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Application of the L-fuzzy concept analysis
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Abstract In this work we are going to set up a new relationship between the L-fuzzy 6

Concept Analysis and the Fuzzy Mathematical Morphology. Specifically we prove that the 7

problem of finding fuzzy images or signals that remain invariant under a fuzzy morpholog- 8

ical opening or under a fuzzy morphological closing, is equal to the problem of finding the 9

L-fuzzy concepts of some L-fuzzy context. Moreover, since the Formal Concept Analysis 10

and the Mathematical Morphology are the particular cases of the fuzzy ones, the showed 11

result has also an interpretation for binary images or signals. 12

Keywords L-fuzzy concept analysis · Fuzzy mathematical morphology · Morphological 13

image processing 14

Mathematics Subject Classifications (2010)Q1 15

1 Introduction 16

The L-fuzzy Concept Analysis [15, 16], as an extension of the Formal Concept Analy-

Q2

17

sis [36], and the Fuzzy Mathematical Morphology [5, 10, 11] were developed in different 18

contexts but both use the lattice theory as algebraic framework. 19
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In the case of the L-fuzzy Concept Analysis, the L-fuzzy concepts were defined using a20

fuzzy implication. In the Fuzzy Mathematical Morphology, a fuzzy implication is also used21

to define the erosion but a t-norm also appears to introduce the dilation.22

In the literature, there are papers that propose the use of Formal Concept Analysis for23

image processing [25] but no others to establish a explicit relation between the L-fuzzy24

Concept Analysis and the Fuzzy Mathematical Morphology. This will be the main target of25

this work.26

On the other hand, both theories have been used in knowledge extraction processes in27

data bases [18–20].28

The paper is organized as follows: Section 2 provides a background about L-fuzzy Con-29

cept Analysis, Mathematical Morphology and Fuzzy Mathematical Morphology. Section 330

sets up the relation between L-fuzzy Concept Analysis and Fuzzy Mathematical Morphol-31

ogy showing also two interesting examples. Finally, the conclusions and future work are32

detailed in Section 4.33

2 Antecedents34

2.1 L-fuzzy concept analysis35

The Formal Concept Analysis of R. Wille [21, 36] extracts information from a binary table36

that represents a formal context (X,Y, R) withX and Y sets of objects and attributes respec-37

tively and R ⊆ X×Y . The information is obtained by means of the formal concepts that are38

pairs (A,B) with A ⊆ X, B ⊆ Y verifying A∗ = B and B∗ = A, where ∗ is the derivation39

operator that associates the attributes related to the elements of A to every object set A, and40

the objects related to the attributes of B to every attribute set B .41

In previous works [14–16] we have defined the L-fuzzy contexts (L,X, Y, R), with L42

a complete lattice, X and Y sets of objects and attributes respectively and R ∈ LX×Y a43

fuzzy relation [22, 26] between the objects and the attributes. This is an extension of the44

Wille’s formal contexts to the fuzzy case when we want to study the relationship between45

the objects and the attributes with values in a complete lattice L, instead of binary values.46

The use of a non residuated implication operator in our first works supposed a difficulty in47

the development of the algorithms.48

Latter, R. Belohlavek [7–9] and S. Polland [33] have published very important papers49

that generalize the Formal Concepts Analysis using residuated implication operators. In50

these papers, the mathematical and computational results are more important than in the51

first ones. The results in the present paper are based on using these residuated implications.52

In our original papers, we have defined the derivation operators (·)1 and (·)2 in order to53

work with these L-fuzzy contexts:54

∀A ∈ LX, ∀B ∈ LY , A1(y) = inf
x∈X{I (A(x),R(x, y))},

B2(x) = inf
y∈Y{I (B(y),R(x, y))},

with I a fuzzy implication [4] defined in the lattice (L,≤) and where A1 represents the55

attributes related to the objects of A in a fuzzy way, and B2, the objects related to all the56

attributes of B .57

We will follow this notation and we will use residuated implications I as R. Belohlavek58

[7–9] and S. Polland [33] do.59
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The information stored in the context is visualized by means of the L-fuzzy concepts

Q3

60

that are some pairs (A,A1) ∈ LX ×LY with A12 = A. These pairs, whose first and second 61

components are said to be the fuzzy extension and intension respectively, represent a set of 62

objects that share a set of attributes in a fuzzy way. 63

The set L = {(A,A1)/A = A12} with the order relation ≤ defined as: 64

∀(A,A1), (C,C1) ∈ L, (A,A1) ≤ (C,C1) if A ≤ C ( orA1 ≥ C1),

that is, A(x) ≤ C(x) (or A1(x) ≥ C1(x)),∀x ∈ X, is a complete lattice that is said to be 65

the L-fuzzy concept lattice [15, 16]. 66

As we are using a residuated implication operator I, the composition of the derivation 67

operators (·)1 and (·)2 (or (·)2 and (·)1) is a closure operator with important properties 68

studied by R. Belohlavek [6]. On the other hand, given A ∈ LX, (or B ∈ LY ) we can obtain 69

the associated L-fuzzy concept (A12, A1) (or (B2, B21)). 70

Other extensions of Formal Concept Analysis to the interval-valued case are in [1, 17] 71

and to the fuzzy property-oriented concept lattice framework in [31, 32]. 72

A very interesting particular case of L-fuzzy contexts appears trying to analyze situa- 73

tions where the objects and the attribute sets are coincident [2, 3], that is, L-fuzzy contexts 74

(L,X,X,R) with R ∈ LX×X, (this relation can be reflexive, symmetrical . . . ). In these 75

situations, the L-fuzzy concepts are pairs (A,B) such that A,B ∈ LX. 76

These are the L-fuzzy contexts that we are going to use to obtain the main results of this 77

work. Specifically, we are going to take a complete chain (L,≤) as the valuation set, and 78

L-fuzzy contexts as (L,Rn,Rn, R) or (L,Zn,Zn, R). In the first case, theL-fuzzy concepts 79

(A,B) are interpreted as signal or image pairs related by means of R. In the second case, A 80

and B are digital versions of these signals or images. 81

2.2 Mathematical morphology 82

The Mathematical Morphology is a theory concerned with the processing and analysis of 83

images or signals using filters and other operators that modify them. The fundamentals of 84

this theory (initiated by G. Matheron [29, 30] and J. Serra [34]), are in the set theory, the inte- 85

gral geometry and the lattice algebra. Actually this methodology is used in general contexts 86

related to activities as the information extraction in digital images, the noise elimination, 87

the pattern recognition and others. 88

2.2.1 Mathematical morphology in binary images and grey levels images 89

In this theory images A from X = R
n or X = Z

n (digital images or signals when n = 1) 90

are analyzed. 91

The morphological filters are defined as operators F : ℘(X) → ℘(X) that transform, 92

simplify, clean or extract relevant information from these images A ⊆ X, information that 93

is encapsulated by the filtered image F(A) ⊆ X. 94

These morphological filters are obtained by means of two basic operators, the dilation δS 95

and the erosion εS , that are defined in the case of binary images with the sum and difference 96

of Minkowski [34], respectively. 97

δS(A) = A⊕ S =
⋃

s∈S
As, εS(A) = A
 S̆ =

⋂

s∈S̆
As,
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where A is an image that is treated with another S ⊆ X, that is said to be structuring98

element, or with its opposite S̆ = {−x/x ∈ S} and where As represents a translation of A:99

As = {a + s/a ∈ A}.100

The structuring image S represents the effect that we want to produce over the initial101

image A.102

These operators are not independent since they are dual transformations with respect to103

the complementation [35], that is, if Ac represents the complementary set of A, then:104

εS(A) = (δS(A
c))c,∀A, S ∈ ℘(X).

We can compose these operators dilation and erosion associated with the structuring105

element S and obtain the basic filters morphological opening γS : ℘(X) → ℘(X) and106

morphological closing φS : ℘(X) → ℘(X) defined by:107

γS = δS ◦ εS, φS = εS ◦ δS.
The opening γS and the closing φS over these binary images verifies the two conditions108

that characterize the morphological filters: They are isotone and idempotent operators, and109

moreover it is verified, for all A, S ∈ ℘(X):110

a) γS(A) ⊆ A ⊆ φS(A).111

b) γS(A) = (φS(A
c))c.112

These operators will characterize some special images (the S-open and the S-closed113

ones) that will play an important role in this work.114

This theory is generalized introducing some tools to treat images with grey levels [34].115

The images and the structuring elements are now maps defined in X = R
n and with values116

in R = R ∪ {−∞,+∞} or defined in X = Z
n and with values in finite chains as, for117

instance, {0, 1, . . . , 255}. The erosion and dilation can be defined as follows:118

εS(A)(x) = inf{A(y)− S(y − x)/y ∈ X},
δS(A)(x) = sup{A(y)+ S(x − y)/y ∈ X}.

The previous definitions can be immersed in a more general framework that considers119

each image as a point x ∈ L of a partially ordered structure (L,≤) (complete lattice),120

and the filters as operators F : L → L with properties related to the order in these121

lattices [24, 34].122

Now, the erosions ε : L → L are operators that preserve the infimum ε(infM) =123

inf ε(M),∀M ⊆ L and the dilations δ : L → L, the supremum: δ(supM) =124

sup δ(M),∀M ⊆ L. The opening γ : L −→ L and the closing φ : L −→ L are isotone125

and idempotent operators verifying γ (x) ≤ x ≤ φ(x),∀x ∈ L.126

2.2.2 Fuzzy mathematical morphology127

In this new framework and associated with lattices, a new fuzzy morphological image pro-128

cessing has been developed [5, 10–13, 27, 28] using L-fuzzy sets [22, 26] A and S (with129

X = R
2 or X = Z

2) as images and structuring elements.130

In this interpretation, the filters are operators FS : LX → LX, where L is the chain [0, 1]131

or a finite chain Lk = {0 = α1, α2, ..., αk−1, αk = 1} with 0 < α1 < ... < αk−1 < 1.132

In all these cases, fuzzy morphological dilations δS : LX → LX and fuzzy morphological133

erosions εS : LX → LX are defined using some operators of the fuzzy logic [5, 10, 13, 28].134
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In general, there are two types of relevant operators in the Fuzzy Mathematical 135

Morphology. One of them is formed by those obtained by using some pairs (∗, I ) of adjunct 136

operators related by: 137

(α ∗ β ≤ ψ) ⇐⇒ (β ≤ I (α,ψ)).

The other type are the morphological operators obtained by pairs (∗, I ) related by a 138

strong negation ′ : L → L: 139

α ∗ β = (I (α, β ′))′,∀(α, β) ∈ L× L.

An example of one of these pairs that belongs to both types is the formed by the t-norm 140

and the implication of Lukasiewicz. 141

In this paper, we work taking as (X,+) the commutative group (Rn,+) or the com- 142

mutative group (Zn,+), and as (L,≤,′ , I,∗), the complete chain L = [0, 1] or a finite 143

chain as L = Lk = {0 = α1, α2, ..., αk−1, αk = 1} with the Zadeh negation and (∗, I ) the 144

Lukasiewicz t-norm and implication. 145

We interpret the L-fuzzy sets A : X → L and S : X → L as n-dimensional images in 146

the space X = R
n (or n-dimensional digital images in the case of X = Z

n). 147

In the literature, (see [5, 10, 23, 28]), erosion and dilation operators are introduced 148

associated with the residuated pair (∗, I ) as follows: 149

If S : X → L is an image that we take as structuring element, then we consider the 150

following definitions associated with (L,X, S). 151

Definition 1 [10] The fuzzy erosion of the image A ∈ LX by the structuring element S is 152

the L-fuzzy set εS(A) ∈ LX defined as: 153

εS(A)(x) = inf{I (S(y − x),A(y))/y ∈ X}, ∀x ∈ X.
The fuzzy dilation of the image A by the structuring element S is the L-fuzzy set δS(A) 154

defined as: 155

δS(A)(x) = sup{S(x − y) ∗ A(y)/y ∈ X}, ∀x ∈ X.

Then we obtain fuzzy erosion and dilation operators εS, δS : LX → LX. 156

The following result, that also appears in a more general context [6], is verified: 157

Proposition 1 (1) If ≤ represents now the usual order in LX obtained by the order exten- 158

sion in the chain L, then the pair (εS, δS) is an adjunction in the lattice (LX,≤), that 159

is: 160

δs(A1) ≤ A2 ⇐⇒ A1 ≤ εs(A2).

(2) If A′ is the negation of A defined by A′(x) = (A(x))′,∀x ∈ X and if S̆ represents the 161

image associated with S such that S̆(x) = S(−x),∀x ∈ X, then it is verified: 162

εS(A
′) = (δ

S̆
(A))′, δS(A′) = (ε

S̆
(A))′, ∀A, S ∈ LX.

This proposition can be proved as a consequence of the properties of the closure 163

operators [6]. 164

Next, we prove an interesting result from a practical point of view that shows how to 165

obtain the fuzzy erosions and dilations with a complex structuring element reducing the 166

problem to the application of those operators using more simple structuring elements. 167

Proposition 2 Let S1 and S2 be two structuring elements and δSj : LX → LX and εSj : 168

LX → LX (j = 1, 2) the fuzzy dilation and erosion operators in L associated with them. 169
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If ◦ represents the usual composition, it is verified170

(δS2 ◦ δS1 ) = δδ
S2
(S1), (εS2 ◦ εS1) = εδ

S1
(S2).

Proof Let us prove the first equality:171

∀A ∈ LX (δS2 ◦ δS1)(A) = δS2 (δS1(A)), therefore ∀x ∈ X:172

((δS2 ◦ δS1 )(A))(x) = (δS2(δS1(A)))(x)= sup
y∈X

{S2(x − y) ∗ δS1(A)(y)}
= sup

y∈X
{S2(x − y) ∗ sup

ω∈X
{S1(y − ω) ∗A(ω)}},

Due to the left continuity, this expression is equal to:173

sup
y∈X

{sup
ω∈X

{S2(x − y) ∗ (S1(y − ω) ∗A(ω))}}.

Now, we can interchange the calculus of the suprema and apply the left continuity,174

associativity and commutativity properties:175

sup
ω∈X

{sup
y∈X

{S2(x − y) ∗ (S1(y − ω) ∗ A(ω))}} = sup
ω∈X

{A(ω) ∗ sup
y∈X

{S2(x − y) ∗ S1(y − ω)}}.

If we take y − ω = z, then the last expression is equal to:176

sup
ω∈X

{A(ω) ∗ sup
z∈X

{S2(x − ω − z) ∗ S1(z)}} = sup
ω∈X

{A(ω) ∗ δS2(S1)(x − ω)},

and applying the commutativity of ∗, we have:177

sup
ω∈X

{δS2 (S1)(x − ω) ∗ A(ω)} = (δδ
S2
(S1)(A))(x),

that proves the equality (δS2 ◦ δS1) = δδ
S2
(S1).178

Let us prove now that (εS2 ◦ εS1) = εδ
S1
(S2).179

(εS2 ◦ εS1)(A) = εS2(εS1(A)) ∀A ∈ LX, then ∀x ∈ X:180

((εS2 ◦ εS1)(A))(x) = (εS2(εS1(A)))(x) = inf
y∈X{I (S2(y − x), εS1(A)(y))}

= inf
y∈X{I (S2(y − x), inf

ω∈X{I (S1(ω − y),A(ω))})}
= inf

y∈X{ inf
ω∈X{I (S2(y − x), I (S1(ω − y),A(ω)))}}

= inf
ω∈X{ inf

y∈X{I (S2(y − x), I (S1(ω − y),A(ω)))}}
= inf

ω∈X{ inf
y∈X{I (S2(y − x) ∗ S1(ω − y),A(ω))}}

= inf
ω∈X{ inf

y∈X{(S2(y − x) ∗ S1(ω− y)) ∗A′(ω))′}}
= inf

ω∈X{(sup
y∈X

(S2(y − x) ∗ S1(ω − y)) ∗ A′(ω))′}

= inf
ω∈X{(sup

y∈X
(S1(ω − y) ∗ S2(y − x)) ∗ A′(ω))′}

= inf
ω∈X{(δS1(S2)(ω − x) ∗ A′(ω))′} = inf

ω∈X{I (δS1(S2)(ω− x),A(ω))}
= (εδS1 (S2)(A))(x).

181
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3 Relation between both theories 182

The erosion and dilation operators given in Definition 1 are used to construct the basic 183

morphological filters: the opening and the closing (see [5, 10, 23, 28]). 184

Following the usual process in Mathematical Morphology, we extend these operators to 185

the fuzzy case: 186

Definition 2 The fuzzy opening of the image A ∈ LX by the structuring element S ∈ LX 187

is the fuzzy subset γS(A) that results from the composition of the erosion εS(A) of A by S 188

followed by its dilation: 189

γs(A) = δs(εs(A)) = (δs ◦ εs)(A).
The fuzzy closing of the image A ∈ LX by the structuring element S ∈ LX is the fuzzy 190

subset φS(A) that results from the composition of the dilation δS(A) of A by S followed by 191

its erosion: 192

φs(A) = εs(δs(A)) = (εs ◦ δs)(A).

It can be proved that the operators γS and φS are morphological filters, that is, they 193

preserve the order and they are idempotent: 194

A1 ≤ A2 =⇒ (γS(A1) ≤ γS(A2)) and (φS(A1) ≤ φS(A2)),
195

γS(γS(A)) = γS(A), φS(φS(A)) = φS(A), ∀A ∈ LX, ∀S ∈ LX.
Moreover, these filters verify that: 196

γS(A) ≤ A ≤ φS(A), ∀A ∈ LX, ∀S ∈ LX.
Analogous results that those obtained for the erosion and dilation operators can be proved 197

for the opening and closing: 198

Proposition 3 If A′ is the negation of A defined by A′(x) = (A(x))′ ∀x ∈ X, then: 199

γS(A
′) = (φ

S̆
(A))′, φS(A′) = (γ

S̆
(A))′, ∀A, S ∈ LX

Proof

γS(A
′) = δS(εS(A

′)) = δS((δS̆(A))
′) = (ε

S̆
(δ
S̆
(A)))′ = (φ

S̆
(A))′.

The other equality can be proved in an analogous way. 200

Since the operators γS and φS are increasing in the complete lattice (LX,≤), by Tarski’s 201

theorem, the respective fixed points sets are not empty. These fixed points will be used in 202

the following definition: 203

Definition 3 An image A ∈ LX is said to be S-open if γS(A) = A and it is said to be 204

S-closed if φS(A) = A. 205

These S-open and S-closed sets provide a connection between the Fuzzy Mathematical 206

Morphology and the Fuzzy Concept Theory, as we will see next. 207
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For that purpose, given the complete chain L that we are using, and a commutative group208

(X,+), we will associate with any fuzzy image S ∈ LX, the fuzzy relation RS ∈ LX×X209

such that:210

RS(x, y) = S(x − y), ∀(x, y) ∈ X ×X.

It is evident that RS′ = R
′
S and, if RopS represents the opposite relation of RS , then211

R
op

S = R
S̆

.212

The aim is to interpret a structuring image as a relation of a context.213

In agreement with this last point, we can redefine the erosion and dilation as follows:214

εS(A)(x) = inf{I (RS(y, x),A(y))/y ∈ X}
= inf{I (RopS (x, y),A(y))/y ∈ X}, ∀x ∈ X,

δS(A)(x) = sup{RS(x, y) ∗A(y)/y ∈ X}, ∀x ∈ X.
With this rewriting, given the structuring element S ∈ LX, we can interpret the triple215

(L,X, S) as an L-fuzzy context (L,X,X,R′
S) where the sets of objects and attributes are216

coincident. The incidence relation R′
S ∈ LX×X is at the same time the negation of an217

interpretation of the fuzzy image by the structuring element S.218

We will use this representation as L-fuzzy context to prove the most important results219

that connect both theories:220

Theorem 1 Let (L,X, S) be the triple associated with the structuring element S ∈ LX .221

Let (L,X,X,R
′
S) be the L-fuzzy context whose incidence relation R

′
S ∈ LX×X is the nega-222

tion of the relation RS associated with S. Then the operators erosion εS and dilation δS223

en (L,X, S) are related to the derivation operators (·)1 and (·)2 in the L-Fuzzy context224

(L,X,X,R
′
S) by:225

εS(A) = (A′)1, ∀A ∈ LX,
δS(A) = (A2)

′, ∀A ∈ LX.

Proof Taking into account the properties of the Lukasiewicz implication, for any x ∈ X, it226

is verified that:227

εS(A)(x) = inf{I (RS(y, x),A(y))/y ∈ X}
= inf{I (A′(y),R′

S(y, x))/y ∈ X} = (A′)1.
Analogously,228

δS(A)(x) = sup{RS(x, y) ∗A(y)/y ∈ X} = sup{(I (RS(x, y),A′(y)))′/y ∈ X}
= (inf{I (RS(x, y),A′(y))/y ∈ X})′ = (inf{I (A(y),R′

S(x, y))/y ∈ X})′
= (A2)

′.
229

As a consequence, we obtain the following result which proves the connection between230

the outstanding morphological elements and the L-fuzzy concepts:231

Theorem 2 Let S ∈ LX and RS ∈ LX×X be its associated relation. The following232

propositions are equivalent:233

1. The pair (A,B) ∈ LX ×LX is an L-fuzzy concept of the context (L,X,X,R
′
S), where234

R
′
S(x, y) = S′(x − y) ∀(x, y) ∈ X ×X.235
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2. The pair (A,B) ∈ LX ×LX is such that the negation A′ of A is S-open (γS(A′) = A′) 236

and B is the S-erosion of A′ (that is, B = εS(A
′)). 237

3. The pair (A,B) ∈ LX × LX is such that B is S-closed (φS(B) = B) and A is the 238

negation of the S-dilation of B (that is, A = (δS(B))
′). 239

Proof 240

1 =⇒ 2) Let S ∈ LX and RS ∈ LX×X be its associated relation. Let us consider an L- 241

fuzzy concept (A,B) of the L-fuzzy context (L,X,X,R
′
S) in which R

′
S is the negation 242

of RS . 243

Then, it is verified that B = A1 and A = B2, and, by the previous theorem, 244

εS(A
′) = A1 = B.

Moreover, it is fulfilled that 245

γS(A
′) = δS(εS(A

′)) = δS(B) = (B2)
′ = A′.

which proves that A′ is S-open. 246

2 =⇒ 3) Let us suppose that the hypothesis of 2 are fulfilled. Then, 247

φS(B) = εS(δS(B)) = εS(δS(εS(A
′))) = εS(γS(A

′)) = εS(A
′) = B,

which proves that B is S-closed. 248

On the other hand, from the hypothesis B = εS(A
′) can be deduced that 249

δS(B) = δS(εS(A
′)) = γS(A

′),

and consequently, taking into account that A′ is S-open, we obtain that δS(B) = A′, 250

and finally, A = (δS(B))
′. 251

3 =⇒ 1) Let (A,B) be a pair fulfilling the hypothesis of 3. Let us consider the L-fuzzy 252

context (L,X,X,R
′
S). 253

Then, by the previous theorem we can deduce that 254

B2 = (δS(B))
′ = A.

Fig. 1 Pixelated binary imageD
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Fig. 2 B is the fuzzy closing of
the imageD

On the other hand, applying the previous theorem and the hypothesis,255

A1 = εS(A
′) = εS(δS(B)) = φS(B) = B,

which finishes the proof.256

257

Let us see now some examples.258

Example 1 Interpretation of some binary images as formal concepts.259

In the referential set X = Z
2, the subsets of X can be interpreted as pixelated binary260

images, where a point belonging to the subset is represented by a white pixel, and the pixel261

is black otherwise.262

If we consider the structuring binary image S given by,263

S = {(x1, x2) ∈ Z
2/x2

1 + x2
2 ≤ 1},

BA= B( ( ))S
C

Fig. 3 The pair (A,B) is a formal concept of the context (Z2,Z2, RcS)
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Fig. 4 Discrete signal A as an
L-Fuzzy set
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then the associated incidence relation RcS ⊂ Z
2 × Z

2 is such that: 264

(x1, x2)R
c
S(y1, y2) ⇐⇒ ((x1 − y1)

2 + (x2 − y2)
2 > 1),

which is irreflexive and transitive. Using this relation we can define the formal context 265

(Z2,Z2, RcS). 266

As we have seen in the previous theorem, the problem of obtaining the formal concepts 267

of this context (Z2,Z2, RcS) is reduced to obtaining the S-closed sets in Z
2 and vice versa. 268

Let us take, for example, the binary image D in Fig. 1. 269

If we calculate the fuzzy closing of the image D, we can see that it is not a S-closed set 270

because the obtained image B (see Fig. 2) is not equal toD. Therefore, by Theorem 2, there 271

is not any formal concept of the context (Z2,Z2, RcS) which intension is the image D. 272

However, the pair (A,B) showed in Fig. 3 verifies thatB is S-closed (φS(B) = B) andA 273

is the complementary of the S-dilation of B , therefore, it is a formal concept of the context 274

(Z2,Z2, RcS). 275

Example 2 Interpretation of some open digital signals as fuzzy concepts. 276

277

If the referential set X ⊆ Z and the lattice L = {0, 0.1,0.2, ..., 0.9, 1} then, the maps 278

A : X → L can be interpret as 1-D discrete signals. 279

Let us consider the referential setX = {0, 1, 2, ..., 20} and the discrete signal represented 280

by the L-fuzzy set A (See Fig. 4). 281

A = {0/0.5,1/0.5,2/0.8, 3/0.6,4/0.6,5/0.6,6/0.7,7/0.6,8/0.6,9/0.6,10/0.8

11/0.8,12/1,13/1,14/1, 15/0.7,16/0.6,17/0.6,18/0.6,19/0.9,20/0.9}.

Fig. 5 Structuring element S
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(a) Negation of the discrete signal A
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Fig. 6 The signal A′ and its fuzzy erosion B

Let us consider the structuring element given by the L-fuzzy set S:282

S(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |x| > 3

0.3 if 2 < |x| ≤ 3

0.7 if 1 < |x| ≤ 2

1 if |x| ≤ 1

represented in Fig. 5.283

The associated context is (L,X,X,R′
S) where RS(x, y) = S(x − y). Then, the relation284

R′
S of the context is given by:285

R′
S(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |x − y| ≤ 1

0.3 if 1 < |x − y| ≤ 2

0.7 if 2 < |x − y| ≤ 3

1 if |x| > 3
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Fig. 7 The pair (A,B) is an L-Fuzzy concept of the L-Fuzzy context (L,X,X,R′
S)
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If we calculate the fuzzy erosion of the negation of the signal represented by the L-fuzzy 286

set A, we obtain the signals showed in Fig. 6: 287

A′ = {0/0.5,1/0.5, 2/0.2,3/0.4,4/0.4,5/0.4,6/0.3,7/0.4,8/0.4,9/0.4, 10/0.2

11/0.2,12/0,13/0, 14/0,15/0.3,16/0.4,17/0.4,18/0.4,19/0.1,20/0.1},
εS(A

′) = {0/0.5,1/0.2, 2/0.2,3/0.2,4/0.4,5/0.3,6/0.3,7/0.3,8/0.4,9/0.2, 10/0.2

11/0, 12/0,13/0,14/0, 15/0,16/0.3,17/0.4,18/0.1,19/0.1,20/0.1}.
If we take now this last signal and calculate its fuzzy dilation, we can see that γS(A′) = 288

δS(εS(A
′)) = A′. Then, the set A′ is an S-open set. 289

Therefore, the pair (A, εS(A′)) represented in Fig. 7 is an L-fuzzy concept of the 290

associated L-fuzzy context (L,X,X,R′
S). 291

4 Conclusions and future work 292

The main results of this work show an interesting relation between the L-fuzzy Concept 293

Analysis and the Fuzzy Mathematical Morphology that we want to develop in future works. 294

So, we can apply the algorithms of the L-fuzzy concept theory in Fuzzy Mathematical 295

Morphology and vice versa. Specifically, it will be interesting to study the Morphological 296

Gradient, and Top-Hat and Hit-or-Miss transforms and their interpretation in the L-fuzzy 297

Concept Analysis. 298

On the other hand, we want to extend these results to other type of operators (′, I, ∗) 299

(negation, fuzzy implication and conjunction) associated with certain properties in complete 300

lattices (L,≤) and to some L-fuzzy contexts where the objects and the attributes are not 301

related to signal or images. 302

Moreover, we will study the relation between both theories when we are using structuring 303

relationsR ∈ LX×X which represent different effects that we want to produce over an initial 304

fuzzy set A ∈ LX. 305
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