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RNA deep sequencing technologies are revealing unexpected levels of complexity in 1 

bacterial transcriptomes with the discovery of abundant non-coding RNAs, antisense 2 

RNAs, long 5’ and 3’ untranslated regions and alternative operon structures. Here, by 3 

applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) 4 

obtained from the major human pathogen Staphylococcus aureus, we have detected a 5 

collection of short RNAs that is generated genome-wide through the digestion of 6 

overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of 7 

sense RNAs from annotated genes is subject to this mechanism of antisense processing. 8 

Removal of RNase III activity reduces the amount of short RNAs and is accompanied by 9 

the accumulation of discrete antisense transcripts. These results suggests the production 10 

of pervasive but hidden antisense transcription used to process sense transcripts by 11 

means of creating double stranded substrates. This process of RNase III-mediated 12 

digestion of overlapping transcripts can be observed in several evolutionarily diverse 13 

Gram-positive bacteria and is capable of providing a novel genome-wide 14 

posttranscriptional mechanism to adjust mRNA levels. 15 

 16 

17 



 

 3

/body 1 

Introduction 2 

For many years, the catalogue of transcripts (transcriptome) produced by 3 

bacterial cells was limited to the transcription products of known annotated genes 4 

(mRNA), ribosomal RNAs (rRNA) and transfer RNAs (tRNA). In the past ten years, the 5 

development of new approaches based on high-resolution tiling arrays and RNA deep-6 

sequencing (RNA-seq) has uncovered that a significant proportion (depending on the 7 

study varies between 3% to more than half) of protein-coding genes are also transcribed 8 

from the reverse complementary strand (1-17). In most of the cases, overlapping 9 

transcription generates a non-coding antisense transcript whose size can vary between 10 

various tens of nucleotides (cis-encoded small RNAs) to thousands of nucleotides 11 

(antisense RNAs). The antisense transcript can cover the 5’-end, 3’-end, the middle, the 12 

entire gene or even various contiguous genes. Alternatively, overlapping transcription can 13 

also be due to the overlap between long 5’- or 3’- UTRs of mRNAs transcribed in opposite 14 

direction. Independent of the mechanism by which it is generated, it has been proposed 15 

that overlapping transcription can impact the expression of the target gene at different 16 

levels (for review see Thomasson and Storz (18)). These mechanisms include: (i) the 17 

overlapped transcript affects the stability of the target RNA by either promoting (RNA 18 

degradation) or blocking (RNA stabilization) cleavage by endoribonucleases or 19 

exoribonucleases; (ii) the overlapped transcript induces a change in the structure of the 20 

mRNA that affects transcription termination (transcription attenuation); (iii) the 21 

overlapped transcript prevents RNA polymerase from binding or extending the transcript 22 

encoded in the opposite strand (transcription interference); and (iv) the overlapping 23 

transcript affects protein synthesis either blocking or promoting ribosome binding 24 

(translational regulation). While all these regulatory mechanisms have been proposed 25 

based on studies with specific sense-antisense partners, the presence of massive amounts 26 
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of overlapping transcription strongly suggest that it might serve for a general purpose on 1 

bacterial gene expression (5, 18-24). 2 

In this work, we used RNA sequencing to analyze both the long and short RNA 3 

fractions of the major human pathogen Staphylococcus aureus. S. aureus is a common 4 

asymptomatic colonizer of the skin, nasopharynx and other mucosal surfaces of around a 5 

quarter of healthy human population. However, when S. aureus traverse the epithelial 6 

barrier, it becomes a leading cause of many diverse pathological syndromes such as 7 

abscesses, bacteremia, endocarditis, osteomyelitis and pneumoniae (25). S. aureus has 8 

emerged as a model organism for the study of bacterial regulatory RNAs, because key 9 

discoveries in bacterial regulatory RNAs have been achieved in this bacterium. In 1993, 10 

Novick and co-workers (26) identified the first example of a regulatory RNA (RNAIII) that 11 

controls the expression of virulence factors by pairing with the target mRNAs followed by 12 

degradation of the RNAIII–mRNA complex by the double-stranded specific RNase III (27). 13 

More recently, several studies using computational analysis of intergenic regions, 14 

microarray technology and deep sequencing have allowed the identification of more than 15 

140 small RNAs including both trans-encoded and cis-encoded antisense RNAs (10, 28-32). 16 

In this current study we uncover the existence of a genome-wide overlapping 17 

transcription process covering in a genome-wide extent the expressed protein coding 18 

genes. Base pairing between overlapping RNAs can create double stranded substrates for 19 

RNase III endoribonuclease activity. Such duplex regions promote the cleavage of the 20 

double stranded RNA and the generation of short RNAs (average size of 20nt). Thus, a 21 

collection of stable small RNA molecules that symmetrically map both strands of every 22 

region with overlapping transcription is generated. The presence of an identical collection 23 

of short RNA molecules that symmetrically mapped both strands of annotated ORFs in 24 

Enterococcus faecalis, Listeria monocytogenes and Bacillus subtilis indicated that this 25 

process is evolutionary conserved in Gram-positive bacteria. 26 

Results 27 
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 1 
Pervasive antisense transcription in S. aureus 2 

A systematic and hierarchical strategy (Fig. S1) to characterize both long and short 3 

RNAs (< 50nt) fractions from log phase-growing S. aureus cells was developed. Long RNA 4 

sequencing was performed using a cDNA synthesis procedure that preserves information 5 

about transcript’s direction based on the incorporation of deoxi-UTP during the second 6 

strand synthesis and subsequent destruction of the uridine-containing strand (33). The 7 

resulting 76-bp paired-end reads were mapped to the S. aureus NCTC 8325 reference 8 

genome. A total of 9.7 million uniquely mapped read pairs were identified (Fig. S1). 49.2%, 9 

40.4% and 10.4% of the genome was covered by uniquely mapped reads on both strands, 10 

one of the strands and showed no coverage, respectively (Fig. 1A). Of the 2,653 annotated 11 

open reading frames (ORFs) of the S. aureus genome, which covers approximately 84% of 12 

the genome, we detected expression of 2,181 ORFs (coverage higher than 90%), of which 13 

1,387 ORFs displayed 50% coverage on the antisense strand (Fig. 1B). 14 

Naturally occurring short RNAs were also sequenced in a strand aware fashion 15 

using a two-step adaptor ligation procedure to the 3’- and 5’-ends of the RNA molecules 16 

(34). The reads were aligned by algorithmically clipping off the 3’ adapter and the 17 

remaining sequences of each reads mapped to the genome using STAR 18 

(http://gingeraslab.cshl.edu/STAR/). For alignments of 10-19 bases long, up to 1 mismatch 19 

was allowed, for alignments longer than 20 bases up to 2 mismatches were allowed. 20 

Alignments shorter than 10 bases were discarded and spliced alignments were prohibited. 21 

This yielded a total of 7,778,726 million reads mapped to the genome (Fig. S1). The 22 

average length of short RNA molecules was 20 nucleotides (Fig. S1). The uniquely mapped 23 

short RNA sequences covered, in at least 50% of their length, 2268 and 1981 ORF regions 24 

on the sense and antisense strands, respectively (Fig. 1C). Thus, the percentage of ORFs 25 

covered in at least 50% of their length by reads in the antisense strand was higher in the 26 

case of short RNA (75%) than in the case of long RNA (56%), suggesting that short RNA 27 

libraries may prove to be a more sensitive way to detect antisense transcripts. Overall, 28 



 

 6

and given that long and short RNA libraries were generated independently, that is to say 1 

from two fractions coming from the same RNA sample, these results provide the first 2 

evidence of the existence of antisense transcription not seen in the long RNA sequence 3 

analysis. 4 

Symmetric distribution of short RNA reads in both strands of ORF regions 5 

We next sought to determine whether the distribution of short and long reads for 6 

a given ORF were linked. For that, we visualized normalized Log2 values representing the 7 

number of mapped reads per nucleotide using the Integrated Genome Browser (IGB) (35). 8 

Figure 2 illustrates a randomly selected 30Kb region of the genome of S. aureus, which 9 

represents 1% of the genome, and depicts the uniquely mapped long and short RNAs. The 10 

results revealed that short RNA sequences were symmetrically distributed in both strands 11 

of the ORFs, whereas long RNA transcripts follow the expected biased distribution 12 

towards the sense strand. Intriguingly, the regions with detectable overlapped 13 

transcription between long RNA transcripts, such as those regions corresponding to 14 

antisense transcripts to ORFs (00056, 00061, sirABC operon), were covered with higher 15 

numbers of short RNA reads in both strands. Similar symmetrical accumulation of high 16 

levels of short RNAs was detected in every region of the genome where noticeable 17 

overlapping transcription occurs, such as 5’ and 3’ overlapping UTRs, overlapping operons 18 

(ORFs that being located in the middle of an operon are transcribed in opposite direction 19 

to the other genes of the operon) and antisense transcripts (Fig. 3 and Fig. S2-S4 for 20 

additional examples). To most accurately demonstrate that the distribution of short RNA 21 

reads was symmetric genome-wide, the number of long and short RNAs mapping to the 22 

sense and antisense strands of each ORF was quantified. In accordance with the images 23 

observed with IGB browser, the results revealed very similar numbers of short RNA reads 24 

genome-wide in both strands of ORF regions and the expected biased of long RNA reads 25 

in the sense strand (Fig. 4A, B). In summary, these results show that the S. aureus 26 
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transcriptome contains both long and very short RNA molecules. The amount of long 1 

RNAs is, as expected, higher in the sense strand of each ORFs. In contrast, short RNAs are 2 

equally distributed in both strands of each ORF and specially enriched in those regions 3 

with detectable overlapped transcription between long RNAs. 4 

RNase III is responsible for the production of symmetrically distributed short RNA 5 

populations 6 

The fact that short RNAs display a symmetrical distribution in sense/antisense 7 

strands and accumulate in higher numbers in regions with noticeable overlapping 8 

transcription raised the possibility that short RNA molecules were derived from the 9 

cleavage of overlapping long sense/antisense primary transcripts. S. aureus genome has 10 

been reported to encode at least eight putative endoribonucleases and three 11 

exoribonucleases (32). Among them, the RNase III endoribonuclease is the only enzyme 12 

known to be able to degrade double stranded RNA. Thus, we tested the possibility that 13 

RNase III might be responsible for processing the overlapping transcripts into 14 

symmetrically distributed sense and antisense short RNA populations. A RNase III mutant 15 

in the S. aureus 15981 background (S. aureus 15981 ∆rnc) was constructed using a 16 

previously described approach (36). 17 

Analysis of the uniquely mapped reads from long RNA seq of the RNase III mutant 18 

revealed that the percentage of the genome covered by reads on both strands increased 19 

up to 74.2% compared to wild type strain (49.2%) (Fig. 1A). This increase was mainly due 20 

to a significant higher coverage of the antisense strand (82% ORFs displayed 50% 21 

coverage on the antisense strand) (Fig. 1B). In contrast, the number of the short RNA 22 

reads was drastically reduced especially in the antisense strand (Fig. 1C), reducing the 23 

percentage of the genome that was covered on both strands by short RNAs to only 6%. Of 24 

note, the median length of the short RNA molecules in RNase III mutant was 15 nt 25 

suggesting the possibility that short RNAs detected in the RNase III mutant were produced 26 
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by another RNA processing pathway (Fig. S1). Visualization of the distribution of mapped 1 

reads using IGB confirmed that short RNA sequences had lost their symmetric 2 

distribution, whereas long RNA transcripts follow the expected biased distribution 3 

towards the sense strand (Fig. 2 and Fig. S2-S4). Accordingly, the correlation first observed 4 

in the wild-type strain between the numbers of short RNAs reads in sense and antisense 5 

strands per annotated ORF-regions disappeared in the analysis of the RNase III mutant 6 

(Fig. 4C, D). Together, these results indicate that a large majority of short RNA molecules 7 

present in the transcriptome of S. aureus are produced by the cleavage activity of double 8 

stranded RNase III enzyme. 9 

As the pattern and cleavage frequency by RNase III is unknown, the short RNA molecules 10 

might be direct products of RNase III activity or processed products of larger RNA 11 

fragments generated by RNase III. Pnp is the most important 3’-5’ exoribonuclease activity 12 

in bacteria. S. aureus contains a gene (SAOUHSC_01251) encoding a protein that shares 13 

66% identity with Pnp of Bacillus subtilis. We produced libraries from short RNA fraction 14 

of S. aureus 15981 Δpnp. Analysis of the mapped reads from S. aureus 15981 Δpnp mutant 15 

revealed that the distribution and size of the short RNAs follow a pattern indistinguishable 16 

from that of the wild type strain (Fig. S1), suggesting that Pnp activity is not required for 17 

subsequent processing of the short RNA molecules generated by RNase III activity. 18 

The abundance of short RNAs correlates with the levels of double stranded sense 19 

/antisense transcripts 20 

One prediction of the model that short RNAs are produced from the processing of 21 

genome-wide overlapping regions of transcription is that the abundance of short RNAs 22 

detected should be proportional to the abundance of either the sense/antisense 23 

transcripts, depending upon which transcribed strand is less abundant and available for 24 

processing. To explore this prediction, we analyzed the short and long RNA complements 25 

from a sigma B (sigB) mutant (S. aureus ΔsigB). The transcription factor Sigma B drives the 26 
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transcription activity of genes under specific environmental conditions. We analyzed ORF 1 

regions for which the long antisense transcripts contained a consensus SigB promoter box  2 

(Fig. S5) and their expression was significantly suppressed in the sigB mutant (more than 3 

50% reduction in the ΔsigB/wt antisense transcript ratio based on the long RNA libraries). 4 

Consistent with the hypothesis that the abundance of short RNAs depends on the levels of 5 

double stranded RNA, knockdown of the antisense transcripts levels in sigB mutant 6 

correlates with a decrease in the amount of short RNAs produced from both strands (Fig. 7 

S5). These results indicated that the short RNA abundances at ORF regions are strongly 8 

correlated with the less abundant levels of overlapping long RNA capable of forming 9 

double-stranded RNA. 10 

Detection of occurrence and abundance of antisense transcripts in RNase III mutant 11 

Detection of antisense transcripts has been difficult in bacteria, and only the 12 

presence of few antisense transcripts has been confirmed by northern-blot techniques. 13 

The observation that RNAse III appears to be responsible for the cleavage of overlapping 14 

RNA transcripts into short RNA molecules suggests that at least one reason why antisense 15 

transcripts are difficult to detect is because the levels of detectable antisense transcript is 16 

kept extremely low within cells due to RNAse III activity. To explore this hypothesis we 17 

performed northern-hybridizations with strand specific probes to interrogate sense and 18 

antisense transcripts of several individual genes in wild-type and RNase III mutant strains. 19 

The candidate genes were selected based on their relevance to different aspects of S. 20 

aureus virulence (sarA, agrBCDA, saePQRS, clpP) or biology (lexA, recF, yhcSR) (Fig. S6). 21 

The results of the Northern analyses indicated a specific absence and presumed 22 

degradation of most full-length antisense transcripts in the steady state condition of the 23 

wild-type strain (Fig. 5), while the presence of discrete size antisense transcripts was 24 

clearly detectable in the RNase III mutant for all genes tested. It is worth noting that these 25 

results confirm the existence of antisense transcripts for genes that have been thoroughly 26 
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studied due to their impact on S. aureus virulence and antibiotic resistance. For some 1 

genes, these hybridizations showed that the RNA levels of the sense strand (lexA, clpP, 2 

saePQRS) increased in the RNase III mutant suggesting that the absence of RNase III 3 

cleavage can slightly modulate the expression levels of sense transcripts (Fig. 5). To 4 

confirm that the presence of antisense RNA was restricted to those regions where short 5 

RNAs were detected, we selected two genes (SAOUHSC_00086 and SAOUHSC_00410) for 6 

which very few short RNAs were detectable in the wild-type strain (Fig. S7). In both cases, 7 

no transcript antisense to these genes was detectable in the RNase III mutant. Overall, 8 

these results uncover the existence of long antisense RNAs transcripts for most ORFs of S. 9 

aureus genome. These long antisense transcripts are under represented in the wild type 10 

strain due to the double stranded RNase activity of RNase III. 11 

Analysis of short RNA complement present in diverse bacterial species 12 

To investigate whether this genome-wide sense/antisense overlapping transcript 13 

processing mechanism is specific to S. aureus or is active in other bacterial species, we 14 

characterized the short RNA complement present in three representative Gram-positive 15 

(Enterococcus faecalis, Listeria monocytogenes and Bacillus subtilis) and one Gram-16 

negative (Salmonella enterica serovar Enteritidis) bacteria (Fig. 4E). Short RNAs libraries 17 

were produced, sequenced and mapped using the protocol previously described (Fig. S1). 18 

Analysis of the distribution of short RNAs in sense and antisense strands of ORF regions 19 

revealed a highly significant correlation between quantities of short RNAs in 20 

sense/antisense strands for the three low-GC content Gram-positive bacteria, mirroring 21 

the observations in S. aureus. In contrast, the results obtained from the analysis of 22 

Salmonella demonstrated the absence of such a correlation indicating the existence of a 23 

different processing pattern of overlapping RNA pairs in Gram-negative bacteria. Previous 24 

transcriptome analysis has allowed the identification of antisense transcripts in Listeria 25 

monocytogenes (5), Bacillus subtilis (17) and Enterococcus faecalis (37). Analysis of the 26 
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distribution of short RNAs in those regions with recognized antisense transcription 1 

confirmed the accumulation of high amounts of short RNA in every region with 2 

overlapping transcription indicating that genome-wide digestion of overlapping 3 

sense/antisense transcripts is conserved at least in Gram-positive bacteria  (Fig. S8). 4 

Discussion 5 

Development of RNA-seq technology is allowing the characterization of the multiple types 6 

of RNA molecules present in a living cell. The application of this technology in bacteria has 7 

primarily been restricted to the analysis of long RNA molecules due to the difficulty for 8 

removing highly abundant small size ribosomal and transfer RNA molecules. Here, we 9 

have used two methods developed for microRNAs analysis in eukaryotic cells to analyze 10 

the RNA fraction shorter than 50 nt of the human pathogen S. aureus. The short RNA 11 

fraction was purified by size fractionation electrophoresis and libraries for RNA-seq were 12 

generated following a protocol that preserves the information about a transcript’s 13 

direction developed for the direct cloning of microRNA in Drosophila (34). 14 

 The analysis of the distribution of short RNA molecules revealed several 15 

unexpected results. First, the sense strand of 2268 ORFs and the antisense strand of 1981 16 

ORFs were covered with unique short RNA reads in at least 50% of their length, indicating 17 

the existence of antisense transcription from both strands of most ORFs in S. aureus 18 

genome. Second, similar numbers of short RNAs were mapping to sense and antisense 19 

strands of each ORF irrespectively of the transcription levels of the sense strand. Third, 20 

short RNA reads accumulated in higher numbers in regions with noticeable overlapping 21 

transcription between long RNA transcripts. The simplest interpretation for these 22 

observations was that short RNAs were products of the processing activity of a RNase on 23 

the double stranded overlapping RNA transcripts. In support of this explanation, knockout 24 

of the rnc gene, which encodes for the only known double stranded RNase (RNase III) 25 



 

 12

contained in the S. aureus genome, caused a significant decrease in the number of short 1 

RNAs, the loss of the symmetric distribution of short RNAs in sense/antisense strands of 2 

each ORF, and the accumulation of long RNA molecules (see Fig. 1) that, in the case of 3 

antisense transcripts, emerge as define visible bands in northern hybridizations. Other 4 

evidence supporting the hypothesis that short RNA molecules are generated by cleavage 5 

of overlapping RNA transcripts was obtained by the analysis of the short and long RNA 6 

fractions of the S. aureus ΔsigB mutant. As the expression of some antisense transcripts 7 

requires the presence of the SigB transcription factor, the expression of these antisense 8 

transcripts decreases in the sigB mutant strain. The analysis of the distribution of short 9 

RNAs for those ORFs in which the expression of the antisense transcript is SigB dependent 10 

revealed a decrease in the number of short RNAs that specifically mapped with the sense 11 

and antisense strands of these ORFs indicating that the levels of shorts RNAs is limited by 12 

the amount of double stranded RNA. Notably in most of these ORF regions, the decrease 13 

expression of the antisense RNA correlates with an increase in the expression level of the 14 

sense transcript, suggesting that RNase III-dependent sense/antisense cleavage process 15 

might serve to modulate the levels of the sense RNA. 16 

Current RNA sequencing techniques needs microgram amounts of total RNA for 17 

analysis, which corresponds to millions of bacterial cells. The discovery of the existence of 18 

overlapping transcripts in a bacterial population does not mean that sense/antisense 19 

transcripts are simultaneously present in the same bacteria. Indeed, the transcriptome 20 

map will be identical if a subgroup in the bacterial population will synthesize the sense 21 

transcript and another subgroup will synthesize the antisense transcript. Our results imply 22 

that overlapping transcription occurs extensively in the same cell because RNase III can 23 

only produce short RNAs when both transcripts are present and emphasize that 24 

overlapping transcription plays a role in posttranscriptional regulation of RNA. 25 
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One question that emerges from these results concerns the biological role of the 1 

pervasive overlapping transcription and RNase III mediated processing. At least two 2 

important biological consequences for this process are suggested from these results. First, 3 

antisense transcription and RNase III activity could provide a means for the removal of 4 

transcriptional noise. In this circumstance RNase III would digest low levels expression of 5 

sense RNA transcription whose expression if left unchecked could unnecessarily compete 6 

with the processing and translation of required transcripts. When the transcription of the 7 

gene is increased in a regulated fashion, the sense RNA levels would exceed that of the 8 

antisense expression, leaving the unpaired sense transcripts impervious to RNase III 9 

activity and possible productive translation. Such a model predicts that the levels of 10 

expression of sense and antisense transcripts would be coordinated to achieve this 11 

threshold effect. Second, this mechanism would also permit the fine-tuning of the sense 12 

transcript levels by adjusting the levels of antisense transcription to levels that allow for 13 

more or less final sense transcripts. By controlling which regions within multiple gene 14 

operons are subject to overlapping transcription, selection of which genes will be 15 

ultimately expressed at the protein level could be regulated. It is worth noting that 16 

implementation of this mechanism could be used to avoid simultaneous expression of 5’ 17 

or 3’ overlapping transcripts in the same cell. 18 

Another interesting aspect raised by these results is the fate and functional role(s) of the 19 

stable short RNAs derived from the processing of overlapping long RNA transcripts. While 20 

the answer to this question clearly requires additional studies, it is important to recall the 21 

processing of long RNA precursors into short micro-RNAs and into short interfering (si-) 22 

RNA molecules as guided by the eukaryotic RNAse III related orthologue enzymes and 23 

consider whether there are similar or related genome-wide regulatory mechanisms 24 

ongoing in eukaryotic cells. 25 
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Materials and Methods 1 

The strains and oligonucleotides used in this study are listed in Table S1. Methods for 2 

bacterial growth, chromosomal gene deletion, RNA extraction, riboprobe synthesis, 3 

northern blots assays, read mapping and statistics analysis are described in detail in SI 4 

Methods. Short RNA libraries were prepared from an RNA fraction containing RNAs 5 

shorter than 50-nt by adapting a previously described method (34). This fraction was 6 

obtained from total RNA with the flashPAGE fractionator (Ambion). Long RNA libraries 7 

were constructed by adapting the previously described dUTP second strand method (33). 8 

Detailed protocols for short and long RNA libraries construction are presented in SI 9 

Methods. Short and long RNA libraries were sequenced using Illumina Genome Analyzer II 10 

at the CSHL facilities.  11 

Acknowledgments 12 

A.T.-A. and J.V. are recipients of “Ramon y Cajal” contracts from the Spanish Ministry of 13 
Science and Innovation. M.V. is recipient of a JAE-Predoc research contract from Consejo 14 
Superior de Investigaciones Cientificas (CSIC). We thank Pascale Romby for providing us 15 
the plasmid pLUG519, Philippe Batut, C. Davis and J. Schlesinger for many fruitful 16 
discussions and Juan Valcarcel for critical reading of the manuscript. This research was 17 
supported by grants BIO2008-05284-C02-01 and ERA-NET Pathogenomics (PIM2010EPA-18 
00606) from Spanish Ministry of Science and Innovation. 19 
 20 

21 



 

 15

 References 1 
1. Selinger DW, et al. (2000) RNA expression analysis using a 30 base pair resolution 2 

Escherichia coli genome array. Nat Biotechnol 18(12):1262-1268. 3 
2. Cho BK, et al. (2009) The transcription unit architecture of the Escherichia coli 4 

genome. Nat Biotechnol 27(11):1043-1049. 5 
3. Guell M, et al. (2009) Transcriptome complexity in a genome-reduced bacterium. 6 

Science 326(5957):1268-1271. 7 
4. Liu JM, et al. (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct 8 

cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37(6):e46. 9 
5. Toledo-Arana A, et al. (2009) The Listeria transcriptional landscape from 10 

saprophytism to virulence. Nature 459(7249):950-956. 11 
6. Mendoza-Vargas A, et al. (2009) Genome-wide identification of transcription start 12 

sites, promoters and transcription factor binding sites in E. coli. PLoS One 13 
4(10):e7526. 14 

7. Sharma CM, et al. (2010) The primary transcriptome of the major human 15 
pathogen Helicobacter pylori. Nature 464(7286):250-255. 16 

8. Filiatrault MJ, et al. (2010) Transcriptome analysis of Pseudomonas syringae 17 
identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 18 
192(9):2359-2372. 19 

9. Wurtzel O, et al. (2009) A single-base resolution map of an archaeal 20 
transcriptome. Genome Res 20(1):133-141. 21 

10. Beaume M, et al. (2010) Cartography of Methicillin-Resistant S. aureus 22 
Transcripts: Detection, Orientation and Temporal Expression during Growth Phase 23 
and Stress Conditions. PLoS One 5(5):e10725. 24 

11. Jager D, et al. (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 25 
transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A 26 
106(51):21878-21882. 27 

12. Albrecht M, Sharma CM, Reinhardt R, Vogel J, & Rudel T (2009) Deep sequencing-28 
based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 29 
38(3):868-877. 30 

13. Martin J, Zhu W, Passalacqua KD, Bergman N, & Borodovsky M (2010) Bacillus 31 
anthracis genome organization in light of whole transcriptome sequencing. BMC 32 
Bioinformatics 11 Suppl 3:S10. 33 

14. Georg J, et al. (2009) Evidence for a major role of antisense RNAs in 34 
cyanobacterial gene regulation. Mol Syst Biol 5:305. 35 

15. Mitschke J, et al. (2011) An experimentally anchored map of transcriptional start 36 
sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci 37 
U S A 108(5):2124-2129. 38 

16. Dornenburg JE, Devita AM, Palumbo MJ, & Wade JT (2010) Widespread antisense 39 
transcription in Escherichia coli. MBio 1(1). 40 

17. Rasmussen S, Nielsen HB, & Jarmer H (2009) The transcriptionally active regions in 41 
the genome of Bacillus subtilis. Mol Microbiol 73(6):1043-1057. 42 

18. Thomason MK & Storz G (2010) Bacterial antisense RNAs: how many are there, 43 
and what are they doing? Annu Rev Genet 44:167-188. 44 

19. Wagner EG & Flardh K (2002) Antisense RNAs everywhere? Trends Genet 45 
18(5):223-226. 46 

20. Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. 47 
Curr Opin Microbiol 10(2):102-109. 48 



 

 16

21. Faghihi MA & Wahlestedt C (2009) Regulatory roles of natural antisense 1 
transcripts. Nat Rev Mol Cell Biol 10(9):637-643. 2 

22. Sorek R & Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, 3 
physiology and pathogenicity. Nat Rev Genet 11(1):9-16. 4 

23. Gripenland J, et al. (2010) RNAs: regulators of bacterial virulence. Nat Rev 5 
Microbiol 8(12):857-866. 6 

24. Toledo-Arana A & Solano C (2010) Deciphering the physiological blueprint of a 7 
bacterial cell: revelations of unanticipated complexity in transcriptome and 8 
proteome. Bioessays 32(6):461-467. 9 

25. Klevens RM, et al. (2006) Community-associated methicillin-resistant 10 
Staphylococcus aureus and healthcare risk factors. Emerging infectious diseases 11 
12(12):1991-1993. 12 

26. Novick RP, et al. (1993) Synthesis of staphylococcal virulence factors is controlled 13 
by a regulatory RNA molecule. Embo J 12(10):3967-3975. 14 

27. Boisset S, et al. (2007) Staphylococcus aureus RNAIII coordinately represses the 15 
synthesis of virulence factors and the transcription regulator Rot by an antisense 16 
mechanism. Genes Dev 21(11):1353-1366. 17 

28. Pichon C & Felden B (2005) Small RNA genes expressed from Staphylococcus 18 
aureus genomic and pathogenicity islands with specific expression among 19 
pathogenic strains. Proc Natl Acad Sci U S A 102(40):14249-14254. 20 

29. Geissmann T, et al. (2009) A search for small noncoding RNAs in Staphylococcus 21 
aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 22 
37(21):7239-7257. 23 

30. Abu-Qatouseh LF, et al. (2010) Identification of differentially expressed small non-24 
protein-coding RNAs in Staphylococcus aureus displaying both the normal and the 25 
small-colony variant phenotype. J Mol Med 88(6):565-575. 26 

31. Bohn C, et al. (2010) Experimental discovery of small RNAs in Staphylococcus 27 
aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 28 
38(19):6620-6636. 29 

32. Anderson KL & Dunman PM (2009) Messenger RNA Turnover Processes in 30 
Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus. 31 
Int J Microbiol 2009:525491. 32 

33. Parkhomchuk D, et al. (2009) Transcriptome analysis by strand-specific 33 
sequencing of complementary DNA. Nucleic Acids Res 37(18):e123. 34 

34. Czech B, et al. (2008) An endogenous small interfering RNA pathway in 35 
Drosophila. Nature 453(7196):798-802. 36 

35. Nicol JW, Helt GA, Blanchard SG, Jr., Raja A, & Loraine AE (2009) The Integrated 37 
Genome Browser: free software for distribution and exploration of genome-scale 38 
datasets. Bioinformatics 25(20):2730-2731. 39 

36. Huntzinger E, et al. (2005) Staphylococcus aureus RNAIII and the 40 
endoribonuclease III coordinately regulate spa gene expression. Embo J 24(4):824-41 
835. 42 

37. Fouquier d'Herouel A, et al. (2011) A simple and efficient method to search for 43 
selected primary transcripts: non-coding and antisense RNAs in the human 44 
pathogen Enterococcus faecalis. Nucleic Acids Res 39(7):e46. 45 

 46 

 47 



 

 17

Figure legends 1 

Fig. 1. Genome-wide analysis of mapped reads from long and short RNA-seq libraries. 2 

(A) Percentage of the genome of S. aureus NCTC 8325 covered by uniquely mapped reads 3 

on both strands, one of the strands and showed no coverage, respectively. The long RNA-4 

seq libraries were prepared from S. aureus 15981 wildtype strain (WT) and its 5 

corresponding Δrnc (RNase III) mutant (Δrnc). Comparison of the cumulative distribution 6 

of ORF coverage by long (B) and short (C) RNA reads. The plot represents the number of 7 

ORFs (x-axis) found above the ORF coverage value (y-axis). The coverage was computed 8 

from the collapsed reads uniquely mapped in the sense and antisense orientation to the 9 

ORFs. The dashed line represents 50% coverage.  10 

Fig. 2. Long and short mapped reads distribution in S. aureus genome. The drawing is an 11 

IGB software image showing the uniquely mapped long and short RNAs in a 30Kb region 12 

(1%) of the genome of S. aureus NCTC 8325. Transcripts are represented as dashed red 13 

arrows. Genomic coordinates denote the position in Kb of the S. aureus NCTC 8325 14 

genome. Annotated open reading frames (ORFs) are shown as blue lines. The number on 15 

the ORF indicates the gene identification. Long and short RNAs show the distribution of 16 

uniquely mapped reads of long and short RNA libraries. S. aureus 15981 (Black) and S. 17 

aureus 15981 Δrnc (RNase III mutant) (Green). The scale (log2) indicates the number of 18 

mapped reads per nucleotide position. 19 

Fig. 3. Examples of mapped reads distribution in regions with overlapping transcription 20 

of S. aureus. Drawings are images from IGB software showing different regions of the 21 

genome of S. aureus NCTC 8325. Examples of (A) overlapping 5’-UTRs, (B) overlapping 3’-22 

UTRs, (C) overlapping operons, and (D) antisense RNA are shown. Transcripts are 23 

represented as dashed red arrows. Genomic coordinates denote the position in Kb of the 24 

S. aureus NCTC 8325 genome. Annotated open reading frames (ORFs) are shown as blue 25 

lines. The number on the ORF indicates the gene identification. Long and short RNAs show 26 
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the distribution of uniquely mapped reads of long and short RNA libraries in S. aureus 1 

15981. The scale (log2) indicates the number of mapped reads per nucleotide position. 2 

Dashed rectangles highlight increased accumulation of short mapped reads in regions 3 

with overlapping transcription, according to long RNA reads.  4 

Fig. 4. Expression levels of sense/antisense transcripts. (A and C) The plot shows the 5 

dependence of the antisense vs. sense ORF-averaged signal in long RNA reads. Each dot 6 

corresponds to one ORF annotated in the S. aureus NCTC 8325 genome. (A) S. aureus 7 

15981 wild type and (C) Δrnc, S. aureus 15981 Δrnc (RNase III mutant). (B and D) The plot 8 

shows the dependence of the number of uniquely mapped reads per ORF for the 9 

antisense strand vs. sense strand in the short RNA reads. (B) S. aureus 15981 wild type 10 

and (D) Δrnc, S. aureus 15981 Δrnc (RNase III mutant). (E) Genome-wide analysis 11 

distribution of mapped reads from short RNAseq libraries in different bacterial species. 12 

The plot shows the dependence of the number of uniquely mapped reads per ORF for the 13 

antisense strand vs. sense strand in the short RNA-seq libraries of Enterococcus faecalis, 14 

Listeria monocytogenes, Bacillus subtilis and Salmonella Enteritidis. The colour scale 15 

represents the number of points within a +/- 20% window of each point. The number in 16 

the bottom right corner is the Spearman correlation coefficient R2.  17 

Fig. 5. Expression levels of sense/antisense transcripts. Northern blot analysis of RNA 18 

harvested from S. aureus 15981 wild-type and its corresponding S. aureus 15981 Δrnc. The 19 

blot was probed with a riboprobe specific for sense and antisense transcripts. The 20 

positions of RNA standards in Kb are indicated. The time of exposure of the 21 

autoradiographies are indicated in hours (h) or days (d). 22 
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