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The precise understanding of the biology of a living cell requires the identification and 1 

quantification of the molecular components necessary to sustain life. One of such elements is 2 

RNA. Two independent high-throughput strategies are available to identify the entire collection 3 

of RNA molecules produced by a cell population, which is currently known as the transcriptome. 4 

One technique relies on microarray technology (tiling arrays) whereas the second one relies on 5 

sequencing the RNA pool (RNA-seq) (1). Both techniques offer the advantage that the 6 

identification of the RNA content is not biased by protein-based genome annotation. The 7 

application of these methods to the transcriptome analysis in bacteria has uncovered the 8 

existence of a large amount of RNA molecules that overlap at least in some portion with protein 9 

encoding RNA transcripts, generating perfect sense/antisense RNA duplexes (2-9). However, 10 

since transcriptome studies have been performed using microgram amounts of RNA purified 11 

from millions of bacterial cells instead of RNA purified from a single bacterium, the presence of 12 

overlapping sense/antisense RNAs from a genomic region does not necessarily mean that both 13 

sense/antisense transcripts are simultaneously present in the same bacteria. Hence, it might be 14 

possible that a subgroup in the bacterial population synthesized the sense transcript whereas 15 

another subgroup synthesized the antisense transcript, and consequently overlapping transcripts 16 

would never be together in the same cell. A report in PNAS by Lybecker et al provides clear 17 

evidences that both sense/antisense transcripts can be present simultaneously within the same 18 

bacterial cell (10). Using a monoclonal antibody that recognizes double stranded RNA molecules 19 

(dsRNA) irrespectively of the nucleotide sequence, the authors perform immunoprecipitation 20 

assays to pull down dsRNA molecules (IP-dsRNA) from a total RNA sample extracted from 21 

Escherichia coli and identified the purified dsRNA by RNA-seq. 22 

Previous studies have identified examples of at least four different mechanisms to generate 23 

double stranded RNA duplexes in bacteria (2, 11): (i) the presence of “bona fide” non-coding 24 

antisense RNAs (asRNA); (ii) overlapping in the 5’ region of mRNAs from contiguous genes that 25 

are transcribed in divergent directions; (iii) overlapping in the 3’ regions of mRNAs from 26 

contiguous genes transcribed in convergent directions and finally, (iv) genes that being located in 27 
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the middle of an operon are transcribed in the opposite direction to the rest of the operon. 1 

According to these mechanisms, the entire mRNA molecule seems to be susceptible to be 2 

targeted by an overlapping transcript. However, with only a handful of transcriptomes available 3 

so far, it is too early to establish whether overlapping transcription preferentially locates in a 4 

specific region of the mRNA relative to the open reading frame. In this respect, Lybecker et al 5 

find that the majority of IP-dsRNAs correspond to the 5� region of genes (50%), while only 0,5% 6 

of the IP-dsRNAs correspond to overlapping transcripts that affect the 3’ region (10). The most 7 

common scenario is overlapping between long 5� UTRs of divergently transcribed genes, 8 

followed by overlapping caused by asRNAs transcribed opposite to the 5�/Intergenic ends. This 9 

is the first time that such strong bias of dsRNAs towards the 5’ region has been described. 10 

Whether differences in the size of overlapping regions might determine a more efficient 11 

immunoprecipitation of dsRNA molecules at the 5’ region cannot be excluded.  12 

 Pairing of overlapping transcripts provides double stranded RNA substrates that can be 13 

digested by specific RNases. RNase III is a double-stranded RNA endoribonuclease, primarily 14 

known for its roles in rRNA maturation, mRNA degradation, and sRNA processing (12). First 15 

evidence that RNase III plays a critical role in the digestion of overlapping transcripts was 16 

obtained in a recent study devoted to analyzing the transcriptome of the human pathogen 17 

Staphylococcus aureus (7). This study found that RNase III digests overlapping transcripts 18 

producing a collection of short RNA fragments (20 nucleotides on average), providing the first 19 

evidence that both sense/antisense overlapping transcripts are present simultaneously in the 20 

same cell. Other evidence supporting a genome-wide role of RNase III in processing RNA 21 

molecules came from an independent study combining co-immunoprecipitation of a catalytically 22 

inactive version of RNase III enzyme with deep RNA-seq (13). This study revealed that RNase III is 23 

bound to many different antisense RNAs that cover 44% of annotated genes including non-24 

coding RNAs. In contrast, attempts to identify the collection of short RNA products generated by 25 

RNase III mediated digestion of overlapping RNAs in Salmonella were unsuccessful, suggesting 26 

that either overlapping transcripts might be processed by a different mechanism or that the 27 
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resulting short RNA molecules might be unstable in Gram-negative bacteria. The study of 1 

Lybecker et al shows that indeed RNase III mediates the digestion of overlapping transcripts in E. 2 

coli, indicating that this mechanism is well-conserved in bacteria. However, this study does not 3 

clarify which are the end products of RNAse III activity because the antibody used is unable to 4 

bind dsRNAs shorter than 40 base pairs. Intuitively, if RNase III digests overlapping transcripts, 5 

one would expect that mutants in RNase III would accumulate higher levels of both 6 

sense/antisense transcripts. In agreement with this hypothesis, Lybecker et al found that the 7 

dsRNA regions are stable and more abundant than the single-stranded regions of the same 8 

transcripts in the absence of an active RNase III. The simplest explanation is that dsRNA regions 9 

remain protected while single-stranded regions are degraded by the activity of other RNases.  10 

 Overlapping transcription can affect the expression of its complementary gene at different 11 

levels including transcription, mRNA stability or translation (14, 15). In this respect, the group of 12 

P. Cossart has proposed a new paradigm of regulation based on overlapping transcription 13 

termed “Excludon” (16, 17). The excludon concept describes the process by which the expression 14 

of a long mRNA transcript results in the repression of the expression of the overlapping 15 

transcript produced from the neighbor gene. The final consequence is that expression of both 16 

overlapping transcripts is mutually exclusive. However, the exact mechanism underlying the 17 

inhibitory effect of the overlapped transcripts in the excludon has not yet been determined. 18 

Based on the observations that RNase III mediates the digestion of overlapping transcripts in S. 19 

aureus, it was suggested that the selective degradation of the double-stranded RNA that results 20 

from hybridization of overlapping sense and antisense transcripts could be a likely mechanisms 21 

to explain the excludon paradigm (17). The study of Lybecker strongly supports this idea. An 22 

interesting question regarding the RNase III processing of overlapping transcripts is whether the 23 

digestion occurs before or after mRNA translation. In general, it is assumed that the transcription 24 

and translation processes are coupled in bacteria. In this scenario, RNase III would be processing 25 

RNA molecules that had already been translated, and pairing between overlapping transcripts 26 

would represent another mechanism of RNA decay. Alternatively, if the digestion of RNAs by 27 
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RNase III occurs before translation, this mechanism would provide an additional level of post-1 

transcriptional regulation to adjust mRNA levels and/or to remove any transcript produced due 2 

to leaky transcription initiation. The former point is very important because uncontrolled 3 

transcription might be toxic if all mRNAs were translated at the same time. Depending on the 4 

expression levels of each overlapping transcript Lybecker et al identified two classes of dsRNAs. 5 

In class I, both overlapping RNAs exhibit different expression levels whereas in class II both 6 

transcripts have similar expression levels. Complementary proteomic studies will be necessary to 7 

determine whether the transcripts of class I that are produced at lower levels are indeed 8 

translated to proteins. On the other hand, it is important to highlight that, coinciding with 9 

previous observations by Lioliou et al (13), a significant number of antisense RNAs transcribe 10 

opposite to non-coding regulatory RNAs, indicating that the RNAse III mediated digestion of 11 

overlapping transcripts may impact the functionality of the RNA molecules regardless of the 12 

protein translation process. 13 

 The study of Lybecker et al provides a novel method to study the genome-wide process of 14 

overlapping transcription in bacteria. This technology has provided a tool to demonstrate that 15 

sense and antisense transcripts exist simultaneously in the cytoplasm of E. coli. Identical 16 

conclusions were previously obtained in S. aureus using a completely different strategy, 17 

indicating that degradation of overlapping transcripts by RNase III is a highly conserved process 18 

in bacteria (7). Of course, many intriguing questions about the process remain. What are the end 19 

products of the RNase III digestion process in E. coli? Are these end products functional 20 

molecules with a specific role in gene regulation? When does the pairing between overlapping 21 

transcripts occur, before or after translation? What is the kinetics of the RNase III processing 22 

reaction? Are there specific proteins governing the pairing between overlapping transcripts? 23 

Which of the phenotypes associated to RNase III deficiency are due to the accumulation and 24 

translation of sense and antisense transcripts in the same cell? The initial skepticism about the 25 

biological relevance of the genome-wide overlapping transcription has been followed by the 26 

discovery that bacteria have a simple and efficient mechanism to remove the double stranded 27 



 

 6

sense/antisense pairs. Because this process can alter the levels of functional RNAs, the time has 1 

come to include overlapping transcription as another player of bacterial gene regulation. 2 

  3 

  4 

Figure legend. Schematic description of the dsRNA immunoprecipitation assays (IP-dsRNA) from a 5 

total RNA sample extracted from wildtype and RNase III mutant strains. RNase III mediated 6 

digestion of overlapping transcripts reduces the amount of dsRNA in the bacterial transcriptome.  7 
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