Higher Technical School of Industrial Engineers and Telecommunications

Characterization of cerebral activity in PD's patients through an Autoregressive Model

Degree in Telecommunications Engineering

Author: Jesús M. Zarranz Calvo

Supervisors: Sonia Porta Cuéllar Miguel Valencia Ustárroz

Pamplona, 18th July, 2016

Index

CHAPTER 0: GLOSARY	4
0.GLOSARY	5
 CHAPTER 1: INTRODUCTION	7 9 9 10 amic 11
CHAPTER 2: SITUATION AND OBJECTIVES OF THE PROJECT 2. Situation and objectives of the project	
CHAPTER 3: SOFTWARE	. 15
 3.Software 3.1 Spike 3.1.1 Power Spectral Density Function 3.2 Matlab Software 3.2.1 Pwelch tool 3.2.1.2 Pwelch parameters 3.3 AR model 3.3.1 Introduction 3.3.3 ARFIT- A Matlab Package 	16 18 20 21 21 23
CHAPTER 4: Adaptation of the signal for a proper AR analysis	. 27
 4. Adaptation of the signal for a proper AR analysis 4.1 Slot Filter to eliminate mains interferences 4.1.1 Real Slot filter 4.1.2 Ideal Slot Filter 4.1.3 Real or Ideal in terms of decreasing AR order 4.2 Low Pass Filter: Two functions 4.2.1 Real Slots Filter and Butterworth filter 4.2.2 Real Slots Filter and Chebyshev filter 4.3 Butterworth or Chebyshev 4.4 Frequencies of interest 4.5 Decimation 4.5.1 M decimation constant 4.6 Signal's length 4.7.1 Relationship between poles and order of ARFIT 4.7.3 Multivariate analysis 	28 29 30 31 31 36 39 40 41 42 43 43 45
CHAPTER 5: CONCLUSION	
5.Conclusion	. 62

CHAPTER 6: BIBLIOGRAPHY	. 63
6.Bibliography	. 64
CHAPTER 7: APPENDIXES	. 66
Appendix 1: the amplitudes of the signal in 50,100 and 150 Hz	. 67
Appendix 2: Existence of frequency component in 50, 150 and 250 and Th component	
Appendix 3: Appearance of Low Beta, High Beta and Theta	. 77
Appendix 4: Decision of M for Decimation CHEBYSEV BUTTERWORTH	. 83
Appendix 5: Values obtained for get the epsilon produced by ARFIT	107
AR(P=10)	
OFF STATE	
ON STATE	109
AR(P=16)	111
OFF STATE	111
ON STATE	114
Appendix 6: Correlation between patients	116

CHAPTER 0: GLOSARY

O.GLOSARY

PDTR: Parkinson's Disease Therapy PD: Parkinson's Disease FFT: Fast Fourier Transform NFFT: Number of points of Fast Fourier Transform STN: Subthalamic Nucleus PDS: Power Spectral Density EMG: Electromyography signals. EEG: Electroencephalogram UPDRS: Unified Parkinson's Disease Rating Scale ECoG: Electrocorticography

ON state: clinical state after dopaminergic therapy administration. Some of the PD symptoms are vanish or ameliorate. In some cases, adverse side-effects can occur (involuntary movements, impulsivity etc)

OFF state: clinical state of PD patients characterised by the presence of motor and cognitive symptoms that characterise the clinic of PD

CHAPTER 1: INTRODUCTION

1.1 Introduction: Parkinson's Disease

The first description of the Parkinson's Disease (PD) took place with a monograph written in 1817 by James Parkinson. In his publication "An essay on the shaking palsy" [21] he described the symptomatology of with 6 patients he discovered in London and who presented tremor in rest, changes in the walking and changes in the natural reflexes.

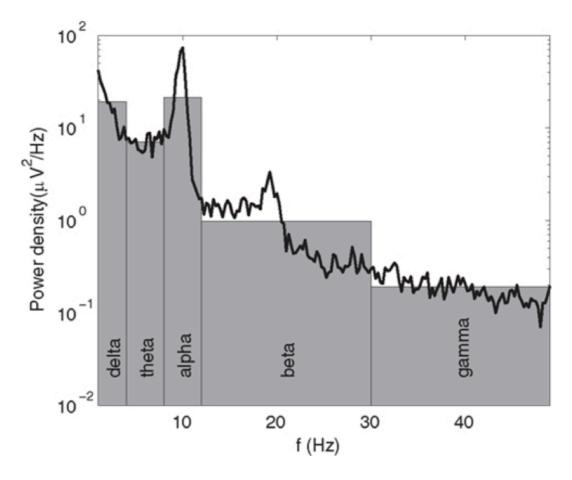
The prevalence of PD is foreseen between 1-3 by 1.000 inhabitants in Europe. In Spain this disease affects to more than 70.000 people. This quantity locates PD in the second place of the group of neurodegenerative diseases with a narrow distance from Alzheimer.

The three main symptoms of PD are: tremor, rigidity and bradykinesia (difficulty to start movement, slowness and clumsiness in voluntary movements.

To date, there is no cure for PD. Therapies are focused on controlling the symptoms and commonly must be personalized to each patient. Current drugs aim to ameliorate the symptomatology by increasing the levels of dopamine in the brain. However, in some cases, the chronic treatment of levodopa produces in the patient some difficulties (in motor and psychiatric functions) and in frequently results in severe side effects. As a consequence of that, the monitoring of the patient is fundamental.

Patients who have been treated with medicine for a long time or have received an important dose of it, used to develop a decrease of response to the treatment and an amount of undesirable secondary expressions such as: dyskinesia, strange gestures or abnormal movements.

An alternative to this problem can be: changing doses, rising up the number of doses, make therapeutic holidays, etc... Anyway, little by little these methods become less effective and other therapies such as Deep Brain Stimulation can be applied


1.2 Deep Brain Stimulation (DBS)

Deep Brain Stimulation (DBS) is a surgical procedure which is used to reduce symptoms of PD such as: tremor, rigidity, stiffness, slow movement

It is mainly indicated for patients which symptoms cannot be controlled adequately with medicine treatments.

DBS uses a surgically implanted battery-operated medical device which is called "neurostimulator" to deliver electrical stimulation to some areas in the brain that control movement. Although not completely proved, it is believed that stimulation acts by blocking the abnormal activity that causes some of the mayor motor disturbances in PD patients.

The positioning of the Deep Brain Stimulations as well as treating the disease has permitted to register the different structures of basal ganglia in these patients. The ground-breaking finding has been the detection of an excessive synchronism in the Beta band in patients with PD which decreases or disappears after giving the patient dopamine. In Local Field Potentials of neuronal actions (which are usually obtained during the colocation of the electrode) this synchronism is observed in the shape of outbreaks of rhythmical shocks and synchrony in the group of neurons at these frequencies. In the Local Field Potentials across the stimulators which are usually made just in the following days after the surgery, before the second surgery when it's internalized the system and the batteries are connected. This hipersynchrony can be seen in the shape of oscillations which are distinctly visible in the Beta Range, especially in the Low Beta Range (13-20 Hz). In the following graph, it can be seen the names of the frequency range.

Graph 1: Names of the frequency range [4]

Beta activity is not the unique anomalous oscillation observed in patients with PD. For instance, it can be seen oscillations of Theta-Alfa (4-10 Hz) related with the presence of dyskinesias induced by the medicine and with the presence of a disorder of the impulse's control (in both cases, after taking medicine) and related with the tremor.

The treatment of PD through DBS of the Subthalamic nucleus has permitted to register the oscillatory activity among the nucleus. It has been observed that the

exaggerating synchronisation of neuronal populations in the basal ganglia (especially in low frequencies) keeps a direct relationship with the expression of motor symptoms in the patients. As a consequence of that, characterizing and understanding the mechanisms generators of these oscillations represents an important challenge when we focus on the knowledge of the disease, mainly in what relates to the design of precocious diagnostic methods and the verification of new therapies bases on neuromodulation by electric stimulation.

In the DBS treatment, the colocation of deep stimulators in the patients restrict to a reduced number of structures and rarely more that 2 stimulators are implanted in each character.

1.3 Helping texts

As a help and introduction to the state of the art in the electrophysiology of PD, a number of scientific papers were reviewed and studied. Following are summarized the main findings and procedures described in the 4 studied than are the most relevant for the aims of this project.

1.3.1 "Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease" [4]

In this work, authors show their personal point of view and understanding about the state of the art of the current knowledge of the oscillatory activity and their role in the pathophysiology of PD. In a *Comment* paper about the work of Tan et. al. (2013), authors stress the role of the beta oscillations and other oscillatory activities as important mechanism involved in the pathophysiology of PD.

Specifically, Tan et al. (2013) analyse the local field potentials (LFP) recorded in the STN of PD patients and evaluate the changes in oscillatory activity within a motor paradigm where subjects are asked to hold and release some specific objects. They found was that *beta* activity was related to the release phase, while grip maintenance related most to theta and gamma/high-frequency activity. Interestingly, the effect of the motor state of the patient on some of these relationships was not significant. Tan's paper confirms that the local field potential activity in the basal ganglia of PD patients in the OFF state is dominated by prominent beta oscillations.

Actually, it is widely accepted that abnormal beta activity is an excellent marker of PD in human patients. Together with this frequency range, there are other frequency bands where several studies have shown alterations.

- In the gamma and theta ranges, when patients are in the ON state (improved motor state as a result of the effect of the therapy)
- Presence of oscillations in theta/alpha bands during the ON state are accompanied by the occurrence of side effects as dyskinesias or the presence of impulse control disorders

 High-frequency oscillations (200-400 Hz) can be observed in most PD patients in the STN if the signal is recorded in wide band. During the OFF state: they are limited to the dorsal region of the nucleus and peak at 250 Hz. ON state: they show a more widespread spatial distribution and shift their frequency to around 350 Hz.

As a result, authors conclude that although oscillatory activity in the beta range may play a critical role in the motor function, gamma and high-frequency activities could also be involved in movement execution while phenomena in the theta range could be related to more cognitive process.

1.3.2 Slow oscillatory activity and levodopa-induced dyskinesias in PD [3]

In this study, authors showed that the presence of levodopa-induced dyskinesias is accompanied by the appearance of theta oscillations in the STN of PD patients.

Levodopa (L-DOPA) is the precursor of dopamine, so it is used as a drug to reestablish the levels of this neurotransmitter in the PD brain. After a long-term treatment based in L-DOPA, patients develop resilience to the drug and very often suffer of severe side effects as L-DOPA-induced dyskinesias. This form of involuntary movements could be elicited in the face, upper and lower forelimbs and could involve many segments of the body at the same time.

In this study, authors recorded and studied the local field potentials (LPF) from the macroelectrodes of the DBS stimulators implanted in the subthalamic nucleus (STN) in 14 patients during the "OFF" and "ON" motor states (before/after administration of the pharmacologic therapy). In 11 out of 14, levodopa elicited dyskinesias.

Recording sessions were conducted 2-4 days after surgery, having ensured that the patients' general state was satisfactory.

Electromyography (EMG) signals were recorded with disposable surface electrodes to assess the presence of dyskinesias or tremor on the limb muscles previously reported to show abnormal activities. Oscillatory activity was amplified 100.000 fold and filtered at 0.3-100 Hz before being digitalized at 200 Hz by an analogic to digital (A/D) converted connected to a PC. EEG activity was amplified 20.000-fold, filtered at 0.3-100 Hz and digitalized at 200 Hz using the same A/D converter.

All sessions began with patients in the "OFF" motor state after overnight withdrawal of antiparkinsonian medication and the "ON" motor state was subsequently achieved by oral administration of levodopa. Activity was continuously registered: from the "OFF" motor state, across an intermediate state (where diphasis dyskinesias and beginning of the motor improvement was observed) to the ON state where amelioration or the presence of dyskinesias occurred.

Analyses based on Fast Fourier Transform (FFT) and filtering allowed authors to detect differences in between the spectral content of the ON and OFF periods. And more importantly, these differences correlated with the clinical state of the patients.

Briefly, the ON/OFF periods where characterised by:

- In the OFF state, activity in the 11-30 Hz band (beta band) was recorded. This band reduced in amplitude 45,2 % in the ON state.
- In the ON state, and coincident with the occurrence of dyskinesias, an increment of 77.6 % was observed in the 4-10 Hz band in all patients who showed dyskinesia.
- In the ON state, an increase of 17,8 % in the 60-80 Hz range (gamma band) was observed in the majority of the patients.
- In patients with severe tremor at rest, the predominant peak coincided with the tremor frequency (4-6 Hz).
- And more importantly, in those patients (3) not developing dyskinesia, there was no increment in the 4-10 Hz band.

All these results suggest the existence of a strong correlation between the spectral characteristics of the STN oscillatory activity and the clinical symptomatology, and in particular with the presence of levodopa-induced dyskinesias.

1.3.3 Coupling between Beta and High-Frequency Activity in the Human Subthalamic Nucleus might be a Pathophysiological Mechanism in PD [2]

This paper completes the characterization of the oscillatory activity recorded on the STN of PD patients. The two main findings of this study describe:

- The presence of oscillatory activity in the 300-400 Hz range
- The fact that the amplitude of this high frequency activity depends on the phase of the oscillations in the beta range (15-30 Hz)

Again, in the OFF state the oscillatory activity is mainly characterized by the presence of activity in the beta range (10-30 Hz). Nevertheless, the use of a higher sampling frequency (2000 vs 200 Hz) allowed first, to detect activities in the 300-400 range, and then to detect the presence of two different components in the beta range. One peak within the low-beta band (12-20 Hz), together with a smaller peak in the high – beta band (20-30 Hz). The low-beta peak disappeared or was greatly reduced in the on motor state, whereas the high-beta peak remained at similar power.

Related to the high frequency oscillations, there is also a shift in the central frequency when patients transited from the OFF to the ON state. Together with this shift, there is also a change in the relation between the beta and the high frequency oscillations that characterise the motors state of the patients, thus suggesting the possibility that nonlinear coupling between frequencies may not simply be a

physiological mechanism (as shown previously in humans and animal models) but also may take part in the pathophysiology of bradykinesia and rigidity in PD.

1.3.4 Loss of Consciousness Is Associated with Stabilization of Cortical Activity [1]

Although this last paper is not directly related to PD, it describes an important approach for the aim of the project. In this case, the study presents a stability analysis applied to high-density electrocortigography (ECoG) recordings in primates during the transition between deep anaesthesia and consciousness. ECoG array consists of 128 electrodes and activity is modelled by means of an autoregressive model (AR).

The study shows several results about the relation between consciousness and stability of the system assessed by means of the multivariate AR model.

Indeed, a multivariate AR model could also help us to characterize the oscillatory activity of PD patients, providing us with a more detailed description of the ON and OFF states, and –if possible- a dynamic description of the OFF – to – ON transition

CHAPTER 2: SITUATION AND OBJECTIVES OF THE PROJECT

2. Situation and objectives of the project

For years, the Neurophysiology Group at the CIMA (Centro de Investigación Médica Aplicada) and CUN (Clínica Universidad de Navarra) in Pamplona have been involved in the study and characterization of the oscillatory activity in PD. Using animal models and recordings from PD patients they aim to more deeply understand the role of electrophysiological activity in the pathophysiology of this disease.

They have several publications were they have studied recordings obtained from deep electrodes in PD patients under Deep Brain Stimulation therapy.

In this project we will have the opportunity to access to the local field potentials (LFP) recorded from the stimulation macroelectrodes of the DBS systems implanted in the subthalamic nucleus (STN) of 14 patients with PD.

Although some of the characteristics of this oscillatory activity have already been described, many other remain to be evaluated. In light of the studies showed in the introduction and references therein, we note that in PD studies STN activity is almost exclusively studied by means of univariated or bivariated methods. This fact precludes the possibility of carrying analyses as those proposed in [1], where authors are able to fit an autoregressive model (AR) and thereafter to proceed with a study of the stability of the system, thus providing a deeper description of the state of the parkinsonian brain.

With the aim of obtaining a similar framework for the STN signals, the general objective of this project is devoted to define AR models for the oscillatory activity from PD patients during both states, before and after the effect of the dopaminergic therapy.

Specifically, we will aim at:

- Establishing the suitability of AR models to fit the STN activity
- Define strategies to obtain such AR models
- If possible, provide AR models to describe time-varying characteristics of STN activity when transiting from OFF to ON states.

CHAPTER 3: SOFTWARE

3.Software

All the information that we have is completely anonymous, each of the patients is registered and named following the next procedure: *PDTRXX* being xx the number of the patient. Like this, the register of the patient is completely anonymous.

We have two type of signals from each patient: the first one is shorter and the second one is longer, we are going to study the second one due to it provides us more information. These long signals contain both OFF and ON state and also the transition between them.

3.1 Spike

Spike is a multi-channel continuous data acquisition and analysis package. The signals that we have received from CIMA must be opened with this software. We were given two different types of signals:

- Short Signals: the length of these signals were up to 1000 seconds.
- Long Signals: in this case, they were longer, around 3000 seconds.

An example of the way the signal looks in Spike appears in the figure 1; in this particular case, this was the second patient and it's a short signal.

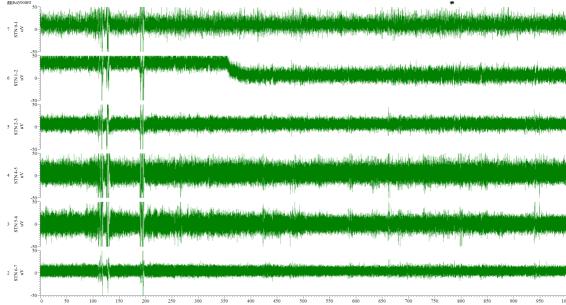


Figure 1: An example of how Spike's software displays the signals. In this case, it's the short signal of the second patient

Each signal, as it can be seen in Figure 1, is composed by 6 channels which are respectively the followings ones:

- STN 0-1: The deepest electrode of the left stimulator
- STN 1-2: The central electrode from the left stimulator

- STN 2-3: The most superficial electrode from the left stimulator
- STN 4-5: The deepest electrode of the right stimulator
- STN 5-6: The central electrode from the right stimulator
- STN 6-7: The most superficial electrode from the right stimulator

Where STN stands for subthalamic nucleus. No matter the length of the signals, both long and short signals have 6 channels and all are named in the same way.

After being used to that software, we have to make 3 cuts of the long signal according to our study. These three zones are:

- ON state
- OFF state
- Transition state

This is one of the critical part of the analysis because we must be very careful in the way we are choosing these shortcuts. The signals we are going to choose; will be the signals we are going to process. Spike helps us to make these cuts with the markers. Thanks to that, it's very easy to divide the long signals in the parts we are interested in. The length of the segments we are making, should be between 200 and 300 seconds. After having made a careful research, we had to admit that the most part of the signals was affected by noise so, the majority of the segments have 200 seconds approximately.

In the following table (table 1), we are going to show the intervals of time that we have chosen for the OFF and ON state in each patient.

		OFF	ON
PDTR	1	Too noisy	Too noisy
PDTR	2	50-250 seconds	2650-2820 seconds
PDTR	3	170-370 seconds	3180-3380 seconds
PDTR	4	230-420 seconds	3380-3350 seconds
PDTR	5	100-300 seconds	1200-1400 seconds
PDTR	6	170-370 seconds	3500-3700 seconds
PDTR	7	555-710 seconds	3160-3345 seconds
PDTR	8	235-435 seconds	4340-4540 seconds
PDTR	9	100-300 seconds	Too noisy
PDTR	10	40-240 seconds	2100-2300 seconds
PDTR	11	310-510 seconds	4240-4440 seconds
PDTR	12	10-210 seconds	3940-4140 seconds
PDTR	13	60-260 seconds	3630-3830 seconds
PDTR	14	<mark>Too noisy</mark>	Too noisy

Table 1: Extract of the intervals of time chosen for each patient in each state

After watching this table, we assume that we get rid of the signals given by PDTR1 and PDTR14 due to the bad quality of them. We also prefer not to study the state "ON" of the ninth patient because it has resulted impossible to find a period of 200 seconds free of interferences.

Apart from making these shortcuts, according to the quality of the signals, we have made another table in which the segments of time chosen are ordered from the best to the worst value (being the first one, the segment with less interferences has and the last one, the segment with more). It's shown in Table 2.

		QUALITY OF SIGNALS
PDTR	6	Best
PDTR	7	
PDTR	11	
PDTR	13	
PDTR	5	
PDTR	3	
PDTR	4	
PDTR	10	
PDTR	8	
PDTR	2	
PDTR	12	
PDTR	9	
PDTR	1	
PDTR	14	Worst

Table 2: The best ar	nd worst signals	ordered by their	quality
----------------------	------------------	------------------	---------

3.1.1 Power Spectral Density Function

Power Spectral Density is a measure of the intensity of a signal's power in the frequency domain. In the practice, PSD is computed from the FFT spectrum of a signal. The Power Spectral Density is a useful way to be able to characterize the amplitude in a frequency axis.

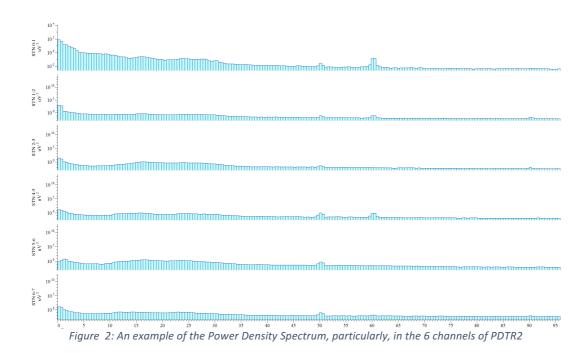

	Off	On
PDTR-2	PowerSpectrumPDTR-2-OFF	PowerSpectrumPDTR2-L-ON
PDTR-3	PowerSpectrumPDTR-3-OFF	PowerSpectrumPDTR-3-L-ON
PDTR-4	PowerSpectrumPDTR-4-OFF	PowerSpectrumPDTR4-L-ON
PDTR-5	PowerSpectrumPDTR-5-OFF	PowerSpectrumPDTR-5-L-ON
PDTR-6	PowerSpectrumPDTR-6-OFF	PowerSpectrumPDTR-6-L-ON
PDTR-7	PowerSpectrumPDTR7-L-OFF	PowerSpectrumPDTR7-L-ON
PDTR-8	PowerSpectrumPDTR8-L-OFF	PowerSpectrumPDTR8-L-ON
PDTR-9	PowerSpectrumPDTR-9-OFF	PowerSpectrumPDTR9-L-ON
PDTR-10	PowerSpectrumPDTR-10-OFF	PowerSpectrumPDTR10-L-ON
PDTR-11	PowerSpectrumPDT11-L-OFF	PowerSpectrumPDTR11-L-ON
PDTR-12	PowerSpectrumPDTR13-L-OFF	PowerSpectrumPDTR13-L-ON
PDTR-13	PowerSpectrumPDTR13-L-OFF	PowerSpectrumPDTR13-L-ON

Table 3: Name of the files for the power density function in Spike's software

Spike is a good software to revise the signals and also for making the firsts preliminary analysis. In CIMA, they use it because Spike is the software that controls the ADC converter.

After taking into consideration which are the best signals, we know that Spike makes the power spectrum of the signals thanks to a function that implements it. So, we have applied that function and we have made a database in Spike in which we have saved the power spectrum of each patient and each state (table 3). We only had to choose the type of window and the size of FFT (in our case Hanning and 4096 respectively).

An example of the way Spike displays the Power Density Spectrum of our signal is shown in Figure 2. The units are uV^{-2} and Hertz in y and x axis respectively.

Spike displays it as a histogram, but you can change it if you want. In figure 2, I have printed only frequencies from 0 to 95 Hz because we are interested in studying this range of frequencies.

Another point that we appreciate after computing Power Spectrum Density, is that signals are polluted with mains interference noise in the following frequencies:

- 50 Hz
- 100 Hz
- 150 Hz

As we are trying to deliver an autoregressive model, we have to look into our signals to see if the peaks in 50, 100 and 150 Hz are really important in amplitude according to the rest of the signal. I have prepared an appendix (Appendix 1) in which I have displayed all the amplitudes of the signal in 50,100 and 150 Hz to see if it could affect our signals or not. This is something very important because it can rise up the order of the AR model.

3.2 Matlab Software

Our intention is to manipulate the signals. So, instead of using the software I've just mentioned, the Spike's 7.07 v2 software, we thought that Matlab could help us better in order to make a better analysis of the signal.

The first step now was exporting all the signals to Matlab so that we can analyse them in that software. Thanks to Spike, it was a straightforward step due to I have marked the signals with the cursors before. There's an option in Spike2 7.07 for which you can export the number of channels that you are interested in. In our case, as we need all the channels we will select the option "All channels" that appears in the Figure 3.

Export from PDTR12-L.smr			
Channel or channel list All Channels ~	Add		
Time range XLow() V To XHigh() V seconds			
From To Channels	Delete		
	Help		
Time shift data so that first exported range starts at 0 seconds			
	Cancel		
	Export		

Figure 3: Displays how we add the channels we want to export in Spike's software

There's also an option for selecting the time range for the user. In our situation, as it has been mentioned previously, signals have been marked with the cursors, so in each signal we will use:

- Time range from Cursor1 to Cursor2 for "OFF" state.
- Time range from Cursor3 to Cursor4 for "ON" state.
- Time range from Cursor5 to Cursor6 for "Transition" state.

Once we have created the new folder with all the ".mat" files, now we have to plot the information we get in Matlab with the aim of comparing it with Spike 2 7.07 to see if the results are corroborated.

3.2.1 Pwelch tool

The process of the application of the Power Spectral Density is not as easy as it was in Spike. In this case, we will make use of the "Pwelch" tool provided by Matlab.

3.2.1.1 How Pwelch works?

"pwelch.m" function estimates the Power Density Function of a given signal using Welch's for estimating the periodogram. The syntax we use is the following one:

[pxx, f] = pwelch(x, window, noverlap, nfft, fs)

The signal we are going to analyse, in the example case "x", is divided in "k" sections which have Nfft points that can be overlapped. "k" is calculated with these parameters:

- m: the length of x.
- n: number of points overlapped.
- I=Nfft: length of each section

$$k = \frac{m-n}{l}$$

We apply the specific window to each section of the "x" signal. The spectrum of each section is calculated based on FFT. After these calculations, we get the average of the squared magnitude spectrum which is multiplied by the inverse of the sampling frequency to obtain the PDS.

3.2.1.2 Pwelch parameters

- Values of the signal: in each channel I had to add to the name of the variable ".values" with the intention to get the values that Pwelch needs.
- Type of window: hanning
- Overlap: 75 % of the length

- FFT size: 4096
- Sample frequency: It was the same in every patient, around 2,000 Hz.

After doing that, we saw that the results obtained with Matlab were similar to the ones got by Spike2 7.07 so we carry on with our analysis. Figure 5 shows the Power Density Function of the channel 6-7 for the patient 2 in Matlab and the Figure 6 shows the Power Density Function of the same channel and same patient calculated with Spike's Software.

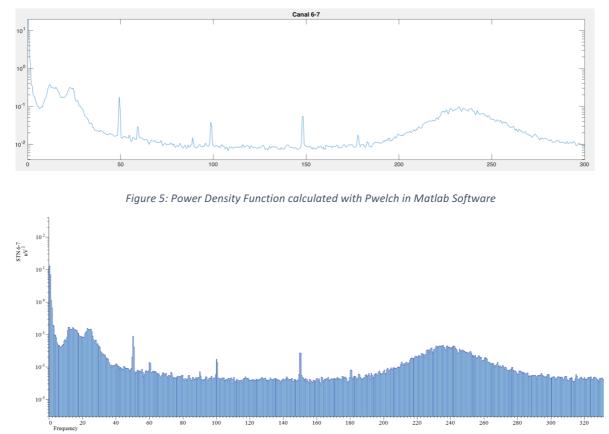


Figure 6: Power Density Function calculated in Spike Software

It's very important to say that in 50 Hz ,100 Hz and in 150 Hz we have interferences that can be seen in the Power Density Function calculated by Matlab or Spike. As we are trying to implement an AR model, these frequencies can alter the AR order. In the following chapters, we will filter the signal in order to have it the cleanest we can.

Apart from the mains interferences, in both figures 5 and 6 we can see the following components:

- Low Beta component: from 12 Hz to 20 Hz.
- High Beta component: from 20 Hz to 30 Hz.
- Theta component: around 250 Hz.

Low Beta in the ON state has a decrease in amplitude and the Theta component, in certain cases, suffers from a movement in frequency. However, High Beta keeps at the same frequency with approximately the same amplitude regardless of the state.

Of course, as well as exporting the intervals of time in which we are interested in, we have exported the whole signal in case we need it for the future.

3.3 AR model

3.3.1 Introduction

AR model is the most popular model for spectral estimation of temporal series. This is due to the fact that AR parameters can be found resolving linear equations. For a detailed estimation of ARMA's parameters or MA's parameters, we will need to resolve a group of equations which are not linear.

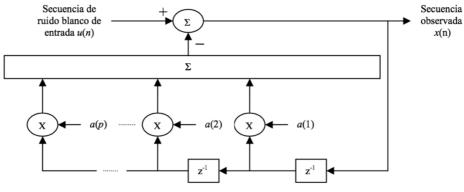


Figure 7: Autoregressive model of a random process

The autoregressive model explains that the output variable depends linearly on its own previous values. At the input, we have a sequence of white noise due to the fact that its average is zero and its variance is σ_u^2 . Of course, the Power Density Function of the noise is σ_u^2 . Spectral estimators got in an AR model are less biased and have a lower variability that conventional spectral estimators based on Fourier transform. This model is used to be named as All-Poles. In the figure 7 appears an AR process.

As there are only poles in this model, and knowing that A(z) is the characteristic polynomic of the AR model. The PDS is:

$$P_{xx}^{AR}(f) = \frac{\sigma_u^2}{|A(f)|^2}$$

3.3.3 ARFIT- A Matlab Package

In order to work with the autoregressive model, we will make use of this package designed by Tapio Schneider and Arnold Neumaier [9].

ARFIT is a collection of Matlab modules for modelling and analysing multivariate time series with autoregressive (AR) models. ARFIT contains modules for fitting AR

models to given time series data, for analyzing eigenmodes of a fitted model, and for simulating AR processes.

ARFIT estimates the parameters of AR models from given time series data with a stepwise least squares algorithm that is computationally efficient, in particular when the data are high-dimensional. ARFIT modules construct approximate confidence intervals for the estimated parameters and compute statistics with which the adequacy of a fitted model can be assessed.

Dynamical characteristics of the modelled time series can be examined by means of a decomposition of a fitted AR model into eigenmodes and associated oscillation periods, damping times, and excitations. The ARFIT module that performs the eigen decomposition of a fitted model also constructs approximate confidence intervals for the eigenmodes and their oscillation periods and damping times

3.3.3.1 Frequencies of interest

For our case, the components we need to get with AR model are Low Beta and High Beta. In the OFF state, as it can be seen in the figure 8, Low Beta and High Beta components are completely visible.

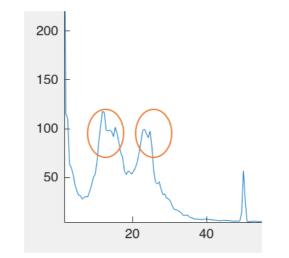


Figure 8: Low Beta and High Beta Components in the Patient 2 OFF state

However, in the ON state, Low Beta component suffers from an important decrease in amplitude. Beta component remains practically in the same frequency with its same amplitude. In the Figure 9 it can bee seen how the Low Beta component decreases and the High Beta component remains without changes.

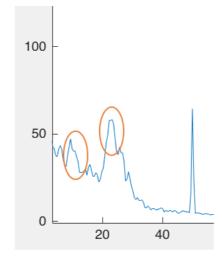


Figure 9: Low Beta and High Beta component in the Patient 2 ON state

3.3.3.2 Election of AR order

Establishing a correct AR order is one of the critical parts of our work. We have made an important research on Internet about the way scientists make a criterion for setting the order. This took us by surprise, because in the totality of the bibliography we have read none of the writers uses Power Density Function of the signals to obtain a good AR order.

3.3.3.2.1 Signals have to be very carefully cleaned

One of the problems of the signal which has been previously cited before is the interferences that exist in our signals. In the following chapters there's an exhaustive study of the way we can improve the quality of our signals: filtering, decimating...

This is a part of the work that requires to be studied thoroughly because ARFIT package is going to reproduce the most important peaks of our signals. If these peaks are the noise interferences, ARFIT will never reproduce our components of interest (Low Beta and High Beta).

For having our signals cleaned enough we have decided to filter the signal with slots in the frequencies which are polluted by interferences from mains. Also we thought that it could be a good idea to implement a low pass filter to avoid the High Frequency component. We are mainly interested in the Low Beta and High Beta component and, as these frequencies appears between 10-30 Hz a Low pass filter with a cut off frequency among 50 Hz won't eliminate our components.

3.3.3.2.2 Comparison between PSD of the signal and PDS of the components obtained by ARFIT package.

Our study of the best AR order is based on a comparison between the Power Density function of the reconstruction of the Low Beta and High Beta component obtained

thanks to ARFIT package and the Power Density Function of the original signal estimated through a Welch periodogram.

First of all, we get the coefficients thanks to ARFIT package and we insert them in the A vector. In this case, we are going to use the tool "freqz" which returns the n-point frequency response vector Y, and the corresponding angular frequency vector, W, for the digital filter with numerator and denominator polynomial coefficients stored in b and a, respectively. As this reconstruction has only poles, the parameters of the "freqz" are: a=vector A.

Figure 10: How we get the components of the ARFIT package and we compare it with the original Power Density Function of the signal

After that, we have to normalize the values which have been got by "freqz". In the following two equations, is explained how we make this normalization.

Normalized Frequency =
$$\frac{fs \ x \ W}{2\pi}$$

Normalized Values =
$$\frac{Y^2}{\sum Y} x \frac{1}{\sqrt{Nfft}}$$

After all, we use a semi logarithm axis to plot the values and with a "hold on" we make the comparison with the Power Density Function of the original signal.

3.3.3.4 High Dimensional Time Series

We know that this package is computationally efficient in particular when time series are high dimensional. However, in our case, we were very careful using ARFIT because as our database is not as high dimensional as the ones that have used it, we had in mind that it cannot work properly. But then, after using it, we saw that the results were good enough. CHAPTER 4: Adaptation of the signal for a proper AR analysis

4. Adaptation of the signal for a proper AR analysis

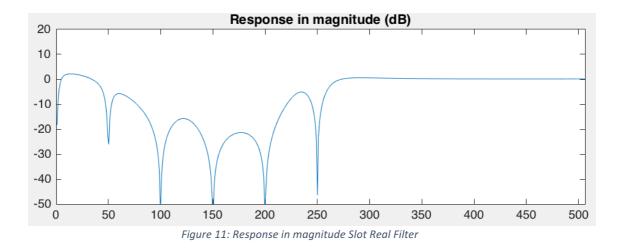
The effort of making a cleaner signal is truly beneficial for our study because the cleaner the signals become, the lower the ARFIT order is.

4.1 Slot Filter to eliminate mains interferences

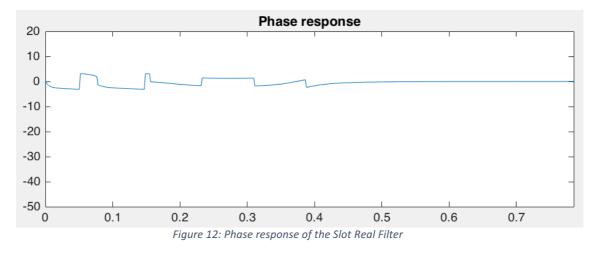
As I have cited before in Spike2 7.07 and in the last chapter there are mains interferences that we have to get rid of. These interferences can really alter the AR-order of the model, making it increase. As a consequence of that, we thought that filtering the signal with slots can be beneficial to our study.

To design the filter, we have to be cautious because in the Theta range we have an interference but we also have a frequency component, so firstly; we have to check

- Interferences in:
 - o 50 Hz
 - o 150 Hz
 - o 250 Hz


And then, be aware of the existence of the Theta range. For that, we have searched among the patients to see in how many of them there are interferences in 50,150 and 250 and also have the component theta visible in its periodogram. This information is available in the Appendix 2. Thanks to this study, we are able to filter the signal properly without polluting it. We have designed 3 different filters.

4.1.1 Real Slot filter


This was the filter we started with. We thought that it was a good idea to make a Notch real filter with slots in the components we want to delete. We put slots in the following frequencies:

- 0 Hz
- 50 Hz
- 100 Hz
- 150 Hz
- 200 Hz
- 250 Hz

The poles we use had a radius near from the circle unit but never bigger than it. Approximating our ratio to the unit circle we make our slot narrower. In the Figure 11 it is printed how the Slot Real Filter looks in frequency in magnitude.

As we can see, slots are correctly situated on the frequencies we want to get rid of. The phase is printed in the Figure 12.

We can appreciate that these changes appear just when there is a slot. However, these changes are not very important in our signal and won't affect the phase of the signal of our Parkinson Patients Signals.

4.1.2 Ideal Slot Filter

The second filter we have designed was an ideal filter. Looking into Internet we found that in Matlab exists a function which provides the user the possibility of creating an ideal notch filter.

At first, we thought that applying this function will sort out all our problems in terms of filtering. In the figure 13 it's printed the magnitude in dB's and in figure 14 its correspondent phase.

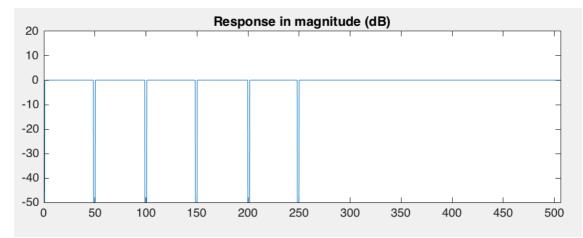
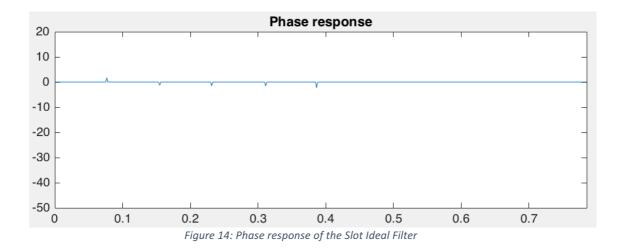



Figure 13: Response in magnitude of the Slot Ideal Filter

In this case, slots are perfectly designed with a high slope and are well situated in the frequencies we want to eliminate. As we are using an ideal filter given by Matlab, the changes in the phase are almost insignificant.

4.1.3 Real or Ideal in terms of decreasing AR order

Comparing both filters, we have to say that the best filter to eliminate the frequencies is the ideal filter. It also doesn't have any effect in the phase of the signal. However, it is not our unique intention to eliminate the frequencies, we want to reduce the order of our AR model.

If we use the ideal slots, the slopes are practically vertical and the AR order will waste too many poles trying to reproduce this slope. As a consequence of this, we have chosen that the best slots are the Real Slots.

4.2 Low Pass Filter: Two functions

As it has been explained before, our frequencies of interest are Low Beta and High Beta, in this research we are not going to study the evolution of the Theta component between the OFF and ON state.

As a consequence of that, we thought that for making our signal even cleaner, we can apply a Low Pass filter (as it was suggested in the point 2.2.3.3.2.1) for getting rid of the high frequency. As our components are between 10-30 Hz approximately, we use a low pass filter with a cut frequency of 50 Hz.

For the design of a Low Pass filter we have considered two different types:

- Chebysev filter
- Butterworth filter

Of course, we ruled out the possibility of using an ideal Low Pass filter because we will have the same problems as we had with the ideal slots.

Other of the necessities of using this Low Pass filter is because as we will explain in the following chapters, we are going to reduce the sampling frequency. In other words, we are going to decimate the signal. This filter will avoid the aliasing created by the process of decimation. If there isn't a filter before the process of decimating the signal, the result will be completely polluted by the effect of aliasing.

4.2.1 Real Slots Filter and Butterworth filter

Of course, as we have just mentioned, in this part we are implementing a Butterworth Low Pass filter. It has to be said that, as our Butterworth filter has a cut off frequency at about 50 Hz we can get rid of the following harmonics:

- 100 Hz
- 150 Hz
- 200 Hz
- 250 Hz

We are only going to keep the slot corresponding to 50 Hz because it's the only frequency the filter doesn't eliminate. In the Figure 15 is the response in magnitude and in the Figure 16 is the phase response. The order of the Butterworth Filter is 6.

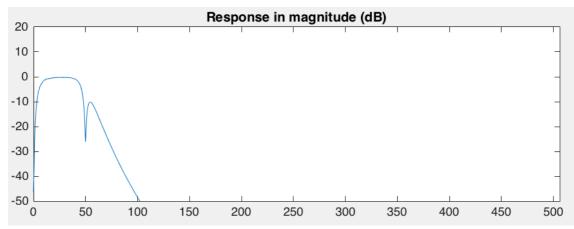


Figure 15: Response in magnitude of The Butterworth Filter with a real slot in 50 Hz

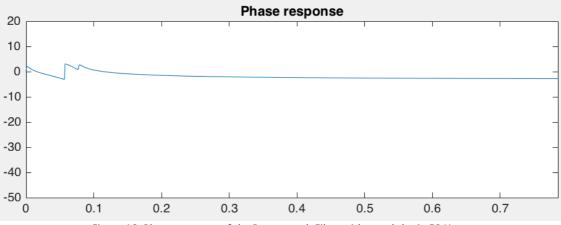


Figure 16: Phase response of the Butterworth Filter with a real slot in 50 H

4.2.1.1 Designing of the 50 Hz Slot

One of the main problems we have had designing filters is that we have a mains interference in 50 Hz. It appears in the majority of our signals and it's very important to get rid of it for AR analysis. This peak, in fact, can alter AR order totally, so, we have to design a slot there very cautiously.

4.2.1.1.1 Real Slot

As we have mentioned before, we have to design a real slot. We'll do it putting a zero in the frequency we want to eliminate (f=50 Hz and also in f=0 Hz). In the figure 17 can be seen how we are putting zero's in the frequencies of interest and also we are putting poles in these frequencies to make the slots narrower.

rp = 0.985; rz = 0.999; A0 = [1 -2*rp rp^2]; B0 = [1 -2*rz rz^2]; A1 = [1 -2*rp*cos(Wi) rp^2]; B1 = [1 -2*rz*cos(Wi) rz^2]; [B_b,A_b]=butter(6,Wc); B = conv(B0,B1); A = conv(A0,A1); B_f = conv(A0,A1); [H,F] = freqz(B_f,A_f,N,'whole',fs);

Figure 17: The code in Matlab for designing this Butterworth filter with 2 real slots in 0 and 50 Hz.

The fact of using poles for making narrower the slot is something particularly critical because if we use a slot which is very narrow, it could be harmful for our design. We have to make an agreement between the narrowness of the slot and the elimination of the frequency.

For an adequate design of the filter we are going to change the radius of the zeros to see which wants is better for our situation. We are going to take one of the signals, we'll put it in a filter and finally we'll compute the power density function to compare the input and the output of the signal.

Apart from that, we have also normalized the frequency and the values got by periodogram with the aim of having both signals (input and output) in the same level. The commands we use for normalizing the signal are the followings ones:

[pvalues3,wval] = pwelch(values3,window,overlap,Nfft); $Normalized\ Frequency = \frac{Fs\ x\ wval}{2\pi}$ $Normalized\ Values = \frac{pvalues3^2}{\sum pvalues3} x \frac{1}{\sqrt{Nfft}}$

We have studied 3 different radiuses and the Figures 18, 19, 20 are taken for the patient two from its STN 5-6 channel.

Rz=0.895

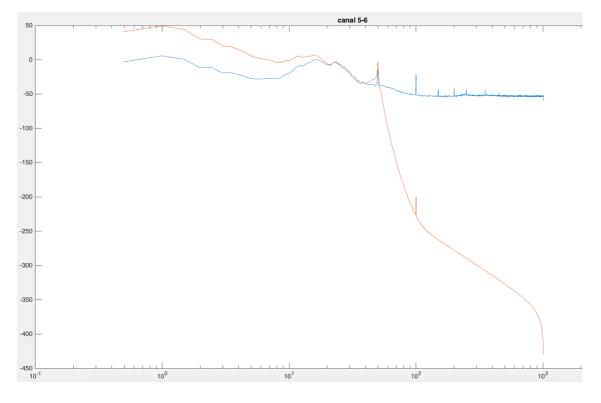
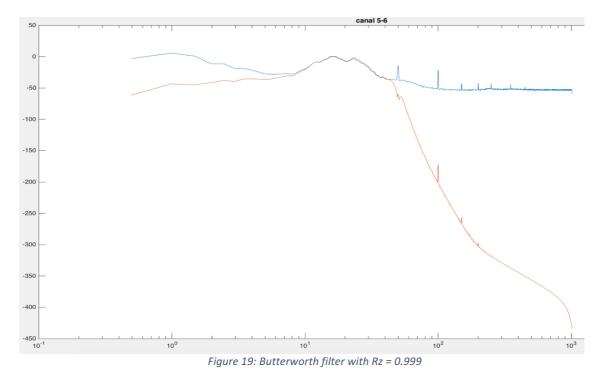


Figure 18: Butterworth filter with Rz = 0.895


In this first case, it appears in the Figure 18. It can be seen that the output signals (orange one) differs from the input signal (blue one) at the beginning until the High Beta component.

We need to have a high range of similarity between input and output signal because when we try to make the reconstruction of the signal with the ARFIT package if the output from the filter differs from the input, the reconstruction will be wrong.

Rz=0.999

The second study has a 0.999 radius for the zero located in 50 Hz. This is supposed to be the best parameter because, as it is near unit circle, it only modifies the frequency we are interested in. Also, as it's real it will not rise up so much our p order when we apply an AR model.

We make the same process as the previous one, we are going to make a comparison between the input and output signal. It appears in the Figure 19.

As we have predicted, this is the best parameter because the input and output are almost the same in the interval of the Low Beta and High Beta.

• Rz=1,2

We also make the proof of putting a radius bigger than 1 to see if it was a good approximation. In the figure 12 it's printed how it looks. It doesn't even eliminate the component in 50 Hz.

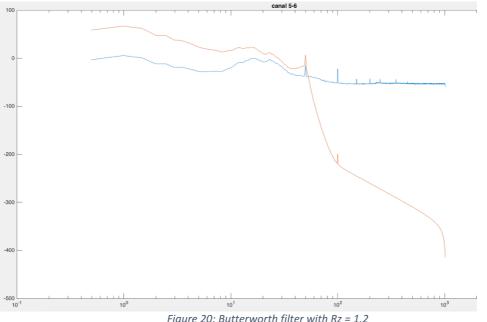


Figure 20: Butterworth filter with Rz = 1.2

It's obvious that the best slot of the three we have designed is the second one because it rejects the frequency in 50 and it doesn't make a huge slope, so, AR model will be able to cope with this slot. Besides, the approximation is almost perfect, the filter doesn't introduce any distortion in magnitude in the frequency band pass. We have to add that the radius of the zeros doesn't interfere in the stability of the system.

4.2.2 Real Slots Filter and Chebyshev filter

We wanted to have another type of filter in order to compare which one let us use an AR model with a lower p order. At first, we thought that Chebyshev's filters will be useless due to the fact that the slope of a Chebyshev filter is higher than in Butterworth for the same order of the filter. However, we designed one to see how it worked.

We designed the filter with a 6th order and with a peak to peak passband ripple of 0.5 dB. In the Figure 21 it's shown the Magnitude response in dB's and in the Figure 22 response in phase.

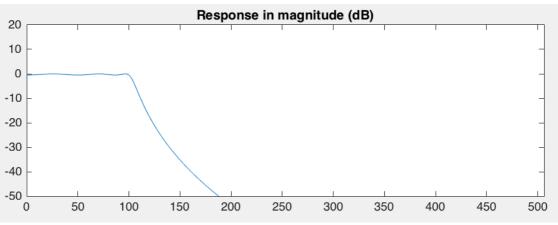
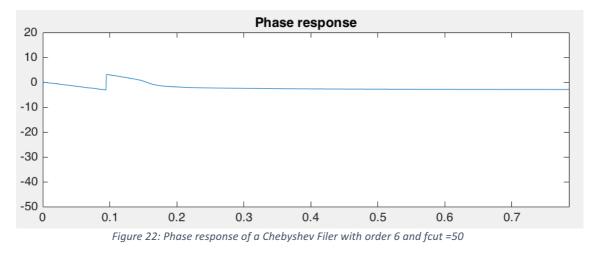
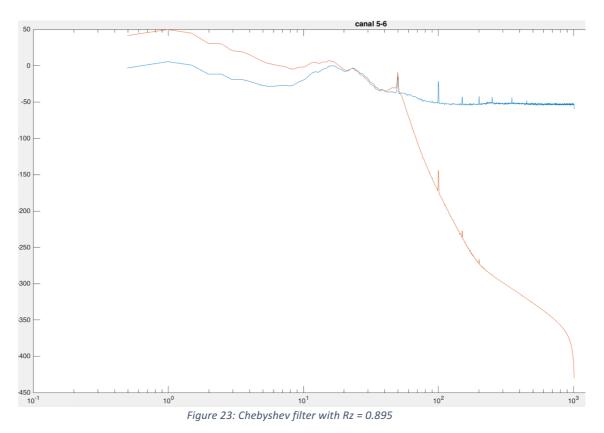




Figure 21: Response in magnitude of a Chebyshev Filter with order 6 and fcut=50 Hz

We have followed the same process to evaluate which is the best radius to reject the frequency of 50 Hz. Of course, in this case we only study the case of real slots because the ideal slot as we have cited before will be harmful for our AR analysis. Identically as in the previous case, we have studied 3 different radius and the Figures 23, 24, 25 are taken for the patient two from its STN 5-6 channel.

• Rz = 0.895

In the Figure 23, it can be seen that input and output signals are not very similar and also the filter doesn't reject the noise interference in 50 Hz.

• Rz = 0.999

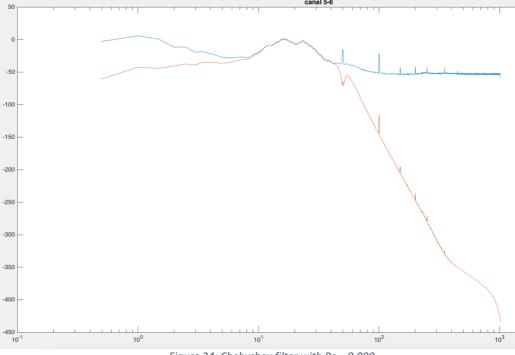
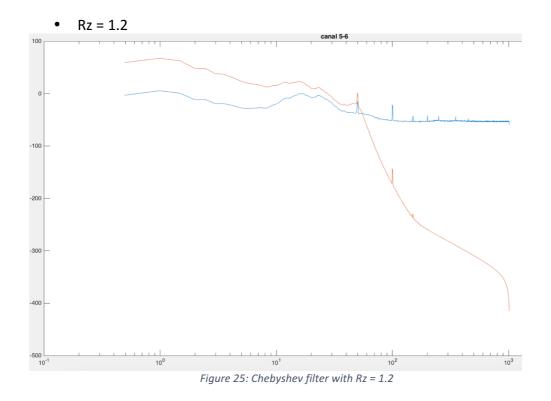



Figure 24: Chebyshev filter with Rz = 0.999

In this case, input and output signals are practically the same and also it rejects perfectly the 50 Hz frequency with a real slot which has not a high slope.

In the figure 25 nor the input and output are equal neither the filter rejects the frequency of 50 Hz. We have to say that this radius is not a good one for our design.

As it can be seen, we have to use Rz= 0.999 because this is the only one which gets rid of 50 Hz frequency and also reproduces the input signal almost in an ideal way.

All the filters have been designed as a Matlab function with the intention of having a cleaner code due to the fact that parameters can be added directly for not doing the same loop again and again.

4.3 Butterworth or Chebyshev

Of course, we have to be sure in which filter we are interested to work with. Undoubtedly, the best parameters to both filters are using a Rz= 0.999 as we have seen in the last figures.

With the aim of choosing which was the best filter for our analysis we have made a correlation of the output signal in Butterworth filter and in Chebyshev filter with the input. We appreciate that this percentage was almost equal in both cases with a percentage of 82,14 % for Butterworth and 82,22 % for Chebyshev.

The following step was trying to put the filtered signal into an AR model to see how it works. In the following figure, it's shown what we are explaining:

Figure 26: Diagram which shows the filter and then the ARFIT

When we have done this, we realize that Butterworth filter worked better than Chebyshev filter due to the verticality of the rejection slope. So, in the following sections, when we talk about filters, it's taken for granted that we are using the Butterworth filter.

We have to highlight that each one of the filters which have been designed was implemented with a function so that we can apply this function and not to copy again and again the same code.

4.4 Frequencies of interest

We are going to search into our database to locate the exact position of Low Beta frequency, High Beta frequency and Theta frequency. Thanks to that, we will know exactly where are located those frequencies and their amplitude. Apart from that, we are going to look into signals that have Theta component for knowing in how many of them this component is visible.

This study is in the Appendix 3 in which says that theta component appears in the 34 % of the signals (taking into account that it appears in both ON and OFF state). Regardless the appearance in both states, theta component is present in the 40 % signals of our entire database.

Due to the fact that our filter is going to eliminate the Theta component, we are going to copy in a folder the patients in which the Theta component is visible for future work.

4.5 Decimation

Decimation is the process of reducing the sampling rate of a signal. It's complementary to interpolation, in this case, interpolation increases the sampling rate in a multi-rate digital signal processing system.

We come up with this idea because, as we are mainly interested in two components which are located from 10 Hz - 30 Hz, decimation can help us to study these frequencies.

The Low Pass filter and the process of decimation, the range of frequencies where the Low Beta and High Beta components comes to take up the entire Nyquist interval. This produces a higher frequency resolution and makes us be sure that the poles generated by the ARFIT package are located in the band of the frequency of interest.

Decimation is a strategy that produces an effective reduction in the sampling frequency. In the "n axis", (M-1) samples of each group of consecutive M are neglected as if would have been sampled by a period Ts' = MTs. This produces a compression

$$x[n] \rightarrow x[Mn] = x(MnTs)$$

In the frequency axis, spectral replicas are nearer because they are located over kfs'

$$Ts' = MTs \rightarrow fs' = fs/M$$

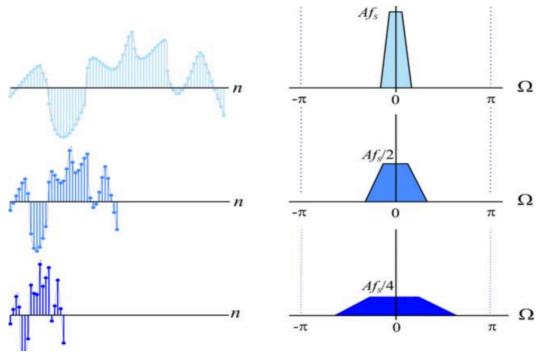


Figure 27: Decrease in the sampling rate

In the figure 27, it's shown that if sampling rates decrease, in the omega axis the spectrum broadens. That's what we want, to have our low Beta and High Beta broadens.

Our block diagram now is the following one:

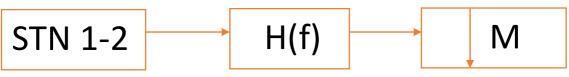


Figure 28: Diagram of the process before AR analysis

In the first part we have our patient with its 6 channels, then we applied the Butterworth filter with the real slot in 50 Hz and 0 Hz to one of the channels and finally we obtained a signal with almost no noise and ready to be inserted in an AR model.

4.5.1 M decimation constant

For choosing M constant, we have to say that if we choose a M big enough, ARFIT will reduce p ARFIT order. However, this implies a cost, we cannot increase M until whatever we want.

As we are using a Butterworth filter, the fall of the slope is not very fast, so, in case we would like to increase the M constant, we should be aware of the necessity of rising up the selectivity of Butterworth's filter.

However, it's not only that point, we have to be cautious due to the fact that, if we increase the selectivity of the Butterworth filter, ARFIT model will have a p order higher

than before. In other words, we have to reach an agreement for which we can increase M decimation constant, increasing the criticality of the filter without rising up too much the p order of the AR model.

For Chebyshev filters, as the fall in frequency is faster than in Butterworth's, we don't need to increase the criticality of the filter. So, in this case it will be easier to make an increase of M decimation constant.

After making proofs, we have assumed that the M constant decimation is 8 or 10. For an M of 12, it's not correct. In the Appendix 4 that appears at the end, we have made a research to show which are the best parameters. After having studied these results, we have to say that Decimation is beneficial for our study and also that the best factor of decimation for our study is M = 10.

4.6 Signal's length

Having known that we are working with signals that have in each of them 6 channels and we will make a multivariate AR analysis, we have to be very careful about the size of each channel. Spike's software has an error that consists in: once you have chosen your cursors for which you want export the signal to Matlab, Spikes in some cases chooses different sizes for each channel. In the figure 28, we can see that changes in length are very low, in that case, all channels have the same length with the exception of the last one.

			Import	Wizard				
Select variables to import using checkboxes								
 Create variables n 	natching	oreview.						
Create vectors fro	m each c	olumn using co	lumn na	mes.				
Create vectors fro	m each ro	ow using row n	ames.					
<u> </u>				ajo Fin de Grado/MATLAB/RecortesTiempoSenales/P				
Im Name A	Size	Bytes	Class	No variable selected for preview.				
V E PDTR2 L Ch2	1x1	3239448		No variable selected for preview.				
\checkmark \blacksquare PDTR2 L Ch3		3239448						
<pre>PDTR2_L_Ch4</pre>		3239448	struct					
PDTR2_L_Ch5	1x1	3239448	struct					
🗹 댪 PDTR2_L_Ch6	1x1	3239448	struct					
🗹 這 PDTR2_L_Ch7	1x1	3239440	struct					
Help	< B	ack Nex	t >	Finish Generate MATLAB code Cancel				

Figure 28: Error that appears when we take the values exported by Spike

We didn't take into account that when we export signals, channels could have different lengths. So, we made a throughout research in the patients signals and we see that the majority of them have different channels' length for the same patient. What we did was easy, we have to redo all the exportations checking that in the same patient, channel's length was the same for all of them. After doing it, we updated the database with the new values, now being sure that channels have the same length for each patient.

The same patient with its 6 channels appears in the figure 10, in this case having the same length for each channel.

	• • • •		Import	Wizard	
Select var	riables to import usi	ng check	boxes		
📀 Creat	e variables matching	g preview			
Creat	e vectors from each	column ı	ising column na	mes.	
Creat	e vectors from each	row usin	g row names.		
			5	aio Fin de l	Grado/MATLAB/RecortesTiempoSenales/P
Import	Name 🛎	Size	Bytes	Class	No variable selected for preview.
	E PDTR2_L_Ch2	1×1	3326264	struct	
\checkmark	E PDTR2_L_Ch3	1x1	3326264	struct	
\checkmark	E PDTR2_L_Ch4	1x1	3326264	struct	
\checkmark	📒 PDTR2_L_Ch5	1x1	3326264	struct	
\checkmark	E PDTR2_L_Ch6	1x1	3326264	struct	
\checkmark	📒 PDTR2_L_Ch7	1x1	3326264	struct	
					•
Help		Back	Next >	Finish	Generate MATLAB code Cancel
пер		DACK	Next >	rinish	Generate MATLAB code Cancel

Figure 29: Error which have been sorted out

Apart from the length of each channel, we thought that having the same length for all the patients could be a really good idea in case we would like to manipulate various patients at the same time. So, we also made a research in all signals to see which one has the minimum length.

We load all signals in a Matlab script for OFF and ON state and we look for the minimum value of both states. For OFF state, we saw that the minimum value was 316.200 and for ON state was 439.158. We took the lowest value of the two extracted and for the following situations, we force our signals to have this length.

Of course, after the process of decimation, we have to say that now this length has to be divided by M constant of decimation, in our case 10. So, we take the minimum values of the values of the last paragraph (in this case 316.200) and we divide it by the factor of decimation (M=10). We obtained 31.620. Finally, our signals must have this length.

4.7 ARFIT ORDER

4.7.1 Relationship between poles and order of ARFIT

AR order is directly related to the number of poles. For instance, if our order is p= 10, we wil get 10 poles, or in other words, 5 pairs of poles complex conjugated. As a consequence of this, the maximum frequencies we obtain are also directly related to the poles.

In the figure 30, it can be seen the way we implement the functions given by the ARFIT package. In the case of this figure, it can be appreciated that we are using an AR with an order of p = 16.

```
pmin = 16;
pmax = 16;
[west, Aest, Cest, SBC, FPE, th] = arfit(h2_aux', pmin, pmax);
[S, Serr, per, tau,exctn] = armode(Aest,Cest,th);
```

```
Figure 30: Example of the order in the ARFIT package
```

In the Figure 31, as a consequence of the use of an AR with a p order = 16, from Matlab we get 16 poles.

	1	2	3	4
1	-0.5722 + 0.5216i			
2	-0.5722 - 0.5216i			
3	-0.2998 + 0.7588i			
4	-0.2998 - 0.7588i			
5	-0.1502 + 0.8288i			
6	-0.1502 - 0.8288i			
7	0.2354 + 0.8990i			
8	0.2354 – 0.8990i			
9	0.4597 + 0.7639i			
10	0.4597 – 0.7639i			
11	0.8815 + 0.1806i			
12	0.8815 - 0.1806i			
13	0.8465 + 0.3948i			
14	0.8465 – 0.3948i			
15	0.6366 + 0.5850i			
16	0.6366 – 0.5850i			

Figure 31: Verification of the theory that the order of the AR model is directly related to the number of poles

In the following figure, it can be see that the 16 poles are 8 pairs of complex conjugated poles as we have foreseen. They are printed thanks to the help of the tool "zplane".

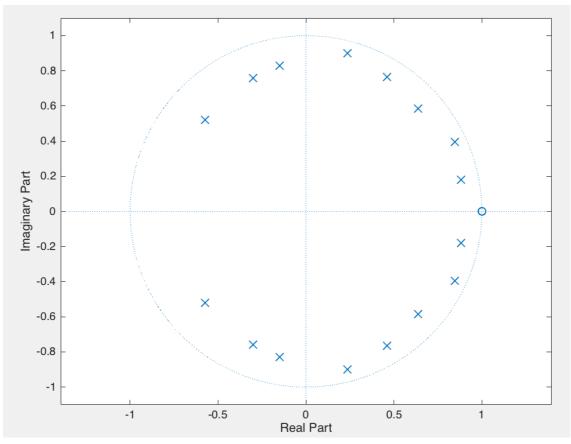
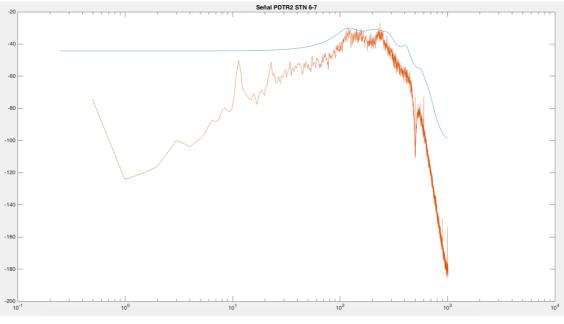


Figure 32: Poles printed in the Zplane

Once we have our poles well located, It's important to say that the frequencies are also related to the p order of the AR model. Frequencies are obtained making the product of the sampling frequency and the variable per which is calculated thanks to the armode in the figure 30.

4.7.2 Univariate analysis

Before of mixing patients, searching for correlations between them or creating new time intervals; we have studied our signals carefully channel by channel with the aim of finding an ideal AR order.


4.7.2.1 Adjusting the order

All the results which are going to be explained come from the STN 6-7 of the patient 2. As we don't know from which order to start, we have made a sweep between 12 to 18 to see which p order reproduces better our components Low Beta and High Beta. In the following figures we are going to compare PDS of a signal which has been filtered

with a Butterworth Low Pass filter with two real slots in 0 and 50 Hz and decimated with M =10 with the reconstruction got by ARFIT package.

4.7.2.1.1 AR(p=12)

Applying an AR(p=12) from the STN 6-7 channel of the patient two we get the following results:

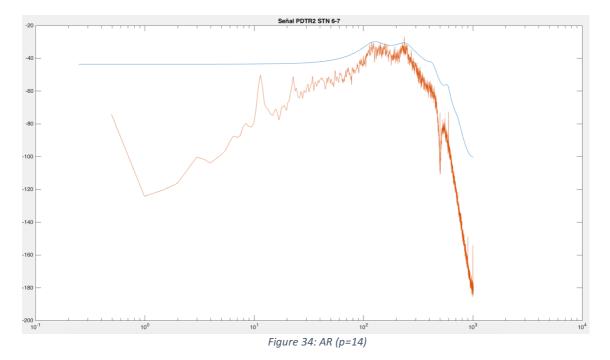


Figure 33: AR(p=12)

In this case, we can see that the reconstruction of both Low Beta and High Beta is not well enough because the Low Beta component doesn't correspond to the Low Beta component given by The Welch periodogram.

4.7.2.1.2 AR(p=14)

Applying an AR(p=14) from the STN 6-7 channel of the patient two we get the following results:

In this case, the High Beta component is more or less well predicted. However, the Low Beta component is not perfectly situated in comparison with the one calculated by the The Welch periodogram.

4.7.2.1.3 AR(p=16)

Applying an AR(p=16) from the STN 6-7 channel of the patient two we get the following results:

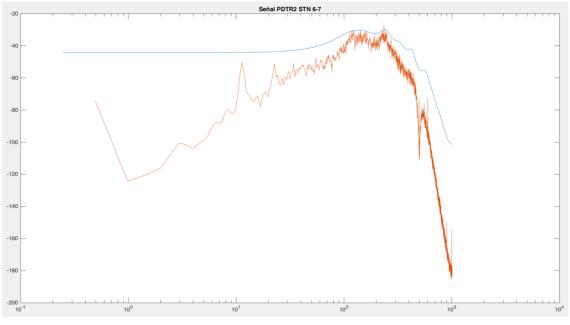


Figure 35: AR (p=16)

In this case, as it can be seen, Low Beta and High Beta components are perfectly situated.

4.7.2.1.4 Conclusion AR(p=16)

After studying the three results got in the figures 33, 34 ,35 we dare to say that having an AR model with an order of p = 16 is a good approximation for reconstructing well our Low Beta and High Beta components.

As it can be seen, we need to put extra poles to foresee well our components Low Beta and High Beta. If we choose a lower order, as 12 in the figure 33, the Low Beta and High Beta components suffer from a frequency movement.

4.7.2.2 Corroboration of our research

As we can have seen in the last figures, ARFIT reconstruction produces a kind of frequency displacement that makes the ARFIT reconstruction be different from the The Welch periodogram. If we apply a lower p order, this difference becomes higher.

As a consequence of that, we need that our prediction of the AR order has to be truly well proved. We have prepared a thorough research that can be seen in the Appendix 5 in which we are going to calculate:

- The difference between the Low Beta reference component and the Low beta reconstructed with ARFIT package. We will name this difference EPSILON LOW
- The difference between the High Beta reference component real and the High beta reconstructed with ARFIT package. We will name this difference EPSILON HIGH
- The ratio between the Low Beta reference component real and the Low beta reconstructed with ARFIT package. We will name this difference LOW EPSILON RATIO
- The ratio between the High Beta reference component real and the High beta reconstructed with ARFIT package. We will name this difference HIGH EPSILON RATIO
- The logarithm of the LOW EPSILON RATIO
- The logarithm of the HIGH EPSILON RATIO

PDTR X	PDTR X REAL FREQUENCY VALUES ARFI		ARFIT FREQU	RFIT FREQUENCY VALUES		EPSILON
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA	LOW	HIGH
STN Y						

Table 4: Explanation of how Appendix 5 will look

LOW	HIGH	LOW	HIGH
EPSILON	EPSILON	LOG	LOG
RATIO	RATIO	RATIO	RATIO

Table 5: Explanation of how Appendix 5 will look (second part)

We are going to make this research for both ON and OFF state from all the patients and with two values of p:

AR(p=10) ٠

These are the averages results for each patient for the values of:

EPSILON OFF STATE PATIENTS (DIFFERENCE IN FREQUENCY)							
	LOW	HIGH		LOW	HIGH		
AVERAGE PSILON PDTR2	2,67	9,49	AVERAGE PSILON PDTR8	3,01	7,48		
AVERAGE EPSILON PDTR3	4,16	12,99	AVERAGE EPSILON PDTR9	2,87	9,78		
AVERAGE EPSILON PDTR4	0,61	5,25	AVERAGE EPSILON PDTR10	1,05	3,98		
AVERAGE EPSILON PDTR5	2,25	4,54	AVERAGE EPSILON PDTR11	1,63	4,77		
AVERAGE EPSILON PDTR6	1,27	7,11	AVERAGE EPSILON PDTR12	1,32	8,73		
AVERAGE EPSILON PDTR7	8,02	7,96	AVERAGE EPSILON PDTR13	0,94	6,46		

QL	JENCY)	EPSILON	ON STATE	PATIENTS	(DIFFERENCE	IN FREQU	ENCY)
/	HIGH		LOW	HIGH		LOW	HIGH
L	7,48	AVERAGE EPSILON PDTR2	3,07	10,40	AVERAGE PSILON PDTR8	3,23	8,54
,	9,78	AVERAGE EPSILON PDTR3	3,80	13,19	AVERAGE EPSILON PDTR9	NO	NO
5	3,98	AVERAGE EPSILON PDTR4	0,62	5,85	AVERAGE EPSILON PDTR10	0,61	4,64
3	4,77	AVERAGE EPSILON PDTR5	3,45	5,30	AVERAGE EPSILON PDTR11	2,77	7,98
2	8,73	AVERAGE EPSILON PDTR6	2,95	10,88	AVERAGE EPSILON PDTR12	1,91	10,30
ŀ	6,46	AVERAGE EPSILON PDTR7	7,36	9,24	AVERAGE EPSILON PDTR13	2,97	8,03

HIGH

10,30

• Difference of epsilon:

Table 6: Epsilon OFF and ON state patients, difference in frequency

• Ratio of Epsilon

EPSILON OFF STATE PATIENTS (RATIO IN FREQUENCY)							
	LOW	HIGH		LOW	HIGH		
AVERAGE PSILON PDTR2	1,21	1,41	AVERAGE EPSILON PDTR8	1,23	1,31		
AVERAGE EPSILON PDTR3	1,30	1,62	AVERAGE EPSILON PDTR9	1,24	1,41		
AVERAGE EPSILON PDTR4	1,00	1,20	AVERAGE EPSILON PDTR10	0,92	1,19		
AVERAGE EPSILON PDTR5	1,20	1,18	AVERAGE EPSILON PDTR11	1,10	1,28		
AVERAGE EPSILON PDTR6	1,17	1,33	AVERAGE EPSILON PDTR12	1,16	1,37		
AVERAGE EPSILON PDTR7	1,72	1,32	AVERAGE EPSILON PDTR13	1,16	1,29		

EPSILON ON STATE PATIENTS (RATIO IN FREQUENCY)							
	LOW	HIGH		LOW	HIGH		
AVERAGE PSILON PDTR2	1,23	1,45	AVERAGE EPSILON PDTR8	1,25	1,36		
AVERAGE EPSILON PDTR3	1,27	1,63	AVERAGE EPSILON PDTR9				
AVERAGE EPSILON PDTR4	1,05	1,22	AVERAGE EPSILON PDTR10	0,99	1,21		
AVERAGE EPSILON PDTR5	1,26	1,20	AVERAGE EPSILON PDTR11	1,18	1,34		
AVERAGE EPSILON PDTR6	1,33	1,45	AVERAGE EPSILON PDTR12	1,32	1,42		
AVERAGE EPSILON PDTR7	1,67	1,36	AVERAGE EPSILON PDTR13	1,25	1,34		

Т

Table 7: Ratio of the frequencies of OFF and ON state patients

• Logarithm of ratio of epsilon

EPSILON OFF STATE PATIENTS (RATIO OF FREQUENCY IN LOGARITHM)							
LOW HIGH LOW HIGH							
AVERAGEEPSILON PDTR2	0,08	0,15	AVERAGE EPSILON PDTR8	0,09	0,12		
AVERAGE EPSILON PDTR3	0,11	0,21	AVERAGE EPSILON PDTR9	0,09	0,15		
AVERAGE EPSILON PDTR4	0,00	0,08	AVERAGE EPSILON PDTR10	-0,04	0,07		
AVERAGE EPSILON PDTR5	0,08	0,07	AVERAGE EPSILON PDTR11	0,04	0,11		
AVERAGE EPSILON PDTR6	0,07	0,12	AVERAGE EPSILON PDTR12	0,06	0,14		
AVERAGE EPSILON PDTR7	0,24	0,12	AVERAGE EPSILON PDTR13	0,07	0,11		

EPSILON ON	EPSILON ON STATE PATIENTS (RATIO OF FREQUENCY IN LOGARITHM)							
	LOW	HIGH		LOW	HIGH			
AVERAGEEPSILON PDTR2	0,09	0,16	AVERAGE EPSILON PDTR8	0,10	0,13			
AVERAGE EPSILON PDTR3	0,11	0,21	AVERAGE EPSILON PDTR9					
AVERAGE EPSILON PDTR4	0,02	0,09	AVERAGE EPSILON PDTR10	-0,01	0,08			
AVERAGE EPSILON PDTR5	0,10	0,08	AVERAGE EPSILON PDTR11	0,07	0,13			
AVERAGE EPSILON PDTR6	0,12	0,16	AVERAGE EPSILON PDTR12	0,12	0,15			
AVERAGE EPSILON PDTR7	0,22	0,13	AVERAGE EPSILON PDTR13	0,10	0,13			

Table 8: Logarithm of ratio of epsilon for ON and OFF state patients

• AR(p=16)

These are the averages results for each patient for the values of:

• Difference of epsilon:

EPSILON (OFF STATE	PATIENTS	(DIFFERENCE	IN FREQU	JENCY)
	LOW	HIGH		LOW	HIGH
AVERAGE EPSILON PDTR2	2,49	0,83	AVERAGE EPSILON PDTR8	0,58	1,24
AVERAGE EPSILON PDTR3	0,39	5,69	AVERAGE EPSILON PDTR9	0,62	1,84
AVERAGE EPSILON PDTR4	3,18	0,73	AVERAGE EPSILON PDTR10	3,92	1,50
AVERAGE EPSILON PDTR5	1,20	1,18	AVERAGE EPSILON PDTR11	1,76	0,60
AVERAGE EPSILON PDTR6	1,17	1,33	AVERAGE EPSILON PDTR12	0,68	0,72
AVERAGE EPSILON PDTR7	2,20	1,36	AVERAGE EPSILON PDTR13	1,17	0,71

EPSILON	ON STATE	PATIENTS	(DIFFERENCE	IN FREQU	ENCY)
	LOW	HIGH		LOW	HIGH
AVERAGE EPSILON PDTR2	1,70	1,82	AVERAGE EPSILON PDTR8	1,53	1,76
AVERAGE EPSILON PDTR3	0,38	5,78	AVERAGE EPSILON PDTR9		
AVERAGE EPSILON PDTR4	3,27	1,14	AVERAGE EPSILON PDTR10	4,46	1,33
AVERAGE EPSILON PDTR5	0,94	1,92	AVERAGE EPSILON PDTR11	1,99	0,31
AVERAGE EPSILON PDTR6	2,43	1,91	AVERAGE EPSILON PDTR12	1,27	1,24
AVERAGE EPSILON PDTR7	2,28	1,44	AVERAGE EPSILON PDTR13	2,09	3,35

Table 9: Epsilon OFF and ON state patients, difference in frequency

1

EPSILO	N OFF STA	TE PATIEN	NTS (RATIO OF	FREQUEN	NCY)
	LOW	HIGH		LOW	HIGH
AVERAGE PSILON PDTR2	0,86	1,06	AVERAGE EPSILON PDTR8	0,94	1,08
AVERAGE EPSILON PDTR3	0,98	1,27	AVERAGE EPSILON PDTR9	1,06	1,10
AVERAGE EPSILON PDTR4	0,82	0,98	AVERAGE EPSILON PDTR10	0,79	0,92
AVERAGE EPSILON PDTR5	0,99	1,00	AVERAGE EPSILON PDTR11	0,88	1,02
AVERAGE EPSILON PDTR6	0,96	1,07	AVERAGE EPSILON PDTR12	0,88	1,08
AVERAGE EPSILON PDTR7	1,25	1,06	AVERAGE EPSILON PDTR13	0,88	0,97

Ratio of Epsilon 0

	LOW	HIGH		LOW	HIGH
AVERAGE PSILON PDTR2	0,97	1,06	AVERAGE EPSILON PDTR8	1,01	1,06
AVERAGE EPSILON PDTR3	0,98	1,28	AVERAGE EPSILON PDTR9		
AVERAGE EPSILON PDTR4	0,81	0,97	AVERAGE EPSILON PDTR10	0,76	0,92
AVERAGE EPSILON PDTR5	0,88	0,90	AVERAGE EPSILON PDTR11	0,91	1,05
AVERAGE EPSILON PDTR6	0,83	1,05	AVERAGE EPSILON PDTR12	0,90	1,09
AVERAGE EPSILON PDTR7	1,24	1,06	AVERAGE EPSILON PDTR13	0,98	1,06

EPSILON ON STATE PATIENTS RATIO OFF FREQUENCY)

Table 10: Ratio of the frequencies of OFF and ON state patients

• Logarithm of ratio of epsilon

EPSILON OFF S		IENTS (LO FREQUEN		THE RATI	O OF	EPSILON O	N STATE P		(LOGARITHM JENCY)	OF THE R	ΑΤΙΟ ΟΙ
	LOW	HIGH		LOW	HIGH		LOW	HIGH		LOW	HIGH
AVERAGEEPSILON PDTR2	-0,06	0,03	AVERAGE EPSILON PDTR8	-0,03	0,03	AVERAGE EPSILON PDTR2	-0,01	0,03	AVERAGE EPSILON PDTR8	0,01	0,03
AVERAGE EPSILON PDTR3	-0,01	0,10	AVERAGE EPSILON PDTR9	0,02	0,04	AVERAGE EPSILON PDTR3	-0,01	0,11	AVERAGE EPSILON PDTR9		
AVERAGE EPSILON PDTR4	-0,09	-0,01	AVERAGE EPSILON PDTR10	-0,10	-0,03	AVERAGE EPSILON PDTR4	-0,09	-0,02	AVERAGE EPSILON PDTR10	-0,12	-0,04
AVERAGE EPSILON PDTR5	0,00	0,00	AVERAGE EPSILON PDTR11	-0,06	0,01	AVERAGE EPSILON PDTR5	-0,06	-0,05	AVERAGE EPSILON PDTR11	-0,04	0,02
AVERAGE EPSILON PDTR6	-0,02	0,03	AVERAGE EPSILON PDTR12	-0,05	0,03	AVERAGE EPSILON PDTR6	-0,08	0,02	AVERAGE EPSILON PDTR12	-0,05	0,04
AVERAGE EPSILON PDTR7	0,10	0,03	AVERAGE EPSILON PDTR13	-0,06	-0,01	AVERAGE EPSILON PDTR7	0,09	0,03	AVERAGE EPSILON PDTR13	-0,01	0,03

Table 11: Logarithm of ratio of epsilon for ON and OFF state patients

4.7.2.3 Conclusion of the results

As we can see in the last figures, our predictions in the section 3.7.1.4 about having an AR(p=16) are correct because in the last figures we can appreciate that the difference between the frequencies reconstructed by ARFIT and the frequencies obtained in the Welch periodogram are much lower in the study of AR (p=16) than in AR (p=10).

Besides that, the ratio between the frequencies reconstructed by ARFIT and the frequencies obtained in the Welch periodogram in the AR (p=16) approaches much more to 1 than in AR (p=10). This means that the frequencies are much closer. Consequently, we have to say that the frequency movement is much lower in the AR (p=16) than in AR (p=10).

4.7.2.4 Our signals are stationary?

We thought that it will me a good idea to divide the whole signal into windows with an overlap with the aim of finding how stationary are the signals we have been given by CIMA. We have prepared a loop in which we put the size of the window we are interested in. We also calculate the shift because for this case, we assume that signals will be overlapped. This concept is explained in the following figure:

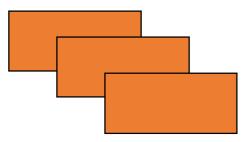


Figure 36: Explanation of a sliding window

We apply the sliding window to a single channel. This process is only used for univariate signals. We have to insert the following parameters: shift, length of the window and the number of windows.

One of the most important parameter is the number of windows. We calculate it making the difference between the length of the input signal and the length of the window. Then, we divide this difference between the shift. Finally, we apply the "floor" function to get an integer number. This process is explained in the 37 figure:

```
num_window= floor((length(h2)-tam_ventana)/(shift));
```

```
Figure 37: Calculation of the number of window for the sliding window
```

After having all the parameters well arranged, we enter in the loop that appears in the figure 38.

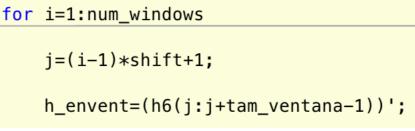


Figure 38: Loop for the sliding window

In this loop we start counting the number of windows we have. In j index, it's shown the start point of the window. Secondly, in the variable h_envent, which starts in j and finishes in the j variable plus window size plus one, we have our window saved.

After this process and, still in the for loop, we use the ARFIT model to each one of the windows generated with the aim of finding how stationary is our signal. For this case, we are using the patient 4 in the OFF state with an ARFIT p order of 16.

Frequencies get by Windowing signal (Hz)	Frequencies get by the hole Signal (Hz)
877.3679	877.5
741.2018	741.5
601.3522	601.8
451.5289	452.1
46.6984	45.21
33.9918	33.9
18.3937	18.7
0	0

Table 12: Frequencies got by sliding windows and without it

As we can see in the Table 12, there are almost no differences between analysing our signal in little parts (windows) than analysing the signal without sliding window.

ARFIT package gives us more or less the same frequencies in both situations, so we can be sure of the stationarity of our signals.

4.7.3 Multivariate analysis

Trying to make a multivariate analysis is something that we have to think carefully. The dimensions of the matrix have to be the following one:

$$A = (mx(mxp'))$$

Being m the number of signals included and p' the order of the AR model. This matrix has to be square. In our case, the matrix will have the dimensions 16x16 with a p' order equals to 1.

Once it has been seen that the best order for the AR univariate model is 16, we have to try to increase the number of signals we have been given. We came up with two ideas mainly:

- The first one was trying to make combinations of patients
- The second one was trying to make new intervals of time of 200 seconds to have more signals. We could do it because the length of the time series we were provided had 3.000 seconds.

4.7.3.1 Combinations of patients

As I have introduced in the lasts paragraphs the process of combination of patients was tedious and very long. At first, we have to load all signals and all channels from all the patients. Secondly, when we have all our channels well named and well loaded, we have to follow the procedure which was previously explained:

- Unifying the channel's length because we were going to compare each channel with all the channels from all the patients.
- Filtering the signal with the Butterworth filter which was designed with a real slot in 0 Hz and in 50 Hz.
- Making a decimation of the output signal from the filter (M=10 as we cited before)

Once we have our signals filtered, decimated and cut, with the help of PWELCH, we made the Power Density Function of all the channels from every patient.

In the figure 39, we can see how we used the pwelch's function, given that:

• Sampling frequency = 2.0243e+03 Hz is the same for all the channels

54

- Window = hanning (L=4096)
- Nfft = 4096
- Overlap = floor (3/4*L)

After doing this, we turn to Matlab to find a tool to compare signals. We did it with the help of "corrcoef" function. "Corrcoef" compares one by one the two signals which are introduced and finally provides you a matrix 2x2 in which diagonal is written the proportion from 0 to 1 of the similarity of both signals. In the figure 40 it's shown how we compare, in this particular case, the power density function of channel 2 from the patient 2 with all the channels from patient 2. Then, we compare the channel 3 with all the channels from patient 2 and so on.

pxx2_pxx2_corr = corrcoef(pxx2,pxx2); percentage_pxx2_pxx2_corr = abs(pxx2_pxx2_corr(1,2))*100;

Figure 40: Example of the use of "corrcoef" function

Once we have compared all signals, and we have got all the percentages of similarity, we put all together in a vector. This process is shown in the figure 41.

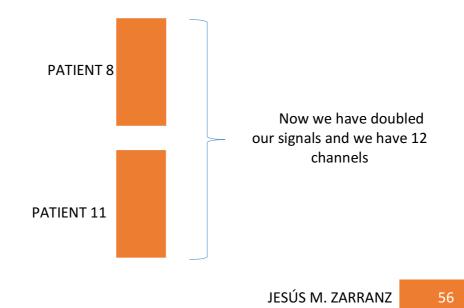
Figure 41: Example of the creation of the vector of percentage of similarity

What we do now is putting these results in a matrix 6x6 to have the values of correlation correctly and then for making us the work easier, we export each matrix to an Excel file for copying this information to a file in which we have all the correlations from each patient. This last procedure is shown in the figure 42.

Figure 42: Explanation of the creation of the matrix of correlations and the exportation to an Excel file

This was the example that we did in order to see if the values were correct, for us comparing the channels of patient 2 with the channels of patient 2 is useless. We only did that with the aim of showing that the values obtained are correct because the diagonal values of the matrix are 100 %. This makes sense because values that appear in the diagonal of this case are comparing the same signals; that's why we see a 100 % of correlation.

4.7.3.1.1 Patients with more correlation

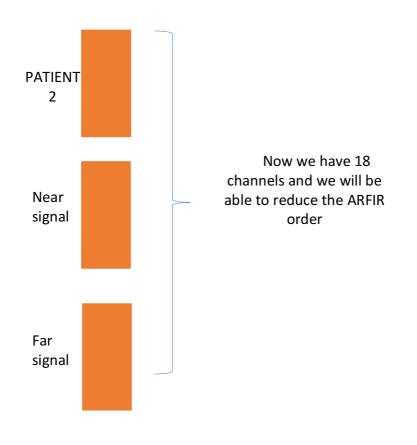

Making the explained process for all the combinations possible of each patient, we put all the matrix created in the same file. The percentage of correlation among all patients and channels is in the Appendix 7.

PATIENTS	PDTR2	PDTR3	PDTR4	PDTR5	PDTR6	PDTR7	PDTR8	PDTR9	PDTR10	PDTR11	PDTR12
PDTR2	75,11	68,47	67,17	41,22	59,92	52,07	69,68	58,01	47,47	61,41	51,31
PDTR3		93,29	53,87	63,11	57,31	57,81	76,57	55,27	40,22	65,25	54,17
PDTR4		-	82,58	30,17	58,38	44,53	60,49	57,24	63,10	50,78	53,44
PDTR5				63,10	37,91	43,76	49,61	44,30	15,99	40,44	39,78
PDTR6					55,69	46,25	59,71	50,64	41,42	51,01	46,15
PDTR7		74,17 49,89 54,83							27,75	34,31	43,06
PDTR8	84,57 53,23							41,16	74,47	53,67	
PDTR9	74,08							42,67	43,72	53,84	
PDTR10									69,96	35,68	40,26
PDTR11										75,16	43,06
PDTR12											54,83

Table 13: Percentage of correlations among all patients

In the table 13 what we have done is making the average of each matrix taking into account all the channels. As expected, the values in which the correlation is higher are the ones in the diagonal. That's because in the diagonal we are comparing the patient with itself.

We can say that the most similar patients are the patient 8 and the patient 11, which have a correlation of 74,47 % and the patient 8 and 3 which have a correlation of 76,56 %. In case we need to add patients in order to have more signals, we will choose patient 3 and patient 8 or patient 8 and patient 11.



4.7.3.2 Taking more time extracts

The second option is coming back from Spike software to take more extracts for the OFF and ON state. Signals that we have are long enough to extract from them another 2 blocks from each state from each patient. So what we did was choosing:

- A block of 200 seconds which is more or less near the one we chose at first.
- Another block of 200 seconds which is further from the one we chose at first.

From this way, we can have 18 signals from the same patient. Taking into account that we are working with signals from the same patient, we did the correlation from this 3 signals in order not to have 3 signals which are the same. Thanks to that, we check that the extracts obtained are stationary enough to assure the effective increase in the number of channels



4.7.3.2.1 Movement in frequency

What it has been seen in this process is that there's a frequency movement that affects the poles depending on the order in the AR model. For corroborating that p=16 is the best choice for univariate analysis we have made a study working with: 12 signals,

16 signals and 18 signals. In the last case (18 signals) we don't have to eliminate any of the signals (3 registers multiplied by 6 channels = 18 signals).

For knowing which signal has to be removed from the study in cases of 12,16 and 18 signals, we have made a research for setting the correlation between the signals. The ones which are less correlated will be removed for the cases of: 12,16 and 18.

• Case of 18 signals:

Figure 43: Multivariate case with 18 signals

As it can be seen in the Figure 43 the High Beta which has been reconstructed is well predicted but the Low Beta is completely moved from the real one.

• Case of 16 signals:

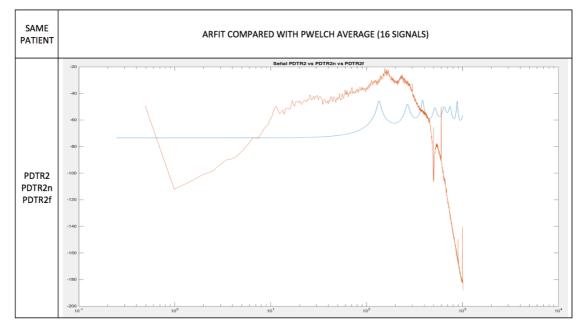
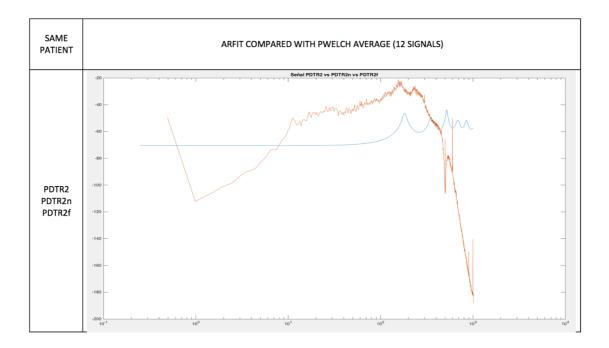



Figure 44: Multivariate case with 16 signals

In the figure 44 High Beta component and Low Beta component are more or less well predicted.

• Case of 12 signals

Figure 45: Multivariate case with 12 signals

In this case nor the Low Beta neither the High Beta are well predicted.

As it was predicted for the univariate case, the p order for the AR model in the multivariate case is 1, but using 16 signals.

CHAPTER 5: CONCLUSION

5.Conclusion

In this project we aimed at developing a multivariate framework to study the oscillatory activity of PD patients. To do that, we had the opportunity to access to *real signals*: the local field potentials (LFP) recorded from the stimulation macroelectrodes of the DBS systems implanted in the subthalamic nucleus (STN) of 14 patients with PD.

Inspired by a previous paper where authors build a multivariate model to describe the ECoG signals recorded from anaesthetized monkeys, here we aimed to assess the suitability of AR models to fit the STN activity, define an approach to do so and finally obtain the parameters that characterize these signals across different stage

The fact of being so cautious with the treatment of the signal is because we want to have the smallest order for our AR model. If we hadn't implemented a Low Pass Filter, the order would have increased a lot due to the signal. We need to have it the cleanest we can. However, as we can't modulate the 300 Hz, we won't be able to modulate the connection between Beta and 300 Hz. This will be studied in the future in order to integrate it.

In the totality of the texts we have read, the election of the AR order is not as justified as in our case. In fact, choosing a good p order for the AR model is critical according to the results we have obtained. If we take a bad decision choosing the order, we probably wouldn't be able to reproduce the components we want to. It's also important because the fact of choosing badly the order implies the existence of a frequency movement that alters the reproduction of our frequencies of interest.

Overall, the results of this project suggest that -although it is possible to use AR models to study STN activity from PD patients-, there are some constraints due to the nature of the signals that remain to be solved. Anyway, we consider that this framework constitutes an interesting tool for the study of the oscillatory activity in PD patients and we expect to develop the techniques to obtain a time-varying characterization of the signals/models in the future.

CHAPTER 6: BIBLIOGRAPHY

6.Bibliography

[1] Guillermo Solovey, Leandro M. Alonso, Toru Yanagawa, Naotaka Fujii, Marcelo O. Magnasco, Guillermo A. Cecchi and Aelx Proekt. Loss of Consciousness Is Associated with Stabilization of Cortical Activity

[2] Jon López-Azcárate, Mikel Tainta, María C. Rodríguez-Oroz, Miguel Valencia, Rafael González, Jorge Guridi, Jorge Iriarte, José A. Obeso, Julio Artieda and Manuel Alegre. Coupling between Beta and High-Frequency Activity in the Human Subthalamic Nucleus May Be a Phatophysiological Mechanism in Parkinson's Disease

[3] F. Alonso-Frech, I. Zamarbide, M. Alegre, M. C. Rodríguez-Oroz, J. Guridi, M. Manrique, M. Valencia, J. Artieda and J. A. Obeso. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease

[4] Manuel Alegre, Miguel Valencia

Oscillatory activity in the human basal ganglia: More than just beta, more than just Parkinson's disease

[5] Estimación Espectral Paramétrica Univariable <u>http://bibing.us.es.fama.us.es/proyectos/abreproy/11067/fichero/DOCUMENTACIÓN+</u> <u>%252F05+-+Cap%C3%ADtulo+2+-+Estimación+espectral+clásica+univariable.pdf+</u>

[6] I. Santamaría Tema 5: Modelado, análisis Espectral Paramétrico y Predicción Lineal https://gtas.unican.es/files/docencia/TDS/apuntes/tema5wp.pdf

[7] Sonia Porta Cuéllar STFT y el espectograma

[8] Miguel Valencia, Manuel Alegre y Julio Artieda Análisis de Señales Neurofisológicas

[9] Tapio Schneider and Arnold Neumaier Algorithm 808: ARFIT – A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models

[10] Teresa Talamillo Garcia Manual básico para enfermeros en electroencefalografía <u>http://www.juntadeandalucia.es/servicioandaluzdesalud/huvvsites/default/files/revist</u> <u>as/ED-094-07.pdf</u>

[11] Juan Segalovich, Mónica Bluvstein, Judith Mazzola Síndrome de punta-onda continua durante el sueño http://www.annyn.org.ar/?a=vp&i=195 [12] Soheila Samiee

Cross Frequency coupling

https://www.mcgill.ca/bic/files/bic/cross_frequency_coupling_soheilasamiee.pdf

[13] Reza Mousavi, Mohammad Niknazar, Bijan Vosoughi Vahdat EPILEPTIC SEIZURE DETECTION USING AR MODEL ON EEG SIGNALS https://www.researchgate.net/publication/224386557 Epileptic Seizure Detection u sing AR Model on EEG Signals?enrichId=rgreqa2313fee989ca436883625af974f8774-XXX&enrichSource=Y292ZXJQYWdIOzIyNDM4NjU1NztBUzozMTk4ODU3MTA2OTIzNTN AMTQ1MzI3ODEwNDA4Mw%3D%3D&el=1 x 2

[14] Jorge Iván Padilla, Luis David Avendaño and Germán Castellano Domínguez Improved Estimation of Multivariate AR Model for EEG Signal Processing

[15] Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani and Mohammad B. Shamsollahi

Person Identification by Using AR Model for EEG Signals

https://infoscience.epfl.ch/record/153223/files/PersonIdentificationByUsingARModels ForEEGSignals_2006.pdf

[16] Alois Schlogl, and Gernot Analyzing event-related EEG data with multivariate autoregressive parameters

[17] Dr. Juan Carlos Martínez Castrillo Discinesias http://www.neurodidacta.es/es/comunidades-tematicas/parkinson/enfermedaparkinson-otros-trastornos-del-movimiento 1/complicaciones-motoras/respuestamotora

[18] Guillermo Solovey, Kai J. Miller, Jeffrey G. Ojemann, Marcelo O. Magnasco and Guillermo A. CecchiSelf-regulated dynamical criticality in human ECoG

[19] Sonia Porta Cuéllar Procesado Digital de la Señal

[20] Miguel Valencia Ustárroz Análisis numérico y experimental de la actividad cortical

[21] James Parkinson An essay on the shaking palsy CHAPTER 7: APPENDIXES

			ESTADO OFF	ц.		-	ESTADO ON	
	1							
		50 Hz	150 Hz	250 Hz	50	50 Hz	150 Hz	250 Hz
	STN 0-1	0,0267	0,06		0,0	0,0341	0,077	
	STN 1-2	0,0504	0,009	No se	0'0	0,0913	0,0126	
	STN 2-3	0,0479	0,00677	aprecian	0'0	0,0476	0,006	
צ אוט צ	STN 4-5	0,788	0,0367	valores	0,9	0,993	0,0358	
	STN 5-6	0,391	0,0197	alejados	0,6	0,696	0,0308	0,0232
	STN 6-7	0,0946	0,03		0,0	0,097	0,031	
	STN 0-1	0,0187	0,004	0,004	0'0	0,0206	0,003	0,00558
	STN 1-2	0,0455	0,0161	0,0194	0,0	0,0312	0,0121	0,0161
	STN 2-3	0,0216	0,119	0,0896	0,0	0,0216	0,0897	0,0815
	STN 4-5	1,7	0,0216	0,0419	2,(2,06	0,0237	0,0381
	STN 5-6	0,163	0,0524	0,0204	0,1	0,197	0,0434	0,0186
	STN 6-7	0,294	0,114	0,0226	0,2	0,221	0,103	0,017
	STN 0-1	0,255	0,00835	0,00759	0,2	0,226	0,006	0,008
	STN 1-2	0,0523	0,0223	0,02	0,0	0,0421	0,0164	0,00397
	STN 2-3	0,0484	0,04	0,04	0,0	0,0518	0,0322	0,0322
	STN 4-5	0,267	0,0187	0,0777	0,2	0,286	0,0182	0,0915
	STN 5-6	0,0662	0,0133	0,146	0'0	0,0708	0,0142	0,00974
	STN 6-7	0,0196	0,0461	0,0111	0,0	0,0231	0,0371	0,0119

Appendix 1: the amplitudes of the signal in 50,100 and 150 Hz

		ESIADO OFF			ESTADO ON	
	50 Hz	150 Hz	250 Hz	50 Hz	150 Hz	250 Hz
STN 0-1	0,141	0,00815	0,119	0,12	0,00784	0,0144
STN 1-2	0,193	0,00854	0,0045	0,219	0,00672	0,00585
STN 2-3	0,674	0,0137	0,00939	0,694	0,0157	0,0118
STN 4-5	0,0429	0,0026	0,00387	0,038	0,0029	0,00445
STN 5-6	0,0592	0,00587	0,00159	0,0643	0,00504	0,00141
STN 6-7	0,0598	0,0191	0,00253	0,0655	0,018	0,00187
STN 0-1	0,108	0,0121	0,01	0,131	0,0111	0,0178
STN 1-2	0,0517	0,0293	0,0104	0,0472	0,0294	0,0114
STN 2-3	0,0438	0,0186	0,0154	0,053	0,017	0,017
STN 4-5	0,0851	0,0438	0,064	0,0775	0,033	0,0775
STN 5-6	0,0192	0,0159	0,00264	0,0159	0,012	0,00386
STN 6-7	0,038	0,0345	0,00321	0,0317	0,0278	0,00573
STN 0-1	0,137	0,0039	0,0018	0,158	0,00389	0,00385
STN 1-2	0,0538	0,0119	0,00813	0,0574	0,0127	0,00954
STN 2-3	0,0281	0,0451	0,0373	0,03	0,0438	0,0362
STN 4-5	0,227	0,0159	0,041	0,266	0,014	0,0438
STN 5-6	0,0994	0,015	0,0064	0,0965	0,016	0,00567
STN 6-7	0,0356	0,0294	0,00331	0,026	0,0286	0,00688

			ESTADO OFF				ESTADO ON	
		50 Hz	150 Hz	250 Hz	20	50 Hz	150 Hz	250 Hz
	STN 0-1	0,0844	0,0928	0,0578	0,1	0,187	0,17	0,045
	STN 1-2	0,573	0,153	0,0279	0,6	0,651	0,174	0,0317
	STN 2-3	0,404	0,0176	0,0121	1,	1,44	0,0166	0,0166
אטואס	STN 4-5	0,142	0,118	0,0075	0,5	0,237	0,147	0,00707
	STN 5-6	0,0622	0,00778	0,00533	0'0	0,0401	0,00973	0,00502
	STN 6-7	0,0578	0,0768	0,0139	0,	0,116	0,028	0,0144
	STN 0-1	0,461	0,0628	0,0221				
	STN 1-2	0,906	0,292	0,0365		,		
	STN 2-3	0,0658	0,0108	0,00557				
רטותש	STN 4-5	0,707	0,187	0,0308		,		•
	STN 5-6	0,864	0,0197	0,00927				•
	STN 6-7	0,674	0,122	0,0183		,		
	STN 0-1	0,106	0,0233	0,0159	0'0	0,0544	0,0282	0,012
	STN 1-2	0,256	0,0165	0,0241	0,5	0,255	0,0319	0,015
	STN 2-3	0,0631	0,0244	0,0357	0'0	0,0476	0,0184	0,0104
	STN 4-5	0,0393	0,0025	0,00646	0'0	0,0358	0,00228	0,00333
	STN 5-6	0,023	0,013	0,00316	0'0	0,0173	0,0143	0,00197
	STN 6-7	0,0082	0,00991	0,00464	0'0	0,0176	0,0132	0,0018

		ESTADO OFF	H		ESTADO ON	
	50 Hz	150 Hz	250 Hz	50 Hz	150 Hz	250 Hz
	2			-		
STN 0-1	0,0169	0,0037	0,00595	0,017	0,00494	0,0106
STN 1-2	0,0285	0,0111	0,00834	0,0345	0,00919	0,00919
STN 2-3	0,00624	0,067	0,00458	0,00428	0,0612	0,05556
STN 4-5	0,253	0,0314	0,0417	0,231	0,0286	0,0672
STN 5-6	0,0435	0,036	0,0247	0,0528	0,0329	0,0226
STN 6-7	0,165	0,0934	0,0205	0,2	0,0938	0,0273
STN 0-1	0,0286	0,0346	0,0215	0,426	0,0397	0,0272
STN 1-2	0,379	0,0269	0,0269	0,923	0,232	0,0372
STN 2-3	0,0483	0,0706	0,137	0,336	0,0979	0,108
STN 4-5	0,243	0,0128	0,0248	0,791	0,0285	0,0458
STN 5-6	0,0411	0,0176	0,0176	0,0518	0,0152	0,0167
STN 6-7	0,131	0,0101	0,0196	0,912	0,00492	0,048
STN 0-1	0,0488	0,00971	0,00664	0,0264	0,00846	0,00636
STN 1-2	0,0971	0,00689	0,0111	0,123	0,0116	0,00963
STN 2-3	0,018	0,0512	0,0923	0,0172	0,0866	0,0716
STN 4-5	0,0748	0,0149	0,0198	0,049	0,0172	0,0335
STN 5-6	0,0926	0,036	0,0435	0,0503	0,0503	0,314
STN 6-7	0,0142	0,0404	0,0367	0,0102	0,0467	0,024

Appendix 2: Existence of frequency component in 50, 150 and 250 and Theta component

PDTR-2 OFF	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	YES	YES	NO	NO	
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	NO	
	CH 6-7	YES	YES	YES	YES	Channel Chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-2 ON	CH 0-1	YES	YES	NO	NO
	CH 1-2	YES	YES	NO	NO
	CH 2-3	YES	YES	NO	NO
	CH 4-5	YES	YES	NO	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	NO	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-3 OFF	CH 0-1	YES	NO	NO	NO
	CH 1-2	NO	YES	YES	NO
	CH 2-3	NO	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-3 ON	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-4 OFF	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	NO	YES	
	CH 2-3	YES	YES	YES	YES	Channel chosen
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	YES	Channel chosen
	CH 6-7	YES	YES	YES	YES	Channel chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-4 ON	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	NO	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-5 OFF	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	NO	YES	NO
	CH 6-7	YES	YES	NO	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta
		1			

PDTR-5 ON	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	NO	YES	NO
	CH 5-6	YES	YES	NO	NO
	CH 6-7	YES	YES	NO	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-6 OFF	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	NO	YES	
	CH 2-3	YES	YES	YES	NO	
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	YES	Channel chosen
	CH 6-7	YES	YES	YES	YES	Channel chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

CHARACTERIZATION OF CEREBRAL ACTIVITY IN PD'S PATIENTS THROUGH AN AR MODEL

PDTR-6 ON	CH 0-1	YES	NO	YES	NO
	CH 1-2	YES	YES	NO	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-7 OFF	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-7 ON	CH 0-1	YES	YES	NO	YES	
	CH 1-2	YES	YES	YES	YES	Channel chosen
	CH 2-3	YES	YES	YES	YES	Channel chosen
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	NO	
	CH 6-7	YES	YES	YES	NO	
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-8 OFF	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	YES	YES	YES	NO	
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	YES	Channel chosen
	CH 6-7	YES	YES	YES	NO	
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-8 ON	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	NO	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-9 OFF	CH 0-1	YES	YES	YES	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	YES	YES	YES	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Artefactos	50 Hz	150 Hz	250 Hz	Theta

PDTR-10		YES	YES		
OFF	CH 0-1			NO	NO
	CH 1-2	YES	NO	NO	NO
	CH 2-3	YES	YES	NO	YES
	CH 4-5	YES	NO	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-10					
ON	CH 0-1	NO	YES	NO	NO
	CH 1-2	YES	YES	NO	NO
	CH 2-3	YES	YES	NO	NO
	CH 4-5	YES	YES	YES	NO
	CH 5-6	YES	YES	YES	NO
	CH 6-7	YES	YES	YES	NO
	Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-11 OFF	CH 0-1	YES	NO	YES	NO	
011						
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	YES	YES	YES	NO	
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	YES	Channel chosen
	CH 6-7	YES	YES	YES	YES	Channel chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-11					
ON	CH 0-1	NO	NO	NO	NO
	CH 1-2	YES	YES	YES	NO
	CH 2-3	NO	YES	YES	NO
	CH 4-5	YES	YES	YES	NO

CH 5-6	V	YES	YES	NO
CH 6-7	SI	YES	YES	NO
Frequency	50 Hz	150 Hz	250 Hz	Theta

PDTR-12						
OFF	CH 0-1	NO	YES	YES	NO	
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	YES	YES	YES	YES	Channel chosen
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	NO	
	CH 6-7	YES	YES	YES	NO	
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-12						
ON	CH 0-1	YES	YES	YES	YES	Channel chosen
	CH 1-2	YES	YES	YES	YES	Channel chosen
	CH 2-3	YES	YES	YES	YES	Channel chosen
	CH 4-5	YES	YES	YES	NO	
	CH 5-6	YES	YES	YES	NO	
	CH 6-7	YES	YES	YES	NO	
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-13						
OFF	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	YES	YES	YES	NO	
	CH 4-5	YES	NO	YES	NO	
	CH 5-6	YES	YES	NO	YES	
	CH 6-7	YES	YES	YES	YES	Channel chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

PDTR-13						
ON	CH 0-1	YES	YES	YES	NO	
	CH 1-2	YES	YES	YES	NO	
	CH 2-3	NO	YES	YES	NO	
	CH 4-5	YES	YES	YES	YES	Channel chosen
	CH 5-6	YES	YES	YES	YES	Channel chosen
	CH 6-7	YES	YES	YES	YES	Channel chosen
	Frequency	50 Hz	150 Hz	250 Hz	Theta	

Channels chosen	PDTR-2 OFF	CH 6-7
		CH 2-3
	PDTR-4 OFF	CH 5-6
		CH 6-7
		CH 5-6
	PDTR-6 OFF	CH 6-7
	PDTR-8 OFF	CH 5-6
		CH 5-6
	PDTR-11 OFF	CH 6-7
	PDTR-13 OFF	CH 6-7
		CH 1-2
	PDTR-7 ON	CH 2-3
		CH 0-1
	PDTR-12 ON	CH 1-2
		CH 2-3
		CH 4-5
	PDTR-13 ON	CH 5-6
		CH 6-7

	Ū	ō	Ū	ō	Ū	<u>0</u>	Ū	<u>n</u>	Ū	ō	5	7				5	ō	5	ō						
Teta	0,008	294,1	0,016	326	0,014	321,7	0,039	321,2	0,0354	324,2	0,009	331,1	Teta	0,006	312	0,01127	331,1	0,008	327,7	NO	NO	NO	NO	NO	ON
High Beta	0,11	23,23	0,3084	23,72	0,3367	23,23	0,5954	23,72	0,66	23,72	0,1811	23,23	High Beta	06'0	21,25	0,3712	21,25	0,1458	21,25	0,4967	21,75	0,4835	20,26	0,4192	20,26
Low Beta	0,1558	14,83	0,161	15,81	0,2683	16,8	0,1431	15,32	0,3379	16,31	0,087	12,36	Low Beta	0,04851	13,84	0,3316	13,34	0,077	14,33	0,4148	14,83	0,4181	13,84	0,3204	15,32
NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-2	CTN 0.1		CTN12	7-T NIC	C L N D D	C-7 NIC	CTN A E	C-4 NIC	J 1 111.J		2 J N L J	1-9 NIC	PDTR-3		T-O NIC	C T N 1 J	7-T NIC	C C N13	6-7 NIC	L N L	C-4 NIC	CTN E C		CTN 6 7	1-0 NIC
	Ū	ō	Ū	ō	Ū	ō	Ū	~	ī	~	ū	~				Ū	ō	ū	ō						
Teta	0,011	234,8	0,011	238,3	0,009	232,3	0,032	232,8	0,01667	232,8	0,08	230,3	Teta	NO	NO	0,016	355,8	0,0103	343,5	NO	NO	NO	NO	NO	ON
High Beta	0,282	23,23	0,492	23,72	1,271	23,23	1,301	23,72	4,24	23,72	0,312	23,23	High Beta	1,149	21,25	1,494	21,25	1,686	21,25	0,9638	21,75	2,919	20,26	1,251	20,26
Low Beta	0,4124	14,83	0,8099	15,81	2,642	16,8	2,027	15,32	6,234	16,31	0,3686	12,36	Low Beta	2,45	13,84	4,512	13,34	4,128	14,33	2,073	14,83	11,56	13,84	4,308	15,32
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-2	CTN 0.1		CTN 1 2	Z-T NIC	C L N J J		CTN A E	C-4 NIC			L J NLJ		PDTR-3	CTN 0 1		CTN17	Z-T NIC	C C NT3		CTN 4 F	C-4 NIC	S TN F S		CTN C 7	

Appendix 3: Appearance of Low Beta, High Beta and Theta

PDTR-4	OFF	Low Beta	High Beta	Teta		PDTR-4	NO	Low Beta	High Beta	Teta
CTNLO 1	Amplitud	0,1137	0,07	0,008	Ū	CTN 0.1	Amplitud	0,04	0,08	NO
	Frecuencia	17,3	26,69	231,8	ō		Frecuencia	17,3	26,69	NO
C T N 1 J	Amplitud	0,9438	0,1186	0,03192	Ū	C T N 1 J	Amplitud	0,09	0,1639	NO
Z-T NIC	Frecuencia	17,3	29,65	242,7	ō	Z-T NIC	Frecuencia	17,3	29,65	NO
C L N L J	Amplitud	0,4791	0,1082	0,034	Ū	C L N J J	Amplitud	0,06404	0,07111	NO
C-7 NIC	Frecuencia	17,3	27,18	245,1	ō	C-7 NIC	Frecuencia	17,3	27,18	NO
CTNI A E	Amplitud	0,2004	0,1264	NO		CTN A E	Amplitud	0,05676	0,1402	NO
C-4 NIC	Frecuencia	17,79	28,17	NO			Frecuencia	17,79	28,17	NO
CTNIC	Amplitud	0,1602	0,1135	0,02158	ū	CTN E C	Amplitud	0,0945	0,1229	NO
D-C NIC	Frecuencia	17,3	29,65	241,7	ō		Frecuencia	17,3	29,65	NO
CTNIC 7	Amplitud	0,3084	0,1031	0,01257	Ū	CTN C 7	Amplitud	0,07807	0,1463	NO
1-0 NIC	Frecuencia	18,29	28,17	248,6	ō		Frecuencia	18,29	28,17	NO
PDTR-5	OFF	Low Beta	High Beta	Teta		PDTR-5	NO	Low Beta	High Beta	Teta
CTNIO 1	Amplitud	1,93	0,1231	NO		CTN 0.1	Amplitud	1,31	0,1059	NO
	Erocuoncia	10 01	76 60	CN			Erocitopoio	10 01	76 60	CN

NO	Low Beta	High Beta	Teta
Amplitud	1,31	0,1059	NO
Frecuencia	13,84	26,69	NO
Amplitud	0,4912	0,0772	NO
Frecuencia	14,33	26,19	NO
Amplitud	2,435	0,258	NO
Frecuencia	13,84	27,18	NO
Amplitud	BASURA	BASURA	BASURA
Frecuencia	BASURA	BASURA	BASURA
Amplitud	0,3416	0,022	NO
Frecuencia	14,33	28,17	NO
Amplitud	0,1047	0,01571	NO
Frecuencia	14,33	29,65	NO

JESÚS M. ZARRANZ

			ū	7												Ū	<u>0</u>		
Teta	NO	NO	0,027	356,300	0,010	357,100	BASURA	BASURA	NO	ON	ON	NO	Teta	0,006	274,300	0,007	274,200	0,004	783 200
High Beta	0,155	28,17	0,219	25,700	0,065	28,17	BASURA	BASURA	0,002	22,400	0,004	22,240	High Beta	0,016	26,190	0,017	24,710	0,016	76 100
Low Beta	0,073	16,31	0,048	17,300	0,034	16,810	BASURA	BASURA	0,009	11,370	0,009	11,370	Low Beta	0,014	10,870	0,030	10,870	0,050	10 870
NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Eracitancia
PDTR-6	CTM 0.4		CTN11.7	Z-T NIC	C L N L O	2-7 NIC	CTN 4 F	C-4 NIC			C T N C T		PDTR-7	CTM 0.4		CTN117	Z-T NIC		21N 2-3
			ū	~					Ū	~	Ū	<u>~</u>	_			Ū	<u>0</u>		
Teta	ON	ON	0,023	237,200	ON	ON	BASURA	BASURA	0,001	233,800	0,001	238,300	Teta	ON	NO	0,005	231,800	ON	QN
High Beta	0,196	28,17	0,354	25,700	0,076	28,17	BASURA	BASURA	0,005	22,400	0,006	22,240	High Beta	0,032	26,190	660'0	24,710	0,091	76 100
Low Beta	0,7085	16,31	0,199	17,300	0,312	16,810	BASURA	BASURA	0,010	11,370	0,013	11,370	Low Beta	0,163	10,870	1,991	10,870	0,975	10 870
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Eracijancia
PDTR-6	CTALO 1			Z-T NIC	C C N13	2-7 NIC	CTN A F	C-4 NIC					PDTR-7	CTALO 1		C T N 1 J	Z-T NIC		21N 2-3

283,200 BASURA BASURA NO NO NO NO

26,190

10,870

Frecuencia

BASURA BASURA

BASURA BASURA

Amplitud

STN 4-5

NO BASURA

> BASURA BASURA

> BASURA BASURA

Amplitud

26,190

10,870

Frecuencia

BASURA NO NO NO

24,220

10,380

Frecuencia

0,029 25,700

13,340

Frecuencia

0,019

Amplitud

STN 5-6

25,700

13,340

Frecuencia

0,069

0,411

Amplitud

STN 5-6

Frecuencia

STN 4-5

24,220

0,066 10,380

Amplitud Frecuencia

STN 6-7

0,042

Frecuencia

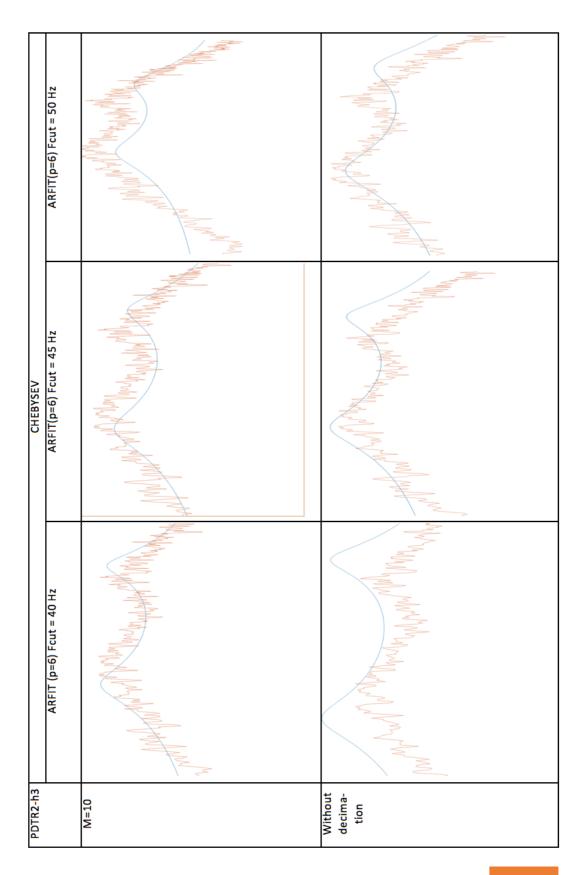
0,025

0,019

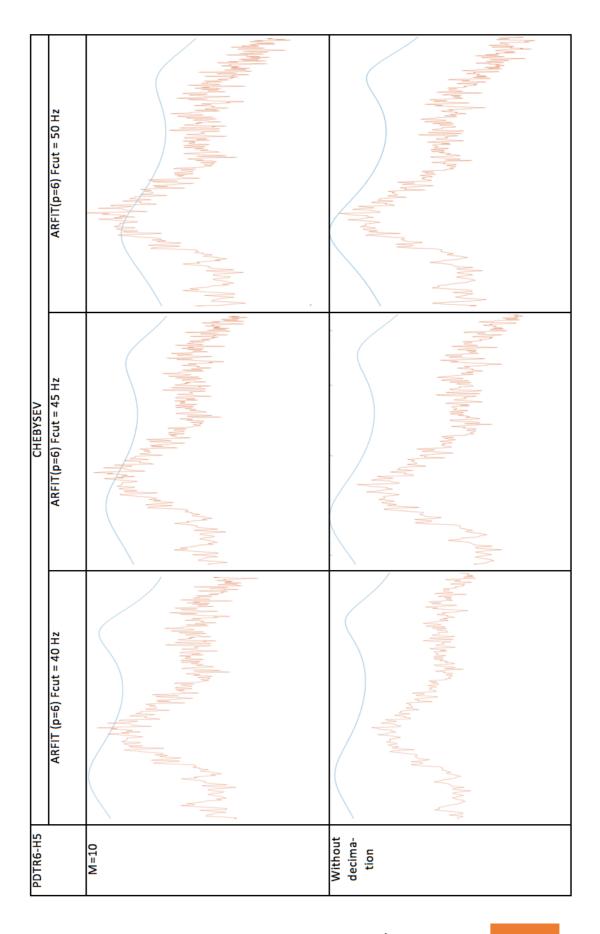
Amplitud

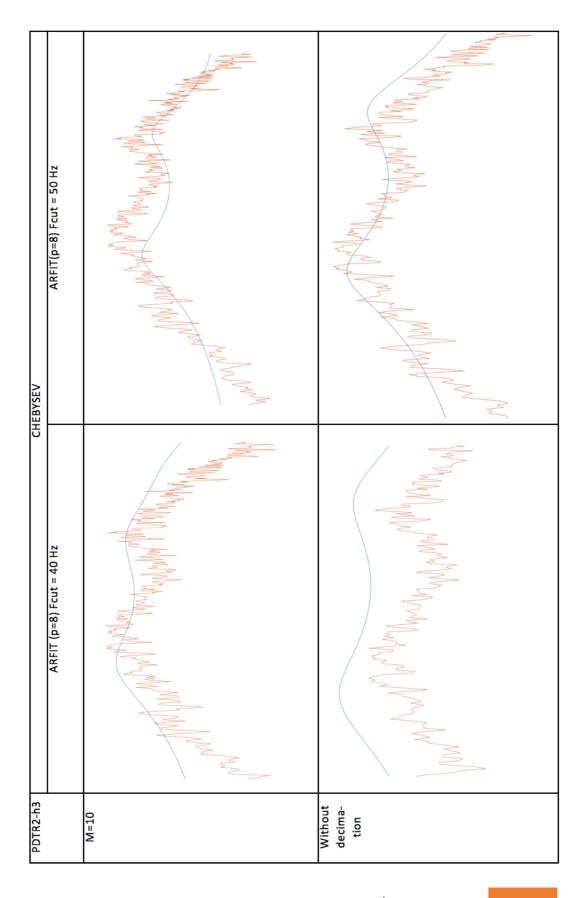
STN 6-7

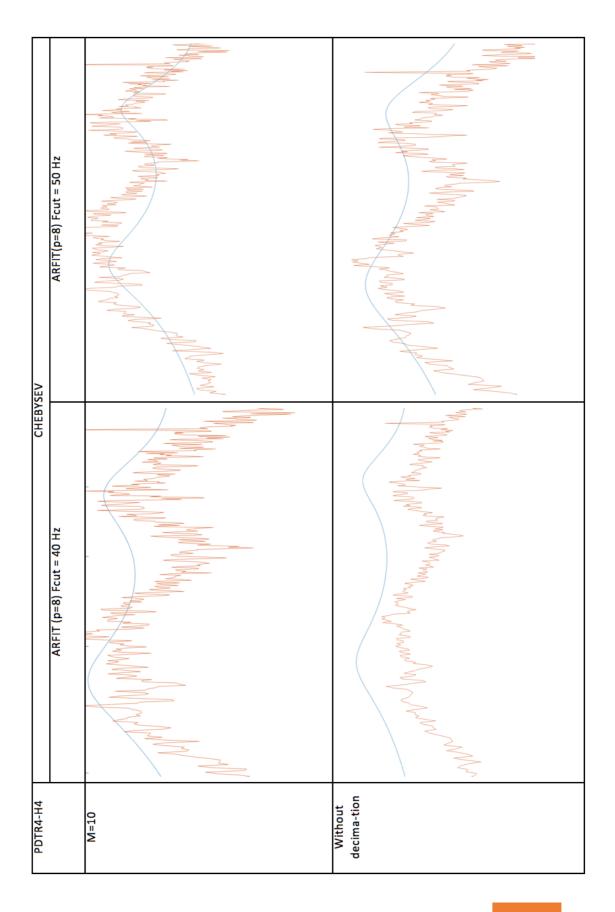
					Ū	ō			Ū	ō	Ū	<u>ה</u>
Teta	0,055	331,400	0,050	341,500	0,012	340,500	0,010	310,000	0,016	317,800	0,008	322,600
High Beta	2,453	26,640	5,017	25,670	0,217	27,130	0,098	24,220	0,242	22,700	0,032	23,250
Low Beta	0,670	15,020	1,406	15,990	0,110	15,020	0,060	12,590	0,200	12,590	0,025	15,990
NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-8	CTN 0.4		C T N 1 J	7-T NIC	C C NT3	C-7 NIC	CTN A E	C-4 NIC	CTN F C		E 2 ML2	1-0 NIC
					Ū	ō			Ū	ō	Ū	ō
Teta	ON	ON	ON	NO	0,013	231,400	NO	NO	0,008	235,900	0,006	232,500
High Beta	0,891	26,640	1,232	25,670	0,072	27,130	0,025	24,220	0,115	22,700	0,035	23,250
Low Beta	2,479	15,020	7,546	15,990	0,372	15,020	0,118	12,590	0,487	12,590	0,417	15,990
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Amplitud Frecuencia		Frecuencia	Amplitud Frecuencia		Amplitud	Frecuencia
PDTR-8	CTN 0.1		C T N 1 J	7-T NIC	C L N J J	C-7 NIC	CTN A E	C-4 NIC	CTNIC	D-C NIC	L J NLJ	1-0 NIC

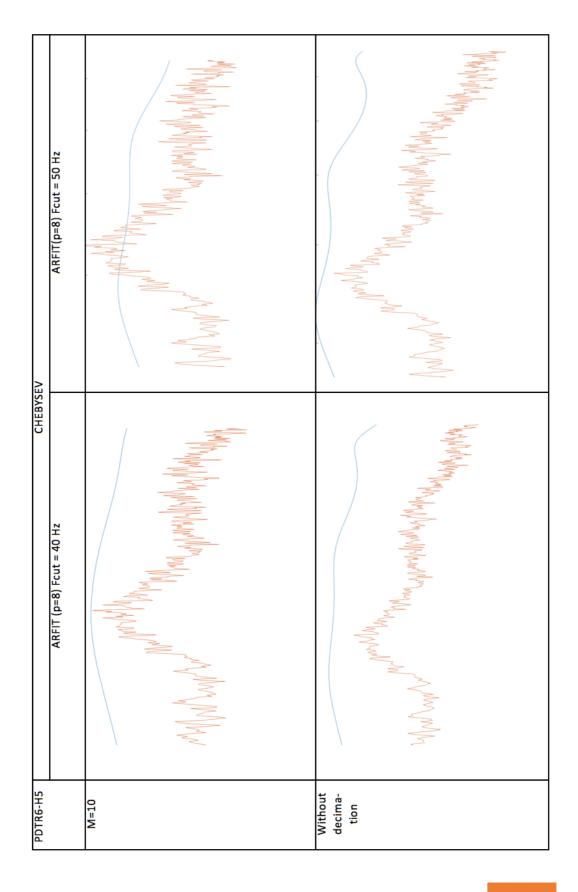

Teta	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
High Beta	0,002	22,400	0,003	25,700	0,002	24,220	0,219	25,700	0,019	22,240	0,007	25,700
Low Beta	0,009	11,860	0,004	14,830	0,006	14,830	0,204	16,800	0,027	12,850	0,011	15,810
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-9			C T N 1 J	7-T NIC	C C N13	STN 2-3			CTN E C		2 J N L J	1-0 NIC

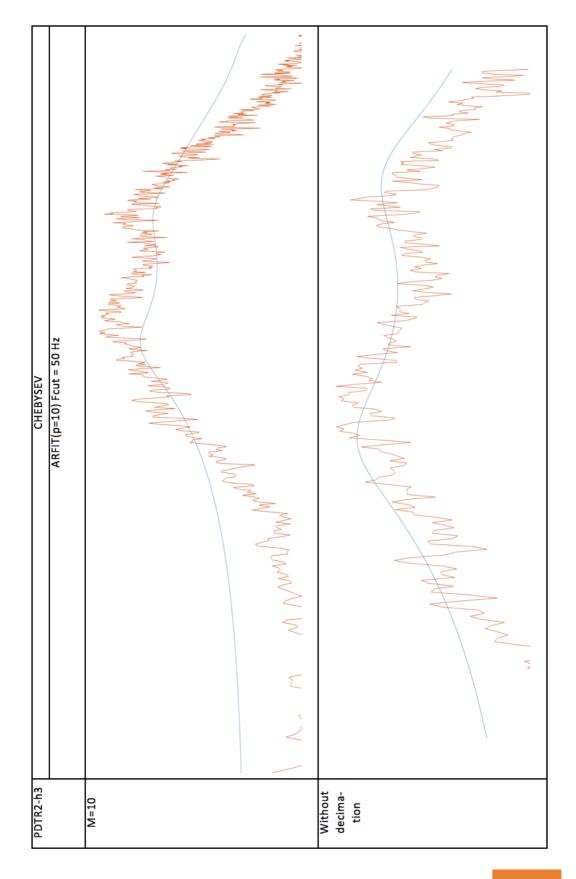

	Ū	ō	Ū	ō										5	7	Ū	ō	ū	<u>ה</u>			ū	ō	J	<u>7</u>
Teta	0,030	303,400	0,030	314,200	ON	NO	0,008	330,900	0,003	340,000	ON	ON	Teta	0,040	323,200	0,071	321,700	0,004	325,300	0,052	319,800	0,041	325,200	0,017	326,100
High Beta	0,213	27,130	0,176	34,520	0,126	29,590	0,014	29,100	0,013	29,100	0,005	27,130	High Beta	0,088	25,700	0,209	28,170	0,022	26,690	0,286	26,190	0,318	27,180	0,094	27,680
Low Beta	0,550	17,760	0,490	17,760	0,383	17,260	0,050	19,240	0,070	19,730	0,011	19,730	Low Beta	0,069	14,830	0,041	15,320	0,017	16,310	0,079	16,310	0,087	16,310	0,034	17,300
NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-10	CTN 0.1		C T N 1 J	7-T NIC	C L N L J	C-7 NIC	CTN A E	C-4 NIC				21 N D-7	PDTR-11	CTN 0.1		C T N 1 J	7-T NIC	C L N L J	21N 2-3	CTNI A F	C-4 NIC			CTNLC 7	1-0 NIC
	Ū	ō	Ū	ō	Ū	ō								Ū	7	Ū	ō	ū	<u>0</u>			Ū	ō	Ū	7
Teta	0,020	273,100	0,030	252,000	0,080	252,000	NO	NO	NO	NO	NO	N	Teta	0,008	279,400	0,007	344,500	0,002	240,700	NO	NO	0,033	245,600	0,021	241,700
High Beta	0,184	27,130	0,615	34,520	0,176	29,590	0,022	29,100	0,015	29,100	0,005	27,130	High Beta	0,095	25,700	0,172	28,170	0,025	26,690	0,222	26,190	0,316	27,180	0,122	27,680
Low Beta	6,630	17,760	38,530	17,760	3,107	17,260	1,128	19,240	0,170	19,730	0,028	19,730	Low Beta	1,405	14,830	3,162	15,320	0,359	16,310	0,278	16,310	4,013	16,310	1,998	17,300
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-10	CTN 0.1		CTN 1 2	Z-T NIC	C C NT3	C-7 NIC	CTN A F	C-4 NIC	U 1 141-0				PDTR-11	CTN 0.1		C T N 1 D	Z-T NIC	C C N13	6-7 NIC	L V L	C-4 NIC	CTN F C		CTN C 7	1-0 NIC

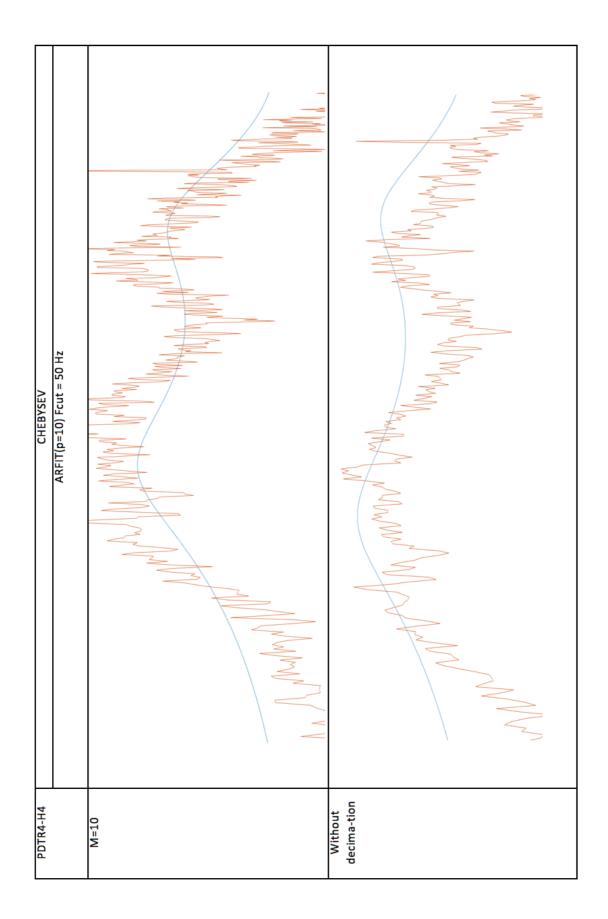

JESÚS M. ZARRANZ

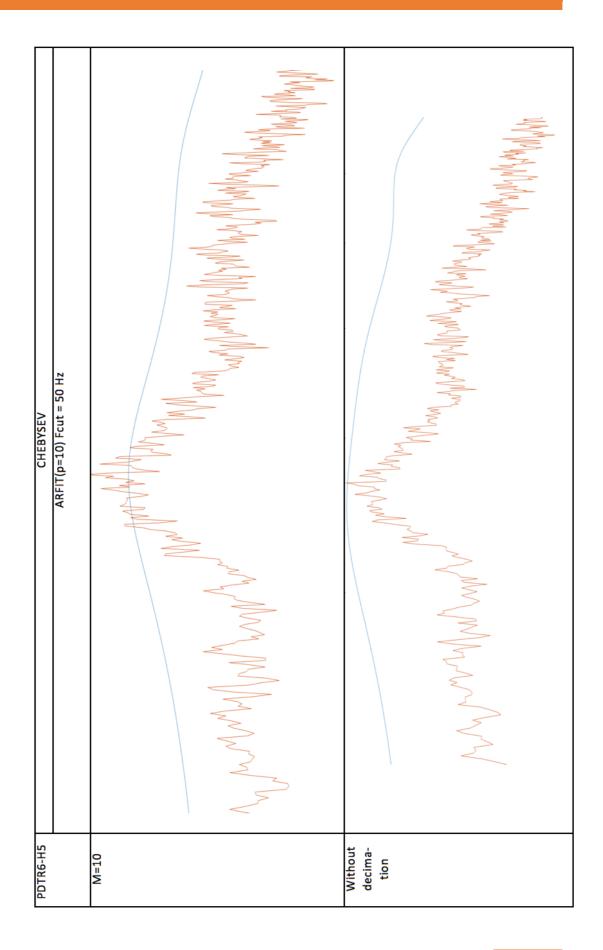

	Ū	ō	5	ō	5	ō																5	<u>ה</u>	Ū	<u>n</u>
Teta	0,048	278,200	0,077	267,400	0,039	287,100	NO	ON	ON	ON	ON	ON	Teta	0,040	296,000	0,007	319,400	0,006	314,800	0,047	279,200	0,046	285,700	0,013	291,100
High Beta	0,279	26,190	0,235	26,690	0,204	26,690	0,013	24,710	0,011	25,200	0,011	20,760	High Beta	0,050	23,720	0,104	23,230	0,133	23,720	0,233	23,230	0,146	30,150	0,030	30,150
Low Beta	0,104	13,340	0,123	13,340	0,204	17,790	0,021	13,840	0,011	17,790	0,010	18,780	Low Beta	0,050	16,310	0,058	11,860	0,050	11,860	0,223	15,810	0,154	16,310	0,050	16,310
NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	NO	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-12	CTNIO 1		CTAL 1 7	7-T NIC	C L N J J	C-7 NIC	CTNI A E	C-4 NIC	CTALE C		C TALC 7	1-0 NIC	PDTR-13	CTN 0.1		C T NI 1 D	7-T NIC	C L N J J	5-7 NIC	CTNI A E		CTNLE C		CTNIC 7	
	Ū	ō	Ū	ō	Ū	ō																Ū	ō	Ū	n
Teta	0,024	269,400	0,034	288,600	0,180	234,800	NO	ON	ON	ON	NO	NO	Teta	NO	NO	NO	NO	NO	NO	NO	NO	0,079	234,300	0,049	232,200
High Beta	0,249	26,190	0,355	26,690	0,606	26,690	0,014	24,710	0,118	25,200	0,010	20,760	High Beta	0,049	23,720	0,085	23,230	0,077	23,720	0,330	23,230	0,306	30,150	0,154	30,150
Low Beta	2,273	13,340	5,737	13,340	17,540	17,790	0,057	13,840	0,030	17,790	0,023	18,780	Low Beta	0,384	16,310	4,334	11,860	4,334	11,860	2,191	15,810	18,120	16,310	15,700	16,310
OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	OFF	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia	Amplitud	Frecuencia
PDTR-12	CTN 0.1		C T N 1 J	7-T NIC	C C NTO	C-7 NIC	CTNI A E	C-4 NIC	CTNLE C		L J NLJ	1-9 NIC	PDTR-13	CTN 0.1		CTN11 7	7-T NIC	C L N L J	6-7 NIC	CTNI A E	C-4 NIC	CTNIE C		CTNIC 7	

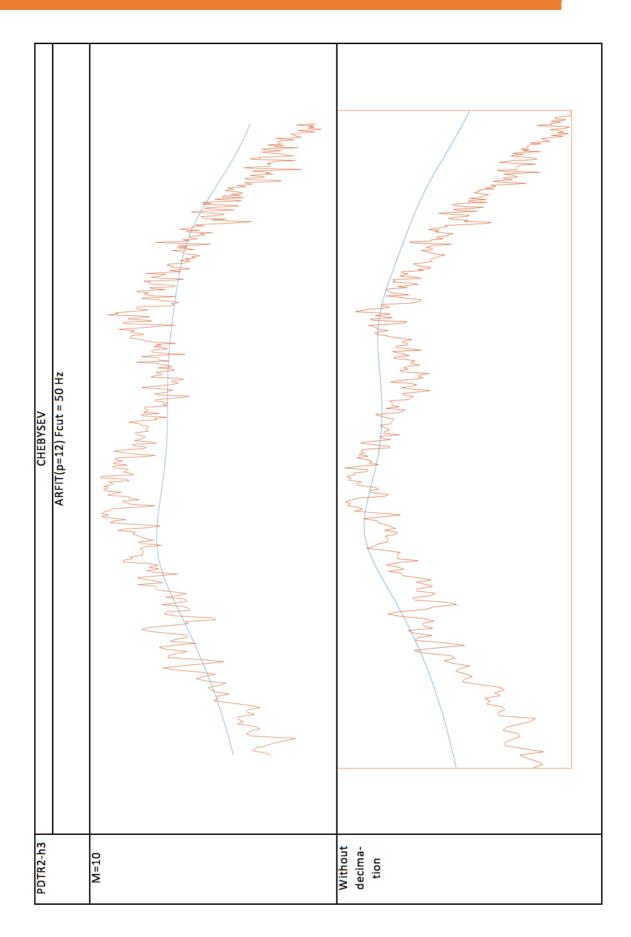

Appendix 4: Decision of M for Decimation CHEBYSEV

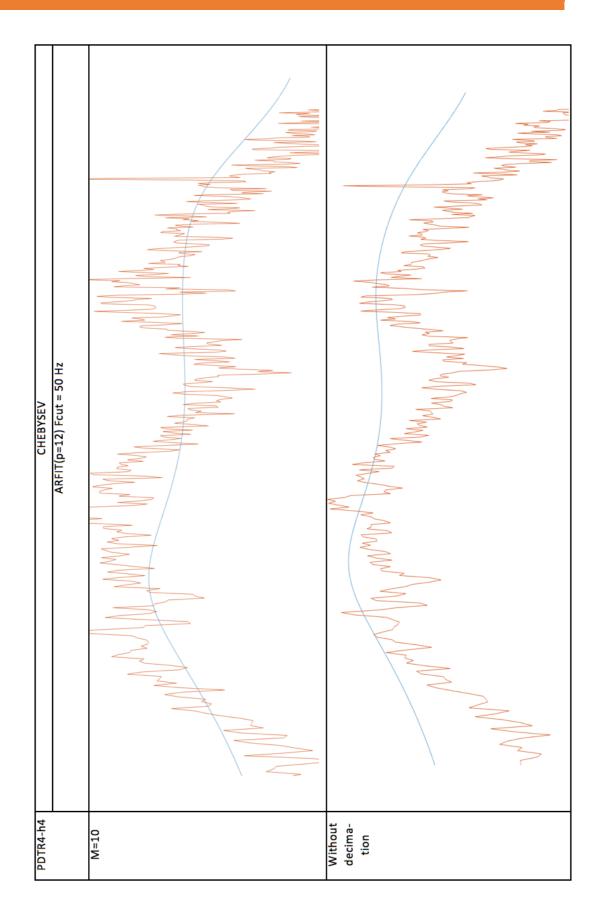


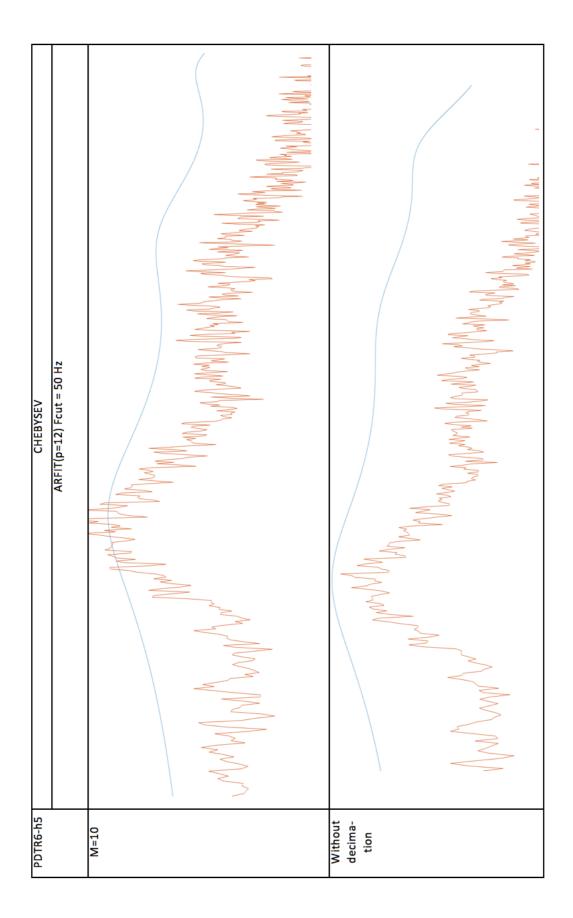


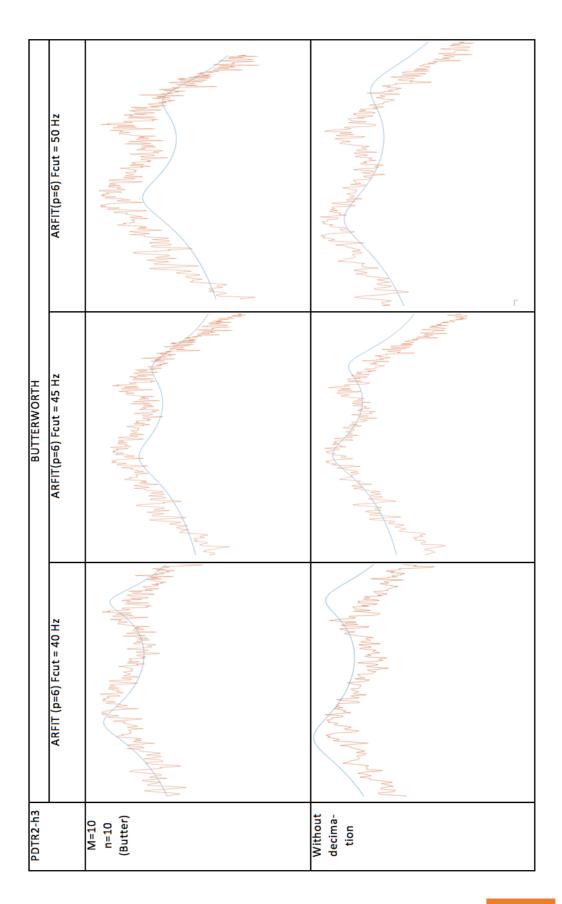


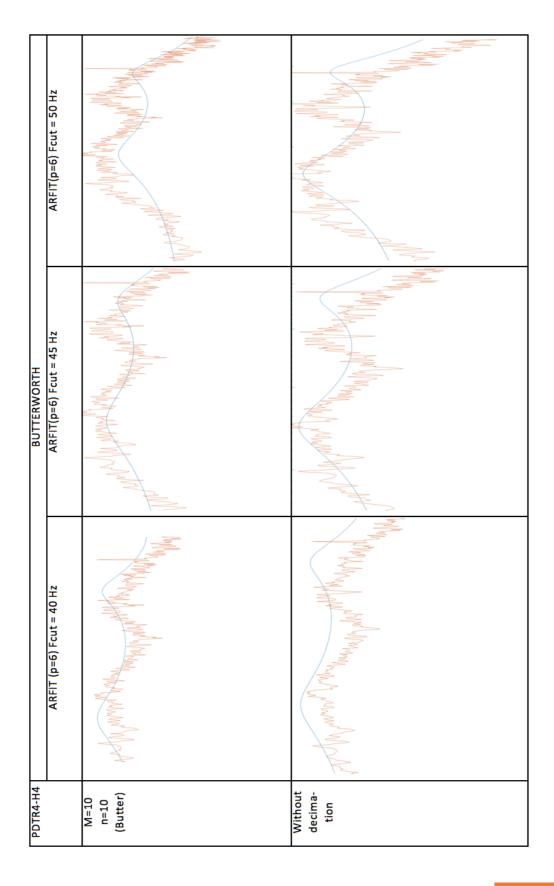


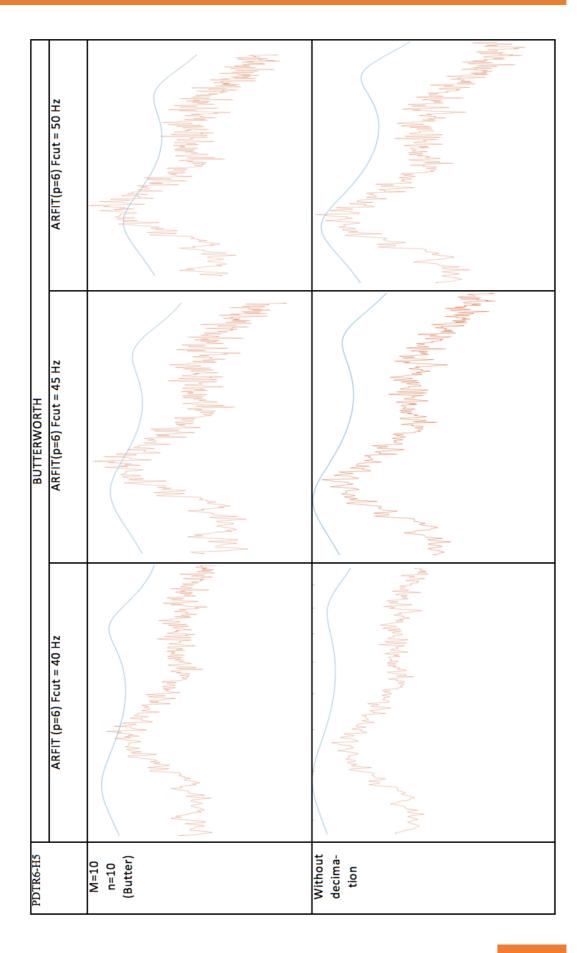


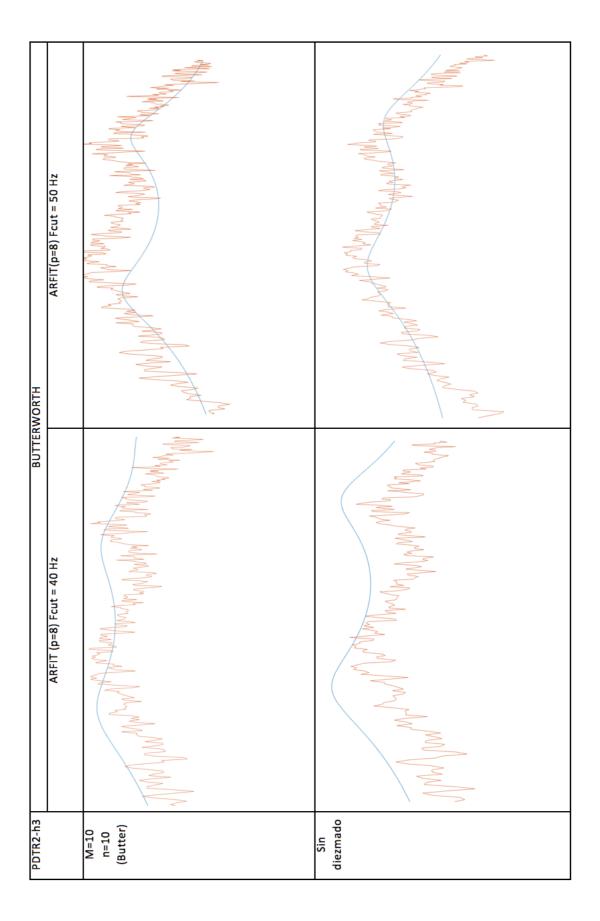


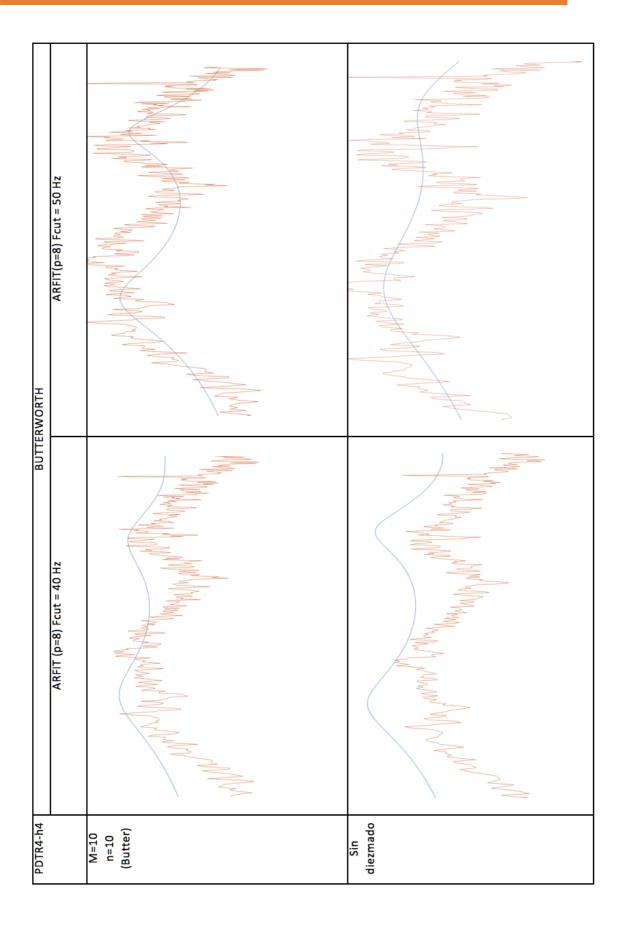

CHARACTERIZATION OF CEREBRAL ACTIVITY IN PD'S PATIENTS THROUGH AN AR MODEL

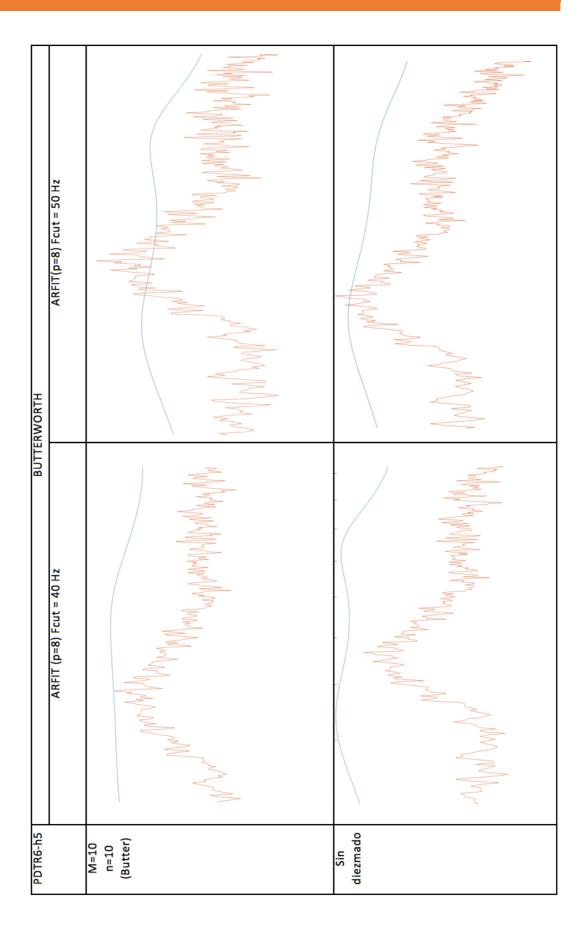


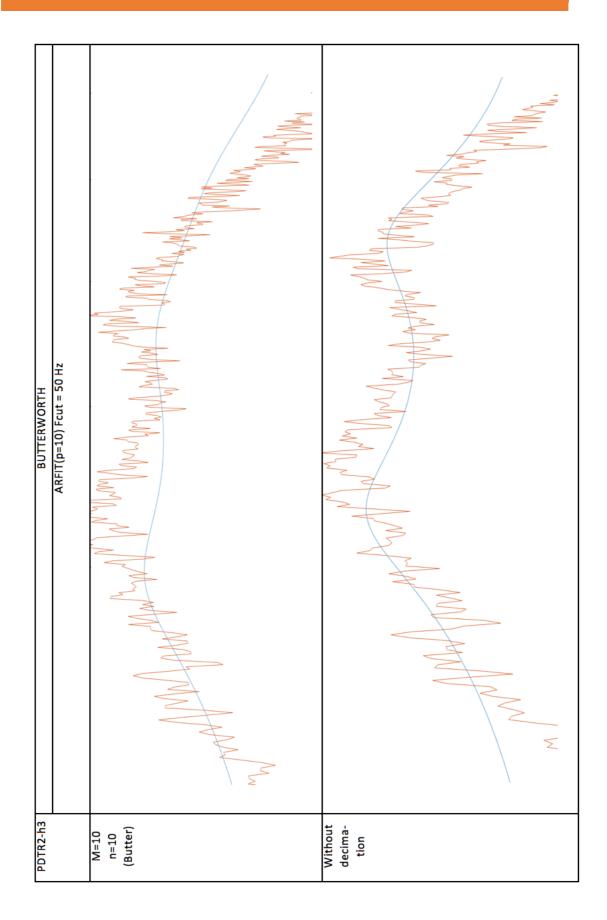


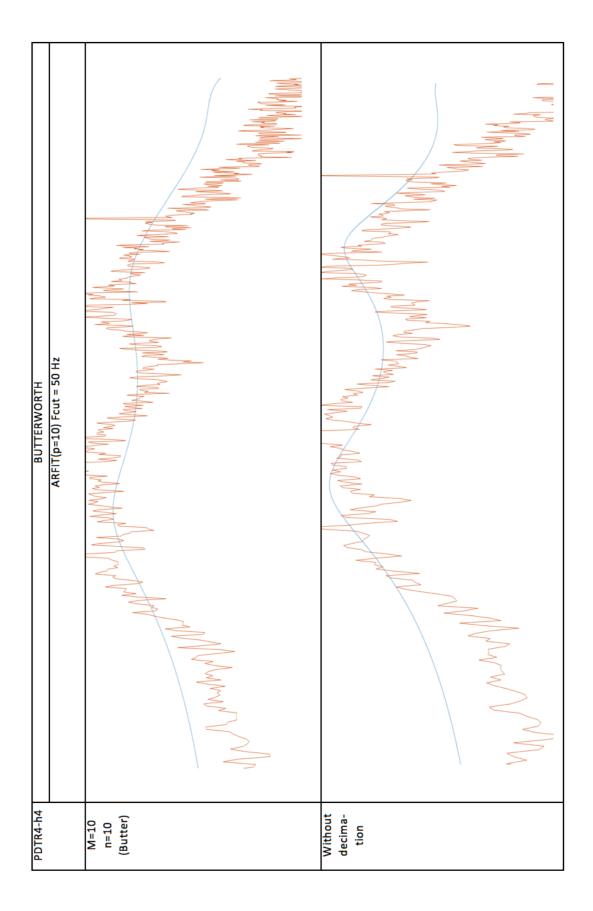


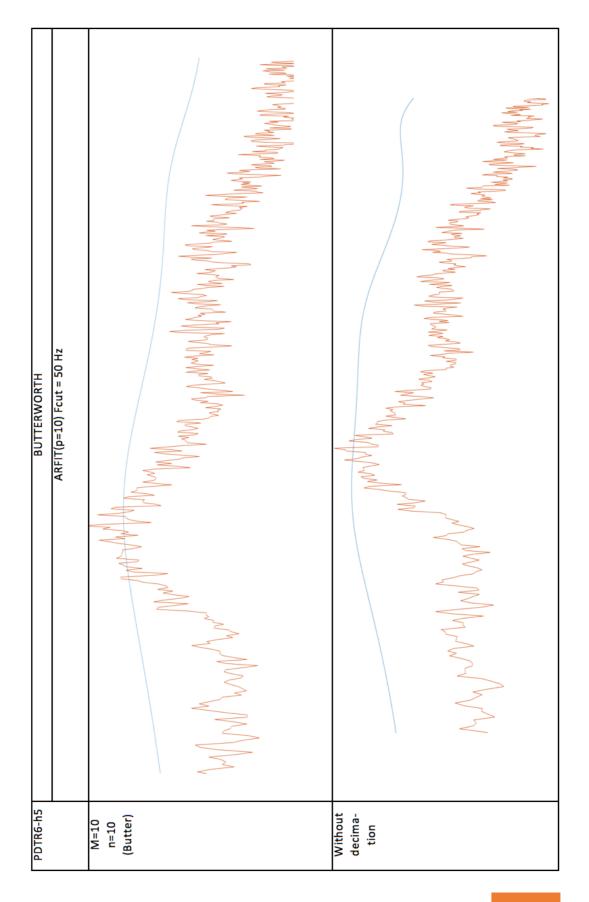


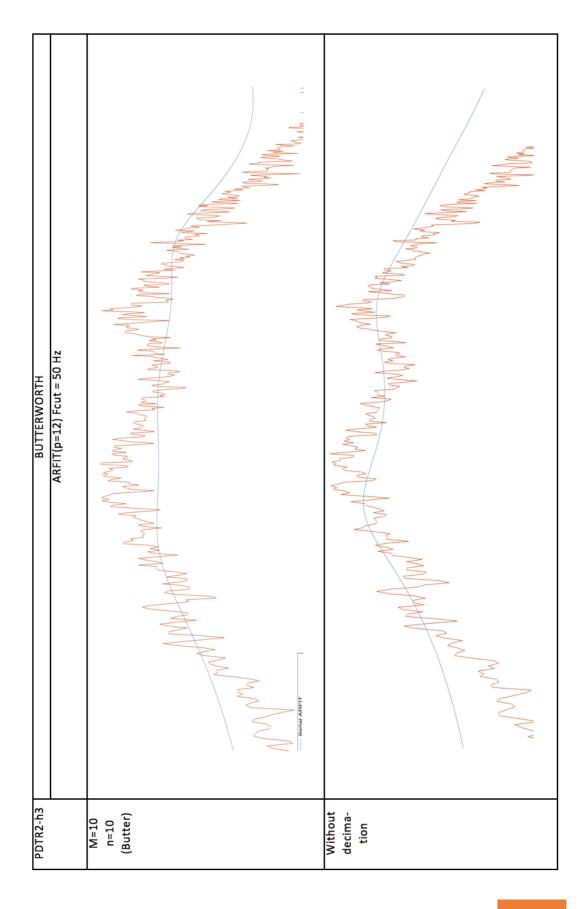

BUTTERWORTH

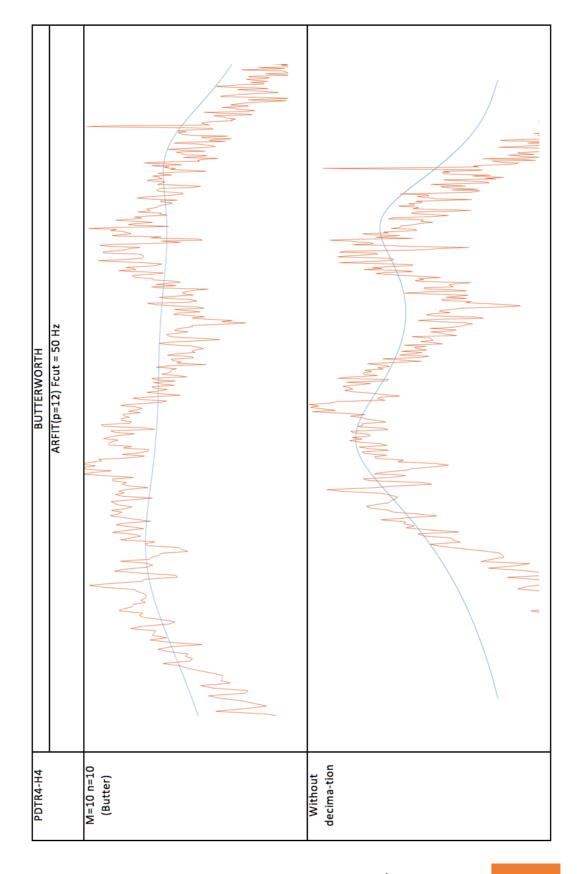


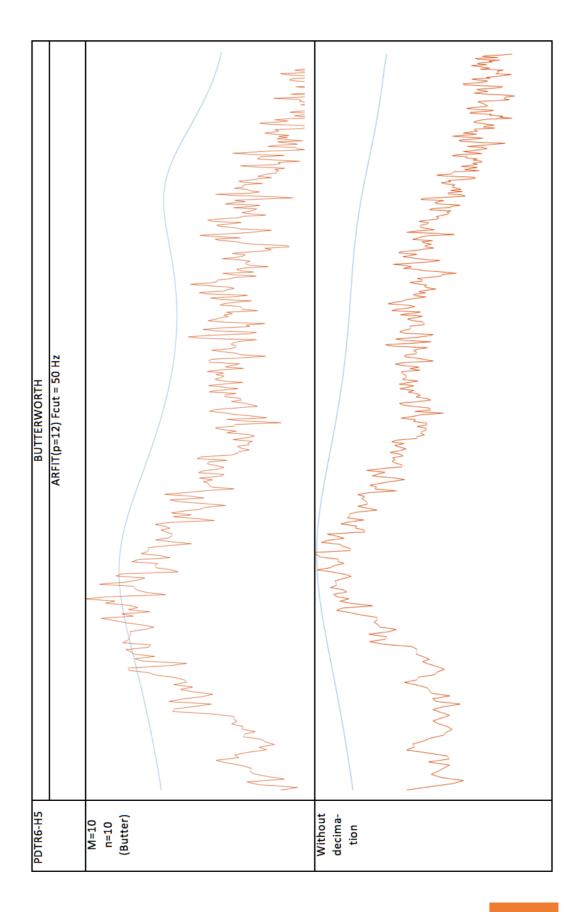












Appendix 5: Values obtained for get the epsilon produced by ARFIT

AR(P=10)

OFF STATE

			PATIENT 2 O		ſ	LOW	HIGH	LOW	HIGH		
PDTR2	PDTR2 REAL FREQUENCY VALUES		ARFIT FREQUENCY VALUES		EPSILON LOW	EPSILON HIGH		EPSILON	EPSILON	LOG RATIO	LOG RATIO
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA				RATIO	RATIO	KATIO	RATIO
STN 6-7	12,36	23,23	19,08	34,62	6,72	11,39	[1,54	1,49	0,19	0,17
STN 5-6	16,31	23,72	18,77	33,57	2,46	9,85	[1,15	1,42	0,06	0,15
STN 4-5	15,32	23,23	19,32	33,47	4,00	10,24	[1,26	1,44	0,10	0,16
STN 2-3	16,80	23,72	18,84	32,96	2,04	9,24	[1,12	1,39	0,05	0,14
STN 1-2	15,81	23,72	16,97	31,75	1,16	8,03	[1,07	1,34	0,03	0,13
STN 0-1	14,83	23,23	17,12	31,78	2,29	8,55	[1,15	1,37	0,06	0,14

	PATIENT 3 OFF STATE										
PDTR2	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDIKZ	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	15,32	20,26	18,25	34,03	2,93	13,77					
STN 5-6	13,84	20,26	18,56	34,18	4,72	13,92					
STN 4-5	14,83	21,75	18,47	34,14	3,64	12,39					
STN 2-3	14,33	21,25	18,69	33,94	4,36	12,69					
STN 1-2	13,34	21,25	18,21	33,84	4,87	12,59					
STN 0-1	13,84	21,25	18,70	33,91	4,86	12,66					

	1,15	1,42	0,06	0,15
	1,26	1,44	0,10	0,16
	1,12	1,39	0,05	0,14
[1,07	1,34	0,03	0,13
	1,15	1,37	0,06	0,14
	LOW	HIGH	LOW	HIGH
	EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
	1,19	1,68	0,08	0,23
[1,34	1,69	0,13	0,23
[1,25	1,57	0,10	0,20
[1,30	1,60	0,12	0,20
[1,37	1,59	0,14	0,20
[1,35	1,60	0,13	0,20

	PATIENT 3 OFF STATE										
PDTR2	REAL FREQUENCY		ARFIT FR	EQUENCY							
FDTRZ	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	15,32	20,26	18,25	34,03	2,93	13,77					
STN 5-6	13,84	20,26	18,56	34,18	4,72	13,92					
STN 4-5	14,83	21,75	18,47	34,14	3,64	12,39					
STN 2-3	14,33	21,25	18,69	33,94	4,36	12,69					
STN 1-2	13,34	21,25	18,21	33,84	4,87	12,59					
STN 0-1	13,84	21,25	18,70	33,91	4,86	12,66					

STN 0-1	13,84	21,25	18,70	33,91	4,86	12,66	1,3
			PATIENT 4 O	FF STATE			LOV
PDTR2	REAL FR	EQUENCY	ARFIT FR	EQUENCY			
FDTRZ	VA	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH	EPSIL
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA			RAT
STN 6-7	18,29	28,17	16,73	32,57	1,56	4,40	0,9
STN 5-6	17,30	29,65	17,92	33,66	0,62	4,01	1,0
STN 4-5	17,79	28,17	17,90	34,57	0,11	6,40	1,0
STN 2-3	17,30	27,18	18,10	34,19	0,80	7,01	1,0
STN 1-2	17,30	29,65	16,65	33,06	0,65	3,41	0,9
STN 0-1	17,30	26,69	18,23	34,46	0,93	7,77	1,0

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
1,19	1,68	0,08	0,23
1,34	1,69	0,13	0,23
1,25	1,57	0,10	0,20
1,30	1,60	0,12	0,20
1,37	1,59	0,14	0,20
1,35	1,60	0,13	0,20

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,91	1,16	-0,04	0,06
1,04	1,14	0,02	0,06
1,01	1,23	0,00	0,09
1,05	1,26	0,02	0,10
0,96	1,12	-0,02	0,05
1,05	1,29	0,02	0,11

CHARACTERIZATION OF CEREBRAL ACTIVITY IN PD'S PATIENTS THROUGH AN AR MODEL

			PATIENT 5 O	FF STATE		
PDTR5	REAL FR	EQUENCY	ARFIT FR	EQUENCY		
PUIKS	VAI	LUES	VALUES		EPSILON LOW	EPSILON HIGH
CHANNEL	LOW BETA HIGH BETA		LOW BETA	HIGH BETA		
STN 6-7	14,33	29,65	16,50	32,58	2,17	2,93
STN 5-6	14,33	28,17	13,95	31,47	0,38	3,30
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA
STN 2-3	13,84	27,18	19,22	32,80	5,38	5,62
STN 1-2	14,33	26,19	19,37	34,12	5,04	7,93
STN 0-1	13,84	26,69	16,42	31,17	2,58	4,48

	PATIENT 6 OFF STATE										
PDTR6	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDIKO	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	16,31	22,24	17,89	34,09	1,58	11,85					
STN 5-6	17,30	22,40	17,98	34,30	0,68	11,90					
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA					
STN 2-3	16,81	28,17	17,16	32,75	0,35	4,58					
STN 1-2	11,37	25,70	19,82	35,18	8,45	9,48					
STN 0-1	11,37	28,17	12,39	31,13	1,02	2,96					

	PATIENT 7 OFF STATE										
PDTR7	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDIK/	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	10,38	24,22	19,47	31,71	9,09	7,49					
STN 5-6	13,34	25,70	19,65	31,67	6,31	5,97					
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA					
STN 2-3	10,87	26,19	19,10	33,90	8,23	7,71					
STN 1-2	10,87	24,71	19,07	33,97	8,20	9,26					
STN 0-1	10,87	26,19	19,46	36,19	8,59	10,00					

	PATIENT 8 OFF STATE										
			PATIENT 8 0	FFSIAIE							
PDTR8	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDIKo	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	15,99	23,25	17,98	33,46	1,99	10,21					
STN 5-6	12,59	22,70	17,44	31,84	4,85	9,14					
STN 4-5	12,59	24,22	16,97	33,23	4,38	9,01					
STN 2-3	15,02	27,13	17,55	32,75	2,53	5,62					
STN 1-2	15,99	25,67	17,92	32,29	1,93	6,62					
STN 0-1	15,02	26,64	18,61	32,24	3,59	5,60					

PATIENT 9 OFF STATE							
PDTR9	REAL FREQUENCY		ARFIT FREQUENCY				
	VALUES		VALUES		EPSILON LOW	EPSILON HIGH	
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA			
STN 6-7	15,81	25,70	18,30	35,06	2,49	9,36	
STN 5-6	12,85	22,24	18,13	34,15	5,28	11,91	
STN 4-5	16,80	25,70	17,68	32,76	0,88	7,06	
STN 2-3	14,83	24,22	17,45	34,51	2,62	10,29	
STN 1-2	14,83	25,70	18,04	34,67	3,21	8,97	
STN 0-1	11,86	22,40	17,59	34,42	5,73	12,02	

	PATIENT 10 OFF STATE						
PDTR10	REAL FREQUENCY		ARFIT FREQUENCY				
	VALUES		VALUES		EPSILON LOW	EPSILON HIGH	
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA			
STN 6-7	19,73	27,13	17,72	35,46	2,01	8,33	
STN 5-6	19,73	29,10	16,94	34,80	2,79	5,70	
STN 4-5	19,24	29,10	17,01	35,13	2,23	6,03	
STN 2-3	17,26	29,59	17,17	34,62	0,09	5,03	
STN 1-2	17,76	34,52	16,44	34,14	1,32	0,38	
STN 0-1	17,76	27,13	16,84	34,44	0,92	7,31	

LOW HIGH LOW H	ligh
LOG L	.0G
EPSILON EPSILON RATIO	ATIO
RATIO RATIO	
),04
RAD RAD F),05 3AD
BAD DATA	ATA
),08
),11
1,19 1,17 0,07 0),07
LOW HIGH LOW H	ligh
LOG	.OG
EPSILON EPSILON RATIO	ΑΤΙΟ
RATIO RATIO RATIO 1,10 1,53 0,04 0),19
),19),19
BAD BAD F	BAD
DATA BAD DATA DATA D	ATA
1,02 1,16 0,01 0),07
),14
1,09 1,11 0,04 0),04
LOW HIGH LOW H	IIGH
	.0G
RATIO RATIO RATIO	ATIO
RATIO RATIO RATIO RATIO 1,88 1,31 0,27 0	ATIO),12
RATIO RATIO RATIO RATIO RATIO 1,88 1,31 0,27 0 1,47 1,23 0,17 0),12),09
RATIO RATIO <th< td=""><td>),12),09 3AD</td></th<>),12),09 3AD
RATIO RATIO <th< td=""><td>),12),09 BAD ATA</td></th<>),12),09 BAD ATA
RATIO RATIO <th< td=""><td>),12),09 3AD ATA),11</td></th<>),12),09 3AD ATA),11
RATIO TO T	0,12 0,09 3AD ATA 0,11 0,14
RATIO RATIO <th< td=""><td>),12),09 3AD ATA),11</td></th<>),12),09 3AD ATA),11
RATIO TO 1,47 1,23 0,17 0 C D),12),09 3AD ATA),11),14),14
RATIO TO T	0,12 0,09 ATA 0,11 0,14 0,14
RATIO TO THE CONSTRAINT OF COMPACT OF CO	0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 .0G ATIO</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 .0G ATIO
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 .0G ATIO 0,16</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 .0G ATIO 0,16
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 IIGH .OG ATIO 0,16 0,15</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 IIGH .OG ATIO 0,16 0,15
RATIO RATIO <th< td=""><td>0,12 0,09 3AD 0,11 0,14 0,14 0,14 .OG ATIO 0,16 0,15 0,14</td></th<>	0,12 0,09 3AD 0,11 0,14 0,14 0,14 .OG ATIO 0,16 0,15 0,14
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,14 0,16 0,15 0,16 0,15 0,14 0,08</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,14 0,16 0,15 0,16 0,15 0,14 0,08
RATIO RATIO <th< td=""><td>),12),09 ATA),11),14),14),14),14),14),14),15),15),15),10</td></th<>),12),09 ATA),11),14),14),14),14),14),14),15),15),15),10
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,14 0,16 0,15 0,16 0,15 0,14 0,08</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,14 0,16 0,15 0,16 0,15 0,14 0,08
RATIO RATIO <th< td=""><td>),12),09 ATA),11),14),14),14),14),14),14),15),15),15),10</td></th<>),12),09 ATA),11),14),14),14),14),14),14),15),15),15),10
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,10 0,10 0,10 0,10 0,10 0,10 0,11 0,08 0</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,10 0,10 0,10 0,10 0,10 0,10 0,11 0,08 0
RATIO RATIO <th< td=""><td>),12 ,,09 ATA),11),14),14),14 ,15 ,11 ,15 ,,14),08),10 0,08</td></th<>),12 ,,09 ATA),11),14),14),14 ,15 ,11 ,15 ,,14),08),10 0,08
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,16 0,15 0,15 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,09</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,16 0,15 0,15 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,09
RATIO RATIO <th< td=""><td>0,12 0,09 0,07 0,11 0,14 0,14 0,14 0,14 0,14 0,14 0,14</td></th<>	0,12 0,09 0,07 0,11 0,14 0,14 0,14 0,14 0,14 0,14 0,14
RATIO RATIO <th< td=""><td>0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,16 0,15 0,15 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,09</td></th<>	0,12 0,09 ATA 0,11 0,14 0,14 0,14 0,14 0,16 0,15 0,15 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,08 0,10 0,09

-,	-,	-,	-,
1,22	1,35	0,09	0,13
1,48	1,54	0,17	0,19
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,90	1,31	-0,05	0,12
0,86	1,20	-0,07	0,08
0,88	1,21	-0,05	0,08
0,99	1,17	0,00	0,07
0,93	0,99	-0,03	0,00
0,95	1,27	-0,02	0,10

1,42

0,07

0,15

1,18

	PATIENT 11 OFF STATE										
DDTD11	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDTR11	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	17,30	27,68	15,67	31,98	1,63	4,30					
STN 5-6	16,31	27,18	14,76	30,77	1,55	3,59					
STN 4-5	16,31	26,19	19,44	34,88	3,13	8,69					
STN 2-3	16,31	26,69	13,66	31,69	2,65	5,00					
STN 1-2	15,32	28,17	15,91	30,98	0,59	2,81					
STN 0-1	14,83	25,70	16,32	31,94	1,49	6,24					

PATIENT 12 OFF STATE										
PDTR12	REAL FR	EQUENCY	ARFIT FREQUENCY							
PDIKIZ	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	18,78	20,76	17,92	34,99	0,86	14,23				
STN 5-6	17,79	25,20	17,92	35,03	0,13	9,83				
STN 4-5	13,84	24,71	18,30	35,22	4,46	10,51				
STN 2-3	17,79	26,69	17,41	33,08	0,38	6,39				
STN 1-2	13,34	26,69	18,69	33,29	5,35	6,60				
STN 0-1	13.34	26.19	18.63	33.31	5.29	7.12				

	PATIENT 13 OFF STATE									
	REAL FR	EQUENCY	ARFIT FR	ARFIT FREQUENCY						
PDTR13	VAL	LUES	VAL	.UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	16,31	30,15	16,97	33,28	0,66	3,13				
STN 5-6	16,31	30,15	17,11	33,53	0,80	3,38				
STN 4-5	15,81	23,23	17,53	33,98	1,72	10,75				
STN 2-3	11,86	23,72	16,89	32,40	5,03	8,68				
STN 1-2	11,86	23,23	16,94	31,54	5,08	8,31				
STN 0-1	16,31	23,72	16,28	32,55	0,03	8,83				

LOW	HIGH	LOW	HIGH
LUW	LOW HIGH		пюп
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,91	1,16	-0,04	0,06
0,90	1,13	-0,04	0,05
1,19	1,33	0,08	0,12
0,84	1,19	-0,08	0,07
1,04	1,10	0,02	0,04
1,10	1,24	0,04	0,09
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,95	1,69	-0,02	0,23
1,01	1,39	0,00	0,14
1,32	1,43	0,12	0,15
0,98	1,24	-0,01	0,09
1,40	1,25	0,15	0,10
1,40	1,27	0,15	0,10
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	log Ratio
1,04	1,10	0,02	0,04
1,05	1,11	0,02	0,05
1,11	1,46	0,04	0,17
1,42	1,37	0,15	0,14
1,43	1,36	0,15	0,13
1,00	1,37	0,00	0,14

ON STATE

	PATIENT 2 ON STATE									
PDTR2	REAL FR	EQUENCY	ARFIT FR	EQUENCY		LOW EPSILON HIGH				
PDIKZ	VAL	UES	VAL	UES	EPSILON LOW					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	12,36	23,23	18,93	35,86	6,57	12,63				
STN 5-6	16,31	23,72	18,63	34,29	2,32	10,57				
STN 4-5	15,32	23,23	19,17	35,17	3,85	11,94				
STN 2-3	16,80	23,72	18,52	33,53	1,72	9,81				
STN 1-2	15,81	23,72	18,44	33,33	2,63	9,61				
STN 0-1	14,83	23,23	17,97	31,65	3,14	8,42				

	PATIENT 3 ON STATE									
DDTDD	REAL FR	EQUENCY	ARFIT FR	EQUENCY						
PDTR3	VAL	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	15,32	20,26	17,87	33,62	2,55	13,36				
STN 5-6	13,84	20,26	18,01	34,17	4,17	13,91				
STN 4-5	14,83	21,75	18,05	34,11	3,22	12,36				
STN 2-3	14,33	21,25	18,27	34,32	3,94	13,07				
STN 1-2	13,34	21,25	18,06	33,82	4,72	12,57				
STN 0-1	13,84	21,25	18,56	35,18	4,72	13,93				

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	log Ratio
1,53	1,54	0,19	0,19
1,14	1,45	0,06	0,16
1,25	1,51	0,10	0,18
1,10	1,41	0,04	0,15
1,17	1,41	0,07	0,15
1,21	1,36	0,08	0,13

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	log Ratio
1,17	1,66	0,07	0,22
1,30	1,69	0,11	0,23
1,22	1,57	0,09	0,20
1,27	1,62	0,11	0,21
1,35	1,59	0,13	0,20
1,34	1,66	0,13	0,22

	PATIENT 4 ON STATE										
PDTR4	REAL FR	EQUENCY	ARFIT FREQUENCY								
PD1R4	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	18,29	28,17	18,24	34,11	0,05	5,94					
STN 5-6	17,30	29,65	18,26	33,64	0,96	3,99					
STN 4-5	17,79	28,17	18,52	35,64	0,73	7,47					
STN 2-3	17,30	27,18	18,59	34,28	1,29	7,10					
STN 1-2	17,30	29,65	18,16	33,45	0,86	3,80					
STN 0-1	17,30	26,69	18,72	35,05	1,42	8,36					

LOW	HIGH	LOW	HIGH
		LOG	LOG
EPSILON	EPSILON	RATIO	RATIO
RATIO	RATIO		
1,00	1,21	0,00	0,08
1,06	1,13	0,02	0,05
1,04	1,27	0,02	0,10
1,07	1,26	0,03	0,10
1,05	1,13	0,02	0,05
1,08	1,31	0,03	0,12
LOW	HIGH	LOW	HIGH
		LOG	LOG
EPSILON	EPSILON	RATIO	RATIO
RATIO	RATIO		
1,25	1,13	0,10	0,05
1,11	1,15	0,05	0,06
BAD	BAD DATA	BAD	BAD
DATA	1 22	DATA	DATA
1,37	1,22	0,14	0,09
1,33	1,32	0,13	0,12
1,25	1,20	0,10	0,08
LOW	HIGH	LOW	HIGH
LOW	пюп	LOW	пібп
EPSILON	EPSILON	LOG	LOG
LE SILON		RATIO	RATIO
RATIO	RATIO		
RATIO 1.13	RATIO 1.62	0.05	0.21
1,13	1,62	0,05	0,21
	1,62 1,57	0,05 0,02 BAD	0,20
1,13 1,05	1,62	0,02	
1,13 1,05 BAD	1,62 1,57	0,02 BAD	0,20 BAD
1,13 1,05 BAD DATA	1,62 1,57 BAD DATA	0,02 BAD DATA	0,20 BAD DATA
1,13 1,05 BAD DATA 1,13	1,62 1,57 BAD DATA 1,32	0,02 BAD DATA 0,05	0,20 BAD DATA 0,12
1,13 1,05 BAD DATA 1,13 1,69	1,62 1,57 BAD DATA 1,32 1,46	0,02 BAD DATA 0,05 0,23	0,20 BAD DATA 0,12 0,16
1,13 1,05 BAD DATA 1,13 1,69	1,62 1,57 BAD DATA 1,32 1,46	0,02 BAD DATA 0,05 0,23	0,20 BAD DATA 0,12 0,16
1,13 1,05 BAD DATA 1,13 1,69 1,67	1,62 1,57 BAD DATA 1,32 1,46 1,29	0,02 BAD DATA 0,05 0,23 0,22 LOW	0,20 BAD DATA 0,12 0,16 0,11 HIGH
1,13 1,05 BAD DATA 1,13 1,69 1,67	1,62 1,57 BAD DATA 1,32 1,46 1,29	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG	0,20 BAD 0,12 0,16 0,11 HIGH LOG
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH	0,02 BAD DATA 0,05 0,23 0,22 LOW	0,20 BAD DATA 0,12 0,16 0,11 HIGH
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH HIGH EPSILON RATIO 1,35	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77 1,41	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH HIGH EPSILON RATIO	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25 0,15	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13 0,13
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77 1,41 BAD	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH EPSILON RATIO 1,35 1,35	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25 0,15 BAD	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13 0,13 BAD
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77 1,41 BAD DATA	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH EPSILON RATIO 1,35 1,35 BAD DATA	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25 0,15 BAD DATA	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13 0,13 BAD DATA
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77 1,41 BAD BAD DATA 1,70	1,62 1,57 BAD DATA 1,32 1,46 1,46 1,29 HIGH EPSILON RATIO 1,35 1,35 BAD DATA 1,32	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25 0,15 BAD DATA 0,23	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13 0,13 BAD DATA 0,12
1,13 1,05 BAD DATA 1,13 1,69 1,67 LOW EPSILON RATIO 1,77 1,41 BAD DATA	1,62 1,57 BAD DATA 1,32 1,46 1,29 HIGH EPSILON RATIO 1,35 1,35 BAD DATA	0,02 BAD DATA 0,05 0,23 0,22 LOW LOG RATIO 0,25 0,15 BAD DATA	0,20 BAD DATA 0,12 0,16 0,11 HIGH LOG RATIO 0,13 0,13 BAD DATA

	PATIENT 5 ON STATE									
PDTR5	REAL FRE	EQUENCY	ARFIT FR	EQUENCY						
FUIKJ	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	14,33	29,65	17,91	33,47	3,58	3,82				
STN 5-6	14,33	28,17	15,97	32,30	1,64	4,13				
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA				
STN 2-3	13,84	27,18	18,95	33,20	5,11	6,02				
STN 1-2	14,33	26,19	19,11	34,54	4,78	8,35				
STN 0-1	13,84	26,69	17,24	31,94	3,40	5,25				

	PATIENT 6 ON STATE									
PDTR6		QUENCY		EQUENCY						
	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	16,31	22,24	18,39	36,03	2,08	13,79				
STN 5-6	17,30	22,40	18,12	35,25	0,82	12,85				
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA				
STN 2-3	16,81	28,17	18,99	37,05	2,18	8,88				
STN 1-2	11,37	25,70	19,18	37,42	7,81	11,72				
STN 0-1	11,37	28,17	19,04	36,45	7,67	8,28				

	PATIENT 7 ON STATE							
PDTR7	REAL FRE	EQUENCY	ARFIT FR	EQUENCY				
FUIR	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH		
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA				
STN 6-7	10,38	24,22	18,41	32,59	8,03	8,37		
STN 5-6	13,34	25,70	18,81	34,82	5,47	9,12		
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA		
STN 2-3	10,87	26,19	18,44	34,54	7,57	8,35		
STN 1-2	10,87	24,71	18,96	35,42	8,09	10,71		
STN 0-1	10,87	26,19	18,88	36,08	8,01	9,89		

	PATIENT 8 ON STATE								
PDTR8	REAL FRI	EQUENCY	ARFIT FREQUENCY						
FUINO	VALUES		VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	15,99	23,25	18,27	34,66	2,28	11,41			
STN 5-6	12,59	22,70	18,29	33,48	5,70	10,78			
STN 4-5	12,59	24,22	18,72	35,32	6,13	11,10			
STN 2-3	15,02	27,13	18,15	33,91	3,13	6,78			
STN 1-2	15,99	25,67	17,64	32,52	1,65	6,85			
STN 0-1	15,02	26,64	17,80	32,75	2,78	6,11			

	PATIENT 10 OFF STATE								
PDTR10	REAL FR	EQUENCY	ARFIT FR	EQUENCY					
PDIKIO	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	19,73	27,13	18,69	36,87	1,04	9,74			
STN 5-6	19,73	29,10	18,58	36,26	1,15	7,16			
STN 4-5	19,24	29,10	18,25	36,07	0,99	6,97			
STN 2-3	17,26	29,59	18,04	34,47	0,78	4,88			
STN 1-2	17,76	34,52	18,29	35,09	0,53	0,57			
STN 0-1	17,76	27,13	17,87	34,48	0,11	7,35			

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	log Ratio
1,14	1,49	0,06	0,17
1,45	1,47	0,16	0,17
1,49	1,46	0,17	0,16
1,21	1,25	0,08	0,10
1,10	1,27	0,04	0,10
1,19	1,23	0,07	0,09

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	log Ratio
0,95	1,36	-0,02	0,13
0,94	1,25	-0,03	0,10
0,95	1,24	-0,02	0,09
1,05	1,16	0,02	0,07
1,03	1,02	0,01	0,01
1,01	1,27	0,00	0,10

-									
	PATIENT 11 ON STATE								
PDTR11	REAL FR	EQUENCY	ARFIT FR	EQUENCY					
PDIKII	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	17,30	27,68	19,02	35,33	1,72	7,65			
STN 5-6	16,31	27,18	18,91	35,17	2,60	7,99			
STN 4-5	16,31	26,19	19,28	36,65	2,97	10,46			
STN 2-3	16,31	26,69	18,57	33,43	2,26	6,74			
STN 1-2	15,32	28,17	19,01	34,96	3,69	6,79			
STN 0-1	14,83	25,70	18,95	34,52	4,12	8,82			

PATIENT 12 ON STATE								
PDTR12	REAL FR	EQUENCY	ARFIT FREQUENCY					
FUIKIZ	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH		
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA				
STN 6-7	18,78	20,76	18,34	35,44	0,44	14,68		
STN 5-6	17,79	25,20	18,79	35,60	1,00	10,40		
STN 4-5	13,84	24,71	18,41	35,67	4,57	10,96		
STN 2-3	17,79	26,69	18,55	34,61	0,76	7,92		
STN 1-2	13,34	26,69	19,10	36,27	5,76	9,58		
STN 0-1	13,34	26,19	18,94	35,58	5,60	9,39		

EPSILON	EPSILON	LOG	LOG
RATIO	RATIO	RATIO	RATIO
1,10	1,28	0,04	0,11
1,16	1,29	0,06	0,11
1,18	1,40	0,07	0,15
1,14	1,25	0,06	0,10
1,24	1,24	0,09	0,09
1,28	1,34	0,11	0,13
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,98	1,71	-0,01	0,23
1,06	1,41	0,02	0,15
1,33	1,44	0,12	0,16
1,04	1,30	0,02	0,11
1,43	1,36	0,16	0,13
1,42	1,36	0,15	0,13
	HIGH		HIGH

LOW

HIGH

LOW

HIGH

	PATIENT 13 ON STATE								
PDTR13	REAL FRE	EQUENCY	ARFIT FR	EQUENCY					
FUINIS	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	16,31	30,15	18,28	35,34	1,97	5,19			
STN 5-6	16,31	30,15	18,51	34,48	2,20	4,33			
STN 4-5	15,81	23,23	18,45	34,76	2,64	11,53			
STN 2-3	11,86	23,72	18,30	33,64	6,44	9,92			
STN 1-2	11,86	23,23	17,80	33,63	5,94	10,40			
STN 0-1	16,31	23,72	17,89	33,72	1,58	10,00			

LOW	HIGH	LOW	HIGH
PSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
1,12	1,17	0,05	0,07
1,13	1,14	0,05	0,06
1,17	1,50	0,07	0,18
1,54	1,42	0,19	0,15
1,50	1,45	0,18	0,16
1,10	1,42	0,04	0,15
1,12 1,13 1,17 1,54 1,50	1,17 1,14 1,50 1,42 1,45	0,05 0,07 0,19 0,18	0,06 0,18 0,15 0,16

AR(P=16)

	OH	STATE				
			PATIENT 2 O	FF STATE		
PDTR2	REAL FR	EQUENCY	ARFIT FR	EQUENCY		
FDINZ	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA		
STN 6-7	12,36	23,23	13,80	26,59	1,44	3,36
STN 5-6	16,31	23,72	14,30	26,89	2,01	3,17
STN 4-5	15,32	23,23	12,72	23,37	2,60	0,14
STN 2-3	16,80	23,72	12,72	24,20	4,08	0,48
STN 1-2	15,81	23,72	12,62	24,62	3,19	0,90
STN 0-1	14,83	23,23	12,38	23,74	2,45	0,51

OFF STATE

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
1,12	1,14	0,05	0,06
0,88	1,13	-0,06	0,05
0,83	1,01	-0,08	0,00
0,76	1,02	-0,12	0,01
0,80	1,04	-0,10	0,02
0,83	1,02	-0,08	0,01

	PATIENT 3 OFF STATE								
PDTR2	REAL FR	EQUENCY	ARFIT FREQUENCY						
FDINZ	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	15,32	20,26	13,92	26,76	1,40	6,50			
STN 5-6	13,84	20,26	14,20	26,87	0,36	6,61			
STN 4-5	14,83	21,75	13,92	26,88	0,91	5,13			
STN 2-3	14,33	21,25	14,29	26,94	0,04	5,69			
STN 1-2	13,34	21,25	13,92	26,72	0,58	5,47			
STN 0-1	13,84	21,25	13,49	26,20	0,35	4,95			

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,91	1,32	-0,04	0,12
1,03	1,33	0,01	0,12
0,94	1,24	-0,03	0,09
1,00	1,27	0,00	0,10
1,04	1,26	0,02	0,10
0,97	1,23	-0,01	0,09

	PATIENT 4 OFF STATE								
PDTR2		REAL FREQUENCY		ARFIT FREQUENCY					
TBINE	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	18,29	28,17	14,44	27,75	3,85	0,42			
STN 5-6	17,30	29,65	13,92	26,95	3,38	2,70			
STN 4-5	17,79	28,17	14,45	28,01	3,34	0,16			
STN 2-3	17,30	27,18	14,46	27,65	2,84	0,47			
STN 1-2	17,30	29,65	14,43	27,61	2,87	2,04			
STN 0-1	17,30	26,69	14,39	27,54	2,91	0,85			

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,79	0,99	-0,10	-0,01
0,80	0,91	-0,09	-0,04
0,81	0,99	-0,09	0,00
0,84	1,02	-0,08	0,01
0,83	0,93	-0,08	-0,03
0,83	1,03	-0,08	0,01
LOW	HIGH	LOW	HIGH
		LOG	LOG
EPSILON RATIO	EPSILON RATIO	RATIO	RATIO
0,98	0,94	-0,01	-0,03
0,98	0,99	-0,01	0,00
BAD	BAD DATA	BAD	BAD
DATA		DATA	DATA
1,02	1,01	0,01	0,00
0,97 0,99	1,05	-0,01	0,02
0,99	1,03	0,00	0,01
LOW	HIGH	LOW	HIGH
EPSILON	EPSILON	LOG	LOG
RATIO	RATIO	RATIO	RATIO
0,83	1,20	-0,08	0,08
0,76	1,17	-0,12	0,07
BAD	BAD DATA	BAD	BAD
DATA 0,83	0,97	DATA -0,08	DATA -0,01
1,25	1,07	0,10	0,01
1,23	0,98	0,09	-0,01
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
1,32	1,10	0,12	0,04
1,03	1,05	0,01	0,02
BAD	BAD DATA	BAD	BAD
DATA		DATA	DATA
1,31		0 1 2 1	0.01
	1,02	0,12	0,01
1,32 1,33	1,02 1,10 1,04	0,12 0,12 0,12	0,01 0,04 0,02
1,32	1,10	0,12 0,12	0,04
1,32 1,33 LOW	1,10 1,04 HIGH	0,12 0,12 LOW	0,04 0,02 HIGH
1,32 1,33 LOW EPSILON	1,10 1,04 HIGH EPSILON	0,12 0,12	0,04 0,02
1,32 1,33 LOW EPSILON RATIO	1,10 1,04 HIGH EPSILON RATIO	0,12 0,12 LOW LOG RATIO	0,04 0,02 HIGH LOG RATIO
1,32 1,33 LOW EPSILON RATIO 0,88	1,10 1,04 HIGH EPSILON RATIO 1,17	0,12 0,12 LOW LOG RATIO -0,06	0,04 0,02 HIGH LOG RATIO 0,07
1,32 1,33 LOW EPSILON RATIO 0,88 1,00	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13	0,12 0,12 LOW LOG RATIO -0,06 0,00	0,04 0,02 HIGH LOG RATIO 0,07 0,05
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,03 -0,06 -0,04	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,06 -0,04 LOW	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92 LOW EPSILON	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,03 -0,06 -0,04	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,93 0,92 LOW EPSILON RATIO	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON RATIO	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,03 -0,04 LOW LOG RATIO	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG RATIO
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92 LOW EPSILON RATIO 0,94	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON RATIO 1,10	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,06 -0,04 LOW LOG RATIO -0,03	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG RATIO 0,04
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92 LOW EPSILON RATIO 0,94 1,41	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON RATIO 1,10 1,35	0,12 0,12 LOW LOG RATIO -0,06 -0,03 -0,03 -0,06 -0,04 LOW LOG RATIO -0,03 0,15	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG RATIO 0,04 0,13
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92 LOW EPSILON RATIO 0,94	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON RATIO 1,10	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,06 -0,04 LOW LOG RATIO -0,03	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG RATIO 0,04
1,32 1,33 LOW EPSILON RATIO 0,88 1,00 1,06 0,93 0,88 0,92 LOW EPSILON RATIO 0,94 1,41 0,97	1,10 1,04 HIGH EPSILON RATIO 1,17 1,13 1,11 1,02 1,05 1,01 HIGH EPSILON RATIO 1,10 1,10 1,35 0,97	0,12 0,12 LOW LOG RATIO -0,06 0,00 0,03 -0,03 -0,06 -0,04 LOW LOG RATIO -0,03 0,15 -0,01	0,04 0,02 HIGH LOG RATIO 0,07 0,05 0,04 0,01 0,02 0,00 HIGH LOG RATIO 0,04 0,13 -0,01

	PATIENT 5 OFF STATE								
DOTOS	REAL FR	EQUENCY	ARFIT FR	EQUENCY					
PDTR5	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	14,33	29,65	14,04	27,84	0,29	1,81			
STN 5-6	14,33	28,17	14,02	27,97	0,31	0,20			
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA			
STN 2-3	13,84	27,18	14,07	27,33	0,23	0,15			
STN 1-2	14,33	26,19	13,88	27,53	0,45	1,34			
STN 0-1	13,84	26,69	13,75	27,37	0,09	0,68			

PATIENT 6 OFF STATE							
PDTR6	REAL FR	EQUENCY	ARFIT FR	EQUENCY			
PDIKO	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH	
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA			
STN 6-7	16,31	22,24	13,61	26,69	2,70	4,45	
STN 5-6	17,30	22,40	13,17	26,18	4,13	3,78	
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	
STN 2-3	16,81	28,17	13,89	27,39	2,92	0,78	
STN 1-2	11,37	25,70	14,18	27,39	2,81	1,69	
STN 0-1	11,37	28,17	13,96	27,58	2,59	0,59	

	PATIENT 7 OFF STATE								
00707	REAL FR	EQUENCY	ARFIT FR	EQUENCY					
PDTR7	VAI	.UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	10,38	24,22	13,70	26,63	3,32	2,41			
STN 5-6	13,34	25,70	13,71	26,96	0,37	1,26			
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA			
STN 2-3	10,87	26,19	14,20	26,71	3,33	0,52			
STN 1-2	10,87	24,71	14,38	27,26	3,51	2,55			
STN 0-1	10,87	26,19	14,43	27,35	3,56	1,16			

	PATIENT 8 OFF STATE								
PDTR8	REAL FR	EQUENCY	ARFIT FREQUENCY						
FUINO	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	15,99	23,25	14,03	27,18	1,96	3,93			
STN 5-6	12,59	22,70	12,58	25,68	0,01	2,98			
STN 4-5	12,59	24,22	13,36	26,85	0,77	2,63			
STN 2-3	15,02	27,13	14,00	27,62	1,02	0,49			
STN 1-2	15,99	25,67	14,06	27,01	1,93	1,34			
STN 0-1	15,02	26,64	13,80	26,82	1,22	0,18			

	PATIENT 9 OFF STATE								
PDTR9	REAL FREQUENCY		ARFIT FREQUENCY						
FUIKS	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	15,81	25,70	14,80	28,34	1,01	2,64			
STN 5-6	12,85	22,24	18,08	30,08	5,23	7,84			
STN 4-5	16,80	25,70	16,29	25,05	0,51	0,65			
STN 2-3	14,83	24,22	16,48	28,16	1,65	3,94			
STN 1-2	14,83	25,70	14,52	26,90	0,31	1,20			
STN 0-1	11,86	22,40	11,90	23,02	0,04	0,62			

0,98 1,00

1,03

0,00 0,01

	PATIENT 10 OFF STATE								
DDTD10	REAL FREQUENCY		ARFIT FREQUENCY						
PDTR10	VAI	.UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	19,73	27,13	14,70	27,40	5,03	0,27			
STN 5-6	19,73	29,10	15,14	28,01	4,59	1,09			
STN 4-5	19,24	29,10	14,90	27,91	4,34	1,19			
STN 2-3	17,26	29,59	14,17	26,70	3,09	2,89			
STN 1-2	17,76	34,52	14,22	26,96	3,54	7,56			
STN 0-1	17,76	27,13	14,45	25,65	3,31	1,48			

	PATIENT 11 OFF STATE								
PDTR11	REAL FR	EQUENCY	ARFIT FREQUENCY						
PUIKII	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	17,30	27,68	14,32	27,53	2,98	0,15			
STN 5-6	16,31	27,18	13,93	27,32	2,38	0,14			
STN 4-5	16,31	26,19	14,22	27,55	2,09	1,36			
STN 2-3	16,31	26,69	14,21	27,78	2,10	1,09			
STN 1-2	15,32	28,17	13,97	27,36	1,35	0,81			
STN 0-1	14,83	25,70	14,12	27,63	0,71	1,93			

	PATIENT 12 OFF STATE								
PDTR12	REAL FR	EQUENCY	ARFIT FR	EQUENCY					
PUIKIZ	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	18,78	20,76	14,08	27,14	4,70	6,38			
STN 5-6	17,79	25,20	14,10	27,07	3,69	1,87			
STN 4-5	13,84	24,71	13,83	26,99	0,01	2,28			
STN 2-3	17,79	26,69	14,19	27,05	3,60	0,36			
STN 1-2	13,34	26,69	13,73	26,75	0,39	0,06			
STN 0-1	13,34	26,19	12,93	26,42	0,41	0,23			

EPSILON	EPSILON	LOG RATIO	log Ratio
RATIO 0,75	RATIO 1,01	-0.12	0,00
		-0,13	
0,77	0,96	-0,12	-0,02
0,77	0,96	-0,11	-0,02
0,82	0,90	-0,09	-0,04
0,80	0,78	-0,10	-0,11
0,81	0,95	-0,09	-0,02
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,83	0,99	-0,08	0,00
0,85	1,01	-0,07	0,00
0,87	1,05	-0,06	0,02
0,87	1,04	-0,06	0,02
0,91	0,97	-0,04	-0,01
0,95	1,08	-0,02	0,03
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,75	1,31	-0,13	0,12
0,79	1,07	-0,10	0,03
1,00	1,09	0,00	0,04
0,80	1,01	-0,10	0,01
1,03	1,00	0,01	0,00
0,97	1,01	-0,01	0,00
		,	,
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	log Ratio
0,89	0,88	-0,05	-0,06
0,85	0,84	-0,07	-0,07
0,81	1,06	-0,09	0,02
1,02	1,00	0,01	0,00
0,99	1,03	-0,01	0,01
0,75 1,01		-0,13	0,00

LOW

HIGH

LOW

HIGH

	PATIENT 13 OFF STATE									
PDTR13		EQUENCY	ARFIT FREQUENCY							
101113	VAL	UES	VAL	.UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	16,31	30,15	14,44	26,56	1,87	3,59				
STN 5-6	16,31	30,15	13,92	25,37	2,39	4,78				
STN 4-5	15,81	23,23	12,75	24,51	3,06	1,28				
STN 2-3	11,86	23,72	12,14	23,75	0,28	0,03				
STN 1-2	11,86	23,23	11,70	23,98	0,16	0,75				
STN 0-1	16,31	23,72	12,18	23,99	4,13	0,27				

ON STATE

	PATIENT 2 ON STATE									
PDTR2	REAL FR	EQUENCY	ARFIT FREQUENCY							
FUIRZ	VAL	UES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	12,36	23,23	14,54	27,30	2,18	4,07				
STN 5-6	16,31	23,72	13,52	24,99	2,79	1,27				
STN 4-5	15,32	23,23	13,94	25,97	1,38	2,74				
STN 2-3	16,80	23,72	17,48	20,80	0,68	2,92				
STN 1-2	15,81	23,72	17,30	28,08	1,49	4,36				
STN 0-1	14,83	23,23	12,04	23,43	2,79	0,20				

	PATIENT 3 ON STATE									
PDTR3	REAL FR	EQUENCY	ARFIT FR	EQUENCY						
PDIKS	VAL	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	15,32	20,26	13,86	26,70	1,46	6,44				
STN 5-6	13,84	20,26	13,97	26,76	0,13	6,50				
STN 4-5	14,83	21,75	13,80	26,81	1,03	5,06				
STN 2-3	14,33	21,25	14,15	27,15	0,18	5,90				
STN 1-2	13,34	21,25	13,74	26,63	0,40	5,38				
STN 0-1	13,84	21,25	14,05	26,82	0,21	5,57				

	PATIENT 4 ON STATE									
PDTR4	REAL FR	EQUENCY	ARFIT FREQUENCY							
PD1K4	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	18,29	28,17	14,47	27,30	3,82	0,87				
STN 5-6	17,30	29,65	13,84	27,02	3,46	2,63				
STN 4-5	17,79	28,17	14,15	26,78	3,64	1,39				
STN 2-3	17,30	27,18	14,43	27,59	2,87	0,41				
STN 1-2	17,30	29,65	14,17	27,43	3,13	2,22				
STN 0-1	17,30	26,69	14,49	27,43	2,81	0,74				

1011	mon	2011	mon
EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
1,18	1,18	0,07	0,07
0,83	1,05	-0,08	0,02
0,91	1,12	-0,04	0,05
1,04	0,88	0,02	-0,06
1,09	1,18	0,04	0,07
0,81	1,01	-0,09	0,00
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
0,90	1,32	-0,04	0,12
1,01	1,32	0,00	0,12
0,93	1,23	-0,03	0,09
0,99	1,28	-0,01	0,11
1,03	1,25	0,01	0,10
1,02	1,26	0,01	0,10
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
0,79	0,97	-0,10	-0,01
0,80	0,91	-0,10	-0,04
0,80	0,95	-0,10	-0,02
0,83	1,02	-0,08	0,01
0,82	0,93	-0,09	-0,03
0,84	1,03	-0,08	0,01
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,98	0,94	-0,01	-0,03
0,98	0,99	-0,01	-0,01
BAD DATA	BAD DATA	BAD DATA	BAD DATA
0,93	0,94	-0,03	-0,03
0,75	0,82	-0,13	-0,08
0.77	0.91	0.11	0.00

LOW HIGH LOW HIGH

	PATIENT 5 ON STATE								
PDTR5		EQUENCY	ARFIT FR	ARFIT FREQUENCY					
TETRS	VAL	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	14,33	29,65	14,11	27,78	0,22	1,87			
STN 5-6	14,33	28,17	14,04	27,83	0,29	0,34			
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA			
STN 2-3	13,84	27,18	12,83	25,49	1,01	1,69			
STN 1-2	14,33	26,19	10,70	21,55	3,63	4,64			
STN 0-1	13,84	26,69	10,66	21,50	3,18	5,19			

	PATIENT 6 ON STATE								
PDTR6	REAL FR	EQUENCY	ARFIT FREQUENCY		NCY				
PDIKO	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH			
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA					
STN 6-7	16,31	22,24	13,73	26,62	2,58	4,38			
STN 5-6	17,30	22,40	11,76	25,25	5,54	2,85			
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA			
STN 2-3	16,81	28,17	18,01	26,85	1,20	1,32			
STN 1-2	11,37	25,70	9,21	26,81	2,16	1,11			
STN 0-1	11,37	28,17	9,10	26,79	2,27	1,38			

						ía —
	PATIENT 7 ON STATE					
PDTR7	REAL FR	EQUENCY	ARFIT FR	EQUENCY		
PUIKI	VAI	LUES	VAL	UES .	EPSILON LOW	EPSILON HIGH
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA		
STN 6-7	10,38	24,22	13,13	25,88	2,75	1,66
STN 5-6	13,34	25,70	13,97	26,92	0,63	1,22
STN 4-5	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA
STN 2-3	10,87	26,19	13,72	26,85	2,85	0,66
STN 1-2	10,87	24,71	14,18	27,53	3,31	2,82
STN 0-1	10,87	26,19	14,61	27,81	3,74	1,62

LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,98	0,94	-0,01	-0,03
0,98	0,99	-0,01	-0,01
BAD	BAD DATA	BAD	BAD DATA
DATA	BAD DATA	DATA	BAD DATA
0,93	0,94	-0,03	-0,03
0,75	0,82	-0,13	-0,08
0,77	0,81	-0,11	-0,09
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	log Ratio	LOG RATIO
0,84	1,20	-0,07	0,08
0,68	1,13	-0,17	0,05
BAD	1,13 BAD DATA	BAD	0,05 BAD DATA
	-		
BAD DATA	BAD DATA	BAD DATA	BAD DATA
BAD DATA 1,07	BAD DATA 0,95	BAD DATA 0,03	BAD DATA -0,02
BAD DATA 1,07 0,81	BAD DATA 0,95 1,04	BAD DATA 0,03 -0,09	BAD DATA -0,02 0,02
BAD DATA 1,07 0,81	BAD DATA 0,95 1,04	BAD DATA 0,03 -0,09	BAD DATA -0,02 0,02
BAD DATA 1,07 0,81 0,80	BAD DATA 0,95 1,04 0,95	BAD DATA 0,03 -0,09 -0,10	BAD DATA -0,02 0,02 -0,02
BAD DATA 1,07 0,81 0,80 LOW	BAD DATA 0,95 1,04 0,95 HIGH EPSILON	BAD DATA 0,03 -0,09 -0,10 LOW LOG	BAD DATA -0,02 0,02 -0,02 HIGH
BAD DATA 1,07 0,81 0,80 LOW EPSILON RATIO	BAD DATA 0,95 1,04 0,95 HIGH EPSILON RATIO	BAD DATA 0,03 -0,09 -0,10 LOW LOG RATIO	BAD DATA -0,02 0,02 -0,02 HIGH LOG RATIO
BAD DATA 1,07 0,81 0,80 LOW EPSILON RATIO 1,26	BAD DATA 0,95 1,04 0,95 HIGH EPSILON RATIO 1,07	BAD DATA 0,03 -0,09 -0,10 LOW LOG RATIO 0,10	BAD DATA -0,02 0,02 -0,02 HIGH LOG RATIO 0,03
BAD DATA 1,07 0,81 0,80 LOW EPSILON RATIO 1,26 1,05 BAD	BAD DATA 0,95 1,04 0,95 HIGH EPSILON RATIO 1,07 1,05	BAD DATA 0,03 -0,09 -0,10 LOW LOG RATIO 0,10 0,02 BAD	BAD DATA -0,02 0,02 -0,02 HIGH LOG RATIO 0,03 0,02
BAD DATA 1,07 0,81 0,80 LOW EPSILON RATIO 1,26 1,05 BAD DATA	BAD DATA 0,95 1,04 0,95 HIGH EPSILON RATIO 1,07 1,05 BAD DATA	BAD DATA 0,03 0,09 0,10 LOW LOG RATIO 0,10 0,02 BAD DATA	BAD DATA -0,02 0,02 -0,02 HIGH LOG RATIO 0,03 0,02 BAD DATA

	PATIENT 8 ON STATE									
PDTR8	REAL FR	EQUENCY	ARFIT FR	ARFIT FREQUENCY						
TEINO	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	15,99	23,25	14,10	26,58	1,89	3,33				
STN 5-6	12,59	22,70	13,94	26,39	1,35	3,69				
STN 4-5	12,59	24,22	14,61	26,97	2,02	2,75				
STN 2-3	15,02	27,13	16,97	24,51	1,95	2,62				
STN 1-2	15,99	25,67	14,31	27,07	1,68	1,40				
STN 0-1	15,02	26,64	14,25	26,88	0,77	0,24				

	PATIENT 9 ON STATE									
PDTR9	REAL FR	EQUENCY	ARFIT FR	EQUENCY						
FUIKS	VAI	UES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	15,81	25,70								
STN 5-6	12,85	22,24								
STN 4-5	16,80	25,70								
STN 2-3	14,83	24,22								
STN 1-2	14,83	25,70								
STN 0-1	11,86	22,40								

	PATIENT 10 ON STATE										
PDTR10	REAL FR	EQUENCY	ARFIT FR	EQUENCY							
PDIKIU	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	LOW BETA HIGH BETA							
STN 6-7	19,73	27,13	14,51 27,23		5,22	0,10					
STN 5-6	19,73	29,10	14,44	27,19	5,29	1,91					
STN 4-5	19,24	29,10	14,56	27,17	4,68	1,93					
STN 2-3	17,26	29,59	13,77	26,69	3,49	2,90					
STN 1-2	17,76	34,52	13,62 26,60		4,14	7,92					
STN 0-1	17,76	27,13	13,55	26,49	4,21	0,64					

	PATIENT 11 ON STATE										
PDTR11	REAL FR	EQUENCY	ARFIT FREQUENCY								
PDIKII	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	17,30	27,68	13,72 26,89		3,58	0,79					
STN 5-6	16,31	27,18	13,89 27,07		2,42	0,11					
STN 4-5	16,31	26,19	14,26	27,28	2,05	1,09					
STN 2-3	16,31	26,69	13,34	26,68	2,97	0,01					
STN 1-2	15,32	28,17	14,18 27,45		1,14	0,72					
STN 0-1	14,83	25,70	13,79	27,00	1,04	1,30					

PATIENT 12 ON STATE										
PDTR12	REAL FR	EQUENCY	ARFIT FREQUENCY							
PDIKIZ	VAI	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH				
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA						
STN 6-7	18,78	20,76	14,27 27,38		4,51	6,62				
STN 5-6	17,79	25,20	13,87	26,88	3,92	1,68				
STN 4-5	13,84	24,71	13,96	27,10	0,12	2,39				
STN 2-3	17,79	26,69	14,10	27,20	3,69	0,51				
STN 1-2	13,34	26,69	14,08 27,07		0,74	0,38				
STN 0-1	13,34	26,19	14,05	26,88	0,71	0,69				

	PATIENT 13 ON STATE										
PDTR13	REAL FR	EQUENCY	ARFIT FREQUENCY								
FUIKIS	VAL	LUES	VAL	UES	EPSILON LOW	EPSILON HIGH					
CHANNEL	LOW BETA	HIGH BETA	LOW BETA	HIGH BETA							
STN 6-7	16,31	30,15	14,36 26,95		1,95	3,20					
STN 5-6	16,31	30,15	14,22	27,25	2,09	2,90					
STN 4-5	15,81	23,23	14,40	27,13	1,41	3,90					
STN 2-3	11,86	23,72	14,28	27,26	2,42	3,54					
STN 1-2	11,86	23,23	14,29 27,28		2,43	4,05					
STN 0-1	16,31	23,72	13,82	26,43	2,49	2,71					

LOW	HIGH	LOW	HIGH
EPSILON	EPSILON	LOG RATIO	LOG RATIO
RATIO	RATIO		0.00
0,88	1,14	-0,05	0,06
1,11	1,16	0,04	0,07
1,16 1,13	1,11 0,90	0,06 0,05	0,05
			-0,04
0,89 0,95	1,05 1,01	-0,05 -0,02	0,02 0,00
0,55	1,01	-0,02	0,00
LOW	HIGH	LOW	HIGH
EPSILON QUOTIENT	EPSILON QUOTIENT	LOG QUOTIENT	LOG QUOTIENT
0,00	0,00		
0,00	0,00		
0,00	0,00		
0,00	0,00		
0,00	0,00		
0,00	0,00		
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,74	1,00	-0,13	0,00
0,73	0,93	-0,14	-0,03
0,76	0,93	-0,12	-0,03
0,80	0,90	-0,10	-0,04
0,77	0,77	-0,12	-0,11
0,76	0,98	-0,12	-0,01
LOW	HIGH	LOW	HIGH
EPSILON	EPSILON	LOG RATIO	LOG RATIO
RATIO	RATIO	0.10	0.01
0,79	0,97	-0,10	-0,01
0,85	1,00	-0,07	0,00
0,87	1,04	-0,06	0,02
0,82	1,00	-0,09	0,00
0,93	0,97	-0,03	-0,01
0,93	1,05	-0,03	0,02
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,76	1,32	-0,12	0,12
0,78	1,07	-0,11	0,03
1,01	1,10	0,00	0,04
0,79	1,02	-0,10	0,01
1,06	1,01	0,02	0,01
1,05	1,03	0,02	0,01
LOW	HIGH	LOW	HIGH
EPSILON RATIO	EPSILON RATIO	LOG RATIO	LOG RATIO
0,88	0,89	-0,06	-0,05
	0,90	-0,06	-0,04
0,87			
0,87 0,91	-	-0,04	0,07
0,91	1,17	-0,04 0,08	0,07 0,06
	-	-0,04 0,08 0,08	0,07 0,06 0,07

Appendix 6: Correlation between patients

	PDTR2							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	100,00	66,67	38,01	46,54	39,16	50 <i>,</i> 04		
STN 1-2	66,67	100,00	85 <i>,</i> 97	90,09	85 <i>,</i> 93	79,22		
STN 2-3	38,01	85 <i>,</i> 97	100,00	84,46	93 <i>,</i> 65	77,12		
STN 4-5	46,54	90,09	84,46	100,00	91,46	92,71		
STN 5-6	39,16	85 <i>,</i> 93	93 <i>,</i> 65	91,46	100,00	87,50		
STN 6-7	50,04	87,12	77,12	92,71	87,50	100,00		

PACIENTE NÚMERO 2

	PDTR3							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	39,09	46,48	39,19	55,80	39,29	44,25		
STN 1-2	75,35	76,62	77,67	83,78	73,59	79,22		
STN 2-3	66,47	61,00	71,70	65,10	59,63	67,45		
STN 4-5	78,39	78,98	80,42	83,28	76,88	80,55		
STN 5-6	74,72	70,59	78,15	74,09	68,81	75,29		
STN 6-7	78,44	80,10	78,12	87,44	76,15	78,17		

PDTR4

		STN 0-1							
PDTR2									
STN 0-1	66,02	43,64	41,50	55,66	78,00	45,05			
STN 1-2	83,73	68,77	70,62	72,94	79,27	75,17			
STN 2-3	74,71	79 <i>,</i> 39	79,42	66,29	56 <i>,</i> 93	79,15			
STN 4-5	74,78	63 <i>,</i> 36	66,06	65,66	67,15	69,66			
STN 5-6	73 <i>,</i> 50	75 <i>,</i> 35	76,83	64,18	58 <i>,</i> 28	75 <i>,</i> 97			
STN 6-7	75,56	59,23	65 <i>,</i> 95	64,36	69,99	66,88			

PDTR!	5
-------	---

		STN 0-1						
PDTR2								
STN 0-1	33,51	42,52	29,25	48,11	45,29	58,52		
STN 1-2	53 <i>,</i> 84	64,28	54,43	28,93	56,42	63,13		
STN 2-3	31,97	39,10	32,11	9,82	33,40	36,81		
STN 4-5	54 <i>,</i> 99	65,20	56,67	18,84	53 <i>,</i> 99	57 <i>,</i> 30		

STN 5-6	42,44	49,93	42,87	11,59	42,24	45,18
STN 6-7	54,03	65,16	56,42	21,09	50 <i>,</i> 39	55,46

	PDTR6							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	44,07	38,15	49,08	24,42	67,11	73,65		
STN 1-2	79 <i>,</i> 90	77 <i>,</i> 48	85,81	29,67	76,90	83,27		
STN 2-3	85,73	73,32	90,28	20,33	56,36	62,66		
STN 4-5	76,48	75,89	82,85	29,14	72,25	74,30		
STN 5-6	81,08	70,43	87,52	23,94	62,71	67 <i>,</i> 34		
STN 6-7	64,93	72,13	74,09	30,82	76,47	77,09		

		PDTR7							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR2									
STN 0-1	58 <i>,</i> 50	34,60	44,55	61,39	41,53	63,13			
STN 1-2	69,76	40,58	50 <i>,</i> 96	76,81	58,72	81,76			
STN 2-3	49 <i>,</i> 03	20,69	29,91	51,38	32,27	58 <i>,</i> 99			
STN 4-5	64,48	41,33	48,94	72,55	58 <i>,</i> 75	76,63			
STN 5-6	53 <i>,</i> 52	27,17	35 <i>,</i> 95	58,60	42,78	64,41			
STN 6-7	70,44	46,73	55,79	79,84	63,91	81,18			

		PDTR8							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR2									
STN 0-1	43,76	38,57	55,86	67,85	45,02	36,86			
STN 1-2	85,17	77,96	84,13	79,03	81,99	72,76			
STN 2-3	78,77	79 <i>,</i> 58	71,50	57,23	72,85	81,17			
STN 4-5	86,08	78,25	83 <i>,</i> 35	72,75	81 <i>,</i> 98	69,80			
STN 5-6	78 <i>,</i> 92	78,04	74,77	61,69	76,47	77,82			
STN 6-7	76,08	66,21	76,98	73,22	78 <i>,</i> 63	60,07			

	PDTR9						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR2							
STN 0-1	83,45	81,14	82,79	50,05	70,57	83 <i>,</i> 97	
STN 1-2	58,17	60,04	55,71	84,97	88,15	75,51	
STN 2-3	28,54	31,90	28,09	83,55	73,89	48,63	
STN 4-5	42,89	44,61	40,09	82,22	80,35	63,45	
STN 5-6	33 <i>,</i> 45	35,67	31,73	83,97	76,61	54,27	

STN 6-7 49,07 49,46 44,85 82,98 83,24 68,44	9
---	---

	PDTR10							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	57,95	20,37	47,65	15,36	34,33	57,46		
STN 1-2	59,68	39,99	61,35	32,47	50,93	69,07		
STN 2-3	55 <i>,</i> 67	56 <i>,</i> 84	67,70	45,17	56,73	62,45		
STN 4-5	50,15	36,85	53,24	30,12	45,65	60,03		
STN 5-6	55 <i>,</i> 08	51 <i>,</i> 93	66,31	45,28	57,42	64,20		
STN 6-7	48,88	31,53	56,07	32,49	48,84	65,07		

		PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR2									
STN 0-1	46,76	31,16	45,40	63,60	35,09	33,46			
STN 1-2	70,91	62,90	69,06	90,05	70,06	63,51			
STN 2-3	58,14	62,25	72,12	75,83	75 <i>,</i> 82	78,24			
STN 4-5	66,79	61,65	62,22	84,77	69,76	60,64			
STN 5-6	61,24	60,15	67,07	76,95	73 <i>,</i> 59	72,72			
STN 6-7	59 <i>,</i> 63	50,07	51,37	81,97	56,50	50,07			

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	34,49	30,91	24,52	88,98	89,48	87,45		
STN 1-2	53 <i>,</i> 48	56,75	51,73	67,92	69,19	68,31		
STN 2-3	33,14	41,68	70,04	37,68	44,87	43 <i>,</i> 91		
STN 4-5	51,65	56,19	48 <i>,</i> 90	52 <i>,</i> 59	51,81	51,41		
STN 5-6	40,72	49 <i>,</i> 94	65 <i>,</i> 32	42,64	46,67	45 <i>,</i> 57		
STN 6-7	55,96	56,48	42,61	57,46	55,51	54,64		

	PDTR3						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR3							
STN 0-1	100,00	94,61	98,10	86,85	93,09	92,98	
STN 1-2	94,61	100,00	91,68	91,22	94,30	92,63	

STN 2-3	98,10	91,68	100,00	84,70	91,75	93,16
STN 4-5	86,85	91,22	84,70	100,00	89,87	88,85
STN 5-6	93,09	94,30	91,75	89,87	100,00	97,17
STN 6-7	92,98	92,63	93,16	88,85	97,17	100,00

	PDTR4						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR3							
STN 0-1	59,75	46,97	53,44	49,13	59,90	50,54	
STN 1-2	59,75	46,97	53,44	49,13	59,90	50,54	
STN 2-3	59,81	52,97	59,81	48,42	52,37	55,47	
STN 4-5	71,49	52 <i>,</i> 38	59 <i>,</i> 86	61,15	72,45	60,00	
STN 5-6	52,22	41,60	48,42	43,06	52 <i>,</i> 99	45,21	
STN 6-7	58,95	50,11	55,07	49,89	58 <i>,</i> 06	52,92	

		PDTR5							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR3									
STN 0-1	82,17	86,64	82,99	22,32	76,35	77,26			
STN 1-2	82,17	86,64	82,99	22,32	76,35	77,26			
STN 2-3	78,75	80 <i>,</i> 85	77,24	15,12	77,33	76,29			
STN 4-5	73,04	81,22	74,83	27,90	68,67	72,82			
STN 5-6	83,83	87,57	84,64	17,38	79,00	78,02			
STN 6-7	78,32	83 <i>,</i> 84	77,93	18,92	77,42	77,57			

		PDTR6							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR3									
STN 0-1	62,15	44,86	68,07	33,94	69,09	66,87			
STN 1-2	60,99	45,51	66,68	33,83	76,53	71,65			
STN 2-3	67,76	48,20	73,20	33,67	67,96	66,42			
STN 4-5	61,13	59 <i>,</i> 28	68 <i>,</i> 51	34,33	80,88	79,74			
STN 5-6	59,94	41,05	64,79	32,15	71,40	66,16			
STN 6-7	70,05	45 <i>,</i> 90	74,31	32,09	74,25	70,34			

	PDTR7						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR3							
STN 0-1	56,94	37,17	41,93	61,49	70,30	66,60	
STN 1-2	56,94	46,65	51,16	70,69	80,54	74,18	
STN 2-3	48 <i>,</i> 58	35,00	39,79	58,88	65,43	65,24	

STN 4-5	68,52	48,59	56,17	81,44	80,05	83,74
STN 5-6	51,18	43,38	45,87	63,89	77,40	68,30
STN 6-7	54,20	42,41	45,87	62,15	68,87	68,41

	PDTR8							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR3								
STN 0-1	79,44	76,14	81,97	70,43	79 <i>,</i> 02	65 <i>,</i> 05		
STN 1-2	80,32	74,49	85,72	79,72	84,23	63,68		
STN 2-3	83,29	81,22	83 <i>,</i> 93	69,51	79,00	69,53		
STN 4-5	76,83	67,20	82,71	81,39	82,05	58,00		
STN 5-6	79,51	74 <i>,</i> 59	84,07	72,64	80,14	61,84		
STN 6-7	84,63	81,66	87,45	75,17	81,69	71,37		

PDTR9

	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR3						
STN 0-1	41,81	42,28	39,14	62,53	70,91	61,11
STN 1-2	50,79	50,45	47,32	60,88	74,29	69,93
STN 2-3	39,73	40,83	37,46	64 <i>,</i> 56	71,12	59 <i>,</i> 76
STN 4-5	58 <i>,</i> 00	57 <i>,</i> 98	53 <i>,</i> 86	72 <i>,</i> 65	83 <i>,</i> 54	77,56
STN 5-6	44,38	43 <i>,</i> 57	40,92	55,74	67,40	62,63
STN 6-7	46,81	46,89	44,01	61,80	71,99	65 <i>,</i> 47

	PDTR10							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR3								
STN 0-1	43,54	27,62	49,37	31,64	46,14	56,30		
STN 1-2	46,62	24,69	46,55	26,34	41,46	55 <i>,</i> 65		
STN 2-3	45,50	31,63	50,49	32,11	46,46	56,01		
STN 4-5	50,58	25,93	53 <i>,</i> 56	29,70	47,65	65 <i>,</i> 59		
STN 5-6	41,87	22,43	41,31	24,97	38 <i>,</i> 79	50,60		
STN 6-7	47,89	28,87	48,30	29,07	44,32	56,15		

	PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR3								
STN 0-1	79,58	68,60	56,63	69,92	70,21	51,32		
STN 1-2	79,14	64,20	56,08	74,59	66,07	48,27		
STN 2-3	82,10	73,41	61,88	71,73	76,17	57,34		
STN 4-5	71,25	54,55	51,23	81,98	57,16	45,66		

STN 5-6	80,56	68,26	55,04	69,00	66,88	45,92
STN 6-7	84,33	74,48	64,18	74,19	76,01	55 <i>,</i> 06

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR3								
STN 0-1	59,17	73,42	39,41	52,09	46,07	45,30		
STN 1-2	72,36	80,28	36,62	60,62	52 <i>,</i> 43	52,18		
STN 2-3	54,66	71,59	43,77	50 <i>,</i> 52	46,00	45,16		
STN 4-5	69,23	70,78	36,97	67,43	61,95	61,78		
STN 5-6	65,10	76,51	34,34	53,25	45 <i>,</i> 52	45,02		
STN 6-7	58 <i>,</i> 95	71,41	42,35	55 <i>,</i> 59	50 <i>,</i> 93	50,02		

	PDTR4							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	100,00	76,35	83,41	85 <i>,</i> 86	86,01	83,62		
STN 1-2	76 <i>,</i> 35	100,00	92 <i>,</i> 39	75,64	63,20	85 <i>,</i> 07		
STN 2-3	83,41	92 <i>,</i> 39	100,00	76,12	64,32	87,00		
STN 4-5	85 <i>,</i> 86	75,64	76,12	100,00	82,19	87,16		
STN 5-6	86,01	63,20	64,32	82,19	100,00	70,74		
STN 6-7	83 <i>,</i> 62	85 <i>,</i> 07	87,00	87,16	70,74	100,00		

	PDTR5							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	33,84	44,51	33 <i>,</i> 35	34,63	38,53	49,26		
STN 1-2	18,51	26,44	17,88	17,36	21,54	28,91		
STN 2-3	24,02	31,54	23,99	18,65	25,46	31,96		
STN 4-5	26,18	37,37	26,75	30,48	30,09	40,24		
STN 5-6	37,64	51,39	37,32	41,42	43,18	55 <i>,</i> 90		
STN 6-7	23,22	32,75	24,10	19,45	25,81	33,44		

	PDTR6							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	71,71	76,91	75,88	26,83	69,85	79,92		
STN 1-2	80,30	57,42	80,42	20,23	56,46	61,19		

STN 2-3	73,48	62,02	75,87	20,82	57,26	63,44
STN 4-5	72,30	69,01	72,41	24,20	63,86	74,66
STN 5-6	63 <i>,</i> 96	63 <i>,</i> 57	66,84	30,22	78,66	86,61
STN 6-7	77,01	70,77	78,73	21,30	60,22	70,71

	PDTR7							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	66,93	31,27	43,26	70,27	44,54	73,38		
STN 1-2	46,41	19,96	29,25	42,94	24,98	49,60		
STN 2-3	49,05	21,00	31,04	49,77	31,32	55,46		
STN 4-5	60,17	29,80	39,32	58 <i>,</i> 07	35 <i>,</i> 97	62 <i>,</i> 39		
STN 5-6	74,84	46,38	56,09	73,35	50,69	76,18		
STN 6-7	55,76	25,33	36,26	54,45	31,54	60,74		

	PDTR8							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	68,17	59,15	67,42	68,16	64,45	56,81		
STN 1-2	60,05	63,46	59,89	55,25	60,19	72,00		
STN 2-3	59 <i>,</i> 35	59,31	58,87	53,36	59,71	64,04		
STN 4-5	61,85	53,00	61,35	63,05	56,77	52,17		
STN 5-6	63 <i>,</i> 57	51,99	69,13	76,61	60,88	48,00		
STN 6-7	63,02	59 <i>,</i> 05	60,03	56,27	59,11	61,80		

	PDTR9							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	55,83	59,70	53,84	85,12	85,23	73,20		
STN 1-2	34,64	38,15	34,64	67,72	64,91	52,27		
STN 2-3	33 <i>,</i> 43	37,64	32,73	75 <i>,</i> 88	70,97	53 <i>,</i> 58		
STN 4-5	50,01	53,12	49,18	71,94	73,40	64,29		
STN 5-6	73,02	73,17	70,93	68,70	81,77	82,74		
STN 6-7	38 <i>,</i> 60	42,06	37,40	79,78	74,26	56,59		

		PDTR10						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	60,00	44,30	70,77	47,22	64,54	80,50		
STN 1-2	80,22	82,68	82,95	56,56	65,76	68,08		
STN 2-3	70,01	72,14	84,93	66,44	75,16	77,05		

STN 4-5	65,76	55,04	69,45	44,92	59,32	74,14
STN 5-6	62,93	33,23	60,92	30,37	51,22	74,71
STN 6-7	69,97	42,06	81,64	61,46	71,43	77,05

	PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR4								
STN 0-1	49,11	39,22	52,47	84,24	50,11	55,62		
STN 1-2	40,29	34,93	56,01	66,83	61,33	84,91		
STN 2-3	40,55	34,33	48,84	67,84	54,16	73,16		
STN 4-5	39,82	29,74	44,48	75,81	44,34	56,72		
STN 5-6	49,26	34,80	47,60	80,62	42,88	44,58		
STN 6-7	40,25	33,72	48,74	72,61	51,72	67,96		

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	44,07	41,77	52,44	68,00	73,37	72,68		
STN 1-2	31,49	36,85	87,22	46,63	56,08	54,00		
STN 2-3	35,54	39,34	78,00	45,76	53,18	52,26		
STN 4-5	41,72	37,75	59,65	62,22	68,30	67,93		
STN 5-6	48,70	41,99	39 <i>,</i> 36	81,62	83 <i>,</i> 54	83 <i>,</i> 80		
STN 6-7	36,98	38,46	76,95	50,13	58,48	57,67		

		PDTR5							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR5									
STN 0-1	100,00	95,12	98,26	18,62	90,85	88,01			
STN 1-2	95,12	100,00	94,40	23,89	88,88	87,72			
STN 2-3	98 <i>,</i> 26	94,40	100,00	16,84	85 <i>,</i> 97	82,87			
STN 4-5	18,62	23,89	16,84	100,00	26,49	33,65			
STN 5-6	90 <i>,</i> 85	88,88	85 <i>,</i> 97	26,49	100,00	96,21			
STN 6-7	88,01	87,72	82,87	33,65	96,21	100,00			

	PDTR6							
	STN 0-1	STN 0-1 STN 1-2 STN 2-3 STN 4-5 STN 5-6 STN 6-7						
PDTR5								
STN 0-1	36,41	36,41 26,27 39,96 33,26 53,90 49,31						

STN 1-2	45,35	35,99	49,12	36,39	65,50	61,79
STN 2-3	34,75	29,87	38,63	32,31	54,82	49,45
STN 4-5	19,17	17,10	19,42	13,29	34,37	36,72
STN 5-6	41,57	25,32	44,81	32 <i>,</i> 54	55,75	53 <i>,</i> 18
STN 6-7	46,08	30,69	49,72	35,46	63,77	63,16

	PDTR7						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR5							
STN 0-1	34,33	30,65	32,78	52,12	78,88	55,62	
STN 1-2	49,40	42,49	46,11	63,04	81,26	67,07	
STN 2-3	37,65	35 <i>,</i> 39	37,60	56,25	83 <i>,</i> 35	58 <i>,</i> 94	
STN 4-5	33,02	23,51	28,00	33,99	23,51	33,60	
STN 5-6	35,78	29,09	31,05	45,68	62,05	51,23	
STN 6-7	45,64	33,78	37,69	54,03	64,78	59,51	

	PDTR8							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR5								
STN 0-1	63,66	56,31	68,19	58,52	62,59	39,50		
STN 1-2	71,27	61,81	77,14	69,64	70,64	46,18		
STN 2-3	63 <i>,</i> 25	54 <i>,</i> 39	67,51	58 <i>,</i> 98	65,31	37,53		
STN 4-5	21,19	14,50	27,18	37,32	19 <i>,</i> 53	11,82		
STN 5-6	64,72	59,76	69,61	56,79	54,46	41,44		
STN 6-7	66,12	59 <i>,</i> 89	73,36	65 <i>,</i> 88	57,77	43,55		

	PDTR9							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR5								
STN 0-1	38,12	37,81	35,23	33,09	47,88	51,48		
STN 1-2	46,98	46,50	42,93	41,83	57,67	61,56		
STN 2-3	36,21	35 <i>,</i> 59	32,47	34,95	48,57	50,55		
STN 4-5	43 <i>,</i> 45	42,62	42,29	25,08	35 <i>,</i> 34	44,73		
STN 5-6	44,97	46,02	43 <i>,</i> 57	35,71	51,07	55 <i>,</i> 51		
STN 6-7	57,61	58 <i>,</i> 55	55 <i>,</i> 65	41,71	60,17	67,49		

	PDTR10						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR5							
STN 0-1	26,39	5,92	15,86	4,22	15,85	28,11	
STN 1-2	34,73	9 <i>,</i> 85	23,72	7,53	21,98	38,01	

STN 2-3	25,51	5 <i>,</i> 48	15,34	3,92	15,26	27,75
STN 4-5	25,73	4,70	18,80	3,81	13,65	27,75
STN 5-6	30,63	7,07	19,89	5,12	18,63	32,76
STN 6-7	39,54	58,55	28,27	8,46	24,75	42,30

	PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR5								
STN 0-1	76,34	54,30	34,10	54,87	49,20	25,24		
STN 1-2	80,35	58 <i>,</i> 30	40,26	64,94	53,64	30,83		
STN 2-3	72,34	50,08	31,00	55,70	45,70	23,19		
STN 4-5	21,36	10,53	17,29	30,90	11,07	9,80		
STN 5-6	83 <i>,</i> 76	60,27	39,20	55,75	55 <i>,</i> 84	29,24		
STN 6-7	81,21	57 <i>,</i> 99	43,82	63 <i>,</i> 33	54,84	32,24		

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR5								
STN 0-1	67,06	84,44	13,89	49,42	36,83	37,63		
STN 1-2	68,38	80,18	18,34	57,05	45,80	46,37		
STN 2-3	71,97	86,14	13,18	46,42	33,09	34,37		
STN 4-5	18,77	15,34	5,46	46,74	45,99	45,10		
STN 5-6	46,63	68,28	14,60	55 <i>,</i> 63	45 <i>,</i> 83	46,79		
STN 6-7	51,58	69,67	18,23	68,44	59,92	60,07		

	PDTR6							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR6								
STN 0-1	100,00	59 <i>,</i> 93	96,18	22,76	60,87	66,06		
STN 1-2	59 <i>,</i> 93	100,00	65 <i>,</i> 97	18,39	49,97	60,97		
STN 2-3	96,18	65 <i>,</i> 97	100,00	24,80	67,10	72,23		
STN 4-5	22,76	18,39	24,80	100,00	35 <i>,</i> 83	35,06		
STN 5-6	60,87	49 <i>,</i> 97	67,10	35 <i>,</i> 83	100,00	90,07		
STN 6-7	66,06	60,97	72,23	35,06	90,07	100,00		

	PDTR7						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR6							

STN 0-1	48,55	26,06	32,13	42,08	31,05	51,80
STN 1-2	59,68	25,51	37,61	67,66	39,11	69,43
STN 2-3	55,28	29,40	37,39	51,39	37,08	60,32
STN 4-5	27,68	22,00	24,47	29,73	32,12	31,53
STN 5-6	74,30	60,66	66,26	75,31	65,55	77,61
STN 6-7	74,20	50 <i>,</i> 33	59 <i>,</i> 93	77,37	60,74	80,60

	PDTR8							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR6								
STN 0-1	84,73	88,06	80,18	66,28	73,76	89 <i>,</i> 78		
STN 1-2	66,19	51,40	54,32	49,44	58 <i>,</i> 04	44,43		
STN 2-3	86,50	88 <i>,</i> 93	83,29	70,48	77,62	89,96		
STN 4-5	28,67	24,75	31,61	31,87	28,51	21,39		
STN 5-6	67,41	60,04	76,69	82,82	71,06	55 <i>,</i> 75		
STN 6-7	69,22	60,47	75,60	80,41	70,12	55,96		

	PDTR9							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR6								
STN 0-1	37,46	40,26	37,84	67,21	67,06	53 <i>,</i> 63		
STN 1-2	29,21	33,33	26,92	85,49	71,40	47,61		
STN 2-3	41,97	44,62	41,35	74,91	74,39	59,21		
STN 4-5	26,10	26,50	24,19	22,34	30,05	31,56		
STN 5-6	69 <i>,</i> 83	67,91	67,19	62,78	79,49	81,57		
STN 6-7	73,15	72,43	70,27	70,89	85,02	83,30		

	PDTR10							
	STN 0-1	STN 1-2	STN 2-3		STN 5-6	STN 6-7		
PDTR6								
STN 0-1	66,06	61,18	63 <i>,</i> 65	37,73	50 <i>,</i> 89	59 <i>,</i> 37		
STN 1-2	36,25	31,36	44,72	28,50	41,36	55 <i>,</i> 05		
STN 2-3	65 <i>,</i> 60	57 <i>,</i> 88	67,20	40,04	54,39	64 <i>,</i> 65		
STN 4-5	23 <i>,</i> 63	10,76	19,63	9,14	16,56	25 <i>,</i> 09		
STN 5-6	64,13	34,16	59 <i>,</i> 06	29,67	46,75	66,59		
STN 6-7	64,01	35,34	63,79	35,99	54,45	74,56		

	PDTR11						
	STN 0-1	STN 0-1 STN 1-2 STN 2-3 STN 4-5 STN 5-6 STN 6-7					
PDTR6							

STN 0-1	68,89	72,68	82,35	75,13	86,30	85,06
STN 1-2	34,49	30,38	37,31	78,00	39,44	41,78
STN 2-3	70,38	71,63	81,73	79,71	85,08	82,30
STN 4-5	31,24	20,33	19,20	30,22	23,00	17,35
STN 5-6	60,91	44,36	51,67	75,33	53,69	48,50
STN 6-7	59 <i>,</i> 47	44,17	52 <i>,</i> 97	79 <i>,</i> 95	52,04	48 <i>,</i> 67

			PDT	R12		
	STN 0-1	STN 1-2	STN 2-3		STN 5-6	STN 6-7
PDTR6						
STN 0-1	33 <i>,</i> 53	44,48	73,03	46,97	53,74	52,37
STN 1-2	37 <i>,</i> 94	34,63	39,89	39,15	43,12	44,96
STN 2-3	37,48	47,10	70,49	51,57	57,65	55 <i>,</i> 64
STN 4-5	23,69	28,51	13,81	29,85	27,11	27,87
STN 5-6	56 <i>,</i> 33	54,24	41,56	74,79	73,06	73,91
STN 6-7	54,76	52,16	43,68	79,29	79 <i>,</i> 88	80,91

	PDTR7						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR7							
STN 0-1	100,00	80,86	90,69	79,17	52 <i>,</i> 39	81,65	
STN 1-2	80,86	100,00	95,86	56,78	43,78	56,51	
STN 2-3	90,69	95 <i>,</i> 86	100,00	67,89	49 <i>,</i> 92	69,03	
STN 4-5	79,17	56,78	67,89	100,00	80,40	94,77	
STN 5-6	52 <i>,</i> 39	43,78	49,92	80,40	100,00	77,30	
STN 6-7	81,65	56,51	69 <i>,</i> 03	94,77	77 <i>,</i> 30	100,00	

			PD	TR8		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR7						
STN 0-1	55,77	44,27	61,13	69 <i>,</i> 03	54 <i>,</i> 38	39,03
STN 1-2	37,26	29,02	45 <i>,</i> 88	51,50	38,19	22,83
STN 2-3	42,26	32,68	50,69	58 <i>,</i> 46	44,55	27,44
STN 4-5	59 <i>,</i> 38	43 <i>,</i> 68	64,61	75,75	70,06	36,07
STN 5-6	56,27	43,87	64,43	71,09	73 <i>,</i> 95	33,29
STN 6-7	66,04	52,20	70,17	77,92	72,18	45,01

|--|

	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR7						
STN 0-1	57,15	56,77	51,57	62,79	71,31	71,43
STN 1-2	41,51	38,14	37,14	29,07	43,17	50,27
STN 2-3	48,76	45,89	43 <i>,</i> 57	41,57	53 <i>,</i> 54	58,92
STN 4-5	60 <i>,</i> 97	61,12	55,75	71,19	80,39	77,19
STN 5-6	48,29	46,99	43,89	43,26	60 <i>,</i> 55	64,67
STN 6-7	61,82	61,21	57,86	72,96	81,73	78,48

			PDT	R10		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR7						
STN 0-1	48,62	21,42	47,22	21,78	38,59	60,09
STN 1-2	33 <i>,</i> 62	8,06	24,32	5 <i>,</i> 50	16,11	32,51
STN 2-3	40,49	13,58	34,05	12,08	24,83	43,06
STN 4-5	45 <i>,</i> 46	17,79	43,62	20,02	37,32	59 <i>,</i> 04
STN 5-6	34,40	9,16	24,82	8,48	21,42	38,04
STN 6-7	51,00	61,21	48,72	24,07	41,53	62,36

		PDTR11						
	STN 0-1	STN 1-2	STN 2-3	STN4.5	STN 5-6	STN 6-7		
PDTR7								
STN 0-1	42,75	29,15	37,39	70,88	33,84	31,98		
STN 1-2	30,83	21,01	22,06	39,44	21,59	15,92		
STN 2-3	34,48	21,61	25,45	50 <i>,</i> 59	24,04	20,95		
STN 4-5	46,25	27,17	32,60	78,84	30,46	27,43		
STN 5-6	53 <i>,</i> 84	31,94	27,79	62,61	31,72	20,19		
STN 6-7	55 <i>,</i> 46	37,78	41,56	82,87	40,96	36,87		

			PDT	R12		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR7						
STN 0-1	39,42	34,69	27,42	61,27	59,40	61,54
STN 1-2	30,16	26,59	10,39	40,22	33 <i>,</i> 45	37,64
STN 2-3	35,29	31,12	16,73	48,78	42,83	46,32
STN 4-5	66,20	56,24	24,20	67,95	63 <i>,</i> 06	63 <i>,</i> 03
STN 5-6	85 <i>,</i> 96	82 <i>,</i> 53	15,34	57 <i>,</i> 68	45,24	45 <i>,</i> 53
STN 6-7	63,14	58,18	31,85	68,50	64,65	65,26

			PD	TR8		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR8						
STN 0-1	100,00	94,81	92,68	74,56	82,84	79,76
STN 1-2	94,81	100,00	90,53	69,20	80,14	89,74
STN 2-3	92 <i>,</i> 68	90 <i>,</i> 53	100,00	84,59	86,03	79,28
STN 4-5	74 <i>,</i> 56	69,20	84,59	100,00	83,33	66,02
STN 5-6	82 <i>,</i> 84	80,14	86,03	83,33	100,00	79,04
STN 6-7	79,76	89,74	79,28	66,02	79,04	100,00

			PD	TR9		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR8						
STN 0-1	40,51	43,03	38,63	69,54	72,58	59,66
STN 1-2	34,47	36,88	34,03	60,29	63 <i>,</i> 58	51 <i>,</i> 93
STN 2-3	54,29	55,26	52,16	63,09	75,41	71,35
STN 4-5	66,32	66,13	64,30	58,77	78,31	81,01
STN 5-6	44,37	45 <i>,</i> 56	42,81	65 <i>,</i> 88	73 <i>,</i> 98	63 <i>,</i> 91
STN 6-7	31,06	33,28	31,66	56 <i>,</i> 68	59,15	47,96

			PDT	R10		
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7
PDTR8						
STN 0-1	49,58	35,82	44,13	20,18	36,64	51,18
STN 1-2	52,68	43,31	46,74	22,66	36,49	45,63
STN 2-3	58 <i>,</i> 46	36,07	48,99	21,13	38,75	55,22
STN 4-5	61,91	32,23	49,50	19,33	37,09	58,01
STN 5-6	53 <i>,</i> 75	38,05	49,00	24,23	38 <i>,</i> 93	52,42
STN 6-7	60,41	55 <i>,</i> 35	57,03	30,58	42,04	47,56

		PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR8									
STN 0-1	81,08	77,65	74,68	83,20	84,53	67 <i>,</i> 57			
STN 1-2	82,21	83,44	84,55	73,23	93,26	77 <i>,</i> 86			
STN 2-3	83,04	75,75	75,77	81 <i>,</i> 58	81,09	66,26			
STN 4-5	66,77	54,04	64,05	80,36	61,05	53 <i>,</i> 58			
STN 5-6	69,44	62,91	69 <i>,</i> 67	78,28	71,55	63 <i>,</i> 62			
STN 6-7	73,45	77,57	89 <i>,</i> 43	65,72	90,24	85 <i>,</i> 80			

		PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR8									
STN 0-1	51,83	62,17	48,49	51,27	50,40	49,73			
STN 1-2	40,95	56,72	56,86	44,01	45,37	43,43			
STN 2-3	57 <i>,</i> 52	65 <i>,</i> 86	47,64	65 <i>,</i> 06	62,09	60,78			
STN 4-5	64,72	61,15	40,74	75,81	72,44	70,69			
STN 5-6	72,28	72,47	50,21	54,69	51,71	49 <i>,</i> 97			
STN 6-7	34,38	47,38	68,66	38 <i>,</i> 96	44,17	40,96			

		PDTR9							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR9									
STN 0-1	100,00	92,82	91,93	41,96	69,44	85 <i>,</i> 05			
STN 1-2	92,82	100,00	82,47	45,05	71,48	85 <i>,</i> 55			
STN 2-3	91 <i>,</i> 93	82,47	100,00	39 <i>,</i> 63	65 <i>,</i> 00	78 <i>,</i> 98			
STN 4-5	41,96	45,05	39 <i>,</i> 63	100,00	87 <i>,</i> 54	61,50			
STN 5-6	69 <i>,</i> 44	71,48	65,00	87,54	100,00	85 <i>,</i> 79			
STN 6-7	85 <i>,</i> 05	85 <i>,</i> 55	78 <i>,</i> 98	61,50	85 <i>,</i> 79	100,00			

		PDTR10							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR9									
STN 0-1	56,71	15,59	47,45	15,85	33,95	55,84			
STN 1-2	56,06	18,38	47,70	17,07	35,28	56,78			
STN 2-3	55,61	16,88	46,41	14,78	32,49	53 <i>,</i> 98			
STN 4-5	47 <i>,</i> 86	39 <i>,</i> 48	66,36	47,16	61,93	73 <i>,</i> 38			
STN 5-6	60,65	36,22	68 <i>,</i> 99	41,84	60,95	78,76			
STN 6-7	64,79	85 <i>,</i> 55	57,27	25,45	45,52	67,46			

	PDTR11						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR9							
STN 0-1	43,02	26,92	37,06	55,83	29,26	26,37	
STN 1-2	44,72	29,12	38,84	59,20	31,50	28,80	
STN 2-3	42,12	27,62	38,15	53,15	29,99	27,39	
STN 4-5	46,77	39,67	48,38	81,94	51,25	52,62	
STN 5-6	58 <i>,</i> 52	46,14	55,75	85,94	54,57	52,51	

1					1			I.
	STN 6-7	56.92	39.33	49.70	76.78	45.12	42,01	

	PDTR12						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7	
PDTR9							
STN 0-1	42,78	36,64	19,54	83,34	82,71	81,93	
STN 1-2	41,50	36,35	22,25	81,00	81,11	80,48	
STN 2-3	39 <i>,</i> 39	33,42	20,48	80,68	81,22	79,92	
STN 4-5	40,23	40,62	51,28	50 <i>,</i> 93	55 <i>,</i> 73	55 <i>,</i> 58	
STN 5-6	55,33	53,26	46,93	73,97	75,43	75,16	
STN 6-7	56,41	52,69	33,77	87,05	85,39	84,12	

	PDTR10							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR10								
STN 0-1	100,00	84,34	79,44	37,90	49,74	58,68		
STN 1-2	84,34	100,00	73,37	47,09	47,13	42,44		
STN 2-3	79,44	73 <i>,</i> 37	100,00	72 <i>,</i> 53	82 <i>,</i> 32	83 <i>,</i> 97		
STN 4-5	37 <i>,</i> 90	47,09	72,53	100,00	93,71	74,24		
STN 5-6	49,74	47,13	82,32	93,71	100,00	90,24		
STN 6-7	58 <i>,</i> 68	42,44	83 <i>,</i> 97	74,24	90,24	100,00		

		PDTR11						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR10								
STN 0-1	40,84	29,02	48,52	57,82	52,22	74,21		
STN 1-2	21,15	17,51	35 <i>,</i> 59	37,84	45 <i>,</i> 49	77 <i>,</i> 06		
STN 2-3	32 <i>,</i> 36	24,80	43,05	55,10	45,21	66,77		
STN 4-5	12,90	11,04	20,38	27,18	21,39	36,66		
STN 5-6	27,86	22,87	33 <i>,</i> 49	46,22	33 <i>,</i> 35	45 <i>,</i> 01		
STN 6-7	40,87	30,50	42,64	66,47	39 <i>,</i> 50	46,84		

		PDTR12						
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR10								
STN 0-1	37,45	40,23	78,75	62,08	67,83	65,67		
STN 1-2	19,99	26,81	91,65	25,44	35,17	31,87		
STN 2-3	29,62	31,15	76,70	51,24	60,49	58,85		

STN 4-5	13,59	15,90	55,84	18,87	27,46	28,52
STN 5-6	24,18	25,94	56,67	37,94	46,10	46,21
STN 6-7	37,92	35 <i>,</i> 56	51,36	61,85	68,21	67,51

		PDTR11							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7			
PDTR11									
STN 0-1	100,00	87,61	73,63	66,73	82,27	55,62			
STN 1-2	87,61	100,00	83,69	53,51	86,84	57 <i>,</i> 68			
STN 2-3	73 <i>,</i> 63	83 <i>,</i> 69	100,00	61,54	87,27	75,02			
STN 4-5	66,73	53 <i>,</i> 51	61,54	100,00	64 <i>,</i> 89	60,34			
STN 5-6	82,27	86,84	87,27	64,89	100,00	84,13			
STN 6-7	55,62	57,68	75,02	60,34	84,13	100,00			

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR11								
STN 0-1	41,35	62,01	34,19	51,82	48,06	47,26		
STN 1-2	24,45	42,12	31,76	31,81	32,49	30,66		
STN 2-3	27,79	39,52	51,09	43,89	48,72	47,31		
STN 4-5	58,54	60,58	47,09	68,43	68,53	67,58		
STN 5-6	28,10	47,52	57,42	37,72	40,90	38,73		
STN 6-7	24,78	37,62	81,68	34,54	42,97	40,27		

	PDTR12							
	STN 0-1	STN 1-2	STN 2-3	STN 4-5	STN 5-6	STN 6-7		
PDTR2								
STN 0-1	100,00	87 <i>,</i> 93	25,82	52,91	43,04	42,77		
STN 1-2	87 <i>,</i> 93	100,00	34,85	50,26	38 <i>,</i> 69	38 <i>,</i> 97		
STN 2-3	25,82	34,85	100,00	28,74	39,10	37,77		
STN 4-5	52,91	50,26	28,74	100,00	93,14	92,25		
STN 5-6	43,04	38 <i>,</i> 69	39,10	93,14	100,00	94,14		
STN 6-7	42,77	38 <i>,</i> 97	37,77	92,25	94,14	100,00		