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Abstract—The least upper bounds of the powers extracted and
scattered by bi-anisotropic particles are investigated analytically.
A rigorous derivation for particles having invertible polarizability
tensors is presented, and the particles with singular polarizability
tensors that have been reported in the literature are treated
explicitly. The analysis concludes that previous upper bounds
presented for isotropic particles can be extrapolated to bi-
anisotropic particles. In particular, it is shown that neither non-
reciprocal nor magnetoelectric coupling phenomena can further
increase those upper bounds on the extracted and scattered
powers. The outcomes are illustrated further with approximate
circuit model examples of two dipole antennas connected via a
generic lossless network.

Index Terms—Electromagnetic scattering, bi-anisotropic me-
dia, physical limitations, circuit models

I. INTRODUCTION

Maximizing the interaction between electromagnetic fields
and electrically small particles is a topic of fundamental inter-
est in many branches of physics [1] and engineering [2], [3].
For example, maximizing the absorbed power is a main goal
of any receiving antenna. In this regard, it has been recognized
that a finite size particle can absorb much more power than
the amount that is projected onto its geometrical cross-section
[4]. Moreover, it has been shown that the effective area of a
finite size receiving antenna is unbounded [5], [6]. However,
superdirective antennas with subwavelength sizes are usually
accompanied with prohibitively narrow bandwidths and/or ill-
posed numerical solutions [7]. In contrast, the least upper
bound of absorbed power for a finite number of interacting
multipoles has been derived [8], [9]. Interestingly, this max-
imal value is equal to the incident power density projected
onto the effective area of Harrington’s maximal antenna gain
[5], [6]. Since this is the bound that would be obtained by
invoking reciprocity, it can be concluded that the presence
of non-reciprocal materials is not required to optimize the
absorbed power [8].
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Naturally, there is also a correlation between the absorption
and scattering processes that limits the amount of power
absorbed by a device as a function of its visibility [8], [10].
Specifically, while the ratio of the absorbed to scattered power
can be arbitrarily large, it comes at the expense of decreasing
the absorbed power [8], [10]. When the absorbed power is
maximized, the absorbed and scattered powers are equal [8],
[11].

Contrarily, there are a large number of applications that
require the maximum visibility of a given device, which is di-
rectly linked to the maximization of the extracted and scattered
powers. These applications include radar-based monitoring
systems (e.g., passive RFID tags [12] and mechanical stress
sensors [13], [14]), as well as any application related to the
enhancement of electromagnetic field - matter interactions.
Physical bounds on the powers extracted and scattered by pas-
sive particles have been formulated following both integrated
extinction [15]–[17] and purely time-harmonic approaches [8],
[11]. The former considers the integration of the extinction
cross-section (extracted power) over all frequencies and it
is particularly relevant for broadband scattering. Specifically,
it has been established that the integrated cross-section is
proportional to the static polarizability and provides an upper
bound for the broadband scattering of a predetermined object
[15]–[17]. However, this bound applies only to the cross
section integrated over all frequencies and cannot be used to
understand the limits of scattering at one particular frequency,
which can be more accurately addressed by following a
purely time-harmonic approach. This strategy is of interest to
investigate the extreme responses that can be obtained from
resonant phenomena, and it also provides insight into the
contributions of different elementary responses independently
of its implementation (e.g., in electrically small particles, the
combination of the electric and magnetic dipole responses, as
well as their coupling via magnetoelectric effects, can be taken
into account). This work follows this second philosophy.

In this regard, recent multipolar [8] and circuit model [11]
studies suggest that the least upper bound of the extracted
and scattered powers is four times the bound of the absorbed
power. While this result is intuitively understood by using a
circuit model representation in which the scattering resistance
cannot be suppressed [11], the aforementioned analyses are
restricted to structures in which each multipole interacts in-
dependently. Although this is, in fact, the case for spherical
bodies and single-mode structures, the scope of these works
is limited since any object with sharp edges will enable the
presence of and coupling between the excited multipoles.
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It is noted that the coupling between the elementary electric
and magnetic dipolar excitations is possible even for electri-
cally small particles. Far from being a theoretical curiosity,
different structures with reciprocal and non-reciprocal mag-
netoelectric couplings have been proposed [18]. Moreover, it
has been recognized that ensembles of these bi-anisotropic
particles enable the design of ultra-thin electromagnetic ab-
sorbers [19] and polarization transformers [20], as well as one-
way transparent sheets [21]. When acting as single (isolated)
elements, these bi-anisotropic particles provide more flexibility
in the design of zero backward, zero forward and zero total
scattering designs [22]. Inversely, one might consider whether
the presence of the associated magnetoelectric couplings might
help to maximize the scattering from an electrically small
particle. In particular, the power extracted by electrically small
uniaxial bi-anisotropic particles under different illumination
conditions has been studied in [23]. This analysis demonstrates
that bianistropic particles provide more flexibility in tailoring
the power extracted from a given incident field, and it also
suggests that the corresponding balance of the powers involved
might well increase its maximal value.

In order to clarify this and other related issues, we inves-
tigate in this paper the least upper bound of the extracted
and scattered powers for arbitrary particles, providing the
generalization of the bound presented in [8], [11] to particles
in which there are couplings between the excited multipoles.
To this end, the discussion is structured as follows: First,
Section II introduces basic definitions of scattered, absorbed,
and extracted powers. Then, electrically small bi-anisotropic
particles with elementary electric and magnetic dipolar ex-
citations are considered in Section III. The same procedure
is generalized next in Section IV to particles that excite an
arbitrary (though finite) number of multipoles. Several circuit
models are then presented in Section V to further illustrate the
results and provide additional physical insights. To finalize the
discussion, the main results are summarized in Section VI.

II. EXTRACTED AND SCATTERED POWERS

Consider a particle illuminated by an incident electromag-
netic field, which, in turn, scatters a certain amount of the
incident power coupled to it. The incident and scattered fields
will be labeled, respectively, as (Ei,Hi) and (Es,Hs) and the
total field as (Et,Ht) = (Ei+Es,Hi+Hs). Then the power
radiated by the scatterer, i.e., the scattered power, is [8]:

Pscat =
1

2

‹
S∞

Re
{
Es × (Hs)

∗} · n̂ dS (1)

where S∞ is a closed surface at infinity. Let the closed surface
S completely enclose the particle. The absorbed power Pabs is
defined as the amount of power dissipated within the particle,
and it can be computed as the inward flux of the total Poynting
vector field through S:

Pabs = −1

2

‹
S

Re
{
Et ×

(
Ht
)∗} · n̂ dS (2)

Recall that according to the optical theorem [24], [25], the
extracted power is defined as the sum of the absorbed and
scattered powers, i.e., Pext = Pscat + Pabs. It corresponds

to the power depleted from the incident field [24], [25],
and/or the rate at which the incident field does work on the
charge distributions excited in the particle [11]. By invoking
Poynting’s theorem, the extracted power Pext is found as the
negative of the flux of the cross-term Poynting vector field
through S:

Pext = −
‹
S

Scross · n̂ dS (3)

where

Scross =
1

2
Re
{
Ei × (Hs)

∗
+Es ×

(
Hi
)∗}

(4)

III. DIPOLAR PARTICLES

Consider an electrically small particle whose response when
illuminated by the incident field can be approximated by the
electric and magnetic dipole moments (p,m). In such a case,
the extracted (3) and scattered (1) powers can be written as
(see, e.g., [26])

Pext =
ω

2
Im
{
(p)

∗ ·Ei + (m)
∗ ·Hi

}
(5)

Pscat =
ω

2

k30
6πε0

(
|p|2 + |m|2

η20

)
(6)

where η0 is the free-space impedance. If the response of
the particle is approximately linear, the induced electric and
magnetic dipoles are proportional to the incident field, and
they can be computed via a given polarizability tensor as:[

p
m/η0

]
= α ·

[
Ei

η0H
i

]
(7)

where the polarizability matrix α

α =

[
αee αem/η0

αme/η0 αmm/η
2
0

]
(8)

describes the electric, αee, and magnetic, αmm, polarization
processes, as well as the magnetoelectric coupling (αem, αme).
In this manner, extracted and scattered powers can be written
as

Pext =

[
Ei

η0H
i

]†
·Qext ·

[
Ei

η0H
i

]
(9)

Pscat =

[
Ei

η0H
i

]†
·Qscat ·

[
Ei

η0H
i

]
(10)

where
Qext =

ω

2

1

2

[(
jα
)
+
(
jα
)†]

(11)

Qscat =
ω

2

k30
6πε0

α
† · α (12)

and the dagger symbol represents the Hermitian (conjugate
transpose) operation.

In this matrix formulation, the extracted and scattered
powers are computed via the matrices Qext and Qscat, which
describe the response of the scatterer to the incident field.
It is apparent from (11)-(12) that both Qext and Qscat are
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Hermitian matrices, which ensures that Pext and Pscat are
real numbers. Moreover, equation (12) reveals that Qscat is
a positive semidefinite matrix, so that Pscat is always greater
than or equal to zero. In contrast, Qext is not necessarily
a positive semidefinite matrix as Pext can be negative for
active particles. However, Qext must be positive semidefinite
for passive particles, which imposes some constraints on
the polarizability matrix α. For example, when considering
lossless particles, the extracted and scattered powers must
be equal for any incident field. This constraint imposes the
condition: Qext = Qscat, which, in turn, means that the
polarizability matrix must satisfy the matrix equation

1

2

[(
jα
)
+
(
jα
)†]

=
k30

6πε0
α
† · α (13)

A. Least Upper Bound of the Extracted and Scattered Powers

This Section makes use of the matrix formulation introduced
above to derive the least upper bounds of the powers extracted
and scattered by a passive bi-anisotropic particle. To this end,
it is conjectured that the extracted power is maximized in the
lossless limit. At first glance this conjecture might seem to
be in contradiction with the fact that, as the frequency goes
to zero, finite-size particles become increasingly inefficient
radiators and, consequently, that absorption is dominant over
scattering (e.g., Pabs ∝ ω and Pscat ∝ ω4 for dielectric
particles as ω → 0) and, thus, the extracted power can be
fairly approximated by the absorbed power. However, these
asymptotic behaviors are only valid at frequencies sufficiently
far away from the resonances of the particle, where the
extracted power is actually maximized. In fact, it has been
demonstrated that the power extracted by a single electrically
small dipolar particle is maximized when the particle is at
resonance and the dissipation losses go to zero [27]. This
is understood from a circuit model standpoint, where the
presence of losses would only increase the resistance of the
circuit, diminishing the current flowing in it and thus reducing
the power extracted at resonance (1/2|V |2/(Rscat + Rloss))
[11]. Physically, it can be generally stated that the presence of
losses damps the excitation of either conduction or polarization
currents within the particle, quenching the extracted power.
Therefore, it seems inevitable that any damping mechanism
must be suppressed in order to maximize the extracted power.

Following this principle, the least upper bound of the
extracted and scattered powers can be derived by introducing
a number of algebraic manipulations into the condition (13)
imposed on the polarizability matrix of lossless particles. To
this end, let us define initially the auxiliary matrix

P = j
k30

6πε0
α (14)

so that the matrix equation (13) can be more conveniently
written as

1

2

(
P + P

†
)

= P
†
· P (15)

Consider next the following lemma:

Lemma 1. Let Q ∈ CN×N be a Hermitian matrix generated
from a matrix P ∈ CN×N as follows

Q =
1

2

(
P + P

†
)

= P
†
· P (16)

Then, if P is invertible, Q can be unitarily diagonalized and
all its eigenvalues have absolute value smaller than or equal
to one.

Proof: The proof to Lemma 1 can be found in Appendix A

Lemma 1 implies that Q can be written as follows

Q = U ·DQ · U
†

(17)

where U is a unitary matrix U · U
†

= I , and DQ is a
diagonal matrix, whose diagonal elements have the absolute
value smaller than or equal to 1, i.e.,∣∣∣[DQ

]
nn

∣∣∣ ≤ 1 ∀n (18)

Next, since U is a unitary matrix, one knows that its columns
form an orthonormal basis of CN , i.e., u†

n ·um = δnm. Thus,
any vector a ∈ CN can be written as

a =
∑
n

anun (19)

Therefore, the quantity a† ·Q · a can be written as

a† ·Q · a =
∑
n

[
DQ

]
nn

|an|2 (20)

which, in view of (18), leads to the least upper bound∣∣∣a† ·Q · a
∣∣∣ ≤∑

n

|an|2 = a† · a (21)

Finally, note that Q = ω
2

6πε0
k30

Qext. Then introducing (21) into
(9), one finds that the least upper bound of the power extracted
(and, hence, scattered) by a bi-anisotropic particle that has an
invertible polarizability tensor is:

Pext ≤
ω

2

6πε0
k30

(∣∣Ei
∣∣2 + η20

∣∣Hi
∣∣2) (22)

From a mathematical standpoint, the bound (22) is a function
of the incident field; it holds in both far-field and near-field
scenarios. However, one must be careful about the significance
of Pext in any near-field scenario where the power supplied
by the sources is a function of the scattered field [8].

It is also convenient to particularize equation (22) to those
incident fields in which the electric and magnetic field in-
tensities are related through the medium impedance, i.e., as∣∣Ei
∣∣2 = η20

∣∣Hi
∣∣2. This occurs, for example, for an incident

plane-wave. In this case one is led to the expression:

Pext ≤ ω
6πε0
k30

∣∣Ei
∣∣2 = 4

∣∣Ei
∣∣2

2η0

[
3 λ2

4π

]
(23)

Thus, the least upper bound is four times the incident power
density projected onto the maximal effective area of a Huygens
source antenna, i.e., one in which the electric and magnetic
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dipoles are balanced. This is the bound that could have been
derived by invoking reciprocity. Therefore, it can be con-
cluded that neither non-reciprocal effects nor magnetoelectric
couplings are needed to optimize the power extracted and/or
scattered by electrically small particles.

B. Singular Polarizability Matrices and Balanced Particles

The proof presented in the previous section is restricted
to particles with invertible polarizability matrices. It would
appear that we are finished, at first glance, since any po-
larizability matrix should in fact be invertible, otherwise the
existence and uniqueness theorems of the inverse scattering
problem would be violated. However, since the polarizability
matrices considered thus far, as defined by the assumption
of electrically small particles, only contain their dipolar re-
sponses, it can be understood that such a matrix, in fact,
can be singular. In particular, this can occur provided that
the extended matrix which includes all of the higher-order
modes (these being negligible in comparison to the dipolar
modes in the computation of the extracted power) is non-
singular. Moreover, because a singular polarizability matrix
has non-zero nullity, there are incident field configurations for
which the particles produce zero-scattering. Furthermore, these
arrangements can only be achieved with lossless particles.

While these singular polarizability matrix configurations are
theoretical limiting cases, the balanced uniaxial bi-anisotropic
particles presented in [23] constitute examples that might op-
timize the extracted power. These singular cases are addressed
next to prove that they do not constitute counterexamples to
the non-singular-based upper-bound (22).

Following [23] we consider uniaxial particles taken with
respect to the z-axis, i.e., cases in which there is only excitation
of electric and magnetic dipole moments along x and y and
not along z. This allows us to write the polarizability tensors
as:

αee = αco
eeIt + αcr

eeJ t (24)

αmm = αco
mmIt + αcr

mmJ t (25)

αem = αco
emIt + αcr

emJ t (26)

αme = αco
meIt + αcr

meJ t (27)

where It = xx + yy is the transverse unit dyadic, J t =
yx− xy is the dyadic defined in terms of the vector product
operator, and It = z× J t .

Bi-anisotropic particles are usually classified with respect
to reciprocity and the symmetry of the magnetoelectric cou-
plings: αem, αme. We consider here the classic omega, chiral,
moving and Tellegen bi-anisotropic particles [18], whose mag-
netoelectric couplings are defined in the first row of Table I. As
identified in [23], each of these balanced bi-anisotropy classes
interacts optimally with specific incident field excitations, as
exemplified in the second and third rows of Table I. Specif-
ically, linearly and circularly polarized propagating plane-
waves optimally excite moving and chiral particles, respec-
tively. On the other hand, linearly and circularly polarized
standing plane-waves optimally excite omega and Tellegen
particles, respectively.

For any of these bi-anisotropy classes, a lossless balanced
bi-anisotropic particle is defined as a particle satisfying [23]

η0α
co
ee = j( c

2+1 )αem =
αco
mm

η0
= −jr (28)

with αem being any of the magnetoelectric parameters (αco
em

or αcr
em). Here c = 0, 1, 2, 3 correspond to chiral, Tellegen,

omega, and moving particles, respectively. Moreover, we can
assume that particles are at a resonance so that r ∈ R. It
can be readily checked that if r is a complex value, the
only consequence is a reduction of the power extracted by
such a non-resonant particle. It also can be checked that
balanced particles with zero cross-polar electric and magnetic
polarizability terms (i.e., αcr

ee = αcr
mm = 0) result in singular

polarizability matrices.
Power conservation imposes restrictions on polarizabilities

of lossless bi-anisotropic particles [28]. In fact, the power
balance condition for lossless balanced particles uniquely
defines the value of r in (28). However, it is not possible to find
r by solving (13), because the matrices are not invertible. To
find r, one needs to equate the extracted and scattered powers
assuming from the very beginning that the balanced relation
for the polarizabilities (28) is satisfied. Direct calculations of
the extracted and scattered powers show that all four omega,
chiral, moving and Tellegen balanced and lossless particles
share the same r value, equal to

r =
3π

√
µ0ϵ0

k30
(29)

With this result, the power extracted by singular particles of
each class can be found by introducing (29) into (28), and then
inserting the ensuing (28) into the first row of Table I to define
the explicit particle polarizabilities. Next, the resulting first
row of Table I is introduced into (11) and used in conjunction
with the corresponding second and third rows to evaluate Pext

from (9).
Subsequently, it is found that for the balanced particles illu-

minated by linearly and circularly polarized propagating plane-
wave fields (i.e., for moving and chiral particles, respectively),
the extracted power is given by

Pext = 4

(
|E0|2

η0

)[
3 λ2

4π

]
(30)

Bearing in mind that
∣∣Ei∣∣2 = 2 |E0|2 for this incident field,

it is clear that the power extracted by balanced moving and
chiral particles illuminated by their optimal excitation fields
is equal to the upper bound (23). On the other hand, for
the balanced particles illuminated by linearly and circularly
polarized standing plane-wave fields (i.e., for omega and
Tellegen particles, respectively), the extracted power is given
by

Pext =
ω

2

6πε0
k30

|E0|2 [1 + 2sin (k0△z) cos (k0△z)]

≤ ω

2

6πε0
k30

(
2 |E0|2

)
(31)

Consequently, the balanced omega and Tellegen particles
reach the upper bound given by equation (22) only when
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TABLE I
BASIC CLASSES OF UNIAXIAL BI-ANISOTROPIC PARTICLES, MAGNETOELECTRIC COUPLINGS, AND OPTIMAL INCIDENT FIELDS

Omega Chiral Moving Tellegen

αem = αme = jΩJt αem = −αme = jκIt αem = −αme = V Jt αem = αme = χIt

Ei = E0 (x+ y) cos (k0 (z +△z))

Hi = j E0
η0

(x− y) sin (k0 (z +△z))

Ei = E0 (x± jy) e−jk0z

Hi = E0
η0

(y ∓ jx) e−jk0z

Ei = E0 (x+ y) e−jk0z

Hi = E0
η0

(y − x) e−jk0z

Ei = E0 (x± jy) cos (k0 (z +△z))

Hi = j E0
η0

(y ∓ jx) sin (k0 (z +△z))

k0△z = π
4 + nπ. Therefore, it can be concluded that the

balanced particles presented in [23] can be considered optimal
in the sense that they maximize the extracted and scattered
powers by reaching the upper bound of those magnitudes.

It is interesting to note that the values of the electric and
magnetic polarizabilities of the bi-anisotropic particle given
by (29) are two times smaller than for the two disconnected
dipolar particles. Nevertheless, this behavior is compensated
by the active role of the magnetoelectric coupling coefficient.
Therefore, the total power extracted by lossless resonant
particles remains the same. It is also intriguing to note that
the singular particles which maximize the extracted power
for a given incident field also produce zero scattering for
other incident fields [22]. Finally, it is important to remark
that the upper bounds: (22) and (23), can be reached with
isotropic particles, i.e., no magnetoelectric coupling is needed
to maximize those quantities.

IV. MULTI-MODE PARTICLES

The previous dipolar results can be generalized for particles
excited by an arbitrary (though finite) number of multipoles.
To this end, we note that by adopting a multipolar formulation
based on spherical harmonics, the extracted, scattered and
absorbed powers can be written as [8] 1

Pext =
∑
{q}

Re
[
A∗

{q}B{q}

]
(32)

Pscat =
∑
{q}

∣∣B{q}
∣∣2 (33)

where A{q} and B{q} stand for the incident and scattered
field coefficients, and the multi-index {q} = {n,m, l, TZ}
is defined so that the series run over all spherical harmonics∑

{q}

=
∞∑
n=1

n∑
m=1

∑
l=e,o

∑
TZ=TM,TE

(34)

It is worth noting that the same formulation can be applied
to 2D structures [29]. In such a case, the series would simply
run over all cylindrical harmonics∑

{q}

=
∞∑

n=−∞

∑
TZ=TM,TE

(35)

In order to construct a matrix formulation analogous to that
introduced in Sec. III-A, let us gather all of our incident and
scattered field multipolar coefficients into column vectors A

1Note that there is a sign change here in the definition of the A{q}
coefficients with respect to [8] for a mere typographic convenience.

and B, respectively, with A,B ∈ CN , with N being the
number of multipoles. In this manner, Eqs. (32)-(33) can be
rewritten as

Pext = Re
{
A† ·B

}
(36)

Pscat = B† ·B (37)

Again, when the response of the particle can be considered
to be approximately linear, incident and scattering field co-
efficients can be related by a matrix: M ∈ CN×N , so that
B = M ·A. Then the absorbed and scattered powers can be
written in matrix form as follows

Pext = A† ·
[
1

2

(
M +M

†
)]

·A (38)

Pscat = A† ·
(
M

†
·M
)
·A (39)

It is evident from (38)-(39) that the condition Pext = Pscat

for a lossless particle leads to the same matrix equation (15).
Therefore, the algebraic proof introduced in Sec. III-A can be
directly applied to derive the following least upper bound for
the power extracted by a multi-mode particle:

Pext ≤ A† ·A (40)

After notation changes, it can be readily checked that this
least upper bound is equivalent to that derived in [8], [11]
for particles in which each mode interacts independently, i.e.,
for a diagonal matrix M in the present notation. Therefore,
it is more generally concluded that no coupling between the
distinct spherical modes is required to optimize the amount of
power that can be extracted from the incident field.

V. CIRCUIT MODELS

As a simple illustrative example, we consider the special
case of two resonant dipole antennas (one electric and one
magnetic) using the classical circuit model of receiving anten-
nas. While these circuit models only provide an approximate
solution to the scattering problem (see, e.g., [30] and the
references therein), they are a useful tool to illustrate and
provide physical insight into the least upper bound derived
in previous sections. Specifically, in order to illustrate the
independence of the maximal extracted power from the manner
in which the two antennas are connected, we compare the sum
of the powers extracted by the two antennas when they are
not connected, when they are directly connected to form a
canonical chiral particle, and when they are connected with a
generic network. With the use of the circuit model, we will
be able to study the case of matched antennas, answer the
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question of maximizing the received power, and consider the
case of the cloaked sensor regime (intentionally mismatched
antennas with reduced scattered power).

A. Disconnected and Directly Connected Antennas

1) Maximal extinction: Let us consider a short electric
dipole antenna (arm length l) and a small loop antenna (loop
area S). The antennas are in the field of a circularly polarized
propagating plane wave, and oriented so as to maximize their
coupling to this incident field. The incident fields are denoted:
E0 and H0 = E0/η0. To find the maximum extinction cross
section we make the antennas from PEC material and tune
both antennas to resonance with bulk lossless reactive loads.
The input impedances are then purely resistive and equal to
the radiation resistances of the two antennas:

Rw =
η0
6π

(k0l)
2, Rl =

η0
6π

(k20S)
2 (41)

Let us assume that the polarizabilities are balanced so that
the electromotive force induced in the wire antenna E = E0l
equals to that induced in the loop antenna E = ωµ0H0S. That
is, we choose l = k0S. In this case the radiation resistances
of the two antennas are also equal, and we denote them by R.

The powers extracted by these antennas from the incident
fields are also equal. Consequently, the total power extracted
by the two antennas is:

Pext = 2
1

2
|I|2R =

|E|2

R
(42)

Note that the currents in the antennas equal E/R because
the antennas are loaded only by their radiation resistances.
Substituting for the radiation resistance, we can check that the
value of the maximal extinction cross section is at the upper
bound given by (23).

Let us next connect the two antennas together, forming one
chiral particle. The electromotive force driving the current in
the “spiral” is doubled, but also the load impedance is doubled.
Thus, the extracted power is

Pext =
4 |E|2

4R
R =

|E|2

R
(43)

which is the same as for the two individual (not connected)
antennas (42).

2) Maximal received power: This comparison can also be
made for the case when we want to maximize the received
power. This configuration is achieved by keeping the two
antennas at resonance but loading them with matched loads.
The received power is then the power delivered to these loads:

Pabs = 2
1

2

|E|2

4R2
R =

|E|2

4R
(44)

The first factor of 2 takes into account that we have two
antennas. The total impedance of each is 2R. We then calculate
the power delivered to the resistor Rload = R in each dipole.
If the two antennas are connected to form one chiral particle,
we the obtain the same result:

Pabs =
1

2

4 |E|2

(4R)2
2R =

|E|2

4R
(45)

Now we have one antenna in which the induced electromotive
force is doubled, but the radiation resistance is also doubled.
To maximize the absorbed power, we load the antenna with
the matched load Rload = 2R; and this reproduces the above
result.

3) Cloaked sensor regime: Let us also compare the two
cases in the regime where we want to increase the ratio of
the absorbed and scattered powers, i.e., to make the scattering
smaller and hide the sensor, and determine how much power is
received for a given ratio Pabs/Pscat. To this end, we load each
antenna with a resistor Rload. Then the absorbed and scattered
powers for the two antennas when they are disconnected are
given by

Pabs =
|E|2

(R+Rload)2
Rload (46)

Pscat =
|E|2

(R+Rload)2
R (47)

Consequently, the absorbed to scattered power ratio is simply
given by the impedance ratio

Pabs

Pscat
=
Rload

R
(48)

In this manner, in order to ensure a desired value of
Pabs/Pscat, both antennas must be loaded with

Rload = R
Pabs

Pscat
(49)

Inversely, the absorbed power for a given value of the absorbed
to scattered power ratio is given by

Pabs =
|E|2

R

Pabs

Pscat(
1 + Pabs

Pscat

)2 (50)

Once again, if the two antennas are now simply connected
together, there is a doubling of the electromotive force and the
resistance. Consequently, the absorbed and scattered powers
are given by

Pabs =
1

2

4 |E|2

(2R+Rload)2
Rload (51)

Pscat =
1

2

4 |E|2

(2R+Rload)2
2R (52)

which leads to the absorbed to scattered power ratio expres-
sion:

Pabs

Pscat
=
Rload

2R
(53)

It is then found that the load required to produce a certain
absorbed to scattered power ratio in the connected case is twice
the load required in the disconnected case (49):

Rload = 2R
Pabs

Pscat
(54)

Despite this fact, it is found that the absorbed power obtained
for a given absorbed to scattered power ratio is exactly the
same as that obtained in the disconnected case (equation (50)):

Pabs =
|E|2

R

Pabs

Pscat(
1 + Pabs

Pscat

)2 (55)
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Fig. 1. Equivalent circuit of a small dipole antenna and a loop antenna
connected via a general two-port network.

It now can be concluded that the same performance is obtained
for the disconnected and simply connected antennas in the
cloaked sensor regime.

B. Non-reciprocal Connecting Networks

The fundamental reason for the existence of the upper
bound for the extracted power is the fact that any current
element induced on any object by an external field creates
secondary (scattered) fields. In terms of classic antenna circuit
models, the antenna radiation resistance is the same both
in reception and transmission. In terms of multipolar circuit
models [11], the scattering resistance of each spherical mode
is non-zero and independent of the properties of the scatterer.
The inevitable presence of scattering losses damps the induced
current in the antenna even if the antenna itself is lossless.

Here we analyze whether connecting two radiating elements
with a general non-reciprocal network can break this rule.
Consider a very general case of two small (dipolar) antennas
connected through a two-port device characterized by a general
scattering matrix (Fig. 1). The only assumption is that the two-
port network is lossless, i.e., if we want to maximize the scat-
tered power, the losses in the scatterer should be minimized.
The circuits are the same models for the small wire and loop
antennas used previously (assuming that both antennas have
the same resonant frequency and both are at resonance, so that
the input impedances are real). Conceptually, if the network
could pass energy only from left to right, the antenna on the
right would receive power from both sources but would scatter
only through its own radiation resistance.

Solving the circuit model in Fig. 1 for a lossless network,
it is found that the total power dissipated in the circuit

(corresponding to the extracted power) is given by

Pext = P1 + P2 =
1

8

[(
1

R1
+

|S11|2

R1
+

|S21|2

R2

)
|E1|2

+

(
|S12|2

R1
+

|S22|2

R2
+

1

R2

)
|E2|2

+2Re

{(
S11S

∗
12

R1
+
S21S

∗
22

R2

)
E1E∗

2 − S11

R1
|E1|2

−S12

R1
E∗
1E2 −

S21

R2
E1E∗

2 − S22

R2
|E2|2

}]
(56)

Considering again that both the electric and magnetic dipoles
are working in the balanced regime, i.e., when |E1| = |E2| = E
and R1 = R2 = R, the extracted power reads

Pext =
|E|2

2R

[
1− 1

2
Re
{
S11 + jcS12 + j−cS21 + S22

}]
(57)

In this case, the term c = 0, 1, 2, 3 describes the different phase
conditions of the products between the electromotive force
induced at each port, E1E∗

2 , that correspond to the optimal
excitations of the balanced chiral, Tellegen, omega and moving
particles.

To prove that the extracted power in (57) is equal to or less
than |E|2/R, we must show that

−Re
{
S11 + jcS12 + j−cS21 + S22

}
≤ 2 (58)

To this end, we note that the scattering matrix of any lossless

network is unitary: S · S
†
= I , which implies that

|S11| = |S22| ≤ 1, |S12| = |S21| =
√
1− |S11|2 (59)

It follows from (59) that if no power can be dissipated inside
the network, the absolute values of S21 and S12 are equal even
in the most general non-reciprocal case. Any matrix subject
to (59) can be written as

S =

[
S11 S12

S21 S22

]
=

[
ejθ sinβ ejϕ cosβ
ejψ cosβ ejζ sinβ

]
(60)

where β ∈ R. In addition to the above restrictions on
the absolute values of the S-parameters, components of any
unitary matrix satisfy

S11S
∗
12 + S21S

∗
22 = 0 (61)

This imposes the following condition on the phases:

θ + ζ = ψ + ϕ+ (2n+ 1)π (62)

Introducing (60) into (58), one obtains

−Re
{
S11 + jcS12 + j−cS21 + S22

}
= − sinβ [cos θ + cos ζ]

− cosβ
[
cos
(
ϕ+

cπ

2

)
+ cos

(
ψ − cπ

2

)]
= 2 sinβ cos

(
θ + ζ

2

)
cos

(
θ − ζ

2
+ π

)
+2 cosβ cos

(
ϕ+ ψ

2

)
cos

(
ϕ− ψ

2
+

(c+ 2)π

2

)
(63)
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The sums of the angles, θ + ζ and ϕ + ψ, in this expression
are related by (62). On the other hand, the arguments of the
last cosine functions in this sum can be arbitrary. Clearly, the
sum is maximized when∣∣∣∣cos(θ − ζ

2
+ π

)∣∣∣∣ = ∣∣∣∣cos(ϕ− ψ

2
+

(c+ 2)π

2

)∣∣∣∣ = 1

(64)
It is important to note that if we make this assumption, we do
not impose any conditions on the arguments of the other sine
and cosine functions in (63). Substituting (64) into (63), we
find

−Re
{
S11 + jcS12 + j−cS21 + S22

}
≤

2 sinβ cos

(
θ + ζ

2

)
+ 2 cosβ cos

(
ϕ+ ψ

2

) (65)

Next, using (62) to express θ+ζ in terms of ϕ+ψ, we re-write
(65) as

−Re
{
S11 + jcS12 + j−cS21 + S22

}
≤ 2

[
−(−1)h sinβ sin

(
ϕ+ ψ

2

)
+ cosβ cos

(
ϕ+ ψ

2

)]
= 2 cos

(
β + (−1)h

ϕ+ ψ

2

)
≤ 2

(66)
(h is an integer). This proves that the condition (58) is satisfied.
Consequently, no lossless connecting network can increase the
bound: |E|2 /R.

For example, note that the balanced bi-anisotropic particles
of all four classes, whose polarizablities are given in (28), can
be realized as two antennas connected by a two-port with the
matrix

S =

[
S11 S12

S21 S22

]
=

[
0 −(−j)c

−(−j)−c 0

]
(67)

Substituting this S matrix into (57), it is found that the
extracted power obtains its maximum:

Pext =
|E|2

R
(68)

This illustrative example clearly shows how it is not possible
to suppress the scattering resistance of lossless connected
particles even with a non-reciprocal connecting network. The
reason resides in the restrictions associated with the scattering
matrix of any lossless network [31].

VI. CONCLUSIONS

This work has investigated the least upper bounds of the
powers extracted and scattered by bi-anisotropic particles.
Both electrically small (dipolar) particles and particles ex-
cited by an arbitrary number of spherical multipoles were
considered. Since the presence of losses damps the currents
excited in any structure, it is first concluded that both the
extracted and scattered powers are maximized in an ideally
lossless structure, and, therefore, that their least upper bound
is the same. Next, a rigorous derivation of the least upper
bound for particles with invertible polarizability tensors was
presented. While this result could be considered a general and

complete proof, particles with singular polarizability tensors
exist as theoretical limiting cases. Therefore, the previously
reported singular cases of balanced omega, chiral, moving and
Tellegen particles were treated individually. This collection of
cases also represents a complete survey on the most popular
magnetoelectric coupling effects. The analysis concludes that
in all of the aforementioned invertible and singular cases, the
least upper bound is equal to the bound previously reported
for isotropic particles. Therefore, while the present analysis
does not represent a complete and rigorous proof of the
least upper bound of all bi-anisotropic particles (additional
singular particles are likely to exist), we believe that the study
gathers sufficient evidence to conjecture that, in contrast to a
statement in [23], neither non-reciprocal nor magnetoelectric
coupling phenomena are required to maximize the extracted
and scattered powers. Physically, the reason for this strict limit
is that within this scenario, the scattering resistance of antenna
elements cannot be suppressed.

From a practical standpoint, it is concluded that neither non-
reciprocity nor bi-anisotropy are required to maximize the
visibility of a given particle. This conclusion is of general
interest for any radar-based sensing and/or imaging technol-
ogy. However, it is also found that bi-anisotropic particles
might provide additional functionalities while reaching the
least upper bound of extracted power. For example, the studied
singular particles provide the extreme behavior of maximizing
the extracted power for a specific incident field, while produc-
ing zero-scattering for a different field excitation. This exotic
behavior cannot be achieved with simple isotropic particles.

APPENDIX A

To prove Lemma 1, let us define the matrix

H
(
P
)
=

1

2

(
P + P

†
)

(69)

as the Hermitian part of P = j
k30

6πε0
α. If the inverse of P

exists, we can also define the matrix

C =

(
P

†
)−1

P (70)

as the generalized Cayley transform of P
†

[32]. A useful
property of matrices with a positive definite Hermitian part is
that their generalized Cayley transform is similar to a unitary
matrix [32], [33]. To exploit this fact, first note the property

C
†
·H
(
P
)
· C = H

(
P
)

(71)

which can be checked by applying the definitions of C and
H
(
P
)

. Next, introducing (15) into (71) and multiplying on

the left by
(
P

†
)−1

and on the right by P
−1

, it is found that

(
P

†
)−1

· C
†
· P

†
· P · C · P

−1

=

(
P · C · P

−1
)†

·
(
P · C · P

−1
)

= I

(72)
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It can be concluded from (72) that C is similar to the unitary
matrix P ·C ·P

−1
. The latter can be written in more explicit

form as

P · C · P
−1

= P ·
(
P

†
)−1

(73)

This relation reveals that P ·
(
P

†
)−1

is indeed a unitary

matrix. Consequently, it can be diagonalized as:

P ·
(
P

†
)−1

= U ·D · U
†

(74)

where U is also a unitary matrix U · U
†
= I , and D is a

diagonal matrix, whose diagonal elements have the absolute
value 1, i.e., ∣∣∣[D]

nn

∣∣∣ = 1 ∀n (75)

In order to exploit this property, let us multiply equation (15)

by
(
P

†
)−1

and rearrange the terms to write

P
†
=

1

2

I −(P ·
(
P

†
)−1

)−1
 (76)

where, in view of (74), can then be written as

P
†
= U ·

[
1

2

(
I −D

−1
)]

· U
†

(77)

Then, introducing (77) and its conjugate transpose into (16),
it is found that Q can be diagonalized as follows

Q = U ·DQ · U
†

(78)

with DQ being a diagonal matrix whose elements are given
by

[DQ]nn =
1

2

(
1− Re

{
[D]

−1
nn

})
(79)

so that, in view of (75), it follows∣∣[DQ]nn
∣∣ ≤ 1 ∀n (80)

This completes the proof of Lemma 1.
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