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Aim of the Project 

The aim of this project is to design, investigate and model the aerodynamic behavior and 

dynamics of a wind turbine blades taking into account the elasticity of the rotor blades and 

the steadiness of the flow. 

The main idea of the project is by performing the steady-state FSI (Fluid-Structure 

Interaction) analysis based on the obtained numerical results from two solvers: 

aerodynamic model for fluid and structural solver to evaluate the influence of the profile of 

wind turbine blade and position of the blades on the energy harvesting efficiency of a 

horizontal axis wind turbine blades (HAWT). The solution is obtained iteratively.  

 

It should be resolved the following objectives so that to be satisfied the aim of this project: 

 Developing of suitable aerodynamic model considering the deformation of 

aerodynamic loading for wind turbine blades. 

 Developing the structural solver for determination of stresses and deformations on 

the wind turbine blades. 

 Performing the steady-state FSI (Fluid-Structure Interaction) analysis of the 

obtained numerical results. 

 Verification of the conducted numerical investigation is been performed by 

comparison of obtained numerical results for wind turbine blade tip velocity and 

wind turbine blade’s radial force with analytical data calculated by using the 

simplified 1D momentum theory. 
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Chapter 1 

Introduction  

 
1.1. Energy Overview 

Nowadays, people current living standard could not be maintained without energy and this 

need is increasing faster due to for example growing population, mobility, information and 

new technology. The main source of energy used is fossil fuels, which it involves coal, 

natural gas and oil.  Humans have been using them since the start of the industrial 

revolution but this primary energy may runs out soon. Actually, energy demand rises 

almost every day and the reserves of fossil fuels are daily lower. This situation causes 

changes in the international price of the oil and as a result, economic and politic instability. 

Besides, the provision of energy affects seriously to the environment so potential 

risks of global warming effect is only one example. Before the industrial revolution, 

concentration of 𝐶𝑂2 in the atmosphere was around 280 ppm but at present it is 380 ppm 

and it is rising every year due to gas emissions from burning fossil fuels, [1]. Combustion 

of primary energy also generates acids which fall to the Earth as acid rain, impacting in 

natural areas and buildings. These environment impacts are increasingly less tolerated by 

the current society, as well as by the energy and environmental policies of Europe.  

 

 

 
 

Figure 1.1: Estimated renewable energy share of global final energy consumption, 2012, 

[2] 
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In this point, renewable energy comes into picture, in order to determinate the 

economic and environmental viability of energy sources in the future. It is growing 

strongly and in 2012 supplied an estimated 19% of global final energy consumption, where 

10% came from hydropower, wind, solar, geothermal, biofuels and modern biomass. Fuels 

can be substituted for them in areas such as power generation, cooling and heating and 

transport, [2]. See Figure 1.1 which showed explained above. 

Furthermore, they have been aided by innovation and continuing advances of 

technology so the price of this energy has declined meanwhile the capacity has grown in a 

short period of time. 

 

 

1.2. Wind Power 

Usually, energy technologies take around 25 years to move from the research and 

development to commercial applications. However, wind technology had grown to the 

commercial stage in barely 10 years, beginning in the mid-70s. Their development took 

much less time due to, among other factors, the government incentives.  

 

 

 
 

Figure 1.2: Wind Power Total World Capacity, 2000–2013, [2] 

 

 

Nowadays, an estimated 35 GW of wind power capacity was put into operation 

during 2013, increasing global wind capacity above 318 GW, as it is shown in the Figure 

1.2. The top ten countries for wind power capacity are China, United States, Germany, 

Spain, India, United Kingdom, Italy, France, Canada and Denmark; meanwhile the top 

wind turbine manufacturers are the following companies written in the Figure 1.3.   
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Figure 1.3: Market Shares of Top 10 Wind Turbine Manufacturers, 2013, [2] 

 

 

The cost concerned wind turbines has declined dramatically over the years due to 

the increasing knowledge and development engineering of this technology promoted by the 

competition among manufacturers. The major reasons for these reductions in cost are 

associated with the growth in size of turbines, the cost of raw materials needed, 

improvements in manufacturing and installation techniques and the increased complexity 

of the systems. As a result, the cost of electricity from wind power has fallen measurably, 

too. In this way, it is achieved cost competitiveness relative to fossil fuels. Actually, 

onshore wind-generated KWh is now cost competitive in some markets. The number of 

projects of offshore technology has increased but also the cots because it has reached 

greater depths and distance from shore. 

Figure 1.4 below describes the different cost of building a wind turbine. The most 

expensive parts are the tower, rotor blades and the gearbox which they add more than 50% 

of the total cost. In the case of the tower, it depends on the length as well as the material 

used (generally it is made of steel). Blades have increased in size over the years which it 

means a rise of prices. Finally, gearboxes need high cost of maintenance. In the future, 

they will be eliminated and replace it. Researches try to reduce the weight and complexity 

at the same time they look for increase the efficiency of the turbines.  

Wind power has negative environmental and social impacts related with visual and 

aesthetic obstruction, noise generation, land-use impacts, wildlife mortality such as birds or 

bats, and consumption of raw materials. Some of them can be mitigated through 

technological innovation. An example is build turbine blades with thinner trailing edges in 

order to improve the efficiency and to generate less noise. 
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Figure 1.4: Parts and cost of a wind turbine, [3] 
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Chapter 2 

Wind Turbine Classification  

 
2.1. Introduction 

Historically, wind power is one of the most ancient energy sources used by humans. 

Cultures such as Egyptians harnessed the force of the wind to propel boats along the Nile 

River around 5,000 B.C. as well as Persians pumped water and grinded grain using 

windmills between 500 and 900 B.C. Some years later, around 1,000 A.D. in The 

Netherlands, they were used to help drain lakes. Windmills convert wind power into 

rotational energy through the blades which are connected to a hub, [4]. The result of the 

development of mills over the time in order to produce electrical energy leads to the 

appearance of wind turbines. Examples of wind turbines and windmills are represented in 

Figure 2.1. 

 
 

Figure 2.1: Wind Turbine and Windmills, [5] 

 

Broadly, wind turbine are classified in two categories considering the orientation of 

the axis of rotation. On the one hand are Horizontal Axis of Wind Turbines (HAWT) and 

on the other hand are Vertical Axis of Wind Turbines (VAWT). The first one are used 

more often, because of that, they were chosen in this project. 
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2.2. VAWT 

Vertical Axis of Wind Turbine have the main rotor situated vertically, allowing the 

location of the heavy components such as the gearbox and the generator close to the 

ground and hence easily accessible in order to improve the maintenance. Even this 

arrangement allows the lack of the tower which is an advantage in relation to the cost but a 

disadvantage considering the energy achieved because the speed of the wind near the 

ground is lower due to it increases air friction with the ground. 

This kind of wind turbine is capable of catching the wind from all directions so that 

they do not require yaw mechanism. However, some designs are not self-starting and they 

need guy wires to hold them.  

There are two well-known types of VAWT:  

 

2.2.1. Rotor Darrieus 

The first one was developed by George Darrieus in France in 1927 and it consists 

of two blades or more disposed as the Figure 2.2 (above). It is based on the principle of the 

lift whose force propels the turbine moving the blades in a rotational way. Their efficiency 

can be compared to HAWT but it needs additional guy wires to ensure the stability. 

 

2.2.2. Rotor Savonious 

The Savonious turbine was introduced by S.J. Savonious in Finland in 1922 and it 

is distinguished by having two half-cylinder blades which are cut by a generatrix and 

laterally displaced. This kind of rotor operates using drag forces. It can be integrated into 

buildings but due to their low efficiency, they are barely used.  

 

Figure 2.2: VAWT (Darrieus above and Savonious below), [6] 



Wind Turbine Classification                                                                              ___ Chapter 2          
 

16 
 

2.3. HAWT 

The blades’ rotation of Horizontal Axis of Wind Turbines is perpendicular to the direction 

of the incident wind speed. The influence of a few characteristics on the aerodynamics of 

HAWT are described below. 

2.3.1. Number of blades 

The number of blades is directly related with the aerodynamic efficiency so as the number 

of blades in the wind turbine increases, the energy absorbed would be higher. This 

affirmation might suggests that an infinite number of blades will convert the whole energy 

from the wind; however, the efficiency gain increases in a diminishing manner and it has 

also a maximum value given by the Betz limit. A more efficiency turbine is obtained when 

it has slow turning and few blades (1, 2 or 3). 

Hence, when a 2-blade turbine is replaced to a 3-blade one, the efficiency gain is 

about 3%, whereas changing a 3-blade design to a 4-blade the gain is marginal, [4]. This 

concept is described in Figure 2.3. 

 

 

 

Figure 2.3: Efficiency gain as number of blades in wind turbine is increased 

 

 

‘¿Why is the 3-blade wind turbine chosen as the most common?’ In order to find a 

balance between the drag force and the torque. As a consequence of an increased number 

of blades, drag increases too, so that a bigger pole is needed because the wind turbine 

could fall down.  
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Describing below the advantages and disadvantages from the different types of rotors 

compared to the three-blade one, which they are 120 degrees among them. In the case of a 

wind turbine with only one blade, this design requires a counterweight at the other end to 

balance the rotor.  

The rotor has to be able to lean to avoid strong shaking each time the blade passes near 

the tower. Besides, it needs a higher rotational speed in order to produce the same the 

energy, implying more noise. However, it saves the cost of two blades and the weight of 

them, [7]. As the number of blades increased, the cost of the system increases drastically 

and the blades should be thinner to be aerodynamically efficient, [5]. 

Figure 2.4 describes the power coefficients (𝐶𝑝) of various types of wind turbine rotor 

versus tip-speed ratio (𝜆). These concepts are explained in the following chapter. 

 

 

Figure 2.4: The power coefficients (𝐶𝑝) of various types of wind turbine rotor plotted 

versus tip-speed ratio (𝜆), [8] 
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2.3.2. Blades orientation 

There are two types: upwind and downwind turbines.  

 

 Upwind Turbines: 

The shaft of the rotor and generator in upwind turbines are positioned horizontally and the 

wind hits blades before the tower, implying that the rotor is facing the wind. The wind 

shade behind the tower is avoided and it deviates from it before reaching. Because of that, 

there is a little loss of power whenever the rotor passes the tower.  

The main disadvantage of this design is the problem related with the bending back 

into the tower due to the striking of blade, so that, it is required to position the rotor far 

enough away from the tower. It needs a yaw mechanism in order to maintain the position 

of the rotor and an inflexible rotor.  

‘¿How to get flexibility in the rotor?’ Two different solves are describing below. 

The first one is the cone angle (0-3 degrees) which it provides certain angle to the rotor 

that allows to separate the blades from the tower while tilt angle (0-3 degrees) is the angle 

between the horizontal axis and the rotor shaft. The last one gives the machine some 

inclination, (see Figure 2.5). 

 

 Downwind Turbines: 

In this case, the wind has to pass through the tower before striking the blades. The rotor 

can be flexible due to there is no danger of a tower strike. However, there are fluctuations 

caused by the tower shade. 

 

 
 

Figure 2.5: (a) Downwind turbine and (b) Upwind turbine
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Chapter 3 

Theoretical Formulation of the Problem 

 

3.1. Introduction 

This chapter sets out the basis of the aerodynamics of HAWTs and also describes the main 

analyses of the aerodynamic behavior in steady wind conditions without any specific 

turbine design, just by considering the energy extraction process. Accordingly, some 

knowledge of fluid and aircraft dynamics are required before, in order to understand it. 

 

 

3.2. The Wind Resource 

The energy available in the wind varies as the cube of the wind speed, so an understanding 

of the characteristics of the wind resource is critical to all aspects of wind energy 

exploitation, from the identification of suitable sites to the design of wind turbines. From 

the point of view of wind energy, the most striking characteristic of the wind resource is its 

variability. The wind is highly variable, both geographically and temporally, [9].  

 

𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐴𝑢3 

(3.1) 

 

The Earth’s surface has irregularities and inequalities of heating, consequently of 

these features, the wind flow is also modified. Figure 3.1 shows that the wind varies 

geographically and Figure 3.2 is an example of the three types of terrains which describes 

that the wind speed increases with altitude due to the reduction of the friction. According 

with that, an exponential variation in wind speed with height is defined. 

 

𝑢𝑡𝑜𝑝 = 𝑢𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (
ℎ𝑡𝑜𝑝

ℎ𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)

𝛼𝐻𝑒𝑙𝑙𝑚𝑎𝑛

 
(3.2) 

 

The parameter 𝛼𝐻𝑒𝑙𝑙𝑚𝑎𝑛  is called Hellman’s exponent and it varies according to the 

rugosity of the terrain. In the case of a wind turbine, the ℎ𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 will be the low 

of the blade. 
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Figure 3.1: Global air circulation, [10] 

 

 

 
Figure 3.2: Wind profile depending of the type of terrain, [11] 

 

 

The wind speed varies also according to the time, during the year because of 

seasonal changes and also along the day.  
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All these changes add significantly to the uncertainty in predicting the energy 

output. However, variations during the year can be well characterized in terms of a 

probability distribution. The Weibull distribution provides a reasonably good 

representation of the variation wind in relation of the annual hours, [9]. This distribution 

takes the form 

 

𝐹(𝑈) = 𝑒𝑥𝑝 (−(
𝑈

𝑐
)
𝑘

) 
(3.3) 

 

where 𝐹(𝑈) is the fraction of time for which the hourly mean wind speed exceeds 𝑈. It is 

characterized by two parameters: a ‘scale parameter’ 𝑐 and a ‘shape parameter’𝑘. An 

example of Weibull distributions is represented in the Figure 3.3. 

 

 
 

Figure 3.3: Example Weibull distributions, [9] 

 

 

 

3.3. Betz Law 

Wind turbines extract energy by slowing down the wind, so that the speed of the wind 

before reaching the blade is higher and when it passes through the blade, braking occurs 

while allowing a continuation of the flow. However, wind turbines cannot extract all the 

kinetic energy from the wind since according to the theory established by the German 

engineer Betz, there is a limit in the quantity of energy absorbed. This limit is defined by a 

parameter denoted as the power coefficient 𝐶𝑝, which maximum value is 0.593. 



Theoretical Formulation of the Problem                                                        ___ Chapter 3          
 

22 
 

Betz limit indicates the maximum energy absorbed and therefore, the maximum value 

of the efficiency of a turbine which cannot exceed 59.3% efficiency, as noted above. Betz 

equation deals with the wind speed upstream of the turbine 𝑈∞ and the downstream wind 

speed 𝑈𝑤. To develop the equation, it is necessary to make some assumptions and to 

choose a control volume, which are specified below and represented in Figure 3.4. 

 

 It is considered an ideal rotor, meaning that:  

1. It does not possess a hub. 

2. It has got an infinite number of blades. 

3. The value of the drag resistance is zero, implying that the thickness is also 

zero. 

 

 The wind speed must slow down but only the mass of air which pass through the 

rotor is affected. Besides, it is also considered uniform and it is denoted as 𝑈𝐷. In 

this way, the control volume is forming by a long stream-tube of circular cross 

section where 𝑈∞ is the upstream speed and 𝑈𝑤 is downstream wind speed.  

Therefore 𝑈∞ > 𝑈𝑤. 
 

 
 

Figure 3.4: Stream-tube chosen as a control volume, [9] 

 

 The flow into and out of the rotor is assumed to be axial. Swept area beyond the 

control volume is uniform. The air cross sectional area swept upwind is designated 

as 𝐴∞, and downwind as 𝐴𝑤 whereas the cross-section blade is 𝐴𝑑.  

As a result 𝐴𝑤 > 𝐴∞. 
 

 It is incompressible flow (density remains constant) and there is no heat transfer 

between the rotor and the flow, [7]. 

 

 The ideal model is shown in the Figure 3.5. 
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Figure 3.5: Ideal model used in Betz law, [12] 

 

Applying the equation of conservation of mass, the same volume of fluid must flow in both 

sections 𝐴∞ and 𝐴𝑤 in a given time interval, which implies that 

�̇� = 𝜌𝐴∞𝑈∞ = 𝜌𝐴𝐷𝑈𝐷 =  𝜌𝐴𝑤𝑈𝑤 (3.4) 

 

Power of the rotor is represented by the equation (3.6) given below,   

𝐹 = 𝑚 ∙ 𝑎 = 𝑚
𝑑𝑈

𝑑𝑡
= �̇� ∙ 𝛥𝑈 = �̇�(𝑈∞ − 𝑈𝑤) = 𝜌𝐴𝐷𝑈𝐷(𝑈∞ − 𝑈𝑤)  (3.5) 

𝑑𝐸 = 𝐹 ∙ 𝑑𝑥   ⇒    𝑃 =
𝑑𝐸

𝑑𝑡
= 𝐹

𝑑𝑥

𝑑𝑡
=  𝜌𝐴𝐷𝑈𝐷

2(𝑈∞ − 𝑈𝑤)  (3.6) 

 

Power of the wind is related to kinetic energy, as well 

𝑃𝑤𝑖𝑛𝑑 =
d𝐸

d𝑡
=

𝑑(
1

2
𝑚∙𝛥𝑈2)

𝑑𝑡
=

1

2
�̇�(𝑈∞

2 − 𝑈𝑤
2) =

1

2
𝜌𝐴𝐷𝑈𝐷(𝑈∞

2 − 𝑈𝑤
2)   

 

(3.7) 

 
 

Equating the two equations of the power given in (3.6) y (3.7), in order to obtain the wind 

velocity at the rotor 

𝑃 =
1

2
𝜌𝐴𝐷𝑈𝐷(𝑈∞

2 − 𝑈𝑤
2)  = 𝜌𝐴𝐷𝑈𝐷

2(𝑈∞ − 𝑈𝑤)   (3.8) 

1

2
(𝑈∞

2 − 𝑈𝑤
2) =

1

2
(𝑈∞ − 𝑈𝑤)(𝑈∞ + 𝑈𝑤)  (3.9) 

1

2
(𝑈∞ − 𝑈𝑤)(𝑈∞ + 𝑈𝑤)  = 𝑈𝐷(𝑈∞ − 𝑈𝑤),    Ɐ 𝜌, 𝑈𝐷 , 𝐴𝐷 ≠ 0 (3.10) 

𝑈𝐷 =
1

2
(𝑈∞ + 𝑈𝑤),     Ɐ (𝑈∞ − 𝑈𝑤) ≠ 0, 𝑜𝑟 𝑈∞ ≠ 𝑈𝑤  (3.11) 

 

The equation (3.11) shows that the wind velocity at the rotor could be taken as the 

average of the upstream and downstream wind velocities and besides, the flow must be 

maintained to extract energy from the wind stream. If the power is represented in terms of 

the upstream and downstream velocities, it might be obtained the maximum value of the 

extracted energy. 
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𝑃 =
1

2
𝜌𝐴𝐷𝑈𝐷(𝑈∞

2 − 𝑈𝑤
2) =

1

2
𝜌𝐴𝐷

1

2
(𝑈∞ + 𝑈𝑤)(𝑈∞

2 − 𝑈𝑤
2)   

(3.12) 

Developing the equation (3.12), 

𝑃 =
1

4
𝜌𝐴𝐷(𝑈∞

3 + 𝑈∞
2𝑈𝑤 − 𝑈∞𝑈𝑤

2 − 𝑈𝑤
3)

=
1

4
𝜌𝐴𝐷𝑈∞

3 (1 +
𝑈𝑤

𝑈∞
−

𝑈𝑤
2

𝑈∞
2 −

𝑈𝑤
3

𝑈∞
3)  

  

 

(3.13) 

 

A parameter b could be defined as the ratio between 𝑈𝑤 and 𝑈∞, it also can be introduced 

in the expression to obtain the maximum power, 

𝑑𝑃(𝑏)

𝑑𝑏
=

𝑑𝑃(1+𝑏−𝑏2−𝑏3)

𝑑𝑏
= 0   ⇒    𝑏𝑚𝑎𝑥 =

𝑈𝑤

𝑈∞
|
𝑚𝑎𝑥

=
1

3
  

 

(3.14) 

As a result, 

𝑃𝑚𝑎𝑥 =
8

27
𝜌𝐴𝐷𝑈∞

3 =
16

27
(
1

2
𝜌𝐴𝐷𝑈∞

3)  (3.15) 

  

𝐶𝑝𝑚𝑎𝑥
=

𝑃𝑚𝑎𝑥

𝑃𝑤𝑖𝑛𝑑
=

16

27
(
1

2
𝜌𝐴𝐷𝑈∞

3)

1

2
𝜌𝐴𝐷𝑈∞

3 =
16

27
  

(3.16) 

 

Figure 3.6 is represented below to describe the behavior of 𝐶𝑝 versus the parameter b. 

 
 

Figure 3.6: Betz limit 
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3.4. Actuator Disc Theory 

This theory combines the momentum and mass conservation, as well as it takes into 

account the effects of a rotational wake. 

3.4.1. Linear Momentum 

A one-dimensional analysis of a wind turbine rotor, which is represented by an 

infinitesimal disc area  𝐴, is performed. It is moving through an incompressible, isentropic, 

no-rotational and inviscid fluid. Besides, frictional forces between fluid and disc are 

despised, and fluid velocity is considered uniform along parallel sections of the rotor.  

Upstream of the disc the stream-tube has a cross-sectional area smaller than that of 

the disc and an area larger than the disc downstream. The expansion of the stream-tube is 

because the mass flow rate must be the same everywhere so the mass conservation could 

be established, [9]. Related the velocity and the pressure, the flow speed decreases slowly 

when it passes through the disc meanwhile the pressure undergoes a sharp decline. Thus, 

the stream-tube is well-defined as shown in the Figure 3.7. 

 

 

 
 

Figure 3.7: Concept of actuator disc theory and stream-tube, [9] 

 

 

The mass of air which passes through a given cross-section of the stream-tube in a 

unit length of time is 𝜌𝐴𝑈, where 𝜌 is the air density, 𝐴 is the cross-sectional area and 𝑈 is 

the flow velocity. The symbol ∞ refers to conditions far upstream, 𝐷 refers to conditions at 

the disc and 𝑤 denotes to conditions in the far wake. 

 

�̇� = 𝜌𝐴∞𝑈∞ = 𝜌𝐴𝐷𝑈𝐷 =  𝜌𝐴𝑤𝑈𝑤 (3.17) 

The actuator disc induces a velocity variation which must be superimposed on the 

free stream velocity, where 𝑎 is called inflow factor. 

 

𝑈𝐷 = 𝑈∞(1 − 𝑎) (3.18) 
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3.4.2. Simple Momentum Theory 

There is a pressure difference across the actuator disc because the stream-tube is 

completely surrounded by air at atmospheric pressure, which gives zero net force. 

Therefore, 

 

(𝑝𝐷
+ − 𝑝𝐷

−)𝐴𝐷 = (𝑈∞ − 𝑈𝑤)𝜌𝐴𝐷𝑈∞(1 − 𝑎) (3.19) 

 

To obtain the pressure difference  (𝑝𝐷
+ − 𝑝𝐷

−), Bernoulli’s equation is applied separately 

to the upstream and downstream sections of the stream-tube because the total energy is 

different in each section. Assuming the flow to be incompressible (𝜌∞ − 𝜌𝐷) and 

horizontal (ℎ∞ − ℎ𝐷) then, 

 

Upstream,  

 
1

2
𝜌𝑈∞

2 + 𝑝∞ =
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
+ 

(3.20) 

 

 

Similarly, downstream, 

 
1

2
𝜌𝑈𝑤

2 + 𝑝∞ =
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
− 

(3.21) 

 

 

Subtracting these equations,  

 

(𝑝𝐷
+ − 𝑝𝐷

−) =
1

2
𝜌(𝑈∞

2 −𝑈𝑤
2 ) 

(3.22) 

 

Equation 3.19 then gives, 

 
1

2
𝜌𝐴𝐷(𝑈∞

2 −𝑈𝑤
2 ) = (𝑈∞ − 𝑈𝑤)𝜌𝐴𝐷𝑈∞(1 − 𝑎) 

(3.23) 

 

and so, 
 

𝑈𝑤 = (1 − 2𝑎)𝑈∞ (3.24) 

That is, half the axial speed loss in the stream-tube takes place upstream of the actuator 

disc and half downstream, [9]. 

 

 

 

3.4.3. Power Coefficient 

The force on the air, called also torque, becomes, from Equation 3.19 

 

𝑇 = (𝑝𝐷
+ − 𝑝𝐷

−)𝐴𝐷 = 2𝜌𝐴𝐷𝑈∞
2 𝑎(1 − 𝑎) (3.25) 
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This force is concentrated at the actuator disc and the work (power extraction form the 

air) done by the force is  

 

𝑃 = 𝑇𝑈𝐷 = 2𝜌𝐴𝐷𝑈∞
3 𝑎(1 − 𝑎)2 (3.26) 

 

Thus, the power coefficient is defined as  

 

𝐶𝑝 =
𝑃

𝑃𝑤𝑖𝑛𝑑
= 4𝑎(1 − 𝑎)2 (3.27) 

 
 

 

3.5. Rotor Disc Theory 

The rotation of the wind turbine blades employs an angular velocity 𝛺 about an axis 

normal to the rotor plane and parallel to the wind direction. The blades sweep out a disc 

and develop a pressure difference across the disc, which is responsible for the loss of axial 

momentum in the wake. As well as a thrust, the rotor experiences a torque in the direction 

of rotation that will oppose the torque that the generator exerts.  

 

3.5.1. Wake Rotation 

The exertion of a torque on the rotor disc by the air passing through it requires an equal 

and opposite torque to be imposed upon the air. The consequence of the reaction torque is 

to cause the air to rotate in a direction opposite to that of the rotor; the air gains angular 

momentum and so in the wake of the rotor disc the air particles have a velocity component 

in a direction which is tangential to the rotation as well as an axial component, [9]. 

Air rotates because of the forces momentum of the blades. The total rotation of the air 

is made by an induced rotation before the collision with the blades and the rotation after 

passing through the blades. Both rotations are considered equal as an approximation, (see 

Figure 3.8). 

Thus, the air rotation at the entrance of the blades is 𝛺𝑎′ and at the output of the blades 

is 2𝛺𝑎′, both in the opposite direction of the blades rotation. 
 

 

 
 

Figure 3.8: Concept of rotor disc theory 
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3.6. Blade Element Momentum (BEM) Theory 

Aerodynamic forces (lift and drag) on the span-wise elements of radius 𝑟 and length 𝛿𝑟 of 

the several blades of a wind turbine rotor are responsible for the rate of change of axial and 

angular momentum of all of the air which passes through the annulus swept by the blade 

elements. In addition, the force on the blade elements caused by the drop in pressure 

associated with the rotational velocity in the wake must also be provided by the 

aerodynamic lift and drag, [9]. 

 

3.6.1. Blade Element Theory 

Blade element theory is a 2D analysis about the wind turbine blades, which takes into 

account the design and the number of blades in order to obtain the torque and the power. It 

is based on the actuator disc and rotor disc theories. 

It is assumed that the forces on a blade element can be calculated by using an angle 

of attack. The velocity components of the wind speed, the flow factors and the rotational 

speed of the rotor determine the angle of attack. Having information about coefficients 𝐶𝐿 

and 𝐶𝐷, which vary with the angle of attack, the forces on the blades for given values of 𝑎 

and 𝑎′ can be determined, (see Figure 3.9). 

 

 
 

Figure 3.9: Blade element sweeps out an annular ring, [9] 

 

 

Consider a turbine with 𝐵 blades of tip radius 𝑅 each, with chord 𝑐 and set pitch 

angle 𝛽 measured between the airfoil zero lift line and the plane of the disc. Both the chord 

length and the pitch angle may vary along the blade span. Let the blades be rotating at 

angular velocity 𝛺 and let the wind speed be 𝑈∞, [9]. 
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Figure 3.10 shows all the velocities and forces relative to the blade chord line at 

radius 𝑟. From this picture the resultant relative velocity at the blade is 

 

𝑊 = √𝑈∞
2 (1 − 𝑎)2 + 𝑟2𝛺2(1 + 𝑎′)2 (3.28) 

 

That acts at an angle 𝜙 to the plane of rotation such that 

 

sin𝜙 =
𝑈∞(1 − 𝑎)

𝑊
      and      cos 𝜙 =

𝑟𝛺(1 + 𝑎′)

𝑊
        

(3.29) 

 

 

 
 

Figure 3.10: Blade element velocities and forces, [9] 

 

 

The angle of attack α is then given by 

 

𝛼 = 𝜑 − 𝛽 (3.30) 

Following the representation of the forces in Figure 3.10, the lift force (equation (3.31)) 

and the drag force (equation (3.32)) on a span-wise length 𝛿𝑟 of each blade are  

 

𝛿𝐿 =
1

2
⍴𝑊2𝑐𝐶𝐿𝛿𝑟 

(3.31) 

 

𝛿𝐷 =
1

2
⍴𝑊2𝑐𝐶𝐷𝛿𝑟 

(3.31) 

 

The axial thrust (𝐹𝑎𝑥) on an annular ring of the actuator disc is 

 

𝛿𝑇 = 𝛿𝐿 cos𝜙 + 𝛿𝐷 𝑠𝑒𝑛 𝜙 =
1

2
⍴𝑊2𝐵𝑐(𝐶𝐿 cos𝜙 + 𝐶𝐷𝑠𝑒𝑛 𝜙)𝛿𝑟 

(3.32) 

 

The tangential force (𝐹𝑡𝑎𝑛) on an annular ring of the actuator disc is 

 

𝛿𝐹𝑡𝑎𝑛 =
1

2
⍴𝑊2𝐵𝑐(𝐶𝐿 sin𝜙 + 𝐶𝐷𝑐𝑜𝑠 𝜙)𝛿𝑟 

(3.33) 
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The torque on an annular ring is 

 

𝛿𝑄 = 𝑟 𝛿𝐹𝑡𝑎𝑛 =
1

2
⍴𝑊2𝐵𝑐𝑟(𝐶𝐿 sin𝜙 + 𝐶𝐷𝑐𝑜𝑠 𝜙)𝛿𝑟 

(3.34) 

 

The power on an annular ring is 

 

𝛿𝑃 = 𝛺𝑟 𝛿𝐹𝑡𝑎𝑛 =
1

2
⍴𝑊2𝐵𝑐𝑟𝛺(𝐶𝐿 sin𝜙 + 𝐶𝐷𝑐𝑜𝑠 𝜙)𝛿𝑟 

(3.35) 

 

Figure 3.11 shows the 𝐹𝑡𝑎𝑛 and 𝐹𝑎𝑥 on a wind turbine. 

 

 

 
 

Figure 3.11: Forces on a wind turbine, [7] 
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3.6.2. BEM Theory 

The basic assumption of the BEM theory is that the force of a blade element is solely 

responsible for the change of axial momentum of the air which passes through the annulus 

swept by the element. It is, therefore, to be assumed that there is no radial interaction 

between the flows through contiguous annuli, [9]. 

 Taking into account these specifications and combining the equations developed in 

the actuator disc and rotor disc theories with the blades element theory, it is obtained  

 
𝑎

1 − 𝑎
=

𝐶𝐿 cos𝜑 + 𝐶𝐷𝑠𝑖𝑛𝜑

4𝑠𝑖𝑛2𝜑
(

𝑐𝐵

2𝜋𝑟
) (3.36) 

 

 

𝑎′

1 + 𝑎′
=

𝐶𝐿 sin𝜑 + 𝐶𝐷𝑐𝑜𝑠𝜑

4𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑
(

𝑐𝐵

2𝜋𝑟
) 

(3.37) 

 

  

Essentially, these equations above are used to design the wind turbine blades 

through an iterative process. Blade element momentum theory is utilized to determine the 

shape of the blade because it allows to find a twist, chord and airfoil configuration for the 

specifications required about the wind turbine desired.  

 

 

 

3.7. Aerodynamic Concept of Wind Turbine 
 

3.7.1. Aerodynamic flow  

As airflow moves past the wind turbine, the molecules of the fluid near it are 

disturbed, introducing the concept of boundary layer and forcing blades to move. This 

creates a thin layer of fluid near the surface called boundary layer in which the velocity 

changes from zero at the surface to the free stream value away from the surface, [13].  

 

 

Figure 3.12: Airflow through a wind turbine, [14] 
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The boundary layer is studied to analyze the variation of velocities in the contact 

zone between the fluid and a solid. The presence of this layer is mainly due to the existence 

of the viscosity, inherent property of any fluid. Varying speeds, as the Bernoulli principle, 

involves a variation in the fluid pressure, which may lead to impact forces such as lift and 

drag, (see Figure 3.12). 

 

 

Figure 3.13:.Real fluid about an airfoil, [15] 

 

Figure 3.13 shows the boundary layer of an airfoil. Initially, near the leading edge 

the airflow is laminar, but it is decelerated along the downstream because of the viscosity. 

The laminar boundary layer reaches to a transitional point in which it becomes a turbulent 

boundary layer with random motion. Finally the turbulent flow stops or reverses, causing 

the boundary layer breaks loose and flow no longer follow the shape of the surface. Thus, 

flow field is disrupted because of viscosity to extent that a pressure drag arises, [15]. This 

phenomenon is not desirable because wind turbines using the lift force to extract energy 

instead of the drag force.   

A dimensionless quantity called Reynolds number is widely used to predicting flow 

patterns in different fluid situation and it also has an important effect on the boundary 

layer. Laminar flow is related with low Reynolds numbers and it is characterized by 

smooth and constant fluid, while turbulent flow occurs at high Reynolds numbers and 

shows chaotic eddies and vortices, [16]. 

 

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
=

𝑈 ∙ 𝐿

𝜈
=

𝑈 ∙ 𝐿 ∙ 𝜌

µ
 (3.38) 

 

where 𝑈 and 𝐿 are the velocity and length that characterize the scale of the flow, 𝜈 is the 

kinematic viscosity, 𝜌 is the fluid density and µ is fluid viscosity. 
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In wind turbines, generally are chosen airfoils which generate a turbulent boundary 

layer in order to delay that the boundary layer breaks loose. The behavior of the airflow 

around the wind turbine blades is described in the Figure 3.14. The effects of the boundary 

layer on lift are contained in the lift coefficient and the effects on drag are contained in 

the drag coefficient, whose formulas are detailed below. 

 

 

 

Figure 3.14: Airflow around the wind turbine blades, [17] 

 

 

 

3.7.2. Aerodynamic forces 

The transmission of mechanical forces between a solid body and a fluid is at every 

point on the surface of the body and it occurs through the fluid pressure. In the case of a 

wind turbine, the action of the relative wind which it is composed by the natural wind plus 

wind caused by rotor motion and rotor-induced flow, generates an aerodynamic force on 

the rotating blades. 

The reacting force 𝐹 is decomposed into a perpendicular and a parallel direction to 

the relative wind (𝑊), calling these components lift (𝐿) and drag (𝐷), respectively. The lift 

is the force used to overcome gravity. Besides, these forces depends on the angle between 

the chord line of the blade and the relative wind, which is termed the angle of attack.  

 

http://www.grc.nasa.gov/WWW/k-12/airplane/liftco.html
http://www.grc.nasa.gov/WWW/k-12/airplane/dragco.html
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These forces are given by 

𝐿 =
1

2
𝑐𝐿⍴𝐴𝑊2     [𝑁 𝑚⁄ ] ;    𝐶𝐿 =

𝐿 𝑙⁄

1
2 ⍴𝑐𝑊2

=
𝐿𝑖𝑓𝑡 𝑓𝑜𝑟𝑐𝑒 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ⁄

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑜𝑟𝑐𝑒 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔ℎ𝑡⁄
  (3.39) 

 

𝐷 =
1

2
𝑐𝐷⍴𝐴𝑊2     [𝑁 𝑚⁄ ] ;    𝐶𝐷 =

𝐷 𝑙⁄

1
2

⍴𝑐𝑊2
=

𝐷𝑟𝑎𝑔 𝑓𝑜𝑟𝑐𝑒 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ⁄

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑜𝑟𝑐𝑒 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔ℎ𝑡⁄
  (3.40) 

 

where ⍴ is the density of air, 𝑐𝐿and 𝑐𝐷 are the lift and drag coefficients, 

respectively; and finally, c is the length of the airfoil (denoted also by chord). The forces 

and velocities over the profile are represented in Figure 3.15, below. 

 

 

 

Figure 3.15: Forces and velocities over the profile, [7] 

 

 

 

3.8. Problem Specification 

Making of analytical models using a series of parameters or variables allows an easier 

simulation of the element’s behavior. One critical task in any wind power studies involves 

the accurate modelling of the fluid passing around wind turbines blades. The airflow at the 

turbine hub is different than the airflow at the tip of the blades and further downstream the 

turbine. However, Computational Fluid Dynamics (CFD) analysis and powerful computers 

with high memory capacity are now available, thus make it possible to simulate flow 

effects on wind turbines.  
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But even using CFD codes, the aerodynamics of HAWT are still not 

straightforward. Hence, the motivation of this project consist of studying the behavior of 

the wind turbine blades comparing the results obtained according to the theory and using 

ANSYS, in order to demonstrate how these models can be used to study wind turbine 

operation issues.  

Furthermore, they also can be utilized to perform real studies in the industry during 

the preliminary stage of design of HAWT blades, making the studies more powerful and 

less tedious than using classical aerodynamic theories. The results calculated using 

classical aerodynamic theories are compared with the numerical results from the software 

in order to evaluate them and calculate the errors committed. 

From a modelling standpoint, wind turbines may be represented as an interaction 

between aerodynamic, mechanical, and electrical components; as illustrated in Figure 3.16, 

which shows the four building blocks required. The electrical and the control blocks are 

not going to develop in this project, just only being mentioned according to a global vision 

of the problem. 

 

Figure 3.16: Block diagram of a wind turbine, [18] 

 

 

Before starting to define the mathematical characteristics of the project, it is 

essential to describe the procedure followed. Simulations of a suitable aerodynamic model 

have been developed using Fluent and Mechanical included in the software ANSYS. The 

analyses are divided in two parts, based on the tutorial about the deformation of a wind 

turbine blade, contained in the web of the Cornell University. Part 1 of the tutorial uses 

ANSYS Fluent to develop the aerodynamics loading on the blade. In part 2, ANSYS 

Mechanical is used to determine stresses and deformations on the blade. 

This project aims to undertake aerodynamic analysis of a downwind horizontal axis 

wind turbine (HAWT), which has a rotor made up of three blades. Each one is 42.3 meters 

long and starts with a cylindrical shape at the root and then transitions to the airfoils S818, 

S825 and S826 for the root, body and tip, respectively, [19]. 
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Nowadays, the majority of the airfoils used in HAWTs are originally developed for 

aircraft. Such airfoils family called NREL is chosen because it is designed specifically for 

horizontal axis wind turbines as they reduce annual energy losses caused by the roughness, 

with respect to the airfoils previously used in wind turbines. The profiles known as NACA 

(National Advisory Committee for Aeronautics) series have been discarded as a result of 

the fast deterioration of their performance characteristics when their thickness increased, 

[20]. Figure 3.17 shows the NREL families. 

 
 

Figure 3.17: NREL families of profiles, [20] 

 

The blade also has pitch to vary as a function of radius, giving it a twist and the 

pitch angle at the blade tip is 4 degrees. It was created to be similar in size to a GE 1.5XLE 

turbine whose specification sheet is included in the annexes, it is made of orthotropic 

composite material and it has a varying thickness. The spar inside provides rigidity to the 

blade, [19]. 

According to behavior of the wind, it is considered turbulent flow towards the 

negative z-direction whose value is assumed 12 𝑚 𝑠⁄  as it is shown in the Figure 3.18. 

Besides, it makes the blade rotate at an angular velocity of -2.22 rad/s about the z-axis and 

the tip speed ratio is 8, all of them reasonable values for a turbine of this size. 

 

 
Figure 3.18: Blade in ANSYS, [1]
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Chapter 4 

Aerodynamic Model of Wind Turbine 

 

4.1. Introduction 

Despite being a relatively new technology, there are a considerable amount of resources 

and important engineering information which are being used for research on harnessing the 

wind energy efficiently. Out of all the factors considered in these studies, an accurate wind 

turbine blade design is essential in order to improve the efficiency. 

According to [9], a successful blade design must satisfy a wide range of objectives, 

which are summarized as follows: 

1. Maximize annual energy yield for the specified wind speed distribution. 

2. Limit maximum power output (in case of stall regulated machines). 

3. Resist extreme and fatigue loads. 

4. Restrict tip deflections to avoid blade/tower collisions (in the case of upwind 

machines). 

5. Avoid resonances. 

6. Minimize weight and cost. 

The design process can be divided into two stages: the aerodynamic design, in which 

objectives 1 and 2 are satisfied, and the structural design (the latter is detailed in chapter 5). 

The aerodynamic design encompasses the concept of the blade geometry, defined by the 

airfoil family and the chord, twist and thickness distributions. Besides, it is also related 

with the behavior between the airflow and blades. 

This project uses ANSYS software in order to carry out the two stages. First of all, the 

blade geometry is performed in CAD following the data detailed in [19]. Then, 

aerodynamic design is developed and finally, the structural model. See Figure 4.1 which 

describes the process followed. 

This chapter intends to understand the steady aerodynamics associated with wind 

turbines by performing CFD simulations of the flow past a wind turbine. BEM is a quite 

commonly method used to study the aerodynamic part. However, there are others as CFD 

models, which are more sophisticated and computationally much more expensive. Both are 

being developing and then, a comparison between them are included in the conclusions 

part of the project. 
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Even using CFD codes, the flow over wind turbines is still a challenging numerical 

problem because it must take into account factors as variation of the flow parameters in 

length scales, turbulent flow over the blade sections, complicated blade geometry with 

changes in angle of attack and so on. 

 

 
 

Figure 4.1: Process followed in the project 

 

Hence, it is necessary to understand carefully the blades environment which is 

defined by wind speeds and boundary conditions of the domain, as well as by their external 

morphology related with the dimensions. It is based on the first part of the tutorial 

mentioned above in the previous chapter and the overwhelming majority of the initial data 

are detailed in section 3.1 called Problem Specification. Figure 4.2 below shows the initial 

screen of ANSYS Fluent and all the sections which are described in the followings points 

of the chapter. 

All this information is introduced in ANSYS Fluent following some steps fixed by 

the software (see Figure 4.2). As explained before, ANSYS software is chosen because it 

allows carry out Computational Fluid Dynamics (CFD) simulations in order to investigate 

in detail inside the fluid domain around the blade virtually, not physically. Besides, it 

develops mesh simulations and improves outcomes testing changes in parameters that 

would be impossible to do in a short period of time otherwise. 
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Figure 4.2: Initial screen from ANSYS Fluent 

   

 

 

4.2. Geometry 

The first step in ANSYS Fluent is denoted as Geometry and its aim is drawing the fluid 

domain. It is modelled only the 1/3 of the full domain using periodicity assumptions, 

described in the Figure 4.3 below, [19]. Following this assumptions, only one of the blades 

is represented. 

 Inside Geometry part, the blade geometry is imported. It is important to note that 

using CFD analysis, the body must be locked in a virtual wind tunnel, where the boundary 

conditions are applied. The boundary conditions on the fluid domain are showed in Figure 

4.4 and described as follow: 

 Inlet: Velocity of 12 𝑚/𝑠 with turbulent intensity of 5% and turbulent viscosity 

ratio of 10. 

 Outlet: Pressure of 1 𝑎𝑡𝑚. 

 Blade: No-slip. 

 Side Boundaries: Periodic.  
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Figure 4.3: Periodicity assumptions, [19] 

 Once drawn the fluid volume using sketches, it is necessary to indicate its 

material as a fluid instead of solid in the software and then, subtract the blade from the 

fluid body. 

 

 
 

Figure 4.4: Fluid domain modelling in ANSYS Fluent 
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4.3. Mesh 

The second step is creating the Mesh. Meshing is a discrete representation of the geometry 

and it involves grid generation and converting the grid into a format which can be 

understood by the CFD solver. Essentially, it partitions space into elements or cells over 

which the equations can be approximated. Mesh is represented in Figure 4.5, below. 

 

 
 

Figure 4.5: Mesh part in ANSYS Fluent 

 

Fluent converts the differential equations based on the governing equations 

(continuity and Navier-Stokes) into a set of algebraic equations. Actually, the surface 

wrapping algorithm quickly creates an airtight envelope based on the selected bodies. 

Inverting these algebraic equations gives the value of (u, v, w, p, k, and ω) at the cell 

centers, [19]. Hence, the total number of cells in the mesh are around 400,000 cells, (see 

Figure 4.6). 

 

 
 

Figure 4.6: Details of the Mesh in ANSYS Fluent 
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This project uses structured grids based on a collection of regular repeating 

elements, represented by tetrahedral elements in 3D. A tetrahedron has 4 vertices, 6 edges, 

and it is bounded by 4 triangular faces (see Figures 4.5 and 4.7), so the fluid domain is 

generated automatically as tetrahedral shaped. 

Creating an accurate mesh is the most critical step in the simulation because the 

mesh quality can be conclusively. The density of the mesh is required to be sufficiently 

high in order to capture all the flow features but at the same time, it must ensure that no 

unnecessary details of the flow are calculated because the CPU can be burdened. 

 

 
 

Figure 4.7: Tetrahedral shaped cells in ANSYS Fluent 

 

 

Getting good quality (less skewed elements) required a fair amount of experience, 

time and effort. Hence, in order to improve the overall accuracy of the CFD solution, these 

grids can be made finer by stretching in a particular direction, getting lower skewness 

using an advanced size function to proximity and curvature. The relevance center is also 

changed to medium, (see Figure 4.8).  

 

 

 

 

Figure 4.8: Results of changing Advanced Size Function as a Proximity and Curvature and 

Relevance Center to medium in ANSYS Fluent 
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It is extremely important to judge the quality of the mesh, because using the rough 

grid mesh (with less cell) can lead to incorrect simulation results, as it is written before. 

Studies as skewness and orthogonal quality are chosen. Generally, it is advised to keep the 

minimum orthogonally greater than 0.15 and maximum skewness lower than 0.95, (see 

Tables 4.1 and 4.2), [19].  

 

Table 4.1: Skewness range values 

Skewness:           

Outstanding Very Good Good  Sufficient Bad Inappropiate 

0-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.98 0.98-1.00 

 

 

Table 4.2: Orthogonal quality range values 

Orthogonal Quality:       

Outstanding Very Good Good  Sufficient Bad Inappropiate 

0.95-1.00 0.70-0.95 0.20-0.70 0.15-0.20 0.001-0.15 0-0.001 

 

 

Figure 4.9 illustrates the skewness study obtained by using the data of the model. 

Evaluating the skewness analyses data have been done taking into account the range of 

values presented in Table 4.1. According with this explanation, there is an evidence that 

the results represented in the graphic below are adjusted with the outstanding and very 

good range values of the skewness analyses.   

 

 

 
 

Figure 4.9: Skewness in ANSYS Fluent 
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Figure 4.10 describes the orthogonal quality study and it shows that the data 

complies the requirements of the outstanding and very good range values of this analyses, 

which are detailed in Table 4.2.  

 

 
 

Figure 4.10: Orthogonal Quality in ANSYS Fluent 

 

4.4. Physics Setup 

This section is concerned with the physics governing equations. First of all, a few settings 

must be specified such as the precision and the procession options.  

Double precision is selected in order to get a more accurate solution. Between the 

two different processing options, the serial option uses only one core to solve the solution 

and it is likely the best choice for small models. However, aerodynamic model of wind 

turbine blades is considered a large model, because of the huge number of cells which 

conform the mesh. Hence, the parallel option is chosen. This one allows to use multiple 

cores in order to solve the numerical problems in a faster way and because of that, it is 

typically the best option for large models. All these settings are shown in Figure 4.11. 

 

 
 

Figure 4.11: Setup settings in ANSYS Fluent 
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Afterwards, the conditions which affect the mathematical model of this specific 

problem are established. The CFD solver uses a steady time, pressure-based type and 

absolute velocity formulation, (see Figure 4.12). The concept of steady state is related with 

dynamic equilibrium. This means that the properties of the airflow, such as ⍴ and the 

pressure, are unchanging in time. Pressure-based type and absolute velocity formulation 

are chosen because the data of boundary conditions of the model (see Section 4.2) are 

based on these magnitudes. 

 

 
 

Figure 4.12: Solution setup general settings in ANSYS Fluent 

 

The airflow behavior is considered as a fluid which follows the features of the 

viscous model called SST k-ω turbulence model, (see Figure 4.13). Turbulence is the most 

complicated kind of fluid motion because it involves a three-dimensional, time-dependent 

and nonlinear phenomenon and it is modelled by using the Navier-Strokes equations.  

 

 
 

Figure 4.13: Viscous model settings in ANSYS Fluent 
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The k– ω Shear Stress Transport (SST k– ω) formulation combines two equations 

based on k– ω model in order to represent two turbulence properties of the flow. The first 

one is the turbulence kinetic energy (k) and the second is the specific dissipation rate (ω).  

Navier-Strokes formulation is described as   

  

𝜕�⃗� 

𝜕𝑡
+ (�⃗� ∇⃗⃗ )�⃗� = 𝑓 −

1

𝜌
∇𝑝 + 𝜗∆�⃗�  

(4.2) 

  

The two equations based on k– ω model are 

 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(Г𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (4.2) 

 

𝜕

𝜕𝑡
(𝜌𝑤) +

𝜕

𝜕𝑥𝑖

(𝜌𝑤𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(Г𝑤

𝜕𝑤

𝜕𝑥𝑗
) + 𝐺𝑤 − 𝑌𝑤 + 𝐷𝑤 + 𝑆𝑤 (4.3) 

 

where  𝜈 =
𝜇

𝜌
 is coefficient of kinematic viscosity. In equation (4.1) 𝑓  is the distributed 

volumen force.  

𝐺𝑘 represents the generation of turbulence kinetic energy due to mean velocity gradients; 

𝐺𝑤 represents the generation of 𝜔; 

Г𝑘 , Г𝑤 represents the effective diffusivity of 𝑘 and 𝜔; 

𝑌𝑘 , 𝑌𝑤 represents the dissipation of 𝑘 and 𝜔; 

𝐷𝑤 represents the cross-diffusion term; 

𝑆𝑘 , 𝑆𝑤 are user-defined source terms. 

 

The turbulent viscosity follows 

𝜇𝑡 =
𝜌𝑘

𝑤

1

𝑚𝑎𝑥 [
1
𝛼∗ ,

𝑆𝐹2

𝑎1𝑤
]
 (4.4) 

 

Specific rate of dissipation (SDP) is SDP(1/s) = 0.6388766 
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, where 𝛽 and 𝛽∗ are constants  

 

The advantages of k-𝜔 SST turbulence model over the Standard model k-𝜔 are: 

 the possibility of inclusion the diffusion terms in the equations describing specific 

dissipation of the TKE (turbulent kinetic energy), equation (4.3) from the upper 

system;  

 the possibility of determination the turbulent fluctuations in the turbulent flow by 

calculating the turbulent viscosity; 
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 the possibility of linearization of the equation based on the using of the constant 

parameters using for simplified the numerical solution; 

 the possibility of using in the case of compressible flow; 

The k-𝜔 SST turbulence model is suitable of using into the simulation of multiphasic 

turbulent flow.  

     The main disadvantage of this turbulent model is the complex mathematics that is using 

to describe the flow field, based on the determination of the values of the basic constants, 

describing the physical properties of the fluid, [21]. 

 

  

Finally, materials, cells conditions, boundary conditions of the fluid domain and 

mesh interfaces are selected, as it is shows in Figure 4.14, below.  

 

 
 

Figure 4.14: Materials selected in ANSYS Fluent 

 

 

 

4.5. Solution and Results 

A thorough experimental investigation of a wind turbine’s aerodynamic behavior should 

include experimental data. However, when the experimental work is limited because data 

of the aerodynamic loading distributions along the blades or the wake geometry are 

unavailable, BEM analysis and the classical theory of aerodynamics can be done to 

validate the results obtained by using ANSYS. 
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 This chapter describes the calculation of the numerical solution by using the 

software and also, sets out the last point of the aim, the verification of the numerical results 

for wind turbine blade tip velocity and wind turbine blade’s radial force. It is been 

performed by comparison of the results obtained by ANSYS with the analytical data 

calculated by using 1D momentum theory. 

 From this point, the software is going to calculate the numerical solution though a 

series of iterations. The solution must be converged in order to ensure that it approaches an 

accurate result. The number of iterations is chosen by the user and in this case, 1500 

iterations could give a good approximation of the real solution, (see Figure 4.15). Note that 

the time required to perform the solution is directly proportional to the number of 

iterations. Figure 4.16 describes the time required and the number of iterations left during 

the run calculation. 

 

 
 

Figure 4.15: Run calculation setting in ANSYS Fluent 

 

 

Figure 4.16: Run calculation setting in ANSYS Fluent 

 

 

 

 Once the 1500 iterations have been completed, it is necessary to determinate 

whether the solution has converged. One way to doing it is checking the mass flow which 

implies that the mass conservation equation is complied. The balance of mass flow rate of 

the airflow is zero between the flow into zone “inlet” and “inlet top’ and the zone “outlet”. 
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 Figure 4.17 shows that the mass flow net rate is almost zero, so the mass 

conservation is fulfilled. Converge can also be illustrated by using Figure 4.18, which 

describes the behavior of the pressure during the iterations. It clearly shows that the 

pressure approaches a limit value between about negative 7,000 and negative 8,000 Pa. 

These two studies are enough to proving the veracity of the results.  

 

 
 

Figure 4.17: Mass flow rate in ANSYS Fluent 

 

 

 
 

Figure 4.18: Static pressure in ANSYS Fluent 
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4.5.1. Wind Velocity at the Tip 

First, a hand-calculation is done based on the classical aerodynamic theory in order to find 

the theoretical wind velocity at the tip, [19]. 

The velocity on the blade follows the formula below 

 

𝑢 = 𝑟 𝑥 𝜔 (4.5) 

The value of the angular velocity is −2.22 𝑟𝑎𝑑/𝑠 and the blade length is 44.2 𝑚, taking 

into account that 1 meter is the distance from the root to the hub. Plugging in these data in 

the equation (4.1) 

 

𝑢 = (−44.2 𝑚)𝑖̂  𝑥 (−2.22 𝑟𝑎𝑑 𝑠⁄ )�̂� (4.6) 

 

𝑢 = 98.10𝑚 𝑠⁄  𝑗̂  (4.7) 

 

This data is compared with the value of the velocity obtained by ANSYS. Figures 

4.19 and 4.20 illustrate that the local wind turbine blade velocity increases with radius 

because of the rotation of the blades. The velocity of the tip, which is the highest velocity, 

it is around 98.05𝑚 𝑠⁄  𝑗,̂ the same value as equation (4.7). 

 

 
 

Figure 4.19: Wind turbine blades velocity in ANSYS Fluent 
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Table 4.3: Wind velocity at the tip 

 

Wind velocity at the tip: 
 Hand-calculation (m/s) CFD analysis (m/s) error (%) 

98,10 98,05 0.05 

 

 
  

 

 
 

Figure 4.20: Wind turbine blades velocity in detail in ANSYS Fluent 
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4.5.2. Wind Velocity Streamline 

Wind velocity streamline shows the velocity of the fluid domain around the three wind 

turbine blades, (see Figures 4.21, 4.22 and 4.23). 

 

 

Figure 4.21: Velocity Streamline in ANSYS Fluent 

 

Note that the legend bar in the following pictures presents a color graduation from 

blue, which is the lowest velocity, until red. Inlet section has yellow color, so it is 12 𝑚/𝑠 , 

as it was written in Section 4.2. The color blue in the streamlines means that when the 

airflow passes the blades, it suffers a slowing down and the velocity decreases. Clearly, an 

acceleration of the flow around the wake is represented by red color. All these features 

match the mass conservation and momentum theory. 

 

 

Figure 4.22: Velocity Streamline in ANSYS Fluent 
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Figure 4.23: Velocity Streamline in ANSYS Fluent 

 

Figure 4.24 describes the airflow velocity before the fluid reaches the blades and 

after that. This picture is essential in order to sum up the concepts schematically and it uses 

the same colors specified in the legend before. Yellow arrows show that the airflow arrives 

to the blades with 12 𝑚/𝑠 and afterwards, the fluid suffers a slowdown because of the 

friction with the surface of the blades. Just the airflow passing the blade which is 

represented by red arrows increases the velocity, even exceeding the 12 𝑚/𝑠. At the tip of 

the blade, it is observed vortex generation, which causes the additional velocities called 

induced velocities. For this reason, airflow velocity at this point of the blade is the sum of 

the velocity at the input plus the velocity induced by the vortex. 

It is also related with the pressure. According to Bernoulli equation, the airflow 

velocity and the pressure are directly related  

𝑃 +
1

2
⍴𝑢2 + ⍴𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(4.8) 

Assuming that the fluid does not vary with the height, the third term is not taking 

into account into the explanation. Following these indications, the places where the airflow 

velocity is lower, have more pressure and vice versa.  
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Figure 4.24: Airflow velocity 

 

4.5.3. Pressure Contours 

Essentially, the pressure contours over the wind turbines blades are seen in the Figures 

4.25 and 4.26, below. As the name suggests, the leading edge of a blade is the part of the 

blade that first contacts air and for this reason. A greater differential is shown at the 

leading edge than the trailing edge, especially near the tip of the blade, where pressure 

gradient changes in a more violent way. It is mainly caused by the rotation effect. This 

pressure difference between the front and the back of the surface creates a lift force in the 

negative Z direction. 

 

  

Figure 4.25: Pressure contours over the airfoil in ANSYS Fluent 
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Figure 4.26: Pressure contours in ANSYS Fluent 

 

 

4.5.4. Torque 

Torque is a force that turns or rotates the wind turbine and it is equal to the force multiplied 

by distance. This means that so longer blades are, more torque can generate. 

𝑇 =
𝑃

𝜔
 = 𝐹 · 𝑥     (𝑁 · 𝑚) (4.9) 

 

ANSYS provides a torque solution, as seen in Figure 4.27. 

  

Figure 4.27: Torque on blade in ANSYS Fluent 
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4.5.5.  Power coefficient 

An estimate power coefficient value can be calculated by using the simple 1D Momentum 

Theory, [19]. This analysis incorporates some assumptions: 

 The flow is steady, homogenous and incompressible. 

 There is no frictional drag. 

 There is an infinite number of blades. 

 There is uniform thrust over the disc or rotor area. 

 The wake is non-rotating. 

 The static pressure far upstream and downstream of the rotor is equal to the 

undisturbed ambient pressure. 

The power coefficient is defined as  

  

𝐶𝑝 =
𝑃𝑟𝑎𝑡𝑒𝑑

𝑃𝑤𝑖𝑛𝑑
 (4.10) 

 

According to the information presented in the problem specification section of this 

project, the blade follows the features of GE 1.5 XLE wind turbine blade. The specification 

sheet of this turbine states the rated power of this turbine to be 1.5 𝑀𝑊, the rated wind 

speed to be 11.5 𝑚/𝑠 and the rotor diameter to be 82.5 𝑚.  

Plugging these data in the equation (4.10) 

 

𝐶𝑝 =
𝑃𝑟𝑎𝑡𝑒𝑑

𝑃𝑤𝑖𝑛𝑑
= 

𝑃𝑟𝑎𝑡𝑒𝑑

1
2 ⍴𝐴𝑉𝑟𝑎𝑡𝑒𝑑

3
=

1.5 𝑀𝑊

1
2 (1.225

𝑘𝑔
𝑚3) (

𝜋(82.5𝑚)2

4 ) (11.5
𝑚
𝑠 )

3 = 0.30 (4.11) 

 

ANSYS provides a mesh refinement study in order to evaluate the precision of the 

solution. A finer mesh can help achieve a more precise solution of the model but is more 

computationally expensive. Figure 4.28 demonstrates how the results change with a greater 

number of cells.  

 
Figure 4.28: Mesh refinement study, [19] 

http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf
http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf
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The mesh created in the project has around 350,000 cells, so it is not fine enough to 

obtain an accurate solution. The 𝐶𝑝 obtained in ANSYS is around 0.15, which indicates 

that the error between both studies is 15%. It is not a bad approximation in this case but 

future works might improve it. 

 

Table 4.4: Power coefficient 

Power coefficient: 
 Hand-calculation  CFD analysis  error (%) 

0,30 0,15 50 

 

 

An essential condition to verify is whether a sufficient number of iterations were 

performed in obtaining the solution is showed below. Figure 4.29 represents the solution 

behavior during the iterations. The number of iterations chosen is 3000 but the software 

stops the simulation before reaching to this number because the solution converged. The 

residuals do not change much between 1500 and 2135 iterations. This is why 1500 

iterations was deemed appropriate, considering the reduction in solving time. 3000 

iterations are solved in almost 6 hours whereas 1500 iterations are solved in 3 hours, it 

means the half time.  

 

 
Figure 4.29: Residuals study in ANSYS Fluent
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Chapter 5 

Structural Model of Wind Turbine 

 

5.1. FSI (Fluid-Structure Interaction) 

Fluid-structure interaction (FSI) describes the interaction between the solid structure (wind 

turbine blade) and a surrounding fluid flow (airflow). FSI is based on an interdisciplinary 

effort that conform meshes on both models (aerodynamic and structural) which allow to 

obtain analytical solutions in order to investigate the fundamental physics involved in the 

complex interaction between fluids and solids.  

In this project, the performance of the wind turbine is a result of the interaction 

between airflow aerodynamics and structural model. Such an investigation is typically 

multidisciplinary and it remains a challenge due to their strong nonlinearity, thus the 

laboratory experiments are limited in scope in this field. Generally, FSI problems are 

developed using powerful software as ANSYS. 

The software treats the fluid and the structure as two computational fields which are 

solved separately with their respective mesh discretization and equations. The boundary 

conditions of the domain and the whole geometry are used to connect both models, 

whereas the pressure solution of the aerodynamic part is imported into the structure model. 

Thus, it communicates information between the fluid and structure solutions, (see Figure 

5.1). 

 
 

Figure 5.1: Fluid-Structure Interaction in ANSYS 
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5.2. Introduction 

The structural design consists of blade material selection and the determination of stresses 

and deformations on wind turbine blades. The interaction between the flow and the blade 

concerns structural loads and deflections, which affect directly over the lifetime of the 

machine and it is also related with fatigue resistance.  

It is evident that to satisfice objectives 3-6 detailed in page 37, the material must be 

selected carefully. The ideal material for blade construction will combine the necessary 

structural properties – namely high strength to weight ratio, fatigue life and stiffness – with 

low cost and the ability to be formed into the desired airfoil shape, [9]. 

 

 
 

Figure 5.2: Blade in ANSYS Mechanical, [1] 

 

 

As well as the aerodynamic design is based in the first part of the tutorial of the 

Cornell University web, structural model follows the steps of the second part of the same 

tutorial. In this case, the pressure load found using Fluent in part 1 is imported in 

Mechanical. The blade is composed of an outer surface and a structural cross section, 

commonly called spar (see Figure 5.2). It provides structural rigidity to withstand the 

loads. The thickness of the outside surface linearly decreases from 0.1 meters at the root to 

0.005 meters at the tip whereas the spar has a similar thickness behavior with 0.1 meters at 

its closest point to the root and 0.03 meters at the tip, [19]. 

 

Table 5.1: Thickness specifications respect to the global coordinate system 

Surface:   

 
Spar:   

X (m) Thickness (m) 
 

X (m) Thickness (m) 

-1 0,1 
 

-3 0,1 

-44,2 0,005 

 

-44,2 0,03 
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 Static Structural is chosen in the Analysis System Toolbox of ANSYS and this 

analyses is called FEA (Finite Elements Analyze), as it is shown in Figure 5.3. 

 

 
 

Figure 5.3: Initial screen from ANSYS Mechanical 

 

 

5.3. Engineering Data 

According to the material selection, wind turbine blades are made of composite materials 

in order to reduce the weight of the machine. Composite materials can be represented 

approximated by the following orthotropic material properties (see Figure 5.4). 

 

 

Table 5.2: Orthotropic material properties, [19] 

Material Properties: 

Density (kg/m^3) 1550 

Young's Modulus-X (Pa) 1,1375E+11 

Young's Modulus-Y (Pa) 7,583E+09 

Young's Modulus-Z (Pa) 7,583E+09 

Poisson´s Ratio-XY 0,32 

Poisson´s Ratio-YZ 0,37 

Poisson´s Ratio-XZ 0,35 

Shear Modulus-XY (Pa) 5,446E+09 

Shear Modulus-YZ (Pa) 2,96E+09 

Shear Modulus-XZ (Pa) 2,96E+09 
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Figure 5.4: Orthotropic material properties in ANSYS Mechanical 

 

 

 

5.4. Geometry 

The blade geometry is imported by dragging the geometry cell from the CFD project to the 

geometry cell of the FEA project. Figure 5.5 describes graphically the connection between 

CFD project and FEA project due to the same blade geometry is used in both projects. 

 

 
 

Figure 5.5: First connection between CFD project and FEA project, [19] 
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5.5. Model 

This step consist of give the blade a proper mesh. In section 4.3 of the report, the mesh is 

chosen according Fluent Physics Reference and the cells have tetrahedral form whereas in 

this case, the mesh follows the Mechanical Physics Reference and the cells are 

quadrilateral elements as it is shown in Figure 5.6 and Figure 5.7. Quadrilateral cell shaped 

is a 4 sided one. 

 

 

 
 

Figure 5.6: Mechanical Physics Reference 

 

 

 

 
 

Figure 5.7: Structural Model mesh 

 

 

The details of the mesh are represented in Figure 5.8. See that the total number of 

cells in the mesh of this structural design are around 3500 cells, an amount much lower 

than in the aerodynamic part. The mesh size is an important factor in determining the 

stability and accuracy of the methods and the number of cells are related to the complexity 

of the model and also with the number of equations needed.  
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Aerodynamic model involves complex wind turbine blade geometry and flow 

physics, in which smaller mesh size provides better approximation of the variables 

required. Due this, the mesh shaped cell chosen in the aerodynamic part is a tetrahedron, 

which is a 3D cell whereas it is used a quadrilateral cell in the structural model.  

 

 

 
 

Figure 5.8: Details of the Mesh in ANSYS Mechanical 

 

 

Two studies are used to judge the quality of the Mesh, whether it is a proper one. 

The skewness is very low and the orthogonal quality is very high, so as well as it is marked 

in Chapter 4, the mesh conforms to the requirements of both studies (see Figures 5.9 and 

5.10). 

 

 
 

Figure 5.9: Skewness study in ANSYS Mechanical 
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Figure 5.10: Orthogonal Quality in ANSYS Mechanical 

 

 

 

 

5.6. Physics Setup 

Once assigned the material, defined the thickness of the blade (the spar and the surface), 

and introduced the rotational velocity as −𝟐. 𝟐𝟐 𝒓𝒂𝒅/𝒔 in the z-component, the pressures 

results from the CFD part are transferred into the FEA project by dragging the solution cell 

to the Setup cell, (see Figure 5.11). 

 

Figure 5.11: Second connection between CFD project and FEA project 
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5.7. Solution and Results 

5.7.1. Total Deformation 

The structural simulation provides several results. One of them is the total deformation of 

the wind turbine blade, as it is shown in the Figure 5.12. As it was expected, the maximum 

deformation occurs at the blade tip whereas the deformation of the blade near the hub is 

almost insignificant. The maximum tip displacement is 𝟎. 𝟒𝟕𝟑𝟗𝟐 𝐦𝐞𝐭𝐞𝐫𝐬.  

This deformation distribution is because of the tip suffers high loadings related with 

the rotation and the velocity of the airflow. Figure 5.13 illustrates the deflection of the 

wind turbine blade.  

 

 

Figure 5.12: Total deformation of the blade in ANSYS Mechanical 

 

Figure 5.13: Deflection of the blade in ANSYS Mechanical 
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5.7.2. Equivalent Stress 

It is important to show and detect where the maximum stresses occurs. ANSYS provides a 

stress distribution of the blade and it shows that the stress at the trailing edge of the wind 

turbine blade is smaller than in the leading edge, (see Figure 5.14). 

In this model, the max Von-Mises stresses appear, after the vibration of the HAWT 

blade because of the passing wind. Due to the loads at the tip,  max Von-Mises stresses 

reaches the maximum, and it is mainly concentrated in the central part of the blade (closer 

to the tip than the hub part), as it is observed in Figure 5.15. Due the high stress, this part 

of the blade is weaker. 

 

Figure 5.14: Stresses on the blade in ANSYS Mechanical 

 

Figure 5.15: Maximum stress on the blade in ANSYS Mechanical 
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5.7.3. Force Reaction 

First of all, a hand-calculation is done based on the classical dynamic theory in order to 

find the root radial force, which is the outward force that comes from the mass. Note that it 

is equal in value and opposite according to the direction of to the reaction force at the root 

of the blade that keeps the blade connected to the hub. The radial force of the wind turbine 

blade follows the equation below  

 

𝐹𝑟𝑎𝑑𝑖𝑎𝑙 = −𝑚𝑟𝜔2 (5.1) 

Taking into account the data specified by the software about the characteristics of 

the wind turbine blade, it weighs 22473 kg and its center of mass in the coordinates (X, Y, 

and Z) follows the (-14.232 m, -0.2127 m, 0.15969 m) localization, (see Figure 5.16).  

Plugging these values in the equation (5.1), the radial force is 1465.5 𝐾𝑁. 
 

 

 Figure 5.16: Characteristics of the mass in ANSYS Mechanical 

 

 

This data is compared with the value of the radial force obtained by ANSYS, which 

is showed in the Figure 5.17. The error obtained is 7.8%, so it is considered a good 

approximation. 

 

 

Figure 5.17: Force reaction in ANSYS Mechanical 
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Table 5.3: Radial Force 

Radial Force: 

 
Hand-calculation (KN) CFD analysis (KN) error (%) 

1465,50 1579,8 7.8 

 

 

5.7.4. Moment Reaction 

The moment reaction is given by ANSYS in the Figure 5.18. It is 2515.2 𝐾𝑁 · 𝑚 and as it 

was expected, the majority of the reaction is in Y-axis because of the features of the model.  

 Schematically, the geometry of the blade is developed in X-direction, so when the 

wind reaches the blade in Z-direction, the blade suffers a radial force in the direction of the 

blade. Besides, the airflow applies a force on the blade which implies a moment reaction in 

Y-direction and also it means a rotational movement of the wind turbines blades. 

 

 
 

Figure 5.18: Moment reaction in ANSYS Mechanical 

 

5.7.5. Total Displacement 

Figures 5.19 and 5.20 show the total displacement of the wind turbine blade after 

importing the pressure from the aerodynamic model. All around the blade are arrows 

which are used to illustrate the imported pressure vectors in the surface and how the 

displacement takes place. Note that at the tip of the blade, the color of the vectors is red, 

which means that on this part the higher pressure is concentrated. 
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Figure 5.19: Imported pressure over the wind turbine blade  

 

 

 

 

Figure 5.20: Wind turbine blade deformation 
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Conclusions 

This master thesis studies the dynamics of horizontal wind turbine blades taking into 

account the aerodynamic behavior and the elasticity of rotor blades, also the steadiness of 

flow. The research of aerodynamic and dynamic behavior of HAWT blades, combined 

with reporting on the elasticity of its construction by using the one solver, is a labor-

intensive task. The difficulty comes from the inability to simultaneously solve the 

equations of fluid mechanics, describing the flow, and structural dynamics. Therefore, it is 

been used numerical approach using both numerical models that is been developed with 

the help of ANSYS software.  

In order to calculate the aerodynamic loading of HAWT blades, there it is been 

developed an aerodynamic model for studying of the flow around HAWT rotor, which 

employs the Finite Element Method (FEM) and FLUENT solver. In the aerodynamic 

model, first the blade geometry is imported from Solid Work, another CAD program that is 

used to design in advance the geometry of one wind turbine blade, after that using the tools 

of ANSYS software the other two blades from the HAWT is designed, and it is model the 

fluid domain. After created the proper fluid domain, a mesh is created around the blades 

and the Fluent solver is then used to find aerodynamic loading on the blades, also to 

consider the fluid flow field. To consider the elasticity of the HAWT blades it is developed 

second numerical model called structural model realized again through ANSYS software 

but using the ANSYS mechanical. The pressure of the wetted areas of the blades that is 

took it from the aerodynamic solver are imposed as the pressure loads to the Structural 

model to determine the stresses and deformations on the HAWT blade. The main value of 

that project is that here it is considers the deformations of the HAWT blade due to the 

aerodynamic loading of the wind turbine blade by performing a steady-state FSI (Fluid-

Structural Interaction) analysis.  

 The validation of the obtained numerical results with developed aerodynamic 

model is been performed by verification of the corrected numerical simulation realized 

through the sufficient number of iterations for obtaining the pressure on the blade that has 

converged pointed out into the Chapter 4 Aerodynamic Model of Wind Turbine. The figure 

of iteration process that is given in Chapter 4 illustrating the solution convergence, and 

information that is given on the figure that residuals from the iterative process do not 

change much between 1500 and 2135 iterations. Hence, the last statement is a prerequisite 

to accept that 1500 iterations is sufficient number of iterations to obtained relative good 

convergence of the numerical solution into the simulations realized with developed 

aerodynamic model. Therefore, the approximately good convergence of the aerodynamic 

solver is a prerequisite to confirm that the obtained results for aerodynamic loading over 

the HAWT blade is approximately good.  
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The last statement is verified with the tools of mesh refinement into the 

aerodynamic solver, and the fact that mesh size number of around 356 314 cells is a fine 

enough to obtained the sufficiently accurate results for the purpose of that project. The 

sufficient number of mesh size used for the aerodynamic model is confirmed by the 

relatively good correspondence of the obtained numerical results for the cp power 

coefficient 15% compared of those result made by hand calculations  30% using the 1D 

Momentum Theory, and explained in Chapter 4. 

The validation and verification of the developed Structural model used for 

determination of the HAWT blade deformation due to the aerodynamic loading of a wind 

turbine blade by performing FSI analysis is made by comparison of the numerical results 

of root radial force with those obtained by the hand-calculation. The approximately good 

correspondence from 7.8% obtained for the root radial force 𝐹𝑟𝑎𝑑𝑖𝑎𝑙 of the wind turbine 

blade between the obtained numerical results and those from the hand calculation are the 

prerequisite to confirm validation of the developed Structural model using for 

determination of the stresses and deformations of the wind turbine blades.  

 Of course both numerical models used to fulfil the purpose of that project have its 

disadvantages as: 

 Aerodynamic solver used for calculation of the aerodynamic loading of HAWT 

blades is developed in case when the flow field is incompressible. But the actual 

flow field around the HAWT is compressible and in this can be pointed as the next 

step or tendency of further development of that model.  

 

 Also there are no experimental results that can be used to validate the numerical 

results obtained with both numerical models. Therefore, it is worth to mention that 

if the idea underlying into this project is expand in bigger investigation into that 

area it can be made the experimental part and obtained sufficient number of 

experimental data using to confirm those obtained by numerical simulations. 

 

 The developed Structural model does not have sufficient number of cell for the 

mesh using into the simulations. But it is worth to mention that for this state of that 

study it is not necessary to have so big accuracy into the mechanical part of that 

project. But again as a recommendation it can be consider the opportunity the 

structural model to be performed to the other types of wind turbine blades with 

different physical properties and also to have more precision into the results to use 

the tool of mesh refinement into the Mechanical part. 

The realize study into this project and the obtained relative good correspondence 

between the obtained numerical results and those from hand calculation for both numerical 

models: aerodynamic and structural are the conformation that developed both model work 

and it can be used in the preliminary stage of design of HAWT blades. In order to 

investigate in details the complex flow field around HAWT blade, it is advisable for the 

next stage of that project to be considering the unsteadiness of flow close to the real one.
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