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Abstract—The final goal of this study is to adapt the concept ~ Furthermore, we know that, for a Fuzzy Set on the finite
of fuzzy entropy of De Luca and Termini to deal with Type-2 yniversell = {ug, - ,u,}, the valueA(u;) € [0,1] is a
Fuzzy Sets. We denote this concept Type-2 Fuzzy Entropy-Set. ,umber which represents the membership degree; o6 A.

However, the construction of the notion of entropy measure on L .
an infinite set, such us|0, 1], is not effortless. For this reason, From the beginning of fuzzy theory in 1965, many authors

we first introduce the concept of quasi-entropy of a Fuzzy Set Were very critical with it: if Fuzzy Sets are used to représen
on the universe [0, 1]. Furthermore, whenever the membership uncertainty associated to a fact, how can the membership

function of the considered Fuzzy Set in the universg0,1] is  values be an exact numbgi(u;) without taking into account
continuous, we prove that the quasi-entropy of that setis a fusZ s yncertainty associated to the way these numbers até buil

entropy in the sense of De Luca y Termini. Finally, we present - . Lo .
an illustrative example where we use Type-2 Fuzzy Entropy-Sets This fact led to the introduction in 1971 [6] of T2FS in the

instead of fuzzy entropies in a classical fuzzy algorithm. following sense: for a Type-2 Fuzzy Sef, defined on the
finite universel/, the membership degree of each element to
the set, i.e.,A>(u;), is a Fuzzy Set on the infinite universe
[0,1]. With Zadeh's interpretation, in this paper we consider
that the Fuzzy Setl;(u;) represents the uncertainty associated
|. INTRODUCTION to the building of A(u;) € [0,1].
In this setting, we understand De Luca and Termini fuzzy

The concept of fuzzy entropy measure was introduced Bytropy £ of the setAs(u;), E(As(u;)), as a measure of
De Luca and Termini in [1] in order to measure how far ghe doubt (uncertainty)associated to the valud(u;) € [0, 1]
Fuzzy Set is from a crisp one. Since then, this concept h@gen by the expert. In this way, (A4 (u;)) = 0, we assume
been adapted to the different extensions of Fuzzy Sets {ght there is no doubt associated with the valle;); that is,
and with different interpretations. All of them measure howhere is no doubt associated with the numerical value gien t
far the considered extension is from a set of reference (WhiFepresent the membership degreeupfto the Fuzzy SetA.
may be that of crisp sets, of Fuzzy Sets, etc). However, if E(A5(u;)) = 1, then the doubt with respect to

In this sense, it is worth mentioning the following conceptshe valueA(u;) is maximal.
the Atanassov intuitionistic fuzzy entropy measure, gi?%§n  Taking into account the definition of fuzzy entropy, if the
Szmidt et al. [3] to measure how far an Atanassov Intuitionis Fyzzy SetA,(u;) on [0,1] is
Fuzzy Set (AIFS) is from a crisp set; the entropy for Interval _
Valued Fuzzy Sets (IVFS) defined by Burillo et al. [4], which A () () = { Lif 2 = A(u;)
measures how far an IVFS or AIFS is from a Fuzzy Set; and ! 0 otherwise
finally, the idea given by Pal et al. [5] which combines two
concepts similar to those given by Szmidt et al. and Burillen £ (Az(ui)) = 0.
et al. in one single bi-valuated measure. (We should recayiSimitarly if As(u;)(z) = 0.5forallz € [0,1] then

that AIFSs, IVFSs and Fuzzy Sets are particular instances oAz (ui)) = 1. . . i ) )
Type-2 Fuzzy Sets (T2FS) (see Fig. 1) [2]). From these considerations, in this work we aim at the

following objectives:
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our interpretation we have that each value Iof;(A2)(u;)  universe is finite, it is denoted by .

represents the doubt associated to the membership degree &fefinition 2.1: [11] A Fuzzy Set (FS) (or Type-1 Fuzzy

the elementu; to the Fuzzy Setd on the considered finite Set) A is a mappingA : X — [0, 1] where the valued(z) is

universeU. referred to as the membership degree of the eleméntthe
We also introduce a measure call pointwise measure whiebzzy SetA.

assigns to each T2FS a numerical value obtained throughrhe set of all FSs oiX is denoted byF'S(X).

an appropriate aggregation of the elements in the Fuzzy SeFrom the notions given by Zadeh in [12], a Type-2 Fuzzy

Er2(Az). We see that this measure has properties similar &t (T2FS) can be defined as follows.

those of De Luca and Termini’s fuzzy entropy. Definition 2.2: A Type-2 Fuzzy Set (T2FS}; on X is a
Regarding objective (B): In order to build the Type-2 FuzzgnappingA, : X — FS([0,1]) where the membership degree

Entropy-Set the following problem arises: we should caltail of an element of the universE is a Fuzzy Set on the infinite

the fuzzy entropy of Fuzzy Sets which are defined on nouniverse[0, 1].

finite universes (the intervalo, 1]). This problem leads us From Definition 2.2, it can be seen that, mathematically, a

to introduce the concept of quasi-entropy. The latter do@@FS is a mappingi; : X — [0,1](*1, where

not exactly match fuzzy entropy as defined by De Luca and 0,1 _ )

Termini. However, if we consider Fuzzy Sets defined on the 0, 1] ={f1£: 01— [0:1]}

universe|0, 1] with a continuous membership function, thetWe denote byI'2F S(X) the class of all T2FSs on the universe

the concept of quasi-entropy and the concept of fuzzy entrojx .

defined by De Luca and Termini are the same. We build Type-Fuzzy entropy measure was formalized in terms of axiom

2 Fuzzy Entropy-Sets from the quasi-entropies. construction by De Luca and Termini in [1] in order to assess

the amount of vagueness within a FS. However, depending on

the properties demanded, we can find in the literature éiffier

axiomatic definitions of the concept of fuzzy entropy measur

S5 LU Ay s such as [13], [14], [15]. In particular, we base our defimtio

HESITANT FUZZY SETS on [14]_

Definition 2.3: A function E : FS(X) — [0,1] is called

e an entropy measure oR'S(X) if it satisfies the following
S @ 2 properties:

(E1) E(A) =0 if and only if A is crisp.
Fig. 1. Inclusion relationships of extensions of Fuzzy Setf] (E2) E(A) =1 if and only if A(z) = % forall z € X.
(E3) If A,B € FS(X), and for allz € X
Regarding objective (C): As an illustrative example of the
| : : A(x) < B(x) <
utility of our theoretical developments, we rewrite thealg
rithm for image segmentation which uses fuzzy techniques, or 1 then E(4) < E(B)
i.e., Huang and Wang's algorithm [7], [8]. We consider an Al@) 2 B(x) 2 5
image as a Type-2 Fuzzy Set and we replace fuzzy entr¢ipg) F(A) = E(N(A)) for all A € FS(X), whereN(A) =
by our concept of Type-2 Fuzzy Entropy-Set. It is worth to  {(z,1 — A(x))} for all z € X.
note thatthe purpose of this example is not to provide a new |t should be pointed out thatE1) — (E3) generate De
method but just to show how our theoretical developments caruca and Termini axiomatic definition ar{d4) is a property
be used to understand an image as a Type-2 Fuzzy Set (dvetjuently demanded in image processing.
the universe of the intensity levels) and hence how a well- Definition 2.3 is based on the standard negatéfr) =
known algorithm can be extended to this setting, as it has-z. In the case of another strong negation being considered,
already been extended to some other settings such as IVip&sperty (£2) would be
or AIFSs [9], [10]. , ,
This paper is organized as follows. In the following section E(A)=1if and only if A(z) = e for all z € X,
we recall some definitions and properties which will be used jyhere ¢ is the equilibrium point of the strong negation
the subsequent of this work. Then, in Section Il we intraluGonsidered.
the concept of fuzzy quasi-entropy measure for an infinite Finally, in Definition 2.3 it does not matter whether the uni-
universe [0, 1] analyzing the particular case of continuougerseX is finite or infinite, but dealing with infinite universes
membership degrees. Sections IV and V present the Typequires a more complicated mathematical formalism. Thus,
2 Fuzzy Entropy-Set together with some specific cases @bst of the works in the literature take into account only the
these sets and the definition of pointwise measure. Sectionfite case (universé).
presents an illustrative example in image thresholdingal, A construction method of entropies was given in [14], using
in Section VII we include some conclusions and referencesaggregation functions and the concept/§ function, which
we recall now.
Il. PRELIMINARY NOTIONS Definition 2.4:A function Ey : [0,1] — [0,1] is called a
In this paper, we denote by a non-empty universe in normal £y -function associated with the strong negatiwnif
a Fuzzy Set that can be either finite or infinite. When thie satisfies the following conditions:

N



1) En(z) = 1 if and only if x = e (wheree is the for the aggregation. If we try to extend this procedure to

equilibrium point of N; that is, N(e) = e.) the universel0, 1], it is natural to use an integral instead of
2) En(z)=0ifand only ifz =0 orz = 1. the arithmetic mean. A problem arises, however, with axioms
) fy>ax>eory<uz<e, thenEyx(z) > En(y). (E1) and(E2). For instance, consider the functiofigt) = 0
4) En(x) = Ex(N(z)) for all x € [0,1]. for all t € [0,1], f2(t) = 0.3 if ¢t = 0.3 ort = 0.8 and
In particular, entropies of FSs on finite universes can We(t) = 0 otherwise. These functions are different, but the
built from Ex-functions as follows. integral of both on0, 1] equals0, since they differ in a zero-
Theorem 2.1Let M : [0,1]™ — [0,1] be such that it fulfills Measure set (a finite set of points).
(M1) M(x1, - ,2n) =0ifand only if z; = -~ = 2, = 0; So we shoqld modify axioméF'1) and (E2). This can be
(M2) M(z1, - ,a2,)=1ifandonly if z; = -+ = 2, = 1; done in two different ways.
(M3) For any pair(zy,- - ,x,) and(yy,- - ,y,) of n-tuples 1) They can be kept as they stand in Definition 2.3. In this
such thatz;,y; € [0,1] for all ¢ € {1,--- n}, if case, the value of the function in one single point would
x; <wy; forallie{l,--- n}, thenM(zq, - ,2,) < determine that the entropy was not zero or one, even if
My1,- Yn); the function equal® or 0.5, respectively, in any other
(M4) M is a symmetric function in all its arguments. point. This would be too harsh.
Then E(A) = M, En(A(u;)) for all A e FS(U) satisfies ~ 2) We can rewrite axiomgE'1) and (£2) considering that
(E1) — (E4) of Definition 2.4. functions which are equal almost everywhere must have
Example 2.2:1f we take Ey(z) = 1 — |2z — 1| and the same entropy. This is something which is usually

done for many applications, and it is the approach that

mn
e =1 4 . :
M@y, s an) n;j“ then we choose in this work.

1 Taking into account these considerations, we propose the
E(A) = —Zl — [2A(u;) — 1| following definition (note axiomsz1* and £2*). We take the
"= name of quasi-entropy because an exact copy of De Luca and
is Yager's measure of fuzziness [16]. Termini's definition of entropy would correspond to apprioac

Restricted Equivalence Function® are functions which 1) above, which we have not followed.
satisfy frequently demanded properties for the comparifon  Definition 3.1:Let A € F'S([0, 1]), we define the sell 4 =
images. They were introduced by Bustince et al. in [8], [14]x | A(z) €]0,1[}.
[17]. Definition 3.2: A function E* : FS([0,1]) ~ [0,1] is
Definition 2.5: A function R : [0,1]> — [0,1] is called called a quasi-entropy measure Bi$([0, 1]) if it satisfies the
a restricted equivalence function if it satisfies the foilogv following properties:

conditions: (E1*) E*(A) =0 if and only if the Lebesgue measure &f,
(R1) R(z,y) = R(y, ) for all z,y € [0,1]; is null, i.e.,m(H4) = 0, wherem denotes the Lebesgue
(R2) R(z,y) =1ifand only if z = y; measure irR.
(R3) R(z,y) =0if and only if {z,y} = {0,1}; ~ (B2*) E*(A)=1ifand only if A(z) =1 a.e.in[0,1].
x,Y)= ), Y €,y L ] 3 5 S 0,1 , an oralzr 0,1
(R4) R(x,y) = R(N(x),N(y)) for all 2,y € [0,1], beingN (£3*) If A, B € FS d for all
a strong negation of0, 1J; L
(R5) For all z,y,z € [0,1] such thatz < y < = then /é(rx) < B(x) <3 en B ) = BB
R(z,z) < R(z,y) and R(z,z) < R(y, 2). Ale) > Bl@) > & enE*(A) < E*(B).
- =3
ll. FUZZY QUASI-ENTROPY MEASURE FOR AN INFINITE (E4") E*(A) = E*(N(A4))forall A € FS([0,1]) where
UNIVERSE N(A) = {(z,1 — A(z))} for all z € [0, 1].

In order to develop our notion of entropy measure on T2FSs,Remark 1:Notice that propertie{ £3*) and (E4*) are
we study some results about entropy measures on FSs wH%actly equal to the propertieg3) and (E£4) of entropy
universeX is infinite. In particular, we focus on the notion ofeasure in FSs given in Definition 2.3.
an entropy measure OﬁS([O, 1]) When the universeX is From here on, we only consider FSs in the univekSe=
infinite some mathematical operations, such as the iniegrat[0, 1] and such that the functiod : X > [0, 1] is a Lebesgue
operation, yield the same value for different sdts A’l such integrable function. Observe that since Lebesgue intégrab
that 4, = A’l a.e. (almost everywhere}. To handle this functions are a large class of functions, even restricting t
situation in a suitable way, we adapt the concept of entroffjem is not a major concern.
measure given by De Luca and Termini [1]. In order to construct a quasi-entropy measure we start by

As we have seen in Theorem 2.1, in the case of finite urflefining a functionl’ and we study under which conditions it
verses, entropy can be built aggregating appropriate ifbmet fulfills properties(E1*) — (E4*) individually.

(En-functions); in particular, the arithmetic mean can be usedLet ¢ :]0,1[— [0, 1] be a Lebesgue integrable function. We
define functionl’ : F'S([0,1]) — [0,1] as

1Given two functionsf, fo, we sayfi = fo a.e. if fi(z) = fa(x) for

all z in the domain except for a set of null measure. Particuldily= c a.e. _
wherec is a constant iff1 (z) = ¢ except for a set of null measure. F(A) - I g(A(y))dy. @)
A



Example 3.1Llet g(z) = 2min(z,1 — z) and consider the
following FS on[0,1] : A(x) =1 for all z € [0,1]. Then, by s
Eqg. (1) we have .

T'(A) = /H 9(A(y))dy = /H 2min(1,0) = 0.

In Theorem 3.2, we study those sets which have minimum
entropy measure, i.e., properfy’1*).

Theorem 3.2:Let T : FS([0,1]) — [0,1] be a function 7,
given by Eq. (1). Then

9

2 o £ 08

I' satisfies(E1*) if and only if g(z) # 0 for all z € 0, 1[. Fig. 3. Functionsys, go., g3 satisfying 2.

Proof. See Appendix. In Theorem 3.7, the monotonicity of quasi-entropy measure,
Example 3.3:Figure 2 showsy;(z) = 1 — 2, g2(2) = 2°  property(E3*), is analyzed.
and g3(z) = 0.3 for = €0, 1[ which satisfy the property of  Theorem 3.7:Let T' : FS([0,1]) > [0,1] be a function
Theorem 3.2. given by Eq. (1). Then] satisfies(E3*) if and only if g is
increasing on 0, 3| and decreasing of},1].
Proof. See Appendix.
Example 3.8:Figure 4 shows functions which satisfy the

property of Theorem 3.7.

(2) = 52 if0<2<0.2,
NEI=V 1 ifo2<z<l,

. z if 0<z<0.5,
g2(2) =
1—2 f05<z<l1.
() = 2403 if 0<2<0.5,
P\ =Y 14142 if05<z2<1.

Fig. 2. Functiony, g2, g3 satisfying E1*.

Example 3.4Let g(z) = 2min(z,1 — z) and consider the . I
following FS on|0,1] : A(z) = 0.5 for all € [0,1]. Then,
by Eqg.(1) we have

F(A):/I.{ g(A(y))dy:/H 2min(0.5,0.5) = 1

In Theorem 3.5 we focus on the sets with maximum entropy
measure, namely, properfy2*).

Theorem 3.5:.Let T : FS([0,1]) — [0,1] be a function Fig. 4. Functionsy;
given by Eq. (1). Then, 7

g2, g3 satisfying E3*.

o o o 1 Finally, in Theorem 3.9 we study propertf4*), analyzing
I satisfies(F2*) if and only if g~ (1) = {2} the symmetry of entropy measures.
Theorem 3.9:.Let T : FS([0,1]) — [0,1] be a function
Proof. See Appendix. given by Eq. (1). Then,
Example 3.6Figure 3 shows three functions which satisfy I satisfies(£4*) |f1 and only if g is a symmetric function
the property of Theorem 3.5. with respect toz = 5, i.e., g(z) = g(1 — 2) for all z € ]0,1[.
) Proof. See Appendix.
1 Example 3.10:Figure 5 shows functiongs, g2, g3 Which
=—|z—2 1 for 1 I8 I3
91(2) (z 2) + 2 €101 satisfy property of Theorem 3.9.
0 if 0<2<0.1, g1(z) =4(z—05)>  for z €0, 1]
g2(z) =< 2.52-0.25 if 0.1 <2z<0.5, .
15— 2 if 0.5< 2 < 1. 0 f0<2<02

(2) = z—0.2 if 0.2<2<0.5,
(=7 if 0<z< 0.5, 2= 2108 if05<2<0.8,
93150 =1 2,42 if0o5<z<l. 0 if 0.8 <2< 1.



g3(z) = min{82%,8(1 — 2)3}  for z €]0, 1|

Fig. 7. Graph of functionf of Example 3.15.

Example 3.151et f € F'S([0, 1]) be given by

5 if 0<x<0.2,
flx)y=1<9 2—=5z if0.2<a<04,
0 otherwise,
Fig. 5. Functiongy, g2, g3 safisfying E4*. displayed in Figure 3.15. Consider the quasi-entropy nreasu

E* generated as in Eq. (1) by(z) = min{2z,2 —2z}. Then:

After studying each property separately, the followingator o1 0

lary holds true. . _ B (f) = / 10ydy +/ (2 — 10y)dy+
Corollary 3.11: Let " be given by Eq. (1). Thei' is a 0 0.1

guasi-entropy measure if and onlygfsatisfies the conditions 0.3 0.4

demanded in Theorems 3.2, 3.5, 3.7 and 3.9. /02 (10y — 2)dy +/03 (4 —10y)dy = 0.2
Proposition 3.12:Let g be anEy-function associated with ' '

the strong negatio®V given by N(x) = 1—x for all = € [0, 1].

Then the functior” given by Eq. (1) in terms of is a quasi- A- Quasi-entropy measure on Continuous functions

entropy. As we have said before, when we use integrals sets of zero
Proof. It follows from the Corollary 3.11 and properties ofmeasure are ignored. This has led us to modify in the previous
En-functions (see [14]). section the first and second axioms of the definition of egtrop
In [14], it is proved that, from a restricted equivalenc@.3 by De Luca and Termini. But in the case of continuous
function R, we can build ant/y-function as follows Ex (x) =  functions, if a function is constant almost everywherenthe
R(z,1 — z). So the following corollary is straight. is constant everywhere, and this kind of technical problems

Corollary 3.13: Let R be a restricted equivalence functiomrmay be ignored. That is, if we consider just those FSs on the
and letg(z) = R(z,1—x). Then,I' given by Eq. (1) in terms universe[0, 1] with a continuous membership function, then
of ¢ is a quasi-entropy. our definition of entropy can be written as the one which was

Example 3.14Fig. 6 shows three functiong, g2, g3 which introduced by De Luca and Termini; i.e., Definition 2.3. For
satisfy all the conditions of Theorems 3.2, 3.5, 3.7 and §9, this reason in this section we study quasi-entropy measures
from Corollary 3.11 they generate quasi-entropy measuresrestricted to the class dfS(]0, 1]) whose membership degree
is a continuous function.

Definition 3.3:Let F'S¢([0, 1]) be the set of all FSs on the
g2(2) = min{2z,2 — 22} for z €]0,1] universeX = [0, 1] whose membership degree: X +— [0, 1]
leads to a continuous function.

In the following theorem we introduce a method to build
entropies in the sense of De Luca and Termini as long as
the membership function of the considered FS [onl] is
continuous.

Theorem 3.16:Let be g :]0,1[— [0,1] satisfying the
° properties of the Theorems 3.2, 3.5, 3.7 and 3.9 and’let

be given as in Eq. (1). If we restrict t6'S¢ thenT'|ps,, is

an entropy measure in the sense of De Luca and Termini [1].
Namely, the functiol” on F'S¢ ([0, 1]) satisfies:

(E1) T'(A) =0 if and only if A is crisp.

e (E2) I'(A) =1 if and only if A(z) = 3 in [0, 1].

(E3) If A, B € FSc([0,1]), and for allz € [0, 1]

o 02 o4 os % ! A(x) < B(.’E) <

g1(2) = =422 + 42 for 2 €]0,1]

g3(z) = min{82%,8(1 — 2)3}  for 2 €]0, 1]

N

. . : . or thenI'(A) <T'(B)
Fig. 6. Functionsyi, g2, g3 which generate a quasi-entropy measure.
A(x) = B(x) = 3
In the following we compute an example of the calculatidg4) T'(A) = T(N(A)) forall A € FS([0,1]), where
of a quasi-entropy. N(A) ={(z,1— A(x))} for all z € X.



Note that imposing continuity is not a too hard restriction, falz) = { 1 if 2 €[0.2,04]U[0.7:1],
since, for instance, in many applications, in order to build 0 otherwise.

linguistic labels, these are defined through continuous mem 0 if 0<z<0.5,
bership functions (triangular, trapezoidal, etc. [18]). fi(z) =4 252-125 if 0.5<z <009,

Corollary 3.17:Let g be anE y-function associated with the 1 if09<z<1
strong negationV given by N(z) = 1 — « for all = € [0, 1]. 0 0
Then . X _{5x if 0<x<0.2,

a(x) =4 - -
T(A) = / g(Aly)dy 1.250+1.25 if 02 <z <1.

Ha

as in Figure 8. Consider the quasi-entropy meadtitegen-

is a fuzzy entropy in the sense of De Luca and Termini asvated as in Eq. (1) by(z) = —42% + 4z. Then:
FSc([0,1]). In particular, if R is a restricted equivalence E*(f1) =0, E*(fa) = 0, E*(f3) = + and E*(fs) = 2,
and consequently the Type-2 Fuzzy Entropy-Set is given by

T(A) = /H R(A(@).1 = Al))de Ers(A2) = {(uw) (42, 0), (“3’ 145) ’ (“4’ 2>}

function, then

3
is also an entropy in the sense of De Luca and Termini.

IV. TYPE-2 FUZZY ENTROPY-SET

De Luca and Termini introduced the notion of entropy
measure as a function whose domain and codomain are a FS
and [0, 1], respectively, i.e. a functio : F.S(X) — [0,1].

In this way, the codomain of the entropy function and the
codomain of the FS coincide. Due to the introduction of the
concept of T2FS (by Zadeh [12]) as a function whose image
is a FS, the proposal of this work is to define the entrop%}g' 8. Graph of the Type-2 Fuzzy Selp.
measure of a T2FS by means of a function whose domain is

a T2FS and the codomain is a FS.

Given a T2FS (with univers&), each element € X is V. SPECIFIC CASES POINTWISE MEASURE
associated with &'S([0, 1]) where its quasi-entropy measure
can be calculated. Observe that since the universe is &fini

i > A. Some specific cases
most of the entropy measure constructions on the literature

cannot be applied. By calculating the quasi-entropy megsur |n this section we show how we can recover Fuzzy Sets and

for eachz € X we obtain a value if0, 1], i.e., each element of extensions from T2FSs such that its Type-2 Fuzzy Entropy-Se
the universeX is associated with a value [f, 1]. A reasonable s null.

way of expressing the entropy measure of a T2FS is by means 4 Ay € T2FS(U) such that
of a function Ers : T2FS(X) — FS(X).

Definition 4.1: Let X be the universe of a T2F4, and Era(Az) = {(us,0)|u; € U} ;
let £ : F'S([0,1]) — [0,1] be a quasi-entropy measure. Ay .: is
Type-2 Fuzzy Entropy-Set is a functidy, : T2FS(X) — ’
FS(X) given by

Bra(As) = {(&, B (As(@)))| z € X}, @

E*(As(u;)) = 0 for everyu; € U

where E* is the quasi-entropy associated fig-.
Then:

o If the Fuzzy SetsA,(u;) on the universgo, 1], (built to
represent the doubt associated to the membership degrees
of the elementss; to the Fuzzy Setd on the universe

U), are crisp sets as the following:

The given construction of Type-2 Fuzzy Entropy-Set on
Definition 4.1 measures the lack of knowledge or uncertainty
about the membership degrees. Thereby, any set with "crisp
membership degrees such as FSs or IVFSs has entropy mea-

sure0.
Next, we present an example where the Type-2 Fuzzy 4 1if z = ay,
Entropy-Set is calculated. 2(ui) () = 0 otherwise,

Example 4.1:Let U = {u1,us9,us,us} be the universe o ) ) ) .
and A, : T2FS(U) — FS(U) be the T2FS given by then, taking into account the interpretation discussed in

Ay = {(ui, As(u;) = f) | i € {1,2,3,4}} where the introduction, we do not have any doubt about the
) membership degrees of the elements to the Fuzzy Set
0.5 !f z =023, A e FS(U) and it is the ideal case. In this setting, we
fiz) =4 0% Tz=05 can take as Fuzzy Set :
1 if =0.8,

0 otherwise. A = {(ui, A(wi) = ao,)|i € {1, ,n}}



null Fuzzy Set. In any case, for each of the considered cases
(Fuzzy Sets, Fuzzy Multisets and Interval-Valued FuzzysSet
there exist ad hoc definitions to calculate their entropy. Fo
instance, De Luca and Termini's for Fuzzy Sets, Szmidt et
al.'s or Burillo et al.’s for Interval-Valued Fuzzy Setscet

Although we are not recovering a fuzzy extension, it is
worth to mention that if

As(u;) = {(z, Az(u;)(z) = 0.5)|x € [0,1]} for all u; € U
thenETg(Ag) = {(U“ 1)|’U;Z € U} .

Fig. 9. Example of a Fuzzy Set.

o If the Fuzzy Setsd;(u;) on the univers€0, 1] are crisp
sets as follows:

1if 2= ag Of & = ag OF 2 = ayms B. Pointwise measure

Az (u;)(x) :{ In this section, we introduce the concept of pointwise
measure. With this measure we assign to eagle T2FS(U)
then we can take as sgt the following Typical Fuzzy a numerical value which is obtained aggregating the values i
Multiset A (on the universd/) [2] for which there is no the corresponding Type-2 Fuzzy Entropy-Set,(As) built
doubt on the numerical values taken for representing the explained in Section IV.
membership degrees: Proposition 5.1:Let M : [0,1]" — [0,1] be a function
, such that it satisfie§M1) — (M3) of Theorem 2.1. Let
A = {(ui apy, agz, agri)li € {1,- -+, n}} Ay € T2FS(U) andS(its c)orregpon)dingETg(AQ) € FS(U)
where m; denotes the cardinal of the Fuzzy Multisetonstructed with the method developed in Section IV. Under
associated with;. these conditions the function

Pm : T2FS(U) — [0, 1] given by

0 otherwise,

Pm(Ay) = ZJEETQ(A2)(Ui>

\k\L satisfies the following properties:
N (Pm1) Pm(A;) 0 if and only if for every u; € U,

E*(Az(u;)) = 0; namely, for everyu; € U, Ha,u,)
has null Lebesgue measure;

Fig. 10. Example of a Typical Fuzzy Multiset. (Pm2) Pm(Ag) = 1 if and only if for everyu; € U,
E*(As(u;)) = 1; namely, for every,; € U, As(u; =
o If the Fuzzy Setsds(u;) on the universgo, 1] are crisp 0.5(a.2e(.uirzfo 1; Y w 2(u:) (@)
sets as follows: (Pm3) If Ay, Bo € T2FS(U), satisfy that for every,; € U: for
1if z € [ay, , ao, all z € [0, 1]
Az (u;)(x) = {0 othervv[isoé "
Ag(ui)(2) < Ba(ui)(x) < 3
then we can take asl the following Interval-Valued or then

Fuzzy Set: As(wi)(z) > Bo(u;)(z) > 4
A= {(u;, [ag, a0 ))|i € {1, ,n}} Pm(Az) < Pm(By);

Notice that with our interpretation, it comes out that WE'®) £m(Az) = Pm(N(A4y)) forall A, € T2FS, where

have no doubt about the values for the intervals given in ¥ (42) = {(ui, N (A(uq)))}-

order to represent the membership values of the elemeR9Of. It is just a straight calculation. .
to the set. Remark 2:In this way, Pm does not measure the classical

concept of entropy, in the sense that it does not measure how
far a T2FS is from a crisp one. However, it gives a global

value of the uncertainty associated with which values shoul
represent the membership degreesupffor all u; € U. In
particular, if there is no doubt about the membership degree
£ of any elementu; € U independently if they are crisp, Fuzzy

Set, IVFS, etc, then the punctual measite: returnso.

Fig. 11. Example of an Interval-valued Type-2 Fuzzy Set.
9 P P Y VI. AN ILLUSTRATIVE EXAMPLE IN IMAGE

In the three considered cases, we recover Fuzzy Sets (in THRESHOLDING

the first case) or well-known extensions of Fuzzy Sets (in theln this section we develop an example of application of
other two cases) whose Type-2 Fuzzy Entropy-Set is alway3ype-2 Fuzzy Entropy-Set. We present an adaptation of Huang



and Wang’'s method [7] to segment images in grayscale. To
do so, we build a T2FS associated with the image and we
calculate its Type-2 Fuzzy Entropy-Set.

Image segmentation consists of dividing an image into
regions (objects) that compound it [19]. More specificailly,
consists of assigning a label to each pixel of the image, so
that all the pixels which share certain properties have éinees
label. One of the most used techniques in image segmentation
is thresholding or segmentation by gray levels [20], [22P][

It is based on the assumption that the objects of the image S& 12- Example of a Type-2 Fuzzy Set.
only characterized by the intensity of their pixels. When the

'mage has on'Iy two ob!ects (called objec't apd backgrounqg,given by a Fuzzy Set. This set has a continuous referential
this thresholding technique consists of finding an intgnsi

value ¢) to be considered the threshold. Using that value, V\%at from Oto 1. In Figure 12 we show a T2FS that fulfills our

label all the pixels whose intensities are lower or equahtha conditions.
as background and all the pixels whose intensities are gyreat Each of these functions represents, for a fixed threshatd, th
membership degree of every possible intensity either to the

thant as object (or vice versa). When there are more than:
. X . . abject or to the background. To construct each of these sets,
two objects in the image, we need more thresholds, in su

a way that al the pixels whose intensites are between nig i (0 B S80 B CEEETY, TE VRS B ehoe
consecutive thresholds belong to the same object. P q

. - . asmp(t)) and the average intensity of the pixels greater than
The results of thresholding are limited when comparmﬁ]e studied threshold (denoted g, (£)).

with other segmentation techniques, because the single cha
acteristic they take into account is the intensity of ever
pixel. However, its advantages are the simplicity and lo
computational cost. This is why this procedure is common
used as a first step of more complex segmentation algorith
We consider an image as a set of elements arranged in N R(qg,mp(u;)) if ¢ <u;
rows and M columns. Each element of a grayscale image has Alui)(g) = R(g,mo(w)) i ¢ > u;. @)
a value of intensity; betweer) and L — 1 (usually L = 256). ’ ' ’
However, we work with normalized imagegZ; in such a We linearly interpolate between every pair of consecutive
way thatg € [0, 1]. points (g;, (A(u;)(¢:))) and (git1, (A(ui)(git1))) with i €
As we have said in the introduction, we rewrite Huang ant, - - ; 254}. That is, we take the point§0, A(u;)(0)) and
Wang's algorithm [7] using T2FSs and Type-2 Fuzzy Entropyl/255, A(u;)(1/255)) and, for eacts € [0, 1/255], we define

The membership function quantifies how close is every

osible value () to the average of the background or to
e average of the object, by means of restricted equivalenc
ctions:

Sets (see Algorithm 1). its membership as:
Algorithm 1 Thresholding algorithm Aa(s) = 255(A(ui)(1/255) — A(us)(0))s + A(u:)(0) -
INPUT: Image to segment Next, we repeat this procedure for each intdvyas5s, (j +
OUTPUT: t the best threshold 1)/255], (j = 0,...,254), calculating in each case the
1: {Construction of the T2FS} equation of the line which passes through the points
2: for each intensity level € {0,1/255,...,254/255} (For  (5/255, A(u;)(j/255)) and((j+1)/255, A(u;)((j+1)/255)).
every possible thresholdjo In this way, we get a continuous membership function de-
3. Construct a FS on the univers$e, 1] associated with fined over the whole univerg8, 1]. This membership function
the intensity levek is piecewise linear and it has only two points where its value
4: end for is 1: the average of the backgrouna £(¢)) and the average
5: Calculate the Type-2 Fuzzy Entropy-Set of the resultingf the object (o (t)).
T2FS To select the best threshold from the T2FS we use its Type-
6: Select as best threshold the one associated with the2 Fuzzy Entropy-Set. We are looking for the threshold whose
lowest element in the Type-2 Fuzzy Entropy-Set membership function is as higher as possible for all thelpixe

in the image. The entropy is minimum when the membership
The main idea of this procedure consists in creatingi®a O or 1, and maximum in the middle point. To adapt this
T2FS associated with the image and calculating its entropgncept to our problem, we scale our membership function
set. One of the most difficult tasks is the construction of tHe [0.5,1], in such a way that the minimum entropy is only
T2FS. It should represent the information of how would bachieved when the membership degree is 1.
the image if we segment it with every possible threshold. With our membership construction, the calculation of our
For this purpose, we start by fixing the referential set @ntropies is simple, since we can divide the area in 255
the T2FS as the set of all possible thresholds in the imadmpezoids and we just need to sum the entropy measure of
U = {0/255,1/255,...,254/255} (remember the image is each of these parts multiplied by the proportion of pixelthwi
normalized). For every element iii, its membership degreethat intensity. That is, we calculate the entropy of each &S a



E(Az(u;)) = [ g(Az(w;)(z))dz where Ay (u;) is the FS as- expert. For each of them (see Figure 16) we show the orig-
sociated withu; on the universé0, 1] andg(z) = R(z,1—=x). inal image, the ideal segmentation and the segmented image
In this way we obtain a set of entropies, each one associatdifained with our method using the functidi(As(u;)) =
with an element of the universe (possible thresholds based pg(A4s(u;)(z))dz with g(z) = R(z,1 — ) =1 — |2z — 1.
our construction) and we can build the Type-2 Fuzzy Entropy-
Set. Finally, we select as the best threshold, the one atsdci
with the lowest entropy measure.
With an illustrative aim, we use this algorithm for thresh-
olding the image in Figure 13.

Fig. 13. Original image to segment.

After constructing the T2FS for this image, we uge) =
R(z,1—x) =1—12z —1| to get its associated Type-2 Fuzzy
Entropy-Set. The resulting set is as follows:

Ers = {(uo,0.6014), (u1,0.6010), (uz,0.6004), .. ., (uzs4, 0.5935)}

For a better visualization of this set, in Figure 14 we show it
graphically.

Image 8 Image 7 Image 6 Image 5 Image 4 Image 3 Image 2 Image 1

Fig. 16. Original images (first column), ideal segmentatioesd¢ad column)
and segmentations obtained by our proposal using the Type=2yFEntropy-
) 50 100 150 200 250 Set (thlrd Column)

Fig. 14. Fuzzy Entropy-Set for thresholding the image of Fégls. Our proposed Algorithm 1 uses the Type-2 Fuzzy Entropy-
Set to calculate the threshold for segmenting an image.dn th
The minimum of this Type-2 Fuzzy Entropy-Set correfuzzy literature, there exist several fuzzy algorithms ehhiise
sponds to the elemerft;43,0.1467). So the threshold usedextensions of FSs (for instance [8], [23], [14]) for threksliag
to segment the image is 143/255 and we get the image shawages. All of them, including our proposal, are based on
in Figure 15. Huang and Wang’s algorithm [7], which is an adaptation of
the classical method by Otsu [20]. It is important to notice
that none of these algorithms is better than the others fnyev
image. For this reason, we propose to use a combination of
the results obtained with different algorithms, includiogr
Algorithm 1. To show the goodness of this proposal, we use
the following 5 thresholding algorithms.

« Otsu’s algorithm [20];
« area algorithm [8] withp, (z) = 22 and 3 (x) = x;
« ignorance functions based algorithm [23] with
Gulz,y) =2/ —2)(1—y)if (1—-2)(1—y) <0.25
Fig. 15. Image of Figure 13 segmented with threshold 143. and Gy (z,y) = 1/(24/(1 — z)(1 — y)) otherwise
To further extend this illustrative example, we consider g(z) = R(z,1—z)=1—|2z — 1]
now a set of 8 standard images for thresholding and theire Algorithm 1 with E(As(u;)) = [ g(A2(w;)(z))dz and
ideal segmentations; that is, the segmentation providednby g(z) = R(x,1 —x)=1— (22 — 1)?
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In Table | we study the obtained thresholds as well as Consequenthyi’(A fH y))dy = 0 can only hold
the percentage of pixels correctly segmented with respect if m(H4) =0
to the ideal segmentation for each of the algorithms andThus,T’ satisfies(E1*).
each of the 8 images shown in Figure 16. For the sake ofTheorem 3.5 LefF : F'S([0,1]) ~ [0, 1] be a function given
simplicity, thresholds have been multiplied by 255. MooV by Eq.(1). Then,
we consider the combination of all the obtained thresholds 1
using the arithmetic mean and we also calculate for therlatte T satisfies(£2*) if and only if g~(1) = {}
the percentage of well segmented pixels. 2
As we can see in Table I, it does not exist one single meth&doof.
which is the best for every possible image. However, when=-) Let I satisfy (E2*).
we take the mean of several methods we get good results, Suppose thag(3) # 1. Let the FSA be given by4( )=
which are even the best ones for 4 of the 8 images. So, 1 for aII z € [0,1]. ThenT'(A4) = [, g(A(y))dy =
after combining the results of several algorithms (inahgdi f
Algorithm 1), we see that the obtained segmentations are ver }]32*)
good. These segmentations can be taken as a first step in the Supposey(zy) = 1 for somez, 7& Given A( ) — 2

9(3) # 1, Wh|ch is in contradlctlon with

calculation of segmentations which take into account more ¢,, aII z € [0,1] we havel'(4) = [ y))dy =
properties of the images, apart from the intensity of thelgix ' . Ha
fo g(z g(z0) = 1, which is agam in contradlctlon
with ( )

VIl. CONCLUSIONS ANDFUTURE WORK

_ <) Letg satisfyg~1(1) = {3}.

The construction of entropy measures for Fuzzy Sets with 1
infinite universes results intricate. In this direction oag o If A(z) = 5 a.e.in0,1], thenm({z € Ha | A(z) #
the main novelties of this study is the introduction of the 1 1
concept of quasi-entropy. Defined slightly different théue t 5}) < m({z | Alz) 5}) = 0 and m({z |
fuzzy entropy given by De Luca and Termini it is proven Alz) = 1)}) = 1. Thus,I'(4) = fH (A(y))dy
that both concepts are equivalent if we restrict to contirsuo i (A(y))dy + f ad (A(y))dy =
membership functions. The quasi-entropy measure has been {seHa|A(2)#3} I )8 + Jioiaw)- =1} 9\ Ay
applied to a T2FS (whose membership degree for an element ? {w\A(Jc)—i} 9(3)dy = g( ) =1
z in the universeX is a FS([0,1])), generating the novel <« Now takel'(A) = [, g(A(y))dy = 1.
concepts of Type-2 Fuzzy Entropy-Set and pointwise measure Sincem(HA) < Landg(z ) < 1 thenI'(4) = 1 can only
Finally, we have shown the usefulness of the Type-2 Fuzzy hold if m(H4) =1 and g(A(y)) = 1 for all y € Ha.
Entropy-Set in an illustrative example in Huang and Wang's  But giveny € H., g(A(y)) = 1 only if A(y) = 3. Since
algorithm for image thresholding. the measure ofi, is 1, this means thatd = 3 a.e. in

Due to the relevance of a theoretical method to calculate [0 1].
the entropy of T2FSs we leave for a future work the deeperConsequentlyl” satisfies(£2*).
study of the application, i.e. we leave for future work theple Theorem 3.7 Lel' : F'S([0, 1]) — [0, 1] be a function given
analysis of the conditions under which the algorithms abnsiby Eq.(1). Then,I' satisfie £3*) if and only ifg is increasing

ered in the illustrative example (Algorithm 1) can improbet on |0, 3] and decreasing ofi, 1].

|

thresholds usually calculated. Proof.
=) Let T satisfy(E3*).
APPENDIX 1) Supposg; is not increasing in] ,2} Then, there exist
PROOFS OF THETHEOREMS 21,22 such that) < z; < 2o < 1 and g(z) > g(z2).
Theorem 3.2 LeF : F'S([0, 1]) + [0, 1] be a function given Let A(x) = z for all = € [0, 1] land B(x) = 2 for all
by Eq.(1). Then T € [0,.1]. As A(xz) < B(x) < 5 for all z € [0,1], by
(E3%) it must be satlsfled thaI(A) <T'(B).
I" satisfies(E1*) if and only if g(z) # 0 for all z € ]0, 1]. Butp — fHA y))dy = fo (z1)dy = g(z1) and
Proof. fH dy = fO (22)dy = g(z2), which
=) Let T satisfy (E1*). |s in contradlctlon W|thg(z1) > g(z2).
Suppose thay(zy) = 0 for somez, € ]0,1[. Let A € 2) Suppose thay is not decreasing iff3, 1[. Then, there
FS([0,1]) be given byA(z) = % for all z € [0,1]. Then, e?lst)zl,zz such that: < z; < 25 < 1 and g(z) <
= = = glz2
sagls?W(E{Igf 9(Aly)dy fo 9(z0) 0 and I does not Let A(x) = 2, for all € [0,1] and B(z) = 2, for all
€ [0,1]. Since3 < B(z) < A(z) for all z € [0,1],
<) Takeg(z) # 0 for all z €10,1]. by (E3*) ['(A4) < (B) must be satlsﬂed
o If HA has Lebesgue measur® then I'(4) = BUtF( )= f ( (y)dy = fo (22)dy = g(22) and
jHA y))dy = 0 = [y, 9(B(y))dy = fo (21)dy = g(z1), which
o If T(A) = fH Ydy since g(z) # 0 for |s in contradlctlon W|thg(z1) < g(z2).

all z e 10, 1], then g( (y)) # 0 for al y € Hy. <) Let g be increasing in0, 3] and decreasing iri%, 1.
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Otsu Area Ignorance Alglvl Alglv2 Average
u % u % u % u % u % u %
Im.1| 79 93.6614] 50 97.3064| 13 96.6738| 50 97.3064| 29 97.2375| 44 97.4059
Im. 2| 74 92.2227| 56 92.7227| 11 90.8861| 58 92.7074| 47 92.7099| 49 92.7762
Im. 3 | 104 98.0148] 87 98.2887| 13 97.6454| 96 98.1731| 88 98.2887| 77 98.3741
Im. 4 | 136 95.8283| 135 95.7278| 135 95.7278| 135 95.7278 134 95.5912| 135 95.7278
Im. 5| 127 95.8474| 140 95.9545| 177 93.3757| 143 95.9621| 157 95.2479| 148 95.7224
Im. 6 | 134 95.6408| 138 96.4085| 97 64.4245| 138 96.4085| 141 96.7835| 129 94.9316
Im. 7| 71 95.9748] 50 96.6721| 3  92.2469| 52 96.6337| 49 96.7208| 45 96.8029
Im. 8 | 123 89.0935| 121 89.5726| 121 89.5726| 121 89.5726| 121 89.5726| 121 89.5726
TABLE |

THRESHOLDS(MULTIPLIED BY 255)AND PERCENTAGE OF WELL CLASSIFIED PIXELS(OTSU) RESULTS OBTAINED WITH OTSU'S METHOD. (AREA)
RESULTS OBTAINED AREA ALGORITHM AND ¢1(z) = 22 AND ¢2(x) = z. (IGNORANCE) RESULTS OBTAINED WITH WITH THE ALGORITHM BASED ON
THE IGNORANCE AND Gy (z,y) = 24/(1 —2)(1 —y) IF (1 —z)(1 —y) < 0.25 AND Gy (z,y) = 1/(24/(1 — z)(1 — y)) OTHERWISE (ALG2V1)
RESULTS OBTAINED WITH OUR PROPOSALUSING E = [ g(A(z))dz WITH g(z) = R(z,1 —z) =1 — |2z — 1|. (ALG2V2) RESULTS OBTAINED WITH
OUR PROPOSAL USING E = [ g(A(z))dz WITH g(z) = R(z,1 —z) = 1 — (2z — 1)2.

=) Let T satisfy(E4*).

Suppose thag is not symmetric, then there existse 10, 1|
such thatg(zg) # g(1 — 2¢). Let A(x) = 2, for all = € [0,1],
then N(A(z)) = 1 — z for all z € [0, 1]. However, function
I" yields

D(A) = [, 9(A(y))dy = [, g(z0)dy = g(z0) and

/ (N(A(@)))dy
Hy(a)

First of all, notice thatg has a maximum o%.

Suppose thatl, B € FS([0, 1]) satisfy that for allx € [0, 1]
A(z) < B(a) < §
or
A(z) > B(x) >

and let us see thab*(A) < E*(B).
First, we proveH 4 C Hp. Takex
of H, thenA(z) # 0 and A(z) # 1.

(4)

(SIS

€ H 4, by the Definition
There are three different

T(N(A4))

cases: _ _
[ gty =01 - 20)
o If A(z) < 1 then0 < A(z) < B(z) < 4,500 < Hy(a)
B(z) <1 andz € Hp. ) which is in contradiction with £4*).
o It A(z) > 5 thenl > A(z) > B(x) = 3,800 < ) ety be a symmetric function with respect to= 1.
B(z)<landz € Hp. Then
o If A(z) =3 theni < B(z) < 4,500< B(z) =4 <1
andz € Hp r'(A) =/ 9(A(y))dy
Ha

Thus,H 4 C Hg. Thereby,

:/ g(A(y))dy / 9(1 — A(y))dy
Hpy(a) Hy(ay

r(A)z/HA g(A(y))dyS/HB 9(Aly))dy :/ g(N(A(y)))dy = T(N(A))
Hpa)

-/ s+ [ gaw)ay
{z|0<B(z)<3} {z|B(z)=3}

4 / o(A())dy 9(B(y))dy
{z|3<B(z)<1} {z|0<B(z)<3}

+ / 9(B(y))dy + / 9(B(y))dy
{z|B(z)=3%} {z|$<B(z)<1}

where the second equality holds becaiise = Hy 4), the
third one holds becausg is symmetric and the fourth one by
the expression of negation.

IN
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