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Abstract—The OBS burstifier delay-throughput curves are analyzed in  where [7]. On the other hand, in [8] the latency and mean burst
this paper. The burstifier incorporates a timer-based schera with mini-  gjze are derived for an OBS netwoslith acknowledgmentsn
mum burst size, i. e., bursts are subject to padding in lightoad scenarios. L . :
Precisely, due to this padding effect, the burstifier normaked throughput those ref.erences paddlng IS n_Ot considered and the paclraai ar
may not be equal to unity. Conversely, in a high-load scenan, padding Process is assumed to be Poisson, not long-range dependent.
will seldom occur. For the interesting light-load scenario the throughput- The burstification a_|gorithm under consideration is aief:
delay curves are derived and the obtained results are asseskagainst those the incoming packet stream is demultiplexed per destinatio
obtained by trace-driven simulation. The influence of longrange depen- gp . . . . L.
dence and instantaneous variability is analyzed to conclug that there is S€parate queues. A timer is started with the first packeftsim
a threshold timeout value that makes the throughput curves fitten out to @ queue. Then, upon timer expiration, the optical burstriséal
unity. This result motivates the introduction of adaptive burstification al- and relayed to the optical core. On the other hand. it should
gorithms, that provide a timeout value that minimizes delay yet keeping b d that b tb ) bitraril I d ,t
the throughput very close to unity. The dependence of such djpnum time- _e nOte. that bursts Car_mo ear '_ ranly smail, ue. 0. fhe o
out value with traffic long-range dependence and instantaneus burstiness  tical switches technological constraints (for exampleimum
is discussed. Finally, three different adaptive timeout ajorithms are pro- switching time). Thus, there is a lower bound to the opticatb
posed, that tradeoff complexity versus accuracy. : ) : : :
Keywords: Burstification algorithms, performance evaluation of OBS ret- Slzebm%" and paddlng will be re_qUIred for some of the, bursts.
works In this paper, we study the impact of burst padding on the
optical network throughput. We choose ttelay-throughput
curve as the performance metric. As the timeout value ise®a
more packets are allowed to be transported onto the santabpti

Optical Burst Switching is a transfer mode that is halfwaurst and padding will be less frequent. However, as the-time
between circuit switching and packet switching, thus pimg out value increases so does the burstification delay. The find
intermediate switching granularity. It is based on uncoméid ings of this paper allow to select a burstifier operating pthiat
resource reservation for the optical burst, which is coragd®sy minimizes burstification delay, yet keeping throughput ega
several IP packets. Due to the fact that an optical bursgigfsi sonable value. On the other hand, the impact of long-range de
cantly larger than a single packet the technological regouémts pendence and instantaneous variability on the througtelay
at the optical switches are less stringent. For examplejwvec curve will be analyzed. Finally, we propose an adaptive time
synchronization is easier to achieve for a burst (milliset out algorithm that minimizes delay while keeping throughpu
transmission time) than for a packet (nanoseconds trag&mis beyond a given threshold.
time). The same applies to switching time requirements. .

The functional unit in charge of producing optical bursts od\: Assumptions

of packets is denoteburstifier. Precisely, a number of bursti- |n a medium to heavily loaded OBS network, padding will not
fication algorithms have been proposed and analyzed [1], [BE likely to occur and the impact on throughput will be neiglig
[3], [4], [5], [6]. In [5], three categories are identified:time-  ple in practice. However, a light load scenario will potetii
based algorithms, ii) burst-length-based algorithms ane@th produce many bursts with a number of packets below the min-
time/burst-length algorithms. Time-based algorithmsetak imum burst size and padding will be necessary. Even in highly
fixed assembly time as a primary criterion to create a burfdaded networks load fluctuations do happen, for instance du
whereas burst-length based algorithms take the burstiengt jng weekends, and light-load epochs will be obsetvé&ar our
stead. The third category corresponds to hybrid schemes thgalysis, the light-load assumption will imply that thehligath
consider both time and burst Iength, whichever is fulfilledtfi bandwidth is very |arge in Comparison to the incoming traffic
In a light load scenario, a burst-length-based algorithsulte average. When the timer expires, all packets awaiting tnésis
ina hlgh packetization delay, due to the time it takes toeml| sion in the burst assemb|y gueue are transmitted.

a sufficient number of packets to create a burst [5]. For suchsecondly, the incoming traffic model (bytes per interval) wi
scenario, time-based schemes are significantly more efficieye modeled by a Fractional Gaussian Noise (FGN), which has
since the packetization delay is given by the assembly time. peen shown to model accurately traffic from a LAN [9]. While
this paper, we will focus on light-load scenarios and tinaséx recent studies show thatghly multiplexed core trafficmay be
schemes. The case with no padding has been considered g{f&jeled as a non-homogeneous Poisson process [10] note that

I. INTRODUCTION AND PROBLEM STATEMENT

This work was funded by Spanish Ministry of Education ancBce (projects ! See for instance http:/loadrunner.uits.iu.edu/weatkags/abilene/ for daily
CAPITAL TEC2004-05622-C04-04 and PINTA TEC2004-0643753) variation of traffic in an Internet backbone



the burstifiedemultiplexesraffic on a per-destination basis. On
the other hand, burstifiers will be placed at the edges of piie o N
min — MK t

cal network and not at the core. As a result, the expectedmuItM N By < _ i ¢ ( o g )

plex level is not as large. Furthermore, note that in ordesate v(t) = [e ¥ < mi”] =€ & (bmm—u)

culate the throughput only the number of information bytes p a

burst matters and not the packet arrival dynamics, which may .= ()

have multifractal behavior for low multiplex levels [11].r&2  Yielding

cisely, the FGN is a fluid-flow model that provides the number é(a)

of bytes per time interval only. While the small timescale- tr EY|Y <bpin] = My (0) = p—0—= (6)
. : ®(a)

ffic fluctuations are not captured by the model, the long-eang

dependence from interval to interval is indeed accurately p  with o = b’ﬁ+‘“ Let us define thdvazardfunction? as

trayed. In this paper, we wish to analyze the impact of sug\lqa) — 2@ _ Then

dependence in the OBS throughput. Finally, our analytieal r 1=2(a)’
sults will be compared to trace-driven simulations, andtthe EY|Y < bpin] = My (0) = 1 — oA (—a) (7)
ffic model assumptions will be verified using a real-world-sce .
. and, using (4),
nario.
1. ANALYSIS

E[Y] = (1 — 0A(~)) ® () + bynin (1 — @ (0)) . (8)
According to our previous results in [12], for a timer-based ) ) .
burstifier, it turns out that the traffic arriving per timeemgal7, ~ NOW, use (2) to obtain the throughput expression. Figure 1
is a Gaussian random variable with meas: 1:'T;) and standard Shows an example of throughput curve.
deviations = o’T{. Let us denote such random variableXy
with T, being the timeout valuelf being the Hurst parameter,
1/ ande’ being the mean and standard deviation of the marginal
distribution of the traffic arriving in a given time unit (itnis
paper it will represent bytes arriving inlans interval).

Throughput vs delay

A. Delay-throughput curve

Let us assume that the minimum burst sizebjs,. The
throughput will be defined as the ratio between the inforomati
bits and the total bits transmitted. Thus, the throughptit wi
equal unity whenevek > b,,;, andE[X]/byin if X < biin,
where E[X] denotes the expected value of random variable X
For convenience, let us define the random variabkes the fol-
lowing function of X,

Norrhalized throughput

H=0.7 ——
. ) 0 1 1 1 1 1 1 1 1 1
Y = X 0 X < bmin Q) 2 4 6 8 10 12 14 16 18 20
bmin X > bmin .
Timeout value (ms)
then, the throughputis equal to

Fig. 1. Delay-throughput curve (parametérs;, = 500 Kbytes, Tp =
_ E[Y] 2 1...20, byte arrivals perms with 1/ = 60162.88 bytes,o’ = 15038.2
P=3— ) bytes,H = 0.73,)
mn
Note that the definition ot” implies that the throughput is

: L As expected, an increase in the timeout value results in-a bet
equal to one if padding is not necessaly & b.,in). AS @ P

ter throughput since more packets can be accommodated per
Hfirst. one may argue that the average delay a packet wilkexpe

_ 1 ,—1z2 _ [T
[0,bmin]. Letg(z) = Z=e™2 and®(z) = [ &(1)dl.  rience is not the timeout value but actually half a timeoutea

2w

Then, However, and without loss of generality, we will considee th
y—p\ . maximum delay. Thus, the delay in the x-axis will be equal to
PY <y) = o (T) Y < Dbmin (3) thetimeout value.
B 1 N Z bmin
and B. Generated load

In this section we derive an expression for the generated tra
B ffic to the OBS network. Due to padding, the burstifier traffic
EY] = E[Y|Y <bpin] P(Y < bmin) + @ s larger than or equal to the input IP traffic. Létbe the ran-
+ E[Y]Y = bmin] P(Y = binin). dom variable that denotes the bits per second generateceby th

In order to derive the conditional expectatiBiY |V < byyin) burstifier. Then,

we use the Moment Generating Function (MGF) 20rinverse Mills ratio



7 — { bmin X S bmin (9)

X 0 X >bnin Input trace
and, 180000 : Y
160000
0 : 2z<bm a
<) — min © 140000
P(Z < 2) { (L) 2> b 10 ¢
_ . o _ & 120000
i.e., Zis a truncated Gaussian variable from below. Now, we, 100000 |
use the following MGF, g
c 80000
£ 60000
2,2 _ (b ( Omin—H o-t) % 40000
Mz(t) = E [e"|Z > by | = e+ 72 >
1—¢ (—bmf;‘”) 20000
(11) 0
and, thus, 0 200000 400000 600000
Time (ms)
E[Z|Z > bmin] = M,(0) = p + oX\(a). 12
) 12l ] 20 =+ () (12) Fig. 2. Abilene-I trace
Finally,
EZ] = E|[Z|Z = bmin] P(Z = binin 13
2] 2] 12 )+ (13) Throughput vs delay
+ E[Z|Z > bmin) P(Z > bppin) =
= bmind(@) + (1 + oA(a))(1 - ¢(a)).
andE[Z]/T, represents the rate in bps. é
Q
C. Validation S
: . . . . T
In this section we perform a trace driven simulation to \atéd =
the analytical results. We used the Abilene-I data set pleabi % 04l ,@"Q Eq(8) bmin=100KB
by NLANR 3. The Abilene-I data set traces contain traffic from 3 sl M @ Trace bmin=100KB @ |
two OC-48 links, that was collected at the Indianapoliseout £ = | w & Eq(8) bmin=500KB -
02 @ Trace bmin=500KB ®m -
node. Traces are 2 hours long, each of them comprises 12 files 0.1 M@ Eq(8) bmin=900KB ------- |
(10 minutes each) that contain the pairival time, packet size) % . Trace bmin=900KB ©
for every packet in the link. We use 10 minutes worth of traffic 4 6 8 10 12 14 16 18 20

from a 2.5Ghps link as a real-world traffic source for the burs
tifier. The Abilene-I trace selected shows an average tnaffe
around 480Mbps which, assuming a 10Gbps wavelength in the Fig. 3. Throughput-delay curve for the Abilene- trace
OBS port, makes the utilization factor be approximatelyaqu

to 0.05. Figure 2 shows one of the Abilene traces (10 minutes).

Burstifier timeout (ms)

The trace characteristics are summarized in table | Note that the theoretical curve matches very well the simu-

lation values, thus validating the model and suggesting tha

© (bytesinlms) | o’ (bytesinlms) | H Abilene-| traces are very well modeled by a FGN process, at
60162.8786 15038.2 0.73 least in the milliseconds scale. This is a timescale thagles r

vant for a burstifier with timeout values of milliseconds. &ler
timescales do not really matter, since the aggregatiompugd
at the burstifier is not affected by the packet arrival dyrami
below the timeout value timescale.
As the minimum burst sizebf,;,,) increases the throughput
From the packet arrival process, the burst arrival processdiecreases. For each valuebgf;,, a cutoff timeout value exists
generated through simulation of a timer-based burstifienuS that makes the throughput curves flatten out to unity.
lation is performed with a set of timeouts varying from 1 to 20 On the other hand, figure 4 shows the generated load to the
ms and several values bf,;, = {100,500,900} KBytes. The OBS network, showing that the analytical expressions match
obtained throughptf— is plotted in figure 3, along with the closely the trace-driven simulation results. The y-axieveh
theoretical results from (8). the traffic generated by the burstifier and the x-axis the {ime
3http://[pma.nlanr.net/Traces/long/ipls1.html out Value.’ f.or different minimum t.)l.JrSt .Sizes' Interesmgbte. .
4Packets were taken from the lllinois to Cleveland link (IPCBEV- that the joint effect of low burstifier timeout and Iarge mini
20020814-102000-1), on August 14th, 2002, from 10:20 t8Q&M mum burst size can amplify the input traffic to 6 Gbps, more

TABLE |
TRACE CHARACTERISTICS



than 10 times the average input traffic (480 Mbps). As a re-
sult, it turns thath,,;,, andT,,; should be carefully selected.

The throughput-delay expressions provided in the prevéeas Throughput vs delay

1.05 T T T T T T T T T

tion serve to select a burstifier operating point that attumin-
imizes the padding effect (i.e. throughput values close)to 1 1
Such operating point also guarantees that the burstifieradf < 095 A
rate to the OBS network is close to the input traffic rate. E 0.9 i
=2 .
w 0.85 .
a2 o8 |
Generated load for a 481.303 Mbps input traffic % 0.75 bmin=100KB H=0.5 J
8000 T T T T T T T T = 0.7 bmin=100KB H=0.6 i
A Eq(13) bmin=100KB = ) bmin=100KB H=0.7 -
7000 r Trace bmln:100KB a] B 0.65 bmin=100KB H=0.8 i
Eq(13) bmin=300KB - bmin=100KB H=0.9 - -
6000 [ : Trace bmin=300KB = 1 0.6 “— : ! : . : : : .
@ 5000 e Eq(13) bmin=500KB ------- 2 4 6 8§ 10 12 14 16 18 20
o roi Trace bmin=500KB 0 1 g
_§ | Eq(13) bmin=700KB -~ Burstifier timeout (ms)
< 4000 ¢ Trace bmin=700KB e ]
S_ 3000 | Eq(ls) bm|n:900KB ............... |
k= Trace bmin=900KB & Throughput vs delay
2000 | 1 — —
1000 | (5 0.9 ]
c 0.8 + 1
0 5 =
0 2 4 6 8 10 12 14 16 18 20 g 077 1
Burstifier timeout (ms) = 06 1
5 05 1
Fig. 4. Input traffic to the OBS network s 0.4 ]
S 03 bmin=900KB H
£ o e el
i . min=
[1l. RESULTS AND DISCUSSION o1 bmin=900KB H
In this section we evaluate the impact of the incoming traffic ol. . ., bmin=900K8H
parameters on the OBS throughput. First, the influence @f-lon 2 4 6 8 10 12 14
range dependence on the throughput-delay features of ti&e OB Burstifier timeout (ms)

burstifier will be analyzed. Then, the influence of the incogni

traffic coefficient of variation will be studied. Finally, weill  Fig. 5. Delay-throughput curves for different valuesEb{(b,:, =100 -top- and
discuss whether dynamic burstification algorithms mayesésy ~ bmin=900 -bottom-)

adaptively tune the burstifier timeout value in order to gimst

th hput ab tain threshold.
roughplitabove a certain fhresho higher but it is marginal compared with the dependence on the

A. Influence of long-range dependence on delay-throughpifeout value.

curves
. Influence of coefficient of variation on delay-throughput

TheHurst parameteil provides a measure of the traffic Cor curves

relation structure. A value off = 0.5 indicates no correlation

(independent increments). A% increases, the traffic correla- The coefficient of variationd, = o /1) provides a measure of

tion also increases. Long-range dependence occurs whenéie instantaneous variability of traffic. Note that thisasthog-

1/2 < H < 1. Figure 5 shows the delay-throughput curves d@nal” to the correlation. While long-range dependenceeserv

rived in the previous section for different valuesBfand two to characterize the traffic behavior with time, the coefficief

extreme cases of minimum burst size, bg,,=100 KBytes and Variation is an instantaneous measure. Note also that #e co

bmin=900 KBytes. fficient of variation depends on the scale of aggregatioref t
As long-range dependence increases, the throughput Haffic process.

creases for a given delay value. On the other hand, the impacf sensitivity analysis of the throughput-delay curves usrs

of long-range dependence on throughput is larger as the niine coefficient of variation is presented in this sectionguiFe

imum burst size,,,;,, increases. If the minimum burst size i shows the delay-throughput curves for different values,of

large, padding will be performed more frequently. Overidll, and two extreme cases of minimum burst size, bg.,=100

the timeout value is larger than a certain threshold thecetie  KBytes and,,;,=900 KBytes.

long-range dependence is negligible. This threshold is@pp It turns out that larger values of have negative influence on

imately equal to 20 ms in the worst-casebgf;,,=900 Kbytes. the throughput. The influence is worse the larger the minimum

Below this timeout value the dependence on the value of Hhsrst size value. As with long-range dependence, the impact



value is very significant not only for the throughput, butsiisr
the generated load to the OBS network.

Throughput vs delay Table Il shows the threshold timeout value that provides a

1.05 = ' ' ' ' ' ' ' ' throughput equal t65%. Our backbone traffic trace has a coe-
1 fficient of variation equal t®.25 for an aggregation interval of
E 0.95 1 1ms. The same trace gives@ = 0.054 using intervals ofl s
S 0.9 1 due to the decay of the variance with aggregation. In [9] the
> 085 1 variance coefficient is equal th34 (aggregation 1s) for a LAN
E; 0.8 £ 1 traffic trace (trac@ OCT.TL), showing higher variability in com-
g o751 A parisc_m with our trace. AcFuaIIy, as Fhe; input traffic mukip
% 0.7 bmin=100KB cv=0.25 —— | levelincreases, the coefficient of variation decreasese Mt
E ' bmin=100KB cv=0.3 OBS networks are expected to carry traffic from a large number
= 065 bmin=100KB cv=0.4 1 of hosts
06 bmin=100KB cv=0.45 1 . .
0 5;5 bmin=100KB cv=0.5 -- The figures in table Il show that for small values of the coe-
: > 4 6 8 10 12 14 16 18 20 fficient Qf variation, H has only a slight incremental |nfluenqe
L on the timeout value, whereas for large values of the coefftci
Burstifier timeout (ms) . - . o
of variation the influence is much stronger. Thus, if inpafftc
has a small coefficient of variation then only estimationhs t
Throughput vs delay first and second moment is necessary. As the coefficient f var
1 — _ - ation increases one needs to take into account the influence o
09 I long-range dependence.
The fact that the delay-throughput curves are sensitivetio b
c 08¢ . ) .
E o1 instantaneous burstiness and long-range dependeiigevith
% : large coefficient of variations very significant and useful for
hTf 06 practical engineering purposes. Our findings show thaf is
‘g 05 low only the traffic first and second moment need to be estithate
s 04r _ in order to derive an optimal timeout value.
3 03 bmin=900KB cv=0.25 —— | Concerning the change rate of the traffic moments, other pro-
= bmin=900KB cv=0.3 . . .
S 02 bmin=900KB cv=0.4 { posals based on link state estimation assume that the rietwor
01 bmin=900KB cv=0.45 1 load remains stable in timescales of minutes [13]. If thahés
ol. . ., bmin=900KBcv=0.5 ---;-- | case, one could devise an adaptive burstifier that would offe
2 4 6 8 10 12 14 16 18 20 minimum delay and maximum throughput for any given input
Burstifier timeout (ms) traffic stream. The timeout value rate of change would be in

the scale of minutes, which seems reasonable from a prhctica

Fig. 6. Delay-throughput curves for different values@f (b.;»=100 -top- implementation standpoint.
andb,,;, =900 -bottom-)

IV. ADAPTIVE TIMEOUT ALGORITHM FOR LONG-RANGE

. N , . DEPENDENT TRAFFIC
of instantaneous variability on throughput is negligibéybnd

a certain timeout value. For a worst-casebpf,, =900 Kbytes
this threshold is also approximately equal to 20 ms.

In this section we propose three different adaptive timeout
algorithms and compare them for different values of the Hurs
paramete and coefficient of variation,. The proposed algo-

C. Dynamic adaptation of the timeout value rithms tradeoff complexity versus accuracy.

The results of the previous section show a negative gradiént Load estimate (L-estimate)
of the throughput with both the coefficient of variation (ins The Joad-based estima®l is based on the traffic first mo-
tantaneous variability) and Hurst parameter (long-raregeed- ment only, i. e.
dence). However, there is a timeout value that makes sueh gra
dient be equal to zero. Such timeout value depends on the min- TL binin (14)
imum burst size, the traffic load and, to a lesser extentsit al 0= o
depends on the long-range dependence pararfeded the co- A
efficient of variatior,. beingy/ the input traffic rate estimate in bps. The basic as-
The above observation leads us to seek for an expressiptions is that the influence of the second moment/ind
that provides the timeout value for which the delay throughoParameter is negligible.
curves flatten out to unity. Not only this is beneficial to maxi
mize the throughput at the minimum delay cost but also to d
crease the network load. For the Abilene-I trace considgred The load-variance estimafé/" is based on the first and se-
section II-C, recall that the increased traffic load due twdd@ag cond moment. It is obtained as the solution of the following
is shown in figure 4. The effect of choosing a wrong timeoutonlinear program

Ig._ Load-Variance estimate (LV-estimate)



TABLE Il

burstiness (coefficient of variation). The evaluation if@ened
BURSTIFIER TIMEOUT(MS) FOR95% THROUGHPUT

under ideal conditions, i. e. it will be assumed that theneas
estimation error in computing the parametgrso’. In what
follows, we will focus on obtaining the minimuffy, value that

bmin=100KB yields a throughput greater than%.
cv=0.25 c¢v=0.32 ¢v=0.39 cv=0.45 cv=0.50 Note thattable Il already shows tfig values corresponding
H=0.5 1.8 1.9 21 22 2 4 to algorithm LVH-estimate, with no estimation error. Wedak
H=0.6 1.8 2.0 21 23 2.5 thattable as a reference and calculate the following perdéoce
H=0.7 1.9 2.0 2.2 2.5 2.7 figures. First, the relative deviation from the optimum \ealu
H=0.8 1.9 2.1 2.4 27 3.0 of the L-estimate and LV-estimate is evaluated. Such r&ati
H=0.9 1.9 2.2 25 3.0 3.7 deviation is defined as follows
bmin=500KB
— — — — — 5 |Tr _ TLVH|
cv=0.25 ¢v=0.32 ¢v=0.39 cv=0.45 cv=0.%0 vt = 0l (17)
H=0.5 8.1 8.3 8.4 8.6 8.7 Ty
Efg? gi 3171 gz gg gs wherexz € {L, LV} for the L-estimate and LV-estimate re-
H=0.8 87 91 97 104 111 spectively. Secondly, the actual throughput that is oletinith

[ both the L-estimate and the LV-estimate is calculated. Even

H=0.9 91 98 10.9 122 138 though the target throughput is 95%, note that this will dmdy
bmin=900KB attained with the LVH estimate. Tables Ill and IV show the rel
cv=0.25 ¢v=0.32 ¢v=0.39 ¢v=0.45 cv=0.50ative deviation/* for the L-estimate and LV-estimate.

H=0.5 14.4 14.5 14.7 14.9 15.1  Tables V and VI show the throughput obtained by a burstifier
H=0.6 14.6 14.8 15.1 15.4 15.¥ using either L-estimate or LV-estimate. With LV-estimatiee
H=0.7 14.8 15.2 15.7 16.2 16.¥ throughput does not fall below 85% even if the coefficient of
H=0.8 15.3 15.9 16.8 17.7 18.5 variation is doubled from that of the original traffic. Thisltls
H=0.9 16.1 17.3 19.0 20.9 23.2 true for the whole range of variation @f. On the other hand,

the lowest attained throughput with a simpler L-estima89i%.
This suggests that a simple estimate can drive a variabéotiin
burstifier to adapt the timeout so as to maintain a reasonably

. high throughput.
Minimize To (15)  The tables show that for small coefficient of variation the L-
subjectto p(@,60.5,405) > 0.95 estimate and LV-estimate produce timeout values that ane ve

. . ) close to the theoretical optimal value. Since OBS networgs a
wherefi = /'To, 605 = o/'Ty° andags = bo—g;’i The expected to multiplex traffic from a large number of sourbés t
throughpup(ji, 0.5, é.5) = E[Y]/bmin can be obtained using is actually the case. In order to verify this conclusion, we e
(8). The LV-estimate neglects the influence of self-sinityar tensively analyze the Abilene-I data set. Table VIl shovesfih
(i.,e. H = 0.5). Detalls for solving this problem and for pa-andc, values (on thens scale) for every trace in the Abilene-I
rameter estimation with long-range dependence are givihiein data set. Note that all of them have a small coefficient of-vari

appendix. ation (c,), which is usually below).3. On the other hand, the
. ) ) Hurst parameterH) takes on values in the vicinity of 0.7. For
C. Load-Variance-H estimate (LVH-estimate) ¢y = 0.25 andH = 0.7, the timeout value that achieves a 95%

The load-variance-H estimai&" is based on the first, se-throughput with minimum burst size,.;,, = 500 KB is equal
cond moment and/ parameter. It is obtained as the solution d 8.4 ms. To derive such value one needs to solve the LVH-
the following nonlinear program estimate program (16), that requires knowledge of first and s

cond moments and Hurst parameter. The L-estimate provides a
timeout equal to 8.5 ms and 94.7% throughput whereas for the
Minimize To (16) Lv-estimate the timeout is equal to 9 ms and the throughput is
subjectto p(fi,G5,G) > 0.95 93.5%. Even though the burstification delay is slightly eesed
and the throughputis a little less than 95%, note that ondy fir
wherej; = ;Z’To. b= &’T{I andé ;, = u Details for moment estimation is needed for the L-estimate and first and

g

solving this problem are given in the appenaix. This aldonit second moment estimates are needed for the LV-estimate. Fur

provides the best timeout value in comparison to the L-extim thermore, the imeout value is straightforward to calailgith
and LV-estimate algorithms. However, this is at a cost ohbig the L-estimate algorithm (equation 14).

complexity in parameter estimation.
V. CONCLUSIONS

D. Evaluation In this paper we have derived the throughput-delay curve for

The proposed algorithms will be evaluated for input traa timer-based burstifier with minimum burst size. A thredhol
ffic with different dependence{ parameter) and instantaneousimeout value exists that makes the normalized throughgdutev



TABLE Il
RELATIVE DEVIATION (PERCENTAGB OF THE L-ESTIMATE TIMEOUT ¥
(MS) WITH RESPECT TO THE OPTIMUM VALUE(LVH- ESTIMATE FOR) 95%

THROUGHPUT
— bmin=100KB
ot Cvféné';'liﬂfg e T= v eyl v=0.25 cv=032 cv=0.39 cv=0.45 cv=0.%
_ : : : X YV H=05| 92.3% 90.2% 88.0% 86206 845
H=05] 7.7% 125% 20.8% 24.4% 3079 '
= H=0.6| 91.9% 89.7% 87.4% 85.4%  83.7
H=0.6| 7.7% 16.9% 20.8% 27.7%  33.5%4 '\
= H=0.7| 91.5% 89.2% 86.7% 84.7%  82.9
H=0.7| 125% 16.9% 24.4% 335%  38.4% '
= H=0.8| 91.0% 88.6% 86.0% 83.9%  82.0
H=08| 125% 208% 30.7% 384% 446% 0| oocor  mso  seaw 83006 8a0
H=0.9| 12.5% 24.4% 33.5% 44.6% 55.1%—— 27 b' 7 500Ké 2 e :
— min=
ot Cvf(;“ég"5%?£g e T= vy eyl v=0.25 cv=032 cv=0.39 cv=0.45 cv=0.%
_ : : : : YV H=05| 96.6% 95.6% 94.606 93.8%  93.1
H=05| 2.6%  01%  1.1%  34%  45%|
= H=0.6| 95.7% 94.6% 93.4%  92.4% 91.4
H=0.6 | 1.4%  11%  45%  6.6%  9.7%|
= H=0.7| 94.7% 93.3% 91.8% 90.5%  89.4
H=0.7| 1.1%  45%  87% 125% 1520 '
= H=0.8| 935% 91.7% 89.9% 88.3%  86.9
H=08| 45%  87% 143% 20.1% 2519 [0l oS0 aose!  eree  gse 839
H=0.9| 87% 1520 23.8% 31.9%  39.8%4_ — : =~ : :
— min=
ot Cvfg‘é';'giﬂfg e T= v eyl v=0.25 cv=032 cv=0.39 cv=0.45 cv=0.%
_ : : : : Y H=05| 97.4% 96.7%  96.0%  954%  94.8
H=05| 3.9% 320  18%  04%  09%|
= H=0.6 | 96.6% 95.7% 94.8%  94.0%  93.2
H=0.6| 25%  1.1%  0.9%  2.9%  4.7%|
= H=0.7| 95.6% 94.4%  93.1% 92.1% 91.1
H=0.7| 1.1%  1.6%  47%  7.7%  10.4%|
= H=0.8| 94.2% 92.7% 91.0% 89.6%  88.4
H=08| 22%  59% 11.0% 155% 196 0| o-0.  oo40 g8 o  86.4% 848
H=0.9| 7.1% 135% 21.3% 28.4% 35501 : : : : :
TABLE IV
TABLE VI

RELATIVE DEVIATION (PERCENTAGB OF THELV-ESTIMATE TIMEOUT 2V
(MS) WITH RESPECT TO THE OPTIMUM VALUE(LVH- ESTIMATE FOR) 95%

TABLE V
THOUGHPUT OBTAINED USING THEL-ESTIMATE ALGORITHM FOR A 95%
TARGET THROUGHPUT

THROUGHPUT OBTAINED USING THEL-ESTIMATE ALGORITHM FOR A 95%
TARGET THROUGHPUT

THROUGHPUT
— bmin=100KB
e Cvfgég‘ligig oY=y e V=025 cv=032 cv=039 cv=0.45 cv=02:

_ : : : : P H=05| 955% 952%  958%  95.3% 958
H=0.5| 0.0% 0.0% 0.0% 0.0% 0.0%|

- H=0.6| 95.0% 94.6% 95.0% 94.3% 94.6
H=0.6| 0.0% 5.0% 0.0% 4.3% 4.0%| -

- H=0.7| 94.5%  93.9% 94.1% 93.2%  93.3
H=0.7| 5.3% 5.0% 45%  12.0%  11.19%| |

- H=0.8| 94.0% 93.2%  93.2% 92.0% 91.8
H=0.8| 5.3% 9.5%  125%  185%  20.0% . 00| oaEer  omd%  921%  90.6% 901
H=0.9| 5.3% 13.6%  16.0%  26.7%  35.1%f—— 22 = = — 2 22 '

— min=
Ly cv=025 cv=0.32 v=0.39 cv=045 cv=0.

_ : : : : P H=05| 952%  95.6%  951% 95.3% 950
H=0.5| 0.0% 0.0% 0.0% 0.0% 0.0%|

- H=0.6| 94.4% 945%  93.9% 93.8% 93.4
H=0.6 | 1.2% 1.2% 3.4% 3.4% 5.4%| |\

- H=0.7| 935% 93.3% 92.3% 92.0% 91.3
H=0.7| 3.6% 4.6% 7.7% 9.5%  11.2%| ..

- H=0.8| 92.3% 91.7% 90.3% 89.7%  88.7
H=0.8| 6.9% 88%  134% 17.3%  216% "ol oSt oo0r  avow 8680 84
H=0.9| 11.0% 15.3% 22.9% 295%  37.0%4—— o b' 7 900Ké 2 o :

— min=
e Cvfgég‘gigig oY=y e V=025 cv=032 cv=039 cv=045 cv=02:

_ : : : : P H=05| 9520%  95.0% 951% 952% 953
H=05| 0.0% 0.0% 0.0% 0.0% 0.0%]| |

- H=0.6| 94.5% 94.1%  93.9% 93.8% 93.7
H=0.6| 1.4% 2.0% 2.6% 3.2% 3.8%)

- H=0.7| 93.6% 92.8% 92.3% 91.9% 915
H=0.7| 2.7% 4.6% 6.4% 8.0% 9.6%| |-

- H=0.8| 92.3% 91.2% 90.2% 89.4%  88.8
H=0.8| 5.9% 88% 125%  158%  188% 0| o070.  soo0%  876%  860% 851
H=0.9| 10.6% 16.2% 22.6%  28.7%  34.9% L s 7 ks :
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TABLE VII
H AND ¢, (MILLISECONDS TIMESCALE) FORABILENE-| TRACES(EACH
FILE COMPRISESLOMINUTES WORTH OF TRAFFIQ

shows long-range dependence the correlation function ean b
approximatted by(k) ~ kQH—i The well known variance es-
timators? = —L-3>"" (X; — X)?, whereX = 13" | X is

biased due to the covariance terms involved in the calcuiati

Abilene trace file name o o A variance estimate has been proposed by the authors in [14],
IPLS-CLEV-20020814-090000-0.gz0.68 0.28 that provides a confidence interval on the variance estimate
IPLS-CLEV-20020814-091000-0.gz0.74 0.32 Such estimator is defined as follows
IPLS-CLEV-20020814-092000-0.9gz0.76  0.32 nr
IPLS-CLEV-20020814-093000-0.9z0.75 0.31 w1 o2
IPLS-CLEV-20020814-094000-0.9z0.75  0.29 T -1 ;(X” —X'(n.m)) (18)
IPLS-CLEV-20020814-095000-0.9gz0.72 0.29

IPLS-CLEV-20020814-100000-0.9z0.74 0.29 beingr a parameter and being’(n, r) the r-decimated mean
IPLS-CLEV-20020814-101000-0.gz0.75 0.28 X'(n,r) = 1/(n/r) 2" X,;. This estimator allows confi-
IPLS-CLEV-20020814-102000-0.9z0.71  0.27 dence intervals on the sample variance, for small values of
IPLS-CLEV-20020814-103000-0.9z0.73 0.29 (r > 4).

IPLS-CLEV-20020814-104000-0.9gz0.73 0.31 For on-line estimation of the traffic average, in presence of
IPLS-CLEV-20020814-105000-0.9z0.68 0.29 long-range dependence, see [15]. Percival shows that ifsone
IPLS-CLEV-20020814-090000-1.94z0.78 0.28 interested in estimating the mean in a given time frame this c
IPLS-CLEV-20020814-091000-1.9z0.75 0.26 be achieved by decimation at a moderate decrease in effjcienc
IPLS-CLEV-20020814-092000-1.94z0.73 0.25 Finally, a wavelets-based on-line Hurst parameter esiimat
IPLS-CLEV-20020814-093000-1.94z0.80 0.26 has been proposed in [16].
IPLS-CLEV-20020814-094000-1.9gz0.73 0.25

IPLS-CLEV-20020814-095000-1.9z0.73 0.25 REFERENCES
IPLS-CLEV-20020814-100000-1.9gz0.72 0.25 [ A Gle, F. Callegati, and L. S. Tamil. On optit(:a)l burst shing arrl]d self-
IPLS-CLEV-20020814-101000-1.9z0.76  0.27 similar traffic. IEEE Communications Lettgrd(3):98-100, March 2000.
IPLS-CLEV-20020814-102000-1.G20.74  0.25| ' Yafic i opical burst switched networks. Aroceedings of Opicomm
IPLS-CLEV-20020814-103000-1.9gz0.73 0.25 200Z pages 149-159, 2002. ) )
IPLS-CLEV-20020814-104000-1.9z0.75  0.26 e e o O oo 1an it ons, 0 networkes.
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