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Abstract  10 

Thermoelectric generation contributes to obtain a more sustainable energetic system 11 

giving its potential to harvest waste heat and convert it into electric power.  In the present 12 

study a computational optimal net generation of 108.05 MWh/year was produced out of 13 

the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy 14 

to 31 Spanish dwellings).  This maximum generation has been obtained through the 15 

optimization of the hot and cold heat exchangers, the number of thermoelectric modules 16 

(TEMs) installed and the mass flows of the refrigerants, including the temperature loss of 17 

the flue gases and the influence of the heat power to dissipate over the heat dissipators. 18 

The results are conclusive, the installation of more TEMs does not always imply higher 19 

thermoelectric generation, so the occupancy ratio (δ) has to be optimized. The optimal 20 

generation has been achieved covering the 42 % of the surface of the chimney of the tile 21 

furnace with TEMs and using heat pipes on the cold side, which present smaller thermal 22 

resistances than the finned dissipators for similar consumptions of their fans. Moreover, 23 

the high influence of the consumption of the auxiliary equipment shows the importance 24 

of considering it to obtain realistic usable electric energy from real applications. 25 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Nomenclature 26 

� Occupancy ratio  

� Density Kg/m3 

σ Thomson coefficient V/K 

α Seebeck coefficient V/K 

� Thermal conductivity W/mK 

�� Specific heat at constant pressure J/kgK 

���	 Area of a TEM m2 

�
 Area of the heat exchanger base m2 

��
�� Systematic standard uncertainty  

�� Electromotive force V 

� Current supplied to the heat plates A 

���	 Number of TEMs  

������� Number of samples for each configuration  

�� �� Mass flow of the air kg/s 

�� ��� Mass flow of the flue gases kg/s 

�
�� Number of blocks of the pipe  

��  Heat power to dissipate W 

�� � Heat power extracted from the flue gases in  block “i” W 

!" Volumetric heat generation W/m3 

#��	 Thermal resistance per thermoelectric module K/W 

# $�  Thermal resistance of the cold side heat dissipators of block “i” K/W 

#%�&��  Contact thermal resistance of block “i” K/W 

#'$�  Thermal resistance of the hot side heat dissipators of block “i” K/W 
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#��(�  Thermal resistance of the heat losses through the free surface 

of block “i” 

K/W 

#��(�  Thermal resistance of the heat losses through the bolts of block 

“i” 

K/W 

)�"
�� Random standard uncertainty of the mean  

* �  Temperature of the cold sink in block “i” K 

* ��	� Temperature of cold side of the TEMs in block “i” K 

*�� Entry temperature of block “i” K 

*'�  Temperature of the heat source in block “i” K 

*'��	� Temperature of hot side of the TEMs in block “i” K 

*��  Mean temperature of block “i” K 

*�'+ Mean temperature of the heat exchanger where heat is applied K 

*�� Exit temperature of block “i” K 

,�
�� Expanded uncertainty   

-��� Velocity of the flue gases m/s 

. Voltage supplied to the heat plates V 

/��01 Consumption of the auxiliary equipment W 

/� ��	 Thermoelectric generation W 

/� &�� Net generation W 

 27 

1. Introduction  28 

In the last decades, the increasing concern about global warming and pollution has 29 

enhanced the study of new environmentally friendly power producing technologies.   30 
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The thermoelectric generators (TEGs), solid-state thermal engines where the working 31 

fluid is the charge carriers flow, have emerged as a promising alternative to producing 32 

clean energy. This novel technology is able to convert any temperature grade heat into 33 

electricity [1] and due to its solid-state operation, thermoelectricity presents advantages 34 

such as reliability, scalability, durability, low noise operation, reduced size and lack of 35 

maintenance given absence of moving parts [2]. Furthermore, its ability to recover any 36 

kind of waste heat into electricity turns thermoelectricity into a promising option to help 37 

to mitigate the global warming issue. The waste heat can be defined as a byproduct heat 38 

that is not exploited afterwards. Nowadays, a large amount of the produced energy is 39 

dissipated as waste heat. In the US just the 38 % of the gross energy is used for its final 40 

purpose [3]. It has been estimated that twice the heating energy demand in the USA could 41 

be supplied with waste heat [4]. 42 

Nevertheless, TEGs present a major drawback, their efficiency is typically around 5-10 43 

% [5]. Numerous investigations are trying to increase the efficiency of the generators 44 

through the improvement of the thermoelectric materials [6,7] and/or the optimization of 45 

the heat transfer within the TEG. The reduction of the thermal resistances of the heat 46 

exchangers included into the TEGs increases the thermoelectric generation [8–11]. The 47 

optimization of the heat dissipation systems can be done modifying their geometry, such 48 

as increasing the number, height or spacing of the fins of a finned dissipator [12,13], or 49 

including novel heat exchangers which present better thermal resistances, such as heat 50 

pipes [14,15]. Nevertheless, the increase in the power generation does not necessarily 51 

mean an improvement in the net generation (the usable energy obtained from any 52 

application) due to the increase of the consumption of the auxiliary equipment [16,17]. 53 

Computational models simulate the behavior of thermoelectric generators in real 54 

scenarios, however in order to be as accurate as possible, they need to include the 55 
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minimum number of simplifications possible. Each thermoelectric effect, each 56 

component of the TEG (heat exchangers, ceramic plates, junctions…), properties 57 

dependent on temperature and transient resolution need to be considered [18–21]. 58 

Furthermore, new parameters as the temperature drop of the flue gases while they cross 59 

the TEG, the consumption of the auxiliary equipment and the occupancy ratio (the ratio 60 

between the area covered by TEMs and the base area of the heat exchanger, see equation 61 

(1)), are vital to take into account into the computational modeling to optimize the 62 

generation. The occupancy ratio is a very influential parameter which defines the optimal 63 

thermoelectric generation [22–24]. A higher occupancy ratio is determined by more 64 

thermoelectric modules (TEMs) installed and thus more units which produce electric 65 

power; however the electric production of each unit decreases due to the worsening of the 66 

thermal resistance per TEM of the heat exchangers [15]. Meanwhile, the consumption of 67 

the auxiliary equipment defines the net generation (the thermoelectric generation minus 68 

the consumption of the auxiliary equipment) the real parameter to optimize [17]. 69 

 � = 	
��3
��
34   (1) 

 70 

Lately research focus on the recovery of waste heat in many applications, such as an oil 71 

heater [12], a marine incinerator [25], a wood stove [21], an iron steel industry [26] and 72 

vehicles in order to improve their efficiency [10,27,28], the most common applications. 73 

In the present study a general computational model able to compute the net 74 

thermoelectric generation obtained from the recovery of waste flue gases, which 75 

includes all the determinant parameters (including the occupancy ratio, the temperature 76 

loss of the flue gases and the consumption of the auxiliary equipment) is presented. 77 

Moreover, two different kinds of heat exchangers are experimentally studied to obtain 78 

their thermal characterization as a function of the occupancy ratio (δ), the heat power to 79 
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dissipate (�� ) and the mass flow of the air (�� ��), in order to include them into the 80 

model and optimize the thermoelectric generation of a real industrial application.    81 

Methodology and computational model 82 

The developed computational model simulates the electric generation of any TEG. 83 

Moreover, this model has been specially designed to get the electrical power obtained 84 

from the harvesting of waste flue gases. The model includes novel parameters such as the 85 

occupancy ratio, the mass flow of the refrigerants and the temperature loss of the flue 86 

gases. The temperature decrease of the flue gases is computed through the discretization 87 

of the flowing pipe into a number of blocks where the thermoelectric phenomena is 88 

solved. The temperature of the heat source of each block is obtained as the mean 89 

temperature between the entry and exit temperatures of the block (*'� = *�� = 5
6 (*�� +90 

*��), as it can be seen in Figure 1. Within each block, the TEG is divided into 16 nodes 91 

that represent the whole device, including the heat source and heat sink and each element 92 

present in the TEG, such as the heat exchangers located on both sides of the TEMs (the 93 

hot and cold heat exchangers) and  the TEMs (junctions, ceramics and thermoelectric 94 

material) , as Figure 1 presents. Node 1 and 16 represent the heat source and heat sink 95 

respectively, nodes 2 and 15 are the hot and cold heat exchangers and the TEMs are 96 

represented in nodes 3 to 14, where nodes 3 and 14 are the ceramic plates and 4-13 97 

represent the thermoelectric material. It has been supposed that the entire heat that the 98 

flue gases loss reaches the hot side heat exchanger (as it is incorporated in the interior of 99 

the conducting pipe), as Figure 1 shows. The heat that arrives to the hot side heat 100 

exchanger can follow three paths. It can cross the screws that are in charge of assuring a 101 

proper assembly (#��(� ), it can be dissipated to the ambient through the free surfaces of 102 

the pipe (#��(� ) or it can cross the TEMs, the heat flux that defines the electrical 103 

generation.  104 
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 105 

Figure 1. Thermoelectric generator discretization 106 

 107 

The computational model is based on a previous model that has been already published 108 

and validated [29,30]. It includes each thermoelectric phenomena that takes part in the 109 

TEMs (equations (2)-(5)), it has dependent properties with temperature, solves the 110 

transient behavior and includes each element of the thermoelectric generator. The 111 

resolution is done solving the general expression of heat conduction within a solid with 112 

internal heat generation (equation (6)) using the implicit finite difference method, under 113 

the assumption of unidirectional heat transfer.  114 

α;< = =��=* = >3 ? >@ (2) 

Q� BCDEFCG = Hπ;<� = H�*(>3 ? >@) (3) 

���J����& = ?K�L(∆*NNNNNL) (4) 
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��O�0�� = #P�6 (5) 

��� �*�Q = � R�6*�S6 +
�6*
�T6 +

�6*
�U6V + !" (6) 

  115 

The number of blocks in which the pipe is going to be divided and the occupancy ratio as 116 

well as the geometry of the application are included into the modelling. The resolution 117 

process starts with the supposition of the mean temperature of the flue gases of the first 118 

block. The finite difference method solves the system through the thermal resistances and 119 

the heat capacities (including the thermoelectric phenomena). To properly characterize 120 

the thermal resistances of the heat exchangers, novel parameters are included, as the 121 

occupancy ratio (δ), the heat power to dissipate (�� ), and the mass flow of the air (�� ��). 122 

While the occupancy ratio is selected by the user and the mass flow of the air can be 123 

calculated from the consumption of the auxiliary equipment, the heat power to dissipate 124 

is an outlet variable of the system which depends on the whole device, so it is unknown 125 

in a first instance and needs to be supposed. The finite difference method obtains this heat 126 

power closing the most interior iteration loop, as it can be seen in Figure 2. Once the heat 127 

to dissipate is obtained, the mean temperature of the block is calculated and afterwards 128 

compared to the supposed one to state if it is necessary to keep on iterating or not. To 129 

obtain the mean temperature, the exit temperature is calculated through the heat extracted 130 

from the flue gases (equation (7)), an output variable obtained from the resolution of the 131 

thermoelectric phenomena. Once the mean temperature has converged, the block is 132 

solved and the resolution can continue to the next block, supposing the mean temperature 133 

of the new block which in a first instance equals the entry temperature of the block (the 134 

exit temperature of the previous one). 135 

 *�� = *�� ? W� X
�� YZ[%\  (7) 
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 136 

Figure 2. Solution algorithm of the computational model 137 

 138 

Figure 2 presents the methodology used in the computational model to obtain the total 139 

thermoelectric generation, which is calculated adding the thermoelectric generation of 140 

each block of the pipe. Nevertheless, the output to optimize in any application is the net 141 

generation, the thermoelectric generation minus the consumption of the auxiliary 142 

equipment (/� &�� = /� ��	 ?/��01), a variable that is easily computed with the 143 

knowledge of the power supplied to the auxiliary equipment, which determines the mass 144 

flow of the refrigerants. 145 

The thermal characterization of the heat exchangers included in the TEG as a function of 146 

the occupancy ratio, the air mass flows and the heat power to dissipate needs to be 147 

included into the computational model in order to optimize the thermoelectric generation.  148 

 149 

  150 
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2. Thermal characterization of the heat exchangers 151 

The inclusion of the heat exchange devices into the computational modeling is essential. 152 

The temperatures of both sides of the TEMs (which determine the thermoelectric 153 

generation) highly depend on the heat exchangers, the heat source and sink and the 154 

operation of the thermoelectric generator [31]. To optimize the thermoelectric generation 155 

two different heat exchangers have been experimented, a finned dissipator and a heat 156 

pipe, varying different variables that influence the thermoelectric generation. The 157 

parameters that thermally characterize the heat exchangers are the occupancy ratio (δ), 158 

the ratio of base area of the heat dissipator covered by TEMs (see equation (1)), the heat 159 

power to dissipate (�� ) and the mass flow of forced air that circulates over the fins of 160 

both devices (�� ��).  161 

The experimental setups of both heat dissipators are similar; a metal plate assures the 162 

proper assembly of the system, ensuring good contact between the modules and the heat 163 

dissipators. The heat plates define the occupancy ratio experimented (δ=0.073; δ=0.146; 164 

δ=0.293; δ=0.439 and δ=0.625) while the heat power to dissipate by the heat exchangers 165 

is modified through the electric power supplied to them (100; 150; 200; 300; 400 and 500 166 

W). The mass flow of the air is adjusted varying the electrical power supplied to the fans 167 

that force the air through the fins of both devices. 168 

The thermal resistance per TEM is calculated through equation (8) where *�'+ represents 169 

the mean temperature of the heat exchanger where heat flux exists, *��
is the ambient 170 

temperature, ���	 is the number of TEMs experimented and ��  is obtained as electrical 171 

power supplied to the heat plates (�� = �.). The temperature probes have an accuracy of 172 

±0.5 ⁰C and a resolution of 0.1 ⁰C, the electrical power supplied to the modules is obtained 173 

multiplying the voltage and current measured, which have accuracies of ±0.2 V and ±0.02 174 
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A respectively and resolutions of 0.1 V and 0.01 A respectively. Table 1 presents the 175 

accuracies and resolutions of the measurement probes used. 176 

Sensor Resolution Accuracy 
Temperature (⁰C) 0.1 ±0.5 

Voltmeter (V) 0.1 ±0.2 
Ammeter (A) 0.01 ±0.02 

Table 1. Resolution and accuracy of the measurement probes used 177 

 178 

The expanded uncertainty of the experimental thermal resistance per thermoelectric 179 

module is calculated as equation (9) presents [32] where ��
�� is the standard systematic 180 

uncertainty (equation (10)), )�"
�� is the mean random standard uncertainty (equation 181 

(11)), and the factor 2 represents a confidence interval of the 95 %. To reduce the 182 

uncertainty of the thermal resistance, three replicas were made for each configuration, 183 

obtaining ������� = 3. 184 

 #��	 = �̂_`a�Z^4b� c�
��
	  (8) 

 ,�
�� = 2f��
��6 + )�
��""""""""6 g56 (9) 

 ��
��6 = Rh#��	h*� V
6
��̂6 + Rh#��	h*��
V

6
��Z^46 + Rh#��	h.��	V

6
�i
��6 + Rh#��	h���	 V

6
�j
��6  (10) 

 )�"
��6 = 1
�������f������� ? 1g l (#m��	 ?

	[Z^\no

mp5
#��	""""""")6			 (11) 

 #��	""""""" = 1
������� l #m��	

	[Z^\no

mp5
 (12) 

 185 

a.  Finned dissipator 186 

Finned dissipators are the simplest heat dissipators. Nevertheless, new heat dissipation 187 

devices are being introduced into thermoelectricity in order to increase thermoelectric 188 

generation [8,9]. Into this research, a finned dissipator and a heat pipe are studied in order 189 

to optimize the generation. 190 
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The studied finned dissipator can be found in Figure 3 a). It has a base thickness of 14.5 191 

mm, a dimension of 230 x 190 mm2 and its fins have a height, thickness and spacing of 192 

39.5, 1.5 and 3.3 mm respectively. A wind tunnel provided with two fans JAMICON 193 

JF1225S2H is collocated on the finned dissipator in order to make air circulate over its 194 

fins, as it can be seen in Figure 3 a). 195 

Figure 4 a) presents the influence of the heat power to dissipate over the thermal resistance 196 

per TEM of the finned dissipator. The variation of the temperature of the air that the 197 

modification of the heat power to dissipate produces, does not influence the thermal 198 

resistance of the finned dissipator. 199 

 200 

Figure 3. Thermal resistance characterization. a) Finned dissipator, b) Heat pipe 201 

 202 

The occupancy ratio represents the amount of the base surface of the heat exchanger that 203 

is covered by TEMs (equation (1)). A bigger occupancy ratio means more TEMs installed, 204 

consequently the thermal resistance of the finned dissipator per TEM gets bigger, as 205 

observed in Figure 4 b). As the number of TEMs grows the effective dissipative area of 206 

each one decreases, negatively influencing the thermal resistance per TEM. Figure 4 b) 207 

presents the scarce influence that the air mass flow has on the thermal resistance per TEM 208 
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when the occupancy ratio is small. In these cases, the thermal resistance does scarcely 209 

change with the modification of the convection coefficients because the effective 210 

dissipative area that each TEM presents is very big. When the area is small (big 211 

occupancy ratios) the air mass flow strongly influences the thermal resistance. 212 

 213 

Figure 4. Thermal resistance of the finned dissipator per TEM.  a) Dependence with the 214 

heat power to dissipate for an air mass flow of �� �� = 0.024	�t/), b) Dependence with 215 

the occupancy ratio 216 

 217 
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The air mass flow that circulates over the fins was obtained as a function of the power 218 

consumed by the fans. Figure 5 presents the consumption of the auxiliary equipment as a 219 

function of the air mass flow for the finned dissipator and the heat pipe studied. As it can 220 

be observed, both devices present similar consumptions for different air mass flows. A 221 

bigger air mass flow causes a reduction in the thermal resistance of any heat dissipator, 222 

however, this increase means an increment in the consumption of the auxiliary equipment, 223 

which can negatively influence the thermoelectric generation as it can be seen in section 224 

“Thermoelectric generation optimization”. 225 

The maximum expanded uncertainty of the measured thermal resistance per TEM of the 226 

finned dissipator is expressed in equation (13)  227 

 #��	 = #��	 H 10.80	%  (13) 

  228 

 229 

Figure 5. Auxiliary consumption of the fans as a function of the air mass flow 230 

 231 

  232 
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b. Heat pipe 233 

A heat pipe is composed by tree regions: the evaporator, the condenser and the adiabatic 234 

region. The inner liquid evaporates, due to the heat gain, flows to the condenser where 235 

the liquid condenses and returns to the evaporator thanks to the capillary system, which 236 

could conduct the liquid to the evaporator against gravity.  237 

The heat pipe experimented has 10 pipes spaced 7mm, with an exterior diameter of 8 mm, 238 

a length of 350 mm. The working fluid is water. The TEMs are located on the heat transfer 239 

interface, which presents a dimension of 90 x 182.5 mm2. To facilitate the condensation 240 

of the water, the end of the pipes are provided with fins, which are spaced 3 mm and 241 

present an external dimension of 130 x 55 mm2. Figure 3 b) presents the detail of the 242 

tubing and the fins that form the heat pipe. A wind tunnel provided with a fan is disposed 243 

over the end of the pipes helping to improve the convective term and therefore reducing 244 

the thermal resistance of the heat pipe. 245 

Figure 6 a) presents the dependence of the thermal resistance per TEM of the heat pipe 246 

with respect to the heat power to dissipate. The heat power to dissipate modifies the 247 

temperatures of the system, while the boiling and condensation coefficients highly depend 248 

on the temperature differences, defining the thermal resistance of the system. To assess 249 

the influence of the occupancy ratio and the air mass flow, a heat power of 100 W has 250 

been selected, as Figure 6 b) depicts. This figure presents the same tendency, the increase 251 

of the occupancy ratio increments the thermal resistance per thermoelectric module. Once 252 

more, high occupancy ratios experiment stronger influence with respect to the air mass 253 

flow than the lower ones. The thermal resistance is influenced because each TEM presents 254 

small effective convective areas and any increase in the air mass flow, any improvement 255 

of the convective coefficient, provokes reductions in the resistance values. The same 256 
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tendencies for the occupancy ratio and the mass flow of the air can be observed for the 257 

different heat powers tested. 258 

 259 

 260 

Figure 6. Thermal resistance of the heat pipe per TEM.  a) Dependence with the heat 261 

power to dissipate for an air mass flow of �� �� = 0.061	�t/), b) Dependence with the 262 

occupancy ratio for a heat power to dissipate equal to �� = 100	/ 263 

 264 

The thermal resistance per TEM of the heat pipe is less influenced by the studied factors 265 

than that of the finned dissipator. The resistance of the finned dissipator varies in the 266 
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range of [0.21-1.92] K/W while that of the heat pipe does it within the [0.23-1.16] K/W 267 

range, for the same occupancy ratio, heat power to dissipate and consumption of the fans 268 

intervals. 269 

The maximum expanded uncertainty of the measured thermal resistance per TEM of the 270 

heat pipe is expressed in equation (14)  271 

 #��	 = #��	 H 7.88	%  (14) 

 272 

3. Thermoelectric optimization applied to a real case 273 

a. Real industrial application description 274 

The flue gases emitted to the ambient by the Spanish industry chosen have a mass flow 275 

of 5.49 kg/s (18405 Nm3/h) and a temperature of 187 ⁰C. To obtain the maximum power 276 

generation, the general computational model presented in section “Methodology and 277 

computational model” is used where the experimental thermal resistances exposed in 278 

section “Thermal characterization of the heat exchangers” as a function of the occupancy 279 

ratio, the heat power to dissipate and the air mass flow are included. The chimney presents 280 

a diameter of 0.8 m (0.5 m2 of transversal area) and a height of 12 m. To maintain the 281 

same transversal area, but to accommodate the TEMs, the chimney has been transformed 282 

into a quadrangular section pipe with a length of 0.7 m. The chimney presents a total 283 

surface area of 33.6 m2 where the TEMs can be located.  284 

The computational model considers the cooling of the flue gases through the 285 

discretization of the chimney. Figure 7 presents the sensibility study conducted to select 286 

the number of blocks the chimney is divided. The figure represents the thermoelectric 287 

generation (/� ��	) and the computational time as a function of the number of blocks. It 288 

can be seen that the generation slightly varies when more than 5 blocks are simulated, 289 

while the difference from 1 to 5 simulated blocks is notorious. Nevertheless, the 290 
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computational time needed to solve a particular case greatly increases with the increasing 291 

number of blocks.  Hence, in this case the chimney has been divided into 5 blocks to 292 

obtain accurate results but without needing a substantial computational time.  293 

Their thermal resistances as a function of the occupancy ratio and the velocity of the flue 294 

gases were computationally obtained from a CFD program, ANSYS Fluent. Specifically 295 

three finned dissipator were simulated, all of them with a base thickness of 4mm and fins 296 

of 1.5 mm thickness of and height of 50 mm. They differ in their fin spacing, 14, 10 and 297 

6 mm, called 5014, 5010 and 5006 finned dissipator respectively.   298 

 299 

 300 

Figure 7. Sensibility study to get the number of block in which the chimney is divided 301 

In the interior of the chimney, finned dissipators can be found to enhance the heat 302 

transfer. 303 

Figure 8 presents the thermal resistance per thermoelectric module of the finned dissipator 304 

located in the interior of the chimney with a spacing of 6 mm as a function of the 305 

occupancy ratio and the velocity of the flue gases. The heat power to dissipate has not 306 

been modified into the simulations because as it was concluded in the previous section, it 307 

does not influence the thermal resistance per thermoelectric module of the finned 308 
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dissipators. Equations (15)-(17) present the thermal resistance per thermoelectric module 309 

of the finned dissipators located in the interior of the chimney as a function of the velocity 310 

of the flue gases and the occupancy ratio that have been obtained through computational 311 

simulation by the CFD software. 312 

 313 

Figure 8. Thermal resistance per thermoelectric module of the 5006 finned dissipator 314 

that is located in the interior of the chimney as a function of the occupancy ratio 315 

 316 

 
#zPP{��	 = 0.046127 ? 0.887591 ∗ � ? 0.000251 ∗ -��� + 0.385376 ∗ 1/ ��f-���g	+ 0.304593 ∗ �6 	? 0.281665 ∗ 1/ ��6f-���g + 4.35262

∗ �/ ��f-���g	 
(15) 

 
#zP5P��	 = 0.3523 ? 0.857347 ∗ � ? 0.016483 ∗ -��� + 0.000350 ∗ 1/ ��f-���g	+ 0.393804 ∗ �6 	? 0.172064 ∗ 1/ ��6f-���g + 5.44766

∗ �/ ��f-���g	 
(16) 

 
#zP5���	 = ?0.0130407 ? 0.99456 ∗ � ? 0.0026427 ∗ -��� + 0.90492 ∗ 1/ ��f-���g	+ 0.42743 ∗ �6 	? 0.771231 ∗ 1/ ��6f-���g + 7.15277

∗ �/ ��f-���g	 
(17) 

 317 

The TEMs used for the simulation are TG12-8-01L which are 40 x 40 mm2 and specially 318 

built to support temperatures up to 250 ⁰C [33] while the ambient temperature has been 319 

selected equal to 17 ⁰C, the mean temperature of the region where the furnace is located. 320 

The computational model obtains the thermoelectric generation (/� ��	), however, the 321 
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real parameter to optimize is the net generation (equation (18)). The consumption of the 322 

auxiliary equipment is calculated through the number of heat exchangers that cover the 323 

total surface of the chimney and the consumption of the fans that can be found in Figure 324 

5 as a function of the air mass flow.  325 

 /� &�� = /� ��	 ?/��01 (18) 

 326 

b. Thermoelectric generation optimization 327 

Figure 9 presents the thermoelectric and net generation that occurs in the tile furnace 328 

when 5014 finned dissipators are located in the interior of the chimney and finned 329 

dissipators, as the ones previously studied, are placed on the outside. Figure 9 depicts 330 

how the installation of more TEMs does not imply a higher thermoelectric generation. As 331 

the occupancy ratio grows, the thermoelectric resistance of the heat exchangers per TEM 332 

also increases, reducing the temperature difference between the sides of the TEMs and 333 

thus producing less thermoelectric generation per unit. The maximum thermoelectric 334 

generation occurs when the occupancy ratio is between 0.3 and 0.4. It can also be seen 335 

that higher air mass flows produce bigger thermoelectric generations, but not necessarily 336 

higher net generations. In fact, the maximum net generation, the real parameter to 337 

optimize, is obtained when the air mass flow is close to the smallest simulated value, 338 

showing the importance of including the consumption of the auxiliary consumption into 339 

the optimization. The flue gases loss stands between 60 and 70 ⁰C because of the heat 340 

extracted to produce electric power, as Figure 10 presents. This figure presents how 341 

important is to account for the temperature reduction of the flue gases in order to obtain 342 

accurate results of the thermoelectric generation. 343 
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 344 

Figure 9. Thermoelectric and net generation of the flue gases as a function of the 345 

occupancy ratio when finned dissipators are located on the cold side of the chimney and 346 

the 5014 dissipator is located inside. 347 

 348 

Figure 10. Output temperature of the flue gases as a function of the air mass flow when 349 

heat pipes (HP) and finned dissipators (FD) are located on the cold side of the chimney 350 

and the 5014 dissipator is located inside. 351 
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Figure 11 presents similar results but when heat pipes are simulated for the exterior 352 

surface of the chimney. The negative influence of the increase of the air mass flow can 353 

be found, specially for small occupancy ratios where the maximum net generation occurs 354 

at the smallest mass flows. Higher occupancy ratios present optimum points for the net 355 

generation at higher consumption of the auxiliary equipment because the small effective 356 

areas per thermoelectric module require higher convective coefficients. Nevertheless, 357 

these optimal points are close to the smallest air mass flow simulated. Negative net 358 

generations can also be found for the smallest occupancy ratio and high air mass flows, 359 

these scenarios are undesirable because the power supplied to the fans is higher than the 360 

thermoelctric generation. 361 

 362 

Figure 11. Thermoelectric and net generation of the flue gases as a function of the air 363 

mass flow when heat pipes are located on the cold side of the chimney and the 5014 364 

dissipator is located inside. 365 

 366 

When heat pipes are simulated, the maximum net generation occurs for occupancy ratios 367 

of 0.42, when the 42 % of the exterior surface of the chimeny is covered by TEMs. The 368 
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temperature output of the flue gases is slightly smaller than in the case of the finned 369 

dissipators due to the higher heat power extracted from the smoke that is represented in 370 

higher thermoelectric generations, as Figure 10 shows. 371 

The reduction of the spacing between the fins of the heat dissipators that are located in 372 

the interior of the chimney boost the net thermoelectric generation. The finned dissipators 373 

obtain a 26 % higher net thermoelectric generation if the fin spacing is decreased to 6 mm 374 

while the increase for the heat pipes equals the 29 %.  375 

Figure 12 presents the optimal net generations for each occupancy ratio when heat pipes 376 

and finned dissipators are simulated for dissimilar spacings of the interior finned 377 

dissipators. It can be observed that the heat pipes outperform the finned dissipators, their 378 

optimal net generation is a 42 % higher than that of the finned dissipators. The 379 

consumption of the fans on both heat dissipators are practically similar, as Figure 5 380 

presents, so the higher net generation that the heat pipes present is due to the smaller 381 

thermal resistance they present, as it is shown in Figure 9 and Figure 11. The occupancy 382 

ratio that generates the maximum net energy is different for both heat dissipators. The 383 

thermal resistance of the finned dissipators has a greater variation with the occupancy 384 

ratio than that of the heat pipes, hence, the maximum generation occurs for smaller 385 

occupancy ratios than in the case of the heat pipes.  386 

The optimization of the thermal resistances of the cold and hot heat dissipators is 387 

necessary, these reductions offer substantial increments in the thermoelectric generation, 388 

as it has been demonstrated in the above lines. Figure 12 presents the maximum net 389 

generation that occurs when the occupancy ratio is 0.42 (the 42 % of the chimney surface 390 

is covered by 8820 TEMs). A total of 12863 W, 108.05 MWh/year taking into account 391 

that the tile furnace works 8400 hours in a year, is produced out of waste heat.  392 
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 393 

Figure 12. Optimal net generation when finned dissipators and heat pipes are simulated 394 

for different spacing of the finned dissipator of the interior of the chimney 395 

 396 

Figure 12 shows the potential that thermoelectric generation has to harvest waste heat and 397 

to produce electricity out of it. Any TEGs located at the exhaust of any process contribute 398 

to increase their energetic efficiency, reducing the polluting gases emissions to the 399 

ambient and thus helping to achieve a sustainable energetic system. 400 

 401 

4. Conclusions 402 

The increased concern about the global warming and the rice in the pollution levels have 403 

boost the research on new technologies able to palliate this effect. This study presents a 404 

promising tecnology, the thermoelectricity, which is able to increase the efficiency of 405 

applications through the harvesting of waste heat to produce electric energy. The 406 

computational optimization conducted obtains up to 108.05 MWh/year from an Spanish 407 

industry, the equivalent to energetically supply 31 Spanish dwellings. 408 

A methodology able to optimize any thermoelectric generation is presented. A general 409 

computational model has been developed. This model does not present any simplification 410 
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to resolve the thermoelectric phenomena and includes each component of the 411 

thermoelectric generator. Furthermore, novel factors such as the occupancy ratio,  and the 412 

temperature loss of the flue gases are included into the modeling, factors that highly 413 

influence the thermoelectric and net generation. 414 

The optimization of the thermoelectric net generation (the generated power minus the 415 

consumption of the auxiliary equipment) has been conducted by virtue of the 416 

computational model and the experimental thermal resistances obtained. The reduction 417 

of the fin spacing of the finned dissipators located in the interior of the chimney produces 418 

a power increase of the 29 % while the use of heat pipes instead of finned dissipators on 419 

the exterior surface produces a 42 % higher net generation. Both improvements are due 420 

to the reduction of the thermal resistances of the systems, without increasing the 421 

consumption of the auxiliary equipment. The optimal generations happen for small 422 

occupancy ratios (the increase of the occupancy ratio worsens the thermal resistances per 423 

TEM of the heat dissipation systems), showing that the increment of the number of 424 

installed TEMs does not always imply an increse in the generation while it does mean an 425 

increase in the initial investment. 426 
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