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Abstract 

Twenty-five elite varieties of wheat (Triticum aestivum L.) were grown, under four different 

nitrogen levels, at Rothamsted Research, southern England in 2013/14 and 2014/15 

growing seasons. The two aims of this work were to investigate the variability of Nitrogen 

Uptake Efficiency (NUpE) and other agronomic traits and evaluate a broad range of 

Spectral Reflectance Indices (SRI) as potential screening tools to predict grain yield among 

a wide range of wheat genotypes and N levels. 

The crop variables biomass, shoot N concentration, shoot N yield, NUpE, ears per m2, 

chlorophyll, height and Leaf Area Index (LAI) were affected by the experimental factor N-

level (N), genotype (G) and year (Y). N level had the greatest effect on all traits studied. 

Year was the second factor in importance and had a special importance on NUpE and ears 

m-2. Genotype generally had the least effect of the three factors, but there were significant 

varietal differences in all crop variables except shoot N yield and NUpE. Only the 2-way 

interaction N x Y were statistically significant for all variables. The interaction G x N was 

significant only in the case of chlorophyll and height. Even with this lack of genetic 

variability interesting trends in NUpE could be seen and some varieties with high NUpE at 

low N input were identified.  

Remote sensing measurements may be a useful tool for quantifying crop development and 

yield in wheat. Reflectance from the vegetation at different growth stages was measured 

and 21 SRI were calculated. Anthesis was the most appropriate stage for yield assessment. 

Normalized difference red edge (NDRE), related to the nitrogen status of the crop, 

modified spectral ratio (MSR), related to the chlorophyll concentration, and photochemical 

reflectance index (PRI), related to radiation use efficiency, were the best SRI to predict the 

grain yield , not only at anthesis but also before and after this point. A model using these 

three indices was made. Validation with the second year data showed that grain yield 

predicted by the model could account for 96% variation in the observed grain yield of 

wheat. The normalized mean square error (nRMSE) was less than 20%. 
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Resumen 

Se crecieron veinticinco variedades de trigo (Triticum aestivum L.) bajo cuatro niveles 

diferentes de nitrógeno en la estación experimental Rothamsted Research, en el sur-este 

de Inglaterra, durante las temporadas 2013/14 y 2014 /15. Los dos objetivos del trabajo 

fueron investigar la variabilidad en la eficiencia en la toma de nitrógeno (NUpE) así como 

otros aspectos agronómicos y evaluar un amplio rango de índices de reflectancia espectral 

(SRI) como herramienta potencial para predecir la cosecha entre un amplio rango de  

genotipos de trigo y niveles de nitrógeno. 

los factores experimentales nitrógeno (N), genotipo (G) y año (Y) afectaron a las variables 

biomasa, concentración de nitrógeno en la planta, toma de nitrógeno por la planta, NUpE, 

nº de espigas m-2, clorofila, altura e índice de área foliar (LAI). La cantidad de nitrógeno 

aplicada como fertilizante tuvo el mayor efecto en todas las variables. La variable año fue 

la segunda en importancia, en especial en NUpE y el número de espigas m-2. El genotipo 

fue, de las tres, la variable con menos efecto. Solo la interacción G x Y fue estadísticamente 

significativa para todas las variable. La interacción G x N fue solo significativa en el caso de 

la clorofila y la altura. Incluso con esta escasa variabilidad genética se pudieron apreciar 

tendencias interesantes en NUpE y algunas variedades con alto NUpE en condiciones de 

bajo N fueron identificadas.   

El control remoto puede ser una herramienta útil para cuantificar el desarrollo y la cosecha 

del trigo. La reflectancia de la vegetación fue medida durante varios estados vegetativos y 

21 SRI fueron calculados. Antesis fue el momento más apropiado para la determinación de 

la cosecha. Normalized difference red edge (NDRE), relacionado con el estado nitrogenado 

del cultivo, modified spectral ratio (MSR), relacionado con la concentración de clorofila, y 

photochemical reflectance index (PRI), relacionado con el uso eficiente de la radiación, 

fueron los mejores índices para predecir la futura cosecha. Un modelo usando estos tres 

índices fue hecho. La validación con los datos del segundo año mostró que este modelo 

pudo explicar el 96% de la variación observada en la cosecha de grano.  
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1. Introduction 

 

1.1 Nitrogen Cycle and Agriculture 

Humans may have produced the largest impact on the nitrogen cycle since the major 

pathways of the modern cycle originated 2,5 billion years ago (Canfield et al., 2010). This 

change is owing mainly to the developing industrial processes to reduce N2 to NH4
+ (N 

fixation), by implementing new agricultural practices that boost crop yields, and also 

because human activity mobilizes N from long term storage pools through fossil fuel 

combustion and land conversion (Vitousek et al., 1997). According to Canfield et al. (2010) 

anthropogenic sources provide around 45% of the total fixed nitrogen produced annually 

on Earth.  

 

There is compelling evidence that human alteration of the N cycle is negatively affecting 

human and ecosystem health (increase of the potent greenhouse gas nitrous oxide, 

eutrophication of fresh water and coastal zones, acidification of soils and waters…). As 

demands for food and energy continue to increase, both the amount of reactive nitrogen 

(Nr)1 created and the magnitude of the consequences will also increase. The Nr creation 

increased from ~15 Tg N yr−1 in 1860 to 187 Tg N yr−1 in 2005 (Galloway et al., 2008). 

 

Nevertheless, Galloway et al. (2008) reported that perhaps 40% of the world’s dietary 

protein now comes from synthetic fertilizers, and estimates suggest that at least 2 billion 

people would not be alive today without the modern manifestations of Haber-Bosch 

process. 

 

To mitigate the problem of reactive nitrogen, Galloway et al. (2008) propose to decrease 

Nr creation by about 15 Tg N yr−1 increase nitrogen-uptake efficiency of crops. In addition, 

Canfield et al. (2010) among others suggest (i) optimizing the timing and amounts of 

fertilizer applied to increase the efficiency of their use by crops, (ii) breeding varieties for 

improved nitrogen use efficiency. 

 

These three proposes are the main aid of the present work. So this work could be useful to 

seek ways to increase food production while minimizing nutrient in an important crop like 

wheat, which together with maize and rice provides more than 60% of human dietary 

calories either as cereals for direct human consumption or embodied in livestock products 

produced from animals fed with feed grains and their by-products 

(www.fao.org/statistics). 

 

 

 

                                                           
1 The term reactive nitrogen (Nr) includes all biologically active, photochemically reactive, and radiatively active N 
compounds in the atmosphere and biosphere of Earth. Thus, Nr includes inorganic reduced forms of N (e.g., NH3 and 
NH4 +), inorganic oxidized forms (e.g., NOx, HNO3, N2O, and NO3 –), and organic compounds (e.g., urea, amines, and 
proteins), by contrast to unreactive N2. 

http://www.fao.org/statistics
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1.2 N fertilizer and Cereals 

 

Intensive agriculture systems require large quantities of fixed N, as a fertilizer. N fertilizer is 

a relative inexpensive commodity, and a decision to apply N fertilizer is often the least 

expensive and most effective option to increase yield (Vitousek et al., 1997).  

From 1960 to 2000, the use of nitrogen fertilizers increased by ~800% (Fixen and West, 

2002), with cereals accounting for about 60% of current fertilizer use (Raun and Johnson, 

1999).  For these crops, the nitrogen use efficiency (NUE) is typically below 40%. Raun and 

Johnson (1999) estimated the global cereal grain NUE at 33%, meaning that most applied 

fertilizer either washes out of the root zone or is lost to the atmosphere by denitrification 

before it is assimilated into biomass (Canfield et al., 2010). 

As a curiosity Raun and Johnson, (1999) noted that a 1% increase in the efficiency of N use 

for cereal production worldwide would lead to a $235 million savings in N fertilizer costs 

per year (data for 1999). 

Smil (1999) estimates total N input to the world’s cropland at 169 Tg N yr–1, 187 Tg N in 

2005 (Galloway et al., 2008). Inorganic N fertilizer, biological N fixation from legumes and 

other N-fixing organisms, atmospheric deposition, animal manures, and crop residues 

account for 46%, 20%, 12%, 11%, and 7%, respectively, of this total (Cassman et al., 2002).  

In 2013, only inorganic N fertilizer accounted for 119.734.107 Mg (120 Tg) in the world 

(FAO, 2015). According with Raun and Johnson (1999) 71.840.464 Mg (60%) of them were 

used in cereal crops. The total amount of N fertilizer used in the world is increasing every 

year, not in developed countries where the maximum has been reached about 30 years 

ago, but in the developing countries. The growth of human population ensures that 

industrial N fixation will continue at high rates for decades. 

Only wheat could account for more than 20% of the total inorganic N fertilizer used in the 

world (own estimate). In terms of energy (kcal) wheat harvested in 2013, 715.909.259 t 

(FAO, 2015), could feed the half of the world population and contain ~15.000.000 Mg of N, 

but a great part of this grain will feed livestock. 

 

1.3 Nitrogen Use Efficiency (NUE) 

As we said before, only 33% of the total N applied for cereal production in the world is 

removed in the grain. If we applied this to all crops, in 2013 the N fertilizer loss as N2 or 

reactive nitrogen (N2O, NOx, NH3, NO3
-…) accounted 80.221.852 Mg, with their 

environmental cost, and in terms of money represented a $15,9 billion annual loss in N 

fertilizer in 1999 (Raun and Johnson, 1999), or more than $20 billion in 2002 (Raun et al., 

2002). 

This data emphasize the need to improve Nitrogen Use Efficiency (NUE). 
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During the second half of the 20th century the wheat yields have increased worldwide from 

1 to 3 t/ha (Fig 1) in great part thanks to the ‘green revolution’ which was based on 

improving both genetic potential and in supplying the correct conditions, especially 

nutrients, in the correct amount and in the appropriate time (Lawlor, 2001).  In the UK, like 

in other developed countries, increases were greatest during the 1970s and the first half of 

1980s (Fig 1) due, as we say before, to the introduction of short straw cultivars and the 

increase of N fertilizer applications as well as the use of herbicides and fungicides.  The 

maximum in N fertilizer doses was reached during the 1980s. So the recent yield increases 

with stable N fertilizer imply a higher NUE.  

 

 

 

In wheat nitrogen is required for canopy production and the canopy determines the 

photosynthetic capacity for yield production so this result in increased yield as nitrogen is 

applied.  But from a determinate amount of nitrogen, this amount depends of the cultivar 

and environment, the yield is constant. Hawkesford (2011) illustrated it using Broadbalk, 

the world´s oldest continually running agricultural experiment, at Rothamsted (UK). He 

showed as the yield increased with increase N fertilizer doses until a maximum was 

reached. In this phase some of the nitrogen is still be taken up and converted into protein. 

Figure 1. Wheat area harvested, production and yield since 1961 in the 

world and United Kingdom. Data extracted from FAO (2015) 
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However the amount of nitrogen leached increased creating a serious source of pollutant. 

So the NUE (calculated as yield/N input) decreased with the increasing N input.  

Now we can define Nitrogen Use Efficiency and their different parts. NUE is usually defined 

as the yield of grain relative to the amount of nitrogen available to the crop from all 

sources, including fertiliser, mineralisation in the soil and atmospheric deposition. NUE is 

the product of two main terms: nitrogen uptake efficiency (NUpE) and nitrogen utilisation 

efficiency (NUtE)(Moll et al., 1982) (Fig. 2 ) 

When N is limiting is necessary to optimize N-

uptake from the dilute solution. Nitrogen 

uptake efficiency (NUpE) may be defined as the 

amount of N taken up by the crop as a fraction 

of the amount available to the crop from all 

sources. This is a root related trait and reflects 

the efficiency of root structure and function in 

capturing applied nutrients and nutrients within 

the soil.  

When N-supply is such that the existing yield 

potential is reached, the only way of increasing 

production is to improve the efficiency with 

which N is used in metabolism (Lawlor, 2001). 

Nitrogen utilisation efficiency (NUtE) for grain is 

defined as grain yield divided by the amount of 

N taken up. Physiologically this is due to the 

photosynthetic efficiency of the canopy and the 

ability to produce grain yield as a function of the 

photosynthate fixed (Hawkesford, 2013). 

In this work we will work with NUpE and its 

variation in function of the N fertiliser applied 

and the cultivar. So we will speak more about 

this trait ahead. 

 

1.4 Wheat nitrogen uptake and assimilation 

To understand the parameters described before is essential to comprehend the crop N 

cycle better. 

As in every ecosystem, in an intensive wheat system we have inputs and outputs of 

nitrogen connected by intermediate fluxes. The Figure 3 shows the major inputs, outputs 

and intermediate fluxes. 

Figure 2. Illustration of nutrient use efficiency 

parameters exemplified by NUE in wheat. Key 

process contributing to the NUE trait: nitrogen 

uptake efficiency, NUpE; nitrogen utilisation 

efficiency, NUtE. Modified from Hawkesford (2011) 
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In a highly productive intensive wheat system the major input are from fertilizers, this 

account for 180-200 kg ha-1 as average in UK. Also is important the N provided by 

mineralization of organic matter, which is highly variable and mainly by factors like 

temperature, humidity, pH and aeration of the soil. Finally, additional N for the crop is 

provided by aerial deposition, wet or dry deposition. Goulding et al. (1998) showed in 

Broadbalk at Rothamsted, UK, that the wet deposition was  4 and 5 kg N ha-1 yr-1 of nitrate 

and ammonium respectively and a total deposition of all measured N species, wet and dry, 

to winter cereals of 45 kg N ha-1 yr-1, 79% as dry deposition. Of this total, 5% is leached, 

12% is denitrified, 30% immobilized in the soil organic matter and 53% taken off in the 

crop. 

 

The first step is the uptake of this nitrogen in the soil by the roots. In wheat, most N is 

absorbed as nitrate (NO3
-) but also as ammonium (NH4

+) and organic-N in form of amino 

acids. The uptake of N depends on the concentration of N in the soil solution, on the 

volume of soil exploited by roots and on the efficiency of roots in absorbing this N (Lawlor, 

2001). Therefore a high efficient N uptake requires a good root function both, in terms of 

architecture and activity. This will allow the uptake of N efficiently at a wide range of 

external concentrations (Hawkesford, 2011). 

 

Transporters are involved within the plant to optimize translocation or storage of N, in 

roots, shoots and storage organs. They operate with high affinities for their substrates and 

are often under strong metabolic control to avoid imbalances of nutrient accumulation and 

to optimize uptake with growth rates (Hawkesford, 2011). Two families of NO3
- 

transporters have been characterized, the low affinity type and the high affinity type, the 

use of one or another depends of the NO3
- concentration in the soil (Daniel-Vedele et al., 

1998). 

 

Figure 3. Idealized major fluxes of N in a high yielding wheat crop. Width of arrow is a 
qualitative indication of size of flux. From Hawkesford, (2013). 
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Once the NO3
- is within the plant this has to be reduced to NH4

+ by nitrate and nitrite 

reductase using electrons from photosynthetic electron transport or respiration, which in 

wheat occur more in leaves than in roots. This NH4
+ reduced is converted by the GS/GOGAT 

enzyme reaction, and then incorporated in ‘carbon-skeletons’, to produce glutamine and 

asparagine, two compounds for N transport and storage. Once assimilated into glutamine 

and asparagine, N is incorporated into other amino acids via transamination reactions. 

 

Assimilation of nitrogen in plants requires reducing power, ATP and C-skeletons. Reducing 

power and ATP can be delivered by photosynthesis or by glycolysis and respiration. C-

skeletons for the GS/GOGAT reaction are generated also by photosynthesis (Azcón-Bieto y 

Talón, 2008). So, there is close interaction in the very earliest phases of N and C 

metabolism, both using the light energy, with some 10% of the electron flux in 

photosynthesizing leaves used in NO3
- reduction (Lawlor, 2001). 

NO3
- reduction and the GS/GOGAT cycle are highly regulated by several signals, positively 

by  NO3
- concentration, light, C-skeletons, high C/N ratio…, and negatively mainly by high 

levels of N reduced (NH4
+, amino acids…). 

 

 

1.5 Nitrogen movement in wheat: Anthesis as key moment 

In wheat, and in other plants, the plant life cycle can be roughly divided into two main 

phases with regard to N management. 

During the pre-anthesis phase of growth, absorbed nitrate and ammonium are assimilated 

by the crop and used to build up the photosynthetic tissues containing large quantities of 

photosynthetic proteins, a prerequisite for yield generation, and the structural proteins in 

supporting tissues and vascular connections of the shoot system (Pask et al., 2012). 

Notably, the enzyme Rubisco (ribulose 1,5-bisphosphate carboxylase) alone can represent 

up to 50% of the total soluble leaf protein content in C3 species (Mae et al., 1983). This 

formation of leaves, photosynthetic tissue, and tillers, structural tissue, during the early 

growth will determine the later capacity for grain formation and assimilate production to 

fill them. 

After anthesis and during grain filling, any further N taken up is likely to be allocated 

directly to the grain. However, much of the grain N will be from re-distribution from the 

canopy, thus ensuring an overall optimal usage of N taken up during the pre-anthesis 

phase (Hawkesford, 2013). So, pre-anthesis stored nitrogen in wheat is important because 

grain filling greatly depends on the remobilization of pre-anthesis nitrogen. 

The contribution of leaf N remobilization to wheat grain N content is cultivar dependent, 

varying from 50 to 90 % (Masclaux et al., 2001). This remobilization of N depends on both 

environmental and genotypic factors. Environmental factors include N fertilization (delays 

onset of senescence and increases amount of N for remobilization), disease pressure, 

drought conditions (both enhancing senescence and decreasing NUE) (Barbottin et al., 

http://jxb.oxfordjournals.org/content/58/9/2369.full#ref-103
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887065/#MCQ028C77
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2005) and limited nitrate supplies (enhancing N remobilization in Arabidopsis) (Lemaître et 

al., 2008). 

As conclusion of this part, we can state that nitrogen uptake is one of the most important 

factors in nitrogen nutrition. A high Nitrogen Uptake Efficiency implies that the plant can 

uptake N more efficiently from the soil and allocate most of it into the grain. Such plants 

would minimize loss of N from the soil and make more economic use of absorbed N.  

On the other hand, anthesis is a key moment in nitrogen nutrition, grain N content in 

wheat depends greatly on uptake of soil N prior to flowering. This N uptake prior to 

anthesis and stored in vegetative tissues is remobilized after anthesis in the grain.  

 

1.6 Grain yield estimation using remote sensing methods 

 

Estimation of cereal-crop yield is considered a priority in most research programs 

(Steinmetz et al., 1990) due to the relevance of food grain to world agricultural production. 

Non-destructive, real-time and accurate prediction of crop yield over large areas is critical 

for the formulation of national food policy, price control, and foreign grain trade (Jiang et 

al., 1999). Grain quality has received extensive interest from the government, enterprises, 

and consumers because of its increasing demand in recent years. Crop monitoring and 

yield forecasting can be done with models that range from statistical to mechanistic with a 

high number of input variables. However, under nonoptimal growing conditions, estimates 

of crop growth and yield using crop growth models often are inaccurate (Clevers, 1997). 

 

Remote sensing has been used for agricultural monitoring for more than three decades. 

Due to their timely and repetitive coverage, the remote sensing data have been recognized 

as a valuable tool for yield forecasting (Becker-Reshef et al. 2010). Inside remote sensing, 

Spectral reflectance provide information that may be used to determine a wide range of 

parameters, these may include an in-season estimation of grain yield (Aparicio et al,. 

2000). As soon as 1980 Tucker et al. used ground-based spectral radiometers to identify 

the relationship between, the most used spectral reflectance index, normalized difference 

vegetation index (NDVI) and crop yield. Final grain yields were found to be highly 

correlated with NDVI. 

 

Spectral reflectance of a crop canopy is obtained from measurements of reflected 

radiation. The ability to detect reflected radiation is derived from the fact that when a 

single light wave collides with a material it is restricted to three physical processes. It can 

be reflected from the surface, absorbed by the object, or transmitted through the object 

(Reynolds et al., 2012). Spectral reflectance from leaves at different wavelengths gives a 

unique spectral signature as it is influenced by the optical properties of the plant. Pigments 

in leaves absorb light strongly in the photosynthetically active radiation (PAR) region of the 

electromagnetic spectrum, but not in the NIR (750 nm–2500 nm) region (Knipling, 1970). 

This generates an absorption contrast between these two spectral regions, which can be 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887065/#MCQ028C61
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887065/#MCQ028C61
http://www.sciencedirect.com/science/article/pii/S0378429014001208#bib0075
http://www.sciencedirect.com/science/article/pii/S0378429014001208#bib0075
http://www.sciencedirect.com/science/article/pii/S0378429014001208#bib0125


Introduction                                                                                                      David Soba Hidalgo 

14 
 

represented by various indices (Reynolds et al., 2012). This gap between the two regions 

can be affected if the plant is suffering a stress, such as N stress, and this response to stress 

can be measured using spectral reflectance indices. 

Spectral reflectance indices are numerical indicators that use either specific wavelengths, 

or bands of the electromagnetic spectrum, to quantitatively relate changes in reflectance 

spectra to changes in physiological variables. Indices have the advantage of summarizing a 

large amount of information into a few numerical values, which may be evaluated 

simultaneously in each sample. In this context, the spectral reflectance indices have the 

potential to provide a non-destructive and fast in season estimate of grain yield.  
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2. Objectives 

This study had two main objectives. These objectives are: 

a)  To investigate the variability of Nitrogen Uptake Efficiency (NUpE) and 

other agronomic traits among a wide range of winter wheat genotypes and 

N levels. 

b)  Evaluate a broad range of spectral reflectance indices as potential 

screening tools to predict grain yield in winter wheat.  

Specifics objectives of b) section are: 

i) To evaluate the correlation of existing spectral reflectance indices 

with yield of winter wheat genotypes under different nitrogen 

levels. 

ii) To determine the best growth stage to apply the spectral 

reflectance tools. 

iii) To identify the most appropriate indices and make a model to 

predict wheat yield with them. 
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3. Materials and Methods 

 

3.1 Site 

A two year (2013-2014 and 2014-2015) field trail was conducted at Rothamsted Research 

(Harpenden, southern UK). The soil is a well-drained, flinty silt clay loam (25% clay) 

overlying clay with flints (50% clay). This soil is designate as “Aquic paleudalf” in the USDA 

system and “Chromic Luvisol” in the FAO system.  

 

3.2 Weather conditions 

Weather data from tillering to anthesis in 2014 and 2015 in comparison with the 30 year 

mean values (1981-2010) are shown in Table 1. In 2014, sunshine and minimum and 

maximum temperatures were higher than normal, whereas precipitation was lower. So, 

this particular trend of the growing season (sunny and warm) was the principal cause of 

the advance in the anthesis data and the relative good yield. In 2015, sunshine was higher 

than normal, whereas precipitation was lower. Maximum and minimum temperatures 

were normal between tillering and anthesis.  

 

Table 1. Monthly sunshine, temperatures and rainfall from tillering to anthesis at Rothamsted in 2014 and 

2015. 30 year averages (1981-2010) are shown in brackets. 

    Sunshine Mean Temperatures Rainfall 

 
  

Maximum Minimum Total 

    Hours ( ) 
o
C ( ) 

o
C ( ) mm ( ) 

2
0

1
4

 

March 180.8 (+65.91) 12.7 (+2.84) 3.4 (+0.73) 28.2 (-22.57) 

April 162.7 (+1.51) 14.8 (+2.19) 6.1 (+2.12) 31.5 (-23.54) 

May 173.6 (-20.98) 16.5 (+0.41) 8.3 (+1.39) 82.8 (+28.14) 

June 227.7 (+29.53) 20.2 (+1.01) 10.6 (+0.88) 30.5 (-22.77) 

 

         

2
0

1
5

 

March 158.9 (+43.99) 10.2 (+0.27) 2.9 (+0.27) 26.1 (-24.67) 

April 231.7 (+70.50) 14.5 (+1.85) 4.0 (-0.04) 31.0 (-24.05) 

May 203.4 (+8.79) 15.5 (-0.53) 7.0 (+0.12) 68.4 (+13.75) 

June  227.9 (+29.77)   19.5 (+0.33)  9.2  (-0.58)  26.7  (-26.55)  

 

3.3 Soil N-min measurements 

Soil cores were taken to 90 cm depth, before fertilizer was applied, for the analysis of 

mineral-N (NO3-N and NH4-N). The cores were taken with a ‘Hydro Soil Sampler’ fitted with 

a 3 cm diameter semi-cylindrical auger. Duplicate cores were taken from random positions 

across the field. 

The cores were split into three depth sections, 0–30, 30–60 and 60–90cm and the mineral-

N extracted by shaking 40 g of fresh soil with 100 ml of 2M KCl for 2 h. The slurry was 

allowed to settle for 30 min and then filtered. The solution was analysed for nitrate-N and 

ammonium-N with a ‘Skalar San Plus Analyser’. Concentrations in units of ppm in the 
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extracted solution were converted to field units of kg-N/ha by assuming a standard value 

of 1.5 g/cm3 for soil bulk density  

Soils samples were found to have 24.65 kg ha-1 (2013) and 36.50 kg ha-1 (2014) mineral N 

(NO3-N + NH4-N) in the upper 90 cm profile (Table 2).  

Table 2. Soil nitrate-N and ammonium-N contents (kg ha
-1

) at sowing within 0-30, 30-60, 60-90 cm soil depth in 

2013-14 and 2014-15 growing seasons. 

Year N Soil depth (cm) Total 

    0-30 30-60 60-90 NO3+NH4 

2014 Nitrate-N 3.48 3.08 2.83 

 

 

Amonium-N 8.39 4.82 2.05 24.65 

2015 Nitrate-N 8.61 3.91 1.88 

   Amonium-N 11.98  7.64  3.48     36.50 

3.4 Varieties  

The experiment was conducted with 25 wheat varieties in 2013-2014 and with 25 wheat 

varieties in 2014-2015. Results presented here are from 23 varieties common to both 

years, two varieties were different each year. 

Table 3. Wheat varieties common to both years, years of release, country (GBR-Great Britain, FRA-France, NDL-

Nederland) and parents. 

Variety  Code Listed Country Parents 

Avalon   AV 1980 GBR Maris-Bilbo x Maris Plougham 

Bonham BO 2013 GBR Cordiale x postland 

Cadenza CA 1992 GBR Tonic x Axona 

Claire CL 1999 GBR Flame x Wasp 

Cocoon CC 2010 GBR Wizard x Xi-19 

Conqueror CN 2009 GBR Robigus x Equinox 

Cordiale CO 2007 GBR (Reaper x Cadenza) x Malacca 

Crusoe CR 2011 GBR Cordiale x Gulliver 

Evoke EV 2013 GBR Cordiale x Timaru 

Gallant GA 2010 GBR (Malacca x Charger) x Xi-19 

Hereford HF 2007 DNK Solist x Deben 

Hereward HE 1989 GBR Normant x Disponent 

Istabraq IS 2004 GBR Consont x Claire 

Malacca MA 1997 GBR (Riband x Rendezvous) x Apostle 

Maris Widgeon MW 1964 GBR Holfast x Capelle-Desprez 

Mercia  ME 1984 GBR (Talent x Virtue) x Flanders 

Paragon PA 1998 GBR Csw-1724-19-5-68 x (Tonic x Axona) 

Riband RI 1987 GBR Norman x TW-275 

Robigus RO 2005 GBR Z836 x 1366 

Stigg ST 2010 GBR (Biscay x LW-96-2939) x Tanker 

Solstice SL 1987 FRA IENA x HN-35 

Soissons SS 2002 NDL Vivant x Rialto 

Xi19   XI 2002 NDL (Cadenza x Rialto) x Cadenza 
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 (Table 3). The varieties were representative cultivars in UK in recent years. The old variety 

Maris Widgeon were chosen to see how it would perform at low N level compared with 

modern cultivars. Maris Widgeon was registered in 1964 at the time when chemical 

fertilizers were not commonly used and it could be assumed that it would do well at low N 

level. There was also one spring variety (Paragon).  

 

3.5 Nitrogen regimes 

Nitrogen fertilizer, as ammonium nitrate prills, was applied at four rates of 0, 100, 200 and 

350 kg-N ha-1, hereafter labelled as N1, N2, N3, and N4, respectively. The fertilizer was 

applied as a top-dressing in a 3-way split in March (nominally GS 24), April (GS 31) and May 

(GS 32) (Table 4). 

Table 4. Nitrogen fertilizer rates and splits (kg-N/ha). 

 

Treatment Total March (GS 24) April  (GS 31) May (GS 32) 

N1 0 
   N2 100 50 50 

 N3 200 50 100 50 

N4 350 50 250 50 

 
 
 

3.6 Experimental design 

In 2014 and 2015, 25 varieties were grown at 4 N-rates. The experimental design was a 

randomised complete block design with three replications and a factorial combination of 

four N levels (300 plots). Plots were 9 m long and 3 m width, were sown at a density of 350 

grains m-2. The experimental design layout can be found in the APPENDIX I. 

 

3.7 Husbandry 

The trials were conducted in different fields at Rothamsted over two seasons, 2014 (Great 

Harpenden field), 2015 (Bones close field) (harvest years are shown). All crops were first 

wheat to avoid effects from the root disease ‘take all’ which is prevalent in continuous 

wheat crops in the UK. The crop before were given modest amounts of N-fertilizer which 

ensured relatively low residual soil- N-min levels for the following wheat. All crops were 

autumn-sown (including the spring variety) on October 2nd in 2014 and on October 1st in 

2015. Seeds were precision-drilled at a rate of 350 seeds m-2 in 12.5 cm rows in plots 

measuring 3 m by 9 m. Available soil P, K and Mg was Index 2 on all fields which is non-

limiting to yield (MAFF, 2000). Crops were top-dressed with potassium sulphate in March 

supplying sulphur at a rate of 20 kg-S ha-1. Crops were given growth regulator and 

protected against weeds, pests and diseases as required.  
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3.8 Crop measures 

Anthesis dates were recorded when stamens were visible on 50% of the spikes. In this 

moment 1 m2 representative, avoiding border effect, of each plot was manually cut at 

ground level, the number of ears m-2, and the chlorophyll, using a SPAD meter, were 

measured. Then the samples were oven-dried at 80 ºC to a constant weight and the 

biomass dry weight (DM) at anthesis measured. Samples were ground by a rotor mill and a 

small portion was taken. Then the % of N in the shoots was measured. The N uptake (Nt) at 

anthesis was measured as the total above-ground N (dry biomass multiplied by % N in the 

shoots). Nitrogen Uptake Efficiency (NUpE) was calculated as total above-ground N content 

at anthesis/soil N supply (Nt/Ns). N supply (Ns) was the sum of N applied as fertilizer plus N 

mineral in the upper 90 cm soil profile. 

 

3.9 Statistical analysis 

To determine the significance of main effect of year, N level and genotype and interaction 

ANOVA for all measurements was performed using SPSS (22.0 for Windows). To 

demonstrate relationship between NUpE and related trait, linear regression and 

correlation analysis were used. 

 

3.10 Grain Yield Prediction 

 

3.10.1 Spectral reflectance measurements 
 
 

To measure spectral reflectance, a spectro-radiometer was used, with a spectral range of 

360nm–1000 nm. This continuous range encompasses the visual and near-infrared regions 

of the electromagnetic spectrum and is sufficient for measuring the wavelengths used for 

most canopy related indices. Reflected radiation from the canopy is received by a foreoptic 

lens, and relayed to the spectro-radiometer via a fiber-optic cable. 

A white reference panel is used to calibrate the equipment at start each day. It should be 

Lambertian surfaces; these reflect incident radiation of all wavelengths equally in all 

directions, and are required to provide a reference for the calculation of reflectance units.  

To make the model, measurements, were taken approximately weekly from the end of 

April to leaf senescence (end of July). Measurements were made around midday. One 

spectral reflectance measurement was taken at each plot, being the average of fifteen 

scans. The reflectance spectrum was calculated in real time as the ratio between the 

reflected and the incident spectra on the canopy. Radiometric indices were calculated from 

spectral reflectance measurements. 

To use the model during the next season, 2014-15, three measures around anthesis (12, 15 

and 18 of June) were taken following the same steps before commented. 
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3.10.2 Spectral Reflectance Indices 

 

The spectral raw data were transformed into reflectance in each wavelength using a excel 

spreadsheet. With this data different spectral reflectance indices were calculated. In total, 

21 spectral reflectance indices were used to assess the crop status. These indices were 

related, among others, with crop biomass, chlorophyll content, nitrogen status, ratio 

chlorophyll:carotenoids, water status, radiation use efficiency… (Table 5). 

Spectral reflectance indices were calculated for each measurement along the vegetative 

cicle (12 times). 

Table 5. Spectral reflectance indices used in this work.  

Name  Abbreviation Index calculation Parameter 

Normalised difference vegetation index NDVI (R900 – R680) / (R900 + R680)                                 Green biomass 

Red normalised difference veg. index R-NDVI (R780 – R670) / (R780 + R670)                                 Green biomass 

Green normalised difference veg. index G-NDVI  (R780 – R550) / (R780 + R550) Green biomass 

Soil adjusted vegetation index SAVI [(R900 – R680) / (R900 + R680+ 0.5)] (1 + 0.5)     Green biomass 

Simple ratio  SR R900 / R680 Green biomass 

Water index WI R970 / R680 Water status 

R. analysis of reflectance Spectra (Chl b) RARSa  R675 / R700  Chlorophyll a 

R. analysis of reflectance Spectra (Chl b) RARSb  R675 / (R650*R700)  Chlorophyll b  

R. analysis of reflectance Spectra (Car.)  RARSc  R760 / R500  Carotenoids 

Pigment specific simple ratio  PSSRa R800 / R675 Chlorophyll  

Normalized difference red edge  NDRE (R790 – R720) / (R790 + R720)  Chl. and N status  

Modified spectral ratio MSR (R750 – R445) / (R705 – R445) Chl. concentration 

Pigment simple ratio  PSR R430 / R680  Carotenoid to Chl. ratio  

Normalized difference pigment index NDPI (R680 – R430) / (R680 + R430) Carotenoid to Chl. ratio  

Structural independent pigment index  SIPI (R800 – R435) / (R415 + R435)  Carotenoid to Chl. ratio 

Photochemical reflectance index PRI (R531 – R570) / (R531 + R570) Radiation use efficiency 

Greenness index GE (R680 – R550) / (R680 + R550) Greenness  

Simple chlorophyll index R675 R675 Chlorophyll  

Simple chlorophyll index  R550  R550 Chlorophyll  

Ratio of reflectance  R750/550  R750/550 Chlorophyll  

  R750/700  R750/700 Chlorophyll  

 

3.10.3 Model construction and validation 

Simple linear regressions were developed between grain yield as dependant variable and 

spectral reflectance indices as independent variable for the year 2013/14. However, due to 

the fact that the crop covers increase in a logarithm way with increasing N fertilizer, the 

reflectance of radiation by the crop is saturate with high inputs. This fact can be seen if we 

represent the most popular spectral reflectance index (NDVI) against Leaf Area Index (LAI). 

We can see, as is reported in other studies (Aparicio et al., 2000), that NDVI is saturated 

when the LAI is higher than 3. This fact is also observed in other indices like SAVI, PRI, GI, 
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SIPI, WI… and make impossible a linear relation between the four treatments. However is 

possible a linear relation if we exclude the no nitrogen treatment (N1) and we work with 

N2, N3 and N4. Therefore, to linear regressions, only the N-treatments N2, N3 and N4 were 

used. 

These simple linear regression models allowed to see which indices and which crop stage 

were the better to predict grain yield. The five better related indices and the best related 

moment were chose to do a model. The weight of each spectral reflectance index was 

optimice to get the best coefficient of determination and RMSE. 

Evaluation is an important step of model verification which determines how closely a 

model represents actual conditions. Following statistical indicators were employed to 

compare the estimate and observed data. 

The coefficient of determination (r2) represents the percent of data that is the closest to 

the line of best fit. r2 equal to 1.0 indicates perfect fit and lesser values indicating less 

agreement of data. 

 

Where RMSE is absolute root mean square error, nRMSE is normalized mean square error 

expressed in %, Pi is the predicted value, Oi is the observed value, N is the number of 

observations and M is the mean of observed value. RMSE close to zero indicates better 

model performance. nRMSE is a measure (%) of the relative difference of estimated versus 

observed data. The prediction is considered excellent with the nRMSE <10 %, good if 10–20 

%, fair if 20–30 %, poor if >30 % (Jamieson et al. 1991). 
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4. Results 

4.1 Genetic differences for nitrogen uptake efficiency 

Analysis of variance showed significant differences among genotypes for all traits, except 

for shoot N yield and N uptake efficiency (Table 6). 

Although differences between both years were generally significant, results were 

consistent, as the year x genotype x N level interaction was never significant. Results will 

then be presented averaged over the 2 years (Table 7). Nevertheless, results of biomass, 

shoot N concentration, shoot N yield and NUpE were also presented for each year (Table 

8). Differences between the N levels and the different traits were always significant. The G 

x N interaction was significant for height and chlorophyll. In all the traits the greatest 

source of variation was the amount of nitrogen fertilizer applied followed, generally, by 

year and genotype. 

Only chlorophyll, height and the number of ears m-2 showed significant varietal differences 

at all N-rates. 

Biomass 

Biomass, above ground dry matter, was significantly higher in the 2015 than in 2014, 

except for the treatment N4 (Table 6, P<0.01). N was the greatest source of variation (F = 

1032). The application of N fertilizer increased biomass of all genotypes, from 4.67 t ha-1 on 

average at lowest N fertilizer plots to 13.43 t ha-1 at highest N fertilizer plots (Table 7). 

Biomass was also significantly different between genotypes. For example, at lowest N1, 

biomass ranged between 3.9 and 5.3 t ha-1 and at N2 from 9.26 to 15.62 t ha-1. Only the 

interaction between nitrogen and year was significant. 

Shoot N concentration 

Significant variation was shown for shoot N concentration among nitrogen, genotype, year 

and nitrogen x year interaction. The application of N fertilizer increased %N of all 

genotypes. All the genotypes had the lower value at N1. Genotype and year was also 

significant, %N was 10% higher in 2014 than in 2015. The varieties Riband, Mercia, Malacca 

and Avalon had the highest mean concentrations (around 1.2 %) and Soissons the lowest 

(0.99%). 

Shoot N yield 

Shoot N yield has been defined as biomass x shoot %N, so was highly influenced by this 

two traits.  The ANOVA revealed significant variation among N level, year and the 

interaction nitrogen and year. The relation between nitrogen and the shoot N yield was 

linear with the minimum at N1 (33 kgN ha-1) and the maximum at N4 (227 kgN ha-1). The 

varieties Crusoe, Cocoon and Stigg had the highest mean over all N levels (~135 kgN ha-1) 



 

 
 

 

 

 

 

Table 6. Analysis of variance (mean squares) for biomass (t ha
-1

), Shoot N concentration (%), Shoot N yield (kg ha
-1

), Nitrogen Uptake Efficiency (NUpE), ears (nº m
-2

), chlorophyll 

(SPAD), plant height (cm) and Leaf Area Index (m
2
 m

-2
) at anthesis; mean values for N rates and years. *Only 2014. 

        *, significant at P<0.05; **significant at P<0.01 

 

  

Degrees of 
freedom 

Biomass 
(tha

-1
) 

Shoot N 
concentra. (%) 

Shoot N yield 
(kg ha

-1
) 

N uptake 
efficiency 

Number of 
ears  m

-2
 

Chlorophyll 
(SPAD) 

Height 
Leaf area 

index* 

N level (N) 3 2007** 25.9** 921287** 7.7** 1196393** 13456** 3415** 272.8** 

Genotype (G) 22 4.5** 0.06** 478 0.03 34175** 89.2** 326** 1.39** 

Year (Y) 1 18.9** 1.2** 9034** 3.2** 475252** 4,1 922** - 

N x G 66 1.7 0.03 478 0.02 3545 9.8** 5.8** 0.26 

N x Y 3 8.8** 0.19** 6824** 1.2** 10095* 44.6** 6.9** - 

G x Y 22 1 0.04 563 0.02 3946 9.1* 3.2** - 

N x G x Y 65 1.6 0.03 747 0.03 4188 4.4 1.3 - 



Results                                                                                                                    David Soba Hidalgo 

24 
 

and Soissons had the lowest mean (112 kgN ha-1). At N3 (200 kgN applied ha-1) which is the 

common amount of N fertilizer applied in developed countries, Paragon, Bonham and 

Conqueror had the highest amount of N uptake and Soissons the lowest. The varietal range 

of apparent fertilizer recoveries at N3 was 53-71%. 

Nitrogen Uptake Efficiency 

Nitrogen Uptake Efficiency (NUpE) was calculated as total nitrogen uptake above ground/N 

in the soil and applied. As for N Uptake significant variation was revealed for NUpE among 

N level, year and the interaction nitrogen and year. In this case although nitrogen is again 

the greatest source of variation, year is also very important (almost the same than 

nitrogen). NUpE was 25% higher in 2014 than in 2015 and the biggest difference can be 

saw at low N level (N1) where the effect of the soil-N-min is more important in NUpE 

(Table 8). In this case, in contrast to Shoot N yield, the relation between nitrogen and the 

NUpE was logarithmic with the maximum at N1 (1.12) and the minimum at N4 (0.60). As 

commented with the shoot N yield, at N3 Paragon, Bonham and Conqueror had the highest 

amount of N uptake efficiency and Soissons the lowest. 

Table 7. Biomass (t ha
-1

), Shoot N concentration (N (%)), Shoot N yield (kg ha
-1

), Nitrogen Uptake Efficiency 

(NUpE), ears (nº m
-2

), chlorophyll (SPAD), plant height (cm) and Leaf Area Index (m
2
 m

-2
) at anthesis; mean 

values for N rates and years.  

*Only for 2014 

Chlorophyll 

Significant variation was revealed for chlorophyll among nitrogen, genotype, and the 

interaction between nitrogen and genotype and between nitrogen and year. Nitrogen was 

the greatest source of variation. The mean value of chlorophyll, measure using Chlorophyll 

meter, at N1 was 58% of the value at N4. The highest values of chlorophyll were reached 

by Cadenza, Maris Widgeon showed the lowest values. Computing the ecovalence showed 

that three genotypes, Mercia, Riband and Istabraq, were responsible for about one-third of 

the G x N interaction. In this case the differences between the two years were not 

significant. 

 

  Fertilization   Year 

  N1 N2 N3 N4   2014 2015 

Biomass (t ha
-1

) 4.7 10.5 12.0 13.4 
 

9.9 10.3 

N (%) 0.72 0.84 1.24 1.70  1.18 1.06 

Shoot N yield (kg ha
-1

) 33 88 149 227 
 

128 120 

NUpE  1.12 0.69 0.65 0.60  0.85 0.67 

Ears (nº m
-2

) 262 373 431 479 
 

356 415 

Chlorophyll (SPAD) 32 44 51 54 
 

45 45 

Plant height (cm) 60 78 84 87 
 

81 74 

Leaf Area Index (m
2
 m

-2
)* 1.5 3.7 4.9 6.1  4.0 n.d. 
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Ears m-2 

The ANOVA for Ears m-2 revealed significant variation among N level, genotype, year and 

the interaction nitrogen and year. Again nitrogen was the greatest source of variation (F = 

330) but year was also greater (F = 131). The relation between nitrogen and the number of 

ears m-2 was logarithmic with the minimum number at N1 (262 ears m-2) and the maximum 

at N4 (479 ears m-2). The number of ears was 17% higher in the 2014/15 than in 2013/14 

growing season. 

Leaf Area Index (LAI) 

LAI was measured, at anthesis, only in the 2013/14 growing season. Significant variation 

was revealed for LAI among nitrogen and genotype. The relation between nitrogen and LAI 

was linear with the minimum value at N1 (1.5 m2m-2) and the maximum at N4 (6.1 m2m-2) 

for all genotypes.  G x N interaction was not significant. 

Height 

Significant variation was shown for height among genotype, nitrogen, year and all their 

interactions. Nitrogen was the greatest source of variation but year and genotype were 

also important. The mean value of height at N1 was 60 cm and 87 cm at N4. Plant height 

was significantly higher in the 2014 than in 2015 growing season in all the treatments. The 

difference between the tallest variety (Maris Widgeon) and the shortest (Cordiale) were 42 

cm. The tallest variety Maris Widgeon was responsible for most of the G x N interaction 

(38%), additionally; Paragon represented 10% of the G x N interaction. 

Table 8. Biomass (t ha
-1

), Shoot N concentration (N (%)), Shoot N yield (kg ha
-1

) and Nitrogen Uptake Efficiency 

(NUpE) at anthesis; mean values for N levels for 2014 and 2015 years. 

 
N1 N2 N3 N4 

  2014 2015 2014 2015 2014 2015 2014 2015 

Biomass (t ha
-1

) 4,6 4,8 10,3 10,7 11,4 12,5 13,5 13,4 

N (%) 0,75 0,69 0,86 0,83 1,31 1,17 1,8 1,6 

Shoot N yield (kg ha
-1

) 33 31 88 89 151 146 242 213 

NUpE 1,36 0,90 0,71 0,65 0,67 0,62 0,65 0,55 
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Figure 4. Boxplots for Biomass (t ha
-1

), Shoot N concentration (N (%)), Shoot N yield (kg ha
-1

), Nitrogen Uptake 

Efficiency (NUpE), chlorophyll (SPAD), plant height (cm) depending on the N treatment. 
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4. 2 Spectral reflectance indices as tools for predicting wheat grain yield 

 

4.2.1 Spectral signatures 

Using all the lectures from the spectro-radiometer is possible to make a complete 

reflectance spectrum in the visible and part of the NIR region. The overall mean of spectral 

reflectance of wheat crop (treatment 200 kg N ha-1) at different stages is plotted in figure 

5. It may be seen that the spectral reflectance characteristics are different at different 

stages. Changes in canopy structure and pigments throughout the development stages 

were translated into changes in the spectral signature. During jointing stage the canopy 

was not fully developed and soil contribution to the canopy reflectance was large, although 

the spectral signature showed characteristic features of green vegetation (lower 

reflectance in the red region and bigger in the NIR region). As the canopy developed, 

reflectance in the NIR region increased reaching the maximum at anthesis. As the crop 

growth progressed further, during the grain filling, the remobilization of the N content in 

the photosynthetic pigments in the leaves to the grain affected the canopy reflectance and 

the reflectance contrast between red and NIR regions started to reduce. At maturity, 

vegetation was senescence and the spectral signature showed a steady linear increase 

across the red region. 

 

Figure 5. Spectral reflectance characteristics of the wheat canopy (treatment N3) at different phonological 

stages (n=75) 

4.2.2 Spectral reflectance at anthesis as influence by nitrogen 

The reflectance spectra at anthesis for the four N treatments are shown in the figure 6. The 

difference between the four treatments is visible. As we will see later with the spectral 
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reflectance indices, there are a big different between the no nitrogen treatment and the 

other 3 treatments. 

Different reflectance was measured in each region between treatments. Plant stress (or 

leaf senescence) typically results in lower chlorophyll concentrations that allow expression 

of accessory leaf pigments such as carotenes and xanthophylls. This has the effect of 

broadening the green reflectance peak (normally located near 550 nm) towards longer 

wavelengths, increasing visible reflectance, and causing the tissues to appear chlorotic 

(Pinter et al., 2003), as we can see in N1 treatment in figure 6. At the same time, with N 

stress, NIR reflectance decreases. With no nitrogen the crop surface reflects more 

radiation in the visible region than in the others treatment but less in the NIR region. This 

means that the leap between the visible and the NIR regions is higher with increasing 

nitrogen fertilization. However this increase is not linear, since, as the nitrogen fertilizer 

increased the difference is less marked getting an asymptote. This abrupt transition or “red 

edge”, in the case of senescent vegetation, may disappear entirely (Figure 5). 

 

Figure 6. Reflectance spectra, at anthesis, of the four N treatments. (n = 75) 

4.2.3 Nitrogen effects on Normalized difference vegetation index (NDVI)  

The NDVI, as indicator of crop vigour status, as influenced by nitrogen is shown in figure 7. 

NDVI values varied from 0.20 to 0.95. NDVI increased to its maximum values at booting 

(225 days after sowing (DAS)) maintaining its values until anthesis (252 DAS), before in N1. 

After anthesis the NDVI value decreased abruptly, reaching its minimum at maturity when 

the leaves were completely senescence. However, in the treatment N1, the maximum 

value of NDVI was reached at heading (240 DAS) and from this moment the NDVI value 

decreased slowly until maturity. Among all the N treatments, NDVI was maximum in the 

treatment N4 and minimum in the treatment N1. The differences between the treatments 

N2, N3 and N4 were small, and bigger between these three treatments and treatment N1.  
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Figure 7. Temporal variation of NDVI under different nitrogen treatments. (n = 75) 

4.2.4 Relations between Spectral reflectance indices at different crop stages and grain yield 

The correlation coefficients of the linear regressions between the grain yield measured at 

harvest and the 21 spectral reflectance indices used in this work are shown in table 9. This 

table include different data from the end of April to leaf senescence (end of July) and the 

treatment N1 (no nitrogen) was not included in the simple linear regressions. 

 

Figure 8. Relationships between spectral reflectance indices measured at anthesis and grain yield. Each point 

represent each plot of the experiment (variety Maris Widgeon is not take into account) (n = 288). See table 5 

for index definitions. 
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N1 treatment was no taken into account because, as we can see in figure 8, a curvilinear 

response between spectral reflectance indices and grain yield made difficult comparisons 

between the different indices and the grain yield using the four treatments. However if the 

no nitrogen treatment was excluded a linear relation could be obtained.  

NDRE, related with the nitrogen status of the crop, and MSR, related with the chlorophyll 

concentration, were the best indices to predict the grain yield, not only at anthesis but also 

before and after this moment. G-NDVI, used to measure the chlorophyll and biomass, and 

PRI, related with radiation use efficiency, were also other indices well related with the 

grain prediction at anthesis. The WI, related with the water status of the crop, is well 

related with grain yield but mainly after anthesis.  Chlorophyll b (RARSa) content is also 

well related with grain yield. As we can see in figure 9 and in table 9, around anthesis was 

the moment with higher correlations between the five selected spectral indices and grain 

yield so this moment was chose to make the model.   

 

 

 

Figure 9. Coefficients of determination (r
2
) of the relationship between wheat grain yield at maturity and the 

spectral reflectance indices and the days from the first spectral reflectance measure. 



 

 
 

 

Table 9. Coefficients of determination (r
2
) of the relationship across genotypes between wheat grain yield at maturity and the spectral reflectance indices at different growth stages in 

treatments N2, N3 and N4 in WW1416 experiment at Rothamsted, UK (n = 216). 

  

 

NDVI R-NDVI 
G-

NDVI 
SAVI SR WI RARSa RARSb RARSc PSSRa NDRE MSR PSR SIPI NDPI PRI GI R675 R550 R750/R550 R750/R700 

28/04/2014 0.19 0.19 0.44 0.13 0.25 0.23 0.01 0.42 0.28 0.26 0.57 0.53 0.18 0.13 0.18 0.21 0.02 0.35 0.13 0.24 0.02 

06/05/2014 0.25 0.26 0.58 0.06 0.36 0.29 0.00 0.72 0.26 0.38 0.73 0.56 0.36 0.02 0.36 0.49 0.02 0.54 0.15 0.44 0.03 

14/05/2014 0.28 0.28 0.54 0.10 0.37 0.27 0.00 0.56 0.23 0.37 0.68 0.73 0.44 0.26 0.42 0.53 0.03 0.41 0.10 0.49 0.03 

29/05/2014 0.65 0.65 0.76 0.03 0.62 0.33 0.01 0.64 0.41 0.62 0.81 0.81 0.55 0.46 0.53 0.70 0.07 0.54 0.10 0.55 0.05 

06/06/2014 0.57 0.56 0.72 0.46 0.49 0.45 0.04 0.50 0.30 0.48 0.81 0.80 0.58 0.55 0.58 0.73 0.01 0.38 0.04 0.63 0.00 

Anthesis 0.63 0.63 0.77 0.55 0.62 0.60 0.00 0.64 0.40 0.62 0.85 0.85 0.65 0.61 0.63 0.76 0.14 0.51 0.51 0.71 0.77 

13/06/2014 0.60 0.60 0.74 0.46 0.56 0.71 0.07 0.59 0.30 0.56 0.82 0.80 0.61 0.63 0.60 0.68 0.04 0.59 0.09 0.61 0.01 

19/06/2014 0.56 0.56 0.69 0.42 0.56 0.79 0.02 0.68 0.39 0.56 0.74 0.69 0.47 0.51 0.47 0.52 0.10 0.65 0.16 0.49 0.07 

24/06/2014 0.55 0.54 0.64 0.50 0.52 0.74 0.00 0.60 0.36 0.52 0.70 0.67 0.46 0.51 0.48 0.54 0.23 0.57 0.14 0.49 0.19 

03/07/2014 0.58 0.58 0.63 0.56 0.51 0.62 0.27 0.49 0.45 0.51 0.67 0.57 0.47 0.52 0.50 0.57 0.45 0.50 0.18 0.54 0.45 

16/07/2014 0.46 0.43 0.41 0.50 0.34 0.29 0.25 0.06 0.26 0.31 0.46 0.36 0.24 0.49 0.26 0.28 0.31 0.42 0.07 0.53 0.00 

29/07/2014 0.06 0.00 0.01 0.35 0.05 0.02 0.01 0.07 0.00 0.00 0.02 0.00 0.05 0.00 0.06 0.02 0.02 0.10 0.10 0.05 0.03 

 

NDVI. Normalised difference vegetation index; R-NDVI. Red normalised difference vegetation index; G-NDVI. Green normalised difference vegetation index; SAVI. Soil adjusted 

vegetation index; SR. Simple ratio; WI. Water index; RARSa. Ratio analysis of reflectance spectra (Chla); RARSb. Ratio analysis of reflectance spectra (Chlb); RARSc. Ratio analysis of 

reflectance spectra (Carotenoids); PSSRa. Pigment specific simple ratio; NDRE. Normalised difference red edge; MSR. Modified spectral ratio; PSR. Pigment simple ratio; SIPI. Structural 

independent pigment index; PRI. Photochemical reflectance index; GE. Greenness index; R675. Simple chlorophyll index (high sensitivity); R550. Simple chlorophyll index (low 

sensitivity); R750/R550 and R750/R700. Ratio of reflectance. 

 



Results                                                                                                                    David Soba Hidalgo 

32 
 

So we can state that wheat grain yield, at maturity, is well related to N status of the crop, 

amount of chlorophyll and with canopy and radiation use efficiency (RUE) at anthesis. 

4.2.5 Grain yield prediction model 

In the light of the prior table, I have tried to make a model to predict the grain yield at 

maturity, with information obtained between two and three months in advance. 

To do this, I have chosen five spectral reflectance indices well related, at anthesis, with 

grain yield at maturity. These are: Green normalised difference vegetation index (G-NDVI), 

Water index (WI), Normalised difference red edge (NDRE), Modified spectral ratio (MSR), 

Photochemical reflectance index (PRI). These indices are related with: crop N status 

(NDRE), chlorophyll content (MSR), chlorophyll and biomass (G-NDVI), Radiation use 

efficiency (PRI) and water status (WI). Table 10 shows the most important statatistic 

obtained from the models which, using these five spectral reflectance indices, predict grain 

yield. 

Table 10. The most important statistics obtained from the simple regression models to estimate yields based in 

five spectral reflectance indices. 

Model n Equation r2 RMSE (t ha-1) nRMSE (%) 

G-NDVI 216 GY = 39.982*G-NDVI-20.966 0.77 0.928 8.0 

WI 216 GY = 59.909*WI+60.088 0.60 1.213 10.4 

NDRE 216 GY = 24.525*NDRE-2.0082 0.85 0.743 6.4 

MSR 216 GY = 0.8224*MSR+4.7434 0.85 0.740 6.3 

PRI 216 GY = 115.59*PRI+13.459 0.77 0.938 8.0 

n: number of samples; r
2
: model coefficient of determination; RMSE: root mean square error; nRMSE: ratio 

between RMSE and yield. Data correspond to treatments N2, N3 and N4 at anthesis. Data from spectral 

measures taken on 10
th

 of June. 

Regression models developed between the grain yield of wheat and the spectral 

reflectance indices of the year 2013–14 showed that G-NDVI, WI, NDRE, MSR and PRI could 

account for 77, 60, 85, 85 and 77 % variation in the grain yield of wheat respectively (Table 

10). Out of the five SRI based regression models, NDRE and MSR based models resulted in 

lowest RMSE (0.74 t ha-1) and lowest nRMSE (±6 %) compared to PRI and G-NDVI 

(RMSE=0.94 t/ha and nRMSE, 8 %) and WI (RMSE=1.21 t ha-1 and nRMSE, 10.4 %) based 

models.  

To make a model, the number of data is very relevant. Therefore, I have chosen the three 

days near to anthesis. These days are: 6, 10 and 13 of June, in total 864 data (the variety 

Maris Widgeon has been deleted because this variety has high spectral reflectance indices 

(high LAI) but low grain yield, so can make the model inconsistent). Three days have been 

choosen instead one to try to eliminate exogenous factors that can affect remote 

observations such as view angle, row orientation, meteorological phenomena… The model 

was made with the linear equations between the five spectral reflectance indices before 

said and the grain harvested at maturity in these three days of June (Figure 10). 
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But, once the model was make both water status (WI) and biomass of the crop (G-NDVI) 

has a bad effect in the proposed model, thereafter the next model was proposed (Figure 

11). It was calibrated to get the maximum coefficient of determination between the grain 

yield at maturity and the predicted grain at anthesis. The weight of each factor in the 

model is: N status (40%). chlorophyll (40%) and RUE (20%) (Table 11). 

 

 
 

 

 

In this model the two main factors which have influenced in the model are the N status 

and the chlorophyll content in the canopy. These two factors are much related between 

them, approximately 75% of the plant´s N is contained in the chloroplasts (Lawlor, 1995). 

In a second place, the radiation use efficiency (RUE) with the 20% of the model weight.  

RUE is very closely linked with the chlorophyll concentration in the leave. So, the N status 

of the crop is a key factor in future grain yield. 

 

Figure 10. Proposed model to predict grain yield at anthesis 

 

Figure 11. Final model after calibrate the prior model. 
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Table 11. Predictive model of grain yield of wheat at anthesis (developed from 2013-14 data). 

Parameter Stage Index Predictive equation r
2
 Weight 

Grain yield 
(GY in t/ha) 

Anthesis 

NDRE GY=24.454*NDRE - 2.0725 r
2
 = 0.96 (n=864) 40% 

MSR GY=0.8186*MSR + 4.6592 r
2
 = 0.94 (n=864) 40% 

PRI GY=111.16*PRI + 13.239 r
2
 = 0.94 (n=864) 20% 

 

With these changes the graphic representation between the grain yield measure at 

maturity and the predicted grain by the model is shown in the figure 12 and table 11. 

 

Figure 12. Relationship between in-season estimated grain yield (EY) and measured                                                                    

grain yield in WW1416 experiment at Rothamsted. UK (n=288) 

 
Table 12. The most important statistics obtained from the predictive model of grain yield of wheat at anthesis 

(developed from 2013-14 data). 

Treatment n Equation r2 RMSE (t ha-1) nRMSE (%) 

N1 72 GY=1.0182x-0.7545 0,452 0,790 20,08 

N2 72 GY=0.8021x+1.6965 0,424 0,660 7,01 

N3 72 GY=0.6795x+3.8873 0,500 0,631 5,25 

N4 72 GY=0.7995x+3.1029 0,463 0,915 6,75 

N2, N3 & N4 216 GY=1.0844x-0.8703 0,858 0,746 6,40 

All 288 GY=1.05x-0.46 0,969 0,758 7,80 
n: number of samples; r

2
: model coefficient of determination; RMSE: root mean square error; nRMSE: ratio 

between RMSE and yield. Data from spectral measures taken on 10
th

 of June. 

y = 1.05x - 0.46 
R² = 0,97 

RMSE (t/ha) = 0.758 
nRMSE (%) = 7.8 
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As we can see in the prior table, the best correlation coefficient was obtained if the four 

treatments were taken into account. All the treatments (except N1) shown a normalized 

mean square error (nRMSE) <10% which can be considered an excellent prediction. 

4.2.6 Prediction with the model 

The grain yield prediction model was make using three different indices around anthesis 

and the harvest yields from 2013/14 data. To predict the 2014/15 grain yield at harvest, 

another three spectral reflectance measures were collected around anthesis (12, 15 and 18 

of June) and the three indices (NDRE, MSR and PRI) were calculated and introduced in the 

model.  

Table 13. Predicted grain yield at anthesis (3 different days) under different nitrogen treatments. 

N-treatment 
Predicted Grain Yield (t ha

-1
) 

12/06/2015 15/06/2015 18/06/2015 Mean 

N1 4.34a 4.49a 4.56a 4.47a 

N2 8.54b 8.63b 8.72b 8.63b 

N3 11.51c 11.80c 11.52c 11.61c 

N4 12.85de 13.10e 12.72d 12.89de 
Numbers followed by same letter are not significantly different at P=0.05.  

The predictions for the three days are shown in table 13 and, graphically, in figure 13. As 

we can see the measurements in the three days were very similar and, except for the 

treatment N4, the data were not significantly different. The minimum yield predicted were 

in the treatment N1 (4.5 t ha-1) and reached its maximum in N4 (almost 13 t ha-1). The 

relation between predicted grain yield and N fertilizer applied was logarithmic with a high 

increase between N1 and N2 (figure 14). 

 

 

 

 

 

 

 

 

 

 

Figure 13. Boxplots for the predicted grain yield depending on the N treatment and the day. 
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Figure 14. Relationship between predicted grain yield and N fertilizer applied. 

The predictions for each variety can be seen in table 14. As we can see in treatment N3 

(200 kgN ha-1), which is the average N-application in UK and many developed countries, the 

highest values were coincidet with the high yielding varieties (Cocoon, Evoke, Hereford and 

Istabraq) while the lowest values predicted agree with low yielding varieties (Avalon, 

Mercia, Malacca, Soissons). 

Table 14. Average predicted grain yield for the different varieties at different N-levels. 

Variety 
Predicted Grain Yield (t ha

-1
) 

N1 N2 N3 N4 

Avalon   3.96 8.21 11.31 12.44 

Bonham 4.16 8.42 11.69 12.57 

Cadenza 4.28 8.66 11.42 12.87 

Cocoon 4.60 9.10 12.66 13.24 

Claire 4.92 8.72 11.93 12.66 

Conqueror 4.55 8.39 11.80 13.19 

Cordiale 4.38 8.69 11.96 13.05 

Crusoe 4.24 8.20 11.70 13.26 

Evoke 4.54 8.87 12.09 14.13 

Gallant 4.41 8.49 11.73 13.52 

Hereward 4.83 8.76 11.68 12.89 

Hereford 4.17 8.80 12.06 13.35 

Istabraq 4.28 9.11 12.07 13.77 

Malacca 4.32 8.18 10.62 12.34 

Mercia  4.41 8.48 10.60 11.87 

Paragon 4.36 8.50 11.28 11.86 

Riband 4.11 8.56 11.17 12.88 

Robigus 4.53 9.02 11.55 12.86 

Solstice 4.97 8.80 11.96 13.31 

Soissons 3.98 8.19 10.62 11.82 

Stigg 4.85 9.04 11.68 13.10 

Xi19   4.63 8.60 11.93 13.02 
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4.2.7 Validation of the model 

As we can see in figure 15, where the relation between the grain yield predicted at 

anthesis and the observed grain yield at harvest is shown, the model can explain about the 

96% of the variation in grain yield. The absolute root mean square error is about 1.5 and 

the normalized mean square error is less than 20%.  

 

Figure 15. Relationship between in-season estimated grain yield (EY) and measured                                                                    

grain yield in WW1501 experiment at Rothamsted. UK (n=288) 

 

The most important statistics obtained from the model are shown in table 15. The model 

applied for each N level can explain between 12 and 62 % of the variation in grain yield for 

each treatment. The nRMSE was in all cases between 10 and 20% which according with 

Jamieson et al. (1991) can be considered as good prediction. 

Table 15. The most important statistics obtained from the calibration of the predictive model of grain yield of 

wheat at anthesis (developed from 2014-15 data). 

Treatment n Equation r2 RMSE (t ha
-1

) nRMSE (%) 

N1 72 GY=0.5918x+1.395 0.306 0.580 14.44 

N2 72 GY=0.4465x+3.865 0.123 1.045 13.56 

N3 72 GY=0.5868x+3.109 0.346 1.783 17.96 

N4 72 GY=1.0896x+3.230 0.618 2.155 19.87 

All 288 GY=0.8043x+0.567 0.962 1.523 18.75 

n: number of samples; r
2
: model coefficient of determination; RMSE: root mean square error; nRMSE: ratio 

between RMSE and yield.  

y = 0,8043x + 0,567 
R² = 0,962 

RMSE (t/ha) = 1.523 
nRMSE (%) = 18.75 

R² = 0,3055 R² = 0,1229 

R² = 0,3456 

R² = 0,6195 
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5. Discussion  

5.1 Genetic differences for nitrogen uptake efficiency 

In the present study, field experiments were conducted at four N levels in two growing 

seasons to determine the extent of variation in biomass and NUpE and related traits 

among different wheat genotypes in southern England. 

N-level had the greatest effect on all the traits studied; this was also showed in other 

studies with wheat, in this case at harvest (Ortiz-Monasterio et al., 1997; Le Gouis et al., 

2000; Barraclough et al., 2010; Wang et al., 2011; Cormier et al., 2013; Sarcevic et al., 

2014; Barraclough et al., 2014).  In biomass, shoot N concentration, shoot N yield and 

chlorophyll the sum of squares (% of total) was greater than 90%. This means that these 

traits were strongly affected by N stress. This great effect of N level was due to the very 

different levels of N applied (from 0 to 350 kg N ha-1). 

Year was the second source of variation after N level. The effect of year was very important 

in traits like N Uptake Efficiency, number of ears per m2 and height with between 20 and 

30 % of the % of total sum of squares. In the case of N Uptake efficiency, in 2014 was 

almost 30% more efficient than in 2015. This fact was due to the greater amount of soil-N-

min in 2015 (36.5 kg N ha-1) compared to 2014 (24.6 kg N ha-1) which has a special effect in 

the NUpE at N1 level. Additionally, in 2015, the total shoot N yield was significantly lower 

than in 2014.  

The effect of genotype was significant in all traits except shoot N yield and NUpE. In all 

traits the effect of genotype was much lower than N level or year and was only important 

in the trait height where the varieties Paragon and, specially, Maris Widgeon were 

significantly taller than the others. This lack of variability between cultivars can be 

explained because the varieties tested in this study were all elite commercial varieties, 

except Maris Widgeon, of hexaploid bread wheat, which represented a relatively narrow 

subset of genetic material. According with Gallais and Coque (2005) if only elite material 

are considered, specific genes for adaptation to low N-condition could have been lost by 

genetic drift due to selection in only favourable conditions over more than 50 years of 

selection, and even from domestication. Because the modern cultivars have been 

developed through selection conducted mostly at optimum N level, their superior 

performance observed at lower N levels can be considered as an indirect selection 

response (Sarcevic et al., 2014). Therefore greater differences would likely be found if the 

genetic net were to be cast more widely.  

There was a particularly strong N x Y interaction in all traits, which made an important 

contribution to variation particularly in NUpE. The 2-way interaction G x N was only 

significant in the case of height and chlorophyll. However, this interaction was not 

significant in the traits related with the nitrogen uptake (shoot N yield and NUpE). All the 

works that studied the NUpE in wheat has been done at harvest not at anthesis but for 

example Wang et al. (2011), Cormier et al. (2013) also concluded that there was no G x N 
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interaction for NUpE, however other studies (Le Gouis et al., 2000; Barraclough et al., 

2010) showed G x N interaction for NUpE at harvest. This could be due, again, to the 

relatively narrow genetic pool tested in this study. For example, Wang et al. (2011) and 

Cormier et al. (2013) also used in their studies only elite and modern varieties while Le 

Gouis et al. (2000) used a mix of modern and old varieties. The same was observed for 

biomass 

The coefficient of correlation between the shoot N yield and the amount of nitrogen 

applied as fertilizer was almost 1. This means that the amount of N uptake by the plant was 

directly proportional to the amount of fertilizer applied. The N present in the shoots is 

remobilized to the grain after anthesis, during grain filling, but these high levels of 

fertilization also have other consequences as more economic and environmental costs. 

There was sufficient soil-N-min, for an average uptake of 33 kg N ha-1in 2014 were no 

fertilizer was applied and 31 in 2015. In 2014 the mean residual soil-N-min in February to 

90 cm depth was 24.65 kg N ha-1, so at N1 more N was recovered at anthesis than was 

present when residual N was measured. This N presumably originated mainly from organic 

matter N mineralisation. However in 2015 the mean residual soil-N-min in February to 90 

cm depth was 36.6 kg N ha-1 giving a mean apparent uptake efficiency of 85% for soil-N-

min. This explains the great difference in NUpE at N1 between years.  

Although the differences between varieties were not significant for NUpE we can see some 

interesting trends. For example, the ecovalence for NUpE, which represents the part of the 

sum of squares of the interaction G x N that may be attributed to a genotype Wricke 

(1962), showed that only one variety, Soissons, accounted for about 20% of the G x N 

interaction, other five varieties Mercia, Cocoon, Riband, Claire and Paragon accounted for 

about 8-9% each one. At N3, Paragon, Bonham and Conqueror had the biggest NUpE (0.71) 

and Soissons the lowest NUpE (0.53). Finally, at N1, no N fertilizer, Soissons had, again, the 

lowest NUpE (0.82) and the varieties Cocoon, Crusoe, Stigg and Mercia had the greatest 

NUpE (around 1.3). These last varieties could have some interesting genetic advantages to 

maximize the N uptake in low N input environments. It is interesting to note that Bänzinger 

et al. (1999) showed, in maize, that criteria for adaptation to low N input appear to be 

close to those for adaptation to drought stress and would be interesting to check this 

affirmation in wheat or in this varieties well adapted to low nitrogen environments.  

This work also showed that the genotypes better adapted to low N input were not the best 

adapted to high N input. As showed by Gallais and Coque (2005) genes explaining 

variability at low N input are probably not the same as at high N input. Thereafter, it 

appears to be quite possible to improve NUpE at different nitrogen levels of fertilization 

and the genotypes adapted to high N input will not necessarily be adapted to low N input. 
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5. 2 Spectral reflectance indices as tools for predicting wheat grain yield 

Although the data are only from two growing seasons, the treatments applied created a 

wide range of canopy densities and nitrogen levels under a wide range of genetic 

variability. 

The spectral reflectance characteristics of wheat, at different stages, are different. These 

changes were due to changes in the canopy structure and pigments during the 

developmental stages (Verma et al., 2010). The soil contribution to the crop reflectance 

was large in the first stages, until booting. This soil contribution can be seen in the NIR 

region (700-1000 nm) and is mainly due to the lower Leaf Area Index (LAI) in the first 

stages (Serrano et al., 2000; Pradham et al., 2014). Plant canopies strongly scatter photons 

in the near-infrared region compared to other regions of electromagnetic spectrum, which 

are ultimately measured by remote sensing instrument. The scattered photons which 

come from reflections of the vegetation canopy increase with increasing LAI (Asner, 1998; 

Chang et al., 2005). After anthesis the decreased reflectance in the NIR region resulted 

from the senescence of leaves and the reflectance contrast between the visible and the 

NIR region started to reduce. Finally, the spectral signature showed a steady linear increase 

across the visible and NIR region when the canopy was senescent. 

Spectral reflectance signature of wheat was also influenced by nitrogen status of the crop. 

The higher spectral reflectance in the visible region (400-700 nm) of no nitrogen treatment 

could be attributed to lower chlorophyll content because of lower nitrogen availability in 

the soil and therefore less N-uptake. Nitrogen concentration in plants significantly affects 

pigment concentration and hence leaf colour. A reduction in the nitrogen would reduce 

chlorophyll concentrations, and the expression of accessory pigments such as carotenes 

and xanthophylls, which results increased visible reflection because of decreased radiation 

absorbance (Pradham et al., 2014). These changes in the pigments concentrations has also 

the effect of broadening the green reflectance peak (normally located near 550 nm) 

towards longer wavelengths, increasing the visible reflectance and causing the tissue to 

appear chlorotic (Pinter et al., 2003). The spectral reflectance in the NIR region of N 

fertilized treatments showed comparatively higher reflectance than in no N fertilized 

treatment. As commented above this characteristic could be attributed to the higher LAI. 

Variations in the canopy LAI, aboveground biomass and pigments concentrations were 

translated into clear changes in spectral signatures. Therefore spectral reflectance indices 

(SRI) also clearly indicated the canopy changes by developmental stages and N fertilization 

treatments. The variations in the SRI could vary depending of the index. The majority of 

them showed a curvilinear response more or less saturated for LAI > 3, this is the case of 

NDVI, SAVI, WI… On the contrary, the index SR increased linearly with increases in LAI, in 

agreement with the results obtained for NDVI and SR in previous wheat studies (Asrar et 

al., 1984; Serrano et al., 2000). A similar performance could be seen if the SRI and the grain 

yield were compared. 
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This curvilinear response between SRI and grain yield made difficult comparisons between 

the different indices and the grain yield using the four treatments. However if the no 

nitrogen treatment was excluded a linear relation could be obtained.  

The usefulness of spectral reflectance indices to forecast wheat yield depended on the 

sampling date. Indices determined at booting gave poorer estimations of yield than the 

same indices calculated from field data collected at subsequent growth stages, similarly to 

those reported for maize (Ma et al. 1996) and soybean (Ma et al. 2001). However, the lack 

of consistent relationships between spectral reflectance indices calculated from 

measurements made at physiological maturity and grain yield suggests that their 

usefulness for yield assessment is restricted to data recorded when the plant canopy is still 

green. Our results show that anthesis was the most appropriate developmental stage for 

yield assessment. However, some indices were also sensitive to yield variations when 

determined at heading or even booting or milk-grain stage. Similar results were observed 

by Babar et al. (2006) and Pavulari et al. (2015). These results support the conclusion that 

the optimum growth stage to collect reflectance readings is heading-anthesis.  

In this work, several published indices were used to evaluate their capacity to predict grain 

yield at harvest. 21 SRI were calculated by using different visible and NIR wavelength 

combinations. Initially, five out 21 SRI were selected but later selected only three of them 

to present in this work because of their high correlation with grain yield and consistent 

performance over different N levels and genetic backgrounds. 

Most of the variation in grain yield was explained by five selected spectral reflectance 

indices (Table 7). These five spectral reflectance indices were used to make a model and 

after the calibration of the model was seen that only three of this SRI explained most of 

the variation in grain yield and these indices were used to make the definitely model. 

Normalized difference red edge (NDRE) is an index related with the nitrogen status of the 

crop.  NDRE index uses a reference band in the red edge band region (720 nm) in 

combination with a vegetation index. This index has been successfully used in cotton and 

wheat to identify nitrogen stress (Barnes et al. 2000; Rodriguez et al. 2006). Additionally, 

Pavulari et al. (2015) found this index well related with grain yield in wheat at heading 

stage. 

Modified simple ratio (MSR) is an index related with chlorophyll concentration in the 

canopy of the crop. MSR was selected to estimate chlorophyll content by accounting for 

the noise caused by leaf surface specular reflectance by Sims and Gamon (2002). Noise 

reduction was done by subtracting reflectance at 445 nm from both the reference (800 

nm) and index terms (680 nm) of simple ratio. This index also uses reflectance at 705 nm 

which was found to be maximally sensitive to variations in chlorophyll. Rodriguez et al. 

(2006) observed a good relation between MSR and nitrogen deficiency in wheat. Finally, 

Pavulari et al. (2015) found that MSR was associated with Nitrogen Use Efficiency in wheat. 

They obtained an r value of 0.77 between this index and Nitrogen use efficiency for 

protein. 
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Photochemical reference index (PRI) is well related with the radiation use efficiency.  

Differences in the PRI were produced by a differential reflectance in the zeaxanthin 

carotenoid active band (531 nm) (Gamon et al., 1992; Peñuelas et al., 1995), which 

suggests that the RUE of plants was higher N fertilizer than in the no fertilizer environment 

(Filella et al., 1996) Similarly, the reduction that occurred in the two environments in PRI 

from anthesis to maturity was probably associated with a progressive senescence of 

photosynthetic organs during grain filling. Aparicio et al. (2000) used this index for 

determining Durum wheat yield in a Mediterranean environment. They found weaker 

correlations of PRI with grain yield compared with those of SR and NDVI. This may be 

explained by the fact that any reduction in the RUE (due to drought and associated stresses 

or just to plant ontogeny) is generally less significant than that in total biomass or 

intercepted PAR (Filella et al., 1996). 

In our study, it was showed that about 96% variation in grain yield of wheat can be 

accounted for by NDRE and MSR at anthesis stage and 94% by PRI. With these three 

indices a model was made to predict the grain yield at anthesis. It was observed that the 

model could account for 97 % variation in the grain yield of wheat with a normalized mean 

square error (nRMSE) of 7.8%. 

The model was validated with the independent data sets of grain recorded during the year 

2014–15. It was observed that grain yield predicted by this regression models could 

account for 96% variation in the observed grain yield of wheat. The absolute root mean 

square error (RMSE) is about 1.5 t ha-1 and the nRMSE is less than 20% which according 

with Jamieson et al. (1991) can be considered as good prediction. Similar results can be 

found if we analyse each N level separately, with nRMSE always between 10-20% and 

correlation coefficients (r) between 0.35 and 0.78. 

Observed grain yield were, on average, one ton lower than predicted grain yield, this can 

explain that the nRMSE were between 10 and 20%. The biggest reason for this fact can be 

explained during the period between anthesis and harvest. In 2015 the anthesis was a few 

days later than previous years, then we had a few days of hot weather and the canopy 

started to senesce, which was soon after anthesis. The main effect was a short grain fill 

period and therefore the lower grain yield. 
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6. Conclusions 

The crop variables biomass, shoot N concentration, shoot N yield, Nitrogen Uptake 

Efficiency (NUpE), ears m-2, chlorophyll, height and Leaf Area Index (LAI) were affected by 

the experimental factor N-level (N), genotype (G) and year (Y). N level had the greatest 

effect on all traits studied. Year was the second factor in importance and had a special 

importance on NUpE and ears per m2. Genotype generally had the least effect of the three 

factors, but there were significant varietal differences in all crop variables except shoot N 

yield and NUpE. This poor effect of genotype is clearly due to the relatively narrow genetic 

pool tested in this study, 22 of the 23 varieties used in this work were modern elite 

cultivars. Only the 2-way interaction N x Y were statistically significant for all variables. The 

interaction G x N was significant only in the case of chlorophyll and height. Even with this 

lack of genetic variability interesting trends in NUpE could be seen and some varieties with 

high NUpE at low N input were identified. These varieties could have some interesting 

genetic advantages to maximize the N uptake in low N input environments.   

In the case of Spectral Reflectance Indices the results of this work confirm the capacity of 

these indices to forecast grain yield in wheat. Results showed that anthesis was the most 

appropriate developmental stage for yield assessment. Spectral reflectance indices 

determined at anthesis have shown to be very valuable tools for wheat yield forecasting 

when different levels of nitrogen fertilizer and a range of genetic variability existed. 

Specially, NDRE, MSR and PRI can be suitable estimators of wheat grain yield under Atlantic 

conditions, when determined at anthesis stage. With these three indices a model was 

made to predict the grain yield at anthesis. The model was validated with the independent 

data sets of grain recorded during the year 2014–15. It was observed that grain yield 

predicted by this regression models could account for 96% variation in the observed grain 

yield of wheat. The normalized mean square error (nRMSE) was less than 20% which 

according with Jamieson et al. (1991) can be considered as good prediction. Therefore, 

with the results of this study, we can say that the grain yield is influenced by nitrogen 

status of the crop, chlorophyll concentration in the canopy and radiation use efficiency at 

anthesis.



Acknowledgements                                                                                              David Soba Hidalgo 

44 
 

Acknowledgements 

This work was based in two internships at Rothamsted Research the first (2014) was a 

Leonardo grant and the second (2015) was an Erasmus+ grant, both of them supported by 

the European Union. I would like to thank Dr. Malcolm J. Hawkesford for giving me the 

opportunity to do this work at Rothamsted Research and Andrew Riche for his valuable 

assistance during field experiments. The work was improved by the critical and valuable 

contributions of Dr. Cesar Arrese-Igor. I also want to thank the French students for the 

assistance in field work, in special Baptiste and Martin. 



References                                                                                                             David Soba Hidalgo 

45 
 

References 

Aparicio A., Villegas D., Casadesus J., Araus J.L. and  Royo C. 2000. Spectral vegetation 

indices as nondestructive tools for determining durum wheat yield. Agronomy Journal, 92: 

83-91 

Asner, G. P. 1998. Biophysical and biochemical sources of variability in canopy reflectance. 

Remote Sensing of Environment, 64: 234–253. 

Asrar G., Fuchs M., Kanemasu E.T., and Hatfield J.L. 1984. Estimating absorbed 

photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy 

Journal, 76: 300–306. 

Azcón-Bieto J and Talón M. 2008. Fundamentos de Fisiología Vegetal. Second edition. Mc 

Graw Hill. Madrid 

Babar M. A., Reynolds M. P., Van Ginkel M., Klatt M., Raun W. R., and Stone M. L. 2006. 

Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, 

and canopy temperature in wheat. Crop Science, 46: 1046–1057 

Bänziger M., Edmeades G.O., Lafitte H.R. 1999. Selection for drought tolerance increases 

maize yields across a range of nitrogen levels. Crop Science, 39: 1035-1040. 

Barbottin A., Lecomte C., Bouchard C., Jeuffroy M.H. 2005. Nitrogen remobilization during 

grain filling in wheat: genotypic and environmental effects. Crop Science, 45: 1141-1150. 

Barnes E.M., Clarke T.R., Richards S.E., Colaizzi P.D., Haberland J., Kostrzewski M., Waller 

P., Choi C., Riley E., Thompson T., Lascano RJ., Li H., Moran, MS. 2000. Coincident detection 

of crop water stress, nitrogen status and canopy density using ground-based multi spectral 

data. In ‘Proceedings of the 5th International Conference on Precision Agriculture’ pp. 1–

15: Bloomington, MN, USA. 

Barraclough P.B., Howarth J.R., Jones J., Lopez-Bellido R., Parmar S., Shepherd C.E., 

Hawkesford M.J. 2010. Nitrogen efficiency of wheat: genotypic and environmental 

variation and prospects for improvement. European Journal Agronomy, 33:1–11 

Barraclough P.B., Lopez-Bellido R., Hawkesford M.J. 2014. Genotypic variation in the 

uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crop 

Research, 156: 242-248. 

Becker-Reshef, Vermote E., Lindeman M.,  Justice C. 2010. A generalized regression-based 

model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. 

Remote Sensing of Environment, 114: 1312–1323 

Canfield D.E., Glazer A.N., Falkowski P.G.  2010. The Evolution and Future of Earth’s 

Nitrogen Cycle. Science, 330: 192-196 



References                                                                                                             David Soba Hidalgo 

46 
 

Cassman K.G., Dobermann A.R., Walters, D.T. 2002. "Agroecosystems, Nitrogen-use 

Efficiency, and Nitrogen Management". Agronomy & Horticulture -- Faculty Publications. 

Paper 356. 

Chang K.W., Shen Y., Lo J. C. 2005. Predicting rice yield using canopy reflectance measured 

at booting stage. Agronomy Journal, 97: 872–878. 

Clevers, J.G.P.W. 1997. A simplified approach for yield prediction of sugar beet based on 

optical remote sensing data. Remote Sensing Environment, 61:221–228. 

Cormier F., Faure S., Dubreuil P., Heumez E., Beauchene K., Lafarge S., Praud S., Le Gouis J. 

2013. A multi-environmental study of recent breeding progress on nitrogen use efficiency 

in wheat (Triticum aestivum L.). Theory Applied Genetic, 126: 3035–3048 

Daniel-Vedele F., Filleur S., Caboche M. 1998. Nitrate transport: a key step in nitrate 

assimilation. Current Opinion Plant Biology, 1: 235-239. 

Filella I.,  Amaro  J.L.,  Araus J. P. 1996. Relationship between photosynthetic radiation-use 

efficiency of barley canopies and the photochemical reflectance index (PRI). Physiology 

Plantarum, 96: 211–216. 

Fixen P.E., West F.B. 2002. Nitrogen Fertilizers: Meeting Contemporary Challenges. 

Ambio,  31: 169-176 

Gallais A, Coque M. 2005. Genetic variation and selection for nitrogen use efficiency in 

maize: a synthesis. Maydica, 50: 531-547 

Galloway J.N., Townsend A.R., Erisman J. W., Bekunda M., Cai Z., Freney J.R., Martinelli 

L.A., Seitzinger S.P., Sutton M.A. 2008. Transformation of the Nitrogen Cycle: Recent 

Trends, Questions, and Potential Solutions. Science, 320: 889-892 

Gamon, J.A., Pe J. 1992. A narrow-waveband spectral index that tracks diurnal changes in 

photosynthetic efficiency. Remote Sensing Environment, 41: 35–44. 

Goulding K. W. T., Bailey N. J., Bradbury N. J., Hargreaves P., Howe M., Murphy D. V., 

Poulton T. 1998. Nitrogen deposition and its contribution to nitrogen cycling and 

associated soil processes. New Phytologist, 139: 49-58 

Hawkesford M.J., 2011. Improving Nutrient Use Efficiency in Crops eLS. John Wiley & Sons, 

Ltd. 

Hawkesford M.J. 2013. Reducing the reliance on nitrogen fertilizer for wheat production. 

Journal of Cereal Science, 59: 276-283 

Jamieson P. D., Porter J.R., Wilson D.R. 1991. A test of the computer simulation model ARC-

WHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27: 337–350. 



References                                                                                                             David Soba Hidalgo 

47 
 

Jiang D., Wang N., Yang X. 1999. Study on forecasting of crop yield using satellite remote 

sensing in China. Chinese Journal Nature, 21:  351–355 

Knipling E. 1970. Physical and physiological basis for the reflectance of visible and near 

infrared radiation from vegetation. Remote Sensing and Environment, 1: 155-159 

Lawlor D.W. 1995. Photosynthesis, productivity and environment. Journal of Experimental 

Botany, 46: 1449-1461 

Lawlor D.W. 2001. Carbon and nitrogen assimilation in relation to yield: mechamisms are 

the key to understanding production systems. Journal of Experimental Botany, 53: 773-787 

Le Gouis J., Beghin D., Heumez E., Pluchard P. 2000. Genetic differences for nitrogen 

uptake and nitrogen utilisation efficiencies in winter wheat. European Journal of 

Agronomy, 12: 163–173 

Lemaître T., Gaufichon L., Boutet-Mercey S., Christ A., Masclaux-Daubresse C. 2008. 

Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana 

Wassileskija accession. Plant and Cell Physiology, 49: 1056–1065. 

Ma B.L., Morrison M.J., Dwyer L.M. 1996. Canopy light reflectance and field greenness to 

assess nitrogen fertilization and yield of maize. Agronomy Journal, 88: 915–920. 

Ma B. L., Dwyer L. M., Costa C., Cober E.R., Morrison M.J. 2001. Early prediction of soybean 

yield from canopy reflectance measurements. Agronomy Journal, 93: 1227–1234 

Mae T., Makino A., Ohira K. 1983. Changes in the amounts of ribulose bisphosphate 

carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). 

Plant and Cell Physiology, 24: 1079-1086. 

MAFF. 2000. Fertiliser Recommendations for Agricultural and Horticultural Crops. 

Reference Book 209. 7th Edition. Ministry of Agriculture. Fisheries and Food. The 

Stationery Office. London. UK. www.defra.gov.uk. 

Masclaux C., Quilleré I., Gallais A., Hirel B. 2001. The challenge of remobilisation in plant 

nitrogen economy. A survey of physio-agronomic and molecular approaches. Annals of 

Applied Biology, 138: 68–81 

Moll R.H., Kamprath E.J., Jackson W.A., 1982. Analysis and interpretation of factors which 

contribute to efficiency of nitrogen utilization. Agronomy Journal, 74:  562-564. 

Ortiz-Monasterio J.I., Sayre K.D., Rajaram S., McMahon M. 1997. Genetic progress in wheat 

yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 37: 898–904 

Pask A.J.D., Sylvester-Bradley R., Jamieson P.D., Foulkes M.J. 2012. Quantifying how winter 

wheat crops accumulate and use nitrogen reserves during growth. Field Crops Research, 

126: 104–118 

https://extranet.unavarra.es/,DanaInfo=apps.webofknowledge.com,SSL+full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=W1QypOR2TfPuGILmTqZ&page=1&doc=10&cacheurlFromRightClick=no
javascript:;
javascript:;
http://www.defra.gov.uk/


References                                                                                                             David Soba Hidalgo 

48 
 

Pavilari K., Chim B.K., Griffey C.A., Rieter M.S., Balota M., Thomason W.E. 2015. Canopy 

spectral reflectance can predict grain nitrogen use efficiency in soft red winter wheat. 

Precision Agriculture, 16: 405-424 

Pinter P.J., Hatfield J.L., Schepers J.S., Barnes E.M., Moran M.S., Daughtry C.S.T., Upchurch 

D.R. 2003. Remote sensing for crop management. Photogrammetric Engineering and 

Remote Sensing, 69: 647–664. 

 

Peñuelas J., Filella I., Gamon J.A. 1995. Assessment of photosynthetic radiation-use 

efficiency with spectral reflectance. New Phytologist, 131: 291–296 

Pradhan S. , Bandyopadhyay K. K., Sahoo R. N., Sehgal V. K., Singh R., Gupta V. K. Joshi D. K. 

2014. Predicting wheat grain and biomass yield using canopy reflectance of booting stage. 

Journal of the Indian Society of Remote Sensing, 42: 711-718 

Raun W.R., Johnson G.V. 1999. Improving Nitrogen Use Efficiency for Cereal Production. 

Agronomy Journal, 91: 357-363 

Raun W.R; .,Solie J.B., Johnson G.V., Stone M.L., Mullen R.W., Freeman K.W., Thomason 

W.E., Lukina E.V. 2002. Improving nitrogen use efficiency in cereal grain production with 

optical sensing and variable rate application. Agronomy Journal, 94: 815-820 

Reynolds M.P., Pask A.J.D., Mullan D.M. (Eds.). 2012. Physiological Breeding I: 

Interdisciplinary Approaches to Improve Crop Adaptation. Mexico, D.F.: CIMMYT. 

Rodriguez D., Fitzgerlad G.J., Belford R., Christensen L. 2006. Detection of nitrogen 

deficiency in wheat from spectral reflectance indices and basic crop eco-biophysical 

concepts. Australian Journal of Agricultural Research, 57: 781–789. 

Sarcevic H., Jukic K., Ikic I.,  Lovric A. 2014. Estimation of quantitative genetic parameters 

for grain yield and quality in winter wheat under high and low nitrogen fertilization. 

Euphytica,  199: 57–67 

Serrano L., Filella I., Peñuelas J. 2000. Remote sensing of biomass and yield of winter wheat 

under different nitrogen supplies. Crop Science, 40: 723-731. 

Sims D.A, Gamon J.A. 2002. Relationships between leaf pigment content and spectral 

reflectance across a wide range of species, leaf structures and developmental stages. 

Remote Sensing of Environment, 81: 337–354. 

Smil V. 1999. Nitrogen in crop production: An account of global flows. Global Biogeochem. 

Cycles, 13: 647–662. 

Steinmetz S., M. Guerif R., Delecolle F., Baret M. 1990. Spectral estimates of the absorbed 

photosynthetically active radiation and light-use efficiency of a winter wheat crop 

subjected to N and water deficiencies. International Journal Remote Sensing, 11: 1797–

1808. 



References                                                                                                             David Soba Hidalgo 

49 
 

Tucker C.J., Holben B.N., Elgin J.H., McMurtrey J.E. 1980. Relationship of spectral data to 

grain yield variation. Photogramm. Engineering Remote Sensing, 46:  657–666 

Vitousek P.M., Mooney H.A., Lubchenco J., Melillo  J.M. 1997. Human domination of 

Earth's ecosystems. Science, 277: 494-499 

Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., 

Schlesinger W.H., Tilman D. 1997. Human alteration of the global nitrogen cycle: Sources 

and consequences.  Ecological Applications, 7: 737-750 

Verma D., Pandey V., Karande B.I., Lunagaria M.M.,  Patel K.I. 2010. Spectral characteristics 

of wheat as influenced by nitrogen stress. Journal of Agromeorology, 12: 89-93 

Wang R.F., An D.G., Hu C.S., Li L.H., Zhang Y.M., Jia Y.G., Tong Y.P. 2011. Relationship 

between nitrogen uptake and use efficiency of winter wheat grown in the North China 

Plain. Crop & Pasture Science, 62: 504-514. 

Wricke G. 1962. Uber eine methode zur erfassung der ökologischen streubreite in 

feldversuchen. Z. Planzenzücht, 47: 92-96 

 

 

 



 

50 
 

APPENDIX I. EXPERIMENTAL DESIGN  

i) Layout 2013/2014 



 

51 
 

ii) Layout 2014/2015 



 

52 
 

 


