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1 Introduction

In recent years, the issue of spatial disparities has been examined in numerous pa-

pers covering widely varying geographical areas1. Most of these studies are essentially

static in their approach, since they are based on the information provided by various

indicators calculated from cross sectional data of the distribution in question. However,

as Quah (1993, 1996a, 1997) has repeatedly pointed out, this type of analysis fails to

capture a series of potentially interesting issues relating to the distribution dynamics.

In particular, the conventional static approach does not contemplate, for example, the

possibility of regions modifying their relative positions over time, and thereby neglects

the whole question of intradistributional mobility.

As an illustration of the relevance of issues relating to the analysis of distribution

dynamics, let us consider the following example. Let us assume that we have information

for a period of several years on regional incomes and populations in two given countries,

A and B, each of which is in turn divided into two regions with exactly the same size of

population. To eliminate the effects of population shifts, let us also suppose that there

is no change over time in the distribution of the population share in either of the two

countries considered. In both A and B, the per capita income of one of the two regions

is exactly twice that of the other region, and this situation remains unaltered for the

whole of the period considered. There is, however, one major difference between these

two countries. A is characterised by a high degree of regional mobility, such that, every

year, its two regions switch positions. The situation in B, by contrast, is that the relative

positions of its regions remain constant year on year. As we have already mentioned, the

1See, for example, Theil (1989), Barro and Sala-i-Martin (1992), Ram (1992), Duro and Esteban
(1998), Schultz (1998) or Sala-i-Martin (2002), among many others.
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type of analysis commonly found in the literature is essentially static in its approach,

since it is based on cross sectional information, and therefore reveals no appreciable

difference between A and B. In fact, given that there is no change over time in the cross

sectional structure of the per capita income distribution of either of the countries, any

inequality index that satisfies the properties of symmetry and scale independence will

give exactly the same value for A and B throughout the period considered2.

This example highlights the need to supplement standard inequality studies with

additional data relating to the mobility of the distribution under analysis. However,

the few papers that have examined this issue from the spatial perspective tend to use

the econometric tools proposed by Quah (1996a, 1997)3. However, it is not possible via

this methodological approach to obtain an exact measure of changes in mobility levels

over time. One possible solution to this problem would be to take into account the

mobility measures used in the literature devoted to the dynamic study of personal income

distribution and adapt them to the regional context. Surprisingly, this is an approach

that has so far received very little attention from researchers engaged in the analysis of

territorial imbalances4. This is no doubt due, in part, to the obvious limitations of the

theoretical and empirical basis for the analysis of intradistributional mobility5.

In order to make a deeper analysis of this issue, in this paper we present a family

of functions whose usefulness as mobility measures is justified by different theoretical

2The properties of symmetry and scale independence do not constitute a major limitation. Indeed
both are basic properties that any inequality index can be reasonably expected to fulfil (Cowell, 1995).
In any event, for the purposes of our example, we can overcome the need for the inequality index to
satisfy the property of scale independence by simply assuming the per capita incomes of A and B to be
equal.

3As well as Quah (1996a, 1997), see Desdoigts (1994), Jones (1997) or Johnson (2000).
4As an exception, see Parker and Gardner (2002).
5Indeed, as stated in Fields and Ok (1999), considerably different approaches are currently taken in

the study of inequality and mobility. Nevertheless, over the course of the last decade, major theoretical
advances have been made in the analysis of intradistributional mobility. In particular, there have been
proposed a series of measuring procedures with similar axiomatic contents to those used in the study of
inequality.
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results. Indeed, as a particular case, this family includes the Bartholomew index, which

is widely used in the empirical literature devoted to the analysis of personal income

distribution. The paper also contains, by way of example, an application to the study

of mobility in regional per capita income distribution in the European Union between

1977 and 1999.

The paper is structured into four sections. After this introduction, in section 2 we

present a proposal to measure intradistributional mobility using information supplied

by various transition matrices. In section 3 we carry out an empirical application to the

European context. The main conclusions are summarised in section 4.

2 A family of mobility measures

Let us begin by assuming that we have information for a given period of time on n

groups of individuals, to which will refer henceforth as regions. In this setting, we will

denote per capita income of region i in period t by xt
i, with xt

i =
Xt

i

Nt
i

, where X t
i and

N t
i are respectively the income and population of region i, i = 1, 2, . . . , n. Likewise, let

pt
i be the population share of region i in period t, pt

i =
Nt

i

Nt , with N t =
n∑

i=1
N t

i . The

associated per capita income and population distributions, therefore, will be given by

xt = (xt
1, x

t
2, . . . , x

t
n) and pt = (pt

1, p
t
2, . . . , p

t
n)6. Finally, let us suppose that xt ∈ R

n
+,

while pt ∈ R
n
++.

Our objective is to measure the intradistributional mobility associated to xt over

time. For that, one of the options most commonly used in the literature involves the

construction of transition matrices to obtain information concerning shifts in the relative

6Obviously
n∑

i=1

pt
i = 1.
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positions of regions over a given period of time. Further, in order to define the concept

of transition matrix, let us now suppose that we have classified the different regions in

the distribution into m exhaustive and mutually exclusive classes according to their per

capita income level. Let us also imagine that we have information on the distribution

of interest for two moments in time, t0 and t1. In a case such as this, the matrix that

summarises the probabilities of regions shifting from one class to another between t0 and

t1 is known as a transition matrix. Supposing, therefore, that the probabilities can be

reasonably estimated from the corresponding relative frequencies, the transition matrix

associated with the transformation experienced by the distribution between t0 and t1

(xt0 −→ xt1), will be the square matrix Π(xt0 , xt1) =
[
πjk(x

t0 , xt1)
]
∈ R

m×m
+ , where

πjk(x
t0 , xt1) denotes the proportion of regions that belonged to class j in t0 and have

shifted to class k in t1. According to this definition, we have that
m∑

k=1

πjk(x
t0 , xt1) = 1

for any j = 1, 2, . . . ,m, so that Π(xt0 , xt1) is a stochastic matrix.

The information provided by transition matrices can be summarised in various indi-

cators, the most basic of these being shifts between classes either towards a higher or to a

lower relative position. However, the literature usually considers synthetic measures de-

rived from the specific characteristics of the transition matrix7. Within this framework,

therefore, a mobility index can be defined as a continuous function M(Π) : Ω −→ R,

where Ω is the set of transition matrices (Shorrocks, 1978).

Nevertheless, having reached this point, it is worth mentioning the existence of dif-

ferent approaches to the study of intradistributional mobility as a consequence of the

multidimensional nature of the concept that concern us (Fields and Ok, 1999a). The

main difference between the various approaches lies in the way in which each one defines

7In relation to this, see, for example, Prais (1955), Bartholomew (1973), Bibby (1975), Shorrocks
(1978), Sommers and Conlisk (1978) or Conlisk (1985, 1990).
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situations characterised by maximum mobility. One alternative, for example, is to relate

perfect mobility to situations in which there is no dependence between t0 and t1 (inde-

pendence of origin). Note that this would imply the assumption in this case that the

probability of shifting from one class to any other is always the same, such that πjk = 1
m

for any j, k8. However, bearing in mind the objective of this paper, we decided to adopt

an alternative approach that highlights the dimension of mobility directly related to

movement per se9.

Pursuing this idea, we define perfect mobility as a situation in which, all the regions

in each of the m classes considered move to the class furthest away from their baseline

class. Formally, this can be written in the form of the following transition matrices:

Π∗ =





m even





if j ≤ m+1
2 , πjk = 0 ∀k 6= m and πjm = 1

if j ≥ m+1
2 , πjk = 0 ∀k 6= 1 and πj1 = 1

m odd





if j < m+1
2 , πjk = 0 ∀k 6= m and πjm = 1

if j = m+1
2 , πjk = 0 ∀k 6= 1,m and πj1 + πjm = 1

if j > m+1
2 , πjk = 0 ∀k 6= 1 and πj1 = 1

There are other alternatives, however. According to Ramos (1998), for example, the

transition matrices that present perfect mobility in this context are those in which for

any j, k with k = (m − j + 1), πjk = 1; while in any other case πjk = 0. In other

8For further details, see Shorrocks (1978).
9In relation to this, see Cowell (1985), Fields and Ok (1996, 1999b) or Mitra and Ok (1998).
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words, matrices of this type would have a line of ones along the diagonal joining the

last element of the first row and the first element of the last row. Nevertheless, let us

consider the following transition matrices with m = 4:

Π1 =




0 0 0 1

0 0 0 1

1 0 0 0

1 0 0 0




and

Π2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




It would appear to be obvious that if we identify mobility with movement, matrix Π1

exhibits more mobility than matrix Π2. Note, however, that the idea of perfect mobility

based on the definition of Π∗ allows for the presence in the corresponding transition

matrix of columns in which the sum of the elements is zero. This fact imposes a series

of restrictions with respect to the criterion used to classify the different groupings of

individuals into the m initial classes, because it excludes the possibility of dividing the

population by quantiles. This could represent a major limitation in studies based on

microdata, where it is usual to examine the distribution pattern in terms of quintiles

or deciles, for example. In our case, however, this definition of perfect mobility raises

no practical problems, since our units of reference are geographical areas that contain a
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varying number of individuals, and it is therefore perfectly reasonable to define the m

classes in terms of their per capita income normalised according to the average of the

distribution under analysis.

We will now examine a series of basic properties that a mobility measure based on

the data given by a transition matrix Π ∈ Ω can reasonably be expected to fulfil.

• Monotonicity (MN): If Π > Π′, then M(Π) > M(Π′), being Π > Π′ when πjk ≥

π′
jk for any j 6= k and πjk > π′

jk for some j 6= k.

This property focuses on the non diagonal elements of transition matrices, that is,

the ones that give the probability of moving from the original class over the time

period considered. Therefore, if the non diagonal elements are greater in Π than

in Π′, it would seem fitting to impose that M(Π) should be larger than M(Π′).

• Strong immobility (SIM): M(Π) = 0 if and only if Π = I.

In the absence of movements between classes, from t0 to t1, Π coincides with the

identity matrix, I. On the one hand, this property brings up the advisability of

attributing the lowest value of the index precisely to the identity matrix. It also

excludes the possibility of there being some other matrix Π′ ∈ Ω distinct from I,

such that M(Π′) = 0.

• Strong maximum mobility (SMM): M(Π) reaches its maximum at Π. Likewise, if

Π is the maximum, then Π ∈ Π∗.

All three of the above properties, with some variations, were proposed by Shorrocks

(1978). In this study, we have also considered the following:

• Independence of irrelevant classes (IIC): Let there be ΠA,ΠB ,ΠC ,ΠD ∈ Ω, such

that ΠA = (Π1, . . . ,Πh, . . . ,Πm), ΠB = (Π1, . . . ,Πh−1, Π̂h,Πh+1, . . . ,Πm), ΠC =
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(Π′
1, . . . ,Π′

h−1,Πh,Π′
h+1, . . . ,Π

′
m) and ΠD = (Π′

1, . . . ,Π
′
h−1, Π̂h,Π′

h+1, . . . ,Π
′
m),

where Πj denotes row j of matrix Π. Then, M(ΠA) ≥ M(ΠB) if and only if

M(ΠC) ≥ M(ΠD).

In order to clarify the implications of this property, let us consider the following

example. In particular, let there be the following transitions matrices with m = 3:

Π3 =




0.4 0.3 0.3

0.5 0.5 0

0 0.3 0.7




and

Π4 =




0.2 0.6 0.2

0.5 0.5 0

0 0.3 0.7




Likewise,

Π5 =




0.4 0.3 0.3

0 1 0

0 0 1




and

Π6 =




0.2 0.6 0.2

0 1 0

0 0 1




8



As yet we have no criterion by which to classify Π3 and Π4 in terms of their

mobility. Obviously, this reasoning can be extended to Π5 and Π6. In any event,

by virtue of (IIC) we are able to establish that M(Π3) ≥ M(Π4) if and only if

M(Π5) ≥ M(Π6).

• Symmetry of rows along the main diagonal (SRD): Let there be Π,Π′ ∈ Ω, such

that Π = (Π1, . . . ,Πj , . . . ,Πm) and Π′ = (Π1, . . . ,Πj−1,Π
′
j ,Πj+1, . . . ,Πm). For

row j, j /∈ {1,m}, it is verified that:

1. πjk = π′
jk for any k 6= j − λ, j + λ, where λ is any natural number in the

interval [1, Min {j − 1, m − j}].

2. πj(j−λ) + πj(j+λ) = π′
j(j−λ) + π′

j(j+λ).

Then, M(Π) = M(Π′).

According to this property, equal degrees of movement away from the class of

origin but with a different sign should be valued equally by M(Π) irrespective of

their direction, as long as the total probability in each case remains constant. To

further illustrate the implications of this property, let us consider the following

example. Then, let there be two matrices with m = 3 such that:

Π7 =




1 0 0

0.2 0.5 0.3

0 0.3 0.7




and
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Π8 =




1 0 0

0.5 0.5 0

0 0.3 0.7




(SRD) guarantees that M(Π7) = M(Π8).

Having reached this point, we are now in a position to introduce a family of indices

that enables us to measure mobility conceived as movement, by means of the information

supplied by a transition matrix Π ∈ Ω. As we will see later, as a particular case, this

family includes the Bartholomew index (1973), widely used in the empirical literature

on the analysis of intradistributional mobility.

As stated earlier, a transition matrix provides information on movements from one

class to another in a distribution over the time period defined by t0 and t1. In this

context, lack of movement between classes implies that Π is equal to I. We can there-

fore consider the possibility of measuring the mobility corresponding to transformation

xt0 −→ xt1 by calculating the distance between Π and I for an appropriate distance

function10.

Taking this idea as our starting point, let us begin by considering the following family

of functions:

MD(Π, ω, v, α) =

m∑

j=1

ωj

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

(1)

where ijk is the corresponding element of the identity matrix, and
m∑

j=1
ωj = 1 with ωj > 0

10Dagum (1980), Shorrocks (1982), Ebert (1984), Chakravarty and Dutta (1987) and Silber and
Berrebi (1988) have all used various distance functions within the context of inequality measurement.
Up to the present, however, this approach has received very little attention from mobility analysis, save
for a few exceptions [Cowell (1985), Fields and Ok (1996)].
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for any j = 1, 2, . . . ,m. Likewise, α ≥ 111, while v : {1, ...,m} × {1, ...,m} −→ R+ is a

strictly increasing function on variable |j − k|12.

Note that the above expression includes a double weighting. Specifically, we have

considered the possibility when calculating MD(Π, ω, v, α), of assigning a different

weight, ωj , to each of the Π rows. This is not common practice in the literature de-

voted to the study of intradistributional mobility using transition matrix data. However,

it would appear advisable to endow the various indicators considered in the empirical

analysis with some kind of instrument to deal with possible differences in population or

income shares between classes. Also, by including v(j, k) in expression (1), we are able

to assign within each row different weightings according to the degree of movements

between classes. Nevertheless, we will take up this issue in greater detail later in the

paper.

We will now examine the suitability of using the family of functions described in

expression (1) as mobility measures. For this, let us consider the following result.

Proposition 1: MD(Π, ω, v, α) satisfies (MN), (SIM), (SMM) and (IIC).

Proof:

•Monotonicity (MN):

Let there be Π,Π′ ∈ Ω such that Π > Π′ with ωj = ω′
j for any j = 1, 2, ...,m. Π and

Π′ are by definition stochastic matrices, so that they verify that
m∑

k=1

πjk =
m∑

k=1

π′
jk =1 for

any j = 1, 2, . . . ,m. We can therefore write that:

MD(Π, ω, v, α) − MD(Π′, ω, v, α) = ω1{[(π12 + . . . + π1m)αv(1, 1) + πα
12v(1, 2) + . . . +

πα
1mv(1,m)]

1

α − [(π′
12 + . . . + π′

1m)αv(1, 1) + π′α
12v(1, 2) + . . . + π′α

1mv(1,m)]
1

α } + . . . +

11In the event of α < 1, it would be possible to obtain contradictory orderings of transition matrices
from MD(Π, ω, v, α) according to the notion of mobility as movement.

12In other words, |j1 − k1| > |j2 − k2| if and only if v(|j1 − k1|) > v(|j2 − k2|).
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ωj{[π
α
j1v(j, 1)+ . . .+πα

j(j−1)v(j, j−1)+(πj1 + . . .+πj(j−1)+πj(j+1) + . . .+πjm)αv(j, j)+

πα
j(j+1)v(j, j + 1) + . . . + πα

jmv(j,m)]
1

α − [π′α
j1v(j, 1) + . . . + π′α

j(j−1)v(j, j − 1) + (π′
j1 +

. . . +π′
j(j−1) +π′

j(j+1) + . . . +π′
jm)αv(j, j)+π′α

j(j+1)v(j, j +1)+ . . . +π′α
jmv(j,m)]

1

α }+

. . . + ωm{[πα
m1v(m, 1) + . . . + πα

m(m−1)v(m,m− 1) + (πm1 + . . . + πm(m−1))
αv(m,m)]

1

α −

[π′α
m1v(m, 1) + . . . + π′α

m(m−1)v(m,m − 1) + (π′
m1 + . . . + π′

m(m−1))
αv(m,m)]

1

α } > 0

since Π > Π′ and ωj > 0 for any j = 1, 2, ...,m.

Therefore, MD(Π, ω, v, α) > MD(Π′, ω, v, α).

•Strong Immobility (SIM):

If Π = I, we have that

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

= 0 for any j = 1, 2, ...,m, such

that MD(Π, ω, v, α) = 0.

To test sufficiency, let us consider a matrix Π′ ∈ Ω with Π′ 6= I. If Π′ 6= I, there must

be some j 6= k such that πjk 6= 0. Given that v(j, k) > v(j, j) ≥ 0, MD(Π, ω, v, α) > 0.

•Strong maximum mobility (SMM):

Let there be Π0 ∈ Π∗, with Π0 such that π0
jk ∈ {0, 1}. Then,

MD(Π0, ω, v, α) =
m∑

j=1
ωj

[
m∑

k=1

∣∣∣π0
jk − ijk

∣∣∣
α

v(j, k)

] 1

α

=

=
m∑

j=1
ωj [v(j, j) + Max{v(j, 1), v(j,m)}]

1

α

We will now prove that MD(Π0, ω, v, α) ≥ MD(Π, ω, v, α) for any Π ∈ Ω. For this we

consider two separate cases:

1. Case A: Π ∈ Π∗.

If πjk ∈ {0, 1} for any j, k, clearly, MD(Π, ω, v, α) = MD(Π0, ω, v, α).

Otherwise there exists a pair (j, k), such that πjk /∈ {0, 1}. Since Π ∈ Π∗, m must

be odd and j = m+1
2 . Also, k = 1 or k = m. Therefore, for this row j:

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

=
[
v(j, j) + πα

j1v(j, 1) + πα
jmv(j,m)

] 1

α
≤
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≤ [v(j, j) + 1αMax{v(j, 1), v(j,m)}]
1

α

due to the concavity of xα with α ≥ 113.

2. Case B: Π /∈ Π∗.

If Π /∈ Π∗, there must be a pair (j, k) such that,

k 6=





m if j ≤ m+1
2

1 if j ≥ m+1
2

if m is even and

k 6=





m if j < m+1
2

m, 1 if j = m+1
2

1 if j > m+1
2

if m is odd, such that πjk 6= 0.

• Let us assume that the pair in question is such that j = k.

If we select row j, we have that πjj 6= 0, so we can write:
[
|πjj − 1|α v(j, j) +

∑
k 6=j

πα
jkv(j, k)

] 1

α

≤

≤

[
1αv(j, j) +

∑
k 6=j

πα
jkMax{v(j, 1), v(j,m)}

] 1

α

=

=

[
1αv(j, j) + Max{v(j, 1), v(j,m)}

∑
k 6=j

πα
jk

] 1

α

Applying the concavity of xα with α ≥ 1, we have that the above expression

is less than or equal to:

13Note that if α = 1, we have that MD(Π, ω, v, α = 1) = MD(Π0, ω, v, α = 1).
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[
1αv(j, j) + Max{v(j, 1), v(j,m)}

(
∑
k 6=j

πjk

)α] 1

α

<

< [1αv(j, j) + Max{v(j, 1), v(j,m)}1α ]
1

α =

= [v(j, j) + Max{v(j, 1), v(j,m)}]
1

α

since because v(j, k) is a strictly increasing function,

Max{v(j, 1), v(j,m)} > 0. Likewise,

(
∑
k 6=j

πjk

)α

< 1α, since πjj 6= 0.

• If the pair that concerns us is such that j 6= k, similar reasoning can be

applied:
[
|πjj − 1|α v(j, j) +

∑
k 6=j

πα
jkv(j, k)

] 1

α

<

<

[
1αv(j, j) +

∑
k 6=j

πα
jkMax{v(j, 1), v(j,m)}

] 1

α

=

=

[
1αv(j, j) + Max{v(j, 1), v(j,m)}

∑
k 6=j

πα
jk

] 1

α

since there is a πjk 6= 0 with v(j, k) > 0. Again applying the concavity of xα

with α ≥ 1, we get that the above expression is less than or equal to:
[
1αv(j, j) + Max{v(j, 1), v(j,m)}

(
∑
k 6=j

πjk

)α] 1

α

≤

≤ [1αv(j, j) + Max{v(j, 1), v(j,m)}1α ]
1

α =

= [v(j, j) + Max{v(j, 1), v(j,m)}]
1

α

since, because v(j, k) is a strictly increasing function, Max {v(j, 1), v(j,m)} >

0. Also, by contrast to the previous case,

(
∑
k 6=j

πjk

)α

≤ 1α.

Therefore, agreggating by rows in both cases, we have:

MD(Π, ω, v, α) < MD(Π0, ω, v, α)

We have therefore proved that MD(Π, ω, v, α) reaches a maximum at Π. Further, if

Π is the maximum it must belong to Π∗.
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•Independence of irrelevant classes (IIC):

The proof of this property is straightforward, since MD(Π, ω, v, α) can also be writ-

ten as:

MD(Π, ω, v, α) = ωh

[
m∑

k=1

|πhk − ihk|
αv(h, k)

] 1

α

+
m∑

j 6=h

ωj

[
m∑

k=1

|πjk − ijk|
αv(j, k)

] 1

α

�

MD(Π, ω, v, α), meanwhile, presents an apparent limitation in terms of interpreta-

tion. In particular, Shorrocks (1978) recommends that any mobility index derived from

a transition matrix, M(Π), should verify for any Π ∈ Ω that 0 ≤ M(Π) ≤ 1. However,

as we are aware, the range of variation of MD(Π, ω, v, α) is not generally limited to

the interval [0, 1], since it is not possible a priori to establish a predefined upper bound

independent of m. This does not raise a major problem, however, since it is possible to

normalise MD(Π, ω, v, α). Specifically:

0 ≤ MD(Π, ω, v, α) ≤

m∑

j=1

ωj [v(j, j) + Max{v(j, 1), v(j,m)}]
1

α (2)

Therefore,

0 ≤ MDN (Π, ω, v, α) ≤ 1 (3)

with

MDN (Π, ω, v, α) =

m∑
j=1

ωj

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

m∑
j=1

ωj [v(j, j) + Max{v(j, 1), v(j,m)}]
1

α

(4)

such that MDN (Π, ω, v, α) takes values between 0 (absence of any movement between

classes) and 1 (maximum mobility). In fact, the above expression satisfies the same

properties as MD(Π, ω, v, α).
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In addition, it is worth mentioning that the characteristics of MD(Π, ω, v, α) will

enable us to obtain a decomposition of the observed mobility based on the partition of

the population used to define the m classes. Indeed, from expression (1) we can write

that:

m∑

j=1

Cj(Π, ω, v, α) = 1 (5)

where

Cj(Π, ω, v, α) =

ωj

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

m∑
j=1

ωj

[
m∑

k=1

|πjk − ijk|
α v(j, k)

] 1

α

(6)

represents the share of overall observed mobility according to MD(Π, ω, v, α) attributed

to class j. Meanwhile, Cj(Π, ω, v, α) gives the proportion of the decrease that would take

place in MD(Π, ω, v, α) assuming there were no movements between classes originating

in class j (πjj = 1)14.

The family of functions MD(Π, ω, v, α) is of limited applicability, however, since it

contains an infinite number of potential mobility measures with no prior arguments to

support the choice of one over any of the others. To address this problem, we consider

the following result.

Proposition 2: MD(Π, ω, v, α) satisfies (SRD) if and only if α = 1.

Proof:

If α = 1 it is immediate that it also satisfies (SRD). To prove that MD(Π, ω, v, α = 1)

are the only measurements from the family MD(Π, ω, v, α) that satisfy (SRD), let us

consider two matrices Π′,Π′′ ∈ Ω such that:

14Obviously, this decomposition is extendable to MDN (Π, ω, v, α).
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Π′ =




1 0 0 . . . 0

1 0 0 . . . 0

0 0 1 . . . 0

...
...

...
...

...

0 0 0 . . . 1




and

Π′′ =




1 0 0 . . . 0

0.5 0 0.5 . . . 0

0 0 1 . . . 0

...
...

...
...

...

0 0 0 . . . 1




If we assume in this case that α > 1, for row 2 we have:

[1αv(2, 1) + v(2, 2)]
1

α > [0, 5αv(2, 1) + v(2, 2) + 0, 5αv(2, 3)]
1

α

Therefore, MD(Π′, ω, v, α) > MD(Π′′, ω, v, α).

�

This proposition shows that there exist theoretical arguments to justify the use of

MD(Π, ω, v, α = 1) to measure mobility conceived as movement.

However, MD(Π, ω, v, α = 1) still includes an infinite number of mobility indices,

depending on the functional form of v(j, k). Indeed, the mobility measure proposed by

Bartholomew (1973),

MB(Π) =

m∑

j=1

m∑

k=1

ωjπjk|j − k| (7)
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is simply a particular case of MD(Π, ω, v, α = 1). In fact, if v1(j, k) = |j − k|, we have:

MD(Π, ω, v1, α = 1) =

m∑

j=1

m∑

k=1

ωj |πjk − ijk||j − k| =

=

m∑

j=1

m∑

k=1

ωjπjk|j − k| (8)

In any event, there are no a priori theoretical arguments to justify the use of a given

v(j, k), beyond the requirement that it should be a strictly increasing function on the

variable |j − k|. In particular, the ultimate choice will depend on the value assigned to

the movements that take place between the different classes. Thus, as an alternative to

v1(j, k) we might consider, for example, the possibility of using v2(j, k) = |j − k|2. Note

that v2(j, k) assigns a greater weight than v1(j, k) to movements between non-adjacent

classes, which may be considered desirable in certain cases.

In fact, it is possible to reformulate MD(Π, ω, v, α = 1), such that the weighting

scheme used for movements between classes varies as a function of the original class. In

other words15,

MD′(Π, ω, v, α = 1) =

m∑

j=1

ωj

m∑

k=1

|πjk − ijk|vj(j, k) (9)

Summing up, in this section we have introduced a family of functions to measure

mobility conceived as movement, and have presented various theoretical results that

justify its usefulness. The main characteristic of MD(Π, ω, v, α = 1) is its flexibility,

given that it allows the use of different weighting schemes for movements between classes,

according to the desired objective. Furthermore, we have shown that MD(Π, ω, v, α = 1)

includes, as a particular case, the mobility measure proposed by Bartholomew (1973).

15It can be proved that MD′(Π, ω, v, α = 1) satisfies (MN), (SIM), (SMM), (IIC) and (SRD).
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3 An application: Regional mobility in the European Uni-

on

In this section, we will apply MD(Π, ω, v, α = 1) to the study of mobility in the

regional distribution of per capita income in the European Union, using statistical in-

formation supplied by Cambridge Econometrics for 197 NUTS2 regions over the period

1977-199916 . For this, the first step is to select an appropriate definition of the various

classes. To address this problem, we opted for a solution that provides reasonably pre-

cise details of the movements of regions among a sufficient number of groups, without

this making the sample any less representative. Thus, we divided the regions that make

up the distribution under analysis into five exhaustive and mutually exclusive classes,

according to their per capita income in relation to the European average, which was

assigned a value of 100: [0,75), [75,90), [90,110), [110,125) and [125,+∞)1.

Figure 1 shows the results obtained from calculating MBN (Π, ω) and MDN (Π, ω,

v2, α = 1) after estimating the corresponding transition matrices, with ωj =
∑
i∈j

pt0
i and

v2(j, k) = |j − k|2. In addition, in order to isolate the effect of transient per capita

income fluctuations associated with annual changes, we decided in our analysis to use

time periods of different length, thus we were also able to distinguish between short and

medium term mobility.

The results obtained reveal that regional per capita income distribution exhibits

greater mobility when the time interval taken as a reference is increased. Thus on

average, 91% of the regions considered continued in the same class after a year. This

16Lack of complete series, however, has obliged us to eliminate from the analysis the member States
admitted to the European Union in May 2004, the Länder of former East Germany, The French overseas
departments and the Spanish territories in North Africa. Nevertheless, the appendix includes a complete
list of all the regions considered in this study.
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Figure 1: Regional mobility according to MBN (Π, ω) and MDN (Π, ω, v2, α = 1), m = 5.
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percentage drops to 63% when the period is taken as a whole, however.

It is also worth stressing that the two mobility indices considered follow very similar

trends. Given that the main difference between them lies in the distinct valuation given

to shifts between classes, this result suggests a relatively low degree of intradistributional

mobility17. Further confirmation of this is to be found in the various transition matrices

estimated, which exhibit the highest values around the main diagonal18.

Whatever index is used, the empirical evidence presented shows a reduction in the

mobility of the European Union regional per capita income distribution between 1997

and 1999. Nevertheless, since mobility has not fallen at an even rate over time, it is

possible to identify a series of separate stages, each with its distinguishing features. Thus,

the main reduction in MBN (Π, ω) and MDN (Π, ω, v2, α = 1) took place between 1977

and the early eighties. From then onwards, however, there is a change of trend leading

to an increase in regional mobility continuing until the end of that decade. During the

early nineties, there was a further decrease in regional mobility, which, however, seemed

to mark the beginning of a new stage, characterised by a new rise in MBN (Π, ω) and

MDN (Π, ω, v2, α = 1).

In this context, however, it is necessary to stress that the above results cannot be

valued normatively without taking into account the degree of inequality observed in the

distribution under analysis. In this respect, a large number of studies have coincided in

reporting a lack of regional convergence in per capita income in the European context

from the mid-seventies onwards [Armstrong (1995), Neven and Gouyette (1995), López-

Bazo et al. (1999), Rodŕıguez-Pose (1999), etc.]. The analysis performed in this section,

17Neven and Gouyette (1995) and López-Bazo et al. (1999) reach a similar conclusion for a more
reduced geographical area and a shorter time period than considered in this article.

18The medium and full term transition matrices are included in the appendix. The rest, which are
not shown for lack of space, are available from the authors upon request.
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for its part, shows that this maintenance of territorial imbalances has coincided in time

with a process of consolidation in the relative positions of the various regions, which

stresses the need for an active regional policy at European level19.

In light of the volatility of MBN (Π, ω) and MDN (Π, ω, v2, α = 1) in short term

observations, we performed a preliminary analysis of the relationship between the eco-

nomic cycle and regional mobility trends in the European context. To this end, we

estimated the statistical correlation between per capita income growth rates in the Eu-

ropean Union and annual fluctuations in the two mobility measures considered. We

then repeated the exercise incorporating the assumption that economic cycle influences

on regional mobility with a lag20. In both cases, however, the correlation coefficients,

though positive, were not statistically significant21.

Tables 1 and 2 show the average relative contribution of the classes considered to

overall observed mobility in the above analysis. The last row of Table 1, for instance,

indicates that, according to MBN (Π, ω), about 60% of long term mobility can be at-

tributed to classes grouping regions in which per capita income in 1977 was between 75

and 125% of the European average. In other words, if over the sample period, there had

been no movement originating in the groups at either end of the distribution, the value

of the index would have fallen by about 40%.

Nevertheless, to ensure correct interpretation of the figures in Tables 1 and 2, it

appears advisable to relate for each class Cj(.) to its population share. Thus, if we

limit the analysis to include only those contributions where Cj(.) > ωj, it is possible to

19Note that, for a given level of inequality, high mobility would be a sign of strong cyclical variability
in regional incomes. In this kind of context, regional policy should address the need to mitigate adverse
cyclical effects before applying traditional convergence policies.

20In relation to this, see Fischer and Nijkamp (1987).
21Quah (1996b) obtains a similar finding for the United States.
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Table 1: Average relative contribution of each class to overall mobility according to
MBN (Π, ω).

Mobility C1(.) C2(.) C3(.) C4(.) C5(.)

Biannual 0.12 0.26* 0.24* 0.25* 0.13
Short term (4 years) 0.10 0.27* 0.27* 0.24* 0.12
Medium term (12 years) 0.09 0.28* 0.27* 0.18* 0.21
Long term (23 years) 0.15 0.26* 0.23* 0.11* 0.25

Note: The (∗) sign shows that Cj(.) > ωj .

Table 2: Average relative contribution of each class to overall moblility according to
MDN (Π, ω, v2, α = 1).

Mobility C1(.) C2(.) C3(.) C4(.) C5(.)

Biannual 0.12 0.25* 0.24* 0.26* 0.13
Short term(4 years) 0.11 0.27* 0.26* 0.24* 0.12
Medium term (12 years) 0.09 0.27* 0.26* 0.17* 0.21
Long term (23 years) 0.16 0.20 0.25* 0.12 0.28*

Note: The (∗) sign shows that Cj(.) > ωj .

detect the existence of differentiated behaviour patterns in terms of mobility according

to regional development levels. Particularly, results suggest that the main relative con-

tributions correspond basically to groups in the middle of the distribution, with those

at either end playing a minor role.

The analysis carried out so far is based on the application of the family MD(Π, ω, v,

α = 1) to examine mobility in the regional distribution of per capita income in the

European Union. This has involved the use of data from various transition matrices,

obtained by dividing the distribution under analysis into a series of exhaustive and

mutually exclusive classes. However, since there is no procedure for finding the optimal

number of classes in each case, the researcher is obliged to make an arbitrary decision
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in this respect22.

Keeping this issue in mind, we decided to test the robustness of the results obtained

in the preceding pages by estimating a stochastic kernel for the entire sample period

(t = 1977 and t + k = 1999)23. The three-dimensional graph that appears in Figure 2

can be intuitively interpreted as a transition matrix with an infinite number of classes,

such that it gives the associated probability of each pair of values for the first and last

years of the sample period. In other words, the stochastic kernel provides, in a way

analogous to that of a discrete transition matrix, the probability distribution of 1999

per capita income for regions with a given per capita income in 1977. The peaks on the

graph represent high levels of probability. Thus, if the probability mass is concentrated

around the main diagonal, the intradistributional dynamics are characterised by a high

level of persistence in the relative positions of the regions over time and, therefore, low

mobility. If, on the other hand, the density is located mainly on the opposite diagonal to

the main diagonal, this would indicate that regions at each end of the distribution switch

their relative positions throughout the period. Finally, the probability mass could, in

theory, accumulate parallel to the t axis. This would reflect the convergence of regional

per capita incomes towards the European average. In order to aid interpretation of the

graph, Figure 2 also includes a contour plot on which the lines connect points at the

same height on the three-dimensional kernel.

The results obtained fully uphold the conclusions reached in the previous analysis

based on the data from the discrete transition matrices. Indeed, as can be seen from

Figure 2, the mass of probability is concentrated around the main diagonal. As we are

22In relation to this, see Kremer et al. (2001).
23Gaussian kernel functions were used in all cases, while the smoothing parameter was determined

following Silverman (1986).

24



Figure 2: Stochastic kernel and contour plot of the regional distribution of per capita
income, 1977-1999.

already aware, this indicates that there is little mobility in the distribution of regional

per capita income between 1977 and 1999. There is a general tendency, therefore, for

the European regions to maintain their relative positions throughout the twenty-three

years considered. We can also observe how regions with a per capita income around the

European average exhibit a relatively higher degree of mobility over time, while those

located at either end of the distribution are characterised by a stronger persistence in

their relative positions24.

24In order to test the robustness of the results, we decided to repeat the above analysis using data
only for the subperiods 1977-1988 and 1988-1999. The results, shown in the appendix, are very similar
to those already described.
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4 Conclusions

In this paper, as a contribution to the study of intradistributional mobility, we have

introduced a family of functions, MD(Π, ω, v, α = 1), whose usefulness as mobility

measures has been justified by various theoretical results. This family summarises the

information contained in a transition matrix into a single value, and, as a particular case,

includes the Bartholomew index (1973), which is widely used in the empirical literature

devoted to the dynamic analysis of personal income distribution.

The most outstanding feature of MD(Π, ω, v, α = 1) is its flexibility, given that,

depending on the desired objective, it allows the use of different weighting schemes

for movements between the classes into which the distribution under analysis is divided.

Furthermore, in addition to informing about the level and evolution of intradistributional

mobility, the proposed family of measures can be used to examine its origin. Indeed, it is

possible to decompose MD(Π, ω, v, α = 1) according to the partition of the population

considered to define the various classes, in order to determine the contribution to overall

mobility that can be attributed to each class.

As an example, we have applied some of the indices derived from the prior theoret-

ical analysis to study mobility in the regional distribution of per capita income in the

European Union from 1977 to 1999. The results obtained show a decline in the mobility

of the distribution in question over the time period considered. In addition, it is also

worth noting that the level of intradistributional mobility is relatively low. With some

exceptions, therefore, the European regions on the whole have tended to maintain their

relative positions over the twenty-three years contemplated. All of this underlines the

need for the European Union to reinforce its regional development policies.

The analysis carried out also reveals that regional mobility patterns vary as a function
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of economic development levels. In fact, the regions with a per capita income around

the European average tend to register a relatively higher degree of mobility over time,

while those at either end of the distribution are characeterised by a stronger persistence

in their relative positions.
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Appendix

The 197 territorial units considered in this study are as follows:
Belgium: Bruxelles-Brussel, Antwerpen, Limburg, Oost-Vlaanderen, Vlaams Brabant,
West-Vlaanderen, Brabant Wallon, Hainaut, Liège, Luxembourg and Namur. Den-
mark. Germany : Stuttgart, Karlsruhe, Freiburg, Tübingen, Oberbayern, Niederbay-
ern, Oberpfalz, Oberfranken, Mittelfranken, Unterfranken, Schwaben, Berlin, Bremen,
Hamburg, Darmstadt, Giessen, Kassel, Braunschweig, Hannover, Lüneburg, Weser-
Ems, Düsseldorf, Köln, Münster, Detmold, Arnsberg, Koblenz, Trier, Rheinhessen-
Pfalz, Saarland and Schleswig-Holstein. Greece: Anatoliki Makedonia, Kentriki Make-
donia, Dytiki Makedonia, Thessalia, Ipeiros, Ionia Nisia, Dytiki Ellada, Sterea El-
lada, Peloponnisos, Attiki, Voreio Aigaio, Notio Aigaio and Kriti. Spain: Galicia,
Asturias, Cantabria, Páıs Vasco, Navarra, La Rioja, Aragón, Madrid, Castilla-León,
Castilla-la Mancha, Extremadura, Cataluña, Com. Valenciana, Baleares, Andalućıa,
Murcia and Canarias. France: Île de France, Champagne-Ardenne, Picardie, Haute-
Normandie, Centre, Basse-Normandie, Bourgogne, Nord-Pas de Calais, Lorraine, Al-
sace, Franche-Comté, Pays de la Loire, Bretagne, Poitou-Charentes, Aquitaine, Midi-
Pyrénées, Limousin, Rhône-Alpes, Auvergne, Languedoc-Rousillon, Provence-Alpes-
Côte d’Azur and Corse. Ireland : Border-Midland and Western and Southern and East-
ern. Italy : Piemonte, Valle d’Aosta, Liguria, Lombardia, Trentino-Alto Adige, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana, Umbria, Marche, Lazio, Abruzzi, Mo-
lise, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna. Luxembourg. The
Netherlands: Groningen, Friesland, Drenthe, Overijssel, Gelderland, Flevoland, Utrecht,
Noord-Holland, Zuid-Holland, Zeeland, Noord-Brabant and Limburg. Austria: Burgen-
land, Niederösterreich, Wien, Kärnten, Steiermark, Oberösterreich, Salzburg, Tirol and
Vorarlberg. Portugal : Norte, Centro, Lisboa e Vale do Tejo, Alentejo, Algarve, Açores
and Madeira. Finland : Itä-Suomi, Väli-Suomi, Pohjois-Suomi, Uusimaa, Etelä-Suomi
and Aland. Sweden: Stockholm, Östra Mellansverige, Sydsverige, Norra, Mellansverige,
Mellersta Norrland, Övre Norrland, Smaland med oarna and Västsverige. United King-
dom: Tees Valley and Durham, Northumberland et al., Cumbria, Cheshire, Greater
Manchester, Lancashire, Merseyside, East Riding, North Yorkshire, South Yorkshire,
West Yorkshire, Derbyshire, Leicestershire, Lincolnshire, Hereford et al., Shropshire,
West Midlands (county), East Anglia, Bedfordshire, Essex, Inner London, Outer Lon-
don, Berkshire et al., Surrey, Hampshire, Kent,, Avon et al., Dorset, Cornwall, Devon,
West Wales, East Wales, North East Scotland, Eastern Scotland, South West Scotland,
Highlands and Islands and Northern Ireland.
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Figure A1: Stochastic kernel and contour plot of the regional distribution of per capita
income, 1977-1988.

Figure A2: Stochastic kernel and contour plot of the regional distribution of per capita
income, 1988-1999.
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Table A1: Transition matrix, 1977-1988.

Regions ωj [0,75) [75,90) [90,110) [110,125) [125,∞)

46 0.19 0.81 0.17 0.02 0.00 0.00
45 0.20 0.18 0.67 0.15 0.00 0.00
46 0.20 0.07 0.13 0.71 0.07 0.02
24 0.15 0.00 0.00 0.33 0.63 0.04
36 0.26 0.00 0.00 0.03 0.22 0.75

Table A2: Transition matrix, 1988-1999.

Regions ωj [0,75) [75,90) [90,110) [110,125) [125,∞)

48 0.22 0.98 0.00 0.02 0.00 0.00
44 0.19 0.15 0.55 0.30 0.00 0.00
50 0.23 0.00 0.16 0.68 0.16 0.00
26 0.16 0.00 0.00 0.15 0.73 0.12
29 0.20 0.00 0.00 0.07 0.10 0.83

Table A3: Transition matrix, 1977-1999.

Classes ωj [0,75) [75,90) [90,110) [110,125) [125,∞)

46 0.19 0.78 0.09 0.13 0.00 0.00
45 0.20 0.33 0.43 0.24 0.00 0.00
46 0.20 0.07 0.17 0.59 0.15 0.02
24 0.15 0.00 0.04 0.21 0.71 0.04
36 0.26 0.00 0.00 0.14 0.17 0.69
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