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Abstract 
 

This project is a theoretical study of multiple coupled ring resonators, which 

offer potential applications as demultiplexing filters in DWDM optical transmission 

systems. The rings can be fabricated as integrated optical structures or they can be 

formed using micro- or nano-optical fibres. Our approach is analytical, which provides 

detailed predictions with minimal computer resources. The ideal filter spectral profile 

for most applications is as close as possible to a rectangle (known as “box-like”) and 

in order to achieve this we design and model multiple ring resonators. 

 

We formulate the compound ring resonator theory with complex field 

equations to account for phase and amplitude. Then we calculate the transfer 

functions. We do it in two ways: one way is using linear equations and the other is by 

matrix theory. We apply both methodologies to one-, two- and three-ring resonators 

and we show how the matrix formalism can be extended to model arrays of N 

identical rings. 

 

By using the transfer functions we provide detailed physical interpretations of 

the spectra which are required to design good filter characteristics. We show that 

rings of equal circumferences provide the best profiles and we derive simple 

analytical formulas, called “degeneracy condition”, to predict the required coupler 

ratios for two- and three-ring resonators. It is thus possible to provide a transfer 

function with single peaks of equal and unity magnitude and a depth of modulation 

that we choose. Provided that the couplers within the rings conform to the 

degeneracy condition, we can predict the finesse of a double-ring transfer function. 

 

We further extend the ring resonator matrix theory to N identical rings by using 

a method called “diagonal decomposition”. The amplitude transfer function for N rings 

can thus be derived with this more advanced mathematical technique. The result that 

we obtain is in a format that can be extended in future more extended studies. 

 

Throughout this project our aim is to provide tangible design guidelines for 

compound ring resonators, with their potential application to telecommunications 

networks in mind. 
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1 Introduction 
 

Optical filters are crucial passive components for modern optical 

communications systems [1]. Micro-waveguide and fibre-based ring resonators are of 

great interest due to their versatile functionalities and compactness. They are being 

designed for different applications, such as wavelength filtering, multiplexing, 

switching and modulation. The most important performance characteristics of these 

resonators are their free spectral range (FSR), finesse (which is related to the Q-

factor), depth of modulation and throughput loss. Their main design characteristics 

are the circumference of the rings and the coupling ratios of the couplers that they 

include (equivalent to the reflectivities of a Fabry-Pérot resonator). 

 

This project is a theoretical study of multiple compound ring resonators, which 

are used as demultiplexing filters with optimised pass-bands for wavelength division 

multiplexed (WDM) transmission systems [2][3]. Our studies are specifically for dense 

wavelength division multiplexed (DWDM) systems [4]. The rings can be either in an 

integrated optical format or in a mirco-/ nano- fibre format. Either one channel or a 

predetermined group of channels can be selected. The channels are modulated, 

which means each one has a spectrum and the filter must be able to cope with this; 

the filter profile must therefore be adapted to the intended application and its centre 

wavelength must coincide with the target channel. Specifically, we need a pass band 

that does not disturb the signal. To this end, the ideal filter spectral profile for most 

applications would be a rectangle (known as being “box-like”) and in order to achieve 

such a function we design and model multiple ring resonators. We know that in reality 

such a filter function is not achievable but the bell-shaped curves which are provided 

by single-cavity resonators could possibly truncate the propagating channel. 

Therefore, we require rather more advanced filter designs; a more complicated filter 

is needed. For this reason we have to make a compromise: A simple filter structure 

gives unsuitable spectra but a more complicated structure gives us better pass-bands 

with the disadvantage of greater physical complexity. We believe that the designs 

proposed in this project are a good balance between these extremes. 

 

The work reported here is based on ring resonators. They provide periodic 

pass bands in the frequency domain, with a periodicity that is inversely proportional 

to the ring circumferences. To satisfy the needs of DWDM filtering the rings must be 
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miniature structures with a circumference in the range of about 100 to 1000 µm. They 

must be acceptably simple designs and to this end they can be fabricated in two 

different ways. One possibility is an integrated optical single-mode waveguide on top 

of a substrate, as shown in Figure 1-1, and the other is micro-/ nano- optical fibres 

bent to a tight coil, as shown in Figure 1-2. The outer fibres shown in Figure 1-2 

might seem bizarre. Their outer diameters are comparable to the wavelength, yet 

they can guide light. The terminologies used are micro-fibres, when the outer 

diameter is similar to one wavelength and nano-fibres when they are significantly 

smaller. 

  

 

 

Figure 1-1  

 

 

 

Whether they are waveguide- or fibre-based, the resonators demonstrate 

periodic pass-bands and this determines how they are designed and applied. We 

could have, for example 40 DWDM channels, with the aim of accepting every tenth 

one and rejecting the others. Alternatively, we may require a filter that passes only 

channel number 7 out of a group of sixteen. 

 

For our purposes the use of a single ring resonator is problematical. Its main 

difficulty is that we do not obtain a box-like function. When we consider the spectrum 

of a digital data stream, such as that of non-return-to-zero (NRZ) pulses, each 

channel has a complicated structure before it encounters the filter. If the filter 

provides a spectral profile that deviates significantly from being box-like, it will distort 

Integrated optical single-mode waveguide ring resonator. One of the fibre        

connections is shown. Up to four fibres can be coupled, depending on the filter’s 

intended application. 
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the signal and thus adversely influence its bit error rate (BER), upon arrival at an 

optical receiver. 

 

In this report we concentrate on future possible applications of compound 

rings for DWDM filters. However, other applications for ring structures are also 

possible. Compound rings can be used for fibre- or waveguide-based sensors, as 

well as for fibre- or waveguide-based lasers [5]. We do not explore these topics in 

this report because they are outside the scope of the project. Our aim is to study 

compound rings with a view to their use in DWDM communications but we suggest 

speculatively that some of the results that we provide might be of value in other 

contexts. 

 

 

 

Figure 1-2  

 

 

The main categories of filters used in WDM optical communications are thin 

film interference filters, arrayed wave gratings (AWGs) and fibre Bragg gratings. 

These have all benefited from much greater research and development than mirco-

ring resonators and so it is difficult to make a fair comparison. Indeed, one of the 

justifications for the present project is that we need a greater knowledge of the 

potential of compound rings to enable a fair comparison with their competitions. For 

Micro-/ nano-fibres bent to a tight coil, the radius of which determines the pass-

band periodicity. 
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this reason we do not attempt to compare what we have achieved with other filter 

types. That is a task for a future project. 

 

In this report, we develop analytical models based on linear algebra in order to 

develop transfer functions for compound ring resonators. The equations that we solve 

are in terms of complex fields because they include phase, as well as amplitude 

information. Where appropriate, we use matrices because they structure the algebra 

in a useful manner. Where analytical models are possible in engineering applications, 

they are particularly beneficial because they remove the need for intensive 

computation and demanding software. Moreover, they can often provide valuable 

insight into the physical processes taking place. However, when the equations 

become large, as in the current project, there is an ever-present risk of algebraic 

mistakes. For this reason, it is necessary to adopt quality control measures, as would 

be done in a project where large amounts of computer code is written. 

 

Quality control is important to combat the ever-present risk of miscalculations: 

the resonators we consider are complicated and therefore the equations to model 

them are large. In order to minimise the risk, no equation has been derived by a 

single person without checking firstly by the same person and secondly by another. 

Our aim was to emulate the best practice of industrial software engineering, where all 

code is checked by an engineer who did not write it in the first instance. Additionally, 

many of the equations have been calculated by two different methods. For example, 

our two- and three-ring resonator algebra has been obtained by matrices and by a 

non-matrix method, as reported in Chapter 3. Moreover, in Chapter 5 we calculated 

eigenvalues by two separate ways, giving us a degree of confidence that we would 

not otherwise have. Although such measures have slowed down our work, we 

believe that it is a worthwhile sacrifice for the additional assurance that it provides. 

 

Chapter 2 of this report states the overriding assumptions and underlying 

theory to understand multiple ring resonators. It explains the mathematics and 

physics to formulate the theory. Chapter 3 then uses the theory to derive the transfer 

filter functions for one-, two- and three-ring resonators. Afterwards, Chapter 4 is an 

extensive account with the aim of providing a comprehensive overview of how two- 

and three-ring resonators can best be designed as DWDM filters. Our objective was 
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to give an unified overview of the multi-faceted design methodology for the intended 

application. In addition to that, we have gone further and extend our theory to N-ring 

resonators. Although we were not able to obtain the intensity response, we achieved 

the difficult and most demanding part: we used a more advanced matrix method to 

provide the amplitude transfer function. Our technique is called “diagonal 

decomposition”, which allows N matrices to be raised to a power in an efficient 

manner. As a result, our calculation is in a state that can be continued by future 

workers. 
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2 Theory of Waveguide-Based Resonant Structures 
 

2.1 Introduction 
 

This chapter is about the physics and mathematics that are indispensable to 

understand the multiple ring resonator structure; it establishes the underlying theory 

for use in the following chapters. We describe an optical ring resonator as a filter 

device and its characteristics. Our formulation of the complete structure uses linear 

complex equations and we draw analogies with the theory of Fabry-Pérot (FP) 

resonators [6]. One key issue is the nature of the couplers between each ring. We 

discuss these by considering their characteristics, equations, losses and scattering 

effects and we cross-refer them to the action of the mirrors in Fabry-Pérot theory. 

The mathematics of multiple ring structures requires lengthy equations and so a 

matrix-method called diagonal decomposition is explained, to be used to extend our 

theory to N rings. Finally, we illustrate the way to design multi-ring resonators for an 

arbitrarily large number of rings. 

 

An integrated optical ring resonator is a single transverse mode waveguide-

based device formed as a circle (ring). Two couplers enable light to be inserted into 

and extracted from the ring. Every coupler has a coupling coefficient, which states 

how effectively the coupler transfers light from one waveguide to another. Commonly 

integrated optical ring resonators are fabricated as silica waveguides on silicon 

substrate but all-glass, polymer or all-semiconductor structures are also used. It is 

not essential that the rings be exact circles, because oval rings are also possible. 

High precision fabrication technologies are now available, to guarantee the best 

quality of the integrated waveguide so that it is a high purity material with low surface 

roughness. They are also fabricated very carefully to control the coupling ratios. The 

rings can be either in an integrated optical format or in a micro-/ nano-fibre format. A 

standard single mode silicate telecommunications fibre has a diameter of close to 

125µm. Alternatively, when the outer diameter is comparable to one wavelength, 

which is about 1µm, we refer to it as a “micro-fibre”. When the diameter is 

significantly less than one wavelength, which is down to 10nm, we refer to it as a 

“nano-fibre”. Whether the rings are in integrated optical or micro/nano-optical format 

we must be able to take account of bending losses, as we will discuss later in this 

chapter.  
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2.2 Free Spectral Range 
 

As stated in Chapter 1, optical resonators provide transmission spectra that 

are periodic in the frequency domain. They demonstrate narrow peaks followed by 

broad low transmission minima. We therefore need a measure of the frequency 

interval between the peaks and this is the free spectral range (FSR). The FSR for any 

resonator is the reciprocal round trip time of a photon in the cavity. When the 

resonator is an FP design, that is the time for the photon to travel from one mirror to 

the second mirror and back again. However, in a ring the time is for the photon to 

make one circuit of the fibre. The ring circumference relates directly to its FSR by 

 

∆ =  
𝑐

𝑛𝑒𝑓𝑓 ∙ 𝐿𝑅𝑖𝑛𝑔
                                  (2.1) 

 

LRing is the circumference, c is the velocity of light in vacuum and neff is the refractive 

index of the waveguide, which is commonly about 1.5. As Equation (2.1) states, the 

FSR is a frequency difference (Hz), which is a reciprocal of time. ∆𝜈 is the frequency 

interval between the intensity maxima of the resonator’s periodic transfer function. It 

is clear from Equation (2.1) that FSR varies inversely with circumference, which 

means that if we wish to achieve a wide spectral separation between the peaks of the 

transfer function we must use a ring with a small diameter. 

 

We have calculated the ring circumferences with Equation (2.1). For example, 

we require a ring circumference of 200µm to achieve a FSR of 1000GHz. In a DWDM 

system, where the channels are commonly positioned every 100GHz (corresponding 

to about 0.8nm), such a ring would allow us to select every tenth channel [7]. 

Alternatively, we would need a ring circumference of 400µm to obtain a FSR of 

500GHz. Hence we can conclude that the larger the FSR becomes, the smaller the 

circumference required. Unfortunately, from the industrial point of view there is a limit 

for the ring circumference because very small rings have significant bending loss. For 

this reason, instead of making the ring smaller, we can use multiple rings to achieve 

better filtering functions. We can fabricate a multiple-ring resonator, by coiling micro- 

or nano-fibre on a mandrill or by appropriate patterning of integrated optical 

waveguides on a substrate. 
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Figure 2-1 Optical device: Beam-splitter. 

 

2.3 Optical Waveguides and Directional Couplers 
 

Every ring considered in this project has two optical directional couplers, 

where light can be launched or leave the ring. The coupler is the equivalent of the 

beam splitter, which is depicted in Figure 2-1. The beam splitter is an optical 

component that splits a beam of light. A part of the incident light is reflected, the other 

part is transmitted. The coupling-ratio of the reflected and transmitted light is 

determined by the detailed geometry of the coupling zone of the coupler. 

 

A coupler is a four port device, as illustrated in Figure 2-2. The waveguides 

shown have a higher refractive index than the substrate, which often consists of 

glass, but silicon can also be used. Usually light is only launched into one port, but in 

certain applications, such as optical add-drop multiplexers (OADM), it can be 

launched into more than one. The waveguides in the drawing are rectangular, but the 

coupler operation is also valid for the curved waveguides that we consider. As we 

can see, the only difference between the two is in the coupling zone. The distance 

between the rectangle waveguides is always the same, while the distance between 

curved waveguides varies continuously. In a directional coupler there is a transverse 

overlap of the fields in the coupling zone so that there is transfer of energy from one 

waveguide to the other. The detailed theory of directional couplers is complicated, 

especially when the geometry differs from the simple one shown in Figure 2-2. 

However, a detailed knowledge of the wave interactions that take place within the 

couplers is not necessary because all of the essential features can be summarised 
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within two macroscopic parameters: one is the coupling coefficient K and the other is 

the loss coefficient γ. Both of them are dimensionless and they are obtained from 

detailed solutions of Maxwell’s equations, usually with the aid of computer-based 

numerical techniques. 

 

In the general case, we have to deal with loss in couplers. Light scattering and 

small bending within our couplers are the main mechanisms. Furthermore, the 

waveguides that interconnect our couplers must be curved, and so we have to 

incorporate bending, scattering and absorption loss of the propagating waves. The 

bending losses appear because the propagation conditions alter at a bend. The rays 

of light, which would propagate axially in a straight section, are lost into the cladding 

(of a fibre) or the substrate (of a planar waveguide). Due to this fact, the bending loss 

increases markedly with decreasing ring circumferences. Therefore, the best 

fabrication technologies available are needed to produce good waveguides and 

couplers. Techniques such as the use of non-step-index profiles and high 

waveguide-substrate refractive index differences can help in this respect. We achieve 

the best ring geometry with the lowest loss, when the two bent waveguides have the 

same arc radius and when there is always the same distance between them. 

Moreover, the quality of the material, the waveguide is made of, is an important 

factor. Depending on how pure the material is, we obtain low absorption loss. Any 

surface roughness of the waveguide as the result of certain fabrication techniques 

causes unwanted micro-bending and scattering.  

 

 

 

Figure 2-2  

 

Integrated optical directional coupler shown in simple rectangular geometry. 

Many other designs are also possible. 
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2.4 Analysis Using Complex Fields 
 

The electric field analysis that is used for the coupler and waveguide 

propagation theory includes phase. We use complex fields because phase 

characteristics are indispensible to obtain a realistic model of ring resonators. One 

computational challenge is that the complex field equations require more algebraic 

manipulation than would be the case with real quantities. In order to explain the 

waveguide and coupler equations we need some definitions: 

 

𝛿𝑗 ,𝑘 =   
−𝛼

2
 + 𝑖 ∙ 𝛽 ∙ 𝐿𝑗 ,𝑘                            (2.2) 

 

Bending, scattering and absorption losses of the waveguides are defined in the α-

coefficient, called loss-coefficient. Its unit is 1/L (reciprocal meters in the SI usage) 

and we can also vary it into dB/L because normally loss is specified in dB. The β-

coefficient is the propagation constant of the waveguides and we assume that it is 

the same throughout the entire device. Generally we can say that α and β account for 

the amplitude and phase changes, respectively. Lj,k is one passage in the cavity of a 

FP resonator. A double passage in the cavity of a FP resonator is the equivalent of 

one optical circuit in the ring, which is stated in the equation LRing = 2 ∙ LCavity. The 

definition of the waveguide’s propagation constant β, with neffective as its effective 

refractive index: 

 

𝛽 =  
2∙𝜋∙𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝜆
                                 (2.3) 

 

The propagation constant of the free space is the same, except that neffective =1. 

 

The terms that we use to describe the action of a coupler are: 

 

𝑟𝑚 =   1 − 𝐾𝑚 
1

2 ∙  1 − 𝛾𝑚 
1

2                          (2.4) 

𝑡𝑚 =  𝑖 ∙ 𝐾𝑚

1

2 ∙  1 − 𝛾𝑚 
1

2                             (2.5) 
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Km and γm are the coupling ratio and the coupler excess loss, respectively. 

Commonly γm is very small and it can be ignored in some circumstances. rm and tm 

are their equivalents in the FP theory, where rm is the reflectance of the mirror and tm 

is its transmittance, as shown in Figure 2-3. They relate to each other as rm = 1-tm. 

Based on the FP theory we refer to the “effective” transmittance and reflectance of 

couplers.  

 

Figure 2-3 shows a single ring resonator and a Fabry-Pérot cavity for 

comparison. The reference points m and n are marked on the rings in which m is the 

coupler number and n is the coupler’s input-output point 1,2,3 or 4, going in a 

clockwise direction. Reference points j and k refer to the length of the equivalent FP 

cavity in which j is the first mirror number and k is the second mirror number, i.e. the 

length from mirror “0” to mirror “1” is defined as L0,1. 

 

 

 

Figure 2-3  

 

 

One ring resonator (top) and the equivalent two-mirror Fabry-Pérot resonator 

(below). 
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As we have seen, we always have four reference points for every coupler. 

Therefore, in general eight equations are needed because light can propagate in two 

directions at every point: forwards and backwards. According to this, in the most 

general circumstances, we have 16 equations for a single ring resonator, 24 

equations for a two-ring resonator and 32 equations for a three-ring resonator 

because we need 2, 3 and 4 couplers, as appropriate. Fortunately, our physical 

knowledge of light propagation within ring resonators provides some simplification. 

When light is launched only via the “usual input point”, marked on the bottom left of 

the ring resonator on Figure 2-3, the waves circulate clockwise within the ring, as 

shown by the arrows. We can then halve the number of initial field equations so that 

only 8 are required for a single ring. By similar reasoning, the number needed for 

two- and three-ring resonators are 12 and 16, respectively. 

 

We now state the four important equations needed to describe a coupler and 

afterwards a single ring: 

 

𝐸0,1
+ = 𝑖𝑛𝑝𝑢𝑡                                    (2.6) 

 

𝐸0,2
− =  𝑟0 ∙ 𝐸0,1

+ +  𝑡0 ∙ 𝐸0,4
−                           (2.7) 

 

𝐸0,3
+ =  𝑟0 ∙ 𝐸0,4

− +  𝑡0 ∙ 𝐸0,1
+                           (2.8) 

 

𝐸0,4
− =  𝐸1,1

− ∙ 𝑒𝛿1,0                                (2.9) 

 

Em,n are the complex field components, where “+” and “-“ specify the direction of the 

light propagation. “+” is the forward propagation from left side to the right, “-“ is the 

backward propagation the right side to the left. E+
0,1 is the known input. E-

0,2 is a 

possible output because light from input E+
0,1 can be coupled out of the ring at this 

point, which is the equivalent of a reflection from a FP cavity. In addition, there is 

transmitted light from E-
0,4. E

+
0,3 is the output of the coupler that propagates towards 

the right. Light that has made one or more circuits of the ring re-enters the coupler as 

the field term E-
0,4. Equation (2.9) includes an exponential term in δ1,0 and this is 

needed to account for phase and amplitude changes due to propagation in a 
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waveguide of length L1,0. It should also be noted that, according to Equations (2.4) 

and (2.5) r0 is real but t0 is imaginary.  

 

In order to formulate the complete structure for a single ring resonator, we also 

need the equations for the second coupler, shown on the top right of Figure 2-3. 

Additionally to the four Equations (2.6) to (2.9), we obtain the following four 

Equations to describe a single ring: 

 

𝐸1,1
− =  𝑟1 ∙ 𝐸1,2

+ +  𝑡1 ∙ 𝐸1,3
−                           (2.10) 

 

𝐸1,2
+ =  𝐸0,3

+ ∙ 𝑒𝛿0,1                               (2.11) 

 

𝐸1,3
− =  𝐸1,3

−                                     (2.12) 

 

𝐸1,4
+ =  𝑟1 ∙ 𝐸1,3

− +  𝑡1 ∙ 𝐸1,2
+                          (2.13) 

 

E-
1,1 consists of the transmitted light from reference point (1,3) and the 

reflected light from (1,2). E+
1,2 is the light from point (0,3) which propagates in the 

waveguide in “+” direction and it includes the term 𝑒𝛿0,1 to account for the associated 

amplitude and phase change. E-
1,3 can be another input, but usually it is zero. E+

1,4 is 

the transmitted light from point (1,2) and the reflected light from point (1,3). 

 

2.5 Matrix Formulation of Ring Resonators 
 

As we can see, Equations (2.6) - (2.13) are the 8 equations for a single ring 

resonator, to which we previously referred. If we want to calculate a two-ring 

resonator, we need 12 equations, with a corresponding increase in algebraic 

manipulation. (The theory of a two-ring resonator is formulated in Section 3.3 and the 

interpretation of the final result is described in Chapter 4.) Therefore, we decided to 

use matrices because they are able to regiment and organize equations in a 

structured way that can be handled by well-known techniques. When we started this 

part of our project we did not know if matrix theory would work or be easier. However, 
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it seemed a logical approach for a series of linear equations, which model passive 

optical processes that have no gain. 

 

In order to obtain the matrix for one ring, we use the Equations (2.6) – (2.13) 

to start our calculation. Equation (2.7) is substituted into Equation (2.9) and (2.10) to 

give: 

 

𝐸0,2
−  =  𝑡1 ∙ 𝑡2 ∙ 𝐸1,3

− ∙ 𝑒𝛿1,0 +  𝑡1 ∙ 𝑟2 ∙ 𝐸1,2
+ ∙ 𝑒𝛿1,0 +  𝑟1 ∙ 𝐸0,1

+  (2.14) 

 

E-
1,3 and E+

0,1 are needed in our calculation because they present our input vector.   

The output vector is formed by E-
0,2 and E+

1,4. Thus we have to eliminate E+
1,2 by 

substituting Equations (2.8), (2.9) and (2.10) into Equation (2.11). Thereafter, the 

terms are grouped together and rearranged so that E+
1,2 is on the left side and we 

obtain: 

 

𝐸1,2
+ =  

𝑡1

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
∙ 𝐸0,1

+ ∙ 𝑒𝛿0,1 

+
𝑟1 ∙ 𝑡2

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
∙ 𝐸1,3

− ∙ 𝑒𝛿0,1+𝛿1,0  

                         (2.15) 

 

Then we substitute Equation (2.15) into (2.14) and group again the terms together so 

that we obtain:  

 

𝐸0,2
− =   

𝑟1  +  𝑟2 ∙ 𝑡1
2 ∙ 𝑒𝛿0,1+𝛿1,0

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
 ∙ 𝐸0,1

+  

+  
𝑡1 ∙ 𝑡2 ∙ 𝑒𝛿1,0

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
 ∙ 𝐸1,3

−  

                             (2.16) 
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Equation (2.16) can also be stated as: 

 

𝐸0,2
− =  𝑎11 ∙ 𝐸0,1

+ +  𝑎12 ∙ 𝐸1,3
−                       (2.17) 

 

The two coefficients of the electric fields in Equation (2.16) are the definitions of a11 

and a12 and they are required to specify the transfer matrix. We need two other 

coefficients, designated a12 and a22 to be incorporated within the matrix. Generally, it 

is the same type of calculation with other equations. Therefore, we do not state every 

Equation and only describe the procedure and the final results. Equation (2.9) and 

(2.13) are used as the initial equations and the input and output vectors are the 

same. E-
1,3 and E+

0,1 are known, so we substitute every other term that appears in the 

equations by the other equations, (2.6) – (2.13). Thereafter, the equations are 

rearranged as before so that Equation (2.9) can be substituted into (2.13). Thus we 

obtain: 

 

𝐸1,4
+ =    

𝑡1 ∙ 𝑡2 ∙ 𝑒𝛿0,1

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
 ∙ 𝐸0,1

+  

+  
𝑡2  +  𝑟1 ∙ 𝑡2

2 ∙ 𝑒𝛿0,1+𝛿1,0

1 − 𝑟1 ∙ 𝑟2 ∙ 𝑒𝛿0,1+𝛿1,0
 ∙ 𝐸1,3

−  

                             (2.18) 

Equation (2.19) can also be stated as: 

 

𝐸1,4
+ =  𝑎21 ∙ 𝐸0,1

+ +  𝑎22 ∙ 𝐸1,3
−                       (2.19) 

 

We now have calculated a21 and a22 and therefore all the expressions that are 

needed for the matrix for a single ring resonator. In general, we have the matrix: 

 

 
𝐸0,2

−

𝐸1,4
+  =   

𝑎11 𝑎12

𝑎21 𝑎22
 ∙  

𝐸0,1
+

𝐸1,3
−                         (2.20) 

 

The mathematics is slightly complicated by the need for complex numbers, 

which give us the ability to account for phase as well as amplitude changes. Even for 
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a single ring resonator it is not straightforward and multiple ring structures become 

yet more demanding. 

 

2.6 Extension to Multiple Rings 
 

In order to achieve better filtering functions we want to model multiple ring 

resonators because we assume that they will give us more design possibilities to find 

our desired “box-like” functions. They provide coupled resonances and, being more 

complicated structures, they have more independently adjustable parameters, giving 

greater design flexibility. We use matrices because they simplify the calculations of 

our linear equations and we have done this in two ways. The first is an extension of 

the formulation that leads to Equation (2.20) to be applied to two or more rings, in 

which all of the constituent parameters, such as ring circumferences and coupler 

ratios can have individually adjustable values. Further details are provided in 

Chapters 3 and 4. The second extension is to a special case in which all of the rings 

are identical and therefore we need repeated application of the transfer matrix for 

each of the constituent rings. This issue is addressed further in Chapter 5. The matrix 

methodology used for resonators of N identical rings is called “diagonal 

decomposition”. It provides us with a computationally efficient means of raising a 

matrix to a power. Every matrix models one ring. As we can see from the Equations 

(2.16) and (2.19), which show the matrix for the single ring, the algebra is very 

demanding. Therefore, we avoid the direct multiplication of matrices for ring numbers 

in excess of three and instead we use the “diagonal decomposition”. 

 

2.7 Diagonal Decomposition 
 

We do not explain underlying the theory of “diagonal decomposition” (DD) in 

great detail but the reader is referred to numerous linear algebra texts, such as 

References [8][9]. The DD is used to raise a non-singular square matrix to a power. It 

is an important constraint that we only can raise pairs of rings to the power of N. 

Figure 2-4 depicts a multiple ring resonator for N rings showing the alternating 

clockwise and counter-clockwise optical propagation. We always obtain such 

alternating circuits if we use more than one ring. Different matrices are required for 

the two propagation directions and we can designate them AR (“right”) and AL (“left”). 

Given that DD operates on identical matrices, we must use the technique on the 
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product matrix A = AL∙ AR for an adjacent pair of rings. DD allows us to calculate AN = 

(AL∙ AR)N, for an integer N.  

 

 

 

Figure 2-4  

 

 

 

By using the DD we raise the matrices representing a two-ring resonator 

structure to the power of N, which means we can calculate the transfer matrix for 2N 

rings. We now describe in general terms how to raise the square matrix A to the 

power of N. At first, the concept of “similar matrices” is needed. The matrices A and 

D, which are non-singular square matrices, are similar if another non-singular square 

matrix P can be found so that we obtain: 

 

𝐷 = 𝑃−1 ∙ 𝐴 ∙ 𝑃                                 (2.21) 

 

We select D to be a diagonal matrix, which is one where all elements that are not on 

the leading diagonal are zero. P-1 is the inverse of P and it is also non-singular. 

Similar matrices have some advantageous properties, such as the same determinant, 

the same rank and the same eigenvalues. Our goal is to find a matrix P that makes 

Equation (2.21) is valid. We premultiply Equation (2.21) by P and postmultiply it by   

P-1 so that we have: 

 

  𝐴 = 𝑃 ∙ 𝐷 ∙ 𝑃−1                                 (2.22) 

 

 

 

Multiple ring resonators with N-rings; although the rings are identical, the guided 

waves circulate alternately, which is why we need two types of matrices, AR and 

AL. 
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Thus we can easily raise A to an integer power: 

 

𝐴𝑁 =   𝑃 ∙ 𝐷 ∙ 𝑃−1 ∙  𝑃 ∙ 𝐷 ∙ 𝑃−1  ⋯  𝑃 ∙ 𝐷 ∙ 𝑃−1       (2.23) 

 

Then we factor out the diagonal matrix D: 

 

𝐴𝑁 = 𝑃 ∙ 𝐷 ∙  𝑃−1 ∙ 𝑃 ∙ 𝐷 ∙  𝑃−1 ∙ 𝑃 ∙ 𝐷 ⋯  𝑃−1 ∙ 𝑃 ∙ 𝐷 ∙ 𝑃−1 

(2.24) 

 

And we identify P
-1∙ P as the identity matrix I, so that Equation (2.24) can be stated 

as: 

 

𝐴𝑁 = 𝑃 ∙ 𝐷𝑁 ∙ 𝑃−1                              (2.25) 

 

This result signifies that if a diagonal matrix similar to A is identified, together with a 

suitable non-singular matrix P, it is much simpler to raise A to the power of N. The 

reason is that a diagonal matrix can be raised to the power of N merely by raising all 

of the elements in the leading diagonal to the power of N. 

 

We do not explain every step of the diagonal decomposition in detail. 

However, the basic ones are summarised in the Figure 2-5, which indicates the order 

in which they are most appropriately carried out. Figure 2-5 is really a “recipe”, the 

detailed justification for which can be obtained by consulting many text-books on 

linear algebra [10][11]. 
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Figure 2-5 The diagonal decomposition algorithm for raising a matrix A to the power of N. 

 

A brief summary of Figure 2-5 is as follows. When A is an m x m matrix, we 

have up to m eigenvalues λ1, λ2, … λm and for each one an eigenvector can be 

selected, where the m eigenvectors are linearly independent of each other. The 

eigenvalues are defined as λi, the eigenvectors are stated as X and 0 is the zero 

vector. P is also an m x m matrix. As we can see in Figure 2-5, first of all the 

eigenvalues of matrix A are determined from the characteristic polynomial. By 

substituting λi in turn into the Equation from step 1, we find the suitable eigenvectors. 

In the third step the diagonal matrix is written down. Afterwards, we formulate matrix 

P and the inverse of matrix P in steps 4 and 5. In the following step we raise D to the 

power of N by raising each element on its leading diagonal to the power of N. 

 

The technique summarised in Figure 2-5 will help us in Chapter 5 for raising a 

matrix to a power. It is worth all the effort because if we look at our equations for a 
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single ring resonator and we imagine raising it to the power of 4 or higher, we would 

have to solve prohibitively large equations. In addition, we have to calculate with 

complex numbers. 

 

2.8 Figures of Merit: Finesse and Modulation Depth 
 

Once we have determined the transfer function for a given design of 

resonator, we need to specify a number of figures of merit that quantify its filtering 

function. In doing this we assume that it has been possible to obtain a periodic 

transfer function in which there are single peaks that can in some sense be described 

as being “box-like”. The ideal means to provide such performance is via a closed-

form analytical formula. However, owing to the complicated nature of the algebra, 

such formulas are not easily derived for resonators consisting of large numbers of 

rings. In that case, some form of numerical means is necessary to provide us with 

appropriate filtering performance. Thereafter, we need our figures of merit to decide 

how good the filter is for the various tasks that it might perform. Many figures of merit 

could be defined but the two that we use in this report, especially in Chapter 4, are 

(a) the finesse and (b) the depth of modulation. 

 

The finesse is a measure of the resonator’s frequency selectivity. Generally, finesse 

is more commonly used in optics than in microwaves and electronic circuits, where 

the quality factor (“Q-value”) is preferred. The finesse is defined as the filter’s free 

spectral range (FSR) divided by the 3dB bandwidth of the peaks, as given by 

Equation (2.26), where 𝛥𝜈 and 𝛿𝜈1/2 are both frequency intervals (Hz). 

 

𝐹 =
𝛥𝜈

𝛿𝜈1/2
                                     (2.26) 

 

High values of F correspond to very narrow peaks. In many applications of 

single resonators, such as the Fabry-Pérot designs, it is preferable, to aim for the 

highest values of F in order to achieve very selective filters. However, as described in 

Chapter 1, high finesse operation can sometimes be a disadvantage. A quasi-

rectangular pass-band with good rejection at other frequencies might be a more 

desirable attribute and this is what we mean by “box-like” performance. 
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The finesse can be determined mathematically for single resonant structures, 

where it is a function only of the reflectances (actual or effective) of the mirrors or 

couplers, as the case may be. High finesses are achieved by using refelctances that 

are as close as possible to unity and reducing all losses (both the reflectors and 

propagation medium between the reflectors) to being as close as possible to zero. 

 

When we have obtained a transfer function with single, periodic and box-like 

peaks, we can easily define a depth of modulation, M(dB), in which the superscript 

signifies the fact that parameter is most conveniently specified in decibels. If we 

define the relative peak intensity of the transfer function to be Ymax and the relative 

minimum intensity to be Ymin, the depth of modulation is quite simply 

 

𝑀(𝑑𝐵) = 10 ∙ log10 𝑌𝑚𝑎𝑥 /𝑌𝑚𝑖𝑛                      (2.27) 

 

M(dB) is useful for optical network design purposes because it specifies the out-of-

band rejection and it is a number that should normally be as high as possible. When 

M(dB) is too low, adjacent optical channels are passed by the ring resonator and when 

they arrive at the receiver, together with the intended channels, they cause optical 

cross-talk. For this reason, the depth of modulation is a particularly important figure of 

merit. There is no simple guideline that specifies the minimum acceptable value of 

M(dB) because every optical telecommunications network is different. However, it 

would be unusual for values lower than 30dB to be tolerable and 40dB might be a 

more realistic design target. 
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3 Matrix Theory of Two- and Three-Ring Resonators 
 

3.1 Introduction 
 

This chapter explains the general matrix formulation for a single ring resonator 

and the complete matrix-method for two- and three-ring resonators. A matrix method 

was used to calculate the amplitude transfer function for multiple ring resonators. The 

matrix approach continues to use complex electric fields but it differs from that of 

Oscar Rautenberg; it is used to obtain the same results in another way. Losses were 

included in the formulation, as explained in Chapter 2. Solving equations for more 

than two rings becomes very complicated and therefore possibly subject to algebraic 

mistakes. This is why it was necessary to resort to a systematic matrix-based 

approach to regiment the algebra in a manner that reduces the likelihood of mistakes. 

By using our more extended technique, we learn about the different aspects of the 

two- and three-ring structure in order to be able to apply it to N-rings and to establish 

a general procedure. 

 

 The methodology explained in this chapter is necessary to calculate more 

than about four rings and we extend it in Chapter 5, where we explain how to multiply 

N identical matrices using “diagonal decomposition”. For two and three rings the 

diagonal decomposition technique is not worthwhile. However, it would be unrealistic 

to calculate the intensity transfer function for ten rings with the methodology used 

here. The equations would be too large and not practical without computer algebra. 

Therefore, in this Chapter we calculate the one, two and three-ring resonator with the 

simple technique, and in Chapter 5 we use the diagonal decomposition to calculate 

more than three-rings. This chapter forms a link with Chapter 4, in which we interpret 

the final results (the transfer functions) and explain how they can enable the design 

of filters for applications as wavelength demutliplexers. 

 

In order to present the matrix formulation for a ring resonator, we made some 

assumptions, which are entirely consistent with both physical reasoning and the 

findings of Chapters 2 and 4. If we look at a ring resonator, we see that light 

propagates unidirectionally; it travels in each ring either clockwise or counter-

clockwise and our equations simulate this behavior. However, our assumption 

depends on the absence of certain physical processes, the most important of which 
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are Raman, Brillouin and Rayleigh light scattering because they create backward-

propagating waves. Furthermore, we assume that there is no gain due to the 

presence of rare earth ions, such as erbium. All lightwaves are taken to be randomly 

polarised and none of the waveguides or couplers demonstrate polarization 

anisotropy.  

 

The general matrix formulation is explained in Section 3.2. Thereafter, we 

apply it to the two- and three-ring resonator in Sections 3.3 and 3.4, respectively. 

 

3.2 Matrix Formulation 
 

We consider a one-ring resonator and two couplers to determine the matrix for 

a single ring, as illustrated in Figure 3-1. Reference points m, n are marked on the 

rings in which m is the coupler number and n is the coupler’s input-output point: 1, 2, 

3 or 4, going in a clockwise direction. 

 

 

 

Figure 3-1  

 

One ring resonator (top) and the equivalent two-mirror Fabry-Pérot resonator 

(below). 
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As defined in Section 2.4, Km and γm are the coupling coefficient and the 

coupler excess loss, respectively. rm and tm are their equivalents in the FP theory, 

where rm is the reflectance of the mirror and tm is its transmittance [6]. Owing to the 

equivalence of the ring and FP resonators, we can refer to “effective” transmittances 

of couplers as defined in Section 2.4. One optical circuit in the ring is the equivalent 

of a double passage in the cavity of a FP resonator of length L. Two times the length 

of the cavity has the same role as the circumference of a ring. Therefore, the free 

spectral range, as defined in Section 2.2, is calculated using LRing = 2*LCavity. The 

indices shown in Figure 3-1 denominate the order of the couplers respective to the 

mirrors. Light is launched into the ring at the coupling point (0,1) shown in Figure 3-1 

and we obtain the output at point (1,4). If we inject a signal into the device from point 

(0,1) on the ring resonator, there are two possible output points. On the one hand, we 

have the output from point (1,4), which is like the transmission transfer function of a 

Fabry-Pérot resonator. On the other hand, we have the output from point (0,2) which 

is like the reflection transfer function of a Fabry-Pérot resonator. In principle, there 

can also be an input at point (1,3), and in that case the light would also travel 

clockwise in the ring, exiting at both (0,2) and (1,4). However, we do not consider this 

case because, by symmetry considerations, it is mathematically identical to the 

analysis that we present, except for the change of subscripts on the electric field 

terms.  

 

In order to calculate the matrix for one ring resonator, Equations (2.6) to (2.13) 

in Section 2.4 were used. From these, the following equations for the transfer 

between the points (0,1) & (0,2) and (1,1) & (1,2) are used: 

 

 𝐸0,2
−  =  𝑟0 ∙ 𝐸0,1

+ +  𝑡0 ∙ 𝐸1,1
− ∙ 𝑒𝛿1,0                  (3.1) 

  

𝐸1,2
+ =  𝑟0 ∙ 𝐸1,1

− ∙ 𝑒𝛿0,1+𝛿1,0 + 𝑡0 ∙ 𝐸0,1
+ ∙ 𝑒𝛿0,1               (3.2) 

 

E0,1 is the known input. r0 and t0 are the effective reflectance and transmittance, 

respectively of coupler zero, as defined by Equations (2.4) and (2.5). Equations (3.1) 

and (3.2) need to be rearranged because we require the (0,1) and (0,2) terms 
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together and the (1,1) and (1,2) terms together. In this way we can establish a matrix-

vector equation.  

 

From Equation (3.1) we obtain: 

 

𝐸1,1
− =   

1

𝑡0
 ∙ 𝑒−𝛿1,0 ∙ 𝐸0,2

− −  
𝑟0

𝑡0
 ∙ 𝑒−𝛿1,0 ∙ 𝐸0,1

+             (3.3) 

 

Then we substitute Equation (3.3) into (3.2) and achieve: 

 

𝐸1,2
+ =   

𝑡0
2−𝑟0

2

𝑡0
 ∙ 𝑒−𝛿0,1 ∙ 𝐸0,1

+ +   
𝑟0

𝑡0
 ∙ 𝑒−𝛿0,1 ∙ 𝐸0,2

−          (3.4) 

 

By writing equation (3.3) and (3.4) in a matrix-vector format we obtain: 

 

 
𝐸1,1

−

𝐸1,2
+  =   

−  
𝑟0

𝑡0
 ∙ 𝑒−𝛿1,0  

1

𝑡0
 ∙ 𝑒−𝛿1,0

 
𝑡0

2−𝑟0
2

𝑡0
 ∙ 𝑒𝛿0,1  

𝑟0

𝑡0
 ∙ 𝑒𝛿0,1

 ∙  
𝐸0,1

+

𝐸0,2
−             (3.5) 

 

Equation (3.5) is the transfer function for a single ring in a matrix-vector format. We 

have to take care that in general 𝛿1,0 and  𝛿0,1 are not equal, because the couplers 

are not always positioned at the half-way points on the ring’s circumference. They 

could be offset so that the lengths L01 and L10 are unequal. The matrix-vector 

equation can be stated as: 

 

𝐸1 =  𝑀1,0 ∙ 𝐸0                                   (3.6) 

 

The matrix in Equation (3.6) is for clockwise propagating light. It was also necessary 

to specify that light can propagate either clockwise or counter-clockwise in a ring, as 

depicted in Figure 3-2. 
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Figure 3-2  

 

 

For this reason a second matrix for the counter-clockwise propagating light is 

needed, which is denoted as: 

 

 
𝐸2,1

+

𝐸2,2
−  =   

 
𝑟1

𝑡1
 ∙ 𝑒𝛿1,2  

𝑡1
2−𝑟1

2

𝑡1
 ∙ 𝑒𝛿1,2

 
1

𝑡1
 ∙ 𝑒−𝛿2,1 − 

𝑟0

𝑡0
 ∙ 𝑒−𝛿2,1

 ∙  
𝐸1,1

−

𝐸1,2
+             (3.7) 

 

𝐸2 =  𝑀2,1 ∙ 𝐸1                                   (3.8) 

 

We derived Equation (3.8) by performing nearly the same calculation; only the 

input- and output-points were different. If we compare Equations (3.7) and (3.8) with 

Equation (3.5), we see that the vector E2 has the same type of elements as vector E1, 

but the elements are in different positions. The elements conform to a common 

format if we swap the subscripts “0” with “1” and “1” with “2”. Then we also have to 

exchange the elements on the diagonals. The physical reason is that light circulates 

clockwise in the left ring and counter-clockwise in the right ring. 

 

Equations (3.7) and (3.8) show that the matrices do not connect the input with 

the output of the ring-structure. Therefore, we also need a coupler to provide a path 

from the last ring to the output, so we need to connect points (1,1) and (1,2) with 

points (1,3) and (1,4). Due to the fact that clockwise and counter-clockwise matrices 

are needed, we also obtain two different possible matrices for the last coupler; one 

Two-ring resonator. Light propagates clockwise in the left ring and counter-

clockwise in the right ring. 
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for a right-handed and one for a left-handed coupler. From Equations (2.10) and 

(2.13) we obtain: 

 

𝐸1,1
− =  𝑟1 ∙ 𝐸1,2

+ + 𝑡1 ∙ 𝐸1,3
−                           (3.9) 

 

𝐸1,4
+ =  𝑟1 ∙ 𝐸1,3

− + 𝑡1 ∙ 𝐸1,2
+                          (3.10) 

 

Equations (3.9) and (3.10) must be rearranged because the terms (1,1) and (1,2) are 

needed to be grouped together. Thus we achieve from Equation (3.8): 

 

𝐸1,3
− =   

1

𝑡1
 ∙ 𝐸1,1

− −  
𝑟1

𝑡1
 ∙ 𝐸1,2

+                      (3.11) 

 
We substitute Equation (3.11) into (3.10), to obtain: 

 

𝐸1,4
+ =   

𝑟1

𝑡1
 ∙ 𝐸1,1

− +   
𝑡1

2−𝑟1
2

𝑡1
 ∙ 𝐸1,2

+                    (3.12) 

 

Equations (3.11) and (3.12) account for the actions of the right-hand coupler in 

the single ring resonator and they can be written in a matrix-vector format: 

 

 
𝐸1,3

−

𝐸1,4
+  =   

 
1

𝑡1
 − 

𝑟1

𝑡1
 

 
𝑟1

𝑡1
  

𝑡1
2−𝑟1

2

𝑡1
 
 ∙  

𝐸1,1
−

𝐸1,2
+                      (3.13) 

 

The matrix-vector equation can be also expressed as: 

 

𝐸𝑜𝑢𝑡 =  𝑀𝑜𝑢𝑡 ∙ 𝐸1                                   (3.14) 

 

By doing the same calculation, only with different subscripts because of the 

changed direction of light propagation, we also derived the matrix-vector equation for 

the left-hand coupler, which is stated as: 
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𝐸2,3

+

𝐸2,4
−  =   

 
𝑡2

2−𝑟2
2

𝑡2
  

𝑟2

𝑡2
 

− 
𝑟2

𝑡2
  

1

𝑡2
 
 ∙  

𝐸2,1
+

𝐸2,2
−                      (3.15) 

 

𝐸𝑜𝑢𝑡 =  𝑀𝑜𝑢𝑡 ∙ 𝐸2                                   (3.16) 

 

When we compare Equations (3.13) and (3.15), we see that the matrix Mout 

has the same type of elements in both cases with a change of subscripts and the 

elements are in different positions. The reason is the same as before; light circulates 

clockwise or counter-clockwise. The coupler matrix to be used always depends on 

the number of rings. If we have an even number of rings and a counter-clockwise last 

ring, a left-hand coupler is used (Equation (3.15)), if we have an odd number of rings 

and the last ring is clockwise, a right-hand coupler is used (Equation (3.13)). 

 

In order to obtain the complete amplitude transfer function for a single ring 

resonator, we now have to multiply the transfer matrix from Equation (3.5) by the 

coupler matrix from Equation (3.13), providing a connection between the input and 

the output. We have to take account for the order in which the matrices are 

multiplied:  

 

𝐸𝑜𝑢𝑡 =  𝑀𝑜𝑢𝑡 ∙ 𝐸1 = 𝑀𝑜𝑢𝑡 ∙ 𝑀1,0 ∙ 𝐸0                 (3.17) 

 

Equation (3.17) contains a right-hand coupler multiplied by a clockwise ring matrix. 

They are stated in reverse order with respect to the light propagation. E0 is the input 

vector for the one-ring resonator. We do not state the whole matrix but we define it as 

matrix Q. Thus we obtain: 

 

 
𝐸1,3

−

𝐸1,4
+  =   

𝑞1,1 𝑞1,2

𝑞2,1 𝑞2,2
 ∙  

𝐸0,1
+

𝐸0,2
−                         (3.18) 

 

The q-elements that we derived are listed in Appendix A because they are 

complicated and provide little physical insight. E+
0,1 and E-

13 are either known input 



Marcel Elshoff & Oscar Rautenberg  Universidad Pública de Navarra  

34 
 

signals or no input signals at all, which means that they can be zero. E+
1,4 and E-

0,2 

are the corresponding output fields, which must be calculated. Therefore, we must 

write Equation (3.18) as a pair of equations and separate the terms to give us 

unknown quantities in terms of known quantities: 

 

𝐸1,3
− =  𝑞1,1 ∙ 𝐸0,1

+ +  𝑞1,2 ∙ 𝐸0,2
−                       (3.19) 

 

𝐸1,4
+ =  𝑞2,1 ∙ 𝐸0,1

+ +  𝑞2,2 ∙ 𝐸0,2
−                       (3.20) 

 

We want to determine E
-
0,2 and E

+
1,4 and rearrange them on the left side in terms of 

known inputs E+
0,1 and E-

1,3. Thus: 

 

𝐸0,2
− =   

1

𝑞1,2
 ∙ 𝐸1,3

− −  
𝑞1,1

𝑞1,2
 ∙ 𝐸0,1

+                    (3.21) 

 

We substitute equation (3.21) into (3.20): 

 

𝐸1,4
+ =   

𝑞1,2∙𝑞2,1− 𝑞2,2∙𝑞1,1

𝑞1,2
 ∙ 𝐸0,1

+ +   
𝑞2,2

𝑞1,2
 ∙ 𝐸1,3

−            (3.22) 

 

In most practical circumstances, where the ring resonator is being used as a simple 

filter either E+
0,1 or E-

1,3 is zero, but in most cases E-
1,3 is zero because it is only an 

alternative input. In the present context we neglect it. Therefore, for the amplitude 

transfer function for a single ring resonator we obtain: 

 

 
𝐸1,4

+

𝐸0,1
+  =   

𝑞1,2∙𝑞2,1−𝑞2,2∙𝑞1,1

𝑞1,2
                          (3.23) 

 

(E+
1,4/E

+
0,1) is the relation of the output to the input and of most interest for us.            

(E-
0,2/E

+
0,1) can also be calculated but it is of lesser use because it is the auxiliary 

output related to the input. The complete amplitude transfer function is stated in 

Appendix A. 
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3.3 Matrix Formulation of a Two-Ring Resonator 
 

We derived two different matrix-vectors for a single-ring resonator and two 

different matrix-vectors for the last coupler. In this section we use these matrices to 

provide the transfer matrix for a two-ring resonator, as depicted in Figure 3-2. In the 

calculations great care was taken to account for the order in which the matrices are 

multiplied because matrix algebra is non-commutative, as stated before. From 

Equations (3.6) and (3.8) we obtain: 

 

𝐸2 =  𝑀2,1 ∙ 𝑀1,0 ∙ 𝐸0                             (3.24) 

 

The vector E2 in Equation (3.24) is not the output from the two-ring resonator. 

Therefore, we need the output vector Eout, which is defined by the left-hand coupler 

matrix. Thus from Equation (3.16) and (3.24) we obtain: 

 

𝐸𝑜𝑢𝑡 =  𝑀𝑜𝑢𝑡 ∙ 𝐸2 =  𝑀𝑜𝑢𝑡 ∙ 𝑀2,1 ∙ 𝑀1,0 ∙ 𝐸0            (3.25) 

 

Equation (3.25) contains a left-hand coupler matrix multiplied by a counter-clockwise 

ring matrix and afterwards with a clockwise ring matrix. They are therefore stated in 

reverse order with respect to the light propagation. E0 is the input vector for the two-

ring resonator. Although the matrices are not particularly complicated, when we 

multiply them we obtain huge equations. Given that we now are modelling two rings, 

we must calculate with three effective reflectances and transmittances, which makes 

the calculations rather more demanding. For this reason we do not state the whole 

matrix. Instead, we define a matrix Q, which is given by: 

 

𝑄 =   
𝑞1,1 𝑞1,2

𝑞2,1 𝑞2,2
                                (3.26) 

 

Then for the two rings, including the output matrix Mout, we have: 

 

 
𝐸2,3

+

𝐸2,4
−  =   

𝑞1,1 𝑞1,2

𝑞2,1 𝑞2,2
 ∙  

𝐸0,1
+

𝐸0,2
−                         (3.27) 
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The coefficients that we derived are listed in the Appendix A. Equation (3.27) 

shows that the output is equal to the overall transfer matrix for the two rings multiplied 

by the input vector. E+
01 and E-

24 are either known input signals or no input signals at 

all, which means that they can be zero. E+
23 and E-

02 are the corresponding output 

fields. Thus we obtain: 

 

𝐸2,3
+ =  𝑞1,1 ∙ 𝐸0,1

+ +  𝑞1,2 ∙ 𝐸0,2
−                       (3.28) 

 

𝐸2,4
− =  𝑞2,1 ∙ 𝐸0,1

+ + 𝑞2,2 ∙ 𝐸0,2
−                       (3.29) 

 

E+
01 and E-

24 are known quantities and we rearrange them to the right of the 

equation, but E+
23 and E-

02 are the unknowns so we rearrange them on the left. This 

is given by: 

 

𝐸0,2
− =   

1

𝑞2,2
 ∙ 𝐸2,4

− −  
𝑞2,1

𝑞2,2
 ∙ 𝐸0,1

+                    (3.30) 

 

We substitute Equation (3.30) into (3.28): 

 

𝐸2,3
+ =   

𝑞2,2∙𝑞1,1− 𝑞1,2∙𝑞2,1

𝑞2,2
 ∙ 𝐸0,1

+ +   
𝑞1,2

𝑞2,2
 ∙ 𝐸2,4

−            (3.31) 

 

As we can see, Equations (3.30) and (3.31) contain four unknown coefficients 

that need to be calculated. All of the coefficients include 1/q22, so we calculated it 

separately. We calculated (q11q22-q12q21)/q22, q12/q22 and q21/q22 by two methods. The 

first was the full expansion of all terms and the second was by using determinants 

and their properties. The use of both methods enabled us to crosscheck our results 

and to find out the easiest of the two, which is by determinants. We do not show 

these here because the equations for the Q matrix are very large and the coefficients 

in Equations (3.30) and (3.31) are even greater. The reader is referred to Appendix A 

for a listing of the terms and the complete amplitude transfer function. 
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We now have all of the information which is needed for the amplitude transfer 

function of a two-ring resonator and it is calculated using: 

 

 
𝐸2,3

+

𝐸0,1
+  =   

𝑞22 ∙𝑞11−𝑞12∙𝑞21

𝑞22
                           (3.32) 

 

 As in Section 3.2, E-
2,4 is an alternative input and therefore neglected so that 

we achieve Equation (3.32). The final equations we obtained by calculating the four 

coefficients in Equations (3.30) and (3.31) are the same as the ones that Oscar 

Rautenberg derived with the non-matrix method. For this reason we can say that the 

matrix-method for a two-ring resonator works, even if in some respects it adds to the 

conceptual demands, compared with direct solution of twelve linear equations. 

However, there are two points to note: (a) the balance of difficulty shifts from the 

matrix approach to the direct algebraic solution as the number of rings is increased 

and (b) an important concern in this project is the possibility of algebraic mistakes 

because our calculations are complicated. The provision of identical end results, 

despite using different methodologies, gives us confidence in the validity of our work. 

 

The design of practical filters requires transfer functions that are stated in 

terms of relative intensities, which are real numbers. In contrast, the terms stated in 

this section are all complex. The intensities can be obtained by multiplying the 

complex fields by their own complex conjugates. In most instances this is a lengthy 

calculation but it is a necessary final step in the formulation of a useful model of the 

filters. The details of this calculation are briefly stated in Appendix B and the 

appropriate end result is used in Chapter 4, where the filters’ spectra are analysed in 

detail. 
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3.4 Matrix Formulation of a Three-Ring Resonator 
 

 

 

 

Figure 3-2  

 

 

 

We use again the matrix method to formulate the total complex amplitude 

matrix for three rings. Therefore, the last coupler matrix (in that case a right-hand 

coupler) is multiplied by the three matrices for the constituent rings. Considering the 

order in which the matrices are multiplied, we start with the third ring, then the second 

and lastly the first ring. 

 

The equation for the total complex amplitude matrix is: 

 

 𝐸𝑜𝑢𝑡 =  𝑀𝑜𝑢𝑡 ∗ 𝑀32 ∗ 𝑀21 ∗ 𝑀10 ∗  𝐸0                (3.33) 

 

Eout and E0 are (2x1) vectors, stating the output and the input on the compound 

resonator, respectively. Mout is the (2x2) matrix for the last coupler and M32, M21 and 

M10 are the (2x2) transfer matrices for each ring, as described in Section 3.2. The 

indices relate to the ring for which they are used. The four M-matrices are given by: 

 

Three ring resonator (top) and the equivalent four-mirror Fabry-Pérot resonator 

(below). Light propagates clockwise in the left and right ring, counter-clockwise in 

the middle ring. 
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𝑀10 =   
−  

𝑟0

𝑡0
 ∙ 𝑒−𝛿1,0  

1

𝑡0
 ∙ 𝑒−𝛿1,0

 
𝑡0

2−𝑟0
2

𝑡0
 ∙ 𝑒𝛿0,1  

𝑟0

𝑡0
 ∙ 𝑒𝛿0,1

                  (3.34) 

 

𝑀21 =   
 
𝑟1

𝑡1
 ∙ 𝑒𝛿1,2  

𝑡1
2−𝑟1

2

𝑡1
 ∙ 𝑒𝛿1,2

 
1

𝑡1
 ∙ 𝑒−𝛿2,1 − 

𝑟1

𝑡1
 ∙ 𝑒−𝛿2,1

                  (3.35) 

 

𝑀32 =   
−  

𝑟2

𝑡2
 ∙ 𝑒−𝛿3,2  

1

𝑡2
 ∙ 𝑒−𝛿3,2

 
𝑡2

2−𝑟2
2

𝑡2
 ∙ 𝑒𝛿2,3  

𝑟2

𝑡2
 ∙ 𝑒𝛿2,3

                  (3.36) 

 

𝑀𝑜𝑢𝑡 =  
 

1

𝑡3
 − 

𝑟3

𝑡3
 

 
𝑟3

𝑡3
  

𝑡3
2−𝑟3

2

𝑡3
 
                            (3.37) 

 

As would be expected, the intensity transfer function is complicated and long. We 

calculate it with three different effective coupler reflectances and transmittances and 

six different inter-coupler fibre lengths are required. It is important to remember that 

in the general case the length L01 is not equal to L10. As we have done in Section 

(3.2), we calculate with 𝛿 i,j, which includes complex numbers. The transfer matrix is 

long and complicated and so we only state the general matrix format which includes 

the transfer matrix Q in this Chapter. The constituent elements of Q are provided in 

Appendix A. 

 

 
𝐸3,3

−

𝐸3,4
+  =   

𝑞1,1 𝑞1,2

𝑞2,1 𝑞2,2
 ∙  

𝐸0,1
+

𝐸0,2
−                         (3.38) 

 

E+
01 and E-

33 are known complex fields. E-
02 and E+

34 are the unknown outputs, which 

must be calculated. Therefore, we rearrange the two equations from Equation (3.38) 

and obtain: 



Marcel Elshoff & Oscar Rautenberg  Universidad Pública de Navarra  

40 
 

 

𝐸0,2
− =   

1

𝑞1,2
 ∙ 𝐸3,3

− −  
𝑞1,1

𝑞1,2
 ∙ 𝐸0,1

+                    (3.39) 

 

We substitute Equation (3.39) into E+
3,4 which we have from Equation (3.38): 

 

𝐸3,4
+ =   

𝑞2,1∙𝑞1,2− 𝑞1,1∙𝑞2,2

𝑞1,2
 ∙ 𝐸0,1

+ +   
𝑞2,2

𝑞1,2
 ∙ 𝐸3,3

−            (3.40) 

 

 Equations (3.39) and (3.40) incorporate four unknown terms, as we had in 

Section 3.3 for the two ring resonator. We calculated them by using the two methods: 

full expansion of all terms and by determinants and their properties. They are stated 

in the Appendix A because they are complicated and provide little physical insight 

into the resonator’s operation, as well as the complete transfer function from 

Equation (3.41). However, they do provide all of the information needed for the final 

amplitude equation: 

 

 
𝐸3,4

+

𝐸0,1
+  =   

𝑞21 ∙𝑞12−𝑞11∙𝑞22

𝑞12
                           (3.41) 

 

As in Sections 3.2 and 3.3, E-
3,3 is an alternative input and we neglect it so that we 

achieve Equation (3.41). This result conforms to the complex amplitude equations 

using the non-matrix method of Oscar Rautenberg. We did not extend the calculation 

presented in this section to the intensity calculation that we would need to interpret 

the filter functions of our three-ring resonator. The necessary calculation can be 

performed by multiplying the fields E-
0,2 and E+

3,4 by their own complex conjugate, as 

described in Chapter 2 and they are given Appendix B. Our goal in the current 

chapter is merely to establish a matrix methodology and ensure that it provides 

results that are consistent with the non-matrix approach. Oscar Rautenberg has 

performed the intensity calculation for the two- and three-ring resonator with a non-

matrix method and he provides the end result in Chapter 4. The calculation 

methodology is described in Appendix B. 
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4 Ring Transfer Functions and Their Interpretation 
 

4.1 Introduction 
 

The aim of this chapter is to interpret the (intensity) transfer functions of one-, 

two- and three-ring resonators. Our aim is to obtain filter functions which are 

progressively more “box-like” for potential application to a WDM system. A rectangle 

profile function is mathematically possible but we would need an infinite number of 

rings to realize it. Therefore, in the real world we have to make a compromise. 

Moreover, the calculation increases in difficulty (in a nonlinear manner) as we 

increase the number of rings. We achieved the intensity transfer function by 

multiplying the amplitude function with its own complex conjugate which is a huge 

calculation. So we decided to calculate the transfer functions for a maximum of three 

rings.  

 

In this chapter we explain the properties and behaviour of one-, two- and 

three-ring resonators. We also obtain filter function that reach unity  relative intensity 

at its resonant peaks in the zero loss limit. Our approach is to state and solve (by 

direct methods) a set of linear equations that establish relationships between the 

propagating electric fields and different points within the compound resonator. All the 

equations we use in this chapter are calculated by this non-matrix method and differ 

only by the effective reflectance, which we can simply replace by the equations for a 

coupler for a ring resonator as shown in Equation (2.4). The number of parameters in 

the transfer functions increases markedly with the number of rings because of the 

increasing number of constants, such as effective reflectances and because of the 

numerous possible wave interactions. 

 

The ring circumferences are adjustable parameters so that we could have for 

every ring a separate length.  However, as we explain in Section 4.5, our operational 

objectives are best achieved by ensuring that every ring has the same size. 

Therefore, most of our study is devoted to one value for every ring circumference. 

Another parameter is the loss coefficient . In most of this chapter  is set to zero 

because it provides little physical insight into ring design for optimal performance. 

Moreover, it only appears in an exponential function and if we assume that the loss is 

zero, the exponential functions become one. Our approach is to optimise the filter 
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performance in the absence of loss and then to incorporate non-zero values of  to 

observe its effect. Throughout this chapter we plot graphs with “phase” (in radians) as 

the horizontal coordinate. The phase, Ф results from product from L which are the 

arguments of the sinusoids within the transfer functions, as derived in Section 2.4. 

 

4.2 Singe-Ring Resonator: Transfer Function 
 

The transfer function for a one-ring resonator is derived in Section 3.2 and we 

obtain the same equation for the transfer function for a two-mirror Fabry-Pérot 

resonator if we replace the reflectances and transmittances with the substitutions 

from equation (2.4) and (2.5). When we assume that both couplers have the same 

coupling ratio which corresponds to two identical couplers, the transfer function is 

then given by  

  
𝐸𝑜𝑢𝑡

+

𝐸𝑖𝑛
+  

2

=  
𝑇2

 1−𝑅 2+ 4∙𝑅 ∙ sin 2 
Ф

2
 
                          (4.1) 

 
 
with R = r ∙ r =  r2, T = 1 – R. We note that the r is the amplitude value for the 

effective reflectance and Ф =  ∙ L. Where required, coupler and fibre losses can be 

included by using non-zero values of  and γ in Equations (2.2) and (2.4).  

 

The transfer function is plotted in Figure 4-1 and 4-2, from which we can see 

that the one-ring resonator gives us a periodic function which repeats every 2π. A 

comparison of Figures 4-1 and 4-2 shows that narrow peaks with increased depth of 

modulation are obtained by using high values of the effective reflectances. Now we 

can see that we do not achieve a box-like function. The top of the peak does not 

become remotely rectangular merely by changing the effective reflectance value. 

Increased effective reflectances lead to narrower peaks, which means that the peak 

is no longer useful for high data rate communications channels because it is too 

narrow. With decreasing reflectance the peaks becomes wider but the disadvantage 

is that we achieve also a very bad rejection between the peaks as we can see for 

example at π/2 in Figure 4-1 where the relative intensity is 0.0625, a value which is 

only 12 dB down from the peaks and clearly unsuitable for telecommunications 

purposes. 
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Figure 4-1  

 

 

  

 

 

Figure 4-2  

 

Transfer function of a one-ring resonator with effective reflectance R = 0.6. The 

coupling and fibre losses are assumed to be negligible. 

Transfer function of a one-ring resonator with effective reflectance R = 0.9. The 

coupling and fibre losses are assumed to be negligible. 
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Even in Figure 4-2, where the depth of modulation is 25.6dB, we are unlikely to 

achieve a filter that is sufficient for many applications. We could, of course, use 

values of R that are ever closer to unity and thereby obtain arbitrarily high values of 

M(dB) but it is clear from Figures 4-1 and 4-2 that we would pay the price of having 

peaks that are so narrow as to be unusable for high capacity WDM applications. 

Figures 4-3 and 4-4 are the direct equivalents of Figures 4-1 and 4-2, respectively but 

they are plotted on decibel scales to emphasise the out-of-band rejection that the 

filters offer. Consequently, by adjusting the parameters we have it is impossible to 

obtain a useful filter profile for our applications. What we can do is using more than 

one ring which means that the intensity transfer function becomes larger and more 

complicated. 

 

 

 

Figure 4-3 Equivalent plot to Figure 4.1 with a logarithmic vertical axis. 
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Figure 4-4 Equivalent plot to Figure 4.2 with a logarithmic vertical axis. 

 

4.3 Single-Ring Resonator: Finesse 

 
The concept of finesse is defined in Section 2.8: it is the ratio of the free 

spectral range to the full with at half maximum of the peaks. We assume that we 

have no losses so that  = 0 and tj
2 + rj

2 = 1 with j = 0,1. We know from Section 4.2 

that the free spectral range appears at Ф = ±2π, ±4π, ±6π, ±8π, and so on. Therefore, 

we can deduce that the free spectral range in phase space is ∆Ф = 2π because it is a 

periodic function. So we need an expression for the full width at half maximum of the 

peaks δФ1/2.  We obtain the half of one peak which reaches unity, thus 

 

𝑇2

 1−𝑅 2+ 4∙𝑅 ∙ sin 2 
Ф

2
 

=
1

2
                                       (4.2) 

 

So we can use the fact of that T2 = 1 – R2 and transform Equation (4.2) to  

 

sin2  
Ф

2
 =

 1−𝑅 2

4 ∙𝑅
                                            (4.3) 
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which gives us Equation (4.4) 

 

sin  
Ф

2
 = ±

 1−𝑅 

2 ∙ 𝑅
                                            (4.4) 

 

By using a approximation of Taylor series which says that for small argument sin[ϴ] ≈ 

ϴ, we obtain Equation (4.5). 

 

 
Ф

2
 

±
1

2

= ±
 1−𝑅 

2 ∙ 𝑅
                                            (4.5) 

 

Thus we have a plus sign term and a minus term for Ф/2 which are defined in 

Equations (4.6) and (4.7). 

 

Ф
+ 

1

2

= +
 1−𝑅 

 𝑅
                                            (4.6) 

 

 

Ф
− 

1

2

= −
 1−𝑅 

 𝑅
                                            (4.7) 

 

The definition for δФ1/2 = (Ф
+

1

2

− Ф
−

1

2

) gives us Equation (4.8) 

 

𝛿Ф1

2

=
2∙ 1−𝑅 

 𝑅
                                            (4.8) 

Then we have the full width at half maximum and the free spectral range and can 

form Equation (4.9) for the finesse. 

 

𝐹 =
∆Ф

𝛿Ф1
2

=
∆𝜈

𝛿𝜈1
2

=
𝜋 ∙ 𝑅

 1−𝑅 
                                      (4.9) 

 

Now we have a formula for the finesse for a single-ring resonator, which assumed 

that we have negligible losses. The finesse is subject to the effective reflective R = r2.  
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Figure 4-5 shows the finesse in decibels of a one-ring resonator. As expected, F 

becomes infinite in the limit as R tends to unity. 

 

 

 

Figure 4-5 

 

 

4.4 Two-Ring Resonator: Transfer Function 
 

As we have seen in Section 4.2, one ring is not sufficient to satisfy our needs. 

Now we explore the possibilities presented by a two-ring structure, the theory of 

which is derived in Section 3.3. As shown in Figure 4-6, there is one more coupler, 

creating one additional effective reflectance. The transfer function for a two-ring 

resonator is more complicated than that of a one-ring resonator. By replacing the 

effective reflectances using Equations (2.4) we obtain the equivalent intensity transfer 

function for the two-ring resonator. 

 

 

 

Variation of Finesse (in dB) as a function of effective reflectance R for a single-

ring resonator with negligible losses. 
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Figure 4-6 Two ring resonator with its parameters. 

 

The intensity transfer function for a two-ring resonator is given by Equations 

(4.10) – (4.12), where the effective reflectances are defined in Equations (4.13) – 

(4.15). The Ф1 and Ф2 in Equation (4.16) and (4.17) are phase shifts in the first and 

second rings, respectively, where  is the waveguide’s propagation constant and L1 

and L2 are the ring circumferences. In the special case of zero losses  = 0 and t1
2 

+ 

r1
2 = 1, so that R01 = r0∙r1, R12 = r1∙r2 and R02 = r0∙r2. 

 

 
𝐸𝑜𝑢𝑡

+

𝐸𝑖𝑛
+  

2

=  
 𝑇 2

 𝐷 2
                                    (4.10) 

 

 

   𝑇 2  =  𝑡0
2  ∙  𝑡1

2  ∙  𝑡2
2                                                     (4.11) 

 

 𝐷 2 =  1 − 𝑅01 − 𝑅12 + 𝑅02 
2 

                           +4 𝑅01 + 𝑅12 ∙ 𝑅02 ∙ sin2  
Ф1

2
  

                            +4 𝑅12 + 𝑅01 ∙ 𝑅02 ∙ sin2  
Ф2

2
  

                           −4 ∙ 𝑅01 ∙ 𝑅12 ∙ sin2  
Ф1 − Ф2

2
  

                 −4 ∙ 𝑅02 ∙ sin2  
Ф1 + Ф2

2
  

 

  𝑅01 =  𝑟0  ∙  𝑟1 ∙ exp − ∙ 𝐿1 2                                    (4.13) 

(4.12) 
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𝑅12 =  𝑟1  ∙  𝑟2 ∙ exp − ∙ 𝐿2 2                                    (4.14) 

𝑅02 =  𝑟0 ∙  𝑡1
2 + 𝑟1

2  ∙  𝑟1 ∙ exp − ∙  𝐿1 + 𝐿2 2                       (4.15) 

 

Ф1 =   ∙  𝐿1                                                     (4.16) 

Ф2 =   ∙  𝐿2                                                     (4.17) 

 

In order to visualise how the double-ring assembly influences the frequency 

response, we choose for r0
2 and r2

2 a value of 0.5 and for r1
2 a value of 0.92. We use 

values of Ф1 and Ф2 in the ratio of 10:9, corresponding to two different ring 

circumferences. See Figure 4-7. 

 

 

 

Figure 4-7  

 

 

 

Figure 4-7 shows several significant features that are not suitable for filtering: 

The resonance peaks are unequal in magnitude, they do not reach 100% and they 

sometimes display double peaks. Inspection of the subsidiary peaks around ±2π 

reveals that the form of the peak is divided into two smaller peaks; the larger one 

reaching 47,3% and the smaller with a relative intensity of 43,1%. Such behaviour is 

The transfer function of a two ring resonator with r0
2
 = r2

2
 = 0.5 and r1

2
 = 0.92. 

The ring lengths are in the ratio L1:L2 = 10:9 and losses due to imperfect coupling 

and waveguide transmission are ignored. 
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not useful for our applications. We are not even approximating the 100% of intensity 

and so we do not have a useful filter profile. However, close inspection of Figure 4-7 

shows that there is good out-of-band rejection at the frequencies mid-way between 

the peaks and this seems to be possible without the excessively narrow peaks that 

were discussed in Section 4.2. Consequently, we have grounds to hope that two-ring 

resonators might give us better performance than their single-ring counterparts, 

provided that we can select appropriate parameters. 

 

4.5 Two-Ring Resonator: Equal Circumferences 

 
In an attempt to ensure that all peaks are of equal magnitude, we have 

examined numerous combinations of effective reflectances and consistently found a 

means to prevent the unequal peaks that are displayed in Figure 4-7. We can 

achieve this with equal ring circumferences: L1 = L2. The reason is that both rings are 

simultaneously resonant at the same sets of frequencies. Figure 4-8 is an example 

with equal rings. We see that the peaks all reach unity but we also obtained double 

peaks, which is an unwanted feature that we have to try to avoid. The reason for the 

double peaks can be seen with reference to Equation (4.12). There is a sin2[(Ф1 + 

Ф2)/2] term which is superimposed on sin2[Ф1/2] and sin2[Ф2/2] terms. (When Ф1 = Ф2  

the sin2[(Ф1 - Ф2)/2] term vanishes and we are left with two frequency modulations in 

the transfer function.) The different modulation frequencies Ф and Ф/2 are 

superposed to give the twin peaks shown in Figure 4-8. 
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Figure 4-8  

 

 

 

 

 

Figure 4-9  

The transfer function of a two-ring resonator with identical ring circumferences, 

and effective reflectances of r0
2
 = r2

2
 = 0.6 and r1

2
 = 0.75. All losses are assumed 

to be negligible. 

 

Transfer function of a two-ring resonator with equal ring circumferences, zero 

losses and effective reflectances of r0
2
 = 0.7, r2

2
 = 0.4 and r1

2
 = 0.89. 
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We have explored many values of the effective reflectances r0
2, r1

2 and r2
2 with 

the aim of eliminating the dual peaks shown in Figure 4-8. Our objective can be 

achieved with reasonable ease and an example is illustrated in Figure 4-9, where r0
2 

is equal to 0.7, r2
2 is equal to 0.4 and r1

2 has a value of 0.89. Now we have values but 

which satisfy our needs of a periodic filter profile with the same maximum values and 

always single peaks. It was found out by trying values, but not in a structured way. 

Unfortunately, as Figure 4-9 shows, the transfer function does not reach unity. We 

have not been able to obtain unity at the peaks when there are different outer 

couplers, that is when r0
2 ≠ r1

2 ≠ r2
2. Therefore, we aim to explore solutions in which 

the outer couplers are equal so that r0
2 = r2

2 = r2 but r1
2 has a distinct value. Figure 4-

10 then illustrates the revised structure of a two-ring resonator. 

 

 

 

Figure 4-10  

 

 

Until this point we have always chosen the values for the effective reflectances 

by trial and error. Now we know that we require equal ring circumferences and equal 

outer couplers to obtain equal peak heights, where every peak reaches unity. 

However, the two conditions are not sufficient to ensure that we also obtain a single 

peak. We tried many plots by satisfying both conditions of equal ring circumferences 

and outer coupler but it is not at all straightforward to achieve single peaks with many 

Two-ring resonator with equal ring circumferences and different outer coupling 

ratios, leading to the effective reflectances r
2
= (1-K) and r1

2
= (1-K1). 
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effective reflectance values merely by guessing. A systematic computer search 

algorithm could be devised but it would always be less satisfactory than an analytical 

formula. 

 

We want to make the choice for the effective reflectances more structured and 

to do this we start with Equations (4.11) to (4.17) with Ф1 = Ф2 = Ф. We also consider 

zero transmission and coupler losses so that  = 0 and tj
2 + rj

2 = 1, where j = 0,1,2. 

We define Y(Ф): 

 
𝐸𝑜𝑢𝑡

+

𝐸𝑖𝑛
+  

2

=  
 𝑇 2

 𝐷 2
= 𝑌 Ф                          (4.18) 

 

where the numerator is a constant in Ф 

 

   𝑇 2  =  𝑡4  ∙  𝑡1
2                                                        (4.19) 

 

and the denominator is 

 

 𝐷 2 =  1 − 2 ∙ 𝑅 + 𝑅02 
2 

                           +8𝑅 1 + 𝑅02 ∙ sin2  
Ф

2
  

              −4 ∙ 𝑅02 ∙ sin2 Ф  

 

The effective reflectances are now 

 

𝑅 =  𝑅01 = 𝑅12 = 𝑟 ∙ 𝑟1                                         (4.21) 

              𝑅02  =  𝑟0  ∙  𝑟2 =  𝑟2                                            (4.22) 

 

and the phase is is 

Ф =  Ф2 =  Ф1                                                (4.23) 

 

We must first calculate what makes the function Y(Ф) reach unity (at least, 

when the loss can be ignored). Our approach is to differentiate the whole transfer 

function, where its “extrema” are located; they occur when the derivative is equal to 

zero. We define the constants A, B and C to make the calculations easier and we 

(4.20) 
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also use for the transfer function the expression Y(Ф) as we show in Equations (4.24) 

to (4.27).  

 

𝑌 Ф =  
𝑇2

 𝐴+𝐵∙sin 2 
Ф

2
 −𝐶∙sin 2 Ф  

                                (4.24) 

 

𝐴 =   1 − 2 ∙ 𝑅 + 𝑅02 
2                                         (4.25) 

 

𝐵 =  8𝑅 1 + 𝑅02                                               (4.26) 

 

𝐶 =  4 ∙  𝑅02                                                  (4.27) 

 

Then, the derivative is 

𝑑𝑌

𝑑Ф
=  

−𝑇3∙ 𝐵∙sin 
Ф
2
 ∙cos 

Ф
2
 −2∙𝐶∙sin Ф ∙cos Ф  

 𝐴+𝐵∙sin2
 
Ф
2
 −𝐶∙sin2 Ф  

2                                                                                                                             

 

dY/dФ is zero if its numerator is zero and with the aid of standard trigonometric 

relations, 

 𝐵 − 4 ∙ 𝐶 ∙  cos Ф   ∙  sin Ф = 0                                      (4.29) 

 

So we have two conditions to bring Equation (4.29) to zero. The first one is that the 

sin-term goes to zero and the second is that the bracketed term becomes zero. In 

both cases we satisfy our requirement for a vanishing first derivative, where the 

function exhibits its extrema. The two conditions can be summarised as: Condition a) 

sin(Ф) = 0 and Condition b) B - 4∙C∙ cos[Ф] = 0. By the use of standard trigonometric 

identities condition b) is the same as sin2[Ф/2] = 
1

2
 [1 - B/4C]. 

 

In Equation (4.18), which is the transfer function, we have two terms which are 

squares of sinusoids. One has the argument Ф/2 and the other has the argument Ф. 

If we consider condition a) we recognize that we have two cases, which means 

 

(4.28) 
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when Ф = ±π, ±3π, ±5π, ±7π,...  𝑌(Ф) = 𝑌𝑚𝑖𝑛 =  
𝑇2

 1 + 2 ∙𝑅+ 𝑅02 
  

 

when Ф = 0, ±2π, ±4π, ±6π, ±8π,...  𝑌(Ф) = 𝑌𝑚𝑎𝑥 =  
𝑇2

 1− 2 ∙𝑅+ 𝑅02 
  

 

Equation (4.30) specifies the minima of the transfer function. Equation (4.31) can 

specify the maxima under certain circumstances (which is the reason for the 

terminology Ymax) but it always provides the value when the two rings are individually 

on resonance.  

 

By substituting Condition b) we can transform the denominator from Equation (4.28) 

into a term which looks like  

 

𝐴 +  𝐵 − 4 ∙ 𝐶 ∙ sin2  
Ф

2
 +  4 ∙ 𝐶 ∙ sin4  

Ф

2
                        (4.32) 

 

Equation (4.32) made use of standard trigonometric substitutions to obtain the sin4-

term. Thus by using condition b) and substituting Equation (4.25) to (4.27) for A, B 

and C, we obtain: 

 

𝑌 Ф =  𝑌𝑝𝑒𝑎𝑘 =  
𝑇3∙ 𝑅02

 𝑅02−𝑅2  1−𝑅02 2                            (4.33) 

 

It should be remembered that we do not have loss and we have chosen to make the 

outer couplers equal. That means that we have R01 = R12 = R = r0 ∙ r1 and R02 = r2 

also shown in Equation (4.21) and (4.22). Also we have effective transmittances in 

the numerator which we can easily replace because, when the coupler losses are 

negligible, rj
2 = 1 – tj

2
, shown in Section 2.4. So we have a T2-term in the numerator 

which is  

 

𝑇3  =  𝑡4  ∙  𝑡1
2  =   1 − r2 2 1 − 𝑟1

2                              (4.34) 

 

If we replace the terms in Equation (4.33) with the appropriate effective reflectances 

we obtain the transfer function shown in Equation (4.35). 

(4.30) 

(4.31) 
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𝑌𝑝𝑒𝑎𝑘 =
 1−r2 

2
 1−𝑟1

2 ∙𝑟2

 𝑟2−  𝑟∙𝑟1 2 ∙ 1−𝑟2 2 =
 1−𝑟1

2 ∙𝑟2

𝑟2 1− 𝑟1
2 

= 1              (4.35) 

 

Equation (4.35) shows that the transfer function reaches unity when we have no loss 

and we have 

sin2  
Ф

2
 =

1

2
∙  1 −

𝐵

4𝐶
                                          (4.36) 

 

which we obtain if we change condition b) with the help of standard trigonometric 

identities. We can therefore find an expression for Ф where this condition is applies. 

With the use of Equations (4.25) to (4.27) for the A-, B- and C-terms, we obtain 

Equation (4.37). 

 

Ф𝑝𝑒𝑎𝑘 =
1

2
∙ sin−1 ±16 ∙  2 ∙ 𝑟2 ∙  2 ∙ 𝑟 − 𝑟1 ∙  1 + 𝑟2                 (4.37) 

 

Equation (4.37) specifies the phase values where periodic peaks appear. It contains 

a “±” sign, which indicates where there are the double peaks as illustrated in Figure 

4-11. In Figure 4-11 we have an enlargement of Figure 4-8 at round Ф = 0, showing  

the value Фpeak where the double peaks appear. The inverse sinusoid is a periodic 

function and so such double peaks occur at every 0, ±2𝜋, ±4𝜋, ±6𝜋, plus or minus 

Фpeak and so on.  
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Figure 4-11  

 

 

4.6 Two-Ring Resonator: Degeneracy Condition 
 
We now make a further calculation to obtain what we believe to be one of the 

most important derived parameters in this report. It is what we designate the 

“degeneracy condition” for the two-ring resonator with equal ring circumferences. Our 

starting point is Equation (4.31) which applies when Ф = 0, ±2π, ±4π, ±6π, etc. 

Equation (4.34) can be substituted for the numerator, giving 

 

𝑌𝑚𝑎𝑥 =  
𝑇3

 1− 2 ∙𝑅+ 𝑅02 
=  

 1−r2 
2
 1−𝑟1

2 

 1− 2∙𝑟∙𝑟1+𝑟2 2 = 1               (4.38) 

 

In Equation (4.38) we consider that the numerator and the denominator have to be 

the same to make the whole equation equal to unity. Therefore, we obtain Equation 

(4.39). 

±Фpeak 

Ymax 

Ypeak 

Enlargement of Figure 4-8 over range –π ≤Ф≤ +π, showing Ymax from Equation 

(4.31) and Ypeak from Equation (4-35). 
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 1 − r2 2 1 − 𝑟1
2  =  1 −  2 ∙ 𝑟 ∙ 𝑟1 + 𝑟2 2                  (4.39) 

 

Now we have to solve this equation, which leads us to 

 

𝑟1 =
2∙𝑟

 1+𝑟2 
                                             (4.40) 

 

If we square this term we obtain an intensity value for the effective reflectance r1
2. 

 

𝑟1
2 =

4∙𝑟2

 1+𝑟2 2                                             (4.41) 

 

Equation (4.41) states an important effective reflectance that allows us to specify the 

coupler ratio of the middle coupler, as shown in Figure 4-10. It is a value that 

guaranties unity relative intensity as long as we have zero losses, so that  = 0, t2 = 1 

- r2, t1
2 = 1 - r1

2 and equal ring circumferences L1 = L2 = L. Moreover, this little formula 

for the middle coupler simultaneously guaranties single peaks. The double peaks 

occur every  ± Фpeak
  at every 0, ±2π, ±4π, ±6π  and so on. We have also a formula for 

Фpeak. The r1 term from Equation (4.40) can be substituted into Equation (4.37) to 

provide Equation (4.42), which then becomes zero, as we can see in Equation (4.43).  

 

Ф𝑝𝑒𝑎𝑘 =
1

2
∙ sin−1  ±16 ∙  2 ∙ 𝑟2 ∙  2 ∙ 𝑟 −

2∙𝑟

 1+𝑟2 
∙  1 + 𝑟2          (4.42) 

 

Ф𝑝𝑒𝑎𝑘 =
1

2
∙ sin−1 0 = 0                                                            (4.43) 

 

Equation (4.43) means that we have a single peak at every 0, ±2𝜋, ±4𝜋, ±6𝜋, and so 

on and every peak reaches unity simultaneously. Therefore we call Equation (4.41) 

for the middle effective reflectance r1
2 the “degeneracy condition”. With this condition 

we predict that both peaks, at ± Фpeak,
 merge into each other and become to one 

single peak which reaches unity at the same time. Our terminology “degeneracy” is 

with reference to ionic and atomic spectra, where certain energy levels provide single 

or multiple emitted wavelengths, according to the external environment within which 
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the emitting species resides. It is also used in the context of optical polarisation 

phenomena 

 

 

 

Figure 4-12  

 

 

 

 

Transfer function for a two-ring resonator with equal outer couplers, effective 

reflectances of r1
2
=0.818 and r

2
=0.402 and zero losses. The reflectances conform 

to the degeneracy condition. The depth of modulation is 20dB. 
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Figure 4-13  

 

 

 

Figures 4-12 and 4-13 are plots of the transfer function for two-ring resonators that 

conform to the degeneracy condition. As required, there are no double peaks, every 

peak has the same height and they all reach unity at Ф = 0, ±2𝜋, ±4𝜋, ±6𝜋,... . 

 

4.7 Two-Ring Resonator: Depth of Modulation 

 
In a DWDM system we need an optical filter which passes through only one 

(modulated) signal channel with all its spectral components and rejects all of the 

others. The rejection of the channels that we do not need is also very important in 

order to avoid unwanted superposition at the receiver, which is known as “cross-talk”. 

Therefore, as explained in Section 2.8 the intensity transfer function between our 

selected channels should be zero, as far as possible. Figure 4-14 is for the same ring 

design as Figure 4-12 but the vertical axis is logarithmic to exaggerate the features at 

very low relative intensities. Unfortunately, the depth of modulation is 20dB and this is 

unlikely to be sufficient for many optical fibre transmission systems. Figure 4-15 is the 

equivalent plot to Figure 4-13 and it displays a depth of modulation of 40dB. This is a  

Transfer function for a two-ring resonator with equal outer couplers, effective 

reflectances of r1
2
=0.98 and r

2
=0.753 and zero losses. The reflectances conform 

to the degeneracy condition. The depth of modulation is 40dB. 
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good out-of-band rejection that corresponds to one part in ten thousand of the 

transmitted power at the peaks. Such performance is much more suitable for modern 

WDM communications. 

 

 

 

Figure 4-14  

 

 

 

Transfer function for a two-ring resonator with equal outer couplers, effective 

reflectances of r1
2
=0.818 and r

2
=0.402 and zero losses. The reflectances conform 

to the degeneracy condition. The depth of modulation is 20dB in a logarithmic 

scale.  
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Figure 4-15  

 

 

 

 

Although we have shown that the degeneracy condition for r1
2 (Equation 4.41) 

gives us good characteristics for the peaks, it does not predict the rejection between 

the peaks. We therefore need another expression to specify the minima of Y(Ф) when 

our degeneracy condition applies and we use it to determine the depth of modulation, 

as defined in Section 2.8. In order to do this we continue to assume equal ring 

circumferences for the rings, L1 =L2 = L, and zero losses  = 0. Therefore, we use all 

of the results we achieved until now for our next steps. 

 

We have shown that the minima occur Ф = ±π, ±3π, ±5π, ±7π, and so on, and 

for this the transfer function obeys Equation (4.30). We also have to consider 

Equation (4.41), which is our degeneracy condition for the effective reflectance for 

the middle coupler, r1
2.  The T2 term, with its associated effective reflectances, which 

are shown in Equation (4.34), are also substituted and we replace the denominator 

with Equation (4.21) and (4.22). So we obtain Equation (4.44). 

 

Transfer function for a two-ring resonator with equal outer couplers, effective 

reflectances of r1
2
=0. 980 and r

2
=0.753 and zero losses. The reflectances conform 

to the degeneracy condition. The depth of modulation is 40dB in a logarithmic 

scale. 
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𝑌𝑚𝑖𝑛 =
 1−r2 

2
 1−𝑟1

2 

 1+2𝑟∙𝑟1+ 𝑟2 
                                      (4.44) 

 

In order to keep our goal of no double peaks and full intensity we have to include our 

degeneracy condition, by replacing r1 with Equation (4.40) and we arrive at Equation 

(4.45). 

 

𝑌𝑚𝑖𝑛 =

 1−r2 
2
 1− 

4∙𝑟2

 1+𝑟2 
2  

 1+2𝑟∙ 
2∙𝑟

1+𝑟2 + 𝑟2 
                                      (4.45) 

 

So we can change the subject of this formula until we obtain Equation (4.46). 

 

𝑟4 +  
2∙(3∙𝑌𝑚𝑖𝑛

1 2 
+1)

 𝑌𝑚𝑖𝑛
1 2 

−1 
 ∙ 𝑟2 + 1 =  0                                (4.46) 

 

This equation is a quadratic in r2 and so it can easily be solved to give Equation 

(4.47). 

 

𝑟2 =
 1+3∙𝑌𝑚𝑖𝑛

1 2 
 ±2∙ 2∙𝑌𝑚𝑖𝑛

1 2 
∙ 1+𝑌𝑚𝑖𝑛

1 2 
 

 1−𝑌𝑚𝑖𝑛
1 2 

 
                               (4.47) 

 

Equation (4.47) contains a ± sign, which follows from the quadratic equation, giving 

two different values for r2. So we have to interpret which one provides useful values 

for r2. We have tried both possibilities and found values in excess of unity when 

incorporating the “+” sign, which is not possible for our passive optical filter. Clearly, 

this is a non-physical solution because r2 must lie between zero and one. 

Consequently, we must use the minus sign and we have a final formula for the 

effective reflectance r2 in terms of the minimum value of the transfer function, Ymin. 

See Equation (4.48). 
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𝑟2 =
 1+3∙𝑌𝑚𝑖𝑛

1 2 
 −2∙ 2∙𝑌𝑚𝑖𝑛

1 2 
∙ 1+𝑌𝑚𝑖𝑛

1 2 
 

 1−𝑌𝑚𝑖𝑛
1 2 

 
                               (4.48) 

 

This formula gives us the possibility to obtain a value for r2 by choosing Ymin. 

Furthermore, inclusion of the degeneracy condition ensures single peaks that always 

reach unity. If we consider the formula for the depth of modulation, which is described 

in Section 2.8, we obtain Equation (4.49) because in the present circumstances the 

depth of modulation is Ymax/Ymin = 1/ Ymin. Thus, we have 

 

𝑀𝑑𝐵 = −10 ∙ log(𝑌𝑚𝑖𝑛 )                                  (4.49) 

 

𝑌𝑚𝑖𝑛 = 10 −𝑀𝑑𝐵 10                                       (4.50) 

 

We can now use Equation (4.50) in combination with Equation (4.48) to calculate a 

value for the effective reflectances r2 for the outer couplers. A value for the middle 

effective reflectance r1
2 is then determined using Equation (4.41). We thus have a 

design procedure to obtain valuable filtering responses from two-ring resonators that 

is very easy to implement. 

 

We present an example that shows how all the equations work with each 

other. If the required depth of modulation is MdB = 38dB then we obtain for Ymin = 

1.58∙10-4. By substituting Ymin into Equation (4.48) we obtain the effective 

reflectances for r2 that correspond to both outer couplers:  r2 = 0.7276. We can then 

use that value to calculate r1
2 with help of Equation (4.41) which gives a value of 

0.9751. The appropriate transfer function is plotted in Figure 4-16. 
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Figure 4-16  

 

 

 

 

In Figure 4-16 we achieved a transfer function for a two-ring resonator with a better 

profile than would be possible using single ring. Comparison with Figure 4-2, which is 

for a one-ring resonator, shows performance that is rather more box-like and 

therefore clearly superior. This invites the question of whether three-ring resonators 

will provide yet better results. The issue is addressed in Section 4.10. 

 
4.8 Two-Ring Resonator: Finesse 
 

The concept finesse is defined in Section 2.2: it is the ratio of the free spectral 

range to the full width at half maximum of the peaks. Finesse is not appropriate for 

use in multi-peaked transfer functions (such as Figures 4-7 and 4-8). However, it can 

be applied for two-ring resonators with L1 =L2 = L and subject to the degeneracy 

condition. We continue to assume negligible losses so that  =0 and t2 + r2 = 1. We 

know from Section 2.2 that the free spectral range is the difference between any two 

Transfer function for a two-ring resonator with equal outer couplers that is 

designed for single peaks of unity transmission and a depth of modulation of 

38dB. The effective reflectances are r
2
 = 0.7276 and r1

2
 = 0.9751. All losses were 

assumed to be zero. 
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resonances. The peaks appear at 0, ±2π, ±4π, ±6π, ±8π,... and so ∆Ф = 2π, 

corresponding in frequency space to ∆ν = c/(neff ∙ L)  

 

We require an expression for the full width at half maximum of the peaks δФ1/2, 

which we obtain by starting with our intensity transfer function using Equations (4.19) 

and (4.32). The maximum of the transfer function is provided by Equation (4.31), in 

which T2 is given by Equation (4.19). Equation (4.32) also includes the constants A, B 

and C, which are defined by Equations (4.25) – (4.27). The quantities that we require 

to calculate δФ1/2 are the phases when the transfer function has the value of one half 

of the peak height and thus, 

 

 1−r2 
2
 1−𝑟1

2 

𝐴+ 𝐵−4 ∙𝐶 ∙sin 2 
Ф

2
 + 4∙𝐶∙sin 4 

Ф

2
 

=
 1−r2 

2
 1−𝑟1

2 

2∙𝐴
                   (4.51) 

 

This then gives us 

 

4 ∙ 𝐶 ∙ sin4  
Ф

2
 +  𝐵 − 4 ∙ 𝐶 ∙ sin2  

Ф

2
 − 𝐴 = 0                  (4.52) 

 

Equation (4.52) is a quadratic equation in sin2[Ф/2] ad its solution is provided in 

Equation (4.53). 

 

sin2  
Ф

2
 =

 4∙𝐶−𝐵 ±  4∙𝐶−𝐵 2+16∙𝐴∙𝐶

8𝐶
                  (4.53) 

 

The constants A, B and C can be substituted to give: 

 

 8 ∙ 𝐶  =  32 ∙ 𝑟2                                                  (4.54) 

 

 16 ∙ 𝐴 ∙ 𝐶  =  64 ∙ 𝑟2 ∙  
 1−r2 

4

 1+r2 
2                                  (4.55) 

 

 4 ∙ 𝐶 − 𝐵  =  0                                                          (4.56) 
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We can then substitute Equations (4.54) to (4.56) into Equation (4.53) and achieve 

an expression for sin2[Ф/2]. See Equation (4.57). 

 

sin2  
Ф

2
 = ±

 1−r2 
2

4∙𝑟∙ 1+r2 
                                      (4.57) 

 

This equation gives the possibility of imaginary values of Ф   −1 = 𝑖  from the 

argument of sin-1 because of the square root. We ignore them because they do not 

seem to have a physical significance. Therefore, the half peak height occurs when 

 

Ф1

2

= 2 ∙ sin−1  ±  
 1−r2 

2

4∙𝑟∙ 1+r2 
 

1 2 

                        (4.58) 

 

Equation (4.58) gives us values which are placed on each side of every 0, ±2π, ±4π, 

±6π, ±8π and so on. When the peaks are narrow, we have small values for the 

argument and thus to a first approximation from a Taylor series expansion sin-1[Θ] ≈ 

Θ. We can thus simplify this Equation (4.58) and we obtain Ф
±

1

2

, which is shown in 

Equation (4.59).  

 

Ф
±

1

2

= ±
 1−r2 

 𝑟∙ 1+r2  1 2                                       (4.59) 

 

We achieve the bandwidth δФ1/2 of the peak with (Ф
+

1

2

− Ф
−

1

2

) and we obtain 

Equation (4.60). 

 

𝛿Ф1

2

=
2∙ 1−r2 

 𝑟∙ 1+r2  1 2                                       (4.60) 

 

We have the free spectral range ∆Ф and the full width at half maximum δФ1/2 and we 

can therefore calculate the finesse. See Equations (4.61) and (4.62) 
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𝐹 =
∆Ф

𝛿Ф1
2

=
∆𝜈

𝛿𝜈1
2

=
2∙𝜋

2∙ 1−r2 

 𝑟∙ 1+r2  
1 2 

                                 (4.61) 

 

𝐹 =
𝜋∙ 𝑟∙ 1+r2  

1 2 

 1−r2 
                                         (4.62) 

 

Finally, we have a function for the Finesse of a double-ring resonator with equal ring 

lengths, negligible losses and at the degeneracy condition. Figure 4-17 shows the 

finesse (expressed in dB) as a function to the effective reflectance r2, which are the 

effective reflectances for the outer couplers. 

 

 

 

Figure 4-17  

 

 

 

Figure 4-17 shows that the finesse tends to infinity as r2 becomes ever closer to 

unity. In this respect the behaviour is similar to  that of a single resonator, be it a ring 

or a Fabry-Pérot design. (Figure 4-17 should be compared with Figure 4-5). 

Variation of Finesse (in dB) as a function of effective reflectance of the outer 

couplers for a two-ring resonator with negligible losses and effective reflectances 

that obey the degeneracy condition. 
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However, the functional form of Equation (4.62) is different from a single-ring 

resonator, which results from the (desirable) different peak shapes that a double ring 

can provide. In many applications of resonant structures, such as Fabry-Pérot filters 

for spectroscopy, the aim is to achieve very high values of F (for example over 1000). 

This is not the case in our present work, where we aim to achieve box-like pass-

bands. For this reason, the finesse is a less important figure of merit in our current 

project that it would be in other applications of optical resonators. 

 

4.9 Two-Ring-Resonator: The Influence of Loss 

 

In the sections to this point we have ignored the losses that exist in 

integrated and fibre optical waveguides. We consider the influence of the loss 

coefficient . Losses in integrated optical waveguides are most commonly quoted in 

a centimetre-gram-second (c.g.s.) system which is has a unit of dB/cm, probably 

because its original usage was Americans. The European normally use the 

International System of units (SI units). Although coupler losses are also possible, 

their influence on the equations is very similar and, owing to limited time, we 

concentrate on the losses which appear in a waveguide. One reason for the loss is 

the absorption in the material of which the waveguide is constructed. Scattering 

losses often occur due to microscopic perturbations in the waveguide uniformity. 

However, the loss which is likely to be the greatest is the bending loss, especially 

with small-radius rings. 

 

In our formulas we have exp[-∙L] and exp[-∙L/2] terms, where  is the 

intensity loss coefficient in m-1 and L is the length in meters. In the case of intensity 

we have 

 

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
= exp −𝛼 ∙ 𝐿                                             (4.63) 

where  

𝛼 = − 
1

𝐿
 ∙ ln  

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
                                             (4.64) 

 

and “ln” is the natural logarithm. Now we have loss in dB/m, which gives us Equation 

(4.65). 
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𝑥 𝑚 = 10 ∙  log10  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
                                             (4.65) 

 

In Equation (4.65) the subscript “[m]” designates meters and it measured over a one 

meter length. We transform Equation (4.65) and obtain  

 

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
= 10 

𝑥 𝑚  

10
 
                                                  (4.66) 

 

Substitute Equation (4.66) in Equation (4.64), and we arrive at 

 

𝛼 = − 
1

𝐿
 ∙ ln  10 

𝑥 𝑚  

10
                                             (4.67) 

 

We form Equation (4.67) and obtain: 

 

𝛼 = 0.23026 ∙   
𝑥 𝑚  

𝐿
                                            (4.68) 

 

We have defined 𝑥 𝑚  so as to cancel out the negative sign. In a waveguide with 

losses we have Pout < Pin and so 𝑥 𝑚  is a negative number of decibels. We have a 

formula to translate the SI units to the loss coefficient in our formula but we need an 

expression for the c.g.s. units so we must convert  𝑥 𝑚 /𝐿  to  𝑥 𝑐𝑚  /𝐿 . It is given 

that 1m = 100cm, so we must multiply  𝑥 𝑚 /𝐿  by 100 and we have 

 

𝛼 = 23.026 ∙   
𝑥 𝑐𝑚  

𝐿
                                            (4.69) 

 

Equation (4.69) enables us to convert quoted loss values from research papers or 

manufactured products and convert them to a form that is suitable for our equations. 

 

 We give an example of how we can use Equation (4.69). We have a ring 

circumference of 200µm, which corresponds to 2 ∙ 10-4m. Figure 4-16 shows an 

enlargement of three curves of the transfer function of a two-ring resonator. Its 
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effective reflectances were selected to conform to the degeneracy condition for a two 

ring resonator and a provide depth of modulation of 42dB when all losses are zero. 

We also assumed equal ring circumferences so that L1 = L2 = L and equal outer 

couplers so that the corresponding effective reflectances are r0
2 = r2

2 = r2. We kept 

these values constant and observe the behaviour of the transfer profile when using 

losses greater than zero,   0. So that the top curve in red has no loss,  = 0. We 

chose a loss of 3dB/cm for the centre curve (blue), corresponding to  = 69,078m-1, 

and 6dB/cm for the bottom curve (black) , corresponds to  = 138,156m-1. 

 

 

 

Figure 4-18 

 

 

 

 

 

As Figure 4-18 shows loss reduces the performance of the two-ring resonator. The 

peak height is reduced from 100%, in the zero loss limit to 89,6% and 80,3% with 

3dB/cm and 6dB/cm, respectively. Careful observation of the graph also reveals a 

One peak of the transfer functions of a two-ring resonator, which has equal outer 

coupler and ring circumferences L1 = L2 = L = 200µm. Each curve has the same 

effective reflectances of r
2
 = 0.777 and r1

2
 = 0.984. Loss coefficients: 0dB/cm (top 

curve, red), 3dB/cm (centre curve, blue), 6dB/cm (bottom curve, black). 
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slight change in shape; there is a small reduction  in the flattening very close to Ф = 0 

radians. Nevertheless, there are positive aspects to be emphasised. First, there is no 

evidence of double peaks, as shown, for example, in Figure 4-8. Second, there does 

not appear to be a marked influence on the peak’s full width at half maximum. Third, 

when we have examined the depth of modulation, it remains very close to 42dB, the 

zero loss value. Although waveguide loss reduces the transmitted power at the 

resonant frequencies, it has very little effect at ±π, ±3π, ±5π, etc, where the transfer 

function is a minimum. The reason is that there is very little energy stored in the 

cavities at the frequencies mid-way between the resonances. 

 

4.10 Three-ring resonator 
 

As we have seen, the two-ring resonator gives us a better profile response 

than the one-ring resonator and so investigation of the three-ring structure is the 

logical next step. The intensity transfer function becomes correspondingly larger, as 

indicated in Equations (4.70) – (4.78), with respect to circumferences L1, L2 and L3. 

 

 
𝐸𝑜𝑢𝑡

+

𝐸𝑖𝑛
+  

2

=  
 𝑇 2

 𝐷 2
                                          (4.70) 

 

Where the numerator term is 

 

   𝑇 2  =  𝑡0
2  ∙  𝑡1

2  ∙  𝑡2
2 ∙  𝑡3

2                                       (4.71) 

 

and the denominator is 

 

 𝐷 2  =   1 − 𝑅01 − 𝑅12 − 𝑅23 + 𝑅02 + 𝑅13 − 𝑅03 + 𝑅01 ∙ 𝑅23 
2                  (4.72) 

 

                            +4 ∙  𝑅01 1 + 𝑅23
2  + 𝑅12 ∙ 𝑅02 + 𝑅13 ∙ 𝑅03 ∙ sin2  

Ф1

2
  

 

                            +4 ∙  𝑅12 + 𝑅01 ∙ 𝑅02 + 𝑅23 ∙ 𝑅13 + 𝑅01 ∙ 𝑅23 ∙ 𝑅03 ∙ sin2  
Ф2

2
  

 

                            +4 ∙  𝑅23 1 + 𝑅01
2  + 𝑅12 ∙ 𝑅13 + 𝑅02 ∙ 𝑅03 ∙ sin2  

Ф3

2
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                            −4 ∙  𝑅02 + 𝑅23 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф2 

2
  

 

                            −4 ∙  𝑅13 + 𝑅01 ∙ 𝑅03 ∙ sin2  
 Ф2−Ф3 

2
  

 

                            −4 ∙  𝑅01 ∙ 𝑅23 + 𝑅12 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф3 

2
  

 

                            −4 ∙ 𝑅01 ∙  𝑅12 + 𝑅23 ∙ 𝑅13 ∙ sin2  
 Ф1−Ф2 

2
  

 

                            −4 ∙ 𝑅23 ∙  𝑅12 + 𝑅01 ∙ 𝑅02 ∙ sin2  
 Ф2−Ф3 

2
  

 

                            −4 ∙  𝑅01 ∙ 𝑅23 + 𝑅02 ∙ 𝑅13 ∙ sin2  
 Ф1−Ф3 

2
  

 

                            +4 ∙  𝑅23 ∙ 𝑅02 ∙ sin2  
 Ф1+Ф2−Ф3 

2
  

 

                            +4 ∙  𝑅01 ∙ 𝑅13 ∙ sin2  
 −Ф1+Ф2+Ф3 

2
  

 

                            +4 ∙  𝑅01 ∙ 𝑅12 ∙ 𝑅23 ∙ sin2  
 Ф1−Ф2+Ф3 

2
  

 

                            +4 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф2+Ф3 

2
  

 

The effective reflectances are given by 
 

  𝑅01  =  𝑟0 ∙ 𝑟1 ∙ exp − ∙ 𝐿1 2                                        (4.73) 

 
  𝑅12  =  𝑟1 ∙ 𝑟2 ∙ exp − ∙ 𝐿2 2                                        (4.74) 

 
  𝑅23  =  𝑟2 ∙ 𝑟3 ∙ exp − ∙ 𝐿3 2                                        (4.75) 

 
  𝑅02  =  𝑟0 ∙  𝑡1

2 + 𝑟1
2 ∙ 𝑟2 ∙ exp − ∙  𝐿1 + 𝐿2 2                           (4.76) 

 
  𝑅13  =  𝑟1 ∙  𝑡2

2 + 𝑟2
2 ∙ 𝑟3 ∙ exp − ∙  𝐿1 + 𝐿3 2                           (4.77) 
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  𝑅03  =  𝑟0 ∙  𝑡1

2 + 𝑟1
2 ∙  𝑡2

2 + 𝑟2
2 ∙ 𝑟3 ∙ exp − ∙  𝐿1 + 𝐿2 + 𝐿3 2               (4.78) 

 

The phase shifts for individual ring transits are 

 
 Ф1  =  𝛽 ∙ 𝐿1                                                (4.79) 

 
Ф2  =  𝛽 ∙ 𝐿2                                                (4.80) 

 
Ф3  =  𝛽 ∙ 𝐿3                                                (4.81) 

 

All of the phase components of Equation (4.72) are in the sin2-format, in which there 

is a complicated collection of constituents. We can observe components that result 

from (a) Ф1, Ф2 and Ф3, the resonances of the individual cavities, (b) all possible pairs 

such as (Ф1 + Ф2), which are resonances of double cavities within the entire structure, 

(c) every possible combination of difference frequency terms, such as (Ф1 -Ф2), (d) 

hybrid terms, such as (Ф1, Ф2 - Ф3), which results from the greatest possible resonant 

path through the entire compound assembly. Although the analogy is not exact, it is 

interesting to compare the terms in Equation (4.72) with the sum and difference 

frequencies which are observed in nonlinear optical processes, such as four-wave 

mixing and other parametric effects [12]. Many possible interactions take place within 

a three-ring structure, leading to potentially complicated spectra. 

 

The three-ring resonator clearly has a much more complicated behaviour 

than the two-ring resonator and in particular there is a tendency to display triple –

peak feature. Given that we require single peak resonances with unity throughput, we 

have targeted our investigation at equal ring circumferences, as shown in Figure 4-

19: L1 = L2 = L3 = L. In Figure 4-19 we also show how we chose the inner coupling 

coefficients to be equal so that r1
2 = r2

2 = rb
2 and the outer coupler r0

2 = r3
2 = ra

2.  
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Figure 4-19  

 

 

 

 

Figure 4-20  

 

Three-ring resonator with equal ring circumferences and different but equal outer 

coupler and effective reflectances ra
2
=0.65 and rb

2
=0.9. 

Three-ring resonator with equal ring circumferences and effective reflectances 

that conform to ra
2
=(1-K) and rb

2
=(1-Kb). 
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In Figure 4-20 is pictured the intensity function of the three-ring resonator as 

illustrated of Figure 4-19. There are resonances centred on 0, ±2π, ±4π, ±6π,..., as in 

the two-ring resonator  theory but we now see that each one has three symmetrical 

peaks. Nevertheless, the relative intensity is very low at ±π, ±3π, ±5π,...., where we 

expect the global minima to be and the triple maxima on Figure 4-20 appear to reach 

100% transmission. We therefore have grounds to believe that appropriate filtering 

performance can be obtained with careful selection of the effective reflectances. To 

reach our goal of having a box-like function at every peak and reaching full 

magnitudes, we have to find a “degeneracy condition” as we did for the two-ring 

resonator in Section 4.6. We have done this; the calculation used the same method 

that we previously presented. We do not stat the intermediate steps in what turned 

out to be a lengthy calculation but the formula that we obtained is: 

 

𝑟𝑏 =
 𝑟𝑎

4+14 ∙ 𝑟𝑎
2+1 

1 2 
−  𝑟𝑎

2+1 

2∙ra
                                 (4.82) 

 

The effective reflectance for the inner coupling ratio rb
2 is then given by 

 

𝑟𝑏
2 =

  𝑟𝑎
4+14 ∙ 𝑟𝑎

2+1 −  𝑟𝑎
2+1  

2

4∙ra
2                                  (4.83) 

 

Equation (4.83) provides a relationship between the inner and the outer effective 

reflectances that we must satisfy in order to achieve degenerate operation. In Figure 

4-21 we have an example for the three-ring resonator where we included the 

degeneracy condition. The values that we used are ra
2 = 0.61 and rb

2 = 0.97. We 

assumed negligible losses, so that  = 0 and tj
2 + rj

2 = 1, j = a, b. There are no triple 

peaks and the relative intensity on the resonances at 0, ±2π, ±4π, ±6π,... . 
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Figure 4-21  

 

 

The value for the outer effective reflectance, ra
2 that we used to obtain Figure 

4-21 was chosen by trial and error. Thereafter, the degeneracy condition, Equation 

(4.83), enables us to select rb
2. Just as in Section 4.7, we would like to design the 

rings to obtain a predetermined out-of-band rejection and therefore depth of 

modulation. Unfortunately, owing to the limited time for the project, it was not possible 

to derive an equivalent formula to Equation (4.48) for application to a three-ring 

resonator. Nevertheless, we are optimistic that such an equation can be obtained, as 

it does not appear to demand advanced mathematical techniques. Once available, it 

could be used in conjunction with Equation (4.83) to ensure the combined desirable 

features of single peak resonances, which reach unity relative intensity in the zero 

loss limit, together with a depth of modulation that is no less than some prior 

specification. 

 

4.11 Comparison of Optimised Ring Transfer Functions 

 
The previous sections have described how to optimise the spectral profile of 

one-, two- and three-ring resonators. We now compare them on a decibel scale in 

one plot. Each one is designed to ensure single peaks of unity relative intensity and 

Transfer function of a three-ring resonator with equal ring circumferences and effective 

reflectances ra
2 = 0.61 and rb

2 = 0.97. All losses were neglected 
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to have a depth of modulation of 42dB. The values for the three-ring resonator were 

found by trial and error to achieve our required depth of modulation. In the two-and 

three-ring structures, we assume equal ring circumferences, L1 = L2 = L3 and equal 

outer couplers, which differed from the outer ones. Losses were neglected. The 

values of effective reflectance that we used to obtain Figure 4-22 are stated in Table 

4-1. 

 

Number of 
Rings 

r0
2 r1

2 r2
2 r3

2 

1 0.98424 0.98424 x x 

2 0.77692 0.98424 0.77692 x 

3 0.448945 0.92273 0.92273 0.448945 

 

Table 4-1 

 

 

 

Figure 4-22 

 

 

 

Transfer function of one-, two- and three-ring resonators on a decibel scale. Each one has 

a depth of modulation of 42 dB. The effective reflectances are listed on Table 4-1. Inner 

curve(blue): one ring, centre curve(red): two rings, outer curve(black): three rings. 

Values of effective reflectances used to obtain the curves shown on Figure 4-22. 
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Figure 4-23 shows the different profiles of the three curves, each with a depth of 

modulation of 42dB. There is a progressive broadening of the pass band’s and the 

peaks at around 0dB become progressively flatter as we increase the number of 

rings. It is interesting to observe the pass-band in greater detail, as we do on a linear 

scale in Figure 4-23 for the phase difference at Ф = 0. There is a clear progression 

towards our desired “box-like” profile. 

 

 

 

Figure 4-23 

 

 

 

Our main goal is to create a box-like filter profile, which has broad and flat 

peaks. Figure 4-24 is an enlargement of Figure 4-23 at around Ф = 0, which clearly 

illustrates how we can obtain an impressively flattened peak with three optimally 

designed rings. If the outer curve should have a bandwidth that is too broad there is 

not necessarily a problem. Quite simply, we can re-design it to have a very high 

depth of modulation (such as over 60dB) and in this way the peak will become 

narrower. Figure 4-23 is a vivid illustration that the single-ring resonator does not 

necessarily satisfy our needs because of its very small bandwidth. The two-ring 

resonator has a much better filter profile and it might be useful for some network 

Transfer function of one-, two- and three-ring resonators on a linear scale. Each one has 

a depth of modulation of 42 dB. The effective reflectances are listed on Table 4-1. Inner 

curve(blue): one ring, centre curve(red): two rings, outer curve(black): three rings. 
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applications but it is very obvious that the three-ring resonator gives us greatest 

design freedom. 

 

Figures 4-22 to 4-24 give us a very clear message: Increasing the number of 

rings improves our ability to achieve “box-like” spectra. We continue our study of 

multiple-ring structures in Chapter 5 with the aid of a more advance matrix 

computational technique. 

 

 

 

Figure 4-24 

 

 

 

 

 

 

 

 

 

 

 

Enlargement of Figure close to Ф = 0 with its associated effective reflectances for 

every ring structure. Inner curve(blue): one ring, centre curve(red): two rings, 

outer curve(black): three rings 
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5 Extension to N-ring resonators 
 

In this chapter we extend our resonator formulation to N rings by using the 

matrix methodology explained in Chapter 3. Our results in Chapter 4 provide 

evidence that the filter functions can be improved by increasing the number of rings. 

Therefore, we suppose that resonators with more than three rings, such as 4, 5, 6 or 

more, let us obtain yet better performance. Chapter 4 also made clear that the 

equations for a three-ring resonator are huge. Therefore, in order to calculate more 

than three rings, a more advanced matrix technique called “diagonal decomposition” 

is used. The use of matrices is easier because they organize equations in a 

structured way that can be handled. Furthermore, it is an important issue for us to 

formulate the transfer function for N rings in general so that we obtain the function for 

a different number of rings by changing one value, the number of rings. 

 

The “diagonal decomposition” (DD) is used to raise a matrix to a power but 

there is one slight limitation because it works only for repeated structures, which 

causes us some design constraints. Specifically, we cannot raise the matrix for one 

ring to a power, because light propagates clockwise or counter-clockwise, according 

to the launch point. Instead we have to raise the matrix for a pair of rings to a power, 

which is more complicated. Moreover, we note that all rings must have the same ring 

circumferences so that we do the calculation with one ring size, L. 

 

 

 

Figure 5-1  

 

 

Multiple N-ring resonator; the matrices for pair rings are raised to a power, so 

that we can calculate all even numbers of ring resonators: The ring 

circumferences and coupling ratios are always the same. 
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In the following calculations, the effective reflectances of all couplers are 

identical because the calculations would be much more complicated if they were 

different. (However, performing the calculation with alternating effective reflectances 

for the “left” and “right” rings could be an interesting topic for a future project). First of 

all we define a matrix that states the transfer matrix for a two-ring resonator, the last 

coupler not included. Therefore, we multiply the Equations (3.5) and (3.7) from 

Chapter 3. These Equations are for the two different rings, one “right” and one “left”, 

as we called them in Chapter 2. We multiply these in general terms, which means 

that the effective reflectance r and transmittance t have no index numbers because 

the two rings have equal values. Thus we obtain: 

 

𝐴 =   
𝑎11 𝑎12

𝑎21 𝑎22
 = 

 
 
 
 
 −  

𝑟

𝑡
 

2

+
 𝑡2 − 𝑟2 2

𝑡2
∙ 𝑒2∙𝛿  

𝑟

𝑡2
 +

𝑟 ∙  𝑡2 − 𝑟2 

𝑡2
∙ 𝑒2∙𝛿

− 
𝑟

𝑡2
 ∙ 𝑒−2∙𝛿 −

𝑟 ∙  𝑡2 − 𝑟2 

𝑡2
 

1

𝑡2
 ∙ 𝑒−2∙𝛿 −  

𝑟2

𝑡2
 

 
 
 
 
 

 

(5.1) 

 

This 2x2 matrix is called matrix A. As we observe, all terms have a factor of (1/t2). We 

also have terms such as 𝑒2∙𝛿 , which appear because of the same repeated ring 

circumferences. Now we factor out (1/t2) to achieve a simpler matrix B to calculate 

with which is B = (t2)∙A. From Chapter 2, we have this formula for the DD:                

AN = PDNP-1. The matrix BN should be equal to (t2N)∙AN. Our goal is to find the 

matrices P, DN and P-1 which provide, when multiplied together, the same matrix as 

AN. First of all, the eigenvalues λ1,2 of matrix B are to be determined by calculating: 

 

 𝐵 − 𝜆 ∙ 𝐼 = 0                                  (5.2) 

 

where I is the (2x2) identity matrix. Thus we obtain: 
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𝜆 =
1

2
∙   𝑡2 − 𝑟2 2 ∙ 𝑒2∙𝛿 + 𝑒−2∙𝛿 − 2 ∙ 𝑟2 

±
1

2
   𝑡2 − 𝑟2 2 ∙ 𝑒2∙𝛿 + 𝑒−2∙𝛿 − 2 ∙ 𝑟2 

2
− 4 ∙ 𝑡4 

1/2
 

(5.3) 

 

As we see, two eigenvalues are derived. λ1 is for the “+” term in Equation (5.3) and λ2 

is for  the “-“ term. The eigenvalues are unique and correspond to the eigenvectors 

X1 and X2, respectively. The single steps of the calculation are not shown because 

the mathematics is very large. The detailed justifications for the general procedure 

can be obtained in text-books for linear algebra [10,11]. Continuing, we now calculate 

two valid eigenvectors by using the matrix-vector equation: 

 

 𝐵 − 𝜆 ∙ 𝐼 ∙ 𝑋 = 0                                (5.4) 

 

Considering Equation (5.4), we derive 4 different eigenvectors for 2 different 

eigenvalues:  

 

𝑋𝑎 =    
𝑋1

𝑎

𝑋2
𝑎 

=    1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 −   1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  
2
− 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 

1
2

2 ∙ 𝑟

  

(5.5) 

 

𝑋𝑏 =    
𝑋1

𝑏

𝑋2
𝑏 

=    1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 +   1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  
2
− 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 

1
2

2 ∙ 𝑟

  

(5.6) 
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These two are the ones that we use to form Matrix P. We did the same calculation in 

another way, obtaining the Equations (5.7) and (5.8) but Equation (5.7) is linearly 

dependent on Equation (5.5) just as Equation (5.8) is linearly dependent on Equation 

(5.6). This is acceptable because eigen-vectors are never unique. Indeed, it is an 

advantage to us because it allowed us to perform the calculation in two different 

ways, which gave us confirmation of the validity of our results for quality control 

purposes. 

 

𝑋𝑐 =    
𝑋1

𝑐

𝑋2
𝑐 

=   
2 ∙ 𝑟 ∙ 𝑒2∙𝛿

 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 −   1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 
2
− 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 

1
2
  

(5.7) 

 

𝑋𝑑 =    
𝑋1

𝑑

𝑋2
𝑑 

=   
2 ∙ 𝑟 ∙ 𝑒2∙𝛿

 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 +   1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 
2
− 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 

1
2
  

(5.8) 

 

Equations (5.5) and (5.6) are linearly independent of each other, which means that 

no factor can be found that multiplies one of them and gives the other. 

 

The next step is to write down the diagonal matrix D, as described in Chapter 

2. Therefore, we need our eigenvalues λ1,2. The leading diagonal of D is equal to the 

eigenvalues and it is stated as: 

 

𝐷 =   
𝜆1 0
0 𝜆2

                                    (5.9) 
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We further had to choose in each case one of the eigenvectors to set up the P matrix, 

as described in Chapter 2. We choose 𝑋𝑎  and 𝑋𝑏  from the Equations (5.5) and (5.6) 

for our following calculation because they appear to provide the simplest algebra. 

Every eigenvector is one column vector in the P matrix so we obtain: 

 

𝑃 =   
𝑋1

𝑎 𝑋1
𝑏

𝑋2
𝑎 𝑋2

𝑏                                 (5.10) 

 

A very important point to note is that the column vectors that constitute P must be in 

the same order as the corresponding eigenvalues in D. The inverse of the matrix P is 

now needed. Therefore, we also have to calculate the determinant of P. We achieve 

the following equation: 

 

𝑃−1 =  
1

 𝑃 
∙  

𝑋2
𝑑 −𝑋1

𝑑

−𝑋2
𝑏 𝑋1

𝑏                           (5.11) 

 

All matrices which give us the matrix B are calculated so that we can multiply the 

matrices together to derive the matrix equation for B = PDP-1. We have to take 

account for the order in which the matrices are multiplied. First P and D are multiplied 

and then PD with P-1 is multiplied; this is crucial because matrix algebra is non-

commutative. During these calculations we defined some variables to simplify the 

mathematics because we achieved huge matrices. 

 

Due to the fact that we have rather complicated mathematics, we need a 

quality control. In order to check if the DD method works, we first calculated PDP-1 

without raising D to a power, which is to be the same as the matrix B. By 

incorporating the factor (1/t2N), we obtain the matrix A (Equation (5.1)), which is the 

expected matrix for a pair of two rings. Therefore, the diagonal decomposition has 

been performed correctly. 

 

The matrix B can now be raised to the nTh power in the following way: 

 

𝐵𝑁 = 𝑃 ∙ 𝐷𝑁 ∙ 𝑃−1                              (5.12) 
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We define a term W to simplify and to reduce the size of the matrices: 

 

𝑊 =  
 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  

  1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 2 − 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 
1
2

 

(5.13) 

 

We express all of the terms in the matrices P and P-1 within the terms of W and 

obtain: 

 

𝑃 =   1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  ∙  
𝑊 − 1

𝑊
  1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  ∙  

𝑊 + 1

𝑊
 

2 ∙ 𝑟 2 ∙ 𝑟

  

(5.14) 

 

𝑃−1 =  
1

2
∙

 
 
 
 

−𝑊

 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  

1

2 ∙ 𝑟
∙  𝑊 + 1 

𝑊

 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  

1

2 ∙ 𝑟
∙  −𝑊 + 1 

 
 
 
 

 

(5.15) 

 

From now on, the key challenge is raising the diagonal matrix to the power of N. This 

is done by raising the eigenvalues λ1 and λ2 of matrix D, as shown in Equation (5.9), 

to the power of N. Unfortunately, as Equation (5.3) indicates λ1 and λ2 are not simple 

terms. We factorise the matrix D and also express all the terms as functions of W and 

so we have: 

𝐷𝑁 =  
 𝑊2 − 1 𝑁

 4 ∙ 𝑡2 𝑁
 

∙

 
 
 
 
  𝑊 + 1 𝑁 ∙  𝑊 +  

2∙𝑟2

𝑡2 − 1  

𝑁

0

0  𝑊 − 1 𝑁 ∙  𝑊 −  
2∙𝑟2

𝑡2 − 1  

𝑁

 
 
 
 
 

  

(5.16) 
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The matrix P is then multiplied by DN, after which PDN is multiplied by P-1 so that 

finally have PDNP-1. Now, to calculate the output from the entire ring resonator, we 

need the matrix AN= BN/(t2)N, as shown earlier in this Chapter, where B is given by 

PDNP-1. Thus AN is: 

𝐴𝑁 =   
𝑎11 𝑎12

𝑎21 𝑎22
 
𝑁

                                (5.17) 

 

Moreover, the output from the entire N-ring resonator requires a final matrix for the 

output coupler Mout. The coupler we need is a left-handed one because we always 

have an even number of rings, as described in Chapter 3. Thus we multiply A by Mout 

from Equation (3.15), which is designated as matrix Q: 

 

𝑄 =  𝑀𝑜𝑢𝑡 ∙ 𝐴𝑁 =   
1

𝑡2𝑁
 ∙ 𝑀𝑜𝑢𝑡 ∙ 𝐵𝑁  =  

𝑞11 𝑞12

𝑞21 𝑞22
  

(5.18) 

                                      

The four q-elements are not stated here because they are too large but the reader is 

referred to the Appendix for a listing. Now, Matrix Q is the total amplitude transfer 

matrix. In order to calculate the output of the ring resonator, we need the amplitude 

transfer terms, which are stated by Equations (3.23) and (3.24) from the two-ring 

resonator theory of Chapter 3: 

 

𝐸0,2
− =   

1

𝑞2,2
 ∙ 𝐸2,4

− −  
𝑞2,1

𝑞2,2
 ∙ 𝐸0,1

+                    (5.19) 

 

𝐸2,3
+ =   

𝑞2,2∙𝑞1,1− 𝑞1,2∙𝑞2,1

𝑞2,2
 ∙ 𝐸0,1

+ +   
𝑞1,2

𝑞2,2
 ∙ 𝐸2,4

−            (5.20) 

 

For the q-elements we now use Equation (5.18), the general amplitude matrix. The 

most important term of these equations is (q22q11-q12q21)/q22 because it gives the 

transmitted output, (E+
2,3/E

+
0,1): 
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𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
 =   

𝐸2,3
+

𝐸0,1
+  =  

𝑞22 ∙ 𝑞11 − 𝑞12 ∙ 𝑞21

𝑞22
 

(5.21) 

 

In most cases, E-
2,4 is zero but it could be used as an alternative input (for 

example, when the multi-ring resonator is used as an optical add-drop multiplexer). In 

the present context we neglect it and consider it as zero so that we achieve Equation 

(5.21). (E-
0,2/E

+
0,1) can also be calculated but it is not of interest for us because this is 

the auxiliary output related to the input. In general the q-term (q22q11-q12q21)/q22 is 

multiplied by its complex conjugate to achieve intensity formulation for the transmitted 

output. 

 

Now, we have derived the general amplitude transfer function for N-ring 

resonators. For example for N=1, 2 and 3 we achieve the amplitude transfer function 

for 2, 4 and 6 rings, respectively. However, we also want to obtain the intensity 

transfer function for N-ring resonators. Therefore, we have to multiply Equation (5.21) 

by its own complex conjugate. It follows from Equations (5.13) – (5.16) that the q-

coefficients are huge and the formulation of (q22q11-q12q21)/q22 is correspondingly 

large. Owing to the cross-checking and quality control measures we have performed, 

we are confident in the validity of our results up to Equation (5.21) and those 

presented in Appendix A. We then proceeded towards the intensity expression by 

multiplying Equation (5.21) by its own complex conjugate. However, we do not have 

sufficient faith in their accuracy to report the results that we obtained. The timescale 

in which to do this part of the work was too short and so the likelyhood of mistakes 

was too high. Nevertheless, we have a positive outcome because our amplitude 

transfer function is in a format that can be passed on to a future team of students for 

continuation. The way ahead is a known route, even if it is an arduous one. 
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6 Conclusion 

 
We reported a design study of compound micro-ring resonators for application 

as spectral filters in DWDM optical systems. Our approach was theoretical, deriving 

analytical equations to predict spectral profiles. We started with the complex field 

equations for the couplers and waveguides, allowing the derivation of the amplitude 

transfer function of one-ring, two-ring and a three-ring resonator by a matrix method. 

Our matrices structure the algebra, which is particularly desirable in the case of 

multiple rings, especially when there are more than three. The equations derived are 

expressed in terms of ring circumferences, coupling coefficients, waveguide 

propagation constants and losses.  

 

We have calculated the intensity transfer functions for one-ring, two-ring and 

three-ring resonators and we have analyzed the resulting spectral profile in detail with 

a view to obtaining optimised filter performance. For the two-ring resonator we made 

conditions which are very important for suitability of a filter: There must be no double 

peaks, every peak reaches unity and all the peaks have the same magnitude. For 

these condition we require that the ring circumferences be equal. We have also 

derived a formula for the middle effective reflectance r1
2, which we call the 

“degeneracy condition” where the conditions apply.  Furthermore, we have the 

condition that the outer couplers have to be equal. Then we arrived at a formula for a 

value for the outer couplers which allow us to choose a pre-determined out-of-band-

rejection (in dB). After making our choice of optimised coupler characteristics we 

achieve a filter profile that is better matched to our application than what is available 

using a single ring. 

 

We have also studied the influence of loss for fear that it could markedly 

deteriorate the filter performance. We found the magnitudes of the peaks from an 

optimised filter design decrease as a result of losses and that is to be expected. 

However, we keep the single-peak-behaviour, which is very good for application in a 

DWDM system. Moreover, it does not have a significant influence on the out-of-band 

rejection between the peaks.  

 

We have investigated the filter profiles of the three-ring resonator. In the 

absence of optimisation we obtain responses involving triple peaks, even when all 
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ring circumferences are equal. However, we have derived a three-ring degeneracy 

condition which enables single-peaked spectra with unity relative intensity. In this 

way the “box-like” profile that can be obtained is very encouraging. By selecting the 

effective reflectances by trial and error, we could also provide good modulation 

depths. We believe that it will be possible to derive an analytical formula for a three-

ring resonator’s depth of modulation. We have compared the spectral filter profiles 

from one-, two- and three-ring resonators that are all optimised and all have the same 

depth of modulation. Our results show a marked widening of the pass-band with the 

number of rings. Moreover, the three-ring structure can provide impressively flat tops 

when the resonance condition is satisfied. 

 

Our encouraging results from the three-ring resonator have prompted a desire 

to study the transfer function provided by yet larger numbers of rings. Unfortunately, 

the necessary algebra is likely to become very difficult to handle. Therefore, we have 

been motivated to find an alternate approach, which is a formula for N identical rings 

by using “diagonal decomposition”. The method enables with opposite propagation 

directions. The algebra required is very long but we have derived the amplitude 

transfer function, which has been the most demanding stage in the process. 

Thereafter, future workers can provide the intensity expression. 

 

All the transfer functions that we have derived are general and they include 

loss mechanisms. We have used them to study an optimised two-ring resonator and 

understood how the performance is affected by loss. The main influence is on the 

peak height; the spectral profile remains single-peaked and by such behaviour. 

 

The results that we have obtained in this project provide grounds for optimism. 

We believe that there are many possibilities for future studies. Obvious lines of 

investigation include a continuation of our study of N-ring structures, possibly ones 

that alternate in characteristics. They could be rings of identical circumferences but 

alternating effective reflectances. In this way one could provide yet better “box-like” 

characteristics. However, there is one other possibility, which we have not had time 

to explore. If we use rings of alternating circumferences we might be able to suppress 

some of the resonant orders by what is known as the Vernier effect. The ring 

circumferences are in the ratio of integers that do not have a common factor (such as 
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10:9) and in this way we have a number of suppressed resonances, followed by 

“super-resonances” where all of the constituent rings simultaneously provide a large 

transmission. The benefit of this strategy is that we can obtain an effective increase 

in free spectral range without having to use rings so small that they suffer from 

unacceptable bending loss. 

 

In conclusion, we have studied compound optical resonators consisting of 

linear arrays of micro-rings, providing a theoretical framework to predict how such 

devices can be used as demultiplexing filters for DWDM optical communications. 
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7 Appendix A: Q-Coefficients for the Transfer Matrix 
 

7.1 One-Ring Resonator 
 

In Section 3.2 the amplitude transfer matrix for a single-ring resonator is 

shown. In order to calculate the intensity transfer function the q-coefficients are 

needed: 

 

 𝑞11 =   −
𝑟0

𝑡0∙𝑡1
∙ 𝑒 −𝛿1,0  

                         − 
𝑟1∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1
∙ 𝑒 𝛿0,1  

 

 𝑞12 =   +
1

𝑡0∙𝑡1
∙ 𝑒 −𝛿1,0  

                         − 
𝑟0∙𝑟1

𝑡0∙𝑡1
∙ 𝑒 𝛿0,1  

 

 𝑞21 =   −
𝑟0∙𝑟1

𝑡0∙𝑡1
∙ 𝑒 −𝛿1,0  

                         + 
 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1
∙ 𝑒 +𝛿0,1  

  

  𝑞22 =   +
𝑟1

𝑡0∙𝑡1
∙ 𝑒 −𝛿1,0  

                         + 
𝑟0∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1
∙ 𝑒 𝛿0,1  

 

With these q-terms, we now can calculate the amplitude transfer function: 

 

 
𝐸1,4

+

𝐸0,1
+  =   

𝑞12 ∙ 𝑞21 − 𝑞22 ∙ 𝑞11

𝑞12
 =  

𝑡0𝑡1𝑒
 𝛿0,1 

1 − 𝑟0𝑟1𝑒
 𝛿0,1+𝛿1,0 
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7.2 Two-Ring Resonator 
 

In Section 3.3 the amplitude transfer matrix for a two-ring resonator is shown. 

In order to calculate the intensity transfer function the q-coefficients are needed: 

 

 𝑞11 =   −
𝑟0∙𝑟1∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2−𝛿1,0  

                         + 
 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2+𝛿0,1  

                    − 
𝑟0∙𝑟2

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 − 𝛿2,1+𝛿1,0   

                    − 
𝑟1∙𝑟2∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿0,1−𝛿2,1  

 

 𝑞12 =   +
𝑟1∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2−𝛿1,0  

                         + 
𝑟0∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2+𝛿0,1  

                    + 
𝑟2

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 − 𝛿2,1+𝛿1,0   

                    − 
𝑟0∙𝑟1∙𝑟2

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿0,1−𝛿2,1  

 

 𝑞21 =   +
𝑟0∙𝑟1∙𝑟2

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2−𝛿1,0  

                         − 
𝑟2∙ 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2+𝛿0,1  

                    − 
𝑟0

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 − 𝛿2,1+𝛿1,0   
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                    − 
𝑟1∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿0,1−𝛿2,1  

 

 𝑞22 =   −
𝑟1∙𝑟2

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2−𝛿1,0  

                         − 
𝑟0∙𝑟2∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿1,2+𝛿0,1  

                    + 
1

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 − 𝛿2,1+𝛿1,0   

                    − 
𝑟0∙𝑟1

𝑡0∙𝑡1∙𝑡2
∙ 𝑒 𝛿0,1−𝛿2,1  

 

With these q-terms, we now can calculate the amplitude transfer function: 

 

 
𝐸2,3

+

𝐸0,1
+  =   

𝑞22 ∙ 𝑞11 − 𝑞12 ∙ 𝑞21

𝑞22
  

=  
𝑡0𝑡1𝑡2𝑒

 𝛿0,1+𝛿1,2 

1 − 𝑟0𝑟1𝑒
 𝛿0,1+𝛿1,0 − 𝑟1𝑟2𝑒

 𝛿1,2+𝛿2,1 − 𝑟0𝑟2 𝑡1
2 − 𝑟1

2 𝑒 𝛿0,1+𝛿1,0+𝛿1,2+𝛿2,1 
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7.3 Three-Ring Resonator 
 

In Section 3.3 the amplitude transfer matrix for a three-ring resonator is 

shown. In order to calculate the intensity transfer function the q-coefficients are 

needed: 

 

 𝑞11 =   +
𝑟0∙𝑟1∙𝑟2

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2−𝛿1,0−𝛿3,2  

                         − 
𝑟0

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿1,0+𝛿2,1+𝛿3,2   

                    − 
𝑟2∙ 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2−𝛿3,2  

                    − 
𝑟0∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿2,1+𝛿3,2−𝛿0,1   

               + 
𝑟0∙𝑟1∙𝑟3∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2+𝛿2,3−𝛿1,0  

                         + 
𝑟0∙𝑟2∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1−𝛿1,0  

                    − 
𝑟3∙ 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2+𝛿2,3  

                    + 
𝑟1∙𝑟2∙𝑟3∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1+𝛿0,1  

 

 𝑞12 =   − 
𝑟1∙𝑟2

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2−𝛿1,0−𝛿3,2  

                         + 
1

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿1,0+𝛿2,1+𝛿3,2   

                    − 
𝑟0∙𝑟2∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2−𝛿3,2  
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                    − 
𝑟0∙𝑟1

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿2,1+𝛿3,2−𝛿0,1   

               − 
𝑟1∙𝑟3∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2+𝛿2,3−𝛿1,0  

                         − 
𝑟2∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1−𝛿1,0  

                    − 
𝑟0∙𝑟3∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2+𝛿2,3  

                    + 
𝑟0∙𝑟1∙𝑟2∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1+𝛿0,1  

 

 𝑞21 =   + 
𝑟0∙𝑟1∙𝑟2∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2−𝛿1,0−𝛿3,2  

                         − 
𝑟0∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿1,0+𝛿2,1+𝛿3,2   

                    − 
𝑟2∙𝑟3∙ 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2−𝛿3,2  

                    − 
𝑟1∙𝑟3∙ 𝑡0

2−𝑟0
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿2,1+𝛿3,2−𝛿0,1   

               − 
𝑟0∙𝑟1∙ 𝑡2

2−𝑟2
2 ∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2+𝛿2,3−𝛿1,0  

                         − 
𝑟0∙𝑟2∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1−𝛿1,0  

                    + 
 𝑡0

2−𝑟0
2 ∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 ∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2+𝛿2,3  

                    − 
𝑟1∙𝑟2∙ 𝑡0

2−𝑟0
2 ∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1+𝛿0,1  

 



Marcel Elshoff & Oscar Rautenberg  Universidad Pública de Navarra  

97 
 

 𝑞22 =   − 
𝑟1∙𝑟2∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2−𝛿1,0−𝛿3,2  

                         + 
𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿1,0+𝛿2,1+𝛿3,2   

                    − 
𝑟0∙𝑟2∙𝑟3∙ 𝑡1

2−𝑟1
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2−𝛿3,2  

                    − 
𝑟0∙𝑟1∙𝑟3

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 − 𝛿2,1+𝛿3,2−𝛿0,1   

               + 
𝑟1∙ 𝑡2

2−𝑟2
2 ∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿1,2+𝛿2,3−𝛿1,0  

                         + 
𝑟2∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1−𝛿1,0  

                    + 
𝑟0∙ 𝑡1

2−𝑟1
2 ∙ 𝑡2

2−𝑟2
2 ∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿0,1+𝛿1,2+𝛿2,3  

                    − 
𝑟0∙𝑟1∙𝑟2∙ 𝑡3

2−𝑟3
2 

𝑡0∙𝑡1∙𝑡2∙𝑡3
∙ 𝑒 𝛿2,3−𝛿2,1+𝛿0,1  

 

With these q-terms, we now can calculate the amplitude transfer function: 

 

 
𝐸3,4

+

𝐸0,1
+  =   

𝑞21 ∙ 𝑞12 − 𝑞11 ∙ 𝑞22

𝑞12
  

=  
−𝑡0𝑡1𝑡2𝑡3𝑒

 𝛿0,1+𝛿1,2+𝛿2,3 

𝐷
 

 

Where D is the denominator: 

 

𝐷 = 1 − 𝑟0𝑟1 ∙ 𝑒 𝛿0,1+𝛿1,0  

            − 𝑟1𝑟2∙𝑒
 𝛿1,2+𝛿2,1  
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            − 𝑟2𝑟3 ∙ 𝑒 𝛿2,3+𝛿3,2  

            − 𝑟0𝑟2 𝑡1
2 − 𝑟1

2 ∙ 𝑒 𝛿0,1+𝛿1,0+𝛿1,2+𝛿2,1  

            − 𝑟1𝑟3 𝑡2
2 − 𝑟2

2 ∙ 𝑒 𝛿1,2+𝛿2,1+𝛿2,3+𝛿3,2  

            − 𝑟0𝑟1𝑟2𝑟3 ∙ 𝑒 𝛿0,1+𝛿1,0+𝛿2,3+𝛿3,2  

            − 𝑟0𝑟3 𝑡1
2 − 𝑟1

2  𝑡2
2 − 𝑟2

2 ∙ 𝑒 𝛿0,1+𝛿1,0+𝛿1,2+𝛿2,1+𝛿2,3+𝛿3,2  
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7.4 N-Ring Resonator 
 

In Chapter 5 the amplitude transfer matrix for a N-ring resonator is shown. In 

order to calculate the intensity transfer function the q-coefficients are needed: 

 

 𝑞11 =   +
 𝑡2−𝑟2 

𝑡
∙

 𝑊2−1 
𝑁

2∙𝑡2𝑁 ∙ 4∙𝑡2 𝑁
 

              ∙    𝑊 + 1 ∙  𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁 −  𝑊 − 1 ∙  𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁  

             ∙  
2∙𝑟∙ 

𝑟

𝑡
 ∙ 𝑊2−1 

𝑁
∙𝑊

 1− 𝑡2−𝑟2 ∙𝑒  2∙𝛿  ∙2∙𝑡2𝑁 ∙ 4∙𝑡2 𝑁
 

          ∙    𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁 −  𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁  

 

 𝑞12 =   +
 𝑡2−𝑟2 

𝑡
∙
 𝑊2−1 

𝑁+1
∙ 1− 𝑡2−𝑟2 ∙𝑒  2∙𝛿  

4∙𝑟∙𝑡2𝑁 ∙𝑊∙ 4∙𝑡2 𝑁
 

              ∙    𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁 −  𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁  

             ∙   
𝑟

𝑡
 ∙

 𝑊2−1 
𝑁

2∙𝑡2𝑁 ∙ 4∙𝑡2 𝑁
 

          ∙    𝑊 + 1 𝑁+1 ∙  𝑊 + 𝑐 𝑁 −  𝑊 − 1 𝑁+1 ∙  𝑊 − 𝑐 𝑁  

 

 𝑞21 =   −
𝑟∙ 𝑊2−1 

𝑁

2∙𝑡3𝑁 ∙ 4∙𝑡2 𝑁
 

              ∙    𝑊 + 1 ∙  𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁 −  𝑊 − 1 ∙  𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁  

             ∙  
2∙𝑟∙ 𝑊2−1 

𝑁
∙𝑊

 1− 𝑡2−𝑟2 ∙𝑒  2∙𝛿  ∙2∙𝑡3𝑁 ∙ 4∙𝑡2 𝑁
 

          ∙    𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁 −  𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁  
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 𝑞22 =   −
𝑟∙ 𝑊2−1 

𝑁+1
∙ 1− 𝑡2−𝑟2 ∙𝑒  2∙𝛿  

4∙𝑟∙𝑡3𝑁 ∙𝑊∙ 4∙𝑡2 𝑁
 

              ∙    𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁 −  𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁  

             ∙  
 𝑊2−1 

𝑁

2∙𝑡3𝑁 ∙ 4∙𝑡2 𝑁
 

          ∙    𝑊 + 1 𝑁+1 ∙  𝑊 + 𝑐 𝑁 −  𝑊 − 1 𝑁+1 ∙  𝑊 − 𝑐 𝑁  

 

The following terms are used in these Equations: 

 

𝑊 =  
 1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿  

  1 −  𝑡2 − 𝑟2 ∙ 𝑒2∙𝛿 2 − 4 ∙ 𝑟2 ∙ 𝑒2∙𝛿 
1
2

 

 

𝑐 =   
2 ∙ 𝑟2

𝑡2
− 1  

 

These terms give us the coefficients to calculate the amplitude transfer function for 

an N-ring resonator: 

 

 
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
 =   

𝐸2,3
+

𝐸0,1
+  =  

𝑞22 ∙ 𝑞11 − 𝑞12 ∙ 𝑞21

𝑞22
 

=  
4 ∙ 𝑡2 ∙  𝑊2 − 1 2𝑁 ∙  𝑊2 − 𝑐2 𝑁 ∙ 2 ∙ 𝑊

𝐷
 

D states the denominator: 

 

𝐷 =   4𝑡2 𝑁2𝑡3𝑁 ∙  2𝑊 𝑊 + 1 −  1 −  𝑡2 − 𝑟2 𝑒 2∙𝛿   𝑊2 − 1   

              ∙  𝑊 + 1 𝑁 ∙  𝑊 + 𝑐 𝑁 

       −  4𝑡2 𝑁2𝑡3𝑁 ∙  2𝑊 𝑊 − 1 −  1 −  𝑡2 − 𝑟2 𝑒 2∙𝛿   𝑊2 − 1   

              ∙  𝑊 − 1 𝑁 ∙  𝑊 − 𝑐 𝑁 
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8 Appendix B: Derivation of Intensity Transfer Functions 

 

8.1 Two-ring resonator 
 

The amplitude transfer function is given by Equation (3.22): 

 

 
𝐸23

+

𝐸01
+  =   

𝑞22 ∙ 𝑞11 − 𝑞12 ∙ 𝑞21

𝑞22
 = 

 

Substitution of the terms defined in Appendix A gives us 

 

𝑡0 ∙ 𝑡1 ∙ 𝑡2 ∙ 𝑒 𝛿01 +𝛿12  

1 −  𝑟0 ∙  𝑟1 ∙ 𝑒 𝛿01 +𝛿10  − 𝑟1 ∙  𝑟2 ∙ 𝑒 𝛿12 +𝛿21   −  𝑟0 ∙  𝑟1
2 + 𝑡1

2  ∙ 𝑟2 ∙ 𝑒 𝛿01+𝛿10 +𝛿12 +𝛿21  
 

 

Definitions of terms of the transfer function. 

 

                                        𝛿𝑗𝑘 =  − 𝛼

2
+ 𝑖𝛽 ∙ 𝐿𝑗𝑘   with j,k = 0,1,2 and i =  −1 

 

𝜃1  =  𝛿01 + 𝛿10 

𝜃2  =  𝛿12 + 𝛿21 

 

𝑅01 =  𝑟0  ∙  𝑟1 ∙ 𝑒 − ∙ 𝐿1 2   

𝑅12 =  𝑟1  ∙  𝑟2 ∙  e − ∙ 𝐿2 2   

𝑅02 =  𝑟0 ∙  𝑡1
2 + 𝑟1

2  ∙  𝑟1 ∙ e − ∙  𝐿1+𝐿2 2   

 

Ф1 =   ∙  𝐿1 

Ф2 =   ∙  𝐿2 

 

                                    𝑡𝑗 = 𝑖𝐾𝑗
1 2  1 − 𝛾𝑗  

1 2 
with j = 0,1,2 and i =  −1 
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𝜏𝑗
2 =  −𝑡𝑗

2 

 

We define the denominator as  

 

𝐷 = 1 − 𝑅01 ∙ 𝑒 𝑖Ф1 − 𝑅12 ∙ 𝑒 𝑖Ф2 +  𝑅02 ∙ 𝑒 𝑖 Ф1+Ф2   

 

The numerator is defined as  

 

𝑇 =  𝑡0 ∙ 𝑡1 ∙ 𝑡2 ∙ 𝑒 𝛿01+𝛿12  

 

The square of the numerator is 

 

 𝑇 2 =  𝑡0 
2 ∙  𝑡1 

2 ∙  𝑡2 
2 ∙ 𝑒 −𝛼 𝐿01+𝐿12   

 

When we square the denominator we achieve a large equation which we can group 

to an equation which consists of a constant term and others that are multiplied by 

cosine of an angle. 

 

 𝐷 2 =  1 + 𝑅01
2 + 𝑅12

2 + 𝑅02
2  − 2 𝑅01 + 𝑅12𝑅02 ∙ cos Ф1  

                   −2 𝑅12 + 𝑅01𝑅02 ∙ cos Ф2 + 2𝑅01𝑅12 ∙ cos Ф1 − Ф2  

                   +2𝑅02 ∙ cos Ф1 + Ф2  

 

Now we substitute the cosine terms to obtain sin2[Ф/2] terms.  

 

Note:       cos 𝜃 = 1 − 2 ∙ sin2  
𝜃

2
  

Thus 

 

        𝐷 2 =  1 + 𝑅01
2 + 𝑅12

2 + 𝑅02
2  − 2𝑅01 − 2𝑅12𝑅02 − 2𝑅12  

                   −2𝑅01𝑅02 + 2𝑅01𝑅12 + 2𝑅02 
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                   +4 𝑅01 + 𝑅12𝑅02 ∙ sin2 Ф1 2   

                   +4 𝑅12 + 𝑅01𝑅02 ∙ sin2 Ф2 2   

                   −4𝑅01𝑅12 ∙ sin2  Ф1 − Ф2 2   

                   −4𝑅02 ∙ sin2  Ф1 + Ф2 2   

 

We factorise the constant terms and obtain the final form for the denominator: 

 

 𝐷 2 =  1 − 𝑅01 − 𝑅12 + 𝑅02 
2 

                           +4 𝑅01 + 𝑅12 ∙ 𝑅02 ∙ sin2  
Ф1

2
  

                             +4 𝑅12 + 𝑅01 ∙ 𝑅02 ∙ sin2  
Ф2

2
  

                           −4 ∙ 𝑅01 ∙ 𝑅12 ∙ sin2  
Ф1 − Ф2

2
  

                 −4 ∙ 𝑅02 ∙ sin2  
Ф1 + Ф2

2
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8.2 Three-ring resonator 
 
The amplitude transfer function is given by Equation (3.41): 

 

 
𝐸23

+

𝐸01
+  =   

𝑞22 ∙ 𝑞11 − 𝑞12 ∙ 𝑞21

𝑞22
 =  

𝑇

𝐷
  

 

We define the numerator and the denominator of the resulting expression. 

 

𝑇 =  𝑡0 ∙ 𝑡1 ∙ 𝑡3 ∙ 𝑒 𝛿01+𝛿12+𝛿33  

and 

 

𝐷 =  1 −  𝑟0 ∙  𝑟1 ∙ 𝑒 𝛿01+𝛿10 − 𝑟1 ∙  𝑟2 ∙ 𝑒 𝛿12+𝛿21 − 𝑟2 ∙  𝑟3 ∙ 𝑒 𝛿23+𝛿32  

               − 𝑟0 ∙  𝑟1 ∙  𝑡1
2 − 𝑟1

2 ∙ 𝑒 𝛿01+𝛿10+𝛿12+𝛿21  

               − 𝑟1 ∙  𝑟3 ∙  𝑡2
2 − 𝑟2

2 ∙ 𝑒 𝛿12+𝛿21+𝛿23+𝛿32  

               − 𝑟0 ∙  𝑟3 ∙  𝑡1
2 − 𝑟1

2 ∙  𝑡2
2 − 𝑟2

2 ∙ 𝑒 𝛿01+𝛿10+𝛿
12

+𝛿21+𝛿23+𝛿32  

               + 𝑟0 ∙  𝑟1 ∙ 𝑟2 ∙  𝑟3 ∙ 𝑒 𝛿01+𝛿10+𝛿23+𝛿32  

 

where 

                       𝛿𝑗𝑘 =  − 𝛼

2
+ 𝑖𝛽 ∙ 𝐿𝑗𝑘   with j,k = 0,1,2,3 and i =  −1 

 

𝜃1  =  𝛿01 + 𝛿10 

𝜃2  =  𝛿12 + 𝛿21 

𝜃3  =  𝛿23 + 𝛿32 

 

𝑅01 =  𝑟0  ∙  𝑟1 ∙ 𝑒 − ∙ 𝐿1 2   

𝑅12 =  𝑟1  ∙  𝑟2 ∙  e − ∙ 𝐿2 2   

𝑅23 =  𝑟2  ∙  𝑟3 ∙  e − ∙ 𝐿3 2   
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𝑅02 =  𝑟0 ∙  𝑡1
2 + 𝑟1

2  ∙  𝑟1 ∙ e − ∙  𝐿1+𝐿2 2   

𝑅13 =  𝑟1 ∙  𝑡2
2 + 𝑟2

2  ∙  𝑟3 ∙ e − ∙  𝐿1+𝐿3 2   

𝑅03 =  𝑟0 ∙  𝑡1
2 + 𝑟1

2  ∙  𝑡2
2 + 𝑟2

2 ∙  𝑟3 ∙ e − ∙  𝐿1+𝐿2+𝐿3 2   

 

Ф1 =   ∙  𝐿1 

Ф2 =   ∙  𝐿2 

Ф3 =   ∙  𝐿3 

 

                                   𝑡𝑗 = 𝑖𝐾𝑗
1 2  1 − 𝛾𝑗  

1 2 
with j = 0,1,2,3 and i =  −1 

𝜏𝑗
2 =  −𝑡𝑗

2 

 

When we multiply the quotient (T/D) by its own complex conjugate, we obtain the 

intensity transfer function of a three resonator by using the same methodology as in 

Section 8.1, which gives us large equations for the denominator. The intensity 

transfer function is then given by the numerator which is  

 

                                              𝑇 2  =  𝑡0
2  ∙  𝑡1

2  ∙  𝑡2
2 ∙  𝑡3

2 

 

And the denominator is 

 

                 𝐷 2  =   1 − 𝑅01 − 𝑅12 − 𝑅23 + 𝑅02 + 𝑅13 − 𝑅03 + 𝑅01 ∙ 𝑅23 
2 

 

                            +4 ∙  𝑅01 1 + 𝑅23
2  + 𝑅12 ∙ 𝑅02 + 𝑅13 ∙ 𝑅03 ∙ sin2  

Ф1

2
  

 

                            +4 ∙  𝑅12 + 𝑅01 ∙ 𝑅02 + 𝑅23 ∙ 𝑅13 + 𝑅01 ∙ 𝑅23 ∙ 𝑅03 ∙ sin2  
Ф2

2
  

 

                            +4 ∙  𝑅23 1 + 𝑅01
2  + 𝑅12 ∙ 𝑅13 + 𝑅02 ∙ 𝑅03 ∙ sin2  

Ф3

2
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                            −4 ∙  𝑅02 + 𝑅23 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф2 

2
  

 

                            −4 ∙  𝑅13 + 𝑅01 ∙ 𝑅03 ∙ sin2  
 Ф2−Ф3 

2
  

 

                            −4 ∙  𝑅01 ∙ 𝑅23 + 𝑅12 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф3 

2
  

 

                            −4 ∙ 𝑅01 ∙  𝑅12 + 𝑅23 ∙ 𝑅13 ∙ sin2  
 Ф1−Ф2 

2
  

 

                            −4 ∙ 𝑅23 ∙  𝑅12 + 𝑅01 ∙ 𝑅02 ∙ sin2  
 Ф2−Ф3 

2
  

 

                            −4 ∙  𝑅01 ∙ 𝑅23 + 𝑅02 ∙ 𝑅13 ∙ sin2  
 Ф1−Ф3 

2
  

 

                            +4 ∙  𝑅23 ∙ 𝑅02 ∙ sin2  
 Ф1+Ф2−Ф3 

2
  

 

                            +4 ∙  𝑅01 ∙ 𝑅13 ∙ sin2  
 −Ф1+Ф2+Ф3 

2
  

 

                            +4 ∙  𝑅01 ∙ 𝑅12 ∙ 𝑅23 ∙ sin2  
 Ф1−Ф2+Ф3 

2
  

 

                            +4 ∙ 𝑅03 ∙ sin2  
 Ф1+Ф2+Ф3 

2
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