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Abstract 

 

Sustainable forest practices are often designed to mimic natural disturbance and successional 

processes, yet succession is poorly understood in many ecosystems. On northeastern Vancouver 

Island, the ‘disturbance hypothesis’ is a widely-assumed succession model that asserts shade 

tolerant western redcedar (Thuja plicata) and the ericaceous shrub salal (Gaultheria shallon) invade 

and colonize highly productive western hemlock (Tsuga heterophylla) – Pacific silver fir (Abies 

amabilis) stands (HA) on zonal sites in the absence of stand-replacing wind disturbance. This leads 

to the development of low productivity, low density, uneven-aged, open-crowned redcedar-

hemlock-salal stands (CH). In conflict with this model, old, apparently stable HA stands lacking 

redcedar can be found on such sites as well. We sought evidence for the predicted transition to CH 

stands  by examining stand composition, crown closure, tree size class frequency distributions, salal 

cover, and redcedar establishment on young HA (~90 years old), old HA (>160 years), and CH 

(>160 years) stands. When adjacent to a redcedar stand, young HA stands had fewer redcedar 

seedlings but more redcedar adult trees than old HA stands. However, redcedar abundance did not 

differ between young and old HA stands at distances further than 10 m from adjacent redcedar 

stands. This could indicate that redcedar recruits into HA stands at stand establishment, and that 

redcedar seedling establishment is low under the thick canopy of young HA stands. The 

chronosequence data also suggest that both old HA and CH stands are self-replacing stand types in 

these forests, contrary to the disturbance hypothesis. We develop a new, multi-pathway model for 

this ecosystem that is based on the chronosequence data and life-history traits of the focal tree 

species, and suggest that disturbance plays a role opposite to the equilibrium model. 
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Introduction 

Modern community ecology relies on dynamic events (disturbances, fluctuations in seedling 

establishment and mortality rates) which result in multiple pathways of forest succession (Holt 

2006, Clark 2009). These successional pathways depend on disturbance type, intensity and 

frequency (Chen and Popadiouk 2002), the effects of the existing plant community on subsequent 

invasion and colonization (Connell and Slatyer 1977), and differences between the plants on a site 

at both a species level (Tilman 1993), and an individual level (Huston and Smith 1987). It is still 

controversial, however, whether these different pathways converge on a similar type of stable 

ecosystem state. For example, when studying successional processes in forest ecosystems 

containing long-lived trees (hundreds or even thousands of years), it is extremely difficult to 

distinguish between a stable community and an intermediate state that can last for centuries.  

Successional mechanisms can have implications for forest management, which should be 

related to natural disturbance and successional processes if historical ranges of variation and 

associated ecosystem values are to be maintained (Perera et al. 2004). This requires an accurate 

understanding of both disturbance and succession (Keane et al. 2009). For example, on northern 

Vancouver Island, logging companies have often had difficulties regenerating stands after 

clearcutting old growth western redcedar (Thuja plicata Donn.) - western hemlock (Tsuga 

heterophylla (Raf.) Sarge) forests (CH) despite success in adjacent western hemlock-Pacific silver 

fir (Abies amabilis Dougl. es Forbes) sites (HA) (Prescott and Weetman1994). Lewis (1982) was 

the first to explain this phenomenon as part of a natural succession in these forests, and proposed the 

possibility of converting CH sites into HA sites by silvicultural treatments. Lewis´s suggestion was 

followed by the Salal Cedar Hemlock Integrated Research Program (SCHIRP) managed by the B.C. 

Ministry of Forests and Range for the following ten years (Prescott and Weetman 1994). This 

program was based on the assumption that the phenomenon of different forest types (CH or HA) 
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occupying similar sites could be related to successional processes. Indeed, these forest types are 

distributed in a mosaic across the landscape on zonal sites (mesic moisture and mesotrophic nutrient 

status), with sharp boundaries between them (Prescott and Weetman 1994).  

Prescott and Weetman (1994) identified four theories that could explain the coexistence of 

self-replacing HA and CH forest types in the landscape: 1) the disturbance hypothesis predicts HA 

stands will slowly evolve into CH stands in the absence of disturbance or management (based on the 

original Lewis model, Figure 1); 2) the salal hypothesis posits the darker HA understories prevent 

salal (Gualtheria shallon Pursh), an ericaceous shrub with strong allelopathic and competitive 

effects of on other species, from colonizing. However, in more open CH forests salal dominates the 

understory and reduces tree growth; 3) the cedar hypothesis, which states that windthrow-origin HA 

stands are suitable for cedar but it does not become established because of the speed and density of 

hemlock and fir regeneration. However, on CH forests with abundant decay-resistant redcedar logs 

and litter, redcedar and salal can more readily obtain N than hemlock or fir; and 4) the site 

hypothesis, in which differences between HA and CH are related mostly to site condition, with HA 

sites established in well drained sites exposed to wind disturbances that prevent humification and 

gleziation (Banner et al., 2005). 

Prescott and Weetman (1994) did not find evidence to support the cedar hypothesis. Since 

then, Prescott and Sajedi (2008) have discarded the salal hypothesis, concluding that the presence of 

salal was the effect rather than the cause of low nutrient availability on CH stands. Also, several 

lines of evidence support the site hypothesis indicating that CH sites might be slightly wetter and 

less aerated than HA sites. DeMontigny (1992) found indications on CH sites of humus formed in 

poorly drained soils, and a threshold related to soil oxygen that could separate CH from HA sites 

has been identified (Sajedi et al. 2012, Prescott et al. 2013). Although the latter studies showed 

significant differences in mean soil characteristics (soil moisture and redox potential), there was a 



Weber et al. (2014) Canadian Journal of Forest Research, 44, 1145-1155. 5 / 36 

 

high level of overlap among samples in both stand types. Other studies have failed to find 

differences between CH and HA in parent material, soil chemistry, and topography (Keenan et al. 

1993, Weber et al. 2003, 2005). This evidence could indicate that rather than sites being inherently 

different, successional processes cause sites to diverge over time into different forest types. 

The mosaic of CH and HA stands on the landscape may also be influenced by historic 

differences. Western redcedar began establishing approximately 3,000 years ago in a forest 

dominated by Sitka spruce (Picea sitchensis (Bong.) Carrière), western hemlock and Pacific silver 

fir (Hebda 1995). The current landscape reflects this historical influence; the CH stand type 

currently occupies about 27% of the forested area of northern Vancouver Island, or 100,000 

hectares (Prescott and Sajedi 2008), but there is no certainty that this area would not change if 

successional processes were allowed to continue unaltered.   

The composition and structure of CH stands are different from other forest types; they are 

usually uneven-aged, dominated by old western redcedar trees of up to a thousand years old or 

more, and support slow growth of nutrient-deficient western hemlock and Pacific silver fir of 

various ages (Prescott and Weetman 1994). The CH generally has low net commercial stemwood 

productivity, in the 0 to 4 m
3 
ha 

-1 
year 

-1 
range. The canopy is relatively open and vertically 

heterogeneous, permitting light penetration that supports a vigorous shrub layer dominated by salal 

(Prescott 2013). 

The HA forest type occupies approximately 50% of forests in the region (175,000 ha). It is 

typically densely stocked with a closed, vertically uniform canopy that permits little light 

penetration. It is dominated by tall western hemlock and Pacific silver fir with low stem taper, and 

has only trace amounts of redcedar (Prescott and Weetman 1994). The HA stands are highly 

productive (15 to 20 m
3 
ha

-1 
y

-1
stemwood) and are darker, housing fewer species than CH forests 

(Sajedi et al. 2012). In higher light situations, such as near stand edges that permit lateral light 
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penetration or where canopy gaps have formed, seedling regeneration is almost entirely of Pacific 

silver fir and western hemlock (Weber et al. 2003). Probability of stand-replacing windthrow 

increases with age in HA stands (Prescott and Weetman 1994), and most of the HA stands in the 

study area were initiated by a catastrophic stand-replacing windstorms in 1908 (Prescott et al. 

1994), although both older and younger HA stands can be found dispersed across the landscape.  

   

Forest succession in CH and HA stands 

The disturbance hypothesis posits that in the absence of stand-replacing wind disturbance, 

HA stands will transition CH stands due to the invasion of HA by redcedar seedlings, which would 

become HA(c) stands (Prescott and Weetman 1994). According to this theory, relatively frequent 

stand-replacing windstorms (approximately every 100 to 200 years) are predicted to maintain HA 

by creating dense, even-aged, fast-growing hemlock and Pacific silver fir stands that shade out 

slower growing redcedar. The HA stands are susceptible to subsequent stand-replacing wind events 

due to their density, structure and species composition. In contrast, CH stands appear to resist stand-

replacing windthrow that would convert them back to HA (Prescott and Weetman 1994). This is 

because redcedar architecture combines loss of foliage under high winds with high stem taper, a 

broad root system, and lower susceptibility to stem breakage and windthrow than hemlock and 

Pacific silver fir (Mitchell et al. 2001, Harrington 2010). As a consequence, partial wind 

disturbances remove hemlock and fir from the stand more frequently than redcedar, and CH stands 

are maintained on the landscape as redcedar-dominated sites.  

According to the disturbance hypothesis, old HA(c) stands should exist only as a transition 

state from a young HA stand to a CH stand (Figure 1). Therefore, they should show evidence of 

redcedar recruitment in the understory that eventually leads to mature redcedar establishment. This 

transition state is predicted to occur as gaps develop in the HA canopy as it ages (understory 
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reinitiation phase of stand dynamics; Oliver and Larson 1996), resulting in sufficient light levels for 

the establishment of salal and shade tolerant redcedar, as well as hemlock and Pacific silver fir. 

Previous studies have reported the absence of seedling banks in the understory, especially of 

redcedar (Weber et al. 2005), although large seedling banks of hemlock and especially Pacific silver 

fir have been described at higher altitudes in the same region (Antos et al. 2005). 

Despite the ability of the disturbance hypothesis to explain the coexistence of two distinct 

stand types on zonal sites, field observations and experiments have raised several potential 

inconsistencies, leading some to reject Lewis´ original disturbance hypothesis (Prescott et al. 2013). 

For example, field studies have shown a lack of evidence in the study area of young or old HA 

stands currently being actively colonized by redcedar, probably as a consequence of low light, 

interaction with the HA substrate and lack of suitable mycrorrizhal fungi (Weber et al. 2003, 2005). 

Nonetheless, less than 2,000 to 3,000 hectares is believed to be in some type of intermediate state 

between HA and CH (i.e., HA with some redcedar) at any time; this amounts to 1-2% of the current 

extent of the HA (T. Lewis, unpublished data). Recent research on the HA/CH phenomenon has 

focused on differences in environmental characteristics (Sajedi et al. 2012), leading to a change in 

site classification and management strategies in the area (Prescott et al. 2013). On the other hand, 

when different plant communities are established on initially similar sites, differences in 

physicochemical site characteristics could evolve through time, especially if these communities last 

for centuries. For example, in northern sites of the same biogeoclimatic zone of BC, Banner et al. 

(2005) have described how in the absence of stand-replacing disturbances, old-growth stands could 

eventually develop into bogs as soils became increasingly paludified. Therefore, the disturbance and 

site hypotheses are not necessary mutually exclusive. Early stages of our investigation indicated that 

successional process may also be involved in the CH/HA phenomenon. Redcedar germinants 

(defined as young redcedar that have not yet developed the secondary, scale-like foliage typical of 



Weber et al. (2014) Canadian Journal of Forest Research, 44, 1145-1155. 8 / 36 

 

this species, and generally younger than 1 year old) are common in windthrow-origin HA stands, 

with 18 germinants m
-2

 occurring at 15 m into HA stands from an adjacent CH stand (Weber, 

unpublished data). Antos et al. (2005) reported the capacity of western hemlock and Pacific silver 

fir to form seedling banks that can survive for a long time in the understory of mountain forests on 

Vancouver Island. This evidence suggest that all of these species may well be present in HA stands 

and able to invade when forest gaps open, as proposed by the disturbance hypothesis.  

In this study, we aim to test the validity of the disturbance hypothesis by using a 

chronosequence approach. Our assumption is that current and historical patterns of succession in 

these forests have not changed significantly. If successional convergence towards CH-dominated 

forests as described in the disturbance hypothesis is occurring in this area, we would expect to see 

the following: 1) Old HA stands should have less crown closure than young HA stands, 2) Old HA 

stands should have higher salal cover in the understory than young HA stands, and 3) Old HA 

stands should have a higher abundance of redcedar than the young HA. We test these predictions in 

old and young HA stands by first identifying stands of these types that are adjacent to CH stands, 

and then sampling along transects from the edge of the CH into the HA stand. This approach 

ensures that ample cedar and salal seed will be present in our sample areas, so that any trends that 

are not consistent with the disturbance hypothesis would not be due to a lack of propagules. 

Moreover, if changes are occurring, we would expect the transects to show the ‘invasion front’ of 

cedar and salal into old HA stands.  

 

Material and methods 

Study Sites 

All HA and CH stands on zonal sites recorded for the Port McNeil (50º35´25”N, 127º05´5” 

W) area were identified using Western Forest Products Inc. forest cover type maps for Tree Farm 
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License 6. HA sites are classified as poor to medium in nutrient regime and fresh to moist in 

moisture regime, whereas CH sites are classified as nutritionally poor, but with the same moisture 

regime as HA stands. Slope was minimal (<10%) on all sites except one old HA stand, and 

consequently aspect was not controlled. Elevation ranged from 300 to 600 m.a.s.l. All sites were 

within the coastal western hemlock, submontane very wet maritime biogeoclimatic zone 

(CWHvm1, Pojar et al. 1987). Meteorological data from the Port Hardy airport (approximately 15 

km north of the study area) showed a mean annual precipitation of 1,700 mm, with most of this 

occurring in the winter months (Keenan et al. 1993). Mean daily temperatures range from 2.4°C in 

January to 13.8°C in August. The average mass of forest floors in HA stands is 211 Mg ha
-1 

(Keenan et al. 1993). The CH forests are uneven aged and contain cedars more than 500 years old, 

and hemlocks up to 400 years old. The CH forest floor (i.e. the humus layer) has an average mass of 

280 Mg ha
-1

 (Keenan et al. 1993). Soils are typically humo-ferric podzols with 0.25 m of mor 

humus (combined LFH layers) overlying surficial unconsolidated morainal and fluvial outwash 

material, with similar depths of humus in CH and HA stands (Sajedi et al. 2012). 

 

Sampling transects 

In the year 2000, five pairs of young (~90 years old) HA stands and adjacent CH stands 

were selected at random from the population of stands. HA stands were even aged, originating from 

a catastrophic windstorm in 1908 (Prescott et al. 1993). In addition, eight pairs of old (>160 years 

old) HA stands and adjacent CH stands were also randomly selected from sites neighbouring the 

young stands previously selected. The HA stands were required to have a minimum of 250 m of 

edge with the adjacent  redcedar and salal-dominated CH stand, and at least a 100 m wide strip of 

uniform HA running parallel and next to the HA-CH interface that was free of old (> 1 m dbh) 
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redcedar trees. Both forest types were separated by a sharp transitional zone of approximately 10 m 

(Prescott et al. 1993).  

We used transects running from the CH into the HA to determine if differences between 

young and old HA stands were consistent with the disturbance hypothesis. We conducted sampling 

adjacent to CH stands to ensure that any differences between old and young HA stands were due to 

differences in site conditions and not seedrain. Placement of the transect perpendicular to the CH 

stand edge was to allow us to determine the influence of seedrain, and potentially observe an 

invasion front of cedar into old HA stands if the disturbance hypothesis were indeed correct.  

Three to five (depending on stand size) 20 m-wide, 50 m-long transects were established in 

the HA component of each pair of HA-CH stands oriented perpendicular to the HA-CH interface. 

Transects were established in both young HA-CH and old HA-CH combinations. The first transect 

in each HA stand was placed at a random starting point within the second 50 m along the stand edge 

(leaving a 50 m buffer from adjacent stands that were not a part of the selected HA-CH pair). 

Additional transects were placed at 50 m intervals along the edge. The final transect was >50 m 

from the transition to a different stand. These transects were subdivided into 10-m intervals to create 

five 10 x 20 m subplots per transect. Plots landing in non-mesic (non-zonal) micro-sites were 

excluded (Figure 2). Each of the subplots was assessed for crown closure, number of redcedar trees 

and seedlings, and salal cover and height (Figure 2). Within each transect all trees greater than 1.3 

m tall were also measured for diameter at 1.3 m (dbh).  To complement the HA transects, 40 m long 

and 20 m wide transects were established on the CH stands adjacent to the young HA transects and 

perpendicular to the young HA/CH edge. These transects were subdivided into two 20 x 20 m 

subplots, and were assessed for the same characteristics as the young and old HA plots in order to 

provide a baseline for vegetation characteristics in cedar-dominated stands.  Because there was little 
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apparent effect of distance from the edge on CH stands, we did not subdivide these transects as 

finely as the HA transects.  

 All redcedar with secondary, scale-leaf foliage (to exclude 1 year old germinants that have 

only needle-like leaves) and greater than 5 cm tall were included in our sampling, with those less 

than 1.3 m tall being recorded as seedlings. Redcedar of seed origin were included in the analysis as 

long as they had established roots. Redcedar of vegetative origin were also included, as this is a 

common reproductive strategy in closed canopy stands (Minore 1990). Salal cover and crown 

closure were determined to the nearest five percent by taking visual estimates and comparing to 

computer-generated images. Overstory crown closure was estimated as the percentage of the total 

horizontal area at 1.3 m height in each plot that had leaves or branches directly above it in order to 

account for the cover cast by all trees (i.e., all individuals ≥ 1.3 m). This method estimates cover as 

the percentage open space occluded, and thus does not account for leaves that overlap each other in 

different strata of the forest canopy. Average height of salal, also estimated visually, was 

determined as the average height of the uppermost branches of salal plants within a plot.  

In five of the old HA stands, three plots were established at random to estimate nominal 

stand age by sampling the two largest hemlock and Pacific silver fir trees in each of these plots (6 

trees / stand). Each tree was aged by two increment cores at 1.3 m, and all ages given in this paper 

are from this height. Age values at this height are an underestimate of true tree ages; based on more 

detailed aging of cedar trees (Table 1), true ages may well be 40 or more years greater than those 

stated. Nonetheless, these ages do give an accurate estimate of age beyond 1.3 m, and thus provide a 

reliable estimate of age after any initial suppression period. The age distribution of randomly 

selected large trees is expected to be relatively wide in uneven aged stands. The remaining three old 

HA stands had one or two co-dominant trees aged in each of three plots to ensure these large trees 

were older than those reported for young HA stands. Ages in the latter three stands were used for 
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stand age classification only. Ages in the young HA stands have been assessed through several field 

studies, and show that trees in these stands are even aged, presumably due to stand-initiating wind 

storms in 1908 (Prescott and Weetman 1994). Trees in the CH were not aged, as the larger redcedar 

trees were too large to core. The forest cover map for the area classified all of these stands as older 

than 160 years, maybe up to 1000 years old, but consistent heart rot in large cedar make the upper 

limits of these ages impossible to verify (Prescott and Weetman 1994).  

Seedlings that were believed to be of seed origin (based on presence of primary leaves or 

root morphology) were sampled to establish seedling ages by counting rings at the root collar. This 

is a minimum estimate of age, as the number of stem growth rings at the base of the live crown of 

heavily shaded seedlings or saplings can be greater than at the root collar because of insufficient 

photosynthate to stimulate cell division at the root collar, especially if buried in the forest floor 

(Antos et al. 2005). Redcedar saplings in young and old HA stands were also aged by increment 

coring. Estimated ages were adjusted if the core missed the pith by less than an estimated five years. 

Where a core missed the pith by more than five years, the core was rejected and the tree re-cored. 

Trees with stem decay were excluded from analysis, and those originating from branch layering that 

were still attached to the parent by a live branch were recorded as the age of the parent stem. 

Stem size class distributions were determined for each stand type, with data pooled from all 

transects within each stand. Basal area was calculated for each species within each stand type.  

 

Statistical tests 

T-tests were performed on differences in basal area of redcedar, hemlock and Pacific silver 

fir between young and old HA stands. Observations within stands were pooled for all tests. Due to 

skewed distributions, all data presented on redcedar seedlings use median values calculated as the 

median of stand averages (i.e., the central tendency of each stand type, using each stand as one 



Weber et al. (2014) Canadian Journal of Forest Research, 44, 1145-1155. 13 / 36 

 

observation). Overstory crown closure showed no trend with distance to edge in either stand type, 

and so observations were pooled and a t-test for crown closure was carried out between the young 

and old HA at all distances.  

The Mann-Whitney Wilcoxon rank sum test was used to compare the distributions of 

redcedar seedlings and trees in the young and old HA. Non-parametric statistics were used due to 

the small sample size and non-normal distribution of data (Stewart-Oaten, 1995). An alpha of 0.1 

was used for all tests to reduce the probability of causing a type II error. Because redcedar seedlings 

in the young HA were very infrequent and showed no trend with distance from the transitional zone, 

we pooled these across all distances for statistical comparisons. As a result, seedling comparisons 

were performed by comparing the old HA at each distance with the pooled data from the young HA. 

Visual inspection of redcedar seedling, sapling and tree canopy data showed that the different 

canopy classes of trees followed the same pattern with distance from the HA-CH edge in both 

young and old HA. Therefore, due to the low frequency of redcedar trees in each canopy class, all 

canopy classes for redcedar taller than 1.3m were pooled within each stand. Unlike the seedling 

results, redcedar density showed a similar trend with distance from the CH edge in both young and 

old HA stands. Tests were therefore run to detect differences between the young and old HA at each 

distance. 

Non-parametric statistics were used due to the non-normal distribution of data (Quinn and 

Keough 2002). All statistical tests were done with the statistical package SAS (SAS Institute 1996). 

 

Results 

 The western hemlock stem size distribution in the young, even-aged HA stands approached 

a normal distribution and had a fairly similar number of stems per size class up to 40 cm dbh, 

followed by a steady decline up to 70 cm dbh, and a few trees in larger size classes (Figure 3a). The 
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presence in young HA of a few large hemlocks close to the maximum size observed in old HA 

suggests that these were survivors from the stand that existed prior to the 1908 windthrow event. 

Pacific silver fir stem size class distribution had peaks in the 0-10 and 30-40 cm dbh classes, and 

then declined in the same pattern as hemlock (Figure 3a). These patterns likely reflect a single 

major period of tree growth from seed or seedlings following the stand replacing wind event of 

1908, followed by more recent recruitment of additional, now suppressed, understory stems.  

 The old HA (Figure 3b) had a different skewed stem size distribution than the young HA, 

with the highest frequency of stems in the 0-10 cm dbh class and a steady decrease in number of 

stems from 10 cm to 90 cm dbh – the classical distribution of an uneven-age, self-replacing stand 

(Oliver and Larson 1996). Beyond the 90 cm dbh class, fir and hemlock density was fairly constant 

up to 140 cm dbh, the largest size of hemlock that occurred in our samples. Hemlock showed a 

higher recruitment than fir in the 0-10 cm class, but this was not reflected in numbers of trees at 

greater stem sizes,  

 Hemlock had a significantly greater basal area in the young HA than the old HA (50 vs. 

30.2 m
2 
ha

-1,
 p<0.0001), but fir had a marginally significant difference in the opposite direction. (20 

vs. 28 m
2 

ha
-1

, p=0.065), suggesting that hemlock’s relative importance declines as HA stands age. 

Redcedar basal area was higher in the young HA (1.8 m
2 

ha
-1

) than in the old HA (0.9 m
2 

ha
-1

), but 

the differences were not significant (Figure 3a, b, p=0.2).  

Hemlock and Pacific silver fir showed high levels of recruitment in the 0-10 cm class in the 

CH (Figure 3c), followed by a rapid decline in abundance of both species as size class increases. No 

hemlock or fir trees with a dbh above 90 cm occurred in the CH, unlike the young and old HA 

stands. The stem size pattern of redcedar in the CH (Figure 3d) was similar to that of fir and 

hemlock up to 50 cm dbh, but the number of stems in subsequent size classes was nearly constant 

up to very large sizes (approximately 3 m dbh, Figure 3d).  
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 Age estimates of large trees in five old HA stands were 207±40, 262±57, 300±23, 298±101, 

and 287±63 (mean ± SD, n=8 for first stand and 9 for all others). Analysis of diameter-to-age 

relationships showed no significant correlation between co-dominant and dominant tree diameters 

and ages. Because these stands may have been self-replacing and the ages taken are not necessarily 

from the oldest trees on each stand, estimates reflect mean ages of trees and not time since stand 

initiation, but confirm that these stands are older than those designated as young HA. 

Although redcedar seedling abundance in the old HA was significantly higher than in the 

young HA (p< 0.013) at 0-10 m from adjacent CH stands, there was no significant difference at 

greater distances (Figure 4a). In contrast, abundance of redcedar > 1.3 m tall was significantly 

greater in the young HA than in the old HA stands (p<0.05) within 10 m of the CH stand (Figure 

4b). The distance of redcedar seedling recruitment into the old HA was extremely short (seedlings 

found only at <10 m despite the high mean age of adult trees) and greater abundance of redcedar 

>1.3 m tall in the young than in the old HA. 

 Redcedar ages in young and old HA stands show a large range at all stem sizes (Table 1). 

Co-dominant redcedar in the young HA were as old as 235 years (mean = 128 years) at 1.3 m, 

indicating that some redcedar from the pre-storm stand survived the 1908 windstorm.  

 There appears to be little variation and no trend in salal cover and height in the young HA 

with distance from the adjacent salal-dominated CH stand, whereas both showed a decrease with 

distance into the old HA from an adjacent CH stand (Figure 5). Salal cover in the young HA was 

marginally lower than in the old HA at all distances (p<0.07). Salal height showed the same pattern, 

but differences were only significant at three of five distance classes. Mean tree crown closure was 

marginally higher (p<0.08) in the young HA (94%) than the old HA (85%), and did not appear to 

follow any clear trend with distance in either HA stand type.  
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Discussion 

If redcedar were establishing in old HA sites as predicted by the disturbance hypothesis, we 

would expect to see a moving edge of redcedar in old HA sites. This moving edge, or invasion 

front, would include saplings and young trees closer to the CH edge, as the redcedar trees contribute 

fewer seeds at further distances. The patterns of redcedar establishment that we found were contrary 

to these predictions of the disturbance hypothesis. We observed higher redcedar abundance and 

basal area in the young HA than in the old HA, and redcedar seedling recruitment into the old HA at 

only very limited distances from the CH. The differences in redcedar seedling and tree abundance 

suggest that current and historic recruitment are different in the old and young HA ecosystems but 

that these differences are incompatible with the disturbance hypothesis.  

The lack of redcedar establishment in old HA stands suggests HA and CH stands will not 

converge in the absence of disturbance. A critical but difficult question then is whether they would 

converge as a result of disturbance. As indicated by redcedar over 1.3 m tall, the disturbance 

involved in creating a young HA ecosystem appears to be a major opportunity for recruitment. 

Previous research on the establishment of redcedar seedlings support this hypothesis (Weber et al. 

2002, Daniels 2003), suggesting that disturbance would be a necessary process for causing the 

convergence of these apparently different stand types.   

  Both the CH and old HA show a large recruitment of individuals with small stems relative 

to the abundance of individuals with larger stems, a pattern that has been observed in and predicted 

for shade tolerant trees in self-replacing stands (Whittaker 1970, Oliver and Larson 1996, Kimmins 

2004). The size class distributions of old HA stands appears to be in conflict with the disturbance 

hypothesis, as we would expect a skewed distribution with the peak moved towards larger size 

classes. The single mode in tree sizes observed in the old HA (Figure 3), along with the large 
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variation in tree ages (Table 1), suggest that the larger trees in these stands are not the result of 

single, large-scale disturbances. The absence of a broad age range of redcedar in any of these old 

HA stands is inconsistent with the disturbance hypothesis, and indicates that redcedar is unable to 

establish in these older stands. 

 There was no apparent trend in redcedar seedling abundance in either the young HA or the 

old HA at 10-50 m from an adjacent CH stand, suggesting that seedlings in the study area are 

limited by the availability of suitable microsites rather than by distance to seed source (Wright et al. 

1998).  Redcedar seedling recruitment was higher in the old HA within 10 m of the adjacent CH 

stand than at comparable locations in the young HA. This may be explained by a combination of 

closeness to seed source, greater light availability and the species’ ability to reproduce vegetatively 

close to adult trees (Minore 1990). Previous studies have shown that for large seedlings and saplings 

(>1.3 m tall), redcedar is more shade tolerant than hemlock (Carter and Klinka 1992; Kobe and 

Coates 1997, Khan et al. 2000). However, Weber et al. (2003) demonstrated that in young HA 

stands, redcedar was more shade-intolerant, and its survival in the first two years after germination 

was lower than that for hemlock and fir. Moreover, redcedar germinants performed best on mineral 

soil and in forest edge conditions, suggesting that establishment is most likely on disturbed soil with 

moderate to high light conditions (Weber et al. 2003). The generally low light levels in the HA, 

coupled with few sites with exposed mineral soil, may be sufficient to limit redcedar spread by 

those seeds that do disperse into the interior of this forest type.  

The high redcedar seedling establishment in the first ten metres of the old HA is not coupled 

with a detectable increase in number of adult redcedar trees, suggesting either that redcedar 

seedlings do not survive in significant numbers, or that the process of redcedar invasion into the old 

HA is very slow. Black-tailed deer (Odocoileus hemionus Rafinesque) could also be a factor 

removing redcedar seedlings (Stroh et al. 2008), but in that case there should be no gradient in 
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seedling survival from the edge of the CH/HA transitional zone, as deer are mostly indifferent to 

edges between forested stands (Kremsater and Bunell 1992). As old HA stands appear to be self-

replacing, the timeframe required for succession to CH through gap invasion, as proposed by the 

disturbance hypothesis, cannot explain the abundance of CH ecosystems on the landscape today.  

The higher numbers of redcedar saplings and trees in the young HA within ten metres of the 

adjacent CH stand also contradicts the disturbance hypothesis, and is surprising given that the 

opposite trend was found for redcedar seedlings. The ages of sapling and lower-canopy redcedar in 

the young HA (median ages of 52 and 71 years respectively) indicate that these trees established 

soon after the last major windthrow in 1908, the differences in age between the hemlock and 

redcedar being attributable to the difference in time for the two species to reach the height of 

measurement (1.3 m – the mean basal age of redcedar seedlings 1.3 m tall was 34 years). Redcedar 

has slow early growth, especially when shaded.  Previous studies have indicated that redcedar are 

most likely to establish following large-scale disturbances (Daniels et al. 1995, Feller and Klinka 

1998; Weber et al. 2003), which is consistent with the patterns observed from our sampling. 

Another possibility is that redcedar seedlings were present as suppressed individuals in the pre-

disturbance stand understory (Antos et al. 2005) and were released following windthrow (Weger et 

al. 1993), as proposed by Messier et al. (1999) for this ecosystem. Neither of these possibilities 

supports the disturbance hypothesis.  

 Despite the lack of evidence of cedar invading old HA stands, other stand attributes did 

suggest successional changes. Salal cover was marginally higher in old HA than young HA stands 

at all distances, which may result from higher light availability (Messier 1992). Both salal height 

and cover showed a decline with distance from the CH stand edge. Nutrient availability is not 

affected by salal in a significant way (Prescott and Sajedi 2008), and therefore light is probably the 

factor limiting salal colonization of HA stands. The greater diversity of canopy heights in CH than 
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HA stands may permit significant lateral light penetration into the HA stands from the HA/CH stand 

edge. This light, in combination with the lower canopy cover in the old HA, appears to be adequate 

for supporting a higher density of salal.  

  The distinct patterns of redcedar, salal, hemlock and Pacific silver fir abundance in the 

young and old HA stands suggest that individual species are reacting to environmental conditions 

independently, and that changes in the composition of plant communities are occurring on a species 

level, not on the level of entire plant communities (Lo et al. 2010).  

 

Alternative successional hypotheses for northeastern Vancouver Island 

There are two alternative hypotheses that explain the lack of concordance between our 

observations and the disturbance hypothesis. The first is that disturbance does not play a role in 

maintaining different stand types and instead that other factors, such as an underlying environmental 

threshold, favor different species in each stand type. The most convincing argument for this 

hypothesis was made by Sajedi and colleagues, who showed significant differences in mean soil 

moisture and the depth of aerated soil between CH and HA stand types (Sajedi et al. 2012). This 

mean difference was used to infer that CH and HA stand types have different environmental 

characteristics that favor distinct combinations of tree and understory species. However, despite 

mean differences between stand types, individual HA and CH stands showed considerable overlap. 

For example, the depth of aerated soil in the CH ranged from 6-80 cm while the HA ranged from 

31-73 cm, resulting in 77% of samples in CH and 59% of samples in the HA showing the presence 

of anaerobic conditions. More generally, the standard deviation in the depth of aerated soils in both 

stand types was approximately half of the observed mean (mean CH~42 cm and mean HA~56cm, 

both sd~20cm), indicating that microsite heterogeneity in both stand types should allow 

establishment of species with a broad range of ecological requirements. Hence, even though 
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environmental differences could influence species composition in some parts of some stands, such 

results suggest that environmental differences are not consistent enough to be solely responsible for 

the clear patterns of stand differentiation that we observed.  

The second hypothesis is that disturbance is indeed an important determinant of stand 

composition but that it plays a fundamentally different role than that proposed in the original 

disturbance hypothesis. We develop this hypothesis here by proposing a multiple pathways model 

of succession in which several stable states could be reached (Figure 6). This multiple pathway, 

dynamic model integrates a non-equilibrium view of forests that is now widely accepted in the 

ecological literature (Campbell et al. 2009). Examples of multiple pathway models, such as the one 

introduced here, are among the considerations prompting scientists to request an update of the BEC 

system (Haeussler 2011).  

Our multiple-pathway model starts with a stand-replacing windthrow in a young/mature HA 

stand. Succession can then follow three different pathways, depending on the establishment of 

redcedar immediately following disturbance. Thus redcedar is predicted to be a keystone species in 

these ecosystems. Redcedar establishment can be influenced by factors such as soil moisture, gap 

size, light availability, and deer browsing. Pathways 1 and 3 are predicted to reach a stable state in 

the absence of disturbance, which explains the abundance of both ecosystem types on the landscape. 

On the other hand, pathway 2 reaches an unstable community that could last for centuries but would 

eventually revert to one of the other two pathways, explaining the scarcity of this stand type at 

landscape level. 

We propose a critical threshold level of redcedar abundance (arbitrarily marked as 15% 

basal area in Fig. 6, based on our field observations), which differentiates pathways 2 and 3 (HA(c) 

versus CH).  Redcedar seedling recruitment appears to be limited unless a significant proportion of 

the surrounding forest is composed of mature redcedar to serve as a seed source, thus the critical 
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threshold abundance in the model. Beyond this critical abundance, redcedar should be able to 

reproduce in the understory, initiating the transition to a CH stand. The adult redcedar in these 

transition stands would also be more resistant to windthrow, and thus persist through wind events 

that thin the other species. The mechanism that makes the abundance of redcedar important is 

unclear, but the relative shade intolerance of redcedar germinants suggests that redcedar has a 

specific regeneration niche which limits its ability to establish in HA stands.  

Redcedar seedling growth relative to that of hemlock and fir has not been tested in the 

intermediate light conditions that are believed to exist in the old HA, and until recently there had 

been no investigation of redcedar regeneration in such stands (but see Weber et al. 2003, 2005). It 

also appears that the lack of arbuscular mycorrhizal symbionts in HA stands prevents the redcedar 

germinants from gaining sufficient nutrients to develop shade tolerant secondary foliage, a limiting 

factor that would be eliminated once a critical threshold of adult cedar trees establish  (Weber et al. 

2005). Redcedar competitiveness in wet soils and capacity to change site conditions could also be 

related to its capability of taking nitrate and calcium from the soil (D’Amore et al. 2009), but the 

effects of these changes has not been explored in this system. 

In our model, disturbance (large-scale windthrow) may allow for changes in species 

composition, providing a higher probability of transition to a CH ecosystem. If such disturbances 

occur repeatedly over time, they would create a non-equilibrium distribution of stands and reduce 

the prevalence of the first pathway on the landscape. In other words, the frequency of large-scale 

disturbances is predicted to drive the relative abundance of each ecosystem type. However, unlike 

many successional models, infrequent disturbances can slow the loss of this first pathway from the 

landscape to such a degree that long-term climate change becomes an important determinant of 

ecosystem abundance. Since glaciation, northeastern Vancouver Island has had changes in climate 

and consequently in biological communities at an average interval of ~2800 years, with the current 
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bioclimatic era beginning 3000 ybp (Hebda 1995). Thus, with an estimated windthrow return time 

of 250 years (Wong et al. 2003) there would be about ten disturbance events in a single climatic era. 

Because redcedar only established at the beginning of the current era (Hebda 1995), this relatively 

low number of windthrow events would lead to a lower representation of the third pathway in 

Figure 6, as CH stands would only be initiated following windthrow. This idea runs contrary to 

much of the successional literature, which tends to examine allogenic and autogenic succession 

within a given climate, not as they relate to changing climate. With long-lived species like redcedar, 

hemlock and fir that could reach thousand-year-old (similar to the time scale of climatic changes), 

and changes in global climate, successional theories incorporating species composition and species 

features relative to climate change will become increasingly important (Lo et al. 2010). In such 

circumstances, concepts such as “climax” or “ecological stability” may need to be redefined. 

Our multiple pathway model is designed to predict successional trends by incorporating the 

life history characteristics of the main species involved and the stochasticity that is inherent with 

large-scale disturbances. We hypothesize that the transition of HA to CH ecosystems is based on the 

creation of a redcedar regeneration niche in HA stands immediately following disturbance (Daniels 

et al. 1995, Feller and Klinka 1998, Weber et al. 2003). With appropriate conditions, such as high 

redcedar seed production, favourable winds, and predisposition towards wetter conditions, 

significant amounts of redcedar will establish. This combination of events may be highly variable: 

redcedar only tend to produce large seed crops every four or more years (Gashwiler 1969), and a 

disturbance event (estimated to occur on average every 250 years) would need to coincide with a 

reasonably large seed crop to initiate large-scale redcedar establishment. Survival may also depend 

on other biotic factors such as herbivory by deer populations, and the number of competing hemlock 

and fir seedlings establishing after disturbance, both of which may be variable (e.g., Antos et al. 

2005). Nonetheless, the presence of some young HA stands on the landscape today with a small but 
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significant component of redcedar in the canopy (Gilbert, personal obs.) suggests that these 

transitions are ongoing. Although this variability makes the hypothesis difficult to test directly, it is 

amenable to tests for proposed mechanisms (i.e. regeneration rates and type of disturbance initiating 

CH or HA forests; threshold of redcedar abundance to switch between pathways 2 and 3; and the 

role of deer herbivory in directing the succession process towards each of the proposed pathways).  

The reliance of our model on stochastic events (disturbance and relative seed abundance) 

suggests that history is a key determinant of tree species composition in young stands. Nonetheless, 

life history characteristics are important on a landscape level, as resistance of redcedar  to 

windthrow appears to withstand disturbance events that negatively impact other species, allowing 

them to reach on average longer live spans than hemlock or Pacific silver fir (although these species 

too occasionally reach >900 years of age; Parish and Antos 2004). Likewise, the high shade 

tolerance of fir appears to cause a long-term shift from hemlock to Pacific silver fir dominance in 

HA stands not disturbed by wind.  The establishment of salal appears to be based solely on light 

availability which increased in all stands as they age (Messier 1992).   

 

Conclusions 

We have shown that the original disturbance hypothesis cannot explain the trends in species 

establishment currently seen on the landscape in northern Vancouver Island. According to this 

hypothesis, CH should only develop in the absence of disturbance. However, our data suggest that a 

more complex succession model could be compatible with site differences by showing that the 

transition from HA to CH is not currently occurring in the absence of stand-replacing disturbance. 

The multiple pathways hypothesis of succession is consistent with our findings, and suggests that 

landscape-level differences in stand types may decrease with disturbance instead of being 

maintained by disturbance. These different predictions for the effects of disturbance highlight the 
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general lack of understanding of the processes that lead to current species distributions at these fine 

spatial scales. Much of conservation and forestry planning is based on hypotheses about these 

processes, and our work underscores the need to test these hypotheses directly.  
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Table 1:  Age (in years, estimated as the median of the sample) at breast height (trees) or root collar 

(seedlings) of redcedar in the HA (years). Crown class types (sensu Oliver and Larson 1996): 

Codominant = A2 layer, main canopy trees. Intermediate = A3 layer, lower canopy trees >10 m tall. 

Saplings= >1.3 m<10 m tall. Sedlings <1.3 m tall. 

 

Forest type Crown class
 

Median age (±SD) Minimum age Maximum age N 

Old HA Codominant 168.5±1.5 167 170 2 

Old HA Intermediate 123.0±0.0 - - 1 

Old HA Saplings 26.2±8.5 19 42 5 

Old HA Seedlings 21.7±11.5 4 41 32 

Young HA Codominant 127.9±48.4 68 235 8 

Young HA Intermediate 70.7±9.9 59 99 10 

Young HA Saplings 52.0±10.7 34 77 14 

Young HA Seedlings 14.2±4.8 8 24 5 
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List of Figures. 

Figure 1. Linear model of forest succesion on zonal sites on northern Vancouver Island, ruled by the 

frequency and intensity of wind disturbance. Young HA is assumed to approximate the stem 

exclusion phase, HA(C) the understory re-initiation stage with redcedar seedling recruitment, and 

CH/HA the old growth phase of HA stand development, transitioning to CH. (Elaborated upon from 

Presscott and Weetman 1994). 

 

Figure 2. Transect establishment in pairs of young HA-old CH stands (5 stands) and pairs of old 

HA-old CH stands (8 stands). Stands can have 3 to 5 transects, depending on the stand length 

parallel to the transition zone (250 – 350 m). 

 

Figure 3. Stem size distributions (cm dbh) of trees in CH and both young and old HA stands on 

north-eastern Vancouver Island. Values represent means and standard errors of the means. A) 

Young HA. B) Old HA. C) CH for western hemlock and amabilis fir. D) CH for western redcedar. 

 

Figure 4. A) Redcedar seedling per ha, and B) Number of redcedar >1.3 m tall per ha with distance 

into HA stands from the HA-CH edge.”*” denotes a significant difference (α = 0.10) between young 

and old HA at a given distance.  

 

Figure 5. A) Percentage salal and tree crown closure with distance from an HA/CH edge. B) Salal 

height with distance from an HA-CH edge.  

 

Figure 6. Multiple pathway hypothesis of succession on zonal sites on northeastern Vancouver 

Island. Commencing with stand-replacing wind disturbance of a young or mature HA stand, if there 

is no redcedar recruitment and/or survival (Pathway 1), the stand can follow a pathway back to 

young, mature and (in the continued absence of disturbance) old HA. If redcedar recruits 

successfully but forms <15% of the basal area of the stand (Pathway 2), young and then mature 

HA(c) may develop but greater advance regeneration and seed source increase the probability of 

developing towards CH with subsequent disturbance. If >15% of the basal area is redcedar 

(Pathway 3), the stand may develop into young CH, and this may develop into mature and old CH. 

Windthrow may recycle CH within these categories, but once a site is a CH stand it is unlikely to 

return to HA through natural disturbance.   
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