribución en Cadreita

Corella

Tabla 116. Cuantiles de precipitación diaria en Corella

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	30,7	3,1	26,0	35,5
5	44,8	3,7	39,0	52,4
10	54,9	5,3	46,1	66,6
20	64,9	8,4	52,0	82,8
50	78,6	14,4	56,8	106,9
100	89,4	20,4	59,5	127,2
200	100,5	27,5	62,8	151,0
500	116,0	39,0	66,2	188,2
1000	128,3	49,3	68,7	222,6

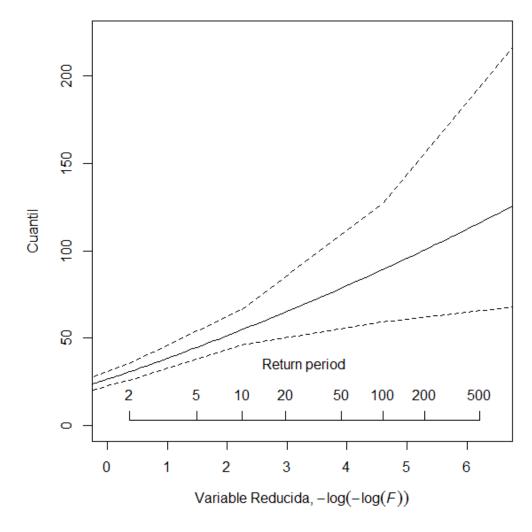


Figura 107. Representación gráfica de la función de distribución en Corella

Fitero

Tabla 117. Cuantiles de precipitación diaria en Fitero

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	31,9	2,4	28,1	36,2
5	46,6	2,5	42,1	51,1
10	57,0	3,6	51,4	64,1
20	67,5	6,1	56,9	78,2
50	81,7	11,2	63,4	101,9
100	92,9	16,1	68,3	123,1
200	104,5	21,9	72,5	146,9
500	120,6	31,0	77,8	182,6
1000	133,3	39,2	81,7	213,0

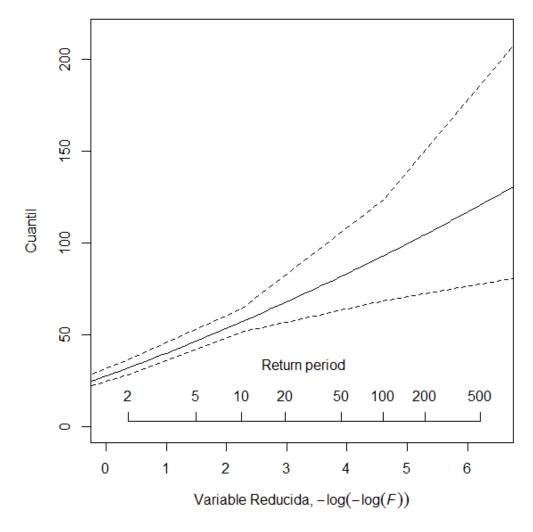


Figura 108. Representación gráfica de la función de distribución en Fitero

Monteagudo

Tabla 118. Cuantiles de precipitación diaria en Monteagudo

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	34,0	2,5	30,5	38,4
5	49,6	2,9	45,0	54,8
10	60,7	4,7	54,1	71,2
20	71,9	8,0	60,8	89,6
50	87,0	14,0	67,0	116,4
100	98,9	19,7	71,0	139,2
200	111,3	26,4	74,8	166,5
500	128,4	37,0	79,4	205,7
1000	142,0	46,3	82,7	241,2

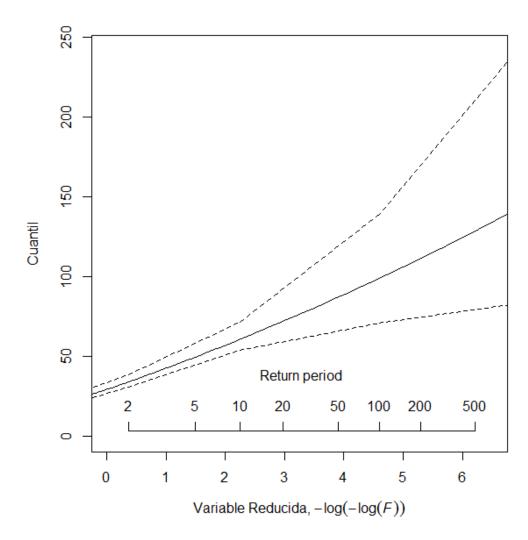


Figura 109. Representación gráfica de la función de distribución en Monteagudo

Tudela

Tabla 119. Cuantiles de precipitación diaria en Tudela

T (años)	P(mm)	ECM	Límite0,05	Límite0,95
2	37,7	4,7	29,9	46,4
5	55,1	5,7	46,4	66,9
10	67,4	7,6	57,6	83,7
20	79,7	11,5	63,5	107,7
50	96,5	19,0	70,1	139,5
100	109,7	26,5	73,6	168,8
200	123,4	35,4	76,8	204,4
500	142,4	49,6	80,9	259,2
1000	157,5	62,2	83,8	306,9

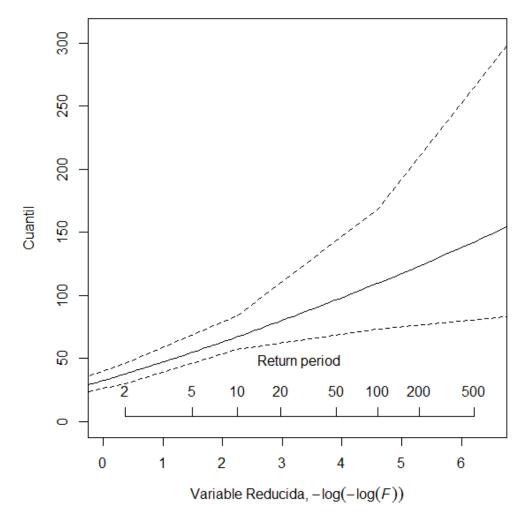


Figura 110. Representación gráfica de la función de distribución en Tudela

Tabla 120. Cuantiles de precipitación diaria de la región 1

T (años)	Amaiur	Areso	Arizkun	Artikutza	Azpirotz	Belate	Bera	Bertiz	Betelu	C. Arrambide
2	85,0	80,0	87,2	102,5	74,7	65,0	81,6	70,1	63,8	90,0
5	107,0	100,8	109,9	129,1	94,1	81,9	102,8	88,3	80,4	113,4
10	121,4	114,4	124,6	146,4	106,8	92,9	116,7	100,2	91,2	128,7
20	134,9	127,1	138,4	162,7	118,6	103,2	129,6	111,3	101,3	142,9
50	151,8	143,0	155,8	183,0	133,5	116,2	145,8	125,2	113,9	160,8
100	164,1	154,6	168,4	197,9	144,3	125,6	157,7	135,4	123,2	173,9
200	176,1	165,9	180,8	212,4	154,9	134,8	169,2	145,3	132,2	186,6
500	191,7	180,6	196,7	231,1	168,6	146,7	184,2	158,1	143,9	203,1
1000	203,2	191,5	208,6	245,1	178,7	155,5	195,3	167,6	152,6	215,3
T (años)	Doneztebe	Etxalar	Goizueta	Leitza	Lesaka-S.Antón	Lesaka	Luzaide	Sunbilla	Zugarramurdi	
2	73,2	69,9	77,7	87,4	107,7	74,2	67,3	72,7	70,9	
5	92,3	88,1	97,8	110,1	135,7	93,5	84,8	91,6	89,3	
10	104,7	99,9	111,0	124,9	154,0	106,1	96,2	103,9	101,3	
20	116,3	111,0	123,3	138,7	171,0	117,9	106,9	115,5	112,5	
50	130,8	124,9	138,7	156,1	192,4	132,6	120,3	129,9	126,6	
100	141,5	135,0	150,0	168,8	208,0	143,4	130,0	140,5	136,9	
200	151,8	144,9	161,0	181,2	223,3	153,9	139,6	150,8	147,0	
500	165,2	157,7	175,2	197,2	243,0	167,5	151,9	164,1	159,9	
1000	175,2	167,2	185,7	209,0	257,7	177,6	161,0	174,0	169,6	

Tabla 121. Cuantiles de precipitación diaria de la región 2

T (años)	Abaurrea. A	Altsasu	Aribe	Aurizberri	Azanza	Belzunce	Erro	E. Salazar	Eugi	Goñi	Iraizotz
2	59,1	58,5	57,4	63,8	52,1	54,8	61,7	55,3	66,3	69,2	59,3
5	76,4	75,6	74,2	82,5	67,3	70,8	79,7	71,5	85,6	89,4	76,7
10	87,4	86,6	84,9	94,4	77,0	81,1	91,2	81,8	98,0	102,3	87,7
20	97,7	96,7	94,9	105,4	86,0	90,6	101,9	91,4	109,5	114,3	98,0
50	110,4	109,3	107,2	119,2	97,3	102,4	115,2	103,3	123,8	129,2	110,8
100	119,6	118,4	116,2	129,1	105,4	110,9	124,8	112,0	134,1	140,0	120,0
200	128,6	127,3	124,9	138,8	113,3	119,3	134,2	120,4	144,2	150,5	129,0
500	140,2	138,8	136,1	151,3	123,5	130,0	146,3	131,2	157,1	164,1	140,6
1000	148,7	147,2	144,5	160,6	131,0	137,9	155,2	139,2	166,7	174,1	149,2
T (años)	Irotz	Irurtzun	Larraona	Lezáun	Olagüe	Oroz. B	Otazu	Urbasa	Urzainqui	Zalba	Zubiri
2	46,2	60,4	56,0	52,7	55,2	67,4	44,7	58,6	55,0	49,8	54,7
5	59,7	78,1	72,4	68,1	71,3	87,1	57,8	75,7	71,0	64,3	70,7
10	68,3	89,4	82,9	78,0	81,6	99,6	66,1	86,6	81,3	73,6	80,9
20	76,3	99,8	92,6	87,1	91,2	111,3	73,9	96,8	90,8	82,2	90,4
50	86,2	112,8	104,7	98,5	103,1	125,8	83,5	109,4	102,7	92,9	102,1
100	93,4	122,3	113,4	106,7	111,7	136,3	90,5	118,5	111,2	100,7	110,7
200	100,4	131,4	121,9	114,7	120,1	146,6	97,3	127,4	119,6	108,3	119
500	109,5	143,3	132,9	125,0	130,9	159,7	106,0	138,9	130,3	118,0	129,7
1000	116,1	152,0	141,0	132,7	138,9	169,5	112,5	147,4	138,3	125,2	137,6

Tabla 122. Cuantiles de precipitación diaria de la región 3

T (años)	Aibar	Alloz	Amillano	Aoiz	Arróniz	Artieda	Barásoain	Cábrega	Epároz	Estella	Galbarra	Genevilla	Igúzquiza	Ilundaín
2	44,3	44,2	41,5	51,3	42,0	43,9	39,1	39,0	45,9	36,6	55,5	37,5	36,5	46,1
5	60,1	59,9	56,2	69,6	57,0	59,4	53,0	52,9	62,1	49,6	75,1	50,8	49,4	62,5
10	70,5	70,3	66,0	81,7	66,9	69,8	62,3	62,1	73,0	58,2	88,3	59,7	58,1	73,4
20	80,4	80,2	75,2	93,1	76,3	79,6	71,0	70,8	83,2	66,4	100,6	68,1	66,2	83,7
50	93,0	92,7	86,9	107,6	88,2	92,0	82,1	81,8	96,2	76,7	116,3	78,7	76,5	96,7
100	102,1	101,9	95,5	118,3	96,9	101,1	90,2	89,9	105,7	84,3	127,8	86,4	84,1	106,3
200	111,1	110,8	103,9	128,7	105,4	110,0	98,1	97,8	115,0	91,7	139,0	94,1	91,5	115,6
500	122,8	122,5	114,9	142,2	116,5	121,6	108,4	108,1	127,1	101,3	153,7	104,0	101,1	127,8
1000	131,6	131,2	123,0	152,3	124,8	130,2	116,1	115,8	136,1	108,5	164,6	111,3	108,3	136,9
T (años)	Javier	Leire	Lerga	L. Arcos	Monreal	Navascués	Noáin	Olóriz	Pamplona	P. Reina	Viana	Yesa	Zuazu	
2	41,6	50,5	49,0	33,9	45,4	52,5	43,6	46,2	49,1	37,0	32,2	48,1	47,7	
5	56,4	68,4	66,4	46,0	61,5	71,2	59,0	62,6	66,5	50,1	43,7	65,1	64,7	
10	66,2	80,3	77,9	54,0	72,2	83,6	69,3	73,5	78,1	58,9	51,3	76,5	75,9	
20	75,5	91,6	88,9	61,6	82,4	95,3	79,1	83,8	89,1	67,1	58,5	87,2	86,6	
50	87,3	105,8	102,7	71,2	95,2	110,2	91,4	96,8	103,0	77,6	67,6	100,8	100,1	
100	95,9	116,3	112,9	78,2	104,6	121,0	100,4	106,4	113,1	85,3	74,2	110,7	110,0	
200	104,3	126,5	122,8	85,1	113,8	131,7	109,2	115,8	123,1	92,8	80,8	120,5	119,7	
500	115,3	139,8	135,7	94,1	125,8	145,6	120,7	128,0	136,1	102,5	89,3	133,1	132,2	
1000	123,5	149,8	145,4	100,7	134,7	155,9	129,3	137,1	145,7	109,8	95,6	142,6	141,6	

Tabla 123. Cuantiles de precipitación diaria en la región 4

T (años)	Andosilla	Caparroso	Carcastillo	Cáseda	Falces	Lerín	Lodosa	Miranda	Olite	Sartaguda	Sesma
2	32,4	38,1	39,7	43,1	33,8	32,2	32,3	34,8	37,9	40,8	30,9
5	46,0	54,0	56,3	61,1	48,0	45,6	45,8	49,3	53,8	58,0	43,8
10	55,1	64,7	67,4	73,2	57,4	54,6	54,8	59,0	64,4	69,4	52,5
20	63,7	74,7	77,9	84,5	66,3	63,1	63,3	68,2	74,4	80,2	60,6
50	74,5	87,5	91,1	98,9	77,6	73,9	74,1	79,8	87,1	93,8	70,9
100	82,5	96,8	100,9	109,5	85,9	81,8	82,0	88,4	96,4	103,8	78,5
200	90,3	106,0	110,4	119,9	94,0	89,5	89,8	96,7	105,5	113,7	86,0
<i>500</i>	100,4	117,9	122,8	133,3	104,6	99,6	99,9	107,6	117,3	126,4	95,6
1000	108,0	126,7	132,0	143,4	112,5	107,1	107,4	115,7	126,2	135,9	102,8

Tabla 124. Cuantiles de precipitación diaria de la región 5

T (años)	Buñuel	Cabanillas	Cadreita	Corella	Fitero	Monteagudo	Tudela
2	40,0	39,3	35,5	30,7	31,9	34,0	37,7
5	58,4	57,3	51,8	44,8	46,6	49,6	55,1
10	71,4	70,1	63,4	54,9	57,0	60,7	67,4
20	84,5	83,0	75,1	64,9	67,5	71,9	79,7
50	102,3	100,4	90,9	78,6	81,7	87,0	96,5
100	116,3	114,2	103,3	89,4	92,9	98,9	109,7
200	130,8	128,4	116,2	100,5	104,5	111,3	123,4
500	151,0	148,2	134,1	116,0	120,6	128,4	142,4
1000	167,0	163,9	148,3	128,3	133,3	142,0	157,5