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Abstract 

A computational model has been developed in order to simulate the thermal and electric 
behaviour of the thermoelectric generators. This model solves the non linear system of 
equations of the thermoelectric and heat transfer equations. The inputs of the program are 
the thermoelectric parameters as a function of the temperature and the boundary conditions, 
(room temperature and residual heat flux). The outputs are the temperature values of all the 
elements forming the thermoelectric generator, (performance, electric power, voltage and 
electric current generated). The model solves the equation system using the finite difference 
method and semi-empiric expressions for the convection coefficients. 

It has been built a thermoelectric electric power generation test bench in order to validate 
and determine the accuracy of the computational model, which maximum error is lower 
than 5%. 

The objective of this study is to create a design tool that allows us to solve the system of 
equations involved in the electric generation process without needing to impose boundary 
conditions that are not known in the design phase, as the temperature of the Peltier 
modules. 

With the computational model we study the influence of the heat flux supplied as well as 
the room temperature in the electric power generated. 
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Nomenclature 

A Area  (m2) 
C Thermal capacity  (J K−1) 
c Specific heat   (J kg−1 K−1) 
Et Electromotive force  (N) 
I Electric current (A) 
k Thermal conductivity  (W m−1 K−1) 
L Characteristic length   (m) 
m Load ratio (RL/RO) 
N Number of thermocouples of Peltier modules 
P Generated power (W) 

•
Q Calorific power (W) 
∗
q Calorific power per volume unity (W m−3) 

R Thermal resistance   (K W−1) 
Rcont Contact electric resistance  (Ohm) 
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RO   Electric resistance of the Peltier module    (Ohm) 
RL    Load electric resistance     (Ohm) 
T  Temperature        (ºC) 
T  Temperature        (K) 
T ′    Temperature in next time step     (K) 
V  Volume        (m3) 
 

Greek letters 
α   Seebeck Coefficient      (V/K) 

V∆   Difference of electric power      (V) 
T∆   Difference of temperatures      (K) 

ε  Test 
ρ   Density        (kg m−3) 

0ρ   Electric resistance of the Peltier module    (Ohm m) 

thom Thomson Coefficient      (V K−1) 
τ   Time         (s) 
 

Superscripts, subscripts 
c  Cold side of the Peltier module 
cont  Semiconductor and copper contact 
Dissip  Dissipater 
h  Hot side of the Peltier module 
i  Node i 
in   System inlet 
k  Number of Test ε repetitions 
J  Joule effect 
j  Node j 
leaks  System loses  
max  Maximum value of the studied curve 
out  System outlet 
re  Electric resistance of generation of the heat flux 
relat  Relative 
room Ambient 
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1. Introduction 

We have developed a computational model which simulates the thermal and electric 

behavior of a thermoelectric generator which presents some advantages respect previous 

ones.  

Some applications in thermoelectric generation use waste heat fluxes as energy source. 

Benson et al [1] investigated geothermal heat fluxes with temperature gaps of 80-180ºC; 

other ones are produced in ocean’s currents, in solar panels, or in power generator stations. 

Matsuura and Rowe [2] propose these and other residual thermal energy sources.  

In order to study these applications is necessary to determine the behavior of the 

thermoelectric devices. The analytic solution more used to solve the equation system of the 

thermoelectric device is the ideal thermoelectric couple, which expression was obtained by 

Ioffe A.F. in [3]. Another references that use this expression were [4] and [5], and in the 

case of thermoelectric generation it was used in references [6], [7], [8], [9], [10] y [11]. In 

the expression of ideal thermoelectric couple the thermoelectric parameters (Seebeck 

coefficient, electrical resistivity and thermal conductivity) are not dependent on the 

temperature. 

A better approximation is to consider an average value of the Seebeck coefficient within 

the operation temperatures of thermoelectric couple, as it can be seen in the research of 

Ioffe A.F. in [3], Arenas, A in [12] and Yu G. in [13]. Nevertheless, this approximation 

does not adjust to reality because in fact the Seebeck coefficient varies with the 

temperature.  
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The Buist, R.J. works [14], [15] divides a thermoelement in segments and applies the 

ideal thermoelectric couple in each segment. This model keeps in mind the variation of the 

thermoelectric properties with the temperature. Its major disadvantage is that the model 

needs the heat flux, the hot source temperature and the electric current generated as input 

parameters and it is necessary to obtain them experimentally.  

To determine completely the thermoelectric device behavior is also necessary to consider 

the heat exchangers on the sides of the Peltier module, as it is described by Stockholm, J. G. 

in [16]. The disadvantage of Stockholm’s model is that simplifies the Peltier module and it 

is impossible to optimize the geometry and dimensions. Similar but more comprehensive 

models have been posed by Arenas in [12] and by Kondraitev in [17], but these models do 

not calculate the transitory state.  

Our model is based in a computational model developed to simulate the behavior of 

thermoelectric refrigerators by Vián and Astrain [18], [19] and [20].  

Our model solves the behaviour of thermoelectric generator and makes improvements to 

the previous models. It takes into account the properties of the thermoelectric materials as 

function of the temperature. We divide the Peltier module in ten different parts which 

allows us to determine the variation of the thermoelectric properties in its interior. The 

Thomson effect is considered not negligible which gives an approximation closer to the 

reality. The model inputs are only the room temperature and the heat flux supplied by the 

residual energy source, it is not necessary to obtain parameters experimentally.  

The heat exchangers of the hot and cold side are included in our model; therefore can 

obtain as outputs the temperatures and the heat fluxes in all the components of the 
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thermoelectric system. Another advantage is that our model determines the transitory state 

as well as to determine the steady state.  

2. Objectives 

The objectives we have proposed are: 

• A computational model design capable to simulate the thermoelectric generator 

operation, including the heat transfer from the thermal sources until to the faces of the 

Peltier module. We will keep in mind the Thompson coefficient and all the 

thermoelectric properties will be a function of the temperature. 

• Validation of the computational model with experimental data obtained from the test 

bench. 

• Theoretical and experimental study of the influence in the thermoelectric power 

generated of the following parameters: 

� Residual heat flux and electric load resistance for a constant room temperature. 

� Room temperature and electric load resistance for a constant residual heat flux. 

� Room temperature and electric load resistance for a constant temperature gap 

between the faces of the Peltier module. 

3. Computational Model 

In thermoelectric devices, for both refrigeration and generation applications, the 

temperatures in the faces of the Peltier modules and in the internal nodes can not be 
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determined analytically without knowing the heat flux due to the thermoelectric effects. The 

system of equations in order to calculate the temperatures is non linear. 

The model solves these non linear systems, formed by the thermoelectricity equations 

and the heat transfer ones, by the finite difference method, which calculates the temperature 

in different points separated in the space by a discrete distance. In the transient state the 

temperatures of these points are calculated in discrete periods of time. With this purpose a 

finite period of time is chosen and the temperatures for all the points are recalculated at the 

end of this time interval. 

While solving the model using the implicit finite difference method the values of the 

heat flux can be determined using the values of the temperatures of the time step before.  

The inputs of the model are: the geometric data and material properties of the elements 

of the thermoelectric system studied (thermal conductivity, electric resistivity, Seebeck 

coefficient and specific heat), and the thermal energy value supplied to the system. After the 

simulation, the outputs of the model are: the values of efficiency, electric voltage and 

current, electric power generated, temperatures and heat flux generated.  

Previous works showed in references from [3] to [13], needed as inputs for their models, 

the temperature values on the Peltier module faces. These were experimentally measured in 

the thermoelectric generation system for each heat flux supplied.  

Our model can determine all heat fluxes and temperatures of thermoelectric generator 

components only with the heat flux supplied by the residual energy source and the room 

temperature as inputs. This model no needs previous experimental values of ice-maker 

temperatures. 
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3.1 Hypothesis of the model 

The materials used in the test bench shown in Fig. 2 are considered isotropous. 

The model has been built neglecting the magnetic field effects, so Hall, Nernst, 

Ettingshausen and Righi-Ludec effects are neglected as well.  

3.2 Equations of the model. 

The model solves the equation of the heat transfer in transitory state for one dimension 

and one-dimensional flow: 

( ) *22 qxtktcp += δδτδδρ     (1) 

The equation of the heat conduction (1) multiplied by the volume, applied to the i node 

as a function of the thermal resistances and capacities is: 

( ) ( ) ( ) δτiiiijiijiiii CTTQRTTRTT −′=+−+−
•

−− ,
''

,1
''

1
  (2) 

The generation or absorption of heat related to node i is represented by 
•

Q i   and its 

expression is given by equations (6) to (9).  

The thermal resistance between nodes i and j, eq. (3) and the thermal capacity of node i, 

eq. (4) are: 

( )iiijji AkLR =,      (3)                                                

piii cVC ρ=       (4)                                                                                                  

Therefore, the thermal resistance and capacity of the Peltier module is studied as done in 

[18]; in our case, we divide the module in ten nodes and we get a thermal resistance 

between nodes and a thermal capacity associated to each node as a function of its 

temperature.  
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For the contact resistances between the elements of the test bench, the works of Ritzer 

and Lau [21] were used. 

The thermal resistance and capacity of the Heat Extender are calculated using the 

equations (3) and (4) giving the following values: 

[ ]WKR ExtenderHeat 1677.0=       

[ ]kgKJC ExtenderHeat 211=        

In our case the thermal resistance of the dissipater and the insulator related to the 

ambient are calculated experimentally as described below: 

Grouping the equation parameters as function of node temperatures and the heat flux we 

obtain the equation:  

( ) ( )[ ] iiijiijjiiiiiiiii CQTRCTRRCTRCT δτδτδτδτ
•

−−− +=′−++′+′− ,,,1,11 111  (5) 

The model incorporates the equations from the thermoelectric effects. These effects are 

the heat flux from the Peltier effects equations (6) and (7), Joule eq. (8), and Thomson eq. 

(9), with no magnetic fields. 

conthhh RIITNQ
2

2 +−=
•

α     
(6) 

contccc RIITNQ
2

2 +=
•

α     
(7)

 

ALNIRIQJ ρ22
0

2 ==
•

    
(8) 

TIQ ∆=
•

ττ       
(9)
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The temperature difference between the semiconductor terminals is used to calculate the 

heat fluxes due to the Peltier effect. The contribution of the contact thermal effects was 

developed in [2]. 

The discretization of the thermoelectric generator uses symbols of an electric analogy, 

shown in Fig. 1. The model assigns different nodes to the Peltier module in the ceramic part 

and in the end of the semiconductor, and thus, it is not necessary to correct the temperature 

gap between them. This is an improvement to the analytic solution of [2] which is necessary 

when only the experimental temperature of the ceramic part of the Peltier module is 

available.   
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Fig. 1.  Scheme of the thermal-electric analogy of the computational model. 

With the scheme shown in Fig. 1 and the expression (5), we obtain the following system 

of equations: 

[ ][ ] [ ] 




∂+=
•

iiii QCTTM τ'
   (10) 

The matrix system (10) is developed as a function of the thermal resistances and 

capacities of the device, as shown in (11): 
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(11) 

The Seebeck coefficient is a parameter variable with the temperatures, so if it is included 

in the model as a function of the temperature, we get the following expressions for the 

electromotive force generated due to the Seebeck effect, the voltage in the ends of the 

generator, the current and the electric power.  

( ) ( )






 −−−= +
=
∑ 1

10

1

2 ii
i

icchht TTTTNE ταα     (12)
 

( ) tEmmV +=∆ 1       (13) 

( ) 01 RmEI t +=       (14) 

VIPout ∆=        (15) 

4. Experimental work   

The assembly of the test bench, Fig. 2, has been designed for this work and it is 

composed by: 
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• A calibrated electric resistance that simulates the thermal energy source, 

providing a heat flux 
•

Q er   with a maximum value of 50 W.   

• A heat extender, with a known thermal resistance that communicates the electric 

resistance with the Peltier module.  

• A Peltier module Marlow DT12-6L type. 

• A dissipater for the cold side of the Peltier module, with a thermal resistance 

experimentally determined.  

• A decade box CAM METRIC R420 in order to be able to simulate with different 

load resistances.  

 

Fig. 2. Scheme of the test bench. 

The principal element of study is the Peltier module Marlow DT12-6L, used generally in 

thermoelectric refrigeration. We have chosen this module to take advantage of residual 

Cold 
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thermal energies of low temperature, (lower than 85ºC), as its temperature range is the most 

suitable. 

In order to determinate with accuracy the thermal resistance of the dissipater, we made 

some tests in a standardized climatic room. The tests were made with a prototype that used 

a known heat flux that went through the dissipater with the same temperature room 

conditions than the thermoelectric generator. 

In Fig. 2 it can be seen the heat flux that goes through the heat extender is the same than 

the heat absorbed by the Peltier module 
•

Q in. This is calculated with the temperature gap 

between the ends of the heat extender and the thermal resistance of the heat extender, using 

the expression (16). 

ExtenderHeatExtenderHeatin RTQ ∆=
•

    (16) 

In an open circuit case, (RL= 0), there is no Peltier effect and thus, there is no electric 

power generated in the Peltier module (Pout = 0), so the heat flux absorbed is 
•

Q in, and fits in 

with the flux through the dissipater 
•

Q Dissip; With this data and experimentally measuring the 

temperature gap between the dissipater and the ambient, we determined the thermal 

resistance of the dissipater using the expression (17).  

DissipAmbientDissipDissip QTR −∆=       (17) 

In Table 1 the values of the thermal resistance for different heat fluxes of the dissipater 

•
Q Dissip are shown. The data of the thermal resistance of the dissipater are independent of the 

thermoelectric device installed and the thermal resistance of the dissipater is an input data 

for the model.  
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Table 1.  

Thermal resistance of the dissipater. 
•

Q Dissip. 

[W]      

∆TDissip-Ambient 
[K]  

RDissip 
[K/W] 

25,93 21,8 0,84 
21,54 18,1 0,84 
18,35 15,2 0,83 
13,96 11,4 0,82 
9,17 7,6 0,83 
4,39 3,7 0,84 

The temperature probes are thermocouples K type and the data logging is ALMEMO 

5590-2. A thermocouple is placed in each point of study shown in Fig. 2. The tests were 

placed in a climatic room CLIMATS 1440H 60/3 to keep the room temperature constant.  

The heat flux due to the leaks eq. (19) is the difference between the heat fluxes generated 

by the electric resistance eq. (18) minus the absorbed by the Peltier module eq. (16). 

ererer IVQ ∆=
•

       (18) 

•••
−= inerleaks QQQ       (19) 

 

The thermal resistance between the electric resistance and the ambient is determined 

using the same methodology that we used to calculate the thermal resistance of the 

dissipater, using two thermocouples placed in the ambient and tin the electric resistance. 

Then the temperature gap between the electric resistance and the ambient is known. Thus, 

with the value of the heat flux that is transmitted we calculate the thermal resistance as is 

shown in Table 2 for different values of the income flux. 

Table 2.  

Thermal resistance between the thermal generator source and the room. 



 
 15

•
Q er [W]  

•
Q in [W]        

•
Q leaks [W]  ∆Τ Electr.Resist-Ambient [Κ]  R Electr.Resist-Ambient [K/W]   

29,7 25,9 3,8 76,2 20,1 
24,5 21,5 2,9 65,7 22,4 
21,0 18,4 2,7 56,7 21,4 
15,4 14,0 1,4 34,6 24,7 
10,3 9,2 1,1 25,7 23,4 
5,1 4,4 0,7 13,8 20,0 

In order to study the electric power generated, it is necessary to keep in mind the load 

resistance of the device joint to the thermoelectric generator. To simulate this load 

resistance a decade box has been used, CAM METRIC R420, which provides a variable 

resistance from 0.01 Ω to 100 Ω. 

5. Results and discussion. 

The experimental data obtained from the test bench are compared with the values from 

the computational model. With this comparison we make a validation of the model to 

determine the error between the experimental and the simulated values. 

The sample mean P out,ε of the measurement results is estimated from 10 independent 

observation of Pε  obtained under the same conditions of measurement. 

∑
=

=
10

1
,,,

1

k
koutout P

n
P εε          (20) 

The standard uncertainty u(Pout,ε) associated with P out,ε is the estimated standard 

deviation of the mean, given by the expression. 

( ) ( ) ( )
2

1

10

1

2

,,,, 1

1







 −
−

= ∑ =k outkoutout PP
nn

Pu εεε      (21) 

Therefore, the relative uncertainty of the experimental measurement is estimated as 

follows: 
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 ( ) ( )
ε

ε
ε

,

,
,

out

out
outrelat P

Pu
Pu =         (22) 

The total relative uncertainty of the experiments was acceptable. It was lower than 1.5 % 

in the case of output power and lower than 2 % in the case of temperatures.  

In order to study the output power of the thermoelectric generator system we have 

analyzed three different cases: 

I) Constant room temperature, varying the residual heat flux and the load electric 

resistance. 

II)  Constant residual heat flux, varying the room temperature and the load electric 

resistance. 

III)  Constant temperature gap between the Peltier module, varying the room temperature 

and the load electric resistance. 

The model we present in this work can determine the temperatures and heat fluxes of all 

nodes of the thermoelectric generation system components. It only needs as input, the heat 

flux supplied to the hot source and room temperature. It is not necessary to know previously 

the electric current as in [16], or [17]. In our case, the current is not an input parameter but 

an output parameter related with all the unknowns by the eq. (14); moreover, it uses the 

thermoelectric parameters as a function of the temperature.  

5.1 Case I: Constant room temperature varying the residual heat flux and the load 
electric resistance. 

5.1.1. Computational model validation  
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In the tests developed for the present case the heat flux was constant. This heat flux 

simulates the residual thermal energy. The electric power obtained is measured for each of 

the load resistances tested.  

In Fig. 3 and Fig. 4 is shown a comparison of the model and experimental values for 

residual heat flux of 
•

Q in= 5W and  
•

Q in= 30W. The values are acceptable with an error 

lower than the 5%. 
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Fig. 3. Comparison of the power generated from the model and the experimental data 

for a heat flux of 5W. 
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Fig. 4. Comparison of the electric power generated by the model and experimental 

data for a supplied heat flux of 30W. 

The maximum electric power is produced for values of load resistance equal to the 

internal resistance of the Peltier module. This behavior was demonstrated analytically in 

reference [2]. For a constant room temperature, the greater is the supplied residual heat flux, 

the higher the temperature of the Peltier module is. 

5.1.2. Output thermoelectric power experimental and simulated 

Our model has into account the variation of the electric resistance of the Peltier module 

with the temperature. Thus the load electric resistance that gives the maximum power 

increases, with the temperature, as internal electric resistance of the Peltier module 

increases with the temperature as well. As an example, it can be seen that if a heat flux of 

30W is supplied, the load resistance value for the maximum power generated is 3.9 Ω and 
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if the heat flux has a value of 5 W the load resistance increases to 3.3Ω what makes a rise 

of the 18%. This effect is shown in Fig. 5. 
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Fig. 5. Thermoelectric generated power maximum for each curve of heat flux 

constant with a room temperature of  Troom = 273K. 

With the analytical solution of ideal thermoelectric couple developed from references [3] 

to [11] or in the models that use average values of the thermoelectric parameters, references 

[12] and [13], the power and efficiency curves are calculated as a function of the electric 

current generated, keeping constant the temperature gap between the faces of the Peltier 

module. 

With the models of the mentioned works it is not possible to determine the effect shown 

in Fig 5. As a matter of fact, increasing the supplied heat flux, the absorbed heat due to the 

Peltier effect increases. Thus the temperature gap between the Peltier module’s faces 

increases. In case of the works from references [3] to [11] it would be necessary to calculate 
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experimentally the temperature of the faces of the Peltier module each time the heat flux 

varies, in order to determine the generated thermoelectric power. 

5.1.3. Temperature gap between the sides of the Peltier module experimental and 
simulated. 

The model calculates the temperatures and the heat fluxes of all the elements of the 

thermoelectric device. As it can be seen in Fig. 6, for a constant heat flux supplied, when 

the load resistance RL increases then the temperature gap between the faces of the Peltier 

module increases (∆T) too. The simulation results with the model have very good accuracy 

with errors lower than the 5% with the experimental results. As an example, let’s see what 

happens for a supplied heat flux of 30 W where the temperature gap between the faces of 

the Peltier module increases 10 K (what makes an increase of 27%) when the load 

resistance is varied from 2 Ω to 16 Ω. 
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Fig. 6. Temperatura gap between the faces of the Peltier module as a function of the 

load resistance RL for a constant supplied heat flux. 

5.2  Case II: Constant waste heat flux varying the room temperature and the electric 
load resistance. 

5.2.1. Output thermoelectric power experimental and simulated 

The tests made for a constant heat flux of 9.97W and varying the room temperature from 

-25ºC to 50ºC, Fig. 7 show that the experimental values obtained of generated power vary 

with the room temperature. This fact is due to the variation of the thermoelectric properties 

as a function of the temperature. 
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Fig. 7. Thermoelectric generated power for a room temperature constant with a 

supplied heat flux of 9.97 W. 

If we suppose that the thermoelectric properties do not depend on the temperature, for 

the tests where the heat flux was constant, the value of the electric power generated would 

be the same, independent of the room temperature. Experimentally we have checked that 

this supposition is not correct, see Fig.7. 

The model and experimental values are shown in Fig. 7, where it can be checked that the 

errors are lower than the 5%. 

In Fig. 8 is shown the maximum power curve (for a constant room temperature, Fig. 7). 

The maximum of the power curve is produced for a load resistance greater as greater is the 

room temperature. For this case of study, the curve of maximum power has a parabolic 
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shape, reaching the highest value for a room temperature of -1ºC. The influence of the 

temperature on the thermoelectric properties depends on the material used, so with other 

Peltier modules different curves would be gotten. 
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Fig. 8. Maximum power for each curve of constant room temperature, with a supplied 

heat flux of 9.97 W. 

5.3 Case III: Constant temperature gap between the faces of the Peltier module 
varying the room temperature and the electric load resistance. 

5.3.1. Output thermoelectric power experimental and simulated 

In order to check the influence of the room temperature, the cases where the temperature 

gap between the faces of the Peltier module is constant have been simulated. The electric 

power generated is shown in Fig. 9, for a constant temperature gap of 20ºC, varying the 

load resistance. 
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Fig. 9. Thermoelectric generated power for a constant room temperature, with a 

temperature gap between the faces of the module of 20ºC. 

If we suppose that the thermoelectric properties are not a function of the temperature, for 

the tests where the temperature gap of the faces of the Peltier module is constant the 

maximum power generated, (calculated using the model of ideal thermocouple or the 

models that suppose average values for the thermoelectric properties) would be the same 

independent of the room temperature. However the simulations and the experimental data 

show that this is not correct. 

For the case of our study, Fig. 9, a decrease of the 9% of the maximum power generated 

between the lowest room temperature Troom  = -20 ºC and the  highest Troom = 40 ºC for a 

constant temperature gap between the faces of the Peltier module of 20ºC.  
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For lower values of load resistance, the generated power is greater as lower is the room 

temperature. For higher values of room temperature, the generated power is greater as 

greater is the room temperature, as shown in Fig. 9. 

Our simulations allow choosing the load resistance more suitable as a function of the 

room temperature of operation. 

6. Conclusions 

• A complete computational model has been developed capable to simulate the 

thermoelectric generation of the Peltier module. It solves the equations of 

thermoelectricity and the heat transfer phenomenon. The thermoelectric parameters are 

defined as a function of the temperature, what allow us to keep in mind the Thomson 

effect. 

• The computational model has been validated using experimental data of a test bench for 

different room temperatures and different heat fluxes. The errors are lower than the 5%. 

• Our computational model has important advantages with other calculation methods 

from the literature such as: 

� The model determines the thermoelectric power generated for any boundary 

conditions of operation (supplied heat flux to the Peltier module and room 

temperature). It is not necessary to obtain parameters experimentally. 

� It solves the system of equations determining the temperatures of all the 

elements in the thermoelectric system and the heat fluxes involved. It determines 
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the transitory state as well as to determine the steady state. This makes the 

model very useful as a design tool of thermoelectric generation systems. 

� The influence of the room temperature, the residual heat flux and the electric 

load resistance in the behaviour of the thermoelectric generation system was 

studied. 

� It was experimentally proved that demonstrated that the electric load resistance 

which gives the maximum power varies with the supplied heat flux. Specifically 

in our case of study, it raises 18% when the electric load value is increased from 

3.3 Ω (5 W) to 3.9 Ω  (30 W). This effect can be observed in the computational 

model as well.  

� For a constant supplied heat flux it has been verified that the maximum power 

obtained is a function of the room temperature and the load resistance. For the 

case of a supplied heat flux of 9.97W, the curve of the maximum power as a 

function of the room temperature has a parabolic shape, reaching the maximum 

at the temperature of -1ºC. 

� For a constant temperature gap between the faces of the Peltier module, the 

influence of the room temperature in the maximum power was studied. In our 

case, a decrease of the 9 % of the maximum power generated between the lowest 

simulated room temperature, 20ºC, and the highest room temperature, 40ºC, has 

been obtained.   
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