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Universidad Pública de Navarra, Pamplona, SPAIN
mikel.izal@unavarra.es

Abstract—The OBS burstifier delay-throughput curves are analyzed in
this paper. The burstifier incorporates a timer-based scheme with mini-
mum burst size, i. e., bursts are subject to padding in light-load scenarios.
Precisely, due to this padding effect, the burstifier normalized throughput
may not be equal to unity. Conversely, in a high-load scenario, padding
will seldom occur. For the interesting light-load scenario, the throughput-
delay curves are derived and the obtained results are assessed against those
obtained by trace-driven simulation. The influence of long-range depen-
dence and instantaneous variability is analyzed to conclude that there is
a threshold timeout value that makes the throughput curves flatten out to
unity. This result motivates the introduction of adaptive burstification al-
gorithms, that provide a timeout value that minimizes delay, yet keeping
the throughput very close to unity. The dependence of such optimum time-
out value with traffic long-range dependence and instantaneous burstiness
is discussed. Finally, three different adaptive timeout algorithms are pro-
posed, that tradeoff complexity versus accuracy.
Keywords: Burstification algorithms, performance evaluation of OBS net-
works

I. I NTRODUCTION AND PROBLEM STATEMENT

Optical Burst Switching is a transfer mode that is halfway
between circuit switching and packet switching, thus providing
intermediate switching granularity. It is based on unconfirmed
resource reservation for the optical burst, which is composed by
several IP packets. Due to the fact that an optical burst is signifi-
cantly larger than a single packet the technological requirements
at the optical switches are less stringent. For example, receiver
synchronization is easier to achieve for a burst (milliseconds
transmission time) than for a packet (nanoseconds transmission
time). The same applies to switching time requirements.

The functional unit in charge of producing optical bursts out
of packets is denotedburstifier. Precisely, a number of bursti-
fication algorithms have been proposed and analyzed [1], [2],
[3], [4], [5], [6]. In [5], three categories are identified: i) time-
based algorithms, ii) burst-length-based algorithms and mixed
time/burst-length algorithms. Time-based algorithms take a
fixed assembly time as a primary criterion to create a burst,
whereas burst-length based algorithms take the burst length in-
stead. The third category corresponds to hybrid schemes that
consider both time and burst length, whichever is fulfilled first.
In a light load scenario, a burst-length-based algorithm results
in a high packetization delay, due to the time it takes to collect
a sufficient number of packets to create a burst [5]. For such
scenario, time-based schemes are significantly more efficient,
since the packetization delay is given by the assembly time.In
this paper, we will focus on light-load scenarios and time-based
schemes. The case with no padding has been considered else-
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where [7]. On the other hand, in [8] the latency and mean burst
size are derived for an OBS networkwith acknowledgments. In
those references padding is not considered and the packet arrival
process is assumed to be Poisson, not long-range dependent.

The burstification algorithm under consideration is as follows:
the incoming packet stream is demultiplexed per destination in
separate queues. A timer is started with the first packet arrival in
a queue. Then, upon timer expiration, the optical burst is formed
and relayed to the optical core. On the other hand, it should
be noted that bursts cannot be arbitrarily small, due to the op-
tical switches technological constraints (for example minimum
switching time). Thus, there is a lower bound to the optical burst
sizebmin and padding will be required for some of the bursts.

In this paper, we study the impact of burst padding on the
optical network throughput. We choose thedelay-throughput
curve as the performance metric. As the timeout value increases
more packets are allowed to be transported onto the same optical
burst and padding will be less frequent. However, as the time-
out value increases so does the burstification delay. The find-
ings of this paper allow to select a burstifier operating point that
minimizes burstification delay, yet keeping throughput at area-
sonable value. On the other hand, the impact of long-range de-
pendence and instantaneous variability on the throughput-delay
curve will be analyzed. Finally, we propose an adaptive time-
out algorithm that minimizes delay while keeping throughput
beyond a given threshold.

A. Assumptions

In a medium to heavily loaded OBS network, padding will not
be likely to occur and the impact on throughput will be negligi-
ble in practice. However, a light load scenario will potentially
produce many bursts with a number of packets below the min-
imum burst size and padding will be necessary. Even in highly
loaded networks load fluctuations do happen, for instance dur-
ing weekends, and light-load epochs will be observed1. For our
analysis, the light-load assumption will imply that the lightpath
bandwidth is very large in comparison to the incoming traffic
average. When the timer expires, all packets awaiting transmis-
sion in the burst assembly queue are transmitted.

Secondly, the incoming traffic model (bytes per interval) will
be modeled by a Fractional Gaussian Noise (FGN), which has
been shown to model accurately traffic from a LAN [9]. While
recent studies show thathighly multiplexed core trafficmay be
modeled as a non-homogeneous Poisson process [10] note that

1See for instance http://loadrunner.uits.iu.edu/weathermaps/abilene/ for daily
variation of traffic in an Internet backbone



the burstifierdemultiplexestraffic on a per-destination basis. On
the other hand, burstifiers will be placed at the edges of the opti-
cal network and not at the core. As a result, the expected multi-
plex level is not as large. Furthermore, note that in order tocal-
culate the throughput only the number of information bytes per
burst matters and not the packet arrival dynamics, which may
have multifractal behavior for low multiplex levels [11]. Pre-
cisely, the FGN is a fluid-flow model that provides the number
of bytes per time interval only. While the small timescale tra-
ffic fluctuations are not captured by the model, the long-range
dependence from interval to interval is indeed accurately por-
trayed. In this paper, we wish to analyze the impact of such
dependence in the OBS throughput. Finally, our analytical re-
sults will be compared to trace-driven simulations, and thetra-
ffic model assumptions will be verified using a real-world sce-
nario.

II. A NALYSIS

According to our previous results in [12], for a timer-based
burstifier, it turns out that the traffic arriving per time intervalT0

is a Gaussian random variable with meanµ = µ′T0 and standard
deviationσ = σ′T H

0 . Let us denote such random variable byX ,
with T0 being the timeout value,H being the Hurst parameter,
µ′ andσ′ being the mean and standard deviation of the marginal
distribution of the traffic arriving in a given time unit (in this
paper it will represent bytes arriving in a1ms interval).

A. Delay-throughput curve

Let us assume that the minimum burst size isbmin. The
throughput will be defined as the ratio between the information
bits and the total bits transmitted. Thus, the throughput will
equal unity wheneverX > bmin andE[X ]/bmin if X < bmin,
whereE[X ] denotes the expected value of random variable X.
For convenience, let us define the random variableY as the fol-
lowing function ofX ,

Y =

{

X : X ≤ bmin

bmin : X > bmin
(1)

then, the throughput is equal to

ρ =
E[Y ]

bmin
(2)

Note that the definition ofY implies that the throughput is
equal to one if padding is not necessary (Y = bmin). As a
result,Y is a truncated Gaussian random variable in the range
[0, bmin]. Let φ(x) = 1√

2π
e−

1

2
x2

and Φ(x) =
∫ x

−∞ φ(t)dt.
Then,

P (Y ≤ y) =

{

Φ
(

y−µ
σ

)

: y < bmin

1 : y ≥ bmin
(3)

and

E[Y ] = E [Y |Y < bmin] P (Y < bmin) + (4)

+ E [Y |Y = bmin] P (Y = bmin).

In order to derive the conditional expectationE [Y |Y < bmin]
we use the Moment Generating Function (MGF)

MY (t) = E
[

etY |Y < bmin

]

= eµt+ σ
2

t
2

2

φ
(

bmin−µ
σ − σt

)

φ
(

bmin−µ
σ

)

(5)
yielding

E [Y |Y < bmin] = M ′
Y (0) = µ − σ

φ(α)

Φ(α)
(6)

with α = bmin−µ
σ . Let us define thehazard function 2 as

λ(α) = φ(α)
1−Φ(α) . Then

E [Y |Y < bmin] = M ′
Y (0) = µ − σλ(−α) (7)

and, using (4),

E[Y ] = (µ − σλ(−α)) Φ (α) + bmin (1 − Φ (α)) . (8)

Now, use (2) to obtain the throughput expression. Figure 1
shows an example of throughput curve.
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Fig. 1. Delay-throughput curve (parametersbmin = 500 Kbytes, T0 =

1 . . . 20 , byte arrivals perms with µ′ = 60162.88 bytes,σ′ = 15038.2
bytes,H = 0.73, )

As expected, an increase in the timeout value results in a bet-
ter throughput since more packets can be accommodated per
burst. One may argue that the average delay a packet will expe-
rience is not the timeout value but actually half a timeout value.
However, and without loss of generality, we will consider the
maximum delay. Thus, the delay in the x-axis will be equal to
the timeout value.

B. Generated load

In this section we derive an expression for the generated tra-
ffic to the OBS network. Due to padding, the burstifier traffic
is larger than or equal to the input IP traffic. LetZ be the ran-
dom variable that denotes the bits per second generated by the
burstifier. Then,

2Or inverse Mills ratio



Z =

{

bmin : X ≤ bmin

X : X > bmin
(9)

and,

P (Z ≤ z) =

{

0 : z < bmin

Φ
(

z−µ
σ

)

: z ≥ bmin
(10)

i.e., Z is a truncated Gaussian variable from below. Now, we
use the following MGF,

MZ(t) = E
[

etZ |Z > bmin

]

= eµt+ σ
2

t
2

2

1 − φ
(

bmin−µ
σ − σt

)

1 − φ
(

bmin−µ
σ

)

(11)
and, thus,

E [Z|Z > bmin] = M ′
Z(0) = µ + σλ(α). (12)

Finally,

E[Z] = E [Z|Z = bmin] P (Z = bmin) + (13)

+ E [Z|Z > bmin] P (Z > bmin) =

= bminφ(α) + (µ + σλ(α))(1 − φ(α)).

andE[Z]/T0 represents the rate in bps.

C. Validation

In this section we perform a trace driven simulation to validate
the analytical results. We used the Abilene-I data set provided
by NLANR 3. The Abilene-I data set traces contain traffic from
two OC-48 links, that was collected at the Indianapolis router
node. Traces are 2 hours long, each of them comprises 12 files
(10 minutes each) that contain the pair(arrival time, packet size)
for every packet in the link. We use 10 minutes worth of traffic
from a 2.5Gbps link as a real-world traffic source for the burs-
tifier. The Abilene-I trace selected shows an average trafficrate
around 480Mbps which, assuming a 10Gbps wavelength in the
OBS port, makes the utilization factor be approximately equal
to 0.05. Figure 2 shows one of the Abilene traces (10 minutes).
The trace characteristics are summarized in table I4.

µ′ (bytes in1ms) σ′ (bytes in1ms) H
60162.8786 15038.2 0.73

TABLE I

TRACE CHARACTERISTICS

From the packet arrival process, the burst arrival process is
generated through simulation of a timer-based burstifier. Simu-
lation is performed with a set of timeouts varying from 1 to 20
ms and several values ofbmin = {100, 500, 900} KBytes. The
obtained throughputE[Y ]

bmin

is plotted in figure 3, along with the
theoretical results from (8).

3http://pma.nlanr.net/Traces/long/ipls1.html
4Packets were taken from the Illinois to Cleveland link (IPLS-CLEV-

20020814-102000-1), on August 14th, 2002, from 10:20 to 10:30 AM
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Fig. 2. Abilene-I trace
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Fig. 3. Throughput-delay curve for the Abilene-I trace

Note that the theoretical curve matches very well the simu-
lation values, thus validating the model and suggesting that
Abilene-I traces are very well modeled by a FGN process, at
least in the milliseconds scale. This is a timescale that is rele-
vant for a burstifier with timeout values of milliseconds. Smaller
timescales do not really matter, since the aggregation performed
at the burstifier is not affected by the packet arrival dynamics
below the timeout value timescale.

As the minimum burst size (bmin) increases the throughput
decreases. For each value ofbmin a cutoff timeout value exists
that makes the throughput curves flatten out to unity.

On the other hand, figure 4 shows the generated load to the
OBS network, showing that the analytical expressions match
closely the trace-driven simulation results. The y-axis shows
the traffic generated by the burstifier and the x-axis the time-
out value, for different minimum burst sizes. Interestingly, note
that the joint effect of low burstifier timeout and large mini-
mum burst size can amplify the input traffic to 6 Gbps, more



than 10 times the average input traffic (480 Mbps). As a re-
sult, it turns thatbmin and Tout should be carefully selected.
The throughput-delay expressions provided in the previoussec-
tion serve to select a burstifier operating point that actually min-
imizes the padding effect (i.e. throughput values close to 1).
Such operating point also guarantees that the burstifier offered
rate to the OBS network is close to the input traffic rate.
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Fig. 4. Input traffic to the OBS network

III. R ESULTS AND DISCUSSION

In this section we evaluate the impact of the incoming traffic
parameters on the OBS throughput. First, the influence of long-
range dependence on the throughput-delay features of the OBS
burstifier will be analyzed. Then, the influence of the incoming
traffic coefficient of variation will be studied. Finally, wewill
discuss whether dynamic burstification algorithms may serve to
adaptively tune the burstifier timeout value in order to sustain
throughput above a certain threshold.

A. Influence of long-range dependence on delay-throughput
curves

TheHurst parameterH provides a measure of the traffic cor-
relation structure. A value ofH = 0.5 indicates no correlation
(independent increments). AsH increases, the traffic correla-
tion also increases. Long-range dependence occurs whenever
1/2 < H < 1. Figure 5 shows the delay-throughput curves de-
rived in the previous section for different values ofH and two
extreme cases of minimum burst size, i.e.bmin=100 KBytes and
bmin=900 KBytes.

As long-range dependence increases, the throughput de-
creases for a given delay value. On the other hand, the impact
of long-range dependence on throughput is larger as the min-
imum burst sizebmin increases. If the minimum burst size is
large, padding will be performed more frequently. Overall,if
the timeout value is larger than a certain threshold the effect of
long-range dependence is negligible. This threshold is approx-
imately equal to 20 ms in the worst-case ofbmin=900 Kbytes.
Below this timeout value the dependence on the value of H is
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Fig. 5. Delay-throughput curves for different values ofH (bmin=100 -top- and
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higher but it is marginal compared with the dependence on the
timeout value.

B. Influence of coefficient of variation on delay-throughput
curves

The coefficient of variation (cv = σ/µ) provides a measure of
the instantaneous variability of traffic. Note that this is ”orthog-
onal” to the correlation. While long-range dependence serves
to characterize the traffic behavior with time, the coefficient of
variation is an instantaneous measure. Note also that the coe-
fficient of variation depends on the scale of aggregation of the
traffic process.

A sensitivity analysis of the throughput-delay curves versus
the coefficient of variation is presented in this section. Figure
6 shows the delay-throughput curves for different values ofcv

and two extreme cases of minimum burst size, i.e.bmin=100
KBytes andbmin=900 KBytes.

It turns out that larger values ofcv have negative influence on
the throughput. The influence is worse the larger the minimum
burst size value. As with long-range dependence, the impact
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of instantaneous variability on throughput is negligible beyond
a certain timeout value. For a worst-case ofbmin=900 Kbytes
this threshold is also approximately equal to 20 ms.

C. Dynamic adaptation of the timeout value

The results of the previous section show a negative gradient
of the throughput with both the coefficient of variation (ins-
tantaneous variability) and Hurst parameter (long-range depen-
dence). However, there is a timeout value that makes such gra-
dient be equal to zero. Such timeout value depends on the min-
imum burst size, the traffic load and, to a lesser extent, it also
depends on the long-range dependence parameterH and the co-
efficient of variationcv.

The above observation leads us to seek for an expression
that provides the timeout value for which the delay throughout
curves flatten out to unity. Not only this is beneficial to maxi-
mize the throughput at the minimum delay cost but also to de-
crease the network load. For the Abilene-I trace consideredin
section II-C, recall that the increased traffic load due to padding
is shown in figure 4. The effect of choosing a wrong timeout

value is very significant not only for the throughput, but also for
the generated load to the OBS network.

Table II shows the threshold timeout value that provides a
throughput equal to95%. Our backbone traffic trace has a coe-
fficient of variation equal to0.25 for an aggregation interval of
1ms. The same trace gives acv = 0.054 using intervals of1s
due to the decay of the variance with aggregation. In [9] the
variance coefficient is equal to0.34 (aggregation 1s) for a LAN
traffic trace (tracepOCT.TL), showing higher variability in com-
parison with our trace. Actually, as the input traffic multiplex
level increases, the coefficient of variation decreases. Note that
OBS networks are expected to carry traffic from a large number
of hosts.

The figures in table II show that for small values of the coe-
fficient of variation,H has only a slight incremental influence
on the timeout value, whereas for large values of the coefficient
of variation the influence is much stronger. Thus, if input traffic
has a small coefficient of variation then only estimation of the
first and second moment is necessary. As the coefficient of vari-
ation increases one needs to take into account the influence of
long-range dependence.

The fact that the delay-throughput curves are sensitive to both
instantaneous burstiness and long-range dependenceonly with
large coefficient of variationis very significant and useful for
practical engineering purposes. Our findings show that ifcv is
low only the traffic first and second moment need to be estimated
in order to derive an optimal timeout value.

Concerning the change rate of the traffic moments, other pro-
posals based on link state estimation assume that the network
load remains stable in timescales of minutes [13]. If that isthe
case, one could devise an adaptive burstifier that would offer
minimum delay and maximum throughput for any given input
traffic stream. The timeout value rate of change would be in
the scale of minutes, which seems reasonable from a practical
implementation standpoint.

IV. A DAPTIVE TIMEOUT ALGORITHM FOR LONG-RANGE

DEPENDENT TRAFFIC

In this section we propose three different adaptive timeout
algorithms and compare them for different values of the Hurst
parameterH and coefficient of variationcv. The proposed algo-
rithms tradeoff complexity versus accuracy.

A. Load estimate (L-estimate)

The load-based estimateT L
0 is based on the traffic first mo-

ment only, i. e.

T L
0 =

bmin

µ̂′
(14)

beingµ̂′ the input traffic rate estimate in bps. The basic as-
sumptions is that the influence of the second moment andH
parameter is negligible.

B. Load-Variance estimate (LV-estimate)

The load-variance estimateT LV
0 is based on the first and se-

cond moment. It is obtained as the solution of the following
nonlinear program



TABLE II

BURSTIFIER TIMEOUT(MS) FOR95% THROUGHPUT

bmin=100KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 1.8 1.9 2.1 2.2 2.4
H=0.6 1.8 2.0 2.1 2.3 2.5
H=0.7 1.9 2.0 2.2 2.5 2.7
H=0.8 1.9 2.1 2.4 2.7 3.0
H=0.9 1.9 2.2 2.5 3.0 3.7

bmin=500KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 8.1 8.3 8.4 8.6 8.7
H=0.6 8.2 8.4 8.7 8.9 9.2
H=0.7 8.4 8.7 9.1 9.5 9.8
H=0.8 8.7 9.1 9.7 10.4 11.1
H=0.9 9.1 9.8 10.9 12.2 13.8

bmin=900KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 14.4 14.5 14.7 14.9 15.1
H=0.6 14.6 14.8 15.1 15.4 15.7
H=0.7 14.8 15.2 15.7 16.2 16.7
H=0.8 15.3 15.9 16.8 17.7 18.6
H=0.9 16.1 17.3 19.0 20.9 23.2

Minimize T0 (15)

subject to ρ(µ̂, σ̂0.5, α̂0.5) > 0.95

whereµ̂ = µ̂′T0, σ̂0.5 = σ̂′T 0.5
0 andα̂0.5 = bmin−µ̂

σ̂0.5
. The

throughputρ(µ̂, σ̂0.5, α̂0.5) = E[Y ]/bmin can be obtained using
(8). The LV-estimate neglects the influence of self-similarity
(i.e. H = 0.5). Details for solving this problem and for pa-
rameter estimation with long-range dependence are given inthe
appendix.

C. Load-Variance-H estimate (LVH-estimate)

The load-variance-H estimateT LV
0 is based on the first, se-

cond moment andH parameter. It is obtained as the solution of
the following nonlinear program

Minimize T0 (16)

subject to ρ(µ̂, σ̂Ĥ , α̂Ĥ) > 0.95

whereµ̂ = µ̂′T0, σ̂Ĥ = σ̂′T Ĥ
0 andα̂Ĥ = bmin−µ̂

σ̂
Ĥ

. Details for
solving this problem are given in the appendix. This algorithm
provides the best timeout value in comparison to the L-estimate
and LV-estimate algorithms. However, this is at a cost of higher
complexity in parameter estimation.

D. Evaluation

The proposed algorithms will be evaluated for input tra-
ffic with different dependence (H parameter) and instantaneous

burstiness (coefficient of variation). The evaluation is performed
under ideal conditions, i. e. it will be assumed that there isno
estimation error in computing the parametersµ̂′, σ̂′. In what
follows, we will focus on obtaining the minimumT0 value that
yields a throughput greater than95%.

Note that table II already shows theT0 values corresponding
to algorithm LVH-estimate, with no estimation error. We take
that table as a reference and calculate the following performance
figures. First, the relative deviation from the optimum value
of the L-estimate and LV-estimate is evaluated. Such relative
deviation is defined as follows

νx =
|T x

0 − T LV H
0 |

T LV H
0

(17)

wherex ∈ {L, LV } for the L-estimate and LV-estimate re-
spectively. Secondly, the actual throughput that is obtained with
both the L-estimate and the LV-estimate is calculated. Even
though the target throughput is 95%, note that this will onlybe
attained with the LVH estimate. Tables III and IV show the rel-
ative deviationνx for the L-estimate and LV-estimate.

Tables V and VI show the throughput obtained by a burstifier
using either L-estimate or LV-estimate. With LV-estimate,the
throughput does not fall below 85% even if the coefficient of
variation is doubled from that of the original traffic. This holds
true for the whole range of variation ofH . On the other hand,
the lowest attained throughput with a simpler L-estimate is80%.
This suggests that a simple estimate can drive a variable timeout
burstifier to adapt the timeout so as to maintain a reasonably
high throughput.

The tables show that for small coefficient of variation the L-
estimate and LV-estimate produce timeout values that are very
close to the theoretical optimal value. Since OBS networks are
expected to multiplex traffic from a large number of sources this
is actually the case. In order to verify this conclusion, we ex-
tensively analyze the Abilene-I data set. Table VII shows theH
andcv values (on thems scale) for every trace in the Abilene-I
data set. Note that all of them have a small coefficient of vari-
ation (cv), which is usually below0.3. On the other hand, the
Hurst parameter (H) takes on values in the vicinity of 0.7. For
cv = 0.25 andH = 0.7, the timeout value that achieves a 95%
throughput with minimum burst sizebmin = 500 KB is equal
to 8.4 ms. To derive such value one needs to solve the LVH-
estimate program (16), that requires knowledge of first and se-
cond moments and Hurst parameter. The L-estimate provides a
timeout equal to 8.5 ms and 94.7% throughput whereas for the
LV-estimate the timeout is equal to 9 ms and the throughput is
93.5%. Even though the burstification delay is slightly increased
and the throughput is a little less than 95%, note that only first
moment estimation is needed for the L-estimate and first and
second moment estimates are needed for the LV-estimate. Fur-
thermore, the timeout value is straightforward to calculate with
the L-estimate algorithm (equation 14).

V. CONCLUSIONS

In this paper we have derived the throughput-delay curve for
a timer-based burstifier with minimum burst size. A threshold
timeout value exists that makes the normalized throughput value



TABLE III

RELATIVE DEVIATION (PERCENTAGE) OF THE L-ESTIMATE TIMEOUT νL

(MS) WITH RESPECT TO THE OPTIMUM VALUE(LVH- ESTIMATE FOR) 95%

THROUGHPUT

bmin=100KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 7.7% 12.5% 20.8% 24.4% 30.7%
H=0.6 7.7% 16.9% 20.8% 27.7% 33.5%
H=0.7 12.5% 16.9% 24.4% 33.5% 38.4%
H=0.8 12.5% 20.8% 30.7% 38.4% 44.6%
H=0.9 12.5% 24.4% 33.5% 44.6% 55.1%

bmin=500KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 2.6% 0.1% 1.1% 3.4% 4.5%
H=0.6 1.4% 1.1% 4.5% 6.6% 9.7%
H=0.7 1.1% 4.5% 8.7% 12.5% 15.2%
H=0.8 4.5% 8.7% 14.3% 20.1% 25.1%
H=0.9 8.7% 15.2% 23.8% 31.9% 39.8%

bmin=900KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 3.9% 3.2% 1.8% 0.4% 0.9%
H=0.6 2.5% 1.1% 0.9% 2.9% 4.7%
H=0.7 1.1% 1.6% 4.7% 7.7% 10.4%
H=0.8 2.2% 5.9% 11.0% 15.5% 19.6%
H=0.9 7.1% 13.5% 21.3% 28.4% 35.5%

TABLE IV

RELATIVE DEVIATION (PERCENTAGE) OF THE LV- ESTIMATE TIMEOUT νLV

(MS) WITH RESPECT TO THE OPTIMUM VALUE(LVH- ESTIMATE FOR) 95%

THROUGHPUT

bmin=100KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 0.0% 0.0% 0.0% 0.0% 0.0%
H=0.6 0.0% 5.0% 0.0% 4.3% 4.0%
H=0.7 5.3% 5.0% 4.5% 12.0% 11.1%
H=0.8 5.3% 9.5% 12.5% 18.5% 20.0%
H=0.9 5.3% 13.6% 16.0% 26.7% 35.1%

bmin=500KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 0.0% 0.0% 0.0% 0.0% 0.0%
H=0.6 1.2% 1.2% 3.4% 3.4% 5.4%
H=0.7 3.6% 4.6% 7.7% 9.5% 11.2%
H=0.8 6.9% 8.8% 13.4% 17.3% 21.6%
H=0.9 11.0% 15.3% 22.9% 29.5% 37.0%

bmin=900KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 0.0% 0.0% 0.0% 0.0% 0.0%
H=0.6 1.4% 2.0% 2.6% 3.2% 3.8%
H=0.7 2.7% 4.6% 6.4% 8.0% 9.6%
H=0.8 5.9% 8.8% 12.5% 15.8% 18.8%
H=0.9 10.6% 16.2% 22.6% 28.7% 34.9%

TABLE V

THOUGHPUT OBTAINED USING THEL-ESTIMATE ALGORITHM FOR A 95%

TARGET THROUGHPUT

bmin=100KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 92.3% 90.2% 88.0% 86.2% 84.5%
H=0.6 91.9% 89.7% 87.4% 85.4% 83.7%
H=0.7 91.5% 89.2% 86.7% 84.7% 82.9%
H=0.8 91.0% 88.6% 86.0% 83.9% 82.0%
H=0.9 90.6% 88.0% 85.3% 83.0% 81.0%

bmin=500KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 96.6% 95.6% 94.6% 93.8% 93.1%
H=0.6 95.7% 94.6% 93.4% 92.4% 91.4%
H=0.7 94.7% 93.3% 91.8% 90.5% 89.4%
H=0.8 93.5% 91.7% 89.9% 88.3% 86.9%
H=0.9 92.0% 89.8% 87.5% 85.6% 83.9%

bmin=900KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 97.4% 96.7% 96.0% 95.4% 94.8%
H=0.6 96.6% 95.7% 94.8% 94.0% 93.2%
H=0.7 95.6% 94.4% 93.1% 92.1% 91.1%
H=0.8 94.2% 92.7% 91.0% 89.6% 88.4%
H=0.9 92.4% 90.4% 88.2% 86.4% 84.8%

TABLE VI

THROUGHPUT OBTAINED USING THEL-ESTIMATE ALGORITHM FOR A 95%

TARGET THROUGHPUT

bmin=100KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 95.5% 95.2% 95.8% 95.3% 95.8%
H=0.6 95.0% 94.6% 95.0% 94.3% 94.6%
H=0.7 94.5% 93.9% 94.1% 93.2% 93.3%
H=0.8 94.0% 93.2% 93.2% 92.0% 91.8%
H=0.9 93.5% 92.4% 92.1% 90.6% 90.1%

bmin=500KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 95.2% 95.6% 95.1% 95.3% 95.0%
H=0.6 94.4% 94.5% 93.9% 93.8% 93.4%
H=0.7 93.5% 93.3% 92.3% 92.0% 91.3%
H=0.8 92.3% 91.7% 90.3% 89.7% 88.7%
H=0.9 90.8% 89.7% 87.9% 86.8% 85.4%

bmin=900KB
cv=0.25 cv=0.32 cv=0.39 cv=0.45 cv=0.50

H=0.5 95.2% 95.0% 95.1% 95.2% 95.3%
H=0.6 94.5% 94.1% 93.9% 93.8% 93.7%
H=0.7 93.6% 92.8% 92.3% 91.9% 91.5%
H=0.8 92.3% 91.2% 90.2% 89.4% 88.8%
H=0.9 90.7% 89.0% 87.5% 86.2% 85.1%



TABLE VII

H AND cv (MILLISECONDS TIMESCALE) FOR ABILENE-I TRACES (EACH

FILE COMPRISES10 MINUTES WORTH OF TRAFFIC)

Abilene trace file name H cv

IPLS-CLEV-20020814-090000-0.gz0.68 0.28
IPLS-CLEV-20020814-091000-0.gz0.74 0.32
IPLS-CLEV-20020814-092000-0.gz0.76 0.32
IPLS-CLEV-20020814-093000-0.gz0.75 0.31
IPLS-CLEV-20020814-094000-0.gz0.75 0.29
IPLS-CLEV-20020814-095000-0.gz0.72 0.29
IPLS-CLEV-20020814-100000-0.gz0.74 0.29
IPLS-CLEV-20020814-101000-0.gz0.75 0.28
IPLS-CLEV-20020814-102000-0.gz0.71 0.27
IPLS-CLEV-20020814-103000-0.gz0.73 0.29
IPLS-CLEV-20020814-104000-0.gz0.73 0.31
IPLS-CLEV-20020814-105000-0.gz0.68 0.29
IPLS-CLEV-20020814-090000-1.gz0.78 0.28
IPLS-CLEV-20020814-091000-1.gz0.75 0.26
IPLS-CLEV-20020814-092000-1.gz0.73 0.25
IPLS-CLEV-20020814-093000-1.gz0.80 0.26
IPLS-CLEV-20020814-094000-1.gz0.73 0.25
IPLS-CLEV-20020814-095000-1.gz0.73 0.25
IPLS-CLEV-20020814-100000-1.gz0.72 0.25
IPLS-CLEV-20020814-101000-1.gz0.76 0.27
IPLS-CLEV-20020814-102000-1.gz0.74 0.25
IPLS-CLEV-20020814-103000-1.gz0.73 0.25
IPLS-CLEV-20020814-104000-1.gz0.75 0.26
IPLS-CLEV-20020814-105000-1.gz0.71 0.25

equal to unity. Such threshold value depends on the instanta-
neous traffic burstiness and long-range dependence to a much
lesser extent than on the traffic load and minimum burst size.
On the other hand, a bad choice of timeout value results in a
severe increase of network load (see figure 4)

Three adaptive timeout algorithms have been proposed that
tradeoff accuracy versus complexity. Our trace-driven analysis
of the Abilene backbone shows that for most cases of real Inter-
net traffic a first moment estimation is enough to provide a time-
out value very close to the optimum. Thus, an adaptive timeout
algorithm can be easily incorporated to timer-based burstifiers,
with a significant benefit in burstification delay and throughput.

APPENDIX

A. Solving the nonlinear programs (15) and (16)

It can be easily shown that the constraint function in both pro-
grams (15) and (16) is increasing and concave. Let us denote the
constraint function byf . The value ofT0 can be approximatted
by the single zero of the functionf − 0.95. Such zero can be
found using a search method (for instance, Fibonacci search).

B. Moment and Hurst parameter estimation with long-range
dependent traffic

Note that programs (15) and (16) require estimation of the
input traffic mean, variance and Hurst parameter (only for pro-
gram (16)). Let(X1, . . . , Xn) ben traffic samples. Since traffic

shows long-range dependence the correlation function can be
approximatted byρ(k) ∼ k2H−2. The well known variance es-
timators2 = 1

n−1

∑n
i=1(Xi − X)2, whereX = 1

n

∑n
i=1 Xi is

biased due to the covariance terms involved in the calculation.
A variance estimate has been proposed by the authors in [14],

that provides a confidence interval on the variance estimate.
Such estimator is defined as follows

s′2 =
1

n/r − 1

n/r
∑

i=1

(Xri − X ′(n, r))2 (18)

beingr a parameter and beingX ′(n, r) the r-decimated mean
X ′(n, r) = 1/(n/r)

∑n/r
i=1 Xri. This estimator allows confi-

dence intervals on the sample variance, for small values ofr
(r > 4).

For on-line estimation of the traffic average, in presence of
long-range dependence, see [15]. Percival shows that if oneis
interested in estimating the mean in a given time frame this can
be achieved by decimation at a moderate decrease in efficiency.
Finally, a wavelets-based on-line Hurst parameter estimation,
has been proposed in [16].
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