
INEQUALITY FOUNDATIONS OF CONCENTRATION

MEASURES: AN APPLICATION TO THE

HANNAH-KAY INDICES *

Oscar Bajo
(Universidad Pública de Navarra)

Rafael Salas
(Universidad Carlos III de Madrid)

This version: March 1999

                                                
     * The authors wish to thank financial support through the DGICYT Project PB94-0425 (O. Bajo) and the

Contract #ERBCHRXCT940647 (R. Salas), from the Spanish Ministry of Education and the European
Commission, respectively.



ABSTRACT

In this paper we provide a connection between concentration and inequality by showing

that the inequality measures consistent with the whole class of Hannah-Kay concentration

indices are the general entropy inequality indices. We isolate the inequality component

underlying the concentration measures, obtaining an explicit additive decomposition of the

change in concentration into the change in its two components: inequality and the number of

firms. This relationship proves to be valid for the whole class of Hannah-Kay concentration

indices, and embodies as particular cases other previously found in the literature. Finally, our

proposed decomposition is shown by means of an empirical example, which illustrates the

sources of a change in sectoral concentration between two points in time.
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1. Introduction

Concentration indices are traditional instruments in industrial economics, which provide

a synthetic measure of market structure, and allow evaluating the degree of competition present

in different industries. The indices are defined in such a way to incorporate the two relevant

aspects of industry structure, namely the number of firms and size inequalities [see, e.g.,

Waterson (1984)].

The aim of this paper is to find which class of inequality measures is behind the

concentration indices proposed by Hannah and Kay (1977). The relationship between both

concepts has been previously noticed in the literature. As already pointed out by Hannah and

Kay (1977), there is an ambiguous effect on concentration following a change in the number of

firms into an industry, since the overall result would be also dependent on the change in

inequality. In addition, the class of Hannah-Kay concentration indices would be founded on

more solid grounds if the explicit trade-off between the inequality and the number of firms’

components were formally derived.

An early attempt in the analysis of the implicit relationship between concentration and

inequality was made by Marfels (1971). This author found a consistent relationship between the

Herfindahl and entropy measures of concentration, and the corresponding inequality indices, the

former being two particular cases of the more general Hannah-Kay class of concentration

indices. Subsequently, Hannah and Kay (1977) showed the consistent relationship between the

Atkinson index of inequality and a subset of the concentration measures proposed by them.
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In this paper we go further from these partial relationships, trying to find out which kind

of inequality indices are consistent with the whole class of Hannah-Kay concentration indices.

We obtain that the general entropy inequality indices (up to any increasing transformation) are

those which are consistent with the whole family of Hannah-Kay concentration indices,

generalizing previous findings by other authors.

In addition, we will also provide an explicit additive decomposition of the change in

concentration into the change in its two components: inequality and the number of firms.

Finally, we will present an application to real data, which illustrates our approach.

The rest of the paper is organized as follows. The relationship between concentration and

inequality indices is derived in section 2, and the decomposition of the change in concentration,

together with the empirical example, is shown in section 3. The main conclusions are

summarized in section 4.
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2. Consistent relationships between concentration and inequality indices

Concentration indices are formally defined as a function C: RN→R over a vector

s=(s1,..,si,..,sN), where si is the relative market share of the ith firm:

being Xi an indicator of the size of the ith firm (usually sales or employment).

Assuming an axiomatic derivation as in Hannah and Kay (1977) or Encaoua and

Jacquemin (1980), industry concentration indices can be expressed as a function of two

variables [see, e.g., Waterson (1984)]:

where N denotes the number of firms in the industry, and I is an inequality index of firm size I:

RN→R, defined over the vector X=(X1,..,Xi,..,XN). Under the classical “principle of transfers”

(Dalton, 1920), I(⋅) must be strictly S-convex (Dasgupta, Sen and Starret, 1973).

More specifically, a new entrant into an industry might lead to an ambiguous effect on

concentration. On the one hand, concentration directly falls due to the increased number of

firms. But, on the other hand, the degree of inequality within the industry would be also affected,

so that concentration could actually rise in the case that the entrant is big enough.

  Our aim in this paper will be to try to disentangle both effects by building a bridge

between concentration indices and the classical inequality indices. To this end, in this section we
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will focus our attention on the consistent derivation of the Hannah and Kay concentration

indices from the general entropy inequality indices, as defined by Cowell (1977,1995):
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where, according to the income distribution literature, Xi denote the ith household income, X  is

the mean income across households, and N is the number of households. Notice that, for our

purposes, the concept of income will be extended to define the analogous concept for the firm,

so that Xi would apply to any indicator of the firm’s size1.

Formally, we propose the following definition. A concentration index C is consistent

with (i.e., can be consistently derived from) an inequality index I if, given N, for any two vectors

s1 and s2 the following equivalence is satisfied:

                                                
     1 Moreover, it can be shown that, since the inequality indices defined throughout the paper are relative (i.

e., zero-degree homogeneous in the X variable) inequality indices, they can be interpreted alternatively in
terms of relative shares, i. e., I(X)=I(s).

)sI()sI(  )sC()sC( 2121 ≥⇔≥ (4)
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which is equivalent to the condition fI>0 in equation (2). We will be concerned with the

concentration indices that are homogeneous of degree minus one in N, i. e., the number of

firms2.

Next, we can write the Hannah and Kay class of concentration indices in the following

way:

Notice that CHK(1) is defined as the limit of CHK(α) when α→1, which coincides with the

antilogarithm of (minus) the first-order entropy concentration index; see also Waterson (1984).

Now, from the previous definition, we can derive in a consistent way the Hannah-Kay

concentration indices from the general entropy inequality indices. In fact, equations (3) and (5)

can be shown to be related through:

Equation (6) is the central result of the paper. From here, three particular cases

previously noticed in the literature can be derived from our more general equation (6) [see, e.g.,

                                                
     2 Notice that inequality indices are also influenced by population changes; in particular, all the indices used

in this paper satisfy the population replication axiom. More specifically, the Atkinson inequality indices
satisfy the marginal population replication axiom (Salas, 1998), so they are good candidates to perform
well under changes in population size.
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Marfels (1971) for the first two, and Hannah and Kay (1977) for the third]. First, CHK(2) (i.e., the

Herfindahl concentration index CH), is consistent with IGE(2):

Second, CHK(1) is consistent with IGE(1) (i.e., the classical Theil 1 index):

Third, for the case 0<α<1, the CHK(α) indices are also consistent with the classical

Atkinson indices IA(ε), defined for every ε>0 in the following way (Atkinson, 1970):
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so that, when ε=1-α, the following equivalence holds3:

                                                
     3 Notice that a complete consistent equivalence between the Hannah-Kay and the general entropy (for all α,

in equation (6)) and Atkinson (for all α<1, in equation (10)) indices could be found by further
generalizing the Hannah-Kay indices, if we extend the definition in equation (5) to
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3. Decomposing the change in concentration: an example

In this section we provide a decomposition of the change in concentration between the

two sources identified in equation (2), i.e., the number of firms N and the degree of inequality I.

Notice that equation (6) can be written in the general form:

where ϕ(IGE(α)) is the component of inequality in CHK(α), which is an increasing function of the

general entropy inequality indices. From (6’), it is straightforward to see that the following

additive expression can be derived:

We illustrate this decomposition with an example taken from Bajo and Salas (1997). In

that paper we computed a set of concentration indices for 68 sectors of the Spanish economy in

1993, using the Spanish Institute for Fiscal Studies’ data set coming from the Profit Tax reports

by more than 300,000 firms (i.e., providing an almost exhaustive coverage of both firms and

sectors). Then, our decomposition was applied to the change in concentration between 1992 and

1993, for the Hannah-Kay indices with α=0.5, 1, 1.5, 2, and 2.5.

Notice that, according to equation (11), and for any particular α, concentration would

unambiguously increase when:
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In table 1 we present an example of the decomposition shown in equation (11). As the

last column of the table shows, we are able to explain reasonably well the change in

concentration during the period. From the 68 sectors in our previous study, we have selected

nine industries, which cover the six cases stated above.

In six of the sectors, concentration increases. In Food industry, Textiles, and Banking,

concentration rises due to both a lower number of firms and a higher inequality -i.e., case (i)

above-. In Basic chemicals, concentration rises due to a lower number of firms and despite a

lower inequality for α=0.5, 1 and 1.5 -i.e., case (ii) above-; however, for α=2 and 2.5, higher

inequality would also lead to higher concentration -i.e., case (i) above-. Finally, in Chemicals

and Precision instruments, concentration rises due to a higher inequality and despite a higher
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number of firms -i.e., case (iii) above-.

In the three remaining sectors, concentration decreases. In Air and sea transportation,

concentration falls due to both a higher number of firms and a lower inequality -i.e., case (iv)

above-. In Computing services, concentration falls due to a higher number of firms and despite a

higher inequality for α=1, 1.5, 2 and 2.5 -i.e., case (v) above-; however, for α=0.5 lower

inequality would also lead to lower concentration -i.e., case (iv) above-. Finally, in House

renting, concentration falls due to a lower inequality and despite a lower number of firms -i.e.,

case (vi) above-.
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Table 1 : Decomposition of the change in concentration, 1992-93

A) Index HK(0.5)
SECTOR Rate of change in the

concentration index
(1)

Rate of change in the
inequality component

(2)

Rate of change in
the number of firms

(3)

Explained rate
of change
(4)=(2)-(3)

Percentage of
explanation

(5)=(4)/(1)*100
Basic Chemicals 2.00 -0.06 -2.02 1.96 97.98
Chemicals 2.81 2.94 0.12 2.82 100.12
Precision Instruments 0.41 3.57 3.14 0.43 103.14
Food Industry 6.15 5.19 -0.91 6.09 99.09
Textiles 9.83 1.33 -7.74 9.07 92.26
Air and Sea Transportation -15.69 -12.63 3.63 -16.25 103.63
Banking 4.61 2.13 -2.36 4.50 97.64
Computing Services -11.73 -2.20 10.80 -13.00 110.80
House Renting -7.10 -9.20 -2.26 -6.94 97.75

B) Index HK(1)
SECTOR Rate of change in the

concentration index
(1)

Rate of change in the
inequality component

(2)

Rate of change in
the number of firms

(3)

Explained rate
of change
(4)=(2)-(3)

Percentage of
explanation

(5)=(4)/(1)*100
Basic Chemicals 1.01 -1.02 -2.02 1.00 98.98
Chemicals 5.62 6.08 0.12 5.96 106.08
Precision Instruments 5.70 9.37 3.14 6.24 109.37
Food Industry 11.41 11.86 -0.91 12.76 111.86
Textiles 11.03 3.70 -7.74 11.44 103.70
Air and Sea Transportation -52.50 -32.05 3.63 -35.67 67.95
Banking 5.14 2.93 -2.36 5.29 102.93
Computing Services -10.63 0.15 10.80 -10.65 100.15
House Renting -53.90 -36.49 -2.26 -34.23 63.51

C) Index HK(1.5)
SECTOR Rate of change in the

concentration index
(1)

Rate of change in the
inequality component

(2)

Rate of change in
the number of firms

(3)

Explained rate
of change
(4)=(2)-(3)

Percentage of
explanation

(5)=(4)/(1)*100
Basic Chemicals 1.46 -0.50 -2.02 1.51 104.00
Chemicals 8.37 7.26 0.12 7.14 85.40
Precision Instruments 9.37 11.02 3.14 7.88 84.05
Food Industry 22.90 19.22 -0.91 20.13 87.89
Textiles 16.38 6.36 -7.74 14.10 86.06
Air and Sea Transportation -31.73 -27.68 3.63 -31.31 98.66
Banking 4.52 1.72 -2.36 4.09 90.50
Computing Services -6.83 2.88 10.80 -7.92 115.93
House Renting -70.65 -69.46 -2.26 -67.21 95.12
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Table 1 (continued)

D) Index H
SECTOR Rate of change in the

concentration index
(1)

Rate of change in the
inequality component

(2)

Rate of change in
the number of firms

(3)

Explained rate
of change
(4)=(2)-(3)

Percentage of
explanation

(5)=(4)/(1)*100
Basic Chemicals 2.53 0.46 -2.02 2.48 97.98
Chemicals 10.62 10.75 0.12 10.63 100.12
Precision Instruments 9.15 12.58 3.14 9.44 103.14
Food Industry 34.34 33.12 -0.91 34.02 99.09
Textiles 19.83 10.55 -7.74 18.29 92.26
Air and Sea Transportation -26.98 -24.33 3.63 -27.96 103.63
Banking 3.96 1.51 -2.36 3.87 97.64
Computing Services -5.63 4.57 10.80 -6.23 110.80
House Renting -78.34 -78.83 -2.26 -76.57 97.74

E) Index HK(2.5)
SECTOR Rate of change in the

concentration index
(1)

Rate of change in the
inequality component

(2)

Rate of change in
the number of firms

(3)

Explained rate
of change
(4)=(2)-(3)

Percentage of
explanation

(5)=(4)/(1)*100
Basic Chemicals 3.57 1.48 -2.02 3.49 97.98
Chemicals 12.52 12.66 0.12 12.54 100.12
Precision Instruments 8.15 11.55 3.14 8.41 103.14
Food Industry 44.91 43.59 -0.91 44.50 99.09
Textiles 21.64 12.23 -7.74 19.97 92.26
Air and Sea Transportation -23.84 -21.08 3.63 -24.70 103.63
Banking 3.75 1.29 -2.36 3.66 97.64
Computing Services -4.50 5.81 10.80 -4.99 110.80
House Renting -79.89 -80.35 -2.26 -78.09 97.74

Source: Bajo and Salas (1997)
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4. Conclusions

In this paper we have derived a consistent relationship between the whole class of

Hannah-Kay concentration indices and the classical general entropy inequality measures coming

from the income distribution literature. We isolated the inequality component underlying these

concentration measures, and then we provided an explicit additive decomposition of the change

in concentration into the change in its two components: inequality and the number of firms. Our

result proved to be valid for the whole class of Hannah-Kay concentration indices, and included

as particular cases other previously found in the literature.

This decomposition might be useful in empirical work since it could help to identify the

sources of a change in sectoral concentration between two points in time. We concluded by

presenting an empirical application to the Spanish economy, which illustrated the procedure

proposed in the paper.

As we have seen, the Hannah-Kay concentration indices are flexible enough to be

consistent with a wide class of different inequality measures. However, this property does not

hold regarding the number of firms’ component of the indices, since they are always

homogeneous of degree minus one in N. Further research on the subject might be addressed to

develop more general concentration indices, which would allow for more flexibility in the N-

component.
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