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Does computerization increase or reduce the extent of skills that workers are required to have? Autor, 

Levy and Murnane (2003) show empirically that adoption of computer-based technologies (CBT) was 

greater in industries historically intensive in routine tasks, and that computerization increased complex 

problem-solving and communication activities and reduced routine cognitive and manual activities. We 

extend this argument and argue that the effects of CBT are neither universal nor uniform, but a 

bifurcation emerges: occupations that historically (pre-computerization) required low skills and entailed 

low-complexity tasks do not experience a lot of CBT in their environment, or if they do, they remain low 

skill (or in extremis become less skilled) occupations, whereas historically high-skill occupations that 

entailed high complexity see much CBT as well as increases in the skills they require. We test these 

propositions in a unique dataset that includes measures of the degree of computerization and changes 

attendant to computerization in the level of seven skills of core employees (content, complex problem-

solving, etc.) for a sample of 819 firms in 2000. We link this dataset by core employees’ occupation to US 

occupation-level data on three dimensions of task complexity (with respect to data, people and things) in 

1971 (pre-CBT). We find that: (1) higher pre-CBT task complexity is associated with subsequent 

adoption and intensity of CBT; and (2) for occupations that were historically characterized by complex 

tasks, CBT affects most skills positively, but for simple tasks, CBT does not affect skills or affects them 

negatively. We replicate our analyses with the dataset and measures used by Autor, Levy and Murnane 

(2003) and obtain similar results. Our results shed light on the skill-based technological change and 

skilling-deskilling debates and suggest that the relationships are contingent in more nuanced ways than 

the literature has suggested. 

 

 

*   Carlson School of Management, University of Minnesota, benne001@umn.edu 

** Department of Business and Administration, Universidad Pública de Navarra, ainhoa.urtasun@unavarra.es 

mailto:benne001@umn.edu
mailto:ainhoa.urtasun@unavarra.es


2 

 

I. INTRODUCTION 

Skill-biased technological change (SBTC) is the proposition that technological change in the 

form of computer-based technology (CBT) entails an increase in the skill content of jobs 

performed by skilled workers (Machin, 2001). Less-skilled workers, who do not possess the 

necessary skills to work with CBT, are being left behind, with diminishing skills and the 

accompanying wage stagnation or decline, and damaged labor market prospects. Empirically, the 

SBTC hypothesis has been supported by a documented positive correlation between the adoption 

of CBT and the increased employment and wages of skilled workers (Katz and Autor, 1999 and 

Levy and Murnane, 1992 survey this literature). Yet, as DiNardo and Pischke (1997) suggest, 

rather than reflecting returns to computer use or computer skills, relative increases in 

employment and wages of CBT users may indicate that “computer users possess unobserved 

skills which might have little to do with computers but which are rewarded in the labor market, 

or that computers were first introduced in higher paying occupations” (p. 292). 

The unobserved skills have been identified by Autor, Levy, and Murname (2003) (henceforth 

ALM) as complex problem-solving skills and complex communication skills. ALM explain how 

the SBTC proposition actually works: computers take over the execution of routine manual and 

cognitive tasks—tasks that can be routinized or readily described with programmed rules—

making redundant workers who previously carried out such tasks; at the same time, computers 

complement the efforts of workers to carry out nonroutine cognitive tasks, entailed by complex 

problem-solving and communication activities. ALM show that indeed CBT adoption was 

greater in industries historically intensive in routine tasks, and that the increased computerization 

predicts increased complex problem-solving and communication activities and reduced routine 

cognitive and manual activities. These trends are present within occupations, industries and 

education groups. Therefore, ALM’s claim is broader than the SBTC hypothesis: the use of CBT 

complements the employment and skills not only of more-skilled but also of less-skilled workers.  

The recent economics literature favors the skilling approach, as did the sociological literature in 

the tradition of Blauner (1964). That technological change may stimulate demand for more 

skilled workers is also implied by the notion of learning-by-doing (Arrow, 1962). More educated 

employees are better able to evaluate and adopt innovations and learn faster new functions and 
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routines than less educated ones (Nelson and Phelps, 1966). In contrast, theories of occupational 

downgrading or deskilling, most forcefully stated by Braverman (1974, 1975), emphasized the 

desire of employers to acquire control over the work process by reducing the skill level of their 

workers. In a similar vein, product life cycle models (Vernon, 1966) emphasize the constant 

pressure to routinize new technology so that it becomes less reliant on skilled labor. The skilling 

approach tends to rely on forces external to the organization, basing its evidence on changes in 

the distribution of employment, whereas the deskilling approach relies on forces internal to the 

firm (management strategy) and changes within individual jobs. Other researchers, agnostic on 

overall historical trends, adopted a “contingency” or “mixed effects” position, asserting that 

situational factors such as labor costs or employee bargaining power are important in 

determining the utility of any technology or system of work organization (Wood, 1982; Spenner, 

1983; Hirschhorn, 1984; Form, Kauffman, Parcel, and Wallace, 1988; Zuboff, 1988).  

In this paper we extend ALM’s ideas by arguing that enhancements in complex problem-solving 

and complex communication skills are neither suitable for all workers nor profitable for all 

occupations. We propose that the initial (historic) task attributes of a job or occupation and the 

related skill content influence the subsequent degree of computerization as well as its posterior 

skill effects. We claim that a bifurcation emerges such that occupations that historically (pre-

CBT) required low skills and entailed low-complexity tasks do not see much CBT in their 

environment, or if they do, they remain low skill (or in extremis become less skilled). In contrast, 

workers in historically skilled and complex jobs see much CBT as well as increases in the skills 

they need to possess. We suggest that CBT does not only automate the gathering and storage of 

information but also generates information that can be analyzed by workers who possess the 

required skills and abilities (Zuboff, 1980). So the greatest gain from CBT has likely occurred in 

firms that pre-CBT had a lot of routine tasks, as shown by ALM, and those that had a lot of 

complex tasks so that CBT could complement the efforts of workers and makes them more 

productive. To formalize these propositions, we develop a simple model of skill accumulation 

that shows that the path of skill accumulation depends on the extent of initial skill, and exhibits 

bifurcation of the kind discussed above.  
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We test our hypotheses using firm-level information obtained from a survey administered in 

2000 to more than 800 firms headquartered and operating in Minnesota in a broad cross-section 

of industries. We examine the impact of CBT on seven sets of skills of core employees, the non-

managerial employees that are directly involved in making a firm’s main products. We find 

considerable support for the existence of bifurcation in our data for Minnesota firms. We use a 

replication of ALM’s dataset and measures and find that a bifurcation is present also in the 

broader sample of industries and occupations that they use. 

The rest of the paper is organized as follows. In Section II we put forth our theoretical 

framework and hypotheses. In Section III we describe the various datasets used in the paper. 

Section IV contains the empirical work, first concerning the adoption of CBT and next the 

effects of CBT on various skills. In Section V we explore the differences in our results as 

compared to ALM’s, evaluating the alternative characterization of tasks, and replicating ALM’s 

principal analyses and augmenting them with elements of our models. Section VI concludes. 

II. THEORY AND HYPOTHESES 

In order to understand the effects of CBT on skills we need to understand first why CBT is 

adopted. The two parts are clearly related, so the full argument concerning the “why” question 

can be understood more fully after the explanation of the effects of CBT. 

II.1. CBT adoption and use 

What factors facilitate the adoption of CBT and the degree of reliance on them? ALM (2003) 

found that industries that historically (pre-CBT) were intensive in routine tasks or tasks that can 

be accomplished by following explicit rules, have adopted computers to a greater extent than 

other industries. Skilled-labor endowment has been identified as another potential factor that 

encourages CBT adoption and use.1 Evidence at the plant-level on computers flowing to high-

wage and high-skilled jobs is presented by Doms, Dunne, and Troske (1997) and Dunne and 

Troske (1995); in a survey of 4,500 German firms, insufficient worker skills were identified as 

                                                           
1 Bartel and Lichtenberg (1987), Greenwood and Yorukoglu (1998), Nelson and Phelps (1966), Schultz (1975), 

Welch (1970) and others argue that skilled labor conveys a comparative advantage in technology adoption. 
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the main obstacle to increased CBT use (Hempell, 2006).2 The finding that skilled-labor 

endowment favors future CBT use suggests a substantial selection effect, and, if selection is 

related to the outcome of interest, as when explaining skills, a possible reverse causality. 

CBT is adopted to make production cheaper and more efficient. The cost and benefits of CBT 

vary across firms (Bresnahan et al., 2002). ALM argue that as CBT executes routine tasks it both 

reduces the cost of production and makes it more efficient – less expensive and more productive. 

ALM argue further that workers freed of routine tasks can concentrate on complex tasks of the 

kind that computers cannot carry out (at this time) as effectively as workers.  

We extend ALM’s argument by differentiating between occupations in which there is scope for 

expansion of the complex tasks component of the job and occupations in which such scope is 

very limited or does not exist. CBT substitutes for workers in performing tasks that can be 

programmed, that is, routine tasks. This substitution effect eliminates jobs or frees workers to 

carry out other tasks, either simpler or more complex, that CBT cannot do as effectively. ALM  

argue that the latter possibility (shifting attention to complex tasks) prevails and refer to it as 

skilling. But even routine tasks require a certain amount of skill (e.g., recognizing different items 

in the check-out cashier’s case) that CBT may displace, leaving the worker to do even simpler 

tasks that cannot be carried out economically by CBT (such as scanning items at the check-out 

counter). This amounts to deskilling. 

In some cases, time freed up by computers that do routine tasks can be usefully and naturally 

expended on the execution of complex tasks. And, sometimes, information generated by CBT 

enables complex tasks such as innovation (Zuboff, 1988, Bresnahan and Trajtenberg, 1995), a 

complementarity effect. But in many occupations one or both of these possibilities are missing. 

Furthermore, even if the substitution or complementarity effects could be created by CBT, 

                                                           
2 Why is CBT complementary to skills? One perspective argues that CBT is intrinsically complementary to skills 

(Berman, Bound, and Griliches, 1994; Griliches, 1969; Tinbergen, 1975; Goldin and Katz, 1998). Acemoglu (1998) 

argues that CBT and skills are not complementary by “nature” but by design. He argues that technological change is 

endogenous and dependent upon the supply of skills: the technology to be developed and adopted is the one that 

makes the most efficient use of existing factors. Because skill-biased CBT is more efficient at using skilled-labor, 

the presence of more skilled workers will favor the development and adoption of such technology. In a similar vein, 

Caselli and Coleman (2006) suggest that cross-country differences in technology are not merely a matter of some 

countries having an overall higher level of technical efficiency than others, but also a matter of having a higher level 

of skilled labor endowments. 
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employees in an occupation/firm that had required pre-CBT low skills may not be able to acquire 

the requisite skills associated with complex tasks post-CBT. Firms have an existing workforce 

and few regard it as completely and instantly replaceable, so managers’ choices of technology 

are constrained by their current employees’ abilities and the scope of the training they can 

receive. Hence the scope for job complexity expansion from the introduction of CBT and its 

extent are positively correlated with the pre-computer complexity of tasks in an existing 

occupation. 

Obviously, computers are not of equal value for all occupations. For example, supermarket 

check-out cashiers have no scope in their jobs for complex tasks and therefore no scope for their 

extension or expansion. In contrast, there is scope for complex tasks expansion in architects’ job 

who, freed of routine tasks, can dedicate themselves to perform more complex tasks such as 

innovation. Hence the architect will lose some skills of technical nature such as drafting but will 

gain skills required for innovation, improvisation and creativity or more broadly complex 

problem-solving skills in data analysis and relating to people. Similarly, whereas financial 

analysts have to complete a wide range of interrelated complex tasks (analyze financial data, 

recommend investments and present oral and written reports) that can be complemented and 

coordinated by computers, janitors’ jobs consist of simpler tasks that computers cannot 

complement or substitute. The foregoing discussion can be summarized as follows. 

H1: Pre-computer task complexity of employees in key jobs in a firm influences positively 

the firm’s subsequent adoption of CBT and the intensity of its use. 

II.2. Does CBT complement or substitute for skills? 

CBT is characterized by a fundamental duality: it automates activities and registers data about 

those automated activities, thus generating new streams of information (Zuboff, 1998). This is 

exemplified by the computerization of store check-out. Scanning devices not only identify the 

cost of the item but also generate data that can be used for inventory control, warehousing, 

scheduling of deliveries, and market analysis. In its automating function, the scanner substitutes 

for the worker and thus reduces the employee’s duties; as data collector, the scanner plays the 
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role of an “enabling technology,” opening up new opportunities (rather than providing solutions), 

and thus complementing the worker (Bresnahan and Trajtenberg, 1995). 

Firms have access to a menu of feasible CBTs (Acemoglu, 1998). The task conditions of the key 

occupations and jobs held by incumbent workers influence firms’ decisions about the type of 

CBT they select. Firms in which the core employees performed complex tasks prior to the 

computerization decision and thus were skilled-labor abundant firms would tend to adopt skill-

biased CBT that complements employees’ high skills, whereas firms where core employees’ 

tasks were simple would tend to adopt non-skill-biased CBT that substitutes employees’ low 

skills, or replaces these employees. 

The ideas presented above can be represented in a simple model of individual skill accumulation 

similar to that of Lucas (1988).3 The model relates the growth of skill, dxds(x) , to the level 

already attained, )(xs , and the effort devoted to acquiring more, such that: 

)
)(

1
()(

)(
10  

xs
xs

dx

xds
     (1) 

where x  is CBT use, and 0)(, xsx . 

In equation (1), if this paper’s contingency hypothesis is correct, we have 00   and 01  . 

Given that 0)( xs , there exists a level of skill, )(* xs , such that 0)( dxxds  and thus for 

*)( sxs  (that is, a “high” level of existing skill) the level of skill will increase as CBT rises, 

0)( dxxds , but for 
*)( sxs  (which we interpret as unskilled-labor) the level of skill will 

decrease as CBT rises, 0)( dxxds . 

We summarize the foregoing discussion as follows. 

H2: CBT has a positive effect on the level of skills required for occupations that, pre-CBT, 

were intensive in complex tasks, and a negative effect or no effect for other occupations. 

                                                           
3 By “human capital” Lucas (1988) means general skill level, and his model focuses on the fact that the way an 

individual allocates time over various activities in the current period affects the skill level in future periods. 
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Solving the differential equation in (1), we obtain the relationship between skill levels and levels 

of CBT use, 

x
Cexs 1

1

0)(





      (2) 

Figure 1 plots the curve in (2). Different values of the parameters 10 ,  account for three 

alternative hypotheses concerning the impact of CBT use on skills: 0, 10   represents the 

skilling hypothesis whereby the impact of CBT use on skills is always positive (Figure 1.a); 

0, 10   represents the deskilling view that CBT use always has a negative impact on skills 

(Figure 1.b); and 00   and 01   represents our contingent view that the impact of CBT use 

on skills is positive for skilled-labor endowments but negative for unskilled-labor endowments 

(Figure 1.c). For each figure, 1.a, 1.b, and 1.c, the four different slopes refer to different initial 

pre-computer skill endowments, jj Cs  )()0( 10  , with j indicating occupation, but the 

same parameters, 0  and 
1 . Only Figure 1.c is consistent with both hypotheses H1 and H2. 

{{Figure 1 here}} 

In sum, both the decision whether to use CBT and its intensity, and the decision whether to 

invest in a skill-biased CBT or in a non-skill-biased CBT are influenced by the same variable: 

pre-CBT skill requirements. Unskilled-labor abundant firms performing simple tasks will tend to 

choose low-intensity CBT that substitutes for human skills, whereas skilled-labor abundant firms 

performing more complex tasks will tend to promote CBT use that complements human skills. 

III. DATA DESCRIPTION 

The empirical objectives of this paper, which have driven the collection of the data and the 

construction of the variables described in this section, are as follows. First, we seek to evaluate 

the relationship between pre-CBT skill level and subsequent introduction of CBT. Second, we 

wish to investigate the relationship between CBT and skill change. Third, we want to examine 

the relationship between CBT and the post-CBT task environment. Most of the variables come 

from our firm-level original survey, which was designed, in part, to provide information relevant 
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to the investigation of the relationships described above. Additional key variables at the level of 

occupations were derived from various public datasets that were used by ALM and other 

researchers who have studied the question of CBT and skill change. 

III. 1. The dataset  

The primary dataset used in this study comes from the “Minnesota Human Resource 

Management Practices Survey 2000” (MHRMPS-2000). We obtained additional information for 

our sample firms from Dunn & Bradstreet for sales and the Minnesota State Department of 

Economic Security for average wages. Information about tasks associated with sample 

occupations is derived from Fourth Edition 1977 DOT and other sources described briefly later 

(ALM describe these data sources in detail). Historical wages, educational attainment and 

employment for sample occupations are extracted from Integrated Public Use Microdata Series, 

Current Population Survey (IPUMS-CPS). The number of workers engaged in R&D activity for 

sample industries is drawn from 2001 Survey of Industrial Research and Development by the 

National Science Foundation. 

MHRMPS-2000 was administered in late 1999 and in 2000 by mail, with a phone survey 

administered to firms that did not respond. The data comprise 819 privately-held and publicly-

traded firms that employed 20 or more employees in diverse industries (NAICS 22-92) outside 

agriculture, forestry, fishing, hunting, and mineral industries, headquartered in Minnesota and 

with at least 50% of their employees working within that state. The choice of a single state offers 

several advantages. First, the workforce is likely to be more homogeneous than in firms 

operating in several states. Second, all firms are subject to the same state laws and regulations. 

Third, crucial firm-level data that are not in the public domain are available from state agencies. 

Fourth, survey response rates are much higher than in surveys with a broader geographical scope. 

The survey was completed by a senior human resources manager for the firm and the overall 

response rate was 33.37%. MHRMPS-2000 was designed to explore a broad range of issues 

relating to firms and their employees. The sample was constructed to include a diverse group of 

firms that represent the variety of workplace programs and practices found in U.S. companies as 

well as a wide range of production technologies. One of the survey’s aims was to shed light on 
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the relationship between use of CBT and employees’ skills. The sampling strategy is described in 

detail in Appendix A. The survey is available upon request. 

III. 2. Measures 

Table 1 presents the description of the variables and their sources. The variables concern the 

sample firms’ core employees in Minnesota, as well as firm, occupation and industry-level 

variables. Descriptive statistics are in Table 2. 

{{Table 1 here}} 

Change in core employees’ skills. MHRMPS-2000 contains information about various aspects of 

core employees’ skills and tasks. Core employees are non–supervisory, non–managerial 

employees at the firm who are directly involved in making the product or providing the service 

(Osterman, 1991). These employees represent a relatively homogeneous group. A group of 

survey items focused expressly on the relationship between CBT and skills, asking respondents 

to rate “to what extent does reliance on computer-based technology reduce or enhance the skill 

sets possessed by core employees.” This question addresses separately changes in seven types of 

skills: content, process, social, complex problem-solving, technical, system, and resources 

management skills. The changes are on a 7-point scale, with -1, -2, -3 indicating that reliance on 

CBT reduces skill from “slightly” to “greatly,” 0 indicating ”no change,” and 1, 2, 3 indicating 

that reliance on CBT enhances skill from “slightly” to “greatly.” The question does not ask 

respondents to date the introduction of CBT, only to assess its effects on changes in the seven 

skills. In Table 2 all means of change indicators are positive but close to 0.4  

Core employees’ task attributes. MHRMPS-2000 provides information on the nature of core 

employees’ tasks, complexity and routine, and about the degree of skill needed to execute these 

tasks, skill requirement, all rated on a 5-point scale, with 0 “not at all”, 1 “slightly”, 2 

“moderately”, 3 “very”, and 4 “extremely.” This information pertains to the year of the survey. 

                                                           
4 There might be a concern with the fact that survey responses on skill changes are not accurate because CBT was 

introduced several years before the survey was conducted. The use of retrospective data may cause two kinds of 

recall errors: memory effects (forgetting the precise nature of some events) and telescoping effects (incorrectly 

timing an event). The problem here has to do with memory effects and may cause measurement errors in the 

dependent variable. However, the memory distortion process is likely to be random and not associated with firm 

CBT at the time of survey or the complexity of tasks of their core employees’ occupation in the 1970s. 
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CBT and core employees. The extent of reliance on CBT is captured by a 5-point scale question: 

“Are the tasks of core employees affected by computer based technology?” This measure of CBT 

use captures exactly the concept in which we are interested (unlike the common measures of the 

percentage of workers using computers and investment in IT, which are weak proxies for the 

extent of influence that technology exercises on the tasks of employees). 

Occupational titles of core employees. MHRMPS-2000 contains information on core employees’ 

job titles, such as software engineer, waiter, check-out cashier, and assembly worker. We have 

coded this information using the Occupational Information Network (O*NET) database system, 

the US Department of Labor’ recent successor to the DOT. As a result, 221 distinct 8-digit 

O*NET-SOC 2000 codes were identified (out of a total of 1167).5 Thus each sample firm is 

represented by one occupational title, that of its core employees. To test whether computer use 

represents a selection effect, we examine whether pre-computer skill endowment explains 

computer use. Many consider the introduction of the IBM-PC in 1981 as the beginning of the 

“computer revolution” (Card and DiNardo, 2002), and microprocessors were first introduced on 

a wide scale in manufacturing machinery in the 1970s (Autor, Katz, and Krueger, 1998). In a 

survey that we conducted in the middle of the 1990s with similar sampling frame as MHRMPS-

2000 we also asked about the year in which firms implemented their CBT. The results are plotted 

in Appendix C Figure C1; they portray a similar picture to that presented by others on the basis 

of less direct data (e.g., the percentage of workers using computers, as in ALM, or the widely-

used expenditure on computers), that is, a surge in CBT adoption occurred in the early 1980s. 

We consider specifically the year 1971 as the pre-CBT date for practical reasons. The data about 

the complexity associated with occupations were collected in 1971. Historical (pre-CBT) data on 

task complexity of an occupation from the Fourth Edition of DOT (1977) are used as proxy for 

pre-computer skill endowment. Task complexity reflects the demands that jobs make on workers, 

hence it requires greater skill (Campbell, 1988). 

Pre-CBT occupational complexity in relation to data, people and things. We used sample SOC 

2000 codes to append variables from the pre-computer era to the MHRMPS-2000 dataset. We 

obtained the levels of complexity at which workers in different occupation functioned during the 

                                                           
5 O*NET-SOC is the current O*NET taxonomy, which represents the transition from the former Occupational Units 

(OUs) of O*NET 98 to the SOC (Levine, Nottingham, Paige, and Lewis, 2000). 
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pre-CBT era in relation to data, people, and things:6 Datai,1971 (measured on a scale of 1 to 7), 

Peoplei,1971 (1 to 9) and Thingsi,1971 (1 to 8). The scales were created from ordinal ranks of the 

tasks used to characterize the degree of complexity of work, described in Appendix B. 

Pre-CBT education and wages. Educational attainment and annual wages from the pre-computer 

era are also appended to sample 1970 COC codes.7 Educationi,1971 is measured on a scale of 1 to 

9 and Wagesi,1971 indicates occupational pre-tax wage and salary income in thousands of dollars. 

Control variables. Other variables are the number of core employees, percentage of unionized 

employees, average age, education, percentage of females, and wage for all employees in the 

firm, and firm sales, the last two variables lagged by one year. The number of full-time 

equivalent R&D scientists and engineers for 42 NAICS codes in the sample is included to reflect 

industry-level R&D intensity. 

IV. EMPIRICAL ANALYSIS 

Table 2 presents descriptive statistics. The number of observations varies across variables 

because of missing observations in the various datasets. The first seven variables concern change 

in various skills; about 20% of respondents failed to provide this information (mostly phone 

respondents, 131 out of 177 non-respondents to this question). Non-responses are inversely 

correlated with the degree of CBT, with heaviest concentration in occupations that have seen 

little CBT (waiters, food preparation workers). For job titles of core employees, discussed in the 

previous section, we have just one missing observation, and six for pre-computer complexity in 

relation to data, people, and things. However, several occupations could not be matched with 

data on average wage and education in 1971, which reduces the sample size for relevant 

estimations to 746 (in Table 4). A substantial number of missing observations occurs for the 

firm-level unionization rate and average wage, which are used as control variables in the analysis 

                                                           
6 We first mapped sample SOC codes to 1970 Census Occupational Classification (COC) using crosswalks provided 

by the National Crosswalk Service Center, obtaining 152 1970 COC codes (26.5% of the total number of 

occupational categories of the 1970 Census, and 31.06% of ALM). Next, we appended weighted means (using 

weights to approximate U.S. civilian labor force) of 1977 DOT task measures to sample 1970 COC codes using the 

April 1971 CPS augmented with DOT characteristics data file. 
7 Weighted means for educational attainment and annual wages in 1971 extracted from IPUMS-CPS are appended to 

sample 1970 COC codes. 
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of the relationship between CBT and task environment (Table 6). We ran the analysis without 

these variables and obtained similar results to those reported in the text. 

{{Table 2 here}} 

Table 3 presents Pearson’s correlations for the variables included in the analysis. The intensity of 

CBT use is positively associated with skilling across all seven skills. Computerization is 

positively correlated with contemporary (survey year) task complexity and with task skill 

requirement (complementarity effect) but negatively correlated with task routine (substitution 

effect), consistent with ALM’s framework. CBT use is positively correlated with average 

employees’ wage (a standard finding), education and age, as well as with productivity (sales per 

core employee) and R&D intensity. These cross-sectional correlations are interesting but, as 

DiNardo and Pischke (1997) caution, they do not inform about causality. More suggestive about 

causality is the positive correlation between pre-computer (1971) task complexity in working 

with data, people, and things, and subsequent CBT use, as well as between pre-computer 

employees’ education and wages and subsequent CBT use. 

{{Table 3 here}} 

In the remainder of this section we examine these relationships in detail. First, we estimate in 

Table 4 the relationship between pre-CBT task complexity and subsequent CBT adoption and 

use. We test whether a firm whose core employees’ tasks were complex before computerization 

and were run by skilled workers will tend to choose a more intensive use of CBT than a firm 

whose core employees’ tasks prior to computerization were simple and run by unskilled workers. 

Second, in Table 5 we present firm-level estimations of the probability that a positive change in 

skills is associated with the use of CBT, conditional on historical values of task complexity. We 

test the hypothesis that, in addition to influencing the intensity of use of CBT, pre-CBT task 

complexity determines whether CBT is a skill-biased technology.8 Finally, in Table 6 we 

                                                           
8 Of the 810 sample firms, 165 do not use CBT, and for them, obviously, there is no CBT skill variation. The fact 

that CBT skill effects are observed only for CBT users, which is a nonrandom sample, may cause a sample selection 

bias when explaining the effect of CBT on skills. To deal with this issue we estimate first-differenced regressions. 

Furthermore, we are dealing with the direction of causality by using pre-CBT explanatory variables and a dependent 

variable that, as the survey question states explicitly, is caused by CBT. 
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examine the relationship between the intensity of CBT use and the task environment 

(complexity, routine, and skill requirements). 

IV.1. Pre-computer task complexity favoring adoption and use of CBT 

ALM (2003) estimate industry-level CBT adoption (the percentile rank of an industry in 

computer use in 1997) as a function of industry-level routine task intensity in 1960. As noted, 

they find that CBT is positively related to historically routine task intensity. We expand on their 

model by developing a richer and more detailed description of the nature of pre-CBT work: 

instead of routine, we characterize tasks in terms of three dimensions of complexity, in relation 

to data, people, and things. These three dimensions require different skills and can capture 

greater diversity among different occupations than the single dimension of routine, as shown by 

the relatively low correlations among them in Table 3. Figure 2 shows mean values of firm-level 

CBT by quartile categories of pre-CBT complexity in our sample core employees’ occupations. 

CBT intensity increases with pre-computer task complexity, with the strongest pattern revealed 

for complexity in working with data.  

{{Figure 2 here}} 

We test further how this multidimensional complexity influences subsequent CBT use by 

estimating the following equation: 

)1971,1971,1971,2000, ,,( iiii ThingsPeopleDatafx  )     (3) 

where x  measures CBT (adoption or intensity of use) for each firm’s core employee group, i, 

1971t  refers to the pre-CBT era (with ixi,  01971 ) and 2000t  to the survey reference 

year. We implemented equation (3) to include a linear combination of complexity with respect to 

data, people, and things and also interactions among them to capture multidimensionality or task 

variety as an additional source of task complexity. Results for three alternative specifications of 

equation (3) are displayed in Table 4. In the first specification the dependent variable is whether 

a firm uses CBT, and logit estimates are reported. In the second specification the dependent 

variable is the intensity of CBT use on a 4-point scale, from “slightly” to “extremely” so that 

non-users are excluded; ordered logit estimates are presented. In the third specification the 
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dependent variable is the intensity of CBT use on a 5-point scale (“not at all” to “extremely”) so 

that non-users are included in the Poisson estimation. For each specification, we first show a 

control model (columns 1.a, 2.a, and 3.a) with pre-CBT occupation average wages and 

educational levels as the explanatory variables that capture pre-CBT skill at the firm level. The 

second, third, and fourth models (columns b, c, and d in each specification) focus on the 

subsample of firms with occupations for which one of the three dimensions – data, people, or 

things – is not relevant (its value is less than or equal to the 15th percentile). For example, there 

are 121 sample firms where core employees’ occupations concern data and people but not things, 

represented in column 1.b. The fifth model (columns e) includes all three types of task 

complexity and interactions among them. No survey-year control variables are included (their 

inclusion does not change the results).  

{{Table 4 here}} 

There are four principal findings. (1) Pre-CBT educational attainment and wages at the 

occupation/firm level affect positively both CBT adoption and intensity of use; this finding 

supports the conjecture that intensive CBT users possess skills which have to do with education 

and are in higher-paying occupations. (2) Pre-CBT complexity with respect to data stands out as 

the most significant dimension affecting CBT adoption and intensity of use. Furthermore, 

complexity with respect to data and people exhibit multiplicative effects when explaining CBT 

adoption (column 1.e.); complexity with respect to data, people, and things exhibit multiplicative 

effects regarding both CBT adoption and intensity of use (columns 1.e., 2.e., and 3.e.). (3) Pre-

CBT complexity with respect to things also matters: it positively impacts CBT adoption and use 

in the presence of data and people complexity (columns 1.e. and 3.e.) and CBT use in the 

presence of people-complexity (column 2.d.), and negatively impacts CBT use in the presence of 

data-complexity (column 2.c.). The interactive effect of complexity with respect to data and 

things shows a declining effect on both CBT adoption and the intensity of its use (columns 1.e., 

2.c., 2.e., 3.c., and 3.e.). (4) Pre-CBT people-complexity exhibits little relevance for the adoption 

of CBT. Pre-CBT complexity with respect to people positively influences CBT adoption and 

intensity of use interactively with data or with things (see columns 1.e. and 2.d.) but has no effect 

on its own. 
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In sum, we find broad evidence that pre-computer task complexity has a significant effect on 

CBT adoption and intensity of use. The distinction among data, people, and things related tasks 

has proven to be valuable in explaining CBT; the impacts are positive for pre-computer task 

complexity in relation to data and things acting on their own as well as in relation to people when 

interacting with any of the other complexity dimensions. These results support hypothesis H1. 

IV.2. CBT and skills 

In order to shed light on the impact of CBT on skills, we next estimate the relationship between 

change in skills, )(xds , and change in CBT, dx , as represented in equation (1). We estimate this 

relationship at the firm-level, with i indicating the firm. In the pre-CBT era (at 1971t  such that 

ixi  01971, ) we assume that firms differ in their skill endowments depending on their core 

occupation, denoted by j: jj C)/δδ()(s   100  for all firms with the same core occupation, 

according to equation (2). We proxy marginal changes in (1) by the following discrete changes: 

)()()( 1971,2000, iii xsxsxs   for )(xds , and 1971,2000, iii xxx   for dx , where 2000t refers to 

the survey reference year. Substituting ixi  01971,  and the discrete changes in equation (1), we 

obtain the following equation to estimate: 

iijii xsxs    2000,12000,0 )0(
~~

     (4) 

where i  is random error, and 0),0( 2000,  ij xs . CBT interacts with pre-CBT skill endowment, 

)0(js , which we proxy by a linear combination of pre-CBT task complexity in working with 

data, people, and things from 1971 CPS augmented with DOT Fourth edition occupation-level 

data. We hypothesized in H2 that, in addition to influencing the intensity to which CBT is used, 

but not as a mere consequence of such influence, pre-CBT complexity determines whether or not 

CBT positively impacts skills. In particular, for high enough levels of pre-CBT complexity we 

expect a positive impact, but for low levels of pre-computer complexity we expect a negative or 

null impact, which in terms of equation (4) implies that 0
~

0   and 0
~

1  . 



17 

 

Table 5 reports estimations of equation (4) assuming a logistic cumulative distribution function 

for the probability of increases in the level of skill (probit and complementary log-log analyses 

show similar results). We define is  in (4) as a binary variable that equals 1 for cases of skilling 

( 0 is ) and 0 for cases of deskilling or no change ( 0 is ).Being a parsimonious measure, 

such a binary variable captures perfectly our bifurcation hypothesis. As a robustness test, we 

estimated a Poisson regression for a 4-point scale variable, with 0 indicating negative or no skill 

change and 1, 2, 3 indicating that CBT enhances skill from “slightly” to “greatly;” the results (in 

Appendix C Table C1) are similar to those presented in Table 5. 

Seven logit regressions are estimated, one for each skill: content, process, social, complex 

problem-solving, technical, system, and resources management skills. For each skill, estimates 

are shown first for CBT without interaction terms (columns a), second for CBT and the 

interaction between CBT and pre-CBT wages9 (columns b), and third for CBT and the 

interaction between CBT and pre-CBT task complexity (columns c). In this last specification, we 

consider complexity with respect to data, people, and things not interacted but separately. 

Inclusion of interacted terms here would cause severe multicollinearity problems. 

In the simplest specification of CBT affecting skills (columns a), CBT is significantly positive 

for content, process, complex problem-solving, technical, and system skills, insignificant for 

resources management skills, and significantly negative for social skills. When the interaction 

term of CBT with pre-computer wage is introduced (columns b), the CBT coefficients turn 

significantly negative for all skills but for process and system skills, which are negative but 

insignificant. Hence the positive effect of CBT is restricted to high pre-CBT wages. 

{{Table 5 here}} 

Similar results are obtained when interaction terms of CBT with pre-computer task complexity 

are introduced: significant negative CBT coefficients for social, complex problem-solving, 

technical, and resources management skills and negative but insignificant for content, process, 

and system skills, combined with significant positive coefficients for the interaction between 

                                                           
9 Estimates for CBT and the interaction between CBT and pre-CBT educational level were also calculated, but not 

considered because of severe multicollinearity problems. 
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CBT and pre-CBT data complexity in the case of content and complex problem-solving skills; 

significant positive coefficients for the interaction between CBT and pre-CBT people complexity 

in the case of process, social, and resources management skills; and significant positive 

coefficient for the interaction between CBT and pre-CBT things-complexity in the case of 

technical and system skills. The positive values of the interaction terms are consistent with 

results found above as well as in other studies, and the model overall estimation exhibits higher 

significance. The only negative interaction between CBT and pre-CBT complexity is for data in 

the case of social skills. 

In H2 we hypothesized a contingent approach regarding the change in skill levels resulting from 

the adoption of CBT, with pre-CBT task complexity mediating the CBT-skills relationship. Our 

results generally support the contingent approach, with distinctions made among different types 

of skill. The bifurcation is most evident for complex problem-solving, technical and resources 

management skills where occupations with high pre-CBT complexity gained in these skills but 

those with low pre-CBT complexity levels experienced declines or no change. The estimated 

effect is negative when pre-CBT data-complexity is lower than 2.3 over 7 for complex problem-

solving skills, pre-CBT people-complexity is lower than 2.9 over 9 for resources management 

skills and pre-CBT things-complexity is lower than 3.3 over 8 for technical skills. The positive 

effect of CBT on content, process and system skills seems to be stronger with pre-CBT 

complexity in relation to data, people, and things, respectively. Social skills decline when pre-

CBT people-complexity is lower than 2 over 9 and increase otherwise, when there is no pre-CBT 

complexity in relation to data. Figure 3 illustrates these predictions for complex problem-solving 

skills. 

{{Figure 3 here}} 

IV.3. CBT and task environment 

To provide additional evidence on the effect of CBT on skills, we estimate the effects of CBT on 

task complexity, task skill requirements, and task routine of core employees, that is, we estimate 

equation (2). Both CBT and task attributes are in levels rather than changes in them (as in 

equation (1) and its estimations in Table 5). We test first whether the empirical relationship 
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between CBT and each of the three task attributes is linear or exponential (as assumed in 

equation (2)). The Box-Tidwell test rejects the null hypothesis of CBT being a linear term (p-

value < .10) for both task complexity and task skill requirements, suggesting that in these cases 

an exponential transformation of CBT offers a better fit than a linear one. In terms of equation 

(2), Box-Tidwell regression estimates are 4.0
~

1   for task complexity and 29.0
~

1  for task 

skill requirements. We use these estimates to present in Table 6 Poisson estimation exponentials 

on CBT1

~
  for task complexity and task skill requirements, and linear for task routine.  

Since these equations are not in differences, there might be potential effects of core employees, 

firm and industry-specific features. We present first estimations without control variables 

(columns a) and then with control variables for the year of the survey: wage, education, 

percentage of females, and R&D intensity at the industry-level, which introduce many missing 

observations (columns b).10 Providing confirmation of the contingent approach, positive and 

significant constant terms are obtained for the baseline models without control variables for both 

task complexity and task skill requirements and for the full model in the case of task complexity 

(in equation (2) 0δ0δδand0 if 0101  ). The constant term for the full model is not 

statistically significant for task skill requirements. When we estimated skill changes in Table 5, 

the coefficient estimated on CBT, 0

~
 , was negative for all skills except for content, process and 

system skills, which was not statistically significant (Table 5, columns c). The reason for 

obtaining an insignificant constant term here could be that task skill requirements are aggregate 

measures of different skills that exhibit different patterns and thus their aggregation may cause 

some effects to vanish. 

{{Table 6 here}} 

Finally, we focus on the initial conditions or pre-computer skill endowments, formalized by 

jj Cs   10)0(   for all the firms with the same occupation j, graphically represented by the 

intersection between the skill function and the y-axis in Figure 1. The exponential model in (2) 

exhibits different occupational slopes for different pre-computer skill values. Thus for the 

                                                           
10 We also included unionization, employee age and firm age, but these turned out to be statistically insignificant as 

well as introduced more missing variables, and were dropped. 
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contingent model ( 0,0 10   ), an increase in jC  implies an increase in the slope, turning 

from negative to positive once the initial skill endowment has surpassed a certain level. Separate 

interactions between the exponential term and pre-CBT task complexity in relation to data, 

people and things are introduced to capture differences in pre-computer skill endowments among 

occupations and to test whether increases in pre-CBT task complexity produce increases in jC  

and therefore in the slope. 

Corroborating similar findings in the preceding section, in Table 6 pre-CBT task complexity in 

relation to data and things increases the exponential function’s slope of CBT explaining future 

task complexity and task skill requirements. For low pre-CBT task complexity, CBT increases 

may produce negative changes in task complexity and in task skill requirements. On the other 

hand, pre-CBT task complexity in relation to people does not have any significant effect. For 

task routine, CBT has a linear positive effect for low pre-CBT task complexity in relation to data 

and a linear negative effect when such pre-CBT task complexities reach higher values. 

In sum, these findings suggest that CBT is skill-biased only if the task was historically complex 

but not if the task was simple, which points to the robustness of our earlier findings concerning 

the role of pre-computer task complexity in the relationship between CBT and skills, that is, our 

bifurcation hypothesis. 

V. COMPARISON OF OUR ANALYSES AND RESULTS WITH ALM 

The results reported in the previous sections portray a different picture than that which emerges 

from ALM’s analysis. ALM found evidence that CBT adoption was greater in industries 

historically intensive in routine tasks, whereas we demonstrated that CBT adoption is greater in 

occupations historically intensive in complex tasks. ALM found evidence that computerization 

raises demand for cognitive and interpersonal skills, reduces demand for repetitive skills and had 

little direct impact on the demand for nonroutine manual skills, these findings being pervasive 

within industries, occupations, and education groups. We found that computerization affects 

skills positively only for occupations historically intensive in complex tasks, but not for simple 

tasks, where computerization does not affect skills or affects them negatively. This section 

rationalizes these differences in findings. 
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Several factors can account for such differences. ALM distinguish between routine and 

nonroutine tasks, whereas we distinguish tasks by their complexity. ALM use task inputs as 

proxies for skills, whereas we use direct measures of skills. Furthermore, ALM use industry- and 

occupation-level samples from Current Population Survey (CPS) and Census of Populations that 

estimate U.S. labor force, whereas we use a sample of 819 firms from Minnesota. Beyond these 

differences in measures and data, we estimate a non-linear model to explain changes in skills by 

computerization, whereas ALM estimate a linear model. In the remainder of this section, we 

examine the most important differences. First, we explore the relationship between the 

characterization of tasks by ALM and the one we use. Second, we replicate ALM’s estimation of 

computerization at the industry-level and add to it complexity variables. Third, we replicate 

ALM’s analysis of the impact of CBT on skill change at the occupation level and augment it 

with interaction terms between CBT and ALM’s characterization of tasks.11 

V.1. Mapping routine variable onto complexity task variables 

One critical element in the analysis of changes in skills is the way in which the task content of 

jobs is characterized. ALM focus on the degree of routine of tasks whereas we focus on 

complexity. ALM use five variables to characterize routine and nonroutine jobs. Two variables 

account for nonroutine cognitive skills: math, which measures complex problem-solving skills, 

and dcp, which captures communication and managerial skills. Routine cognitive skills are 

captured by sts, adaptability to work requiring set limits, tolerances, or standards. Routine 

manual skills are represented by fingdex, finger dexterity. Nonroutine manual skills are captured 

by eyehand, eye-hand-foot coordination (see ALM for a more detailed description). In contrast, 

we use three variables to characterize job complexity: data for tasks that have to do with 

knowledge and information, people for tasks that require people interaction and things for tasks 

that involve manipulation of tangible objects, such as machines (see our Appendix B). 

To examine how routine and complexity map onto each other, we use a replication of ALM’s 

industry-level dataset and explore simple correlations among the variables and interpret them in 

view of the specific definitions of the tasks. (Similar results were obtained for a replication of 

                                                           
11 We thank ALM for making their dataset available. However, identical duplication of their data and measures was 

not possible because of the absence of some crosswalks. 
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ALM’s occupation-level dataset). Table E1 in Appendix E indicates that measures for nonroutine 

cognitive tasks (math and dcp) are positively correlated with data (.89; .63) and people (.67; .43), 

whereas measures for routine, both manual (finger) and cognitive (sts) tasks are positively 

correlated with things (.52; .60). Therefore, ALM’s routine task index (rt) exhibits negative 

correlations with data (-.23) and people (-.48) and a positive correlation with things (.48). The 

data variable includes only cognitive tasks, with 1, 2, 3 and 4 being routine (programmable) 

tasks and data 5, 6, and 7 being nonroutine (nonprogrammable) tasks; at the same time, tasks 1, 

2, 3 and 4 are simple, or less complex tasks, whereas tasks 5, 6 and 7 are complex. So, almost by 

definition, routine is akin to simple and nonroutine to complex, in the domain of cognitive tasks 

that have to do with knowledge and information. ALM capture nonroutine cognitive tasks with 

math, which is quite similar to data (correlation .89). People includes mostly cognitive tasks 

(except for serving), but in this case simple is different from routine. Because different people 

have different needs, different styles of communication and so on, people tasks are generally 

nonroutine, with lower levels being simpler and higher levels more complex. The significant 

negative correlations of people with sts and ALM’s routine index (-.54; -48) confirm the 

nonroutine nature of the people variable. Based on the correlation coefficients, things includes 

mostly routine tasks, with the simplest tasks (1, 2, 3, and 4) being clearly routine manual tasks, 

and the most complex tasks (6, 7, and 8) being both routine manual and routine cognitive tasks. 

Tasks 6, 7 and 8 can be considered routine on the basis of ALM’s definition of sts: “adaptability 

to situations requiring the precise attainment of set limits, tolerances, or standards.” Task 5, 

driving-operating, would be an exception as it is considered by ALM a nonroutine manual task. 

Apart from exhibiting different types of complexity, both data and people categorize a 

homogeneous range of tasks, cognitive analytic for data and nonroutine cognitive and interactive 

for people. Things exhibits broader task heterogeneity, ranging from simple routine manual tasks 

(1, 2, 3 and 4), nonroutine manual tasks (5), to routine cognitive tasks (6, 7 and 8), each level 

also increasing in complexity.  

In sum, the two sets of variables capture different but related tasks attributes. Data overlaps 

substantially with ALM’s measure of nonroutine cognitive tasks, whereas our people and things 

measures and ALM’s variables overlap only to a limited extent. To check the robustness of the 
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simple correlation analysis, we conducted also a multiple correspondence analysis (MCA), 

which yielded similar results.12 

V.2. Replication of ALM analyses 

Predicting CBT  

We replicate ALM’s estimation of CBT adoption as a function of task routine, and then add into 

the equation task complexity. Task routine is measured with ALM’s pre-CBT routine index and 

complexity with the data variable. (By construction, that routine index is positively correlated 

with finger and sts and negatively with math, dcp, and eyehand). Column 1 of Table 7 presents a 

replication of ALM’s predictive test (their equation 12), where the dependent variable is the 

percentile rank of computer use in 1997 in 140 industries and the independent variable is routine 

task share in 1960. Column 2 adds complexity in 1960 defined analogously to task routine. Both 

independent variables were standardized. The inclusion of complexity increases R2 substantially 

from 0.10 to 0.41. It also increases task routine’s predictive power from a point estimate of 1.85 

(standard error 0.48) to 13.27 (standard error 1.99). The point estimate of complexity is 17.43 

(standard error 2.08).13 These results attest to the importance of task complexity, whose effect on 

CBT is 31.27% stronger that the effect of task routine – although both clearly contribute to 

predicting which industries were more prone to adopt CBT. 

{{Table 7 here}} 

Estimating the effect of CBT on skills in our framework with ALM data 

ALM estimate a linear regression of within-occupation change in task content on occupational 

computerization and a constant. They find that occupations that have undergone rapid 

computerization experienced a reduction in the labor input of routine cognitive skills and an 

                                                           
12 MCA demonstrates that information contained in ALM’s nonroutine-routine, manual and cognitive variables and 

in our complexity variables overlaps to a certain degree. The information these variables provide can be probably 

best captured through two different dimensions, one describing nonroutine complex tasks and the other describing 

routine tasks. MCA also shows that the nonroutine complexity dimension captures more variation in tasks – more 

information – than the routine dimension.  
13 Adding People in the equation further improves R2 to .46, increases the estimate on the routine variable to 2.92 

(s.e. .39), lowering the estimate on data to 16.60 (4.03), whereas the estimate on people is 11.06 (3.27). Adding also 

things increases R2 to .47, changes estimate on routine to 2.84 (.39), increases that on data to 20.38 (4.50), reduces 

the estimate on people to 6.18 (4.19, p-value .14), and the estimate on things is negative, -4.71 (2.56). 
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increase in the labor input of nonroutine interactive skills. However, there was no increase in 

nonroutine analytic skills and no reduction in routine manual tasks. In contrast, we estimate a 

regression of firm-level change in employees’ skills on firm-level CBT change, the interaction of 

firm-level CBT change and pre-CBT occupational complexity, and without a constant term. We 

obtain significant negative CBT coefficients and significant positive coefficients for the 

interaction for most skills, supporting the bifurcation hypothesis. ALM’s model allows for just 

one type of results, either skilling or deskilling, whereas our framework allows also for 

contingent results, that is, skilling or deskilling depending on the degree of task complexity.  

To assess the implications of the differences in the two models, we contrast the estimates derived 

from them in Table 8. The table replicates ALM’s equation 16 and our equation 4, using ALM’s 

dataset and measures. Column 1 of each panel presents ALM’s original estimates from their 

Table VI. Column 2 eliminates the constant term and is equivalent to column (a) in our Table 5, 

whereas column (3) includes the interaction term. The interaction term results from multiplying 

computer use with math1971 for nonroutine analytic skills, with dcp1971 for nonroutine interactive 

skills, with sts1971 for routine cognitive skills, and with fingdex1971 for routine manual skills. 

In column (2), computer use is insignificant for nonroutine analytic skills, significantly positive 

for nonroutine interactive skills and routine manual skills and significantly negative for routine 

cognitive skills. When the interaction term is introduced in column (3), R2 increases and the 

computer-use coefficients turn significantly negative for nonroutine analytic skills, negative but 

insignificant for nonroutine interactive, and insignificant for routine manual skills, remaining 

negative for routine cognitive skills. These results are combined with significant positive 

interaction coefficients except for routine manual skills, for which the interaction is not 

significant. Thus except for routine manual skills, the contingent framework to explain CBT 

impacts on skills is broadly supported with ALM measures. 

VI. DISCUSSION AND CONCLUSIONS 

What is the effect of technological change on workers’ skills? Thinking for the moment of an 

undifferentiated notion of skill, one can envision technological change that raises the skill level 

demanded of those who work with the new technology. For example, the introduction of the 
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typewriter required the acquisition of additional skills by secretaries, including coordination 

among 10 digits, reading and typing at the same time and performing some maintenance on the 

typewriter. This is a skilling technological change, and so might have been the introduction of 

computers for secretaries who had to learn functions embedded in word processing software and 

who almost universally have to carry out activities on computers that require more skills than 

before the introduction of computers. On the other hand, in the same way that tailors and other 

artisans experienced deskilling when technological change resulted in the introduction of mass 

production (James and Skinner, 1985; Cain and Paterson, 1986), cashiers in supermarkets and 

many other workers have likely seen some of their skill requirements lowered as a result of the 

introduction of computerized scanning and other CBT. In the sample of firms analyzed in this 

paper there are both skilling and deskilling cases. Waiters, bartenders, tellers and cashiers are 

examples of workers whose skills were lowered by CBT use, whereas truck repairers, 

salespeople and project engineers are examples of workers whose skills were enhanced by CBT; 

many others have seen little change. 

In this paper we advanced two propositions. First, we argued that the intensity of CBT use is 

predicted in part by the historical (pre-CBT) complexity of the tasks carried out by core 

employees. Corroborating our expectations, we found that CBT is used more intensively in 

occupations that were high-complexity in 1971. We estimated our model with ALM’s data at the 

industry level to include complexity and obtained very similar results. We found it useful to 

distinguish different types of complexity, in relation to data, people and things. Whereas data- 

and things-complexity affect positively CBT use on their own, people-complexity only affects 

CBT through interactions with the other two complexity dimensions. This result, as well as 

others, suggests that overall task complexity also contributes to CBT adoption and intensity of 

use.  

Second, we argued that high pre-CBT task complexity leads to skilling in the wake of adoption 

of CBT but low pre-CBT task complexity does not, or leads to deskilling. In our sample firms, 

the bifurcation is most evident for complex problem-solving, technical and resources 

management skills where occupations with high pre-CBT complexity gained in these skills but 

those with low pre-CBT complexity levels experienced declines or no change. The positive 
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effect of CBT on content, process and system skills seems to be stronger with pre-CBT 

complexity in relation to data, people, and things, respectively. Social skills decline when pre-

CBT people-complexity is low and increase when it is high, when there is no pre-CBT 

complexity in relation to data. In other words, there is no skilling effect for skills without pre-

computer task complexity. We replicated our analysis on ALM’s dataset for all the occupations 

in their sample and obtained similar bifurcation results with respect to nonroutine cognitive tasks 

and routine cognitive tasks. After combining our results with those of ALM’s replication, we can 

conclude that the clearest and most consistent evidence of the bifurcation hypothesis is found in 

highly complex cognitive skills, such as complex problem-solving skills, resources management 

skills, and routine cognitive skills. However, this pattern dissipates slightly for arguably simpler 

and more basic skills, like content or process skills. For social skills, an overall deskilling trend 

is found. And finally, no effect was found for routine manual skills. 

These findings resemble Autor, Levy and Murnane’s (2002)’s findings in a case study of two 

different jobs in a large bank, deposit processing and exception processing of checks, jobs that 

were affected differentially by the introduction of the same technological change. In the case of 

deposit processing, greater access to information provided by introduction of new technology 

allowed managers to pursue a cost reduction strategy by exploiting economies of specialization, 

subdividing tasks that were not computerized into narrower, simpler jobs. In the case of 

exception processing, technology’s informating capacity allowed to exploit interdependencies to 

improve customer service, combining tasks into broader, more complex jobs. 

Are these findings particular to our sample firms? Our sample occupations, although not entirely 

random, concerns a substantial percentage (nearly 30) of occupations covered by the DOT 

classification. Replication of these results with ALM’s dataset suggests that our findings are not 

specific to our sample, but are robust to an analysis of a much more representative sample of US 

workers and industries. 

Furthermore, there are indications that these bifurcation trends are widespread and the process is 

still continuing. Figure D1 in Appendix D depicts the relative growth in employment and wages 

for occupations that were high in pre-CBT task complexity versus occupations that were low in 

task complexity, for the US workforce for the period 1970-1998, by task complexity in relation 
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to data, people, and things. Employment and wages of occupations that were pre-CBT complex 

in relation to data and people have been rising relative to employment and wages of simpler 

occupations. For complexity in relation to things, an opposite trend is observed: employment and 

wages have been rising for simpler occupations as compared with more complex occupations. 

Recall that neither ALM nor we have found change in simple routine manual skills due to 

computerization. Considering two broad categories of jobs, managerial and production jobs and 

focusing on recent years (2002-2008), we find a similar bifurcation in terms of complex 

problem-solving skill changes (see Figure D2 in Appendix D). Two main conclusions can be 

drawn from Figure D2, for the US labor force.14 First, regarding computer use, high-skill 

(managerial) occupations use computers more intensely than low-skill (production) occupations. 

Second, regarding skill change, high-skill workers who use computers more intensely see higher 

increases in their complex problem-solving skills, whereas low-skill workers who use computers 

become even less skilled. An empirically similar picture is described for Britain by Goos and 

Manning (2007), who emphasize the growing polarization in wages and the quality of jobs as a 

consequence of recent technological changes.  

Clearly, more research is required to understand the effects of technical change on skills, wages, 

employment and organization design and their effects on different groups of workers.15 One 

important area that our paper highlights is a better understanding of the nature of tasks and their 

proper characterization in the context of different occupations. Another area is that of 

differentiation among different skills, how various skills are affected by computerization, how 

these skills are acquired, how they affect the employment of those who possess some but not 

other of these skills, and how these affect the distribution of incomes in the economy.  
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Table 1. Description and sources of variables  
  Variable name Description  Source 

  Core employee-level variables  

  Survey question: To what extent does reliance on computer-based technology reduce or 

enhance the skill sets possessed by core employees? [ -3, -2, -1, 0, 1, 2, 3] scale  

Minnesota Human Resource Management Practices 

Survey 2000 - MHRMPS-2000 

1. Change in content skills Basic knowledge and skills that enable reading, computing, listening, writing, and speaking   

2. Change in process skills Skills needed to process information and facilitate procedures (e.g., critical thinking, 

monitoring, working with new information, etc.) 

 

3. Change in social skills Skills needed for working with people to achieve goals (e.g., social perceptiveness, 

coordination and negotiation skills, persuasion and instruction skills, and team-working skills) 

 

4. Change in complex 

problem-solving skills 

Skills needed for solving problems (e.g., idea generating and evaluation, implementation 

planning, and assessing outcomes, etc.) 

 

5. Change in technical skills Skills needed for designing, operating, and maintaining equipment (e.g., equipment selection, 

installation, programming, operating, testing, and repairing) 

 

6. Change in system skills Skills needed for understanding a system as a whole and acting upon it  

7. Change in resources 

management skills 

Skills needed for working with resources in creating products (e.g. time management, 

financial, materials, and personnel management) 

 

8. Task complexity Survey question: Are the tasks performed by core employees complex? 0, 4 scale MHRMPS-2000 

9. Task skill requirement Survey question: Are the tasks performed by core employees highly skilled? 0, 4 scale MHRMPS-2000 

10. Task routine Survey question: Are the tasks performed by core employees routine? 0, 4 scale MHRMPS-2000 

11. Computer-based 

technologies (CBT) 

Survey question: Are the tasks of core employees affected by computer-based technology? 0, 

4 scale 

MHRMPS-2000 

12. Number of core employees Number of core employees MHRMPS-2000 

13. Unionization Percentage of core employees that are unionized MHRMPS-2000 

 Firm-level variables  

14. Sales Sales in 1999 (in millions of dollars) Dunn & Bradstreet 

15. Wage Average wage in 1998 (in thousands of dollars) MN State Department of Economic Security 

16. Education Average education (in years) of employees in Minnesota MHRMPS-2000 

17. Employee age Average age (in years) of employees in Minnesota MHRMPS-2000 

18. Females Proportion of females in workforce in Minnesota MHRMPS-2000 

19. Firm age Years in business MHRMPS-2000 

 Occupation-level variables  

20. Complexity-Data1971 Average level of complexity at which the worker performs in relation to data 1,7 scale April 1971 CPS augmented with DOT Fourth Ed. 

1977, for 1970 Census Occupation Codes 

21. Complexity-People1971 Average level of complexity at which the worker performs in relation to people 1, 9 scale April 1971 CPS augmented with DOT Fourth Ed. 

1977, for 1970 Census Occupation Codes 

22. Complexity-Things1971 Average level of complexity at which the worker performs in relation to things 1,8 scale April 1971 CPS augmented with DOT Fourth Ed. 

1977, for 1970 Census Occupation Codes 

23. Education1971 Average educational attainment [1, 9] scale IPUMS-CPS for 1970 Census Occupation Codes 

24. Wages1971 Average annual wages (in thousands of dollars) IPUMS-CPS for 1970 Census Occupation Codes 

 Industry-level variables  

25. R&D intensity Number of full-time equivalent R&D scientists and engineers per 1,000 employees by industry 

in 2000 

2001 Survey of Industrial Research and 

Development, National Science Foundation 
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Table 2. Descriptive statistics 
 

Variable  Mean SD Min Max N 

Core employee-level variables 

1. Change in content skills .84 1.09 -2.00 3.00 642 

2. Change in process skills .95 1.14 -3.00 3.00 644 

3. Change in social skills .29 .91 -3.00 3.00 643 

4. Change in complex problem-solving skills .62 1.01 -3.00 3.00 642 

5. Change in technical skills .89 1.21 -3.00 3.00 642 

6. Change in system skills .71 1.06 -3.00 3.00 641 

7. Change in resources management skills .65 1.07 -3.00 3.00 640 

8. Task complexity 1.86 .94 .00 4.00 802 

9. Task skill requirement 1.82 1.07 .00 4.00 805 

10. Task routine 2.23 .94 .00 4.00 807 

11. Computer-based technologies (CBT) 1.82 1.30 .00 4.00 810 

12. Number of core employees 88.30 234.83 1.50 330.00 805 

13. Unionization 18.03 37.34 .00 100.00 638 

Firm-level variables 

14. Sales 46.78 229.81 .01 3357.76 759 

15. Wage 35.00 21.03 .56 177.29 634 

16. Education 13.13 1.50 8.00 18.00 704 

17. Employee age 34.26 7.14 10.00 55.00 745 

18. Females (%) 45.68 25.75 .00 100.00 794 

19. Firm age 34.57 27.64 .00 153.00 773 

Occupation-level variables 

20. Complexity-Data1971 3.75 1.39 1.00 7.00 813 

21. Complexity-People1971 2.28 1.18 1.00 8.34 813 

22. Complexity-Things1971 3.63 2.24 1.00 7.82 813 

23. Education1971 6.07 .75 3.48 8.63 754 

24. Wages1971 5.93 3.21 1.63 24.44 754 

25. R&D intensity 50.16 54.82 1.00 366.00 766 
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Table 3. Pearson correlations 
 

Variable  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1. Change in content skills                        

2. Change in process skills .63*                       

3. Change in social skills .29* .29*                      

4. Change in complex problem-solving skills .49* .51* .33*                     

5. Change in technical skills .45* .49* .19* .55*                    

6. Change in system skills .45* .50* .34* .54* .60*                   

7. Change in resources management skills .38* .44* .27* .46* .48* .52*                  

8. Task complexity .29* .34* .05 .31* .36* .27* .25*                 

9. Task skill requirement .29* .29* .08 .28* .30* .22* .24* .70*                

10. Task routine -.17* -.12* .00 -.12* -.10* -.15* -.08 -.23* -.21*               

11. Computer-based technologies (CBT) .53* .53* .16* .43* .51* .48* .38* .36* .31* -.13*              

12. Unionization .01 .01 .03 .05 .03 .06 .05 .11* .08 .02 -.01             

13. Productivity .14* .15* .05 .15* .17* .19* .13* .13* .06 -.05 .12* .10            

14. Wage .25* .22* .04 .23* .28* .22* .13* .32* .30* -.22* .27* .17* .23*           

15. Education .28* .32* .00 .27* .25* .20* .24* .30* .29* -.20* .32* -.04 .05 .39*          

16. Employee age .18* .18* .03 .23* .21* .19* .14* .24* .16* -.05 .23* .23* .16* .38* .16*         

17. Females -.06 -.06 .00 -.10* -.25* -.13* -.04 -.18* -.23* .09 -.07 -.27* -.11* -.34* -.03 -.23*        

18. Firm age .06 .10 .05 .07 .07 .08 .01 .02 -.02 .04 .09 .25* .12* .09 -.04 .31* -.11*       

19. Complexity-Data1971 .33* .30* .03 .24* .19* .22* .21* .33* .34* -.25* .36* -.10 .08 .26* .35* .07 -.01 .00      

20. Complexity-People1971 .25* .21* .08 .12* .05 .12* .18* .14* .10* -.14* .20* -.10 .01 .07 .26* -.04 .25* .00 .59*     

21. Complexity-Things1971 .03 .10 .01 .08 .20* .13* .02 .26* .25* -.03 .13* .18* .00 .24* .05 .25* -.33* .14* .12* -.29*    

22. Education1971 .34* .30* .12* .21* .12* .18* .20* .13* .10* -.13* .36* -.10* .05 .08 .27* .01 .25* .06 .63* .70* -.27*   

23. Wages1971 .31* .31* .08 .29* .31* .25* .24* .30* .29* -.18* .35* .16* .20* .42* .25* .37* -.31* .21* .58* .28* .15* .43*  

24. R&D intensity .27* .28* .00 .27* .28* .31* .17* .19* .15* -.19* .34* -.10 .08 .24* .31* .15* -.13* -.06 .27* .12* .04 .23* .15* 

*p<.01 
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Table 4. Estimates of CBT adoption and intensity of CBT use 
 
 1. Adoption of CBT 

Logit 
 

2. Intensity of CBT use 

Ordered logit; Non-users excluded 
 

3. Intensity of CBT use 

Poisson; Non-users included 

 (1a) (1b) (1c) (1d) (1e)  (2a) (2b) (2c) (2d) (2e)  (3a) (3b) (3c) (3d) (3e) 

Pre-CBT complexity 

variables 
                 

Data - 
.69 

(.51) 

.10 

(.92) 
- 

.70*** 

(.15) 
 - 

1.58** 

(.55) 

2.11* 

(.98) 
- 

.68*** 

(.10) 
 - 

.54*** 

(.13) 

.56+ 

(.29) 
- 

.26*** 

(.03) 

People - 
.16 

(.50) 
- 

-1.01 

(.65) 

-.18 

(.17) 
 - 

.06 

(.45) 
- 

.02 

(.92) 

.09 

(.13) 
 - 

.17 

(.17) 
- 

-.24 

(.32) 

.00 

(.04) 

Things - - 
.26 

(.94) 

-.52 

(1.11) 

.38** 

(.12) 
 - - 

-1.9+ 

(1.09) 

3.07* 

(1.35) 

.12 

(.10) 
 - - 

-.41 

(.32) 

.47 

(.56) 

.12*** 

(.03) 

Data×People - 
-.02 

(.29) 
- - 

.41** 

(.13) 
 - 

-.34 

(.34) 
- - 

.08 

(.10) 
 - 

-.17 

(.13) 
- - 

.05 

(.03) 

Data×Things - - 
-.54 

(.58) 
- 

-.32* 

(.16) 
 - - 

-.96+ 

(.57) 
- 

-.22* 

(.11) 
 - - 

-.35+ 

(.19) 
- 

-.15*** 

(.03) 

People×Things - - - 
-.37 

(.29) 

.06 

(.17) 
 - - - 

3.42* 

(1.69) 

-.02 

(.14) 
 - - - 

.24 

(.67) 

-.02 

(.05) 

Data×People×Things - - - - 
.27+ 

(.16) 
 - - - - 

.28* 

(.12) 
 - - - - 

.11* 

(.04) 

Pre-CBT skills variables                  

Education 
.56** 

(.18) 
- - - -  

.75*** 

(.12) 
- - - -  

.22*** 

(.04) 
- - - - 

Wages 
.26*** 

(.04) 
- - - -  

.06* 

(.02) 
- - - -  

.04*** 

(.01) 
- - - - 

N 746 121 124 121 804  585 79 99 89 639  746 121 124 121 804 

Wald 46.87*** 7.89+ 4.31 7.50* 52.86***  78.10*** 11.11* 5.38 8.15* 79.49***  179.9*** 28.2*** 5.78 2.69 167*** 

Notes: (a) Robust standard errors of estimated coefficients are in parentheses. (b) A constant term was included in the logit and Poisson estimations, and three cut points were included in 

the ordered logit estimation (omitted here for space reasons). (c) Pre-CBT complexity variables are centered to control for multicollinearity. (d) +: p<.10; *: p<.05; **: p<.01; ***: p<.001 
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Table 5. Logit regressions for CBT and change in skills 

 Change in 

 
1. Content skills  2. Process skills  3. Social skills  

4. Complex problem-

solving skills 

 (1a) (1b) (1c)  (2a) (2b) (2c)  (3a) (3b) (3c)  (4a) (4b) (4c) 

CBT .25*** 

(.04) 

-.26* 

(.11) 

-.16 

(.15) 
 

.35*** 

(.04) 

-.12 

(.11) 

-.14 

(.16) 
 

-.33*** 

(.04) 

-.45*** 

(.11) 

-.44** 

(.17) 
 

.08* 

(.03) 

-.35** 

(.10) 

-.25+ 

(.15) 

CBT×Wages 
- 

.06*** 

(.01) 
-  - 

.05*** 

(.01) 
-  - 

.01 

(.01) 
-  - 

.05*** 

(.01) 
- 

CBT×Data 
- - 

.12** 

(.04) 
 - - 

.02 

(.04) 
 - - 

-.16*** 

(.04) 
 - - 

.11** 

(.03) 

CBT×People 
- - 

.01 

(05) 
 - - 

.15** 

(06) 
 - - 

.22*** 

(.05) 
 - - 

-.01 

(.04) 

CBT×Things 
  

-.02 

(.02) 
   

.01 

(.02) 
   

.03 

(.02) 
   

-.02 

(.02) 

N 642 575 622  644 575 623  643 581 629  642 575 625 

Wald χ2 46.33*** 47.88**** 68.31***  75.77*** 69.02*** 87.48***  62.20*** 53.83*** 75.03***  5.14* 22.18*** 21.31*** 

 

 Change in 

 
5. Technical skills  6. System skills  

7. Resources  

management skills 

 (5a) (5b) (5c)  (6a) (6b) (6c)  (7a) (7b) (7c) 

CBT .26*** 

(.04) 

-.40** 

(.12) 

-.26+ 

(.15) 
 

.18*** 

(.03) 

-.05 

(.10) 

-.11 

(.14) 
 

.04 

(.03) 

-.44*** 

(.11) 

-.33* 

(.15) 

CBT×Wages 
- 

.08*** 

(.01) 
-  - 

.02* 

(.01) 
-  - 

.05*** 

(.01) 
- 

CBT×Data 
- - 

.00 

(.04) 
 - - 

.00 

(.03) 
 - - 

.03 

(.03) 

CBT×People 
  

.08 

(.05) 
   

.05 

(.05) 
   

.10* 

(.05) 

CBT×Things 
- - 

.09*** 

(.02) 
 - - 

.04* 

(.02) 
 - - 

-.01 

(.02) 

N 642 571 624  641 574 626  640 569 626 

Wald χ2 47.07*** 52.13*** 58.59***  24.92*** 23.15*** 34.99***  1.64 20.69*** 19.11*** 

Notes: (a) Robust standard errors of estimated coefficients are in parentheses. (b) Estimates include firms with CBT=0, which have no skill variation (results are 

identical if CBT non-users are excluded). (c) Regression equations have no constant. (d) With all Variance Inflation Factors (VIF) less than 10, multicollinearity 

is not a problem. (e) The number of observations differs among columns because missing values differ and because outliers have been removed from estimation 

to improve significance (however, this does not affect the estimates). (f) +: p<.10; *: p<.05; **: p<.01; ***: p<.001
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Table 6. Poisson regressions for CBT and task environment 
 

 Task environment 

 
Task Complexity  

Task Skill 

Requirements 
 Task Routine 

 (1a) (1b)  (2a) (2b)  (3a) (3b) 

Constant .35*** 

(.04) 

.19*** 

(.05) 
 .27** 

(.08) 

-.30 

(.27) 
 .86*** 

(.03) 

.98*** 

(.04) 
CBT

e 1  -.04 

(.03) 

-  -.06 

(.07) 

-  - - 

CBT
e 1 × Data 

.02*** 

(.01) 

.02*** 

(.00) 
 .05*** 

(.01) 

.03*** 

(.01) 
 - - 

CBT
e 1 × People 

.01 

(.01) 

-  -.01 

(.02) 

-  - - 

CBT
e 1 × Things 

.02*** 

(.01) 

.03*** 

(.01) 
 .02** 

(.01) 

.02*** 

(.01) 
 - - 

CBT - -  - -  .09** 

(.03) 

.10** 

(.03) 

CBT × Data - -  - -  -.03*** 

(.01) 

-.03*** 

(.01) 

CBT × People - -  - -  .00 

(.01) 

- 

CBT × Things - -  - -  .00 

(.00) 

- 

Number of core 

employees 

- -.03*** 

(.00) 
 - -.37* 

(.16) 
 . .01* 

(.00) 

Wage - .11*** 

(.03) 
 - .08** 

(.03) 
 - -.08** 

(.03) 

Education - -  - .07* 

(.03) 
 - - 

Females - -  - -.08* 

(.04) 
 - - 

R&D intensity - -  - -.10* 

(.04) 
 - - 

N 795 345  798 344  800 345 

Wald χ2 304.81*** 351.01***  87.89*** 193.87***  45.69*** 47.89*** 

p-values .005  .097  .571 

1  .40  .29  - 

Notes: (a) Robust standard errors of estimated coefficients are in parentheses. (b) Exponential function for task 

complexity and task skill requirements, linear function for routine. (c) p-values are Box-Tidwell tests for linearity. (d) 

+: p<.10; *: p<.05; **: p<.01; ***: p<.001 
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Table 7. Replication of ALM’s estimation of computer adoption (ALM’s equation 

12), and addition of complexity in relation to data 
 

 Computer adoptionj, 1960-1997 

 (1) (2) 

Constant 
-24.56 

(20.14) 

42.20*** 

(2.08) 

Routine Task Share1960 
1.85*** 

(.50) 

13.27*** 

(1.99) 

Complexity Data1960 - 
17.43*** 

(2.08) 

N 140 138 

R2 .10 .41 
Notes: (a) Industry-level data. (b) Sources: for column 1, Autor, Levy, and Murname 

(2003)’s dataset, and for column 2, replication of Autor, Levy, Murname (2003)’s dataset. (c) 

There are very slight differences in ALM’s and our estimates of standard errors for their 

model in column 1; these differences stem from small differences in our replication of the 

Autor, Levy, and Murname (2003)’s variables. (d) 2 industries out of 140 are missing in 

column 2 because of our replication of Autor, Levy, and Murname (2003)’s dataset. (e) 

Independent variables in column 2 are standardized. (f) +: p<.10; *: p<.05; **: p<.01; ***: 

p<.001 
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Table 8. Replication of ALM equation (16), Table VI, using our specification in equation (4), Table 5 

Using ALM dataset and measures 

 

 A. Δ Nonroutine analytic  B. Δ Nonroutine interactive  C. Δ Routine cognitive  D. Δ Routine manual 

 (1) (2) (3)  (1) (2) (3)  (1) (2) (3)  (1) (2) (3) 

Δ Computer use 1984-1997 2.94 

(1.84) 

-.66 

(.99) 

-7.21+ 

(3.00) 
 

5.70** 

(1.88) 

3.90*** 

(1.01) 

-.45 

(1.38) 
 

-18.18*** 

(3.29) 

-15.99*** 

(1.77) 

-20.88*** 

(2.30) 
 

1.74 

(2.89) 

3.37+ 

(1.55) 

4.52 

(4.05) 

Δ Computer use × 

Skill endowment 
- - 

1.41+ 

(.61) 
 - - 

1.16*** 

(.26) 
 - - 

1.63** 

(.50) 
 - - 

-.30 

(.96) 

Intercept -.92 

(.40) 
- -  

-.46 

(.41) 
- -  

.56 

(.71) 
- -  

.42 

(.63) 
- - 

R2 .01 .00 .01  .02 .03 .07  .06 .14 .17  .00 .01 .01 

Notes: (a) Source: Autor, Levy and Murname (2003)’s dataset. (b) Occupation-level data. (c) N=470 occupations. (d) +: p<.10; *: p<.05; **: p<.01; ***: p<.001 
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Figure 1. Alternative hypotheses concerning the impact of CBT use on skills 
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Sources: MHRMPS-2000; and April 1971 CPS augmented with DOT Fourth Ed. 1977, for 1970 Census Occupation 

Codes. 
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Figure 2. Mean Values of CBT by Pre-Computer Task Complexity 
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Notes: Firms with CBT=0 are excluded. 

 

Sources: MHRMPS-2000; and April 1971 CPS augmented with DOT Fourth Ed. 1977, for 1970 Census Occupation 

Codes. 
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Appendix A. Data collection: Sampling Strategy and Returns 

 
The data collection effort was generously funded by the Centers for Disease Control and 

Prevention-National Institute for Occupational Safety and Health, with additional funding from 

the University of Minnesota-Sloan Foundation Food Industry Center. 

The sampling strategy, closely emulating our previous survey efforts, was based on our desire to 

include large numbers of different types of for-profit firms from diverse industries. We also 

wanted to over-sample firms with employee-stock ownership plans (ESOP) and firms in the retail 

food industry, largely because our previous survey efforts had emphasized these firms and we 

wished to continue with the longitudinal aspects of the database. Our focus was on for-profit 

firms with at least 20 employees in diverse industries outside agriculture [SIC: 1000-8999], 

headquartered and operating (majority of employees) in Minnesota. The sample firms belonged to 

one five groups: 

1. ESOP Firms: The names of these firms were retrieved from three independent sources: 

The National Center for Employee Ownership data set (1998), the Minnesota ESOP 

Association membership list (1998), and Form 5500 of 1997 (the federal tax form filed 

under ERISA). There were 246 such firms. 

2. Public Firms: All publicly traded firms that appeared on the 1998 CompuStat database 

but were not already included above. There were 379 firms identified using this method. 

3. Retail Food Firms: All firms in the retail and wholesale food industry [SIC: 5140-5149, 

5400-5499, 5810-5813] with 20 or more employees, not already included above. These 

firms were identified in the 1999 Dunn and Bradstreet database. There were 1191 such 

firms.  

4. Survivor firms from the earlier survey: All firms that were still operational who had 

previously responded to our 1994/1996 survey (MHRMPS-1996) not already included 

above. The number of firms in this category was 609. 

5. Randomly Selected Firms: A random sample of private firms not already included above, 

identified in the 1999 Dunn and Bradstreet database. There were 268 firms identified in 

this manner. 

Surveys were mailed to 2,693 firms in November 1999. Reminder postcards and a second mailing 

of surveys followed in early 2000. By June 2000 478 firms (19.5%) had responded with valid 

questionnaires. A telephone survey was conducted to increase the number of responding firms. 

Data collection efforts stopped in November 2000. Table 1 presents information about the 

number of firms that were mailed the survey, the number of valid candidates (firms that could 

have responded - i.e., the post office did not return the survey indicating that it could not be 

delivered - excluding firms that responded but did not meet the criteria for inclusion in the 

sample), and the number of returned surveys. The total number of valid survey returns was 819, 

which represents a response rate of 33.37%. The distribution of the sample across industries is 

shown in Table A1, below: 
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Table A1. Firms Surveyed and Response Rates 

 

Sampling Group 

Number of 

firms 

surveyed 

Valid 

candidates 

Valid 

returns 

Response 

rate 

1. ESOP firms 246 226 76 33.63% 

2. Public firms 379 336 81 24.11% 

3. Food firms 1,191 1,100 296 26.91% 

4. 1994-96 survey survivors 609 561 275 49.02% 

5. Randomly selected firms 268 231 91 39.39% 

Total 2,693 2,454 819 33.37% 

 

Table A2. Distribution of Sample Firms and Response Rates by Industry 

 

Industry 
Frequency: 

Entire samplea 

Frequency: 

Respondents b 

Response rate 

(%) 

Construction 
76 

(3.10%) 

35 

(4.27%) 
46.05 

Manufacturing 
467 

(19.03%) 

220 

(26.86%) 
47.11 

Transportation and 

Public Utilities 

55 

(2.24%) 

22 

(2.69%) 
40.00 

Wholesale Trade 
212 

(8.64%) 

80 

(9.77%) 
37.74 

Retail Trade 
1,113 

(45.35%) 

294 

(35.90%) 
26.42 

Finance, Insurance, 

 and Real Estate 

104 

(4.24%) 

46 

(5.62%) 
44.23 

Services 
240 

(9.78%) 

122 

(14.90%) 
50.83 

Firms with SIC codes 

Missing 

187 

(7.64%) 

0 

(0.00%) 
0.00 

Total 
2,454 

(100.0%) 

819 

(100.0%) 
33.37 

Notes: (a) Figures in parentheses represent proportion of the entire sample. (b) Figures in parentheses represent 

proportion of all respondents 
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Appendix B. Characterization of Occupational Complexity in Terms of Tasks Related to Data, People and Things 

 
Table B1. List of Tasks Related to Data, People and Things, Ordered by the Degree of their Complexity  

(Detailed description of the tasks is presented in Table B2) 

 

Data People Things 

1 Comparing 1 Taking instructions - Helping 1 Handling 

2 Copying 2 Serving 2 Feeding-Offbearing 

3 Computing 3 Speaking-Signaling 3 Tending 

4 Compiling 4 Persuading 4 Manipulating 

5 Analyzing 5 Diverting 5 Driving-Operating 

6 Coordinating 6 Supervising 6 Operating-Controlling 

7 Synthesizing 7 Instructing 7 Precision Working 

 8 Negotiating 8 Setting-Up 

 9 Mentoring  
Source: U.S. Department of Labor (1977). Dictionary of Occupational Titles. Fourth Ed. Washington, D.C.: U.S. Government Printing Office 
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Table B2. Detailed description of Tasks Related to Data, People and Things 
Data: Information, knowledge, and conceptions, related 
to data, people, or things, obtained by observation, 

investigation, interpretation, visualization, mental 

creation. Data are intangible and include numbers, 
words, symbols, ideas, concepts, and oral verbalization. 

1 Comparing: Judging the readily observable 

functional, structural, or compositional characteristics 
(whether similar to or divergent from obvious 

standards) of data, people, or things. 

2 Copying: Transcribing, entering, or posting data. 
3 Computing: Performing arithmetic operations and 

reporting and/or carrying out a prescribed action in 
relation to them. Does not include counting. 

4 Compiling: Gathering, collating, or classifying 

information about data, people, or things. Reporting 

and/or carrying out a prescribed action in relation to 

the information is frequently involved. 

5 Analyzing: Examining and evaluating data. Presenting 
alternative actions in relation to the evaluation is 

frequently involved. 

6 Coordinating: Determining time, place, and sequence 
of operations or action to be taken on the basis of 

analysis of data; executing determinations and/or 

reporting events. 
7 Synthesizing: Integrating analyses of data to discover 

facts and/or develop knowledge concepts or 

interpretations. 
 

People: Human beings; also animals dealt with on an 
individual basis as if they were human. 

1 Taking instructions-Helping: Helping applies to 

“non-learning” helpers. No variety of responsibility 
is involved in this function. 

2 Serving: Attending to the needs or requests of 

people or animals or the expressed or implicit 
wishes of people. Immediate response is involved. 

3 Speaking-Signaling: Talking with and/or signaling 

people to convey or exchange information. Includes 
giving assignments and/or directions to helpers or 

assistants. 
4 Persuading: Influencing others in favor of a 

product, service, or point of view. 

5 Diverting: Amusing others (usually accomplished 

through the medium of stage, screen, television, or 

radio). 

6 Supervising: Determining or interpreting work 
procedures for a group of workers, assigning 

specific duties to them, maintaining harmonious 

relations among them, and promoting efficiently. A 
variety of responsibilities is involved in this 

function. 

7 Instructing: Teaching subject matter to others, or 
training others (including animals) through 

explanation, demonstration, and supervised practice; 

or making recommendations on the basis of 
technical disciplines. 

8 Negotiating: Exchanging ideas, information, and 

opinions with others to formulate policies and 
programs and/or arrive jointly at decisions, 

conclusions, or solutions. 

9 Mentoring: Dealing with individuals in terms of 
their total personality in order advise, counsel, 

and/or guide them with regard to problems that may 

be resolved by legal, scientific, clinical, spiritual, 
and/or other professional principles. 

Things: Inanimate objects as distinguished from human beings; substances or materials; 
machines, tools, equipment, and products. A thing is tangible and has shape, form, and other 

physical characteristics. 

1 Handling: Using body members, handtools, and/or special devices to work, move, or carry 
objects or materials. Involves little or no latitude for judgment with regard to attainment of 

standards or in selecting appropriate tool, object, or material. 

2 Feeding-Offbearing: Inserting, throwing, dumping, or placing materials in or removing 
them from machines or equipment which are automatic or tended or operated by other 

workers. 

3 Tending: Staring, stopping, and observing the functioning of machines and equipment. 
Involves adjusting materials or controls of the machine, such as changing guides, 

adjusting timers and temperature gages, turning valves to allow flow of materials, and 
flipping switches in response to lights. Little judgment is involved in making these 

adjustments. 

4 Manipulating: Using body members, tools, or special devices to work, move, guide, or 

place objects or materials. Involves some latitude for judgment with regard to precision 

attained and selecting appropriate tool, object, or material, although this is readily 

manifest. 
5 Driving-Operating: Starting, stopping, and controlling the actions of machines or 

equipment for which a course must be steered, or which must be guided, in order to 

fabricate, process, and/or move things or people. Involves such activities as observing 
gages and dials; estimating distances and determining speed and direction of other objects; 

turning cranks and wheels; pushing clutches or brakes; and pushing or pulling gear lifts or 

levers. Includes such machines as cranes, conveyor systems, tractors, furnace charging 
machines, paving machines, and hoisting machines. Excludes manually powered 

machines, such as handtrucks and dollies, and power assisted machines, such as electric 

wheelbarrows and handtrucks. 
6 Operating-Controlling: Starting, stopping, controlling, and adjusting the progress of 

machines or equipment. Operating machines involves setting up and adjusting the 

machine or material(s) as the work progresses. Controlling involves observing gages, 
dials, etc., and turning valves and other devices to regulate factors such as temperature, 

pressure, flow of liquids, speed of pumps, and reactions of materials. 

7 Precision Working: Using body members and/or tools or work aids to work, move, guide, 
or place objects or materials in situations where ultimate responsibility for the attainment 

of standards occurs and selection of appropriate tools, objects, or materials, and the 

adjustment of the tool to the task require exercise of considerable judgment. 
8. Setting-up: Adjusting machines or equipment by replacing or altering tools, jigs, fixtures, 

and attachments to prepare them to perform their functions, change their performance, or 

restore their proper functioning if they break down. Workers who set up one or a number of 
machines for other workers or who set up and personally operate a variety of machines are 

included here. 

Source: U.S. Department of Labor (1977). Dictionary of Occupational Titles. Fourth Ed., pp. 1369-1371. Washington, D.C.: U.S. Government Printing Office 
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Appendix C. Robustness tests 

 

 
Note: This figure was constructed using MHRMPS-1996, which asked about the year of introduction of CBT. 

MHRMPS-1996 was administered from mid-1994 to early 1996 to a sample of firms similar to those surveyed in 

MHRMPS-2000, and with similar response rates and sample size (see Ben-Ner and Lluis 2011 for details of 

MHRMPS-1996). The data point for 2000 is derived from MHRMPS-2000 and reflects the use of at least some CBT. 

The segment between 1996 and 2000 reflects linear interpolation. 

 

Source: MHRMPS-1996 and MHRMPS-2000. 

0
2
0

4
0

6
0

8
0

1
0

0

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

1960 1970 1980 1990 2000
Year

Computer-Based Technologies, 1965-2000

Figure C1. Trends in Firm Adoption of



48 

 

Table C1. Poisson regressions for CBT and change in skills  
Replication of Table 5 with skill change as a 4-point scale variable, with 0 indicating negative or no change, and 1, 2, and 3 CBT increases in skills 

 Change in 

 
1. Content skills  2. Process skills  3. Social skills  

4. Complex problem-

solving skills 

 (1a) (1b) (1c)  (2a) (2b) (2c)  (3a) (3b) (3c)  (4a) (4b) (4c) 

CBT .09*** 

(.01) 

-.07 

(.04) 

-.13* 

(.06) 
 

.13*** 

(.01) 

.01 

(.04) 

-.06 

(.05) 
 

-.24*** 

(.04) 

-.33*** 

(.09) 

-.46** 

(.12) 
 

.00 

(.02) 

-.20*** 

(.05) 

-.24** 

(.08) 

CBT×Wages 
- 

.01*** 

(.00) 
-  - 

.01** 

(.00) 
-  - 

.01 

(.01) 
-  - 

.02*** 

(.00) 
- 

CBT×Data 
- - 

.03* 

(.01) 
 - - 

.02 

(.01) 
 - - 

-.05 

(.03) 
 - - 

.05** 

(.02) 

CBT×People 
- - 

.04* 

(01) 
 - - 

.03* 

(01) 
 - - 

.13*** 

(.03) 
 - - 

-.00 

(.02) 

CBT×Things 
  

-.00 

(.01) 
   

.01 

(.01) 
   

.02 

(.02) 
   

.00 

(.01) 

N 642 585 638  644 587 640  643 586 639  642 585 638 

Wald χ2 39.86*** 41.22**** 68.31***  104.14*** 86.53*** 147.76***  47.92*** 39.36*** 60.49***  0.00 19.72*** 18.21** 

 

 
5. Technical skills  6. System skills  

7. Resources  

management skills 

 (5a) (5b) (5c)  (6a) (6b) (6c)  (7a) (7b) (7c) 

CBT .12*** 

(.01) 

-.03 

(.04) 

-.03 

(.06) 
 

.05** 

(.02) 

-.06 

(.04) 

-.15* 

(.07) 
 

.01 

(.02) 

-.15** 

(.05) 

-.19+ 

(.08) 

CBT×Wages 
- 

.01*** 

(.00) 
-  - 

.01* 

(.00) 
-  - 

.01** 

(.00) 
- 

CBT×Data 
- - 

.02+ 

(.01) 
 - - 

.01 

(.01) 
 - - 

.03+ 

(.02) 

CBT×People 
  

-.01 

(.02) 
   

.02 

(.02) 
   

.03 

(.02) 

CBT×Things 
- - 

.02** 

(.01) 
 - - 

.02* 

(.01) 
 - - 

-.00 

(.01) 

N 642 586 638  641 585 637  640 583 636 

Wald χ2 77.94*** 72.15*** 137.37***  8.61** 8.23* 21.76***  0.25 9.78** 16.27** 

+: p<.10; *: p<.05; **: p<.01; ***: p<.001 

 



Appendix D. Aggregate Data – National Samples 

 

Figure D1. Relative Employment and Wage Trends, 1970-1999, by high (above-mean) 

and low (below-mean) pre-CBT task complexity 

 

 
Note: Figures are for US employees in private industry that work for wages or salary from 1970 to 1998. IPUMS-CPS person-

level weights have been used.  

 

Sources: April 1971 CPS augmented with DOT Fourth Ed. 1977, for 1970 Census Occupation Codes; and IPUMS-CPS for 1950 

Census Occupation Codes (individual-level data). 
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Figure D2. Changes in Complex Problem-Solving Skills by CBT use, 2002-2008 
 
 

 
Note: The upper graphs show mean differences between complex problem-solving skills in 2009 (from O*NET 13.0 Database, 

mostly collected by incumbents) and in 2002 (from O*NET 4.0 Database, collected by analysts) for both low-CBT use and high-

CBT use (being the median the cutpoint) and separately for managerial occupations and production occupations. Low and high-

CBT use Tsacoumis and Iddekinge (2006) show that incumbents seem to inflate their ratings in relation to the analyst ratings 

(about 2/3 a standard deviation higher, which represents between a medium to large effect), being this inflation particularly large 

for production occupations. Therefore, corrections, proposed by Tsacoumis and Iddekinge (2006), have been applied in the case 

of production occupations. 

 

Sources: Skills from O*NET 4.0 Database (June 2002) and O*NET 13.0 Database (June 2008); Tsacoumis and Iddenking (2006) 

for standardized mean differences between incumbent and analysts ratings by SOC major groups; computer use form Current 

Population Survey (CPS), October 2003, School Enrolment and Computer Use Supplement File; and IPUMS-USA for person 

weights. 
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Appendix E. Comparison of our results with Autor, Levy and Murnane (2003) results 

 

ALM’s routine task variables: 

i. Nonroutine cognitive tasks: 

 dcp: direction, control, and planning of activities 

 math: measures quantitative reasoning requirements 

ii. Nonroutine manual tasks 

 ehf: eye-hand-foot coordination 

iii. Routine cognitive tasks: 

 sts: measures adaptability to work requiring set limits, tolerances, or standards 

iv. Routine manual tasks 

 finger: finger dexterity 

v. Index of industry-level routine task intensity 

 rt: (sts+finger)/(sts+finger+dcp+math+ehf) 
 

Table E1. Pearson correlations among routine and complexity task variables, industry-level in 1960 

Variable  1 2 3 4 5 6 7 8 

1. Data         

2. People .74***        

3. Things -.14 -.46***       

4. Dcp .62*** .43*** -.21*      

5. Math .89*** .67*** -.19* .69***     

6. Ehf -.58*** -.38*** .33*** -.23** -.48***    

7. Sts -.19* -.53*** .60*** -.25** -.12 -.07   

8. Finger .20* -.11 .52*** -.14 .20* -.35*** .63***  

9. Rt -.23** -.48*** .48*** -.51*** -.28*** -.30*** .84*** .77*** 

Notes: (a) Number of observations varies between 138 and 140. (b) +: p<.10; *: p<.05; **: p<.01; ***: p<.001 

 

 


