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Abstract

This paper analyzes the period-to-period changes that occur in an optimizing monetary
model with uncertainty and sticky prices. Money is incorporate in its role as a medium
of exchange through a time-cost transactions technology. Another important characteristic
of the model is that both capital and investment are obtained endogenously. In this re-
gard, adjustment costs of installing investment are incorporated to smooth and delay capital
movements over the economic cycle. We will focus attention on analyzing the consumption,
investment, and real money demand functions resulting from the model. These three equa-
tions gives rise to the structural IS-LM economy as part of the general equilibrium described
in the paper. Nominal prices are sticky, i.e., they do not adjust instantly thereby allowing
departures from general equilibrium obtained when there is absence of nominal frictions. We
chose to have the Fuhrer-Moore specification for nominal contract prices. The model is cal-
ibrated on quarterly observations from United States data. Four types of exogenous shocks
are included in our setup: production technology shocks, consumption preference (demand)
shocks, monetary policy shocks, and shopping time shocks. Hence, variability of output,
consumption, investment, etc., may result from several sources. The impact of each shock in
the economic cycle will be examined by plotting impulse-response functions implied by the
solutions of the model.
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1 Introduction

In the recent macroeconomic literature, most of the monetary structural models incorporate
money in its role as a medium of exchange.! Money is used to carry out transactions because
it is well-accepted by all the agents in exchange for any good. This fact makes money valuable
and gives rise to the standard money demand expression depending on total expenditures
(consumption, output), and on the nominal interest rate. Although the authors who work
with these models often refer to this role of money, it is rare to find papers in which the
use of money to facilitate transactions is explicitly represented (and measured) through a
transaction costs technology. Conversely, monetary models are generally built under the
cash-in-advance constraint (see Dow (1995), Woodford (1994), and Yun (1996)), or the
money in the utility function approach (see Benassy (1995), Chari, Kehoe and McGrattan
(1996), Ireland (1997), McCallum and Nelson (1997, 1999), and Kollman (1996)).?

There are two ways to include transaction costs: transactions take time resources (time-
cost transactions approach, described by McCallum and Goodfriend (1987), and recently
used in Attanasio, Guiso, Jappelli (1998), Chadha, Haldane and Janssen (1998), and Pakko
(1998)), or transactions require output usages from the budget constraint (output-cost trans-
actions approach, as in Feenstra (1986), and Sims (1994)). In any case, real money holdings
should be included in the transactions technology reflecting the advantages of possessing
the medium of exchange when conducting transactions. This paper explores the economic
dynamics of the time-cost transactions approach.

Another important feature of the model in this paper is that both capital and investment
are obtained endogenously. As we intend to analyze economic fluctuations here, investment

movements must account for much of the output variability over the business cycle. Capital

'Money also serves as a store of value function. But in the presence of assets that pay positive interest
and are no riskier, money would, under typical circumstances, not be held at all if its medium-of-exchange

role were neglected.
>The cash-in-advance setup treats money as the required counterpart in any transaction. It turns out that

the money demand expression is very restrictive for a binding cash-in-advance constraint: the consumption
elasticity is one and the nominal interest rate elasticity is zero. Money in the utility function model has
real money as one of the arguments in the utility function. There can be different representations of the
utility function leading to distinct money demand functions. In fact, the transactions time approach can be
considered one particular case of the money in the utility function framework. However, the assumptions
taken to define the transaction costs function (in particular the issue of separability) must be set to be

reflected in the properties of the utility function and these issues are seldom discussed.



movements are smoothed by considering adjustment costs of installing investment.

There are three other main characteristics in our model:

i) Optimizing criteria. A neoclassical discrete-time model is constructed in the well-
known optimizing framework described by Sidrauski (1967), and Brock (1975). Thus, a
set of first order conditions are derived from rational choices of the households who act as
consumers and producers. Decisions are made to maximize a discounted sum of expected
utility values subject to resource and time constraints. The resulting structural equations
have the potential to be policy invariant. A general equilibrium system will be formed by
adding up market clearing conditions.

ii) Sticky prices in the supply side. The presence of sluggish mechanisms in nominal
wages or prices has been broadly included in the business cycle literature to improve the
performance of the simulations (for recent papers see Cho and Cooley (1995), Dotsey, King,
and Wolman (1997), King and Watson (1995), Roberts (1995), Woodford (1996), and a
survey by Nelson (1998)). We chose to have the price setting following the Fuhrer-Moore
specification (Fuhrer-Moore (1995)). The Fuhrer-Moore equations guarantee a high degree
of persistence of inflation in the model, much closer to the pattern of inflation in actual data
than with any other sticky-price formulation (see Nelson (1998)). The existence of sticky
prices leads to departures from the general equilibrium solution. As a result, two measures
of output must be distinguished: current output and capacity (or market-clearing) output.

iii) Variety of shocks. Uncertainty surrounds the model where stochastic shocks may
hit the system shaping the economic cycle. Agents utilize rational expectations to make
predictions. Four types of exogenous shocks are included in the model: production tech-
nology shocks, consumption preference (demand) shocks, monetary shocks, and transactions
technology shocks. Hence, variability of output, consumption, investment, etc., may come
from several reasons. The impact of each shock in the economic cycle will be examined by
discussing the impulse-response functions implied by the solutions of the model.

Two are the motivations for this chapter. First, derive and analyze the structural con-
sumption, investment, and money demand functions obtained in an optimizing monetary
model with transaction costs in terms of time and endogenous investment. Second, we will
describe how the model predicts the responses of macroeconomic variables to changes in
technology, monetary policy, or household’s preferences.

The paper proceeds as follows. Section 2 is devoted to describing the elements of the



model with special attention on the proposed shopping time function. In section 3, we see
how the households make their optimal decisions, and then derive a general equilibrium
framework. Section 4 defines endogenously current output, capacity output, and the output
gap. In section 5, we complete the setup by presenting the Fuhrer-Moore price setting
relation on the supply side. The model is calibrated in section 6. Further, the behavior of
the main variables of the model are characterized in section 7 by means of impulse response
functions that determine the effects of exogenous shocks to the system. The paper finishes

in section 8 with some conclusions.

2 The elements of the model

The shopping time function.

Our economy consists of a large number N of infinitely-lived households, each of them
producing a different single good that can be consumed, sold, or transformed into physical
capital for producing in the next period. In this many goods economy, consumption is
defined as an aggregate. In particular, we use indexes as in Dixit and Stiglitz (1977)% for
both bundles of consumption (¢;) and the price level (F;). Households share the same utility
function, and they have access to the same technology. Symmetric equilibria is examined in
which P,(i) = Bi(j) = B, for all 4,5 € [1,..., N].*

Let m, represent the amount of real money balances held by the household at the end of

period ¢

M,

-3 (2.1)

my

where M; denotes the amount of nominal money. Households put up a shop where they
sell the good that they produce to the other households. Likewise, they have to spend part
of their time on shopping for the other NV — 1 goods. Money is used during the purchases

3The consumption and price level indexes are taken in discrete units over the N distinct goods:

1 N 9—1 %
cg =N <th(z)«_9> with 9 >1
i=1

T—

N 7
P=N"! <2Pt(i)119> with 9 > 1.
i=1

4In turn, demand for each individual good will be equal to N~!¢;, being ¢; the consumption aggregate.



to facilitate the exchange and economize time. Without money, the household would have
to negotiate a payment by credit or spend some time on transforming part of its income
to money. These alternatives suppose a higher amount of time. On the other hand, more
shopping time will be needed when the level of consumption desired is higher. Hence,
we present this shopping time function whose arguments are consumption c¢;, real money

balances m;, and a transactions technology shock y;,,

0 if =0

a2

C .
exp(x,) (ao + a1#> if ¢, >0

t

St = S(Xtuct7mt) ==

with ag,a; > 0,a9,a3 > 1.

The amount of time devoted to shopping increases with the level of consumption (s, > 0) and
decreases with more real money balances (s,, < 0). Moreover, consumption has increasing
costs in terms of time (s.. > 0) and real money has diminishing returns (S, > 0). Finally,
the cross marginal effect is positive (S, > 0).

The shopping time specification proposed presents a discontinuity when consumption
becomes positive. Thus, the appearance of a constant term (ag) in (2.2) reflects the initial
transaction costs due to a positive consumption level. To justify this term, we rely on the
construction of the consumption bundles ¢;. A positive value of this aggregate implies that
transactions were conducted in order to obtain a positive amount of all the goods of the
economy. And this is true even for a very small positive number of ¢;. At that moment,
households had to spend some time to buy at the shops of the other N — 1 households. We
assume that this searching cost (ag) is fixed. This cost is independent from the volume of
transactions. It only depends on the number of goods (or household units) in the economy
N. Other transaction costs vary with the quantity of consumption and the money services
(negotiation costs, transportation costs,...).

The scale parameter a; indicates the size of the variable time in the total shopping
time. There are two other coefficients: the elasticity parameters ay and az. Let 7, , denote
the elasticity between variable x and variable y. The two parameters a, and a3 inform
about the elasticity of the transaction costs with respect to consumption and real money

respectively. Actually, the elasticities are these two values multiplied by a reduction factor,

% Loglinearizing (2.2) when consumption is positive it yields
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a a 3
Nepey = 2(1 — 5&) and 0, ., = —az(l — £2). From now on, the ss superscript over one

5§58

variable denotes its steady state value. The higher is the constant searching cost aq relative
to the steady-state shopping time, the lower is the impact of consumption and money in the
total shopping time.

Another argument of the shopping time function is a shopping technology shock x,. A

random walk generates observations of this shock

Xt = X¢—1 1€ (2-3)

where ¢; are draws from a normalized normal distribution, i.e. ¢ ~ N(0,0).
The utility function.

Utility depends on consumption (¢;), leisure time (I,), and a random shock reflecting con-
sumption preferences ((,). In particular, we chose a constant relative risk aversion (CRRA)

instantaneous utility function

l1—0o 1—v

Ul cul) = elC) T + 17— (24)

with o,7, T >0

in which the standard first and second order assumptions U. > 0, U, < 0, U; > 0, and
Uy < 0 hold. The cross marginal effect is null (U, = 0) being consumption and leisure

separable in (2.4). The consumption preference shock follows an AR(1) process
G=0C 1+ u, (2.5)
with |¢°| < 1 and ¢, ~ N(0,0,).
The production function and the adjustment costs of investment.

Households produce output (y;) according to a Cobb-Douglas production function de-
pending on the amounts of labor demanded (n¢), employed capital (k;), and on the state of

technology represented by a technological shock (z;)

log sy = az(1 — 4%)logc; — az(1 — 4% ) logmy + x4,

where the constant term was left out.



Yy = f(zt,nf, k) = exp(zt)(nf)lfo‘k:t‘“, (2.6)

where we do not include any notation referring to the i-th household because, as supposed
above, all the households have access to the same f(.) technology and produce the same
amount of output under symmetric equilibrium. The law of motion for the productivity

shock is an AR(1) without constant from a normal distribution

2y = ¢Zzt,1 + Et, (27)

with [¢*| < 1, and ¢, ~ N(0,0.). Households can save part of their output for the next
period to be used in their production function as capital. They also need to replace the

depreciated capital. Thus, investment is defined as:

Ty = kft+1 — (1 — (S)kft (28)

where 6 is the depreciation rate. There exist adjustment costs to transform output into

capital. The adjustment costs of investment function C(x;) used here was taken from Abel
(1982)

Clay) = ] (2.9)

with v >0 and n > 1.
This functional form implies constant elasticity with respect to the amount of investment
and increasing marginal adjustment costs. As a consequence of the latter, the production

function net of adjustment costs f(.) — C(x;) has decreasing returns to scale so that the

optimal size of the production plants is bound to be small.
Money creation and the government budget constraint.

Money is issued by the government. A monetary policy rule is designed based on the

nominal money growth. Let y, be the rate of growth of nominal money in period ¢



~ 1. (2.10)

The monetary policy rule used is

My = ¢g + ¢lfﬂt—1 + U, (2-11)

with |¢f| < 1, and v; ~ N(0,0,) is Gaussian white noise. The monetary authorities decide

the values of the coefficients of (2.11) to determine the degree of persistence of the money-
bh ).6

1-¢4 /"

Increments in nominal money are paid to the households as lump-sum government trans-

growth (¢,) and the long-term rate of inflation (7% = p® =

fers. There are also government bonds which can be purchased by the households and yield

a nominal interest rate. Hence, the government (nominal) budget constraint is

Gy =M, — M,y +(1+ R)™'Biy1 — By (2.12)

in which G; are nominal lump-sum transfers and (1+ R;)~! By, are the nominal purchases of
bonds in period ¢ that will be reimbursed for B;;; nominal units in period ¢ + 1. Therefore,
R, is the rate of nominal interest of bonds bought in period ¢. Dividing both sides of (2.12)

by the price level, we obtain the government budget constraint in real magnitudes

gy = My — (1 + Wt)_lmt_l + (]_ + T't)_lbt+1 — bt. (213)

Lower case letters in (2.13) denote real values of capital letters and the following defini-

tions were utilized for inflation 7;, and the real return on bonds 1 + 7,

P,
= -1 2.14
Ty Rf—l ’ ( )
1+ R;
1+4r=—"—""—. 2.15
! Ei[1 4 mq4] ( )

The rational expectation operator E;[.] appearing in (2.15) represents the expectation in

period t conditioned to the set of information available in that period.

6Since this is a no-growth model, the steady state rate of inflation is equal to the steady state rate of

growth of nominal money (7% = %) .



3 Building a general equilibrium

3.1 The decision process

Households face the following budget and time constraints in period ¢

g+ flznf k) = Clm) = e+ ki — (1= 6k +w(nf —ng) +
me — (L4 m) " 'my g 4+ (1 +71) beg — by,
T = nf + 8 + lt.

There are two sources of real income for the household: lump-sum real transfers from
the government (g;) and their own output production after subtracting the adjustments cost
of investment (f(z;,nd, ki) — C(z;)). Income is spent on consumption (c;), on investment
(kir1 — (1 — 8)k:), on payments to the labor force hired in the market (w;(né —ng), with w;
denoting the real wage, and on increasing the amounts of real money (m; — (1 + m;) tm;_1)
or bonds ((1 + ) by11 — by).

As for the time constraint, planned allocation of total time 7' consists of an amount of
worktime supplied n;, some time required for shopping s;, and the remaining leisure time
l;. Obviously, labor must be supplied by the households. As producers, they will raise a
labor demand which may be different from their labor supply. If it is the case that they
coincide, we would say that the labor market clears at the current prices. Otherwise, the

labor demand dominates in the labor market and becomes the actual labor force.

Households make decisions according to the following program:

Mazx EtZﬂjU(Ct+j7Ct+jalt+j)
=0

d
ctyker1,m8,n8 Ly mie by

subject to

Eylgess + gy keg) — Caeng) — covg — kg + (1= 8)keyy — wep(ngy; — ny )
g+ (L meyy) " my 1y — (L reyy) oy +beyy] =0 forall 5 >0

BT —niy; — $(Xegg» CttgsMusy) — biys] =0 forall j > 0.



The first order conditions resulting from the household rational choices in period t are” ®

Uy, — At — AaySe, = 0 (3.1)
—Me(1+Cy,) + BE[ M1 (1 + fro,, =6+ (1 =06)Ch,,,)] =0 (3.2)
Mi(fn, —we) =0 (3.3)
Ajw; — Aoy = 0 (3.4)
U, =X =0 (3.5)
—Ait + BE A (T + 71) 7 + A8, =0 (3.6)
(L4 7) 7+ BE[Mpa] =0 (3.7)

gi + f(z,nd k) — C(xy) — ¢ — kg1 + (1 — ) kg —
wy(nd —nf) —my + (L+m) tmy g — (L47) by + b, =0 (3.8)
T —ni —s(x,ce,m) — ;=0 (3.9)

where the discount factor is § = ﬁp being p > 0 the rate of intertemporal preference,
and Ay and Ao are the Lagrange multipliers attached to the budget and time constraints

respectively.

3.2 The consumption function

We begin the analysis with the consumption rational choice. Plugging the Lagrange multi-
plier of the time constraint Ay, from (3.4) into (3.1) and solving for the Lagrange multiplier

of the budget constraint \;;, we have

"We employed the following notation for partial derivatives in a particular time period. If V(z¢,v;) is a

generic function in period ¢, we have

OV (we,y) — OV(we,y) —
oy = Vo, and —5 2= =V,

8The following transversyality conditions must also be included to rule out undesired dynamic paths for

capital and bonds respectively:

: t—1+j

lm k187 Ay = 0,
J—00

: t—1+j
jhrglobt_;_l_;_jﬁ +J)\1t+j = 0.



(3.10)

Our shopping time functional form (2.2) and the CRRA utility function (2.4) were substi-
tuted in (3.10) to yield

exp((y)er”

At = . 3.11
R wy exp(x,)arascy” my ® (3.11)

The resulting non-linear expression (3.11) can be log-linearized so as to obtain’
At = — (0 + (ag — Vwso )G + ¢ — wse(@y + X, — asii) (3.12)

where ws, = w*s.(0,¢**, m*) > 0 is the steady-state marginal cost of consumption in output
units. Here the "hat” variables denote log-approximations of percent deviations from steady

state values, e.g., ¢ = log (). Taking logarithms in (3.7), we obtain

log Ay = log 8 + Eilog A\ippq + log(1 + 7y). (3.13)

We use log(1+7;) ~ r; and log 8 = —log(1 +r*¢) ~ —r** ' to approximate fairly well (3.13)
with

Xlt = EtX1t+1 + (ry — ). (3.14)

Moving equation (3.12) into period ¢ 4+ 1 and taking rational expectations, a expression
for EJMH is reached. If we substitute the resulting expression and (3.12) itself in equation

(3.14), it will yield after some algebra

¢ = Ficpq — — 1) — (W, — Eywy 1) +

1
o+(az—1)wsc (Tt o+(as—1)wse

~

U+(quﬁslc)wsc (mt - Etmt—i-l) + UJF(an,l)wSC (Ct - EtCtJrl) - 70+(a1;icl)wsc (Xt — EtXtJrl) (315)

9See Uhlig (1998) for a complete description of the techniques used in the loglinearization process.
10Note that in a Sidrauski-type optimizing model, the steady state real interest rate 7** is equal to the

rate of intertemporal preference p. As a result, 3= (1+ p)~! = (1 +r®)~%

10



The laws of motion for the shopping time shock y, and the preferences shock (, were
defined in (2.3) and (2.5) respectively. Using these expressions to calculate F;x,,, and
EiC;1q, (3.15) becomes

o =F, —— L (g 88 wSe (5 B
Ct = Etct""l o+(az—1)ws. (Tt r ) o+(as—1)wse (U) Etwt"‘l) +

—_aWse (7, — [y, ) + “ )¢, (3.16)

o+{aa—1)ws. o+(aa—1)wsc

In turn, we may represent the consumption function through the following generic func-

tion

¢y = Ecp + on(ry — r*°) + co(Wy — Eygq) + asz(my — Eymygq) + aal;

with aq,an <0 and  az,aq >0 (3.17)

which is a forward-looking consumption function depending on the real interest rate, a real
wage effect, a monetary component, and a preference stochastic process.'! A rise in the real
interest rate induces the household to save more and consume less now that the real return on
risk-free assets is greater. This behavior appears as a negative consumption semi-elasticity
to the real interest rate (also called elasticity of intertemporal substitution), a; < 0. The
higher (in absolute value) this number is the higher is the variability of consumption over the
cycle with a more sensitive response to departures of the real interest rate from its steady
state value. Even though many other parameters take part in the composition of oy (see
3.16), its figure mostly depends quantitatively upon the coefficient of relative risk aversion
( %1)‘12
L Alternatively, the consumption function (3. 17) can be expressed as

oo
G =1 ) Ey(ripy — %) + aoly + oy + o Z EiCiyj
Jj=0 Jj=0
from which consumption depends on current and expected future real interest rate, on the current real wage,

on current real money holdings, and on current and expected future preference shocks.
12 After calibration in Secton 6, the value of ws. obtained will be rather close to zero (ws. = 0.0052)

implying a quantitatively small significance of the real money and real wage variables in the consumption
decision. In the limit, oy = _71 when ws, is exactly zero and then neither real money balances nor the real
wage appear in the consumption function. This result is reached for money in the utility function models
that present separability between consumption and real money in the utility function (see McCallum (1999a)

for a more extensive discussion).

11



Consumption choices are neither separable from real money nor from the real wage be-
cause these two variables affect the shadow price of consumption A;. A higher amount
for real wage paid in the labor market implies a higher price (or opportunity cost) for the
time spent purchasing bundles of consumption. As (3.10) shows, higher real wage makes
the shopping time more costly and thus reduces the shadow price of consumption Ay, i.e.,
the degree of satisfaction obtained with the last bundle of goods consumed. The response
from the household is consume less, s < 0. Regarding the monetary terms, more real
money balances lessen the marginal cost of consumption in terms of time (s., < 0) so as
to make the satisfaction of consuming higher. This leads to a positive value of ag in (3.16).
Finally, the state of the consumption preference coming from the utility function (, enters
the consumption function affecting positively to the consumption level (a4 > 0).

Two particular cases of the consumption function are worthwhile to view. In both situa-
tions, the shopping time function (2.2) involves separability between consumption and real
money (S, = 0). First, when the time allocation does not vary with the level of consumption
(a3 = 0 in (2.2)),'3 there are neither real money nor real wage in the resulting consumption

function which resembles the IS curve commonly utilized in the recent literature:'*

G = Bl + o (r =) + ol (3.17)
-1 1—¢°
with o =—  and o= w
o o

Second, if the shopping time is real money invariant (a3 = 0 in (2.2)), there still is a real

wage effect but the real money balances disappear from the consumption equation:

—_~ —~ » ss n ~ »
¢ = By + oy (re — %) + ag (W0, — Eyigq) + a,(, (3.177)
with o = Qq, 0y = Qg and oy = Qy.
3Note that in this case s.(c**,m*,0) = ajag (¢**)* ' (m*) * = 0 and then ws, = 0 in expression

(3.16).
HMFor examples, see Kerr and King (1996), Rotemberg and Woodford (1997), McCallum and Nelson (1999)

and many others.

)
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3.3 The investment function

We turn now to derive the investment function. The first order condition of k4, (3.2) governs
the decision about the investment to take during period ¢. Combining (3.2) with (3.7) to

eliminate the Lagrange multiplier A\;;, we can reach

_ 1+ Efu, — 6+ (1= 8ECy,,

3.18
T C. (3.18)

1+’l"t

The left hand side of (3.18) is the return on the financial asset (government bonds) and the
right hand side is the expected return on the real asset (physical capital). As shown, the real
interest rate does not equal the expected net marginal product of capital (r, # E; fy,,, — 0).
The existence of adjustment costs of investment creates a gap between the expected net
return on the physical asset and the return on the financial asset. The arbitrage between
physical and financial assets occurs taking into account increasing marginal adjustment costs
that lead to a slower responsiveness of investment. Changes in the stock of capital are split
up over time in order to avoid high installation costs. In steady state terms, the physical

asset premium implied by (3.18) is positive

fr(0,n%% k%%) — 6 — 6C,(z*°)

TSS

=14 C.(z*).

since C,(z**) is unambiguously positive for our adjustment cost specification (2.9). The
existence of a greater steady-state return can be considered as a risk-premium to the real
asset over the risk-free financial asset.

Let us move back to the investment equation. By means of taking natural logarithms on
both sides of (3.18) and assuming that the marginal adjustment cost, the marginal product
of capital net of depreciation, and the real interest rate are small relative to zero,'® we obtain

the approximation

Cxt = EtfktJrl — (S — Tt + (]_ — 6)Et0$t+1. (319)

15Consequently, we use the approximation log(l + z) ~ z when z ~ 0. All the variables under this
approximation represent fractional returns on quarterly units that typically report figures close to zero and

their steady state values indeed are close to zero.

13



For our adjustment cost specification (2.9), equation (3.19) implies the following non-linear

relationship

U]t = Eif,,, — 6 — 1+ (1 — 8)ynEal]. (3.20)

Again using log-linearization techniques, we can fairly approximate the latter with the fol-

lowing semi-loglinear investment equation

1

S (1_8§\EG
z = ( 6) txt+1+(77—1)0w(3355)

(Etfkt+1 —6— rt); (321)

where C,(x*¢) = mp(2*)"~!. This is an "expectational” investment equation in which cur-
rent period’s investment depends on next period’s investment and on the gap between the
expected return on the physical asset and the return on the financial asset. Let g; denote

this expected premium:

qs = Etfkt+1 — 6 — T¢.

When we substitute sequentially expected investment, (3.21) becomes

1 > .
Ty = E 1—06)qp . 21
Ty RO DR 321

Our investment equation (3.21’) indicates now that current investment depends positively
on all the expected future premiums on investing in real assets. In addition, the value of
——1— is the semi-elasticity of investment to a change in the real asset’s premium. This
(n—=1)Cx(z**)
number directly affects the variability of investment over the economic cycle. Clearly, both
parameters of the adjustment cost function influence the size of this number. In this regard,
Table 1 reports figures of the semi-elasticity of the physical asset premium in (3.21) for

various calibrations of the parameters ¢ and 7 from the adjustment cost function.

14



Table 1

Semi-elasticity of ¢; in the investment equation (3.21).

»=0.025 ¢=005 1=0075 =01
n=2| 17.93 9.61 6.80 5.37
5.84 3.45 2.61 2.16
3.03 1.95 1.54 1.33
n=5| 195 1.34 1.10 0.96

A higher 1 reduces the semi-elasticity of ¢; in the investment equation. It should be
recalled that 7 is the elasticity of the total adjustment cost with respect to investment.
When this cost increases more rapidly with z;, cyclical movements in investment will be
more moderate. Likewise, a rise in the scale parameter 1 increases the size of the adjustment
cost and thus the value of the semi-elasticity in (3.21). Notably, the absence of adjustment
costs (1) = 0) implies C,(2**) = 0 and an "infinite response” of investment to changes in the

expected marginal product of capital premium in (3.21).16

3.4 The money demand function

First, let us substitute the value of BE;A1;11 from equation (3.7) into the first order condition

with respect to the real money balances (3.6)

A= A By (1 + 7”,:)71(1 + 7Tt+1)71] + Aot S, - (3.22)

Using the labor supply first order condition (3.4), the Lagrange multiplier of the time con-
straint (Ag) can be expressed as a function of the Lagrange multiplier of the budget constraint
(A1z). As a result, (3.22) yields

M = A (1 +7) Y1+ 7me1) Y+ MewiSim, - (3.23)

16 Finite responses when ¢ = 0 can be calculated by solving an analogous model without explicit adjustment
costs from installing capital. Note that equation (3.2) and (3.7) would imply 7; = E; fx,., — 6 in comparison
to the case with adjustment costs. Casares and McCallum (2000) solve this model and compare it with the

adjustment-cost model.
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Dividing both sides of (3.23) by A;; and applying the real interest rate definition (2.9), we

can obtain

R
— —w,s,, 24
1+ R, WeSme (3:24)

where the left hand side is the marginal cost of the last unit of real money held and the right
hand side is the marginal benefit of the last unit of real money held. Both sides in (3.24) are

measured in output value. Inserting the value of s,,, implied by our shopping time function
(2.2) yields

Ry
1+ Ry

= —w; exp(x,)aza;ci>m; 1. (3.25)

Equation (3.25) can be loglinearized to formulate this semi-log money demand function!”

~ Qg o 1 1
my = ¢ Wy — =——
! 1+as ¢ 1+as ! R*3(1 + ag)

(B — R*) + ——x (3.26)
as

which is to say

My = @1C; + oWy — @Q(Rss)il(Rt - RSS) + ©aXi (3-27)
with V1,9 > 0.

Here it is noticeable that both the real wage and the shopping time shock accompany
the standard determinants of real money: consumption and the nominal interest rate. What
occurs in the labor market will have an impact in the demand of real money.!®* The real
wage is the opportunity cost of one unit of time. When it goes up, there will be an incentive
to demand more money and save some transactions time.

By construction, a positive shock to the transactions technology x, would represent an
increase in the shopping time. More real balances would be held (¢, > 0) to compensate

with more monetary services the effects of such shock.

"For the sake of simplicity and provided that the nominal interest rate is given in fractional quarterly

units (small relative to zero), we took Ry ~ 7 fﬁl to derive equation (3.26).

¥This has been recognized in the literature for example in papers by Karni (1973), and Dutton and
Gramm (1973).
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When the volume of transactions to carry out is larger (higher ¢;) more real balances are
demanded. In addition, a rise in its opportunity cost R; leads to a decrease in the amount
of real money held.

The parameters of the shopping time function ay and a3 define the size of the elasticities

in the money demand. Actually, they are the only parameters appearing in (3.26). A change

in the consumption elasticity in the shopping time function (7, ., = as(1 — <&)) caused by

35S

a movement in as; would only affect to the elasticity of consumption in the money demand.

The impact would be of the same sign as the change in a;. However, if the shopping time

function becomes more elastic with respect to real money (higher 7, ,, = —a3(1 — £%) in
absolute value caused by an increase in as), there would be a fall on all the elasticities of the
money demand function. All of them would go down when real money is more useful in the

shopping process.

3.5 The IS-LM economy and the general equilibrium

The overall resource constraint implied by combining the household budget constraint (3.8)

and the government budget constraint (2.13) defines final goods market equilibria where the

amount of output produced net of adjustment costs is spent on consumption and investment'?

ye — Clzr) = ¢t + 1y (3.28)

This expression (3.28) can be transformed in percent deviations from steady state to have

Yo = J1Ci + JaT (3.29)

58 .Z’SS+C($SS)
ySS ySS
In other words, changes in either consumption or investment conform the level of 7; result-

in which j; = &; and j; = . Current output deviations y; are demand determined.
ing in the economy. Hence, the demand-side behavior of the model is represented by the

structural seven-equation IS-LM sector:

9Tt is also used the fact previously mentioned that the labor market is demand-dominated and in turn

the ”effective” labor supply coincides with the labor demand. As a result, w¢(nf — ng) = 0.
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& = Eic+ ai(ry — r%) + ao(Wy — Eyiyq) + az(my — Eymyy1) + aay, (3.30a)
T, = (1-0)EZi+ W(Etfml —6—r), (3.30D)
U = J1C+ ja, (3.30¢c)
My = @1C+ oty — o(R*) T (R — R*) + oy, (3-30d)
W, = 7y —nd (3.30e)
fro = 2@ — k), (3.30f)
kir = 6%+ (1— 8k (3.30g)

The first two equations are the consumption function (3.17) and the investment function
(3.21) previously derived. The third equation is the demand-determined composition of
output (3.28) as consumption plus investment. Applying Fisher equation r; = R, — Eymyyq,
both components of output are negatively related to the nominal interest rate. In turn,
there exists a negative functional form between output and the nominal interest rate, similar
to the traditional IS relationship appearing in the macroeconomics textbooks. Unlike the
latter, the structural IS sector presented here includes next period’s expected values in the
consumption and investment decision rules as implied by the optimizing analysis developed
above.

The fourth relation is our structural money demand LM equation (3.30d) that determines
time paths for m, as derived in the previous subsection. Typically, the LM relationship is
represented in the textbooks as a functional form relating demand for real money positively
to the level of output and in a negative way to the nominal interest rate.

Remarkably, the IS and LM relationships are not separable because the consumption
choice, accounting for the IS sector, is affected by the amount of money determined in the
LM function.?’ In addition, the presence of the real wage in the consumption and demand
for money decisions require the inclusion of (3.30e). This equation states that the marginal
product of labor is equal to the real wage as derived in the household maximizing program
n (3.3). The sixth equation is the marginal product of capital definition which is used in
the investment equation. The last equation (3.30g) is the time path for Etﬂ defined as a

weighted average of the (predetermined) value of k,, and the magnitude of Z; decided in

20This fact arises from the non-separability of ¢; and m; in the transactions technology function. This

assumption is necessary to imply s.,, < 0 as expected due to the transactions-facilitating role of money.

18



(3.30b). This expression is required to have capital endogenously determined and thus to

obtain the expected marginal product of capital entering the investment equation (3.30Db).
A general equilibrium economy is defined when all the households are acting optimally

and markets clear. Therefore, we introduce the following relations to guarantee equilibrium

in the labor market:

nd = g, — wy, (3.30e)
s lSS ~ lSS . SSS .
n, = 58 Alt + ss Wy — ?St’ (331)
yn n n
A = —(0+ (a2 — Dws.)e + ¢, — wse(Wy + x; — asmy) (3.32)
- ag . ag . .
5 = ag(l— S—Sos)ct —az(l— S—Sos)mt + X;» (3.33)
nd = ns (3.34)

Note that the labor demand expression (3.30e) has already been included within the IS-
LM sector in order to determine w,. Hence, we have four new equations (3.31)-(3.34).
Labor supply behavior is governed by (3.31) which can be obtained after combining and
loglinearizing the first order conditions (3.4), (3.5), and (3.9). Equations (3.32) and (3.33)
determine the values of the consumption shadow price /):1,5 and the shopping time s;, both
employed in making labor supply decisions in (3.31). The former is identical to (3.12) as
derived above from the household’s first order condition of consumption, and the latter
results from loglinearizing the shopping time function (2.2). Labor market clears by holding
(3.34).

The general equilibrium system includes a loglinearization of the production function
(2.6),

U= 2+ ak + (1— a)nd, (3.35)

together with the definitions:

3.36
3.37
3.38
3.39

re = Ry— Eymq,
my = log M; —log I,
T = logh —log Py,

o~ o~ o~ o~
~— ~— — ~—

pe = log My —log My 4,
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that are the Fisher equation (3.36), and log-linear expressions equivalent to (2.1), (2.10),
and (2.14) respectively.! In order to close the general equilibrium model, we also define a

monetary policy rule such as (2.11):%2

pe = O + Phpp 1+ o, (2.11)

In turn, there exists a general equilibrium consisting of seventeen equations (3.30a)-
(3.30g), (3.31)-(3.39), and (2.11) that permit to solve solution paths for the seventeen en-

o~

dogenous variables 7, ¢, Z, m, W, n¢, n®, \1, 5, k, fx, log M, log P, u, R, r, and 7.

4 The output gap

How is y; produced? As we saw above, the existing Cobb-Douglas technology can be ex-

pressed in a log-linear fashion as follows

U= 2+ aky + (1 — a)nl. (4.1)

The stock of capital /k\t is a predetermined variable,?® and the state of technology z is
exogenous. Thus, it is the amount of labor hired n¢ which accommodates production to
satisfy the demand in (4.1) on a period-to-period basis.

At this point, we may ask whether the workforce hired n¢ is equal to the corresponding
desired labor supply 7§ to test the existence of equilibrium in the labor market. In a flexible-
price scenario, prices would adjust immediately to restore equilibrium whenever an excess
of demand (or supply) occurred. But if it is not the case, we may have non-equilibrium
situations. Then two measures of output become relevant: current output and capacity
(market-clearing) output. The latter is the amount that would be produced in the economy

if there were perfect flexibility on prices, what is to say, if there were equilibrium in the

2 Expression (2.1) can be understood both as the definition of real money balances and as the equilibrium

condition in the money market.
22 Alternatively, we could have R; as the monetary policy instrument, and then log M; would be the amount

clearing the money market at a given R;.
Z3However, the time sequence of the stock of capital is endogenous and linked to the investment decision

as indicated by (3.30g), ki1 = 62 + (1 — 8)ky.
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labor market. Hence, denoting 7, as the market-clearing labor deviations, capacity output

deviations 7, is

U, = 2+ aky + (1 — a)ny. (4.2)

At this point, it is necessary to determine the value of 7,. We proceed by using the labor
supply and labor demand functions obtained in the general equilibrium described above.
There, first order conditions (3.4), (3.5), and (3.9) led to the following labor supply function

(after loglinearization)

S¢. (4.3)

The labor supply function presents a positive slope with respect to the real wage. The
value of the elasticity of the labor supply function is set by means of the parameter . Will-
ingness to work is also positively influenced by the current marginal utility of consumption
/):1,5. When consumption is more satisfying, households wish to work more to reach a higher
level of consumption. The third element in (4.3) is the shopping time. More shopping time
reduces the labor supply. Turning to the labor demand, its behavior is governed by first
order condition (3.3), or (3.30e) in the IS-LM sector, which yields

nd =7, — ;. (4.4)

The interpretation of (4.4) is the standard assumption to define a labor demand function:
marginal product of labor equal to real wage. Now, we can define the market-clearing real
wage W, as the value such that the quantities of labor supplied and demanded coincide

(A2 = n¢ =7,). Hence, making (4.3) and (4.4) equal, we have

88 88 88
~ yn N l ~ vSs N

Wy = — A S
t lss + ,ynss Yt lss + ’777/88 1t + lss + ,ynss t

(4.5)

Finally, substituting @, from (4.5) into either the labor supply (4.3) or labor demand

functions (4.4) and rearranging terms, the market-clearing labor 7, is determined as follows
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R lss R lss A ’}/SSS R
ny = Ay — ——5;. 4.6
t lss + ’}/7’1/58 yt + lss + ’}/7’1/58 1t lss + ’}/7’1/58 St ( )

The value of 71, obtained in (4.6) enters the production function (4.2) together with z
and Et to define capacity output @t. Once we have determined both current output 7; and

capacity output @t, the output gap ¥, is the difference between the former and the latter

gt = Z/l/\t - @t' (4-7)

The output gap says how demand is relative to capacity. Of course, if prices were not

sticky, they would instantaneously adjust to remove the output gap and have y; = @t.

5 Price stickiness

Price stickiness has become an habitual element in macro-monetary models. An enormous
literature of sluggishness mechanisms erupted after the seminal works by Taylor (1979)
and Calvo (1983) in an attempt to explain how monetary impulses (or ’surprises’) were
transmitted to generate ”real effects”. The presence of nominal rigidities leads to disruptions
from the general equilibrium setup due to the existence of non-equilibrium situations in (at
least) one of the markets. In particular, our partial equilibrium model typically presents
excess demand or excess supply in the labor market and equilibrium in the goods, capital,
bonds, and money markets.

A two-period contract price specification is used as in Fuhrer and Moore (1995). Our
choice comes from the fact that Fuhrer-Moore price formulations guarantee a realistically
high degree of persistence on inflation whereas most other models do not (see Nelson (1998)).

Nominal contract prices are set to last for two periods. Thus, half of the households
decide in period ¢ the contract price d; at which they will sell their production in the current
and in the next period. The other half of the households made this decision one period ago
and their contract price d;_; is still in effect until the end of period t. Thus, the price level

in period ¢ is the average between these two contract prices**

24The price level is expressed here in logarithmic form (p; = log P;). Consequently, the contract prices, d;

and dy_1, are also in logarithms.
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pe = 0.5(d; + di—1). (5.1)

Unlike Taylor’s staggered nominal contracts, the value of the contract is set as follows

di —p = 0.5(di—1 — pr_1) + 0.5E(diy1 — pis1) + oY + 0B Y111 (5.2)

Comparisons take place in determining the contracts. Hence, households include both
the past and expected future period real contracts in their decision because they will be
traded while d; is in effect. Furthermore, current and expected output gaps also enter the
real contract equation to represent the demand pressure during the lifetime of the contracts.

We assume p > 0 in (5.2).

6 Calibration

Some sensible figures must now be assigned to the parameters of the model. In this regard,
we look at actual data and intend to replicate what is observed in reality. Particularly,
quarterly US data are used to calibrate the model. Indeed, any of the parameters calibrated
here might be altered under particular circumstances, and actually it would result in a
sensitivity analysis of much interest.

The standard figure in the literature is given to the capital share parameter in the pro-
duction function (« = 0.36). The rate of intertemporal preference is set at 0.5% per quarter
(p = 0.005), 2% per year. It implies # = 0.995. The depreciation rate for capital § will be
2.5% per quarter (6 = 0.025).

The coefficients of the monetary policy rule (2.9) have been estimated numerous times in
the literature. As pointed out by Benassy (1995), the resulting estimates for the US economy
are quite sensitive to the period chosen, the estimation method, and the definition of the
money aggregate. Thus, Cooley and Hassen (1989) obtained ¢, = 0.008 and ¢; = 0.48.
More recently, Hairault and Portier (1993) reported ¢, = 0.0087 and ¢; = 0.377, Ireland
(1997) ¢, = 0.0048 and ¢; = 0.68, and Chari, Kehoe and McGrattan (1996) ¢, = 0.0064
and ¢; = 0.57. In our model, we set ¢5 = 0.0025 and ¢} = 0.5.%

25These are realistic figures for the current low-inflation environment since they imply a steady-state

11
inflation rate of 0.5% per quarter (7 = p*° = 1?‘;7

= 0.005), say 2% per year.
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In a Sidrauski-type (neoclassical) model like the one presented here, the steady state real
interest rate r°° is the rate of intertemporal preference p. Therefore, the steady state nominal
interest rate (neglecting the cross product pm) is R** = 7% + r* = 0.005 + 0.005 = 0.01
which implies a 4% annual rate.

The utility function includes three parameters: o, v, and T. We take the common figure
o = 5 as in Chari, Kehoe and McGrattan (1996), Chari, Christiano and Kehoe (1994),
and McCallum and Nelson (1997). With o = 5, the coefficient of relative risk aversion
is 0.2 and the real interest rate semi-elasticity of consumption is practically equal to -0.2
(y = —0.1991). The value of T is defined so that one third of the total time is spent at
work in the steady state solution of the model, T = 116.25. Arbitrarily, it is set n** = 1,
and therefore T' = 3. The response of the amount of labor supplied by the households to the
real wage is governed in the labor supply function (4.3) by the magnitude of 7. Actually,
the labor supply elasticity depends there on the steady state leisure-to-work time ratio and
= 1.9688, we set v = 13.125 in order to

have 7,,. ., = 0.15. This figure is taken from Johnson and Pencavel (1984) where an extensive

[ss

= ). Being

lSS
S
nnt Wt s

on the value assigned to v ( o
labor supply empirical study is conducted for US data. A low number of the labor supply
elasticity has been generally utilized in the literature (see Pencavel (1986) for a survey).
The figure of 7 in the adjustment cost of investment function (2.9) is chosen to imply a
semi-elasticity of investment relative to the expected real asset premium z; equal to 1.5 as in

Casares and McCallum (2000). In addition, the size of the adjustment cost implies a ratio

between the total adjustment cost and output equal to 1% in steady state, i.e., C;‘T) = 0.01.
Accordingly, we set n = 4.65 and ¢ = 0.05.

The money demand formulation (3.26) derived above can be used to calibrate the coeffi-
cients of the shopping time function (2.2). Thus, a3 takes a value such that the interest rate
semi-elasticity in the real money demand is -10, or there is an interest rate elasticity equal
to -0.1 since R** = 0.01. The consumption elasticity depends on both as; and a3. Having set
ag already, we chose the figure of ay to imply a consumption elasticity of 0.5. These figures
are consistent with estimates recently reported in long-run money demand studies on US
data by Ball (1997), and Meltzer and Rasche (1996). The other two parameters ag and a;
are calibrated looking at the baseline steady state solution. The steady state version of the

money demand function has a constant term. The value assigned to a; leads to an unitary
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consumption over real money ratio?® in steady state ( ). Finally, ag was calibrated by
considering the steady state shopping time as 1.04% of the total time. This is equivalent to
say that 2% of output in steady state is spent on transaction costs for the baseline inflation
economy.

The coefficient of autocorrelation of the technology shock is set to the standard figure ¢* =
0.95. As for the consumption preference random process, the coefficient of autocorrelation
¢° is 0.323 as in McCallum and Nelson (1997).

The Fuhrer-Moore equation presented in the previous section enters the model with a
coefficient on the output gap equal to 0.008. This value was utilized by Nelson (1998) for
US data analysis.

All the numbers obtained in the calibration are reported in Table 2. Furthermore, some

relevant steady state information for the calibration at hand is contained in Table 3.

Table 2
Calibration of the parameters of the model
a =0.36 c=2>5 ag = 0.0300 | v =0.05 | ¢ =0.005 | o =0.008
6=10.025 | v=13.125 | a; = 0.0684 | n = 4.65 =05
p=0.005| T =116.25 as =5 ¢° = 0.323
6 = 0.995 az =9 ¢* =0.95
Table 3
Relevant ratios in the steady state solution.
C 07365 | L —02535 | S _o01| £ 1015
—=1 —=0.3445| ==132 | —=13.78
n' i s I
—=0.3333 | == =0.6562 | — =0.0104 | — =1.9688
T T T n

The partial-equilibrium model is solved by means of a system of linear rational expec-

tations equations using Paul Klein’s algorithm (Klein (1997)).2" This method reaches the

260n quarterly US data, the ratio of real money over consumption has a sample mean equal to 1.03 in the
period 1965:1-1997:4. M1 money stock seasonally adjusted (SA) was taken to represent nominal money. As
for the price level, the GDP implicit deflator was chosen. Finally, consumption is given by the amount of
(SA) real personal consumption expenditures. The base year was 1992 for both consumption and the price

level. Source: Federal Reserve Bank of St. Louis.
2TParticularly, we ran the routine called ”solvek.m” in MatLab 4.2.
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minimal state variable solution of the system as explained in McCallum (1999b). The solu-
tion is expressed as decision rule functions of the endogenous variables responding to the state
variables. There are two types of state variables: predetermined and exogenous (shocks). In

the next section, we analyze the effects of changes in the latter.

7 Impulse-response functions

Impulse response functions are calculated as the impact on the endogenous variables of each
of the four types of shocks incorporated to the model: production function (technology)
shock, monetary policy rule shock, consumption preference shock in the utility function, and
shopping time function shock. These shocks are generated by assigning a value of 1 to the
error term of the exogenous processes in one particular quarter and a value of 0 for all the
coming quarters. Figures 1-4 show plots of the resulting impulse response functions for the
variables (in order of appearance) ¥y, Uy T — T, Gy, Ty, M, St 7<:\t+1, T, fr, — frss, re—7*%, and
R; — R**. As defined above, the "hat” figures plot percent deviations of these variables from
their steady-state values. The marginal product of capital, the nominal and real interest
rates, and the inflation rate are plotted as level deviations from steady state in fractional

units.

7.1 Technology shock

A positive shock to the production function occurs when the exogenous component z; takes a
positive value in f(.). Due to the high degree of serial correlation of the process (¢* = 0.95), a
one-period shock implies lasting effects in the responses of output, consumption, investment,
and real money balances. Figure 1 depicts these effects during the 30 quarters coming after
the shock.

Capacity output rises more and earlier than current output creating a temporary negative
output gap. It is interesting to observe in Figure 1 how current output reaches its peak
(68% of the shock) with a delay of eight quarters with respect to the shock. Demand
components, both consumption and investment, show their maximum responses after eight
quarters as well. However, investment has a rather higher peak of around three times the size
of consumption. On the contrary, the stock of capital presents a very slow positive response

to a technology shock. Its maximum value is 45% of the shock, reached after 32 quarters (8
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years!), featuring a smooth shape as Figure 1 shows.

Inflation drops during the next quarters after the shock. The major impact on inflation
occurs four periods after the shock when it falls by 11% of the shock.?® This quarter is later
than the major responses on capacity output but earlier than the peak on current output.
Both the marginal product of capital and, especially, the real interest rate go up as a result
of a technology shock.

The demand for real money balances reports an increase by 64% of the shock with certain
delay that is caused by a larger volume of consumption and a late fall in the nominal interest
rate.

The shopping time function measures the transaction costs. Although consumption is
rising with a technology shock there is no significant impact in transaction costs due to a

simultaneous greater demand of more monetary services.

7.2 Monetary shock

In accordance with the monetary policy rule (2.11), a monetary shock represents an unex-
pected increase in the nominal money growth rate p,. The effects of a unit shock can be
observed in Figure 2.

The response of inflation to a higher money growth reaches its maximum five quarters
after the shock when there is an increase of 33% of the shock.?” This represents a bell-shaped
impulse response function as reported in the third box of Figure 2..

A liquidity (decreasing) effect on the nominal interest rate together with price stickiness
that results in a slow rise of inflation lead to a u-shape fall in the real interest rate by
42% of the shock. In turn, both consumption and investment go up and make current
output increase by 120% of the shock®. Investment is much more sensitive to the shock
than consumption which presents a smoother pattern. Indeed, price stickiness brings about

significant short-term real effects from money-growth surprises due to the persistent fall in

28 Therefore, a technology shock that increases capacity output by 1% gives rise to a maximum drop in

annual inflation of 0.44%.

29In other words, a 4% unexpected increase in the annual nominal money growth rate leads to a 1.32%

maximum increase in the annual rate of inflation reached 5 quarters after the shock.
300One may believe that this response is too large. The reason for this can be the lack of any stabilizing

mechanism in the money-growth monetary policy rule. If we introduced stabilizing properties in the monetary

policy rule, for example, a Taylor-type rule, the response would be quite smaller.
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the real interest rate.

On the supply side, we must see how capital and market clearing labor react to determine
capacity output. Capital rises slowly to reach a 25% of the shock peak 6 quarters after the
shock. As for market clearing labor, there is an immediate drop by 16% of the shock due
to the decrease in the labor supply. The early fall on market-clearing labor dominates in
the production function over the later increase in the stock of capital, and capacity output
reports a slight decrease (10% of the shock).

The amount of m; rises by 120% of the shock due to lower nominal interest rates (liquidity
effect to clear the money market), and more consumption expenditures. This response of
real money is considerably larger than the response of consumption (by approximately 3
times). As a result, the transactions (shopping) time falls dawn by near 35% of the size of
the shock during the first quarters after the shock. However, there is a progressive return to

the steady state value and figures go over the positive side ten quarters after the shock.

7.3 Consumption preference shock

As shown in Figure 3, a unitary positive shock to the state of consumption preference entering
the utility function leads to a rise in the consumption level by 20% of the size of the shock.
Since consumption is one of the elements of output, there is as well a positive effect in this
variable (14% of the shock increase).

The nominal interest rate, inflation, and the real interest rate respond very little. Real
money balances also remain close to the steady state figures.

The consumption preference shock resulted in a higher consumption level with no sig-
nificant change in real money. Thus, the transaction costs measured by the shopping time
function rise during the quarters with higher consumption. This is quite a temporary in-
crease and 3 quarters after the shock the shopping time practically returns to the steady

state value. The size of the response of the shopping time is 4% of the shock.

7.4 Transactions (shopping) technology shock

A random walk was specified to describe the process of the exogenous shock to the shopping
time function. Therefore, a shock that enters the process through the innovation the ran-

dom walk will stay in the process for all future periods. A positive shock represents more
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transaction costs for the same level of ¢; and my, i.e., a worsening in shopping conditions.
Figure 4 shows the impact of an unit shock in the variables of the model.

The transactions technology shock appears in the model as one of the explanatory vari-
ables in the money demand function. More money will be demanded to carry out transactions
when the shopping time process is more costly. Hence, there is a permanent increase in the
quantity of real money held completed 12 quarters after the shock. This rise amounts to
about 10% of the shock.

The nominal interest rate and the rate of inflation also vary. A higher demand of real
money generates an increase in the nominal interest rate and diminishing inflation. These
changes are not quantitatively important but both together make the real interest rate rise
about 2.3% of the shock in its peak. Higher real interest rates result into lower consump-
tion, investment, and output. So, there will be some (significantly small) real effects of a
transactions technology shock (see Figure 4).

Neither capacity output nor its two components, capital and market-clearing labor, shows
substantial deviations from the steady state when a transactions technology shock occurs.

Obviously, the quantitatively most important impact of the transactions technology shock
is observed in the shopping time function (seventh box in Figure 4). Transaction costs
rise directly as a consequence of the shock. This increment becomes permanent under the
assumption of a random walk process for the shock. As long as time passes, the initial effect
is slightly reduced because of the higher demand for real money balances. In the end, there

is a permanent response of the shopping time measured as an increment by 96% of the initial
shock.

8 Conclusions

This paper has presented and solved a Sidrauski-type optimizing model with money incorpo-
rated in its role as a medium of exchange. We followed the time-cost transactions approach
linking the amount of real money with the time needed to carry out purchases. Thus, a
shopping time function gives the transaction costs as a function of the level of consumption,
the amount of real money balances, and the state of transactions technology.

Economic decisions are made by a representative household that maximize utility subject

to budget and time constraints. In turn, a set of first order conditions describe the dynamics
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of the system. We focused attention on the resulting consumption, investment, and money
demand equations.

The consumption function is forward-looking because of the inclusion of the expected
next period’s consumption value as one of the explanatory variables. The amount of con-
sumption depends negatively on the real interest rate and the real wage, and positively on
a consumption preference shock and a real balance term.

Unlike most of the models of the recent literature, investment is one more endogenous
variable of the model. We incorporated adjustment costs associated to the transformation of
output savings into capital. Optimizing investors decide the quantity of current investment
depending on all the expected premiums of the return on the physical asset (capital) over
the return on the financial asset (government bonds). The existence of adjustment costs
imply a positive steady state premium to the real assets which is equal to the marginal cost
of installing investment. The results obtained here can be derived for any kind of monetary
and non-monetary specification within the Sidrauski-type models.

Our money demand function gives the optimal quantity of real balances depending posi-
tively on consumption, the real wage and the transactions technology shock, and negatively
on the nominal interest rate.

Output is demand-determined and was presented in deviations from its steady state as
a weighted sum of consumption and investment. The demand side of the economy can be
summarized in a set of seven equations that we named structural IS-LM economy. Further-
more, some definitions, market-clearing conditions, and a monetary policy rule on money
growth are added to the IS-LM sector so as to obtain a general equilibrium.

Sticky prices were introduced following the Fuhrer-Moore contract prices setting. The
existence of nominal rigidities gives rise to two definitions of output: current output and
capacity (market-clearing) output. The setup described in the paper permits to have capacity
output as another endogenous variable. Thus, using a Cobb-Douglas technology, capacity
output is determined depending on capital movements, market-clearing labor, and the state
of production technology.

Impulse response representations were calculated from shocks to the production function,
to the monetary policy rule, to consumption preferences, and to the shopping time function.
Current output featured sizeable responses to the production technology shock and to the

monetary shock. Either positive shock had a significant positive effect on output: 70% of

30



the size of the shock for the technology shock and 120% for the monetary shock. Investment
behaved much more sensitive to the shocks than consumption. In addition, the technology
shock featured much more persistent effects than the money growth shock.

Inflation shows a positive impact from a monetary shock and a negative effect from a
technology shock. These responses reached peaks of 33% (increase) and 11% (decrease),
respectively, of the shock. Two patterns were common in the responses of inflation: high
persistence and delayed maximum.

The existence of adjustment costs made the responses of capital to technology or mone-
tary shocks be reasonably small and well-constrained.

A consumption preference shock led to a rise in consumption and subsequently in output.
The response of inflation was positive but not substantial. The last kind of shock analyzed
was a shopping technology shock. The most significant response was a 95% permanent
increase in transaction costs. There was also a permanent effect of a 10% increase on the
amount of real money balances and some negative real effect on current output and its two

components.

31



APPENDIX
Deriving and calibrating the IS curve.

The structural IS-LM set of equations in the main text includes the consumption function

(3.30a), the investment function (3.30b), and the overall resources constraint (3.30c)

C; = E{C\t_t,_l + o (Tt — TSS) + 042(@15 - Et@t—&—l) + 053(7/7’\745 - Etﬁlt+1) + 044Ct (330&)
T = (L=0)EZy1+ le(xss)(@fkm —6—ry) (3.30b)
Yo = Jic+ oy (3.30c)

Inserting both consumption and investment from the first two equations in the third one

U = B+ joa(re — %) 4+ jrog(W — EyWey) + jros(my — Eymgg) +
jrouGe + j2(1 = 0) Ex@ei1 + fagryo ey (Befon, — 8 — 1), (A.1)

From equation (3.30c) one period ahead, we have

Eii1 = 1By + joaEBiTyi. (A.2)

Combining (A.1) and (A.2), it yields the following expectational IS function

U = B+ haa(re —r®) + jroao(Wy — Eyie) + jras(me — Eymyggq) (A.3)
+i0uCy — j20EZear + ooy (Befrey — 6 — 1)

Using the calibration of the parameters described in section 6 and calculating steady-state

figures, one obtains the following numbers:

E]

j1 =< =0.7364,

yss -
j2 = 2HCE) ) 9636,
Y
_ —1 _ —1 _
A1 = GHaa—Tws.  5+(6-1)(235)(0.0023) —0.2,
_ —wse _ —(2.35)(0.0023) o
Q2 = T3 laaDwse  5+(5-1)(2.35)(0.0023) —0.0011,
az = a3wse _ (9)(2.35)(0.0023) _ _0017

o+{ax—1Nws. ~ 5+(5—1)(2.35)(0.0023)
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= 1—¢° _ 1-0.323 _
A= S lag—Tws.  5+(5—1)(2.35)(0.0023) 0.135,

1 _
m Do = 1
and 6 = 0.025.

Substituting them in (A.3) we have

/y\t = Et:/g\t+1 - 0.2(7",5 - 7'85) + 01Ct - 00008(@,5 - Et/l/l}t+1)
+ 00073(7’?1/,5 - Etmt+1) - O.OOGGE@}H + 0-395(Etfkt+1 —6— Tt). (A4)
Interestingly, the real money balances and real wage components present a very small quan-

titative significance. Neglecting the small numbers.i.e., those smaller than 0.01, the expec-

tational IS equation (A.4) could be approximated by this simpler equation

:/g\t = Et:l//\t+1 - 0.2(7",5 - 'I"SS) + OICt + 0'395(Etfl€t+1 —6— Tt). (A5)

The appearance of (A.5) reminds the type of expectational IS function frequently used to
simulate macroeconomic dynamics (for examples see Kerr and King (1996), Rotemberg and
Woodford (1997), and McCallum and Nelson (1997)) with the inclusion of the expected

premium to the return on the real asset (Et Jropn —0— Tt) to explain investment behavior.
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Figure 1: Technology unit shock to the production function (2.6). Impulse response func-

tions.
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Figure 2: Money-growth unit shock to the monetary policy rule (2.11). Impulse response

functions.
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Figure 3: Consumption preference unit shock to the utility function (2.4). Impulse response

functions.
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Figure 4: Transactions technology unit shock to the shopping time function (2.2). Impulse

response functions.
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