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0.GLOSARY	
	

PDTR:	Parkinson’s	Disease	Therapy	
PD:	Parkinson’s	Disease	
FFT:	Fast	Fourier	Transform	
NFFT:	Number	of	points	of	Fast	Fourier	Transform	
STN:	Subthalamic	Nucleus	
PDS:	Power	Spectral	Density	
EMG:	Electromyography	signals.	
EEG:	Electroencephalogram		
UPDRS:	Unified	Parkinson's	Disease	Rating	Scale	
ECoG:	Electrocorticography	
ON	state:	clinical	state	after	dopaminergic	therapy	administration.	Some	of	the	PD	

symptoms	 are	 vanish	 or	 ameliorate.	 In	 some	 cases,	 adverse	 side-effects	 can	 occur	
(involuntary	movements,	impulsivity	etc)	

OFF	state:	clinical	state	of	PD	patients	characterised	by	the	presence	of	motor	and	
cognitive	symptoms	that	characterise	the	clinic	of	PD	
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1.1	Introduction:	Parkinson’s	Disease	
	

The	first	description	of	the	Parkinson’s	Disease	(PD)	took	place	with	a	monograph	
written	in	1817	by	James	Parkinson.	In	his	publication	“An	essay	on	the	shaking	palsy”	
[21]	he	described	the	symptomatology	of	with	6	patients	he	discovered	in	London	and	
who	 presented	 tremor	 in	 rest,	 changes	 in	 the	 walking	 and	 changes	 in	 the	 natural	
reflexes.	

	
The	prevalence	of	PD	 is	 foreseen	between	1-3	by	1.000	 inhabitants	 in	Europe.	 In	

Spain	this	disease	affects	to	more	than	70.000	people.	This	quantity	locates	PD	in	the	
second	place	of	the	group	of	neurodegenerative	diseases	with	a	narrow	distance	from	
Alzheimer.	

	
The	three	main	symptoms	of	PD	are:	tremor,	rigidity	and	bradykinesia	(difficulty	to	

start	movement,	slowness	and	clumsiness	in	voluntary	movements.		
	

To	date,	there	is	no	cure	for	PD.	Therapies	are	focused	on	controlling	the	symptoms	
and	commonly	must	be	personalized	to	each	patient.	Current	drugs	aim	to	ameliorate	
the	 symptomatology	 by	 increasing	 the	 levels	 of	 dopamine	 in	 the	 brain.	 However,	 in	
some	cases,	the	chronic	treatment	of	levodopa	produces	in	the	patient	some	difficulties	
(in	motor	and	psychiatric	functions)	and	in	frequently	results	in	severe	side	effects.	As	a	
consequence	of	that,	the	monitoring	of	the	patient	is	fundamental.	

	
Patients	who	have	been	treated	with	medicine	for	a	long	time	or	have	received	an	

important	dose	of	it,	used	to	develop	a	decrease	of	response	to	the	treatment	and	an	
amount	of	undesirable	secondary	expressions	such	as:	dyskinesia,	strange	gestures	or	
abnormal	movements.	

	
An	alternative	to	this	problem	can	be:	changing	doses,	rising	up	the	number	of	doses,	

make	 therapeutic	 holidays,	 etc…	 Anyway,	 little	 by	 little	 these	methods	 become	 less	
effective	and	other	therapies	such	as	Deep	Brain	Stimulation	can	be	applied	

	
1.2	Deep	Brain	Stimulation	(DBS)	

	
Deep	 Brain	 Stimulation	 (DBS)	 is	 a	 surgical	 procedure	 which	 is	 used	 to	 reduce	

symptoms	of	PD	such	as:	tremor,	rigidity,	stiffness,	slow	movement	
	
It	is	mainly	indicated	for	patients	which	symptoms	cannot	be	controlled	adequately	

with	medicine	treatments.	
	
DBS	 uses	 a	 surgically	 implanted	 battery-operated	medical	 device	 which	 is	 called	

“neurostimulator”	 to	 deliver	 electrical	 stimulation	 to	 some	 areas	 in	 the	 brain	 that	
control	movement.		Although	not	completely	proved,	it	is	believed	that	stimulation	acts	
by	blocking	the	abnormal	activity	that	causes	some	of	the	mayor	motor	disturbances	in	
PD	patients.	
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The	positioning	of	the	Deep	Brain	Stimulations	as	well	as	treating	the	disease	has	
permitted	 to	 register	 the	 different	 structures	 of	 basal	 ganglia	 in	 these	 patients.	 The	
ground-breaking	finding	has	been	the	detection	of	an	excessive	synchronism	in	the	Beta	
band	 in	 patients	 with	 PD	 which	 decreases	 or	 disappears	 after	 giving	 the	 patient	
dopamine.	 In	 Local	 Field	 Potentials	 of	 neuronal	 actions	 (which	 are	 usually	 obtained	
during	 the	 colocation	of	 the	electrode)	 this	 synchronism	 is	observed	 in	 the	 shape	of	
outbreaks	 of	 rhythmical	 shocks	 and	 synchrony	 in	 the	 group	 of	 neurons	 at	 these	
frequencies.	In	the	Local	Field	Potentials	across	the	stimulators	which	are	usually	made	
just	 in	 the	 following	 days	 after	 the	 surgery,	 before	 the	 second	 surgery	 when	 it’s	
internalized	the	system	and	the	batteries	are	connected.	This	hipersynchrony	can	be	
seen	in	the	shape	of	oscillations	which	are	distinctly	visible	in	the	Beta	Range,	especially	
in	the	Low	Beta	Range	(13-20	Hz).	In	the	following	graph,	it	can	be	seen	the	names	of	
the	frequency	range.	

	
Graph	1:	Names	of	the	frequency	range	[4]	

Beta	activity	is	not	the	unique	anomalous	oscillation	observed	in	patients	with	PD.	
For	instance,	it	can	be	seen	oscillations	of	Theta-Alfa	(4-10	Hz)	related	with	the	presence	
of	 dyskinesias	 induced	 by	 the	medicine	 and	with	 the	 presence	 of	 a	 disorder	 of	 the	
impulse’s	control	(in	both	cases,	after	taking	medicine)	and	related	with	the	tremor.		

	
The	 treatment	 of	 PD	 through	 DBS	 of	 the	 Subthalamic	 nucleus	 has	 permitted	 to	

register	 the	 oscillatory	 activity	 among	 the	 nucleus.	 It	 has	 been	 observed	 that	 the	
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exaggerating	synchronisation	of	neuronal	populations	in	the	basal	ganglia	(especially	in	
low	frequencies)	keeps	a	direct	relationship	with	the	expression	of	motor	symptoms	in	
the	 patients.	 As	 a	 consequence	 of	 that,	 characterizing	 and	 understanding	 the	
mechanisms	generators	of	these	oscillations	represents	an	important	challenge	when	
we	 focus	 on	 the	 knowledge	 of	 the	 disease,	mainly	 in	 what	 relates	 to	 the	 design	 of	
precocious	 diagnostic	 methods	 and	 the	 verification	 of	 new	 therapies	 bases	 on	
neuromodulation	by	electric	stimulation.	

	
In	the	DBS	treatment,	the	colocation	of	deep	stimulators	in	the	patients	restrict	to	a	

reduced	number	of	structures	and	rarely	more	that	2	stimulators	are	implanted	in	each	
character.		

	
1.3	Helping	texts	

	
As	a	help	and	introduction	to	the	state	of	the	art	in	the	electrophysiology	of	PD,	a	

number	of	scientific	papers	were	reviewed	and	studied.	Following	are	summarized	the	
main	findings	and	procedures	described	in	the	4	studied	than	are	the	most	relevant	for	
the	aims	of	this	project.	

	
1.3.1	“Oscillatory	activity	in	the	human	basal	ganglia:	more	than	just	beta,	

more	than	just	Parkinson's	disease”	[4]	
	
In	this	work,	authors	show	their	personal	point	of	view	and	understanding	about	the	

state	of	the	art	of	the	current	knowledge	of	the	oscillatory	activity	and	their	role	in	the	
pathophysiology	of	PD.	In	a	Comment	paper	about	the	work	of	Tan	et.	al.	(2013),	authors	
stress	 the	 role	 of	 the	 beta	 oscillations	 and	 other	 oscillatory	 activities	 as	 important	
mechanism	involved	in	the	pathophysiology	of	PD.		

	
Specifically,	Tan	et	al.	(2013)	analyse	the	local	field	potentials	(LFP)	recorded	in	the	

STN	 of	 PD	 patients	 and	 evaluate	 the	 changes	 in	 oscillatory	 activity	 within	 a	 motor	
paradigm	where	 subjects	 are	 asked	 to	 hold	 and	 release	 some	 specific	 objects.	 They	
found	was	that	beta	activity	was	related	to	the	release	phase,	while	grip	maintenance	
related	most	to	theta	and	gamma/high-frequency	activity.	 Interestingly,	 the	effect	of	
the	motor	state	of	the	patient	on	some	of	these	relationships	was	not	significant.	Tan’s	
paper	confirms	that	the	local	field	potential	activity	in	the	basal	ganglia	of	PD	patients	in	
the	OFF	state	is	dominated	by	prominent	beta	oscillations.		

	
Actually,	it	is	widely	accepted	that	abnormal	beta	activity	is	an	excellent	marker	of	

PD	in	human	patients.	Together	with	this	frequency	range,	there	are	other	frequency	
bands	where	several	studies	have	shown	alterations.	

	
• In	the	gamma	and	theta	ranges,	when	patients	are	in	the	ON	state	(improved	

motor	state	as	a	result	of	the	effect	of	the	therapy)		
• Presence	 of	 oscillations	 in	 theta/alpha	 bands	 during	 the	 ON	 state	 are	

accompanied	by	the	occurrence	of	side	effects	as	dyskinesias	or	the	presence	of	
impulse	control	disorders	
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• High-frequency	oscillations	(200-400	Hz)	can	be	observed	in	most	PD	patients	in	
the	STN	 if	 the	signal	 is	 recorded	 in	wide	band.	During	the	OFF	state:	 they	are	
limited	to	the	dorsal	region	of	the	nucleus	and	peak	at	250	Hz.	ON	state:	they	
show	a	more	widespread	spatial	distribution	and	shift	their	frequency	to	around	
350	Hz.	
	

As	a	result,	authors	conclude	that	although	oscillatory	activity	in	the	beta	range	may	
play	a	critical	role	in	the	motor	function,	gamma	and	high-frequency	activities	could	also	
be	 involved	 in	 movement	 execution	 while	 phenomena	 in	 the	 theta	 range	 could	 be	
related	to	more	cognitive	process.	

	
	

1.3.2	Slow	oscillatory	activity	and	levodopa-induced	dyskinesias	in	PD	[3]	
	

In	this	study,	authors	showed	that	the	presence	of	levodopa-induced	dyskinesias	is	
accompanied	by	the	appearance	of	theta	oscillations	in	the	STN	of	PD	patients.	

	
Levodopa	 (L-DOPA)	 is	 the	 precursor	 of	 dopamine,	 so	 it	 is	 used	 as	 a	 drug	 to	 re-

establish	the	levels	of	this	neurotransmitter	in	the	PD	brain.	After	a	long-term	treatment	
based	in	L-DOPA,	patients	develop	resilience	to	the	drug	and	very	often	suffer	of	severe	
side	effects	as	L-DOPA-induced	dyskinesias.	This	form	of	involuntary	movements	could	
be	elicited	in	the	face,	upper	and	lower	forelimbs	and	could	involve	many	segments	of	
the	body	at	the	same	time.		

	
In	this	study,	authors	recorded	and	studied	the	local	field	potentials	(LPF)	from	the	

macroelectrodes	of	the	DBS	stimulators	implanted	in	the	subthalamic	nucleus	(STN)	in	
14	patients	during	the	“OFF”	and	“ON”	motor	states	(before/after	administration	of	the	
pharmacologic	therapy).	In	11	out	of	14,	levodopa	elicited	dyskinesias.	

	
Recording	sessions	were	conducted	2-4	days	after	surgery,	having	ensured	that	the	

patients’	general	state	was	satisfactory.		
	
Electromyography	(EMG)	signals	were	recorded	with	disposable	surface	electrodes	

to	assess	the	presence	of	dyskinesias	or	tremor	on	the	limb	muscles	previously	reported	
to	show	abnormal	activities.	Oscillatory	activity	was	amplified	100.000	fold	and	filtered	
at	0.3-100	Hz	before	being	digitalized	at	200	Hz	by	an	analogic	to	digital	(A/D)	converted	
connected	to	a	PC.	EEG	activity	was	amplified	20.000-fold,	 filtered	at	0.3-100	Hz	and	
digitalized	at	200	Hz	using	the	same	A/D	converter.		

	
All	sessions	began	with	patients	in	the	“OFF”	motor	state	after	overnight	withdrawal	

of	antiparkinsonian	medication	and	the	“ON”	motor	state	was	subsequently	achieved	
by	oral	administration	of	levodopa.	Activity	was	continuously	registered:	from	the	“OFF”	
motor	state,	across	an	intermediate	state	(where	diphasis	dyskinesias	and	beginning	of	
the	motor	 improvement	 was	 observed)	 to	 the	 ON	 state	 where	 amelioration	 or	 the	
presence	of	dyskinesias	occurred.		
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Analyses	 based	 on	 Fast	 Fourier	 Transform	 (FFT)	 and	 filtering	 allowed	 authors	 to	
detect	differences	in	between	the	spectral	content	of	the	ON	and	OFF	periods.	And	more	
importantly,	these	differences	correlated	with	the	clinical	state	of	the	patients.	

	
Briefly,	the	ON/OFF	periods	where	characterised	by:		
	
• In	the	OFF	state,	activity	 in	the	11-30	Hz	band	(beta	band)	was	recorded.	This	

band	reduced	in	amplitude	45,2	%	in	the	ON	state.	
• In	the	ON	state,	and	coincident	with	the	occurrence	of	dyskinesias,	an	increment	

of	 77.6	 %	 was	 observed	 in	 the	 4-10	 Hz	 band	 in	 all	 patients	 who	 showed	
dyskinesia.		

• In	the	ON	state,	an	increase	of	17,8	%	in	the	60-80	Hz	range	(gamma	band)	was	
observed	in	the	majority	of	the	patients.	

• In	patients	with	severe	tremor	at	rest,	the	predominant	peak	coincided	with	the	
tremor	frequency	(4-6	Hz).	

• And	more	importantly,	in	those	patients	(3)	not	developing	dyskinesia,	there	was	
no	increment	in	the	4-10	Hz	band.		
	

All	 these	 results	 suggest	 the	 existence	 of	 a	 strong	 correlation	 between	 the	 spectral	
characteristics	of	 the	STN	oscillatory	activity	and	the	clinical	 symptomatology,	and	 in	
particular	with	the	presence	of	levodopa-induced	dyskinesias.	
	

1.3.3	Coupling	between	Beta	and	High-Frequency	Activity	 in	the	Human	
Subthalamic	Nucleus	might	be	a	Pathophysiological	Mechanism	in	PD	[2]	

	
This	paper	completes	the	characterization	of	the	oscillatory	activity	recorded	on	the	

STN	of	PD	patients.	The	two	main	findings	of	this	study	describe:	
	
• The	presence	of	oscillatory	activity	in	the	300-400	Hz	range	
• The	fact	that	the	amplitude	of	this	high	frequency	activity	depends	on	the	phase	

of	the	oscillations	in	the	beta	range	(15-30	Hz)		
	

Again,	in	the	OFF	state	the	oscillatory	activity	is	mainly	characterized	by	the	presence	
of	 activity	 in	 the	 beta	 range	 (10-30	 Hz).	 Nevertheless,	 the	 use	 of	 a	 higher	 sampling	
frequency	(2000	vs	200	Hz)	allowed	first,	to	detect	activities	in	the	300-400	range,	and	
then	to	detect	the	presence	of	two	different	components	in	the	beta	range.	One	peak	
within	the	low-beta	band	(12-20	Hz),	together	with	a	smaller	peak	in	the	high	–beta	band	
(20-30	Hz).	The	low-beta	peak	disappeared	or	was	greatly	reduced	in	the	on	motor	state,	
whereas	the	high-beta	peak	remained	at	similar	power.	

	
Related	 to	 the	 high	 frequency	 oscillations,	 there	 is	 also	 a	 shift	 in	 the	 central	

frequency	when	patients	 transited	 from	the	OFF	 to	 the	ON	state.	Together	with	 this	
shift,	there	 is	also	a	change	in	the	relation	between	the	beta	and	the	high	frequency	
oscillations	 that	 characterise	 the	 motors	 state	 of	 the	 patients,	 thus	 suggesting	 the	
possibility	 that	 nonlinear	 coupling	 between	 frequencies	 may	 not	 simply	 be	 a	
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physiological	mechanism	(as	shown	previously	in	humans	and	animal	models)	but	also	
may	take	part	in	the	pathophysiology	of	bradykinesia	and	rigidity	in	PD.	
	

1.3.4	 Loss	 of	 Consciousness	 Is	 Associated	 with	 Stabilization	 of	 Cortical	
Activity	[1]	

	
Although	 this	 last	 paper	 is	 not	 directly	 related	 to	 PD,	 it	 describes	 an	 important	

approach	for	the	aim	of	the	project.	In	this	case,	the	study	presents	a	stability	analysis	
applied	to	high-density	electrocortigography	(ECoG)	recordings	in	primates	during	the	
transition	 between	 deep	 anaesthesia	 and	 consciousness.	 ECoG	 array	 consists	 of	 128	
electrodes	and	activity	is	modelled	by	means	of	an	autoregressive	model	(AR).		

	
The	 study	 shows	 several	 results	 about	 the	 relation	 between	 consciousness	 and	

stability	of	the	system	assessed	by	means	of	the	multivariate	AR	model.	
Indeed,	a	multivariate	AR	model	could	also	help	us	to	characterize	the	oscillatory	

activity	of	PD	patients,	providing	us	with	a	more	detailed	description	of	the	ON	and	OFF	
states,	and	–if	possible-	a	dynamic	description	of	the	OFF	–	to	–	ON	transition	
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CHAPTER	2:	SITUATION	AND	OBJECTIVES	OF	THE	PROJECT	
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2.	Situation	and	objectives	of	the	project	
	
For	years,	the	Neurophysiology	Group	at	the	CIMA	(Centro	de	Investigación	Médica	

Aplicada)	and	CUN	(Clínica	Universidad	de	Navarra)	in	Pamplona	have	been	involved	in	
the	study	and	characterization	of	the	oscillatory	activity	in	PD.	Using	animal	models	and	
recordings	 from	 PD	 patients	 they	 aim	 to	 more	 deeply	 understand	 the	 role	 of	
electrophysiological	activity	in	the	pathophysiology	of	this	disease.		

	
They	have	 several	publications	were	 they	have	 studied	 recordings	obtained	 from	

deep	electrodes	in	PD	patients	under	Deep	Brain	Stimulation	therapy.	
	
In	 this	project	we	will	have	the	opportunity	 to	access	 to	the	 local	 field	potentials	

(LFP)	recorded	from	the	stimulation	macroelectrodes	of	the	DBS	systems	implanted	in	
the	subthalamic	nucleus	(STN)	of	14	patients	with	PD.	

	
Although	some	of	the	characteristics	of	this	oscillatory	activity	have	already	been	

described,	many	other	 remain	 to	be	evaluated.	 In	 light	of	 the	 studies	 showed	 in	 the	
introduction	and	references	therein,	we	note	that	in	PD	studies	STN	activity	is	almost	
exclusively	studied	by	means	of	univariated	or	bivariated	methods.	This	fact	precludes	
the	possibility	of	carrying	analyses	as	those	proposed	in	[1],	where	authors	are	able	to	
fit	an	autoregressive	model	(AR)	and	thereafter	to	proceed	with	a	study	of	the	stability	
of	the	system,	thus	providing	a	deeper	description	of	the	state	of	the	parkinsonian	brain.	

	
With	 the	 aim	 of	 obtaining	 a	 similar	 framework	 for	 the	 STN	 signals,	 the	 general	

objective	of	this	project	is	devoted	to	define	AR	models	for	the	oscillatory	activity	from	
PD	patients	during	both	states,	before	and	after	the	effect	of	the	dopaminergic	therapy.	

	
Specifically,	we	will	aim	at:	
	

• Establishing	the	suitability	of	AR	models	to	fit	the	STN	activity	
• Define	strategies	to	obtain	such	AR	models	
• If	possible,	provide	AR	models	to	describe	time-varying	characteristics	of	STN	

activity	when	transiting	from	OFF	to	ON	states.	
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CHAPTER	3:	SOFTWARE	
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3.Software	
	

All	the	information	that	we	have	is	completely	anonymous,	each	of	the	patients	is	
registered	and	named	following	the	next	procedure:	PDTRXX	being	xx	the	number	of	the	
patient.	Like	this,	the	register	of	the	patient	is	completely	anonymous.		
	

		We	have	 two	 type	of	 signals	 from	each	patient:	 the	 first	one	 is	 shorter	and	 the	
second	one	is	longer,	we	are	going	to	study	the	second	one	due	to	it	provides	us	more	
information.	These	long	signals	contain	both	OFF	and	ON	state	and	also	the	transition	
between	them.			

	
3.1	Spike	

	
Spike	 is	 a	 multi-channel	 continuous	 data	 acquisition	 and	 analysis	 package.	 The	

signals	that	we	have	received	from	CIMA	must	be	opened	with	this	software.	We	were	
given	two	different	types	of	signals:	

	
• Short	Signals:	the	length	of	these	signals	were	up	to	1000	seconds.	
• Long	Signals:	in	this	case,	they	were	longer,	around	3000	seconds.	

	
An	 example	 of	 the	way	 the	 signal	 looks	 in	 Spike	 appears	 in	 the	 figure	 1;	 in	 this	

particular	case,	this	was	the	second	patient	and	it’s	a	short	signal.	
	

	
Figure		1:	An	example	of	how	Spike’s	software	displays	the	signals.	In	this	case,	it’s	the	short	signal	of	the	

second	patient	

Each	 signal,	 as	 it	 can	 be	 seen	 in	 Figure	 1,	 is	 composed	 by	 6	 channels	which	 are	
respectively	the	followings	ones:	

	
• STN	0-1:	The	deepest	electrode	of	the	left	stimulator	
• STN	1-2:	The	central	electrode	from	the	left	stimulator		
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• STN	2-3:	The	most	superficial	electrode	from	the	left	stimulator	
• STN	4-5:	The	deepest	electrode	of	the	right	stimulator	
• STN	5-6:	The	central	electrode	from	the	right	stimulator	
• STN	6-7:	The	most	superficial	electrode	from	the	right	stimulator	

	
Where	STN	stands	for	subthalamic	nucleus.	No	matter	the	length	of	the	signals,	both	

long	and	short	signals	have	6	channels	and	all	are	named	in	the	same	way.		
	
After	 being	 used	 to	 that	 software,	 we	 have	 to	 make	 3	 cuts	 of	 the	 long	 signal	

according	to	our	study.	These	three	zones	are:	
		

• ON	state	
• OFF	state	
• Transition	state	

	
This	is	one	of	the	critical	part	of	the	analysis	because	we	must	be	very	careful	in	the	

way	we	are	choosing	these	shortcuts.	The	signals	we	are	going	to	choose;	will	be	the	
signals	we	are	going	to	process.	Spike	helps	us	to	make	these	cuts	with	the	markers.	
Thanks	to	that,	it’s	very	easy	to	divide	the	long	signals	in	the	parts	we	are	interested	in.	
The	length	of	the	segments	we	are	making,	should	be	between	200	and	300	seconds.	
After	having	made	a	careful	research,	we	had	to	admit	that	the	most	part	of	the	signals	
was	affected	by	noise	so,	the	majority	of	the	segments	have	200	seconds	approximately.	

	
In	the	following	table	(table	1),	we	are	going	to	show	the	intervals	of	time	that	we	

have	chosen	for	the	OFF	and	ON	state	in	each	patient.	
	
	 	 OFF	 ON	

PDTR	 1	 Too	noisy	 Too	noisy 

PDTR	 2	 50-250	seconds	 2650-2820	seconds	
PDTR	 3	 170-370	seconds	 3180-3380	seconds	
PDTR	 4	 230-420	seconds	 3380-3350	seconds	
PDTR	 5	 100-300	seconds	 1200-1400	seconds	
PDTR	 6	 170-370	seconds	 3500-3700	seconds	
PDTR	 7	 555-710	seconds	 3160-3345	seconds	
PDTR	 8	 235-435	seconds	 4340-4540	seconds	
PDTR	 9	 100-300	seconds	 Too	noisy	
PDTR	 10	 40-240	seconds	 2100-2300	seconds	
PDTR	 11	 310-510	seconds	 4240-4440	seconds	
PDTR	 12	 10-210	seconds	 3940-4140	seconds	
PDTR	 13	 60-260	seconds	 3630-3830	seconds	
PDTR	 14	 Too	noisy	 Too	noisy	

Table	1:	Extract	of	the	intervals	of	time	chosen	for	each	patient	in	each	state 
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After	watching	this	table,	we	assume	that	we	get	rid	of	the	signals	given	by	PDTR1	
and	PDTR14	due	to	the	bad	quality	of	them.	We	also	prefer	not	to	study	the	state	“ON”	
of	the	ninth	patient	because	it	has	resulted	impossible	to	find	a	period	of	200	seconds	
free	of	interferences.	

	
Apart	from	making	these	shortcuts,	according	to	the	quality	of	the	signals,	we	have	

made	another	table	in	which	the	segments	of	time	chosen	are	ordered	from	the	best	to	
the	worst	value	(being	the	first	one,	the	segment	with	less	interferences	has	and	the	last	
one,	the	segment	with	more).	It’s	shown	in	Table	2.	

	
	
	

	
	 	 QUALITY	OF	SIGNALS	

PDTR		 6	 																	Best 

PDTR		 7	 	

PDTR		 11	 	

PDTR		 13	 	

PDTR		 5	 	

PDTR		 3	 	

PDTR		 4	 	

PDTR		 10	 	

PDTR		 8	 	

PDTR		 2	
	

PDTR		 12	 	

PDTR		 9	 	

PDTR		 1	 	

PDTR		 14	 																Worst	
Table	2:	The	best	and	worst	signals	ordered	by	their	quality	

3.1.1	Power	Spectral	Density	Function	
	
Power	 Spectral	 Density	 is	 a	 measure	 of	 the	 intensity	 of	 a	 signal’s	 power	 in	 the	

frequency	domain.	In	the	practice,	PSD	is	computed	from	the	FFT	spectrum	of	a	signal.	
The	Power	Spectral	Density	is	a	useful	way	to	be	able	to	characterize	the	amplitude	in	a	
frequency	axis.	
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Table	3:	Name	of	the	files	for	the	power	density	function	in	Spike’s	software	

Spike	 is	 a	 good	 software	 to	 revise	 the	 signals	 and	 also	 for	 making	 the	 firsts	
preliminary	analysis.	In	CIMA,	they	use	it	because	Spike	is	the	software	that	controls	the	
ADC	converter.	

	
After	taking	into	consideration	which	are	the	best	signals,	we	know	that	Spike	makes	

the	power	spectrum	of	the	signals	thanks	to	a	function	that	implements	it.	So,	we	have	
applied	that	function	and	we	have	made	a	database	in	Spike	in	which	we	have	saved	the	
power	spectrum	of	each	patient	and	each	state	(table	3).	We	only	had	to	choose	the	
type	of	window	and	the	size	of	FFT	(in	our	case	Hanning	and	4096	respectively).	

	
An	example	of	the	way	Spike	displays	the	Power	Density	Spectrum	of	our	signal	is	

shown	in	Figure	2.	The	units	are	uV-2	and	Hertz	in	y	and	x	axis	respectively.	
	
	

	
Figure		2:	An	example	of	the	Power	Density	Spectrum,	particularly,	in	the	6	channels	of	PDTR2	
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Spike	displays	it	as	a	histogram,	but	you	can	change	it	if	you	want.	In	figure	2,	I	have	

printed	only	 frequencies	 from	0	 to	95	Hz	because	we	are	 interested	 in	 studying	 this	
range	of	frequencies.		

	
Another	point	that	we	appreciate	after	computing	Power	Spectrum	Density,	is	that	

signals	are	polluted	with	mains	interference	noise	in	the	following	frequencies:	
	

• 50	Hz	
• 100	Hz	
• 150	Hz	

	
As	we	are	trying	to	deliver	an	autoregressive	model,	we	have	to	look	into	our	signals	

to	see	if	the	peaks	in	50,	100	and	150	Hz	are	really	important	in	amplitude	according	to	
the	rest	of	the	signal.	I	have	prepared	an	appendix	(Appendix	1)	in	which	I	have	displayed	
all	the	amplitudes	of	the	signal	in	50,100	and	150	Hz	to	see	if	it	could	affect	our	signals	
or	not.	This	is	something	very	important	because	it	can	rise	up	the	order	of	the	AR	model.	

	
3.2	Matlab	Software	

	
Our	intention	is	to	manipulate	the	signals.	So,	instead	of	using	the	software	I’ve	just	

mentioned,	the	Spike’s	7.07	v2	software,	we	thought	that	Matlab	could	help	us	better	
in	order	to	make	a	better	analysis	of	the	signal.	

	
The	first	step	now	was	exporting	all	 the	signals	to	Matlab	so	that	we	can	analyse	

them	 in	 that	 software.	 Thanks	 to	 Spike,	 it	was	 a	 straightforward	 step	 due	 to	 I	 have	
marked	the	signals	with	the	cursors	before.	There’s	an	option	in	Spike2	7.07	for	which	
you	can	export	the	number	of	channels	that	you	are	interested	in.	In	our	case,	as	we	
need	all	the	channels	we	will	select	the	option	“All	channels”	that	appears	in	the	Figure	
3.	

	

	
Figure		3:	Displays	how	we	add	the	channels	we	want	to	export	in	Spike’s	software	
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There’s	also	an	option	for	selecting	the	time	range	for	the	user.	In	our	situation,	as	
it	has	been	mentioned	previously,	signals	have	been	marked	with	the	cursors,	so	in	each	
signal	we	will	use:	

	
	

• Time	range	from	Cursor1	to	Cursor2	for	“OFF”	state.	
• Time	range	from	Cursor3	to	Cursor4	for	“ON”	state.	
• Time	range	from	Cursor5	to	Cursor6	for	“Transition”	state.	

	
Once	we	have	created	the	new	folder	with	all	the	“.mat”	files,	now	we	have	to	plot	

the	information	we	get	in	Matlab	with	the	aim	of	comparing	it	with	Spike	2	7.07	to	see	
if	the	results	are	corroborated.		

	
3.2.1	Pwelch	tool	

	
The	process	of	the	application	of	the	Power	Spectral	Density	is	not	as	easy	as	it	was	

in	Spike.	In	this	case,	we	will	make	use	of	the	“Pwelch”	tool	provided	by	Matlab.	
	

3.2.1.1	How	Pwelch	works?	
	
“pwelch.m”	function	estimates	the	Power	Density	Function	of	a	given	signal	using	

Welch’s	for	estimating	the	periodogram.	The	syntax	we	use	is	the	following	one:	
	

𝑝𝑥𝑥, 𝑓 = 𝑝𝑤𝑒𝑙𝑐ℎ(𝑥, 𝑤𝑖𝑛𝑑𝑜𝑤, 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 𝑛𝑓𝑓𝑡, 𝑓𝑠)	
	
The	signal	we	are	going	to	analyse,	in	the	example	case	“x”,	is	divided	in	“k”	sections	

which	have	Nfft	points	that	can	be	overlapped.	“k”	is	calculated	with	these	parameters:	
	

• m:	the	length	of	x.	
• n:	number	of	points	overlapped.	
• l=Nfft:	length	of	each	section	

	

𝑘 =
𝑚 − 𝑛
𝑙 	

	
We	apply	the	specific	window	to	each	section	of	the	“x”	signal.	The	spectrum	of	each	

section	is	calculated	based	on	FFT.	After	these	calculations,	we	get	the	average	of	the	
squared	 magnitude	 spectrum	 which	 is	 multiplied	 by	 the	 inverse	 of	 the	 sampling	
frequency	to	obtain	the	PDS.	

	
3.2.1.2	Pwelch	parameters	

	
• Values	of	the	signal:	in	each	channel	I	had	to	add	to	the	name	of	the	variable	

“.values”	with	the	intention	to	get	the	values	that	Pwelch	needs.	
• Type	of	window:	hanning	
• Overlap:	75	%	of	the	length		



	 	CHARACTERIZATION	OF	CEREBRAL	ACTIVITY	IN	PD’S	PATIENTS	THROUGH	AN	AR	MODEL	

	

JESÚS	M.	ZARRANZ	 22	

	

• FFT	size:	4096	
• Sample	frequency:	It	was	the	same	in	every	patient,	around	2,000	Hz.	

	
After	doing	that,	we	saw	that	the	results	obtained	with	Matlab	were	similar	to	the	

ones	got	by	Spike2	7.07	so	we	carry	on	with	our	analysis.	Figure	5	shows	 the	Power	
Density	Function	of	the	channel	6-7	for	the	patient	2	in	Matlab	and	the	Figure	6	shows	
the	 Power	 Density	 Function	 of	 the	 same	 channel	 and	 same	 patient	 calculated	 with	
Spike’s	Software.		

	
Figure	5:	Power	Density	Function	calculated	with	Pwelch	in	Matlab	Software	

It’s	very	important	to	say	that	in	50	Hz	,100	Hz	and	in	150	Hz	we	have	interferences	
that	can	be	seen	in	the	Power	Density	Function	calculated	by	Matlab	or	Spike.	As	we	are	
trying	 to	 implement	 an	 AR	model,	 these	 frequencies	 can	 alter	 the	 AR	 order.	 In	 the	
following	chapters,	we	will	filter	the	signal	in	order	to	have	it	the	cleanest	we	can.	

	
Apart	from	the	mains	interferences,	in	both	figures	5	and	6	we	can	see	the	following	

components:	
	

• Low	Beta	component:	from	12	Hz	to	20	Hz.	
• High	Beta	component:	from	20	Hz	to	30	Hz.	
• Theta	component:	around	250	Hz.	

	
Low	Beta	in	the	ON	state	has	a	decrease	in	amplitude	and	the	Theta	component,	in	

certain	cases,	suffers	from	a	movement	in	frequency.	However,	High	Beta	keeps	at	the	
same	frequency	with	approximately	the	same	amplitude	regardless	of	the	state.	

Figure	6:	Power	Density	Function	calculated	in	Spike	Software	
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Of	course,	as	well	as	exporting	the	intervals	of	time	in	which	we	are	interested	in,	

we	have	exported	the	whole	signal	in	case	we	need	it	for	the	future.	
	

3.3	AR	model	
	

3.3.1	Introduction	
	
AR	model	is	the	most	popular	model	for	spectral	estimation	of	temporal	series.		This	

is	due	 to	 the	 fact	 that	AR	parameters	can	be	 found	 resolving	 linear	equations.	For	a	
detailed	estimation	of	ARMA’s	parameters	or	MA’s	parameters,	we	will	need	to	resolve	
a	group	of	equations	which	are	not	linear.	

	

	
Figure	7:	Autoregressive	model	of	a	random	process	

The	autoregressive	model	explains	that	the	output	variable	depends	linearly	on	its	
own	previous	values.	At	the	input,	we	have	a	sequence	of	white	noise	due	to	the	fact	
that	its	average	is	zero	and	its	variance	is	𝜎:;.	Of	course,	the	Power	Density	Function	of	
the	noise	is	𝜎:;.	Spectral	estimators	got	in	an	AR	model	are	less	biased	and	have	a	lower	
variability	that	conventional	spectral	estimators	based	on	Fourier	transform.	This	model	
is	used	to	be	named	as	All-Poles.	In	the	figure	7	appears	an	AR	process.	

	
As	 there	are	only	poles	 in	 this	model,	 and	knowing	 that	A(z)	 is	 the	characteristic	

polynomic	of	the	AR	model.	The	PDS	is:	
	

𝑃==>? 𝑓 =
𝜎:;

|𝐴 𝑓 |;	

	
3.3.3	ARFIT-	A	Matlab	Package	

	
In	order	to	work	with	the	autoregressive	model,	we	will	make	use	of	this	package	

designed	by	Tapio	Schneider	and	Arnold	Neumaier	[9].	
	
ARFIT	 is	 a	 collection	of	Matlab	modules	 for	modelling	 and	analysing	multivariate	

time	 series	 with	 autoregressive	 (AR)	 models.	 ARFIT	 contains	 modules	 for	 fitting	 AR	
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models	to	given	time	series	data,	for	analyzing	eigenmodes	of	a	fitted	model,	and	for	
simulating	AR	processes.		

	
ARFIT	estimates	the	parameters	of	AR	models	 from	given	time	series	data	with	a	

stepwise	least	squares	algorithm	that	is	computationally	efficient,	in	particular	when	the	
data	are	high-dimensional.	ARFIT	modules	construct	approximate	confidence	intervals	
for	the	estimated	parameters	and	compute	statistics	with	which	the	adequacy	of	a	fitted	
model	can	be	assessed.		

	
Dynamical	characteristics	of	the	modelled	time	series	can	be	examined	by	means	of	

a	 decomposition	 of	 a	 fitted	 AR	 model	 into	 eigenmodes	 and	 associated	 oscillation	
periods,	 damping	 times,	 and	 excitations.	 The	ARFIT	module	 that	 performs	 the	 eigen	
decomposition	of	a	fitted	model	also	constructs	approximate	confidence	intervals	for	
the	eigenmodes	and	their	oscillation	periods	and	damping	times		

	
3.3.3.1	Frequencies	of	interest	

	
For	our	case,	the	components	we	need	to	get	with	AR	model	are	Low	Beta	and	High	

Beta.	 In	 the	 OFF	 state,	 as	 it	 can	 be	 seen	 in	 the	 figure	 8,	 Low	 Beta	 and	 High	 Beta	
components	are	completely	visible.	

	

	
Figure	8:	Low	Beta	and	High	Beta	Components	in	the	Patient	2	OFF	state		

	
However,	in	the	ON	state,	Low	Beta	component	suffers	from	an	important	decrease	

in	amplitude.	Beta	component	remains	practically	in	the	same	frequency	with	its	same	
amplitude.	In	the	Figure	9	it	can	bee	seen	how	the	Low	Beta	component	decreases	and	
the	High	Beta	component	remains	without	changes.	
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Figure	9:	Low	Beta	and	High	Beta	component	in	the	Patient	2	ON	state	

3.3.3.2	Election	of	AR	order	
	
Establishing	a	correct	AR	order	is	one	of	the	critical	parts	of	our	work.	We	have	made	

an	important	research	on	Internet	about	the	way	scientists	make	a	criterion	for	setting	
the	order.	This	took	us	by	surprise,	because	in	the	totality	of	the	bibliography	we	have	
read	none	of	the	writers	uses	Power	Density	Function	of	the	signals	to	obtain	a	good	AR	
order.		

	
3.3.3.2.1	Signals	have	to	be	very	carefully	cleaned	

	
One	of	 the	problems	of	 the	 signal	which	has	been	previously	 cited	before	 is	 the	

interferences	that	exist	 in	our	signals.	 In	the	following	chapters	there’s	an	exhaustive	
study	of	the	way	we	can	improve	the	quality	of	our	signals:	filtering,	decimating…	

	
This	 is	 a	 part	 of	 the	work	 that	 requires	 to	 be	 studied	 thoroughly	 because	 ARFIT	

package	is	going	to	reproduce	the	most	important	peaks	of	our	signals.	If	these	peaks	
are	the	noise	interferences,	ARFIT	will	never	reproduce	our	components	of	interest	(Low	
Beta	and	High	Beta).	

	
For	having	our	signals	cleaned	enough	we	have	decided	to	filter	the	signal	with	slots	

in	the	frequencies	which	are	polluted	by	interferences	from	mains.	Also	we	thought	that	
it	 could	 be	 a	 good	 idea	 to	 implement	 a	 low	pass	 filter	 to	 avoid	 the	High	 Frequency	
component.	We	are	mainly	interested	in	the	Low	Beta	and	High	Beta	component	and,	
as	these	frequencies	appears	between	10-30	Hz	a	Low	pass	filter	with	a	cut	off	frequency	
among	50	Hz	won’t	eliminate	our	components.	

	
3.3.3.2.2	Comparison	between	PSD	of	 the	 signal	 and	PDS	of	 the	

components	obtained	by	ARFIT	package.	
	
Our	study	of	the	best	AR	order	is	based	on	a	comparison	between	the	Power	Density	

function	 of	 the	 reconstruction	 of	 the	 Low	 Beta	 and	 High	 Beta	 component	 obtained	
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thanks	to	ARFIT	package	and	the	Power	Density	Function	of	the	original	signal	estimated	
through	a	Welch	periodogram.	

	
First	of	all,	we	get	the	coefficients	thanks	to	ARFIT	package	and	we	insert	them	in	

the	A	vector.	In	this	case,	we	are	going	to	use	the	tool	“freqz”	which	returns	the	n-point	
frequency	response	vector	Y,	and	the	corresponding	angular	frequency	vector,	W,	for	
the	digital	 filter	with	numerator	and	denominator	polynomial	coefficients	stored	in	b	
and	a,	respectively.	As	this	reconstruction	has	only	poles,	the	parameters	of	the	“freqz”	
are:	a=vector	A.		

	
	

	
Figure	10:	How	we	get	the	components	of	the	ARFIT	package	and	we	compare	it	with	the	original	Power	

Density	Function	of	the	signal	

After	that,	we	have	to	normalize	the	values	which	have	been	got	by	“freqz”.	In	the	
following	two	equations,	is	explained	how	we	make	this	normalization.	

	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 	
𝑓𝑠	𝑥	𝑊
2𝜋 	

	
	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑉𝑎𝑙𝑢𝑒𝑠 = 	
𝑌;

𝑌 𝑥
1
𝑁𝑓𝑓𝑡

	

	
After	all,	we	use	a	semi	logarithm	axis	to	plot	the	values	and	with	a	“hold	on”	we	

make	the	comparison	with	the	Power	Density	Function	of	the	original	signal.	
	

3.3.3.4	High	Dimensional	Time	Series	
	

We	know	that	this	package	is	computationally	efficient	in	particular	when	time	series	
are	high	dimensional.	However,	in	our	case,	we	were	very	careful	using	ARFIT	because	
as	our	database	is	not	as	high	dimensional	as	the	ones	that	have	used	it,	we	had	in	mind	
that	it	cannot	work	properly.	But	then,	after	using	it,	we	saw	that	the	results	were	good	
enough.	
	
	
	
	
	
	
	
	



	 	CHARACTERIZATION	OF	CEREBRAL	ACTIVITY	IN	PD’S	PATIENTS	THROUGH	AN	AR	MODEL	

	

JESÚS	M.	ZARRANZ	 27	

	

CHAPTER	4:	Adaptation	of	the	signal	for	a	proper	AR	analysis	
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4.	Adaptation	of	the	signal	for	a	proper	AR	analysis	
	
The	effort	of	making	a	cleaner	signal	 is	 truly	beneficial	 for	our	study	because	the	

cleaner	the	signals	become,	the	lower	the	ARFIT	order	is.	
	

4.1	Slot	Filter	to	eliminate	mains	interferences	
	
As	 I	 have	 cited	 before	 in	 Spike2	 7.07	 and	 in	 the	 last	 chapter	 there	 are	 mains	

interferences	 that	we	have	 to	get	 rid	of.	These	 interferences	can	really	alter	 the	AR-
order	 of	 the	model,	making	 it	 increase.	 As	 a	 consequence	 of	 that,	 we	 thought	 that	
filtering	the	signal	with	slots	can	be	beneficial	to	our	study.	

	
To	design	the	filter,	we	have	to	be	cautious	because	in	the	Theta	range	we	have	an	

interference	but	we	also	have	a	frequency	component,	so	firstly;	we	have	to	check		
	

• Interferences	in:	
o 50	Hz	
o 150	Hz	
o 250	Hz	

	
And	then,	be	aware	of	the	existence	of	the	Theta	range.	For	that,	we	have	searched	

among	the	patients	to	see	in	how	many	of	them	there	are	interferences	in	50	,150	and	
250	and	also	have	the	component	theta	visible	in	its	periodogram.	This	information	is	
available	in	the	Appendix	2.	Thanks	to	this	study,	we	are	able	to	filter	the	signal	properly	
without	polluting	it.	We	have	designed	3	different	filters.		
	

4.1.1	Real	Slot	filter	
	
This	was	the	filter	we	started	with.	We	thought	that	it	was	a	good	idea	to	make	a	

Notch	real	filter	with	slots	in	the	components	we	want	to	delete.	We	put	slots	in	the	
following	frequencies:	

	
• 0	Hz	
• 50	Hz	
• 100	Hz	
• 150	Hz	
• 200	Hz	
• 250	Hz	

	
The	poles	we	use	had	a	radius	near	 from	the	circle	unit	but	never	bigger	 than	 it.	

Approximating	our	ratio	to	the	unit	circle	we	make	our	slot	narrower.	In	the	Figure	11	it	
is	printed	how	the	Slot	Real	Filter	looks	in	frequency	in	magnitude.	
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Figure	11:	Response	in	magnitude	Slot	Real	Filter	

	
As	we	can	see,	slots	are	correctly	situated	on	the	frequencies	we	want	to	get	rid	of.	

The	phase	is	printed	in	the	Figure	12.		
	

	

	
Figure	12:	Phase	response	of	the	Slot	Real	Filter	

We	can	appreciate	that	these	changes	appear	just	when	there	is	a	slot.	However,	
these	changes	are	not	very	important	in	our	signal	and	won’t	affect	the	phase	of	the	
signal	of	our	Parkinson	Patients	Signals.	

	
4.1.2	Ideal	Slot	Filter	
	

The	 second	 filter	we	 have	 designed	was	 an	 ideal	 filter.	 Looking	 into	 Internet	we	
found	that	in	Matlab	exists	a	function	which	provides	the	user	the	possibility	of	creating	
an	ideal	notch	filter.	

	
At	first,	we	thought	that	applying	this	function	will	sort	out	all	our	problems	in	terms	

of	 filtering.	 In	 the	 figure	 13	 it’s	 printed	 the	 magnitude	 in	 dB’s	 and	 in	 figure	 14	 its	
correspondent	phase.	

	



	 	CHARACTERIZATION	OF	CEREBRAL	ACTIVITY	IN	PD’S	PATIENTS	THROUGH	AN	AR	MODEL	

	

JESÚS	M.	ZARRANZ	 30	

	

	
Figure	13:	Response	in	magnitude	of	the	Slot	Ideal	Filter	

	

	
Figure	14:	Phase	response	of	the	Slot	Ideal	Filter	

	
In	this	case,	slots	are	perfectly	designed	with	a	high	slope	and	are	well	situated	in	

the	frequencies	we	want	to	eliminate.	As	we	are	using	an	ideal	filter	given	by	Matlab,	
the	changes	in	the	phase	are	almost	insignificant.	

	
4.1.3	Real	or	Ideal	in	terms	of	decreasing	AR	order	

	
Comparing	 both	 filters,	 we	 have	 to	 say	 that	 the	 best	 filter	 to	 eliminate	 the	

frequencies	is	the	ideal	filter.	It	also	doesn’t	have	any	effect	in	the	phase	of	the	signal.	
However,	it	is	not	our	unique	intention	to	eliminate	the	frequencies,	we	want	to	reduce	
the	order	of	our	AR	model.		

	
If	we	use	the	ideal	slots,	the	slopes	are	practically	vertical	and	the	AR	order	will	waste	

too	many	poles	trying	to	reproduce	this	slope.	As	a	consequence	of	this,	we	have	chosen	
that	the	best	slots	are	the	Real	Slots.	
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4.2	Low	Pass	Filter:	Two	functions	
	
As	it	has	been	explained	before,	our	frequencies	of	interest	are	Low	Beta	and	High	

Beta,	in	this	research	we	are	not	going	to	study	the	evolution	of	the	Theta	component	
between	the	OFF	and	ON	state.		

	
As	a	consequence	of	that,	we	thought	that	for	making	our	signal	even	cleaner,	we	

can	apply	a	Low	Pass	filter	(as	it	was	suggested	in	the	point	2.2.3.3.2.1)	for	getting	rid	of	
the	high	frequency.	As	our	components	are	between	10-30	Hz	approximately,	we	use	a	
low	pass	filter	with	a	cut	frequency	of	50	Hz.	

	
For	the	design	of	a	Low	Pass	filter	we	have	considered	two	different	types:	

• Chebysev	filter	
• Butterworth	filter	

	
Of	course,	we	ruled	out	the	possibility	of	using	an	ideal	Low	Pass	filter	because	we	

will	have	the	same	problems	as	we	had	with	the	ideal	slots.	
Other	of	the	necessities	of	using	this	Low	Pass	filter	is	because	as	we	will	explain	in	

the	following	chapters,	we	are	going	to	reduce	the	sampling	frequency.	In	other	words,	
we	are	going	 to	decimate	 the	signal.	This	 filter	will	 avoid	 the	aliasing	created	by	 the	
process	of	decimation.	If	there	isn’t	a	filter	before	the	process	of	decimating	the	signal,	
the	result	will	be	completely	polluted	by	the	effect	of	aliasing.		
	 	

	4.2.1	Real	Slots	Filter	and	Butterworth	filter	
	
Of	 course,	 as	 we	 have	 just	 mentioned,	 in	 this	 part	 we	 are	 implementing	 a	

Butterworth	Low	Pass	filter.	It	has	to	be	said	that,	as	our	Butterworth	filter	has	a	cut	off	
frequency	at	about	50	Hz	we	can	get	rid	of	the	following	harmonics:	

	
• 100	Hz	
• 150	Hz	
• 200	Hz	
• 250	Hz	

	
We	are	only	 going	 to	 keep	 the	 slot	 corresponding	 to	50	Hz	because	 it’s	 the	only	

frequency	the	filter	doesn’t	eliminate.		In	the	Figure	15	is	the	response	in	magnitude	and	
in	the	Figure	16	is	the	phase	response.	The	order	of	the	Butterworth	Filter	is	6.	
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Figure	15:	Response	in	magnitude	of	The	Butterworth	Filter	with	a	real	slot	in	50	Hz	

	

	
Figure	16:	Phase	response	of	the	Butterworth	Filter	with	a	real	slot	in	50	H	

4.2.1.1	Designing	of	the	50	Hz	Slot	
	
One	of	 the	main	problems	we	have	had	designing	 filters	 is	 that	we	have	a	mains	

interference	in	50	Hz.	It	appears	in	the	majority	of	our	signals	and	it’s	very	important	to	
get	rid	of	it	for	AR	analysis.	This	peak,	in	fact,	can	alter	AR	order	totally,	so,	we	have	to	
design	a	slot	there	very	cautiously.	
	

4.2.1.1.1	Real	Slot	
	
As	we	have	mentioned	before,	we	have	to	design	a	real	slot.	We’ll	do	it	putting	a	

zero	in	the	frequency	we	want	to	eliminate	(f=50	Hz	and	also	in	f=0	Hz).	In	the	figure	17	
can	be	seen	how	we	are	putting	zero’s	in	the	frequencies	of	interest	and	also	we	are	
putting	poles	in	these	frequencies	to	make	the	slots	narrower.	
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Figure	17:	The	code	in	Matlab	for	designing	this	Butterworth	filter	with	2	real	slots	in	0	and	50	Hz.	

The	fact	of	using	poles	for	making	narrower	the	slot	is	something	particularly	critical	
because	if	we	use	a	slot	which	is	very	narrow,	it	could	be	harmful	for	our	design.	We	
have	to	make	an	agreement	between	the	narrowness	of	the	slot	and	the	elimination	of	
the	frequency.		

	
For	an	adequate	design	of	the	filter	we	are	going	to	change	the	radius	of	the	zeros	

to	see	which	wants	is	better	for	our	situation.	We	are	going	to	take	one	of	the	signals,	
we’ll	put	it	in	a	filter	and	finally	we’ll	compute	the	power	density	function	to	compare	
the	input	and	the	output	of	the	signal.		

	
Apart	 from	 that,	 we	 have	 also	 normalized	 the	 frequency	 and	 the	 values	 got	 by	

periodogram	with	the	aim	of	having	both	signals	(input	and	output)	in	the	same	level.	
The	commands	we	use	for	normalizing	the	signal	are	the	followings	ones:	

	
[pvalues3,wval] = pwelch(values3,window,overlap,Nfft); 

	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 	
𝐹𝑠	𝑥	𝑤𝑣𝑎𝑙

2𝜋 	

	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑉𝑎𝑙𝑢𝑒𝑠 = 	
𝑝𝑣𝑎𝑙𝑢𝑒𝑠3;

𝑝𝑣𝑎𝑙𝑢𝑒𝑠3 𝑥
1
𝑁𝑓𝑓𝑡

	

	
We	have	studied	3	different	radiuses	and	the	Figures	18,	19,	20	are	taken	for	the	

patient	two	from	its	STN	5-6	channel.			
	

• Rz=0.895	
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Figure	18:	Butterworth	filter	with	Rz	=	0.895	

In	this	first	case,	it	appears	in	the	Figure	18.	It	can	be	seen	that	the	output	signals	
(orange	one)	differs	from	the	input	signal	(blue	one)	at	the	beginning	until	the	High	Beta	
component.		

We	need	to	have	a	high	range	of	similarity	between	input	and	output	signal	because	
when	we	 try	 to	make	 the	 reconstruction	of	 the	 signal	with	 the	ARFIT	package	 if	 the	
output	from	the	filter	differs	from	the	input,	the	reconstruction	will	be	wrong.	
	

• Rz=0.999	
	
The	second	study	has	a	0.999	radius	for	the	zero	located	in	50	Hz.	This	is	supposed	

to	be	the	best	parameter	because,	as	it	is	near	unit	circle,	it	only	modifies	the	frequency	
we	are	interested	in.	Also,	as	it’s	real	it	will	not	rise	up	so	much	our	p	order	when	we	
apply	an	AR	model.	

	
We	make	the	same	process	as	the	previous	one,	we	are	going	to	make	a	comparison	

between	the	input	and	output	signal.	It	appears	in	the	Figure	19.	
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Figure	19:	Butterworth	filter	with	Rz	=	0.999	

As	we	have	predicted,	this	is	the	best	parameter	because	the	input	and	output	are	
almost	the	same	in	the	interval	of	the	Low	Beta	and	High	Beta.		

	
• Rz=1,2	

	
We	also	make	the	proof	of	putting	a	 radius	bigger	 than	1	 to	see	 if	 it	was	a	good	

approximation.	In	the	figure	12	it’s	printed	how	it	looks.	It	doesn’t	even	eliminate	the	
component	in	50	Hz.		

	

	
Figure	20:	Butterworth	filter	with	Rz	=	1.2	
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It’s	 obvious	 that	 the	 best	 slot	 of	 the	 three	we	 have	 designed	 is	 the	 second	 one	
because	it	rejects	the	frequency	in	50	and	it	doesn’t	make	a	huge	slope,	so,	AR	model	
will	be	able	to	cope	with	this	slot.	Besides,	the	approximation	is	almost	perfect,	the	filter	
doesn’t	introduce	any	distortion	in	magnitude	in	the	frequency	band	pass.	We	have	to	
add	that	the	radius	of	the	zeros	doesn’t	interfere	in	the	stability	of	the	system.	

	
4.2.2	Real	Slots	Filter	and	Chebyshev	filter	

	
We	wanted	to	have	another	type	of	filter	in	order	to	compare	which	one	let	us	use	

an	AR	model	with	a	lower	p	order.	At	first,	we	thought	that	Chebyshev’s	filters	will	be	
useless	due	to	the	fact	that	the	slope	of	a	Chebyshev	filter	is	higher	than	in	Butterworth	
for	the	same	order	of	the	filter.	However,	we	designed	one	to	see	how	it	worked.	

	
We	designed	the	filter	with	a	6th	order	and	with	a	peak	to	peak	passband	ripple	of	

0.5	dB.	In	the	Figure	21	it’s	shown	the	Magnitude	response	in	dB’s	and	in	the	Figure	22	
response	in	phase.		

	

	
Figure	21:	Response	in	magnitude	of	a	Chebyshev	Filter	with	order	6	and	fcut=50	Hz	

	
Figure	22:	Phase	response	of	a	Chebyshev	Filer	with	order	6	and	fcut	=50	

We	have	followed	the	same	process	to	evaluate	which	is	the	best	radius	to	reject	
the	 frequency	 of	 50	Hz.	 Of	 course,	 in	 this	 case	we	 only	 study	 the	 case	 of	 real	 slots	
because	the	ideal	slot	as	we	have	cited	before	will	be	harmful	for	our	AR	analysis.		
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Identically	as	in	the	previous	case,	we	have	studied	3	different	radius	and	the	Figures	
23,	24,	25	are	taken	for	the	patient	two	from	its	STN	5-6	channel.			

	
	

• Rz	=	0.895	
	

	
Figure	23:	Chebyshev	filter	with	Rz	=	0.895	

In	the	Figure	23,	it	can	be	seen	that	input	and	output	signals	are	not	very	similar	and	
also	the	filter	doesn’t	reject	the	noise	interference	in	50	Hz.	

	
• Rz	=	0.999	
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Figure	24:	Chebyshev	filter	with	Rz	=	0.999	

In	 this	 case,	 input	 and	output	 signals	 are	 practically	 the	 same	 and	 also	 it	 rejects	
perfectly	the	50	Hz	frequency	with	a	real	slot	which	has	not	a	high	slope.		
	

• Rz	=	1.2	

	 	
Figure	25:	Chebyshev	filter	with	Rz	=	1.2	

	
In	 the	 figure	25	nor	 the	 input	 and	output	 are	equal	 neither	 the	 filter	 rejects	 the	

frequency	of	50	Hz.	We	have	to	say	that	this	radius	is	not	a	good	one	for	our	design.		
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As	it	can	be	seen,	we	have	to	use	Rz=	0.999	because	this	is	the	only	one	which	gets	
rid	of	50	Hz	frequency	and	also	reproduces	the	input	signal	almost	in	an	ideal	way.	

	
All	the	filters	have	been	designed	as	a	Matlab	function	with	the	intention	of	having	

a	cleaner	code	due	to	the	fact	that	parameters	can	be	added	directly	for	not	doing	the	
same	loop	again	and	again.	

	
4.3	Butterworth	or	Chebyshev	

	
Of	 course,	 we	 have	 to	 be	 sure	 in	 which	 filter	 we	 are	 interested	 to	 work	 with.	

Undoubtedly,	the	best	parameters	to	both	filters	are	using	a	Rz=	0.999	as	we	have	seen	
in	the	last	figures.	

	
With	the	aim	of	choosing	which	was	the	best	filter	for	our	analysis	we	have	made	a	

correlation	of	the	output	signal	 in	Butterworth	filter	and	 in	Chebyshev	filter	with	the	
input.	 We	 appreciate	 that	 this	 percentage	 was	 almost	 equal	 in	 both	 cases	 with	 a	
percentage	of	82,14	%	for	Butterworth	and	82,22	%	for	Chebyshev.	

	
The	following	step	was	trying	to	put	the	filtered	signal	into	an	AR	model	to	see	how	

it	works.	In	the	following	figure,	it’s	shown	what	we	are	explaining:	
	
	
	
	
	
	
	
	
When	we	 have	 done	 this,	 we	 realize	 that	 Butterworth	 filter	worked	 better	 than	

Chebyshev	 filter	 due	 to	 the	 verticality	 of	 the	 rejection	 slope.	 So,	 in	 the	 following	
sections,	 when	 we	 talk	 about	 filters,	 it’s	 taken	 for	 granted	 that	 we	 are	 using	 the	
Butterworth	filter.	

	
We	have	 to	highlight	 that	each	one	of	 the	 filters	which	have	been	designed	was	

implemented	with	a	function	so	that	we	can	apply	this	function	and	not	to	copy	again	
and	again	the	same	code.	

	
4.4	Frequencies	of	interest	

	
We	are	going	to	search	into	our	database	to	locate	the	exact	position	of	Low	Beta	

frequency,	 High	 Beta	 frequency	 and	 Theta	 frequency.	 Thanks	 to	 that,	 we	will	 know	
exactly	where	are	located	those	frequencies	and	their	amplitude.	Apart	from	that,	we	
are	going	to	look	into	signals	that	have	Theta	component	for	knowing	in	how	many	of	
them	this	component	is	visible.	

	

			H(f)	 	ARFIT	
Figure	26:	Diagram	which	shows	the	filter	and	then	the	ARFIT		
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This	study	is	in	the	Appendix	3	in	which	says	that	theta	component	appears	in	the	
34	%	 of	 the	 signals	 (taking	 into	 account	 that	 it	 appears	 in	 both	ON	 and	OFF	 state).	
Regardless	the	appearance	in	both	states,	theta	component	is	present	in	the	40	%	signals	
of	our	entire	database.	

	
Due	to	the	fact	that	our	 filter	 is	going	to	eliminate	the	Theta	component,	we	are	

going	to	copy	in	a	folder	the	patients	in	which	the	Theta	component	is	visible	for	future	
work.		

	
4.5	Decimation	

	
Decimation	 is	 the	 process	 of	 reducing	 the	 sampling	 rate	 of	 a	 signal.	 It’s	

complementary	to	interpolation,	in	this	case,	interpolation	increases	the	sampling	rate	
in	a	multi-rate	digital	signal	processing	system.	

	
We	come	up	with	this	idea	because,	as	we	are	mainly	interested	in	two	components	

which	are	located	from	10	Hz	–	30	Hz,	decimation	can	help	us	to	study	these	frequencies.		
	
The	Low	Pass	filter	and	the	process	of	decimation,	the	range	of	frequencies	where	

the	Low	Beta	and	High	Beta	components	comes	to	take	up	the	entire	Nyquist	interval.	
This	 produces	 a	 higher	 frequency	 resolution	 and	 makes	 us	 be	 sure	 that	 the	 poles	
generated	by	the	ARFIT	package	are	located	in	the	band	of	the	frequency	of	interest.	

	
Decimation	 is	 a	 strategy	 that	 produces	 an	 effective	 reduction	 in	 the	 sampling	

frequency.	In	the	“n	axis”,	(M-1)	samples	of	each	group	of	consecutive	M	are	neglected	
as	if	would	have	been	sampled	by	a	period	Ts’	=	MTs.	This	produces	a	compression	

	
𝑥 𝑛 → 𝑥 𝑀𝑛 = 	𝑥(𝑀𝑛𝑇𝑠)	

	
In	the	frequency	axis,	spectral	replicas	are	nearer	because	they	are	located	over	kfs’	
	

𝑇𝑠S = 	𝑀𝑇𝑠 → 𝑓𝑠S = 	𝑓𝑠/𝑀	
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Figure	27:	Decrease	in	the	sampling	rate	

In	the	figure	27,	 it’s	shown	that	 if	sampling	rates	decrease,	 in	the	omega	axis	the	
spectrum	broadens.	That’s	what	we	want,	to	have	our	low	Beta	and	High	Beta	broadens.	

	
Our	block	diagram	now	is	the	following	one:	
	

	
	
	
	

	
	
In	 the	 first	 part	 we	 have	 our	 patient	 with	 its	 6	 channels,	 then	 we	 applied	 the	

Butterworth	filter	with	the	real	slot	in	50	Hz	and	0	Hz	to	one	of	the	channels	and	finally	
we	obtained	a	signal	with	almost	no	noise	and	ready	to	be	inserted	in	an	AR	model.	

	
4.5.1	M	decimation	constant	

	
For	choosing	M	constant,	we	have	to	say	that	if	we	choose	a	M	big	enough,	ARFIT	

will	 reduce	 p	ARFIT	 order.	However,	 this	 implies	 a	 cost,	we	 cannot	 increase	M	until	
whatever	we	want.		

	
As	we	are	using	a	Butterworth	filter,	the	fall	of	the	slope	is	not	very	fast,	so,	in	case	

we	would	like	to	increase	the	M	constant,	we	should	be	aware	of	the	necessity	of	rising	
up	the	selectivity	of	Butterworth’s	filter.		

	
However,	it’s	not	only	that	point,	we	have	to	be	cautious	due	to	the	fact	that,	if	we	

increase	the	selectivity	of	the	Butterworth	filter,	ARFIT	model	will	have	a	p	order	higher	

H(f)	 				M	STN	1-2	
Figure	28:	Diagram	of	the	process	before	AR	analysis	
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than	before.	In	other	words,	we	have	to	reach	an	agreement	for	which	we	can	increase	
M	decimation	constant,	increasing	the	criticality	of	the	filter	without	rising	up	too	much	
the	p	order	of	the	AR	model.	

	
For	Chebyshev	 filters,	 as	 the	 fall	 in	 frequency	 is	 faster	 than	 in	Butterworth’s,	we	

don’t	need	to	increase	the	criticality	of	the	filter.	So,	in	this	case	it	will	be	easier	to	make	
an	increase	of	M	decimation	constant.	

	
After	making	proofs,	we	have	assumed	that	the	M	constant	decimation	is	8	or	10.	

For	an	M	of	12,	it’s	not	correct.	In	the	Appendix	4	that	appears	at	the	end,	we	have	made	
a	research	to	show	which	are	the	best	parameters.	After	having	studied	these	results,	
we	have	to	say	that	Decimation	is	beneficial	for	our	study	and	also	that	the	best	factor	
of	decimation	for	our	study	is	M	=	10.		

	
4.6	Signal’s	length	

	
Having	known	that	we	are	working	with	signals	that	have	in	each	of	them	6	channels	

and	we	will	make	a	multivariate	AR	analysis,	we	have	to	be	very	careful	about	the	size	
of	each	channel.	Spike’s	software	has	an	error	that	consists	in:	once	you	have	chosen	
your	 cursors	 for	 which	 you	want	 export	 the	 signal	 to	Matlab,	 Spikes	 in	 some	 cases	
chooses	different	sizes	for	each	channel.	In	the	figure	28,	we	can	see	that	changes	in	
length	are	very	low,	in	that	case,	all	channels	have	the	same	length	with	the	exception	
of	the	last	one.	

	

	
Figure	28:	Error	that	appears	when	we	take	the	values	exported	by	Spike		

We	 didn’t	 take	 into	 account	 that	 when	 we	 export	 signals,	 channels	 could	 have	
different	lengths.	So,	we	made	a	throughout	research	in	the	patients	signals	and	we	see	
that	the	majority	of	them	have	different	channels’	length	for	the	same	patient.	What	we	
did	was	easy,	we	have	to	redo	all	the	exportations	checking	that	in	the	same	patient,	
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channel’s	length	was	the	same	for	all	of	them.	After	doing	it,	we	updated	the	database	
with	 the	 new	 values,	 now	 being	 sure	 that	 channels	 have	 the	 same	 length	 for	 each	
patient.		

	
The	same	patient	with	its	6	channels	appears	in	the	figure	10,	in	this	case	having	the	

same	length	for	each	channel.	
	

	
Figure	29:	Error	which	have	been	sorted	out	

	
Apart	from	the	length	of	each	channel,	we	thought	that	having	the	same	length	for	

all	the	patients	could	be	a	really	good	idea	in	case	we	would	like	to	manipulate	various	
patients	at	the	same	time.	So,	we	also	made	a	research	in	all	signals	to	see	which	one	
has	the	minimum	length.	

	
We	 load	 all	 signals	 in	 a	Matlab	 script	 for	OFF	 and	ON	 state	 and	we	 look	 for	 the	

minimum	 value	 of	 both	 states.	 For	OFF	 state,	we	 saw	 that	 the	minimum	 value	was	
316.200	and	for	ON	state	was	439.158.	We	took	the	lowest	value	of	the	two	extracted	
and	for	the	following	situations,	we	force	our	signals	to	have	this	length.	

	
Of	course,	after	the	process	of	decimation,	we	have	to	say	that	now	this	length	has	

to	be	divided	by	M	constant	of	decimation,	in	our	case	10.	So,	we	take	the	minimum	
values	of	the	values	of	the	last	paragraph	(in	this	case	316.200)	and	we	divide	it	by	the	
factor	of	decimation	(M=10).	We	obtained	31.620.	Finally,	our	signals	must	have	this	
length.	

	
4.7	ARFIT	ORDER	

	
4.7.1	Relationship	between	poles	and	order	of	ARFIT	
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AR	order	is	directly	related	to	the	number	of	poles.	For	instance,	if	our	order	is	p=	
10,	we	wil	get	10	poles,	or	 in	other	words,	5	pairs	of	poles	complex	conjugated.	As	a	
consequence	of	this,	the	maximum	frequencies	we	obtain	are	also	directly	related	to	
the	poles.	

	
In	the	figure	30,	 it	can	be	seen	the	way	we	implement	the	functions	given	by	the	

ARFIT	package.	In	the	case	of	this	figure,	it	can	be	appreciated	that	we	are	using	an	AR	
with	an	order	of	p	=	16.	

	

Figure	30:	Example	of	the	order	in	the	ARFIT	package	

In	the	Figure	31,	as	a	consequence	of	the	use	of	an	AR	with	a	p	order	=	16,	from	
Matlab	we	get	16	poles.	

	

	

Figure		31:	Verification	of	the	theory	that	the	order	of	the	AR	model	is	directly	related	to	the	number	of	poles	
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In	 the	 following	 figure,	 it	 can	 be	 see	 that	 the	 16	 poles	 are	 8	 pairs	 of	 complex	
conjugated	poles	as	we	have	foreseen.	They	are	printed	thanks	to	the	help	of	the	tool	
“zplane”.	
	

Once	we	have	our	poles	well	located,	It’s	important	to	say	that	the	frequencies	are	
also	 related	 to	 the	 p	 order	 of	 the	 AR	model.	 Frequencies	 are	 obtained	making	 the	
product	of	the	sampling	frequency	and	the	variable	per	which	is	calculated	thanks	to	the	
armode	in	the	figure	30.	

	
4.7.2	Univariate	analysis	

	
Before	of	mixing	patients,	searching	for	correlations	between	them	or	creating	new	

time	intervals;	we	have	studied	our	signals	carefully	channel	by	channel	with	the	aim	of	
finding	an	ideal	AR	order.		

	
4.7.2.1	Adjusting	the	order	

	
All	the	results	which	are	going	to	be	explained	come	from	the	STN	6-7	of	the	patient	

2.	As	we	don’t	know	from	which	order	to	start,	we	have	made	a	sweep	between	12	to	
18	to	see	which	p	order	reproduces	better	our	components	Low	Beta	and	High	Beta.	In	
the	following	figures	we	are	going	to	compare	PDS	of	a	signal	which	has	been	filtered	

Figure	32:	Poles	printed	in	the	Zplane	
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with	a	Butterworth	Low	Pass	filter	with	two	real	slots	in	0	and	50	Hz	and	decimated	with	
M	=10	with	the	reconstruction	got	by	ARFIT	package.	

	
4.7.2.1.1	AR(p=12)	

	
Applying	 an	 AR(p=12)	 from	 the	 STN	 6-7	 channel	 of	 the	 patient	 two	 we	 get	 the	

following	results:	

In	this	case,	we	can	see	that	the	reconstruction	of	both	Low	Beta	and	High	Beta	is	
not	well	enough	because	the	Low	Beta	component	doesn’t	correspond	to	the	Low	Beta	
component	given	by	The	Welch	periodogram.	
	

4.7.2.1.2	AR(p=14)	
	
Applying	 an	 AR(p=14)	 from	 the	 STN	 6-7	 channel	 of	 the	 patient	 two	 we	 get	 the	

following	results:	
	

Figure	33:	AR(p=12)	
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In	this	case,	the	High	Beta	component	is	more	or	less	well	predicted.	However,	the	
Low	Beta	component	is	not	perfectly	situated	in	comparison	with	the	one	calculated	by	
the	The	Welch	periodogram.	

	
4.7.2.1.3	AR(p=16)	

	
Applying	 an	 AR(p=16)	 from	 the	 STN	 6-7	 channel	 of	 the	 patient	 two	 we	 get	 the	

following	results:	

	
	

Figure	34:	AR	(p=14)	

Figure	35:	AR	(p=16)	
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In	this	case,	as	 it	can	be	seen,	Low	Beta	and	High	Beta	components	are	perfectly	
situated.		

	
4.7.2.1.4	Conclusion	AR(p=16)	

	
After	 studying	 the	 three	 results	got	 in	 the	 figures	33,	34	 ,35	we	dare	 to	 say	 that	

having	an	AR	model	with	an	order	of	p	=	16	is	a	good	approximation	for	reconstructing	
well	our	Low	Beta	and	High	Beta	components.	

	
As	it	can	be	seen,	we	need	to	put	extra	poles	to	foresee	well	our	components	Low	

Beta	and	High	Beta.	If	we	choose	a	lower	order,	as	12	in	the	figure	33,	the	Low	Beta	and	
High	Beta	components	suffer	from	a	frequency	movement.	

	
4.7.2.2	Corroboration	of	our	research	

	
As	we	can	have	 seen	 in	 the	 last	 figures,	ARFIT	 reconstruction	produces	a	kind	of	

frequency	displacement	that	makes	the	ARFIT	reconstruction	be	different	from	the	The	
Welch	periodogram.	If	we	apply	a	lower	p	order,	this	difference	becomes	higher.		

	
As	a	consequence	of	that,	we	need	that	our	prediction	of	the	AR	order	has	to	be	truly	

well	proved.	We	have	prepared	a	thorough	research	that	can	be	seen	in	the	Appendix	5	
in	which	we	are	going	to	calculate:	

	
• The	difference	between	 the	Low	Beta	 reference	component	and	 the	Low	

beta	 reconstructed	 with	 ARFIT	 package.	 We	 will	 name	 this	 difference	
EPSILON	LOW	

• The	difference	between	the	High	Beta	reference	component	real	and	the	
High	beta	reconstructed	with	ARFIT	package.	We	will	name	this	difference	
EPSILON	HIGH	

• The	ratio	between	the	Low	Beta	reference	component	real	and	the	Low	beta	
reconstructed	 with	 ARFIT	 package.	 We	 will	 name	 this	 difference	 LOW	
EPSILON	RATIO	

• The	ratio	between	the	High	Beta	 reference	component	 real	and	 the	High	
beta	reconstructed	with	ARFIT	package.	We	will	name	this	difference	HIGH	
EPSILON	RATIO	

• The	logarithm	of	the	LOW	EPSILON	RATIO		
• The	logarithm	of	the	HIGH	EPSILON	RATIO		

	
	

PDTR	X	 REAL	FREQUENCY	VALUES	 ARFIT	FREQUENCY	VALUES	 EPSILON	
LOW	

EPSILON	
HIGH	CHANNEL	 LOW	BETA		 HIGH	BETA	 LOW	BETA	 HIGH	BETA	

STN	Y	 	 	 	 	 	 	
Table	4:	Explanation	of	how	Appendix	5	will	look	
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LOW		 HIGH	 LOW	 HIGH	
EPSILON	
RATIO	

EPSILON	
RATIO	

LOG	
RATIO	

LOG	
RATIO	

	 	 	 	
Table	5:	Explanation	of	how	Appendix	5	will	look	(second	part)	

	
We	are	going	to	make	this	research	for	both	ON	and	OFF	state	from	all	the	patients	

and	with	two	values	of	p:	
	

• AR(p=10)	
	
These	are	the	averages	results	for	each	patient	for	the	values	of:		
	

o Difference	of	epsilon:	
	

	
Table	6:	Epsilon	OFF	and	ON	state	patients,	difference	in	frequency	

o Ratio	of	Epsilon	
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Table	7:	Ratio	of	the	frequencies	of	OFF	and	ON	state	patients	

o Logarithm	of	ratio	of	epsilon	
	

	
Table	8:	Logarithm	of	ratio	of	epsilon	for	ON	and	OFF	state	patients	

• AR(p=16)	
	
These	are	the	averages	results	for	each	patient	for	the	values	of:		
	

o Difference	of	epsilon:	
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Table	9:	Epsilon	OFF	and	ON	state	patients,	difference	in	frequency	

o Ratio	of	Epsilon	
	

	
Table	10:	Ratio	of	the	frequencies	of	OFF	and	ON	state	patients	

o Logarithm	of	ratio	of	epsilon	
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Table	11:	Logarithm	of	ratio	of	epsilon	for	ON	and	OFF	state	patients	

4.7.2.3	Conclusion	of	the	results		
	
As	we	can	see	in	the	last	figures,	our	predictions	in	the	section	3.7.1.4	about	having	

an	AR(p=16)	are	correct	because	in	the	last	figures	we	can	appreciate	that	the	difference	
between	the	frequencies	reconstructed	by	ARFIT	and	the	frequencies	obtained	in	the	
Welch	periodogram	are	much	lower	in	the	study	of	AR	(p=16)	than	in	AR	(p=10).	

	
Besides	 that,	 the	 ratio	 between	 the	 frequencies	 reconstructed	 by	 ARFIT	 and	 the	

frequencies	 obtained	 in	 the	Welch	 periodogram	 in	 the	 AR	 (p=16)	 approaches	much	
more	 to	 1	 than	 in	 AR	 (p=10).	 This	 means	 that	 the	 frequencies	 are	 much	 closer.	
Consequently,	we	have	to	say	that	the	frequency	movement	is	much	lower	in	the	AR	
(p=16)	than	in	AR	(p=10).	

	
4.7.2.4	Our	signals	are	stationary?	

	
We	thought	that	it	will	me	a	good	idea	to	divide	the	whole	signal	into	windows	with	

an	overlap	with	the	aim	of	finding	how	stationary	are	the	signals	we	have	been	given	by	
CIMA.	 We	 have	 prepared	 a	 loop	 in	 which	 we	 put	 the	 size	 of	 the	 window	 we	 are	
interested	in.	We	also	calculate	the	shift	because	for	this	case,	we	assume	that	signals	
will	be	overlapped.	This	concept	is	explained	in	the	following	figure:	

	
	

	
	
	
	
	
	
	
	

Figure	36:	Explanation	of	a	sliding	window	
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We	 apply	 the	 sliding	 window	 to	 a	 single	 channel.	 This	 process	 is	 only	 used	 for	
univariate	 signals.	 We	 have	 to	 insert	 the	 following	 parameters:	 shift,	 length	 of	 the	
window	and	the	number	of	windows.	

	
One	of	the	most	 important	parameter	 is	the	number	of	windows.	We	calculate	 it	

making	 the	 difference	 between	 the	 length	 of	 the	 input	 signal	 and	 the	 length	 of	 the	
window.	Then,	we	divide	this	difference	between	the	shift.	Finally,	we	apply	the	“floor”	
function	to	get	an	integer	number.	This	process	is	explained	in	the	37	figure:	

	

	
Figure	37:	Calculation	of	the	number	of	window	for	the	sliding	window	

	
After	having	all	the	parameters	well	arranged,	we	enter	in	the	loop	that	appears	in	

the	figure	38.	
	

	
Figure	38:	Loop	for	the	sliding	window	

In	this	loop	we	start	counting	the	number	of	windows	we	have.	In	j	index,	it’s	shown	
the	start	point	of	the	window.	Secondly,	in	the	variable	h_envent,	which	starts	in	j	and	
finishes	in	the	j	variable	plus	window	size	plus	one,	we	have	our	window	saved.	

	
After	this	process	and,	still	in	the	for	loop,	we	use	the	ARFIT	model	to	each	one	of	

the	windows	generated	with	the	aim	of	finding	how	stationary	is	our	signal.	For	this	case,	
we	are	using	the	patient	4	in	the	OFF	state	with	an	ARFIT	p	order	of	16.		
	
Frequencies	get	by	Windowing	signal	(Hz)	 Frequencies	get	by	the	hole	Signal	(Hz)	

877.3679	 877.5	
741.2018	 741.5	
601.3522	 601.8	
451.5289	 452.1	
46.6984	 45.21	
33.9918	 33.9	
18.3937	 18.7	

0	 0	
Table	12:	Frequencies	got	by	sliding	windows	and	without	it		

	
As	we	can	see	in	the	Table	12,	there	are	almost	no	differences	between	analysing	

our	 signal	 in	 little	parts	 (windows)	 than	analysing	 the	 signal	without	 sliding	window.	
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ARFIT	package	gives	us	more	or	less	the	same	frequencies	in	both	situations,	so	we	can	
be	sure	of	the	stationarity	of	our	signals.	

	
4.7.3	Multivariate	analysis	

	
Trying	to	make	a	multivariate	analysis	is	something	that	we	have	to	think	carefully.	

The	dimensions	of	the	matrix	have	to	be	the	following	one:	
	

𝐴 = (𝑚𝑥 𝑚𝑥𝑝′ )	
	
Being	m	the	number	of	signals	included	and	p’	the	order	of	the	AR	model.	This	matrix	

has	to	be	square.	In	our	case,	the	matrix	will	have	the	dimensions	16x16	with	a	p’	order	
equals	to	1.	

	
Once	it	has	been	seen	that	the	best	order	for	the	AR	univariate	model	is	16,	we	have	

to	try	to	increase	the	number	of	signals	we	have	been	given.	We	came	up	with	two	ideas	
mainly:	

	
• The	first	one	was	trying	to	make	combinations	of	patients	
• The	second	one	was	trying	to	make	new	intervals	of	time	of	200	seconds	to	

have	more	signals.	We	could	do	it	because	the	length	of	the	time	series	we	
were	provided	had	3.000	seconds.	

	
4.7.3.1	Combinations	of	patients	

	
As	I	have	introduced	in	the	lasts	paragraphs	the	process	of	combination	of	patients	

was	tedious	and	very	long.	At	first,	we	have	to	load	all	signals	and	all	channels	from	all	
the	patients.	Secondly,	when	we	have	all	our	channels	well	named	and	well	loaded,	we	
have	to	follow	the	procedure	which	was	previously	explained:	

	
• Unifying	 the	 channel’s	 length	 because	 we	 were	 going	 to	 compare	 each	

channel	with	all	the	channels	from	all	the	patients.	
• Filtering	the	signal	with	the	Butterworth	filter	which	was	designed	with	a	real	

slot	in	0	Hz	and	in	50	Hz.	
• Making	a	decimation	of	the	output	signal	from	the	filter	(M=10	as	we	cited	

before)	
	
Once	we	have	our	signals	filtered,	decimated	and	cut,	with	the	help	of	PWELCH,	we	

made	the	Power	Density	Function	of	all	the	channels	from	every	patient.	
	

	
Figure	39:	An	example	of	the	use	of	the	pwelch	function	

In	the	figure	39,	we	can	see	how	we	used	the	pwelch’s	function,	given	that:	
	

• Sampling	frequency	=	2.0243e+03	Hz	is	the	same	for	all	the	channels	
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• Window	=	hanning	(L=4096)	
• Nfft	=	4096	
• Overlap	=	floor	(3/4*L)	

	
After	doing	this,	we	turn	to	Matlab	to	find	a	tool	to	compare	signals.	We	did	it	with	

the	help	of	“corrcoef”	function.	“Corrcoef”	compares	one	by	one	the	two	signals	which	
are	 introduced	and	finally	provides	you	a	matrix	2x2	 in	which	diagonal	 is	written	the	
proportion	from	0	to	1	of	the	similarity	of	both	signals.	In	the	figure	40	it’s	shown	how	
we	compare,	in	this	particular	case,	the	power	density	function	of	channel	2	from	the	
patient	2	with	all	the	channels	from	patient	2.	Then,	we	compare	the	channel	3	with	all	
the	channels	from	patient	2	and	so	on.	

	
	

	
Figure	40:	Example	of	the	use	of	“corrcoef”	function	

Once	we	have	compared	all	signals,	and	we	have	got	all	the	percentages	of	similarity,	
we	put	all	together	in	a	vector.	This	process	is	shown	in	the	figure	41.	

	

	
Figure	41:	Example	of	the	creation	of	the	vector	of	percentage	of	similarity	

What	 we	 do	 now	 is	 putting	 these	 results	 in	 a	matrix	 6x6	 to	 have	 the	 values	 of	
correlation	correctly	and	then	for	making	us	the	work	easier,	we	export	each	matrix	to	
an	Excel	file	for	copying	this	information	to	a	file	in	which	we	have	all	the	correlations	
from	each	patient.	This	last	procedure	is	shown	in	the	figure	42.	

	
	
This	was	the	example	that	we	did	in	order	to	see	if	the	values	were	correct,	for	us	

comparing	the	channels	of	patient	2	with	the	channels	of	patient	2	is	useless.	We	only	
did	 that	 with	 the	 aim	 of	 showing	 that	 the	 values	 obtained	 are	 correct	 because	 the	
diagonal	values	of	the	matrix	are	100	%.	This	makes	sense	because	values	that	appear	
in	the	diagonal	of	this	case	are	comparing	the	same	signals;	that’s	why	we	see	a	100	%	
of	correlation.	

	
4.7.3.1.1	Patients	with	more	correlation	

	

Figure	42:	Explanation	of	the	creation	of	the	matrix	of	correlations	and	the	exportation	to	an	Excel	file	
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Making	the	explained	process	for	all	the	combinations	possible	of	each	patient,	we	
put	 all	 the	matrix	 created	 in	 the	 same	 file.	 The	 percentage	 of	 correlation	 among	 all	
patients	and	channels	is	in	the	Appendix	7.		

	
In	the	table	13	what	we	have	done	is	making	the	average	of	each	matrix	taking	into	

account	all	the	channels.	As	expected,	the	values	in	which	the	correlation	is	higher	are	
the	ones	in	the	diagonal.	That’s	because	in	the	diagonal	we	are	comparing	the	patient	
with	itself.			

	
We	can	say	that	the	most	similar	patients	are	the	patient	8	and	the	patient	11,	which	

have	a	correlation	of	74,47	%	and	the	patient	8	and	3	which	have	a	correlation	of	76,56	
%.	In	case	we	need	to	add	patients	in	order	to	have	more	signals,	we	will	choose	patient	
3	and	patient	8	or	patient	8	and	patient	11.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

PATIENT	8	

PATIENT	11	

Now	we	have	doubled	
our	signals	and	we	have	12	

channels	

Table	13:	Percentage	of	correlations	among	all	patients	
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	 4.7.3.2	Taking	more	time	extracts	
	
The	second	option	is	coming	back	from	Spike	software	to	take	more	extracts	for	the	

OFF	and	ON	state.	Signals	that	we	have	are	long	enough	to	extract	from	them	another	
2	blocks	from	each	state	from	each	patient.	So	what	we	did	was	choosing:	

	
• A	block	of	200	seconds	which	is	more	or	less	near	the	one	we	chose	at	first.	
• Another	block	of	200	seconds	which	is	further	from	the	one	we	chose	at	first.	

	
From	this	way,	we	can	have	18	signals	from	the	same	patient.	Taking	into	account	

that	we	are	working	with	signals	from	the	same	patient,	we	did	the	correlation	from	this	
3	signals	in	order	not	to	have	3	signals	which	are	the	same.	Thanks	to	that,	we	check	
that	the	extracts	obtained	are	stationary	enough	to	assure	the	effective	increase	in	the	
number	of	channels			

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

4.7.3.2.1	Movement	in	frequency		
	
What	 it	has	been	seen	 in	 this	process	 is	 that	 there’s	a	 frequency	movement	 that	

affects	the	poles	depending	on	the	order	in	the	AR	model.	For	corroborating	that	p=16	
is	the	best	choice	for	univariate	analysis	we	have	made	a	study	working	with:	12	signals,	

PATIENT	
2	

Near	
signal		

Now	we	have	18	
channels	and	we	will	be	
able	to	reduce	the	ARFIR	

order	

Far	
signal		
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16	signals	and	18	signals.	In	the	last	case	(18	signals)	we	don’t	have	to	eliminate	any	of	
the	signals	(3	registers	multiplied	by	6	channels	=	18	signals).	

	
For	knowing	which	signal	has	to	be	removed	from	the	study	in	cases	of	12,16	and	18	

signals,	we	have	made	a	research	for	setting	the	correlation	between	the	signals.	The	
ones	which	are	less	correlated	will	be	removed	for	the	cases	of:	12,16	and	18.	

	
• Case	of	18	signals:	

As	it	can	be	seen	in	the	Figure	43	the	High	Beta	which	has	been	reconstructed	is	well	
predicted	but	the	Low	Beta	is	completely	moved	from	the	real	one.	

	
• Case	of	16	signals:	

	

Figure	43:	Multivariate	case	with	18	signals	
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In	the	figure	44	High	Beta	component	and	Low	Beta	component	are	more	or	 less	
well	predicted.	

	
• Case	of	12	signals	

	

	
Figure	45:	Multivariate	case	with	12	signals	

	
In	this	case	nor	the	Low	Beta	neither	the	High	Beta	are	well	predicted.	
	

Figure	44:	Multivariate	case	with	16	signals	
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As	 it	was	 predicted	 for	 the	 univariate	 case,	 the	 p	 order	 for	 the	AR	model	 in	 the	
multivariate	case	is	1,	but	using	16	signals.		
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CHAPTER	5:	CONCLUSION	
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5.Conclusion	
	
In	 this	 project	 we	 aimed	 at	 developing	 a	 multivariate	 framework	 to	 study	 the	

oscillatory	activity	of	PD	patients.	To	do	that,	we	had	the	opportunity	to	access	to	real	
signals:	the	local	field	potentials	(LFP)	recorded	from	the	stimulation	macroelectrodes	
of	the	DBS	systems	implanted	in	the	subthalamic	nucleus	(STN)	of	14	patients	with	PD.	

	
Inspired	by	a	previous	paper	where	authors	build	a	multivariate	model	to	describe	

the	ECoG	signals	recorded	from	anaesthetized	monkeys,	here	we	aimed	to	assess	the	
suitability	of	AR	models	to	fit	the	STN	activity,	define	an	approach	to	do	so	and	finally	
obtain	the	parameters	that	characterize	these	signals	across	different	stage	

	
The	fact	of	being	so	cautious	with	the	treatment	of	the	signal	is	because	we	want	to	

have	the	smallest	order	for	our	AR	model.	If	we	hadn’t	implemented	a	Low	Pass	Filter,	
the	order	would	have	increased	a	lot	due	to	the	signal.	We	need	to	have	it	the	cleanest	
we	can.	However,	as	we	can’t	modulate	the	300	Hz,	we	won’t	be	able	to	modulate	the	
connection	 between	 Beta	 and	 300	Hz.	 This	will	 be	 studied	 in	 the	 future	 in	 order	 to	
integrate	it.	

	
In	the	totality	of	the	texts	we	have	read,	the	election	of	the	AR	order	is	not	as	justified	

as	in	our	case.	In	fact,	choosing	a	good	p	order	for	the	AR	model	is	critical	according	to	
the	results	we	have	obtained.	If	we	take	a	bad	decision	choosing	the	order,	we	probably	
wouldn’t	be	able	to	reproduce	the	components	we	want	to.	It’s	also	important	because	
the	fact	of	choosing	badly	the	order	implies	the	existence	of	a	frequency	movement	that	
alters	the	reproduction	of	our	frequencies	of	interest.		

	
Overall,	 the	 results	 of	 this	 project	 suggest	 that	 -although	 it	 is	 possible	 to	use	AR	

models	to	study	STN	activity	from	PD	patients-,	there	are	some	constraints	due	to	the	
nature	of	the	signals	that	remain	to	be	solved.	Anyway,	we	consider	that	this	framework	
constitutes	an	interesting	tool	for	the	study	of	the	oscillatory	activity	in	PD	patients	and	
we	expect	to	develop	the	techniques	to	obtain	a	time-varying	characterization	of	the	
signals/models	in	the	future.		
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Appendix	1:	the	amplitudes	of	the	signal	in	50,100	and	150	
Hz	
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Appendix	2:	Existence	of	frequency	component	in	50,	150	and	
250	and	Theta	component	

	
       
       
       
PDTR-2	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 NO	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	

 CH	5-6	 YES	 YES	 YES	 NO	 	

 CH	6-7	 YES	 YES	 YES	 YES	 Channel	Chosen	
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-2	ON	 CH	0-1	 YES	 YES	 NO	 NO	 	
 CH	1-2	 YES	 YES	 NO	 NO	 	
 CH	2-3	 YES	 YES	 NO	 NO	 	
 CH	4-5	 YES	 YES	 NO	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 NO	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-3	OFF	 CH	0-1	 YES	 NO	 NO	 NO	 	
 CH	1-2	 NO	 YES	 YES	 NO	 	

 CH	2-3	 NO	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-3	ON	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
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PDTR-4	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	

 CH	1-2	 YES	 YES	 NO	 YES	 	

 CH	2-3	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	4-5	 YES	 YES	 YES	 NO	 	

 CH	5-6	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	6-7	 YES	 YES	 YES	 YES	 Channel	chosen	
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-4	ON	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 NO	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-5	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 NO	 YES	 NO	 	
 CH	6-7	 YES	 YES	 NO	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-5	ON	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 NO	 YES	 NO	 	
 CH	5-6	 YES	 YES	 NO	 NO	 	
 CH	6-7	 YES	 YES	 NO	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	

       
PDTR-6	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 NO	 YES	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	

 CH	4-5	 YES	 YES	 YES	 NO	 	

 CH	5-6	 YES	 YES	 YES	 YES	 Channel	chosen		

	 CH	6-7	 YES	 YES	 YES	 YES	 Channel	chosen		
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       



	 	CHARACTERIZATION	OF	CEREBRAL	ACTIVITY	IN	PD’S	PATIENTS	THROUGH	AN	AR	MODEL	

	

JESÚS	M.	ZARRANZ	 73	

	

 
 

PDTR-6	ON	 CH	0-1	 YES	 NO	 YES	 NO	 	
 CH	1-2	 YES	 YES	 NO	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       

PDTR-7	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	

 CH	1-2	 YES	 YES	 YES	 NO	 	

 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       

PDTR-7	ON	 CH	0-1	 YES	 YES	 NO	 YES	 	

 CH	1-2	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	2-3	 YES	 YES	 YES	 YES	 Channel	chosen	
	 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-8	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	

 CH	4-5	 YES	 YES	 YES	 NO	 	

 CH	5-6	 YES	 YES	 YES	 YES	 Channel	chosen	
	 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-8	ON	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 NO	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
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PDTR-9	OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Artefactos	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-10	
OFF	 CH	0-1	

YES	 YES	
NO	 NO	 	

 CH	1-2	 YES	 NO	 NO	 NO	 	
 CH	2-3	 YES	 YES	 NO	 YES	 	
 CH	4-5	 YES	 NO	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-10	
ON	 CH	0-1	 NO	 YES	 NO	 NO	 	
 CH	1-2	 YES	 YES	 NO	 NO	 	
 CH	2-3	 YES	 YES	 NO	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-11	
OFF	 CH	0-1	 YES	 NO	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	

 CH	4-5	 YES	 YES	 YES	 NO	 	

 CH	5-6	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	6-7	 YES	 YES	 YES	 YES	 Channel	chosen	
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-11	
ON	 CH	0-1	 NO	 NO	 NO	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 NO	 YES	 YES	 NO	 	
 CH	4-5	 YES	 YES	 YES	 NO	 	
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 CH	5-6	 V	 YES	 YES	 NO	 	
 CH	6-7	 SI	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-12	
OFF	 CH	0-1	 NO	 YES	 YES	 NO	 	

 CH	1-2	 YES	 YES	 YES	 NO	 	

 CH	2-3	 YES	 YES	 YES	 YES	 Channel	chosen	
	 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	

       
PDTR-12	
ON	 CH	0-1	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	1-2	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	2-3	 YES	 YES	 YES	 YES	 Channel	chosen	
	 CH	4-5	 YES	 YES	 YES	 NO	 	
 CH	5-6	 YES	 YES	 YES	 NO	 	
 CH	6-7	 YES	 YES	 YES	 NO	 	
 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-13	
OFF	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	
 CH	2-3	 YES	 YES	 YES	 NO	 	
 CH	4-5	 YES	 NO	 YES	 NO	 	

 CH	5-6	 YES	 YES	 NO	 YES	 	

 CH	6-7	 YES	 YES	 YES	 YES	 Channel	chosen	
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
       
PDTR-13	
ON	 CH	0-1	 YES	 YES	 YES	 NO	 	
 CH	1-2	 YES	 YES	 YES	 NO	 	

 CH	2-3	 NO	 YES	 YES	 NO	 	

 CH	4-5	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	5-6	 YES	 YES	 YES	 YES	 Channel	chosen	

	 CH	6-7	 YES	 YES	 YES	 YES	 Channel	chosen	
	 Frequency	 50	Hz	 150	Hz	 250	Hz	 Theta	 	
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Channels	
chosen	 PDTR-2	OFF	

CH	6-7	

	
PDTR-4	OFF	

CH	2-3	
	 CH	5-6	
	 CH	6-7	
	

PDTR-6	OFF	
CH	5-6	

	 CH	6-7	
	

PDTR-8	OFF	
CH	5-6	

	
 

PDTR-11	OFF	
CH	5-6	

	 CH	6-7	
	

PDTR-13	OFF	
CH	6-7	

	
 

PDTR-7	ON	
CH	1-2	

	 CH	2-3	
	

PDTR-12	ON		
CH	0-1	

	 CH	1-2	
	 CH	2-3	
	

PDTR-13	ON	
CH	4-5	

	 CH	5-6	
	 CH	6-7	
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Appendix	3:	Appearance	of	Low	Beta,	High	Beta	and	Theta	
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Appendix	4:	Decision	of	M	for	Decimation	
CHEBYSEV	
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BUTTERWORTH	
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Appendix	5:	Values	obtained	for	get	the	epsilon	produced	by	
ARFIT		

	
AR(P=10)	

	
OFF	STATE	
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ON	STATE	
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AR(P=16)	
	

OFF	STATE	
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ON	STATE	
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Appendix	6:	Correlation	between	patients	
	

PACIENTE	NÚMERO	2	

		 PDTR2	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 100,00	 66,67	 38,01	 46,54	 39,16	 50,04	
STN	1-2	 66,67	 100,00	 85,97	 90,09	 85,93	 79,22	
STN	2-3	 38,01	 85,97	 100,00	 84,46	 93,65	 77,12	
STN	4-5	 46,54	 90,09	 84,46	 100,00	 91,46	 92,71	
STN	5-6	 39,16	 85,93	 93,65	 91,46	 100,00	 87,50	
STN	6-7	 50,04	 87,12	 77,12	 92,71	 87,50	 100,00	

	       

		 PDTR3	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 39,09	 46,48	 39,19	 55,80	 39,29	 44,25	
STN	1-2	 75,35	 76,62	 77,67	 83,78	 73,59	 79,22	
STN	2-3	 66,47	 61,00	 71,70	 65,10	 59,63	 67,45	
STN	4-5	 78,39	 78,98	 80,42	 83,28	 76,88	 80,55	
STN	5-6	 74,72	 70,59	 78,15	 74,09	 68,81	 75,29	
STN	6-7	 78,44	 80,10	 78,12	 87,44	 76,15	 78,17	

	       
 PDTR4	
		 STN	0-1	

PDTR2	 		 		 		 		 		 		
STN	0-1	 66,02	 43,64	 41,50	 55,66	 78,00	 45,05	
STN	1-2	 83,73	 68,77	 70,62	 72,94	 79,27	 75,17	
STN	2-3	 74,71	 79,39	 79,42	 66,29	 56,93	 79,15	
STN	4-5	 74,78	 63,36	 66,06	 65,66	 67,15	 69,66	
STN	5-6	 73,50	 75,35	 76,83	 64,18	 58,28	 75,97	
STN	6-7	 75,56	 59,23	 65,95	 64,36	 69,99	 66,88	

	       
 PDTR5	
		 STN	0-1	

PDTR2	 		 		 		 		 		 		
STN	0-1	 33,51	 42,52	 29,25	 48,11	 45,29	 58,52	
STN	1-2	 53,84	 64,28	 54,43	 28,93	 56,42	 63,13	
STN	2-3	 31,97	 39,10	 32,11	 9,82	 33,40	 36,81	
STN	4-5	 54,99	 65,20	 56,67	 18,84	 53,99	 57,30	
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STN	5-6	 42,44	 49,93	 42,87	 11,59	 42,24	 45,18	
STN	6-7	 54,03	 65,16	 56,42	 21,09	 50,39	 55,46	

	       

		 PDTR6	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 44,07	 38,15	 49,08	 24,42	 67,11	 73,65	
STN	1-2	 79,90	 77,48	 85,81	 29,67	 76,90	 83,27	
STN	2-3	 85,73	 73,32	 90,28	 20,33	 56,36	 62,66	
STN	4-5	 76,48	 75,89	 82,85	 29,14	 72,25	 74,30	
STN	5-6	 81,08	 70,43	 87,52	 23,94	 62,71	 67,34	
STN	6-7	 64,93	 72,13	 74,09	 30,82	 76,47	 77,09	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 58,50	 34,60	 44,55	 61,39	 41,53	 63,13	
STN	1-2	 69,76	 40,58	 50,96	 76,81	 58,72	 81,76	
STN	2-3	 49,03	 20,69	 29,91	 51,38	 32,27	 58,99	
STN	4-5	 64,48	 41,33	 48,94	 72,55	 58,75	 76,63	
STN	5-6	 53,52	 27,17	 35,95	 58,60	 42,78	 64,41	
STN	6-7	 70,44	 46,73	 55,79	 79,84	 63,91	 81,18	

	       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 43,76	 38,57	 55,86	 67,85	 45,02	 36,86	
STN	1-2	 85,17	 77,96	 84,13	 79,03	 81,99	 72,76	
STN	2-3	 78,77	 79,58	 71,50	 57,23	 72,85	 81,17	
STN	4-5	 86,08	 78,25	 83,35	 72,75	 81,98	 69,80	
STN	5-6	 78,92	 78,04	 74,77	 61,69	 76,47	 77,82	
STN	6-7	 76,08	 66,21	 76,98	 73,22	 78,63	 60,07	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 83,45	 81,14	 82,79	 50,05	 70,57	 83,97	
STN	1-2	 58,17	 60,04	 55,71	 84,97	 88,15	 75,51	
STN	2-3	 28,54	 31,90	 28,09	 83,55	 73,89	 48,63	
STN	4-5	 42,89	 44,61	 40,09	 82,22	 80,35	 63,45	
STN	5-6	 33,45	 35,67	 31,73	 83,97	 76,61	 54,27	



	 	CHARACTERIZATION	OF	CEREBRAL	ACTIVITY	IN	PD’S	PATIENTS	THROUGH	AN	AR	MODEL	

	

JESÚS	M.	ZARRANZ	 118	

	

STN	6-7	 49,07	 49,46	 44,85	 82,98	 83,24	 68,49	
	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 57,95	 20,37	 47,65	 15,36	 34,33	 57,46	
STN	1-2	 59,68	 39,99	 61,35	 32,47	 50,93	 69,07	
STN	2-3	 55,67	 56,84	 67,70	 45,17	 56,73	 62,45	
STN	4-5	 50,15	 36,85	 53,24	 30,12	 45,65	 60,03	
STN	5-6	 55,08	 51,93	 66,31	 45,28	 57,42	 64,20	
STN	6-7	 48,88	 31,53	 56,07	 32,49	 48,84	 65,07	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 46,76	 31,16	 45,40	 63,60	 35,09	 33,46	
STN	1-2	 70,91	 62,90	 69,06	 90,05	 70,06	 63,51	
STN	2-3	 58,14	 62,25	 72,12	 75,83	 75,82	 78,24	
STN	4-5	 66,79	 61,65	 62,22	 84,77	 69,76	 60,64	
STN	5-6	 61,24	 60,15	 67,07	 76,95	 73,59	 72,72	
STN	6-7	 59,63	 50,07	 51,37	 81,97	 56,50	 50,07	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 34,49	 30,91	 24,52	 88,98	 89,48	 87,45	
STN	1-2	 53,48	 56,75	 51,73	 67,92	 69,19	 68,31	
STN	2-3	 33,14	 41,68	 70,04	 37,68	 44,87	 43,91	
STN	4-5	 51,65	 56,19	 48,90	 52,59	 51,81	 51,41	
STN	5-6	 40,72	 49,94	 65,32	 42,64	 46,67	 45,57	
STN	6-7	 55,96	 56,48	 42,61	 57,46	 55,51	 54,64	

		 		 		 		 		 		 		
	       

PACIENTE	NÚMERO	3	

	       

		 PDTR3	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 100,00	 94,61	 98,10	 86,85	 93,09	 92,98	
STN	1-2	 94,61	 100,00	 91,68	 91,22	 94,30	 92,63	
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STN	2-3	 98,10	 91,68	 100,00	 84,70	 91,75	 93,16	
STN	4-5	 86,85	 91,22	 84,70	 100,00	 89,87	 88,85	
STN	5-6	 93,09	 94,30	 91,75	 89,87	 100,00	 97,17	
STN	6-7	 92,98	 92,63	 93,16	 88,85	 97,17	 100,00	

	       

		 PDTR4	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 59,75	 46,97	 53,44	 49,13	 59,90	 50,54	
STN	1-2	 59,75	 46,97	 53,44	 49,13	 59,90	 50,54	
STN	2-3	 59,81	 52,97	 59,81	 48,42	 52,37	 55,47	
STN	4-5	 71,49	 52,38	 59,86	 61,15	 72,45	 60,00	
STN	5-6	 52,22	 41,60	 48,42	 43,06	 52,99	 45,21	
STN	6-7	 58,95	 50,11	 55,07	 49,89	 58,06	 52,92	

	       

		 PDTR5	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 82,17	 86,64	 82,99	 22,32	 76,35	 77,26	
STN	1-2	 82,17	 86,64	 82,99	 22,32	 76,35	 77,26	
STN	2-3	 78,75	 80,85	 77,24	 15,12	 77,33	 76,29	
STN	4-5	 73,04	 81,22	 74,83	 27,90	 68,67	 72,82	
STN	5-6	 83,83	 87,57	 84,64	 17,38	 79,00	 78,02	
STN	6-7	 78,32	 83,84	 77,93	 18,92	 77,42	 77,57	

	       

		 PDTR6	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 62,15	 44,86	 68,07	 33,94	 69,09	 66,87	
STN	1-2	 60,99	 45,51	 66,68	 33,83	 76,53	 71,65	
STN	2-3	 67,76	 48,20	 73,20	 33,67	 67,96	 66,42	
STN	4-5	 61,13	 59,28	 68,51	 34,33	 80,88	 79,74	
STN	5-6	 59,94	 41,05	 64,79	 32,15	 71,40	 66,16	
STN	6-7	 70,05	 45,90	 74,31	 32,09	 74,25	 70,34	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 56,94	 37,17	 41,93	 61,49	 70,30	 66,60	
STN	1-2	 56,94	 46,65	 51,16	 70,69	 80,54	 74,18	
STN	2-3	 48,58	 35,00	 39,79	 58,88	 65,43	 65,24	
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STN	4-5	 68,52	 48,59	 56,17	 81,44	 80,05	 83,74	
STN	5-6	 51,18	 43,38	 45,87	 63,89	 77,40	 68,30	
STN	6-7	 54,20	 42,41	 45,87	 62,15	 68,87	 68,41	

	       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 79,44	 76,14	 81,97	 70,43	 79,02	 65,05	
STN	1-2	 80,32	 74,49	 85,72	 79,72	 84,23	 63,68	
STN	2-3	 83,29	 81,22	 83,93	 69,51	 79,00	 69,53	
STN	4-5	 76,83	 67,20	 82,71	 81,39	 82,05	 58,00	
STN	5-6	 79,51	 74,59	 84,07	 72,64	 80,14	 61,84	
STN	6-7	 84,63	 81,66	 87,45	 75,17	 81,69	 71,37	

	       
 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 41,81	 42,28	 39,14	 62,53	 70,91	 61,11	
STN	1-2	 50,79	 50,45	 47,32	 60,88	 74,29	 69,93	
STN	2-3	 39,73	 40,83	 37,46	 64,56	 71,12	 59,76	
STN	4-5	 58,00	 57,98	 53,86	 72,65	 83,54	 77,56	
STN	5-6	 44,38	 43,57	 40,92	 55,74	 67,40	 62,63	
STN	6-7	 46,81	 46,89	 44,01	 61,80	 71,99	 65,47	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 43,54	 27,62	 49,37	 31,64	 46,14	 56,30	
STN	1-2	 46,62	 24,69	 46,55	 26,34	 41,46	 55,65	
STN	2-3	 45,50	 31,63	 50,49	 32,11	 46,46	 56,01	
STN	4-5	 50,58	 25,93	 53,56	 29,70	 47,65	 65,59	
STN	5-6	 41,87	 22,43	 41,31	 24,97	 38,79	 50,60	
STN	6-7	 47,89	 28,87	 48,30	 29,07	 44,32	 56,15	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 79,58	 68,60	 56,63	 69,92	 70,21	 51,32	
STN	1-2	 79,14	 64,20	 56,08	 74,59	 66,07	 48,27	
STN	2-3	 82,10	 73,41	 61,88	 71,73	 76,17	 57,34	
STN	4-5	 71,25	 54,55	 51,23	 81,98	 57,16	 45,66	
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STN	5-6	 80,56	 68,26	 55,04	 69,00	 66,88	 45,92	
STN	6-7	 84,33	 74,48	 64,18	 74,19	 76,01	 55,06	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR3	 		 		 		 		 		 		
STN	0-1	 59,17	 73,42	 39,41	 52,09	 46,07	 45,30	
STN	1-2	 72,36	 80,28	 36,62	 60,62	 52,43	 52,18	
STN	2-3	 54,66	 71,59	 43,77	 50,52	 46,00	 45,16	
STN	4-5	 69,23	 70,78	 36,97	 67,43	 61,95	 61,78	
STN	5-6	 65,10	 76,51	 34,34	 53,25	 45,52	 45,02	
STN	6-7	 58,95	 71,41	 42,35	 55,59	 50,93	 50,02	

	       

PACIENTE	NÚMERO	4	

	       

		 PDTR4	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 100,00	 76,35	 83,41	 85,86	 86,01	 83,62	
STN	1-2	 76,35	 100,00	 92,39	 75,64	 63,20	 85,07	
STN	2-3	 83,41	 92,39	 100,00	 76,12	 64,32	 87,00	
STN	4-5	 85,86	 75,64	 76,12	 100,00	 82,19	 87,16	
STN	5-6	 86,01	 63,20	 64,32	 82,19	 100,00	 70,74	
STN	6-7	 83,62	 85,07	 87,00	 87,16	 70,74	 100,00	

	       

		 PDTR5	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 33,84	 44,51	 33,35	 34,63	 38,53	 49,26	
STN	1-2	 18,51	 26,44	 17,88	 17,36	 21,54	 28,91	
STN	2-3	 24,02	 31,54	 23,99	 18,65	 25,46	 31,96	
STN	4-5	 26,18	 37,37	 26,75	 30,48	 30,09	 40,24	
STN	5-6	 37,64	 51,39	 37,32	 41,42	 43,18	 55,90	
STN	6-7	 23,22	 32,75	 24,10	 19,45	 25,81	 33,44	

	       

		 PDTR6	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 71,71	 76,91	 75,88	 26,83	 69,85	 79,92	
STN	1-2	 80,30	 57,42	 80,42	 20,23	 56,46	 61,19	
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STN	2-3	 73,48	 62,02	 75,87	 20,82	 57,26	 63,44	
STN	4-5	 72,30	 69,01	 72,41	 24,20	 63,86	 74,66	
STN	5-6	 63,96	 63,57	 66,84	 30,22	 78,66	 86,61	
STN	6-7	 77,01	 70,77	 78,73	 21,30	 60,22	 70,71	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 66,93	 31,27	 43,26	 70,27	 44,54	 73,38	
STN	1-2	 46,41	 19,96	 29,25	 42,94	 24,98	 49,60	
STN	2-3	 49,05	 21,00	 31,04	 49,77	 31,32	 55,46	
STN	4-5	 60,17	 29,80	 39,32	 58,07	 35,97	 62,39	
STN	5-6	 74,84	 46,38	 56,09	 73,35	 50,69	 76,18	
STN	6-7	 55,76	 25,33	 36,26	 54,45	 31,54	 60,74	

	       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 68,17	 59,15	 67,42	 68,16	 64,45	 56,81	
STN	1-2	 60,05	 63,46	 59,89	 55,25	 60,19	 72,00	
STN	2-3	 59,35	 59,31	 58,87	 53,36	 59,71	 64,04	
STN	4-5	 61,85	 53,00	 61,35	 63,05	 56,77	 52,17	
STN	5-6	 63,57	 51,99	 69,13	 76,61	 60,88	 48,00	
STN	6-7	 63,02	 59,05	 60,03	 56,27	 59,11	 61,80	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 55,83	 59,70	 53,84	 85,12	 85,23	 73,20	
STN	1-2	 34,64	 38,15	 34,64	 67,72	 64,91	 52,27	
STN	2-3	 33,43	 37,64	 32,73	 75,88	 70,97	 53,58	
STN	4-5	 50,01	 53,12	 49,18	 71,94	 73,40	 64,29	
STN	5-6	 73,02	 73,17	 70,93	 68,70	 81,77	 82,74	
STN	6-7	 38,60	 42,06	 37,40	 79,78	 74,26	 56,59	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 60,00	 44,30	 70,77	 47,22	 64,54	 80,50	
STN	1-2	 80,22	 82,68	 82,95	 56,56	 65,76	 68,08	
STN	2-3	 70,01	 72,14	 84,93	 66,44	 75,16	 77,05	
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STN	4-5	 65,76	 55,04	 69,45	 44,92	 59,32	 74,14	
STN	5-6	 62,93	 33,23	 60,92	 30,37	 51,22	 74,71	
STN	6-7	 69,97	 42,06	 81,64	 61,46	 71,43	 77,05	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR4	 		 		 		 		 		 		
STN	0-1	 49,11	 39,22	 52,47	 84,24	 50,11	 55,62	
STN	1-2	 40,29	 34,93	 56,01	 66,83	 61,33	 84,91	
STN	2-3	 40,55	 34,33	 48,84	 67,84	 54,16	 73,16	
STN	4-5	 39,82	 29,74	 44,48	 75,81	 44,34	 56,72	
STN	5-6	 49,26	 34,80	 47,60	 80,62	 42,88	 44,58	
STN	6-7	 40,25	 33,72	 48,74	 72,61	 51,72	 67,96	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 44,07	 41,77	 52,44	 68,00	 73,37	 72,68	
STN	1-2	 31,49	 36,85	 87,22	 46,63	 56,08	 54,00	
STN	2-3	 35,54	 39,34	 78,00	 45,76	 53,18	 52,26	
STN	4-5	 41,72	 37,75	 59,65	 62,22	 68,30	 67,93	
STN	5-6	 48,70	 41,99	 39,36	 81,62	 83,54	 83,80	
STN	6-7	 36,98	 38,46	 76,95	 50,13	 58,48	 57,67	

	       

PACIENTE	NÚMERO	5	

	       

		 PDTR5	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 100,00	 95,12	 98,26	 18,62	 90,85	 88,01	
STN	1-2	 95,12	 100,00	 94,40	 23,89	 88,88	 87,72	
STN	2-3	 98,26	 94,40	 100,00	 16,84	 85,97	 82,87	
STN	4-5	 18,62	 23,89	 16,84	 100,00	 26,49	 33,65	
STN	5-6	 90,85	 88,88	 85,97	 26,49	 100,00	 96,21	
STN	6-7	 88,01	 87,72	 82,87	 33,65	 96,21	 100,00	

	       

		 PDTR6	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 36,41	 26,27	 39,96	 33,26	 53,90	 49,31	
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STN	1-2	 45,35	 35,99	 49,12	 36,39	 65,50	 61,79	
STN	2-3	 34,75	 29,87	 38,63	 32,31	 54,82	 49,45	
STN	4-5	 19,17	 17,10	 19,42	 13,29	 34,37	 36,72	
STN	5-6	 41,57	 25,32	 44,81	 32,54	 55,75	 53,18	
STN	6-7	 46,08	 30,69	 49,72	 35,46	 63,77	 63,16	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 34,33	 30,65	 32,78	 52,12	 78,88	 55,62	
STN	1-2	 49,40	 42,49	 46,11	 63,04	 81,26	 67,07	
STN	2-3	 37,65	 35,39	 37,60	 56,25	 83,35	 58,94	
STN	4-5	 33,02	 23,51	 28,00	 33,99	 23,51	 33,60	
STN	5-6	 35,78	 29,09	 31,05	 45,68	 62,05	 51,23	
STN	6-7	 45,64	 33,78	 37,69	 54,03	 64,78	 59,51	

	       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 63,66	 56,31	 68,19	 58,52	 62,59	 39,50	
STN	1-2	 71,27	 61,81	 77,14	 69,64	 70,64	 46,18	
STN	2-3	 63,25	 54,39	 67,51	 58,98	 65,31	 37,53	
STN	4-5	 21,19	 14,50	 27,18	 37,32	 19,53	 11,82	
STN	5-6	 64,72	 59,76	 69,61	 56,79	 54,46	 41,44	
STN	6-7	 66,12	 59,89	 73,36	 65,88	 57,77	 43,55	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 38,12	 37,81	 35,23	 33,09	 47,88	 51,48	
STN	1-2	 46,98	 46,50	 42,93	 41,83	 57,67	 61,56	
STN	2-3	 36,21	 35,59	 32,47	 34,95	 48,57	 50,55	
STN	4-5	 43,45	 42,62	 42,29	 25,08	 35,34	 44,73	
STN	5-6	 44,97	 46,02	 43,57	 35,71	 51,07	 55,51	
STN	6-7	 57,61	 58,55	 55,65	 41,71	 60,17	 67,49	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 26,39	 5,92	 15,86	 4,22	 15,85	 28,11	
STN	1-2	 34,73	 9,85	 23,72	 7,53	 21,98	 38,01	
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STN	2-3	 25,51	 5,48	 15,34	 3,92	 15,26	 27,75	
STN	4-5	 25,73	 4,70	 18,80	 3,81	 13,65	 27,75	
STN	5-6	 30,63	 7,07	 19,89	 5,12	 18,63	 32,76	
STN	6-7	 39,54	 58,55	 28,27	 8,46	 24,75	 42,30	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 76,34	 54,30	 34,10	 54,87	 49,20	 25,24	
STN	1-2	 80,35	 58,30	 40,26	 64,94	 53,64	 30,83	
STN	2-3	 72,34	 50,08	 31,00	 55,70	 45,70	 23,19	
STN	4-5	 21,36	 10,53	 17,29	 30,90	 11,07	 9,80	
STN	5-6	 83,76	 60,27	 39,20	 55,75	 55,84	 29,24	
STN	6-7	 81,21	 57,99	 43,82	 63,33	 54,84	 32,24	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR5	 		 		 		 		 		 		
STN	0-1	 67,06	 84,44	 13,89	 49,42	 36,83	 37,63	
STN	1-2	 68,38	 80,18	 18,34	 57,05	 45,80	 46,37	
STN	2-3	 71,97	 86,14	 13,18	 46,42	 33,09	 34,37	
STN	4-5	 18,77	 15,34	 5,46	 46,74	 45,99	 45,10	
STN	5-6	 46,63	 68,28	 14,60	 55,63	 45,83	 46,79	
STN	6-7	 51,58	 69,67	 18,23	 68,44	 59,92	 60,07	

	       

PACIENTE	NÚMERO	6	

	       

		 PDTR6	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
STN	0-1	 100,00	 59,93	 96,18	 22,76	 60,87	 66,06	
STN	1-2	 59,93	 100,00	 65,97	 18,39	 49,97	 60,97	
STN	2-3	 96,18	 65,97	 100,00	 24,80	 67,10	 72,23	
STN	4-5	 22,76	 18,39	 24,80	 100,00	 35,83	 35,06	
STN	5-6	 60,87	 49,97	 67,10	 35,83	 100,00	 90,07	
STN	6-7	 66,06	 60,97	 72,23	 35,06	 90,07	 100,00	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
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STN	0-1	 48,55	 26,06	 32,13	 42,08	 31,05	 51,80	
STN	1-2	 59,68	 25,51	 37,61	 67,66	 39,11	 69,43	
STN	2-3	 55,28	 29,40	 37,39	 51,39	 37,08	 60,32	
STN	4-5	 27,68	 22,00	 24,47	 29,73	 32,12	 31,53	
STN	5-6	 74,30	 60,66	 66,26	 75,31	 65,55	 77,61	
STN	6-7	 74,20	 50,33	 59,93	 77,37	 60,74	 80,60	

	       
       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
STN	0-1	 84,73	 88,06	 80,18	 66,28	 73,76	 89,78	
STN	1-2	 66,19	 51,40	 54,32	 49,44	 58,04	 44,43	
STN	2-3	 86,50	 88,93	 83,29	 70,48	 77,62	 89,96	
STN	4-5	 28,67	 24,75	 31,61	 31,87	 28,51	 21,39	
STN	5-6	 67,41	 60,04	 76,69	 82,82	 71,06	 55,75	
STN	6-7	 69,22	 60,47	 75,60	 80,41	 70,12	 55,96	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
STN	0-1	 37,46	 40,26	 37,84	 67,21	 67,06	 53,63	
STN	1-2	 29,21	 33,33	 26,92	 85,49	 71,40	 47,61	
STN	2-3	 41,97	 44,62	 41,35	 74,91	 74,39	 59,21	
STN	4-5	 26,10	 26,50	 24,19	 22,34	 30,05	 31,56	
STN	5-6	 69,83	 67,91	 67,19	 62,78	 79,49	 81,57	
STN	6-7	 73,15	 72,43	 70,27	 70,89	 85,02	 83,30	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 		 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
STN	0-1	 66,06	 61,18	 63,65	 37,73	 50,89	 59,37	
STN	1-2	 36,25	 31,36	 44,72	 28,50	 41,36	 55,05	
STN	2-3	 65,60	 57,88	 67,20	 40,04	 54,39	 64,65	
STN	4-5	 23,63	 10,76	 19,63	 9,14	 16,56	 25,09	
STN	5-6	 64,13	 34,16	 59,06	 29,67	 46,75	 66,59	
STN	6-7	 64,01	 35,34	 63,79	 35,99	 54,45	 74,56	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
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STN	0-1	 68,89	 72,68	 82,35	 75,13	 86,30	 85,06	
STN	1-2	 34,49	 30,38	 37,31	 78,00	 39,44	 41,78	
STN	2-3	 70,38	 71,63	 81,73	 79,71	 85,08	 82,30	
STN	4-5	 31,24	 20,33	 19,20	 30,22	 23,00	 17,35	
STN	5-6	 60,91	 44,36	 51,67	 75,33	 53,69	 48,50	
STN	6-7	 59,47	 44,17	 52,97	 79,95	 52,04	 48,67	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 		 STN	5-6	 STN	6-7	

PDTR6	 		 		 		 		 		 		
STN	0-1	 33,53	 44,48	 73,03	 46,97	 53,74	 52,37	
STN	1-2	 37,94	 34,63	 39,89	 39,15	 43,12	 44,96	
STN	2-3	 37,48	 47,10	 70,49	 51,57	 57,65	 55,64	
STN	4-5	 23,69	 28,51	 13,81	 29,85	 27,11	 27,87	
STN	5-6	 56,33	 54,24	 41,56	 74,79	 73,06	 73,91	
STN	6-7	 54,76	 52,16	 43,68	 79,29	 79,88	 80,91	

	       

PACIENTE	NÚMERO	7	

	       

		 PDTR7	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR7	 		 		 		 		 		 		
STN	0-1	 100,00	 80,86	 90,69	 79,17	 52,39	 81,65	
STN	1-2	 80,86	 100,00	 95,86	 56,78	 43,78	 56,51	
STN	2-3	 90,69	 95,86	 100,00	 67,89	 49,92	 69,03	
STN	4-5	 79,17	 56,78	 67,89	 100,00	 80,40	 94,77	
STN	5-6	 52,39	 43,78	 49,92	 80,40	 100,00	 77,30	
STN	6-7	 81,65	 56,51	 69,03	 94,77	 77,30	 100,00	

	       

		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR7	 		 		 		 		 		 		
STN	0-1	 55,77	 44,27	 61,13	 69,03	 54,38	 39,03	
STN	1-2	 37,26	 29,02	 45,88	 51,50	 38,19	 22,83	
STN	2-3	 42,26	 32,68	 50,69	 58,46	 44,55	 27,44	
STN	4-5	 59,38	 43,68	 64,61	 75,75	 70,06	 36,07	
STN	5-6	 56,27	 43,87	 64,43	 71,09	 73,95	 33,29	
STN	6-7	 66,04	 52,20	 70,17	 77,92	 72,18	 45,01	

	       

		 PDTR9	
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		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	
PDTR7	 		 		 		 		 		 		
STN	0-1	 57,15	 56,77	 51,57	 62,79	 71,31	 71,43	
STN	1-2	 41,51	 38,14	 37,14	 29,07	 43,17	 50,27	
STN	2-3	 48,76	 45,89	 43,57	 41,57	 53,54	 58,92	
STN	4-5	 60,97	 61,12	 55,75	 71,19	 80,39	 77,19	
STN	5-6	 48,29	 46,99	 43,89	 43,26	 60,55	 64,67	
STN	6-7	 61,82	 61,21	 57,86	 72,96	 81,73	 78,48	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR7	 		 		 		 		 		 		
STN	0-1	 48,62	 21,42	 47,22	 21,78	 38,59	 60,09	
STN	1-2	 33,62	 8,06	 24,32	 5,50	 16,11	 32,51	
STN	2-3	 40,49	 13,58	 34,05	 12,08	 24,83	 43,06	
STN	4-5	 45,46	 17,79	 43,62	 20,02	 37,32	 59,04	
STN	5-6	 34,40	 9,16	 24,82	 8,48	 21,42	 38,04	
STN	6-7	 51,00	 61,21	 48,72	 24,07	 41,53	 62,36	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN4.5	 STN	5-6	 STN	6-7	

PDTR7	 		 		 		 		 		 		
STN	0-1	 42,75	 29,15	 37,39	 70,88	 33,84	 31,98	
STN	1-2	 30,83	 21,01	 22,06	 39,44	 21,59	 15,92	
STN	2-3	 34,48	 21,61	 25,45	 50,59	 24,04	 20,95	
STN	4-5	 46,25	 27,17	 32,60	 78,84	 30,46	 27,43	
STN	5-6	 53,84	 31,94	 27,79	 62,61	 31,72	 20,19	
STN	6-7	 55,46	 37,78	 41,56	 82,87	 40,96	 36,87	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR7	 		 		 		 		 		 		
STN	0-1	 39,42	 34,69	 27,42	 61,27	 59,40	 61,54	
STN	1-2	 30,16	 26,59	 10,39	 40,22	 33,45	 37,64	
STN	2-3	 35,29	 31,12	 16,73	 48,78	 42,83	 46,32	
STN	4-5	 66,20	 56,24	 24,20	 67,95	 63,06	 63,03	
STN	5-6	 85,96	 82,53	 15,34	 57,68	 45,24	 45,53	
STN	6-7	 63,14	 58,18	 31,85	 68,50	 64,65	 65,26	

	       

PACIENTE	NÚMERO	8	
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		 PDTR8	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR8	 		 		 		 		 		 		
STN	0-1	 100,00	 94,81	 92,68	 74,56	 82,84	 79,76	
STN	1-2	 94,81	 100,00	 90,53	 69,20	 80,14	 89,74	
STN	2-3	 92,68	 90,53	 100,00	 84,59	 86,03	 79,28	
STN	4-5	 74,56	 69,20	 84,59	 100,00	 83,33	 66,02	
STN	5-6	 82,84	 80,14	 86,03	 83,33	 100,00	 79,04	
STN	6-7	 79,76	 89,74	 79,28	 66,02	 79,04	 100,00	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR8	 		 		 		 		 		 		
STN	0-1	 40,51	 43,03	 38,63	 69,54	 72,58	 59,66	
STN	1-2	 34,47	 36,88	 34,03	 60,29	 63,58	 51,93	
STN	2-3	 54,29	 55,26	 52,16	 63,09	 75,41	 71,35	
STN	4-5	 66,32	 66,13	 64,30	 58,77	 78,31	 81,01	
STN	5-6	 44,37	 45,56	 42,81	 65,88	 73,98	 63,91	
STN	6-7	 31,06	 33,28	 31,66	 56,68	 59,15	 47,96	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR8	 		 		 		 		 		 		
STN	0-1	 49,58	 35,82	 44,13	 20,18	 36,64	 51,18	
STN	1-2	 52,68	 43,31	 46,74	 22,66	 36,49	 45,63	
STN	2-3	 58,46	 36,07	 48,99	 21,13	 38,75	 55,22	
STN	4-5	 61,91	 32,23	 49,50	 19,33	 37,09	 58,01	
STN	5-6	 53,75	 38,05	 49,00	 24,23	 38,93	 52,42	
STN	6-7	 60,41	 55,35	 57,03	 30,58	 42,04	 47,56	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR8	 		 		 		 		 		 		
STN	0-1	 81,08	 77,65	 74,68	 83,20	 84,53	 67,57	
STN	1-2	 82,21	 83,44	 84,55	 73,23	 93,26	 77,86	
STN	2-3	 83,04	 75,75	 75,77	 81,58	 81,09	 66,26	
STN	4-5	 66,77	 54,04	 64,05	 80,36	 61,05	 53,58	
STN	5-6	 69,44	 62,91	 69,67	 78,28	 71,55	 63,62	
STN	6-7	 73,45	 77,57	 89,43	 65,72	 90,24	 85,80	
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		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR8	 		 		 		 		 		 		
STN	0-1	 51,83	 62,17	 48,49	 51,27	 50,40	 49,73	
STN	1-2	 40,95	 56,72	 56,86	 44,01	 45,37	 43,43	
STN	2-3	 57,52	 65,86	 47,64	 65,06	 62,09	 60,78	
STN	4-5	 64,72	 61,15	 40,74	 75,81	 72,44	 70,69	
STN	5-6	 72,28	 72,47	 50,21	 54,69	 51,71	 49,97	
STN	6-7	 34,38	 47,38	 68,66	 38,96	 44,17	 40,96	

	       

PACIENTE	NÚMERO	9	

	       

		 PDTR9	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR9	 		 		 		 		 		 		
STN	0-1	 100,00	 92,82	 91,93	 41,96	 69,44	 85,05	
STN	1-2	 92,82	 100,00	 82,47	 45,05	 71,48	 85,55	
STN	2-3	 91,93	 82,47	 100,00	 39,63	 65,00	 78,98	
STN	4-5	 41,96	 45,05	 39,63	 100,00	 87,54	 61,50	
STN	5-6	 69,44	 71,48	 65,00	 87,54	 100,00	 85,79	
STN	6-7	 85,05	 85,55	 78,98	 61,50	 85,79	 100,00	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR9	 		 		 		 		 		 		
STN	0-1	 56,71	 15,59	 47,45	 15,85	 33,95	 55,84	
STN	1-2	 56,06	 18,38	 47,70	 17,07	 35,28	 56,78	
STN	2-3	 55,61	 16,88	 46,41	 14,78	 32,49	 53,98	
STN	4-5	 47,86	 39,48	 66,36	 47,16	 61,93	 73,38	
STN	5-6	 60,65	 36,22	 68,99	 41,84	 60,95	 78,76	
STN	6-7	 64,79	 85,55	 57,27	 25,45	 45,52	 67,46	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR9	 		 		 		 		 		 		
STN	0-1	 43,02	 26,92	 37,06	 55,83	 29,26	 26,37	
STN	1-2	 44,72	 29,12	 38,84	 59,20	 31,50	 28,80	
STN	2-3	 42,12	 27,62	 38,15	 53,15	 29,99	 27,39	
STN	4-5	 46,77	 39,67	 48,38	 81,94	 51,25	 52,62	
STN	5-6	 58,52	 46,14	 55,75	 85,94	 54,57	 52,51	
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STN	6-7	 56,92	 39,33	 49,70	 76,78	 45,12	 42,01	
	       
 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR9	 		 		 		 		 		 		
STN	0-1	 42,78	 36,64	 19,54	 83,34	 82,71	 81,93	
STN	1-2	 41,50	 36,35	 22,25	 81,00	 81,11	 80,48	
STN	2-3	 39,39	 33,42	 20,48	 80,68	 81,22	 79,92	
STN	4-5	 40,23	 40,62	 51,28	 50,93	 55,73	 55,58	
STN	5-6	 55,33	 53,26	 46,93	 73,97	 75,43	 75,16	
STN	6-7	 56,41	 52,69	 33,77	 87,05	 85,39	 84,12	

	       

PACIENTE	NÚMERO	10	

	       

		 PDTR10	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR10	 		 		 		 		 		 		
STN	0-1	 100,00	 84,34	 79,44	 37,90	 49,74	 58,68	
STN	1-2	 84,34	 100,00	 73,37	 47,09	 47,13	 42,44	
STN	2-3	 79,44	 73,37	 100,00	 72,53	 82,32	 83,97	
STN	4-5	 37,90	 47,09	 72,53	 100,00	 93,71	 74,24	
STN	5-6	 49,74	 47,13	 82,32	 93,71	 100,00	 90,24	
STN	6-7	 58,68	 42,44	 83,97	 74,24	 90,24	 100,00	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR10	 		 		 		 		 		 		
STN	0-1	 40,84	 29,02	 48,52	 57,82	 52,22	 74,21	
STN	1-2	 21,15	 17,51	 35,59	 37,84	 45,49	 77,06	
STN	2-3	 32,36	 24,80	 43,05	 55,10	 45,21	 66,77	
STN	4-5	 12,90	 11,04	 20,38	 27,18	 21,39	 36,66	
STN	5-6	 27,86	 22,87	 33,49	 46,22	 33,35	 45,01	
STN	6-7	 40,87	 30,50	 42,64	 66,47	 39,50	 46,84	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR10	 		 		 		 		 		 		
STN	0-1	 37,45	 40,23	 78,75	 62,08	 67,83	 65,67	
STN	1-2	 19,99	 26,81	 91,65	 25,44	 35,17	 31,87	
STN	2-3	 29,62	 31,15	 76,70	 51,24	 60,49	 58,85	
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STN	4-5	 13,59	 15,90	 55,84	 18,87	 27,46	 28,52	
STN	5-6	 24,18	 25,94	 56,67	 37,94	 46,10	 46,21	
STN	6-7	 37,92	 35,56	 51,36	 61,85	 68,21	 67,51	

		 		 		 		 		 		 		

PACIENTE	NÚMERO	11	

	       

		 PDTR11	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR11	 		 		 		 		 		 		
STN	0-1	 100,00	 87,61	 73,63	 66,73	 82,27	 55,62	
STN	1-2	 87,61	 100,00	 83,69	 53,51	 86,84	 57,68	
STN	2-3	 73,63	 83,69	 100,00	 61,54	 87,27	 75,02	
STN	4-5	 66,73	 53,51	 61,54	 100,00	 64,89	 60,34	
STN	5-6	 82,27	 86,84	 87,27	 64,89	 100,00	 84,13	
STN	6-7	 55,62	 57,68	 75,02	 60,34	 84,13	 100,00	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR11	 		 		 		 		 		 		
STN	0-1	 41,35	 62,01	 34,19	 51,82	 48,06	 47,26	
STN	1-2	 24,45	 42,12	 31,76	 31,81	 32,49	 30,66	
STN	2-3	 27,79	 39,52	 51,09	 43,89	 48,72	 47,31	
STN	4-5	 58,54	 60,58	 47,09	 68,43	 68,53	 67,58	
STN	5-6	 28,10	 47,52	 57,42	 37,72	 40,90	 38,73	
STN	6-7	 24,78	 37,62	 81,68	 34,54	 42,97	 40,27	

	       

PACIENTE	NÚMERO	12	

	       

		 PDTR12	
		 STN	0-1	 STN	1-2	 STN	2-3	 STN	4-5	 STN	5-6	 STN	6-7	

PDTR2	 		 		 		 		 		 		
STN	0-1	 100,00	 87,93	 25,82	 52,91	 43,04	 42,77	
STN	1-2	 87,93	 100,00	 34,85	 50,26	 38,69	 38,97	
STN	2-3	 25,82	 34,85	 100,00	 28,74	 39,10	 37,77	
STN	4-5	 52,91	 50,26	 28,74	 100,00	 93,14	 92,25	
STN	5-6	 43,04	 38,69	 39,10	 93,14	 100,00	 94,14	
STN	6-7	 42,77	 38,97	 37,77	 92,25	 94,14	 100,00	
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