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HIGHLIGHTS 

 Imazamox and glyphosate provoke induction of the pyruvate dehydrogenase bypass 

and upregulation of ALDH7B4 expression

  Analysis of pdc1-pdc2 mutant seedlings confirmed the role of ALDH7B4 in the 

PDH bypass.

 ALDH7B4 induction is not related with detoxification of the aldehydes or changes 

in lipid content or composition

 ALDH7B4 upregulation partially alleviates the toxicity of herbicides on root  growth, 

carbohydrate and organic acid content 
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ABSTRACT

Imazamox and glyphosate represent two classes of herbicides that inhibit the 

activity of acetohydroxyacid synthase in the branched-chain amino acid 

biosynthesis pathway and the activity of 5-enolpyruvylshikimate-3-phosphate 

synthase in the aromatic amino acid biosynthesis pathway, respectively. However, 

it is still unclear how imazamox and glyphosate lead to plant death. Both herbicides 

inhibit amino-acid biosynthesis and were found to induce ethanol fermentation in 

plants, but an Arabidopsis mutant deficient in alcohol dehydrogenase 1 was neither 

more susceptible nor more resistant than the wild-type to the herbicides. In this 

study, we investigated the effects of the amino acid biosynthesis inhibitors, 

imazamox and glyphosate, on the pyruvate dehydrogenase bypass reaction and 

fatty acid metabolism in A. thaliana. We found that the pyruvate dehydrogenase 

bypass was upregulated following the treatment by the two herbicides. Our results 

suggest that the Arabidopsis aldehyde dehydrogenase 7B4 gene might be 

participating in the pyruvate dehydrogenase bypass reaction. We evaluated the 

potential role of the aldehyde dehydrogenase 7B4 upon herbicide treatment in the 

plant defence mechanism. Plants that overexpressed the ALDH7B4 gene 

accumulated less soluble sugars, starch, and fatty acids and grew better than the 

wild-type after herbicide treatment. We discuss how the upregulation of the 

aldehyde dehydrogenase 7B4 alleviates the effects of the herbicides, potentially 

through the detoxification of the metabolites produced in the pyruvate 

dehydrogenase bypass.
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1 INTRODUCTION

Herbicide application contributes to the large-scale agronomic crop production by 

efficient weed removal. There are three groups of commercialized herbicides that 

inhibit the biosynthesis of amino acids, these are the most common herbicides used 

worldwide. Imazamox represents a herbicide that inhibits the activity of the enzyme 

acetohydroxyacid synthase (AHAS, EC 2.2.1.6) in the branched-chain amino acid 

biosynthesis pathway. Glyphosate represents another group that inhibits the activity of 

the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) (EC 2.5.1.19) in 

the aromatic amino acid biosynthesis pathway [1]. Although the enzyme targets of the 

herbicides in the branched-chain amino acid and aromatic amino acid biosynthesis 

branches have been known since the early 1980s [2–4], it is still unclear how the 

inactivation of AHAS or EPSPS results in plant death. Previous findings showed that 

both AHAS and EPSPS inhibitors cause growth arrest followed by a slow plant death 

of the herbicide-treated plants although they act upon different pathways [5,6]. Both 

types of herbicides provoke an accumulation of free amino acids [3,7–11]. This effect 
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is accompanied by a decrease in the soluble protein content [9,11,12] and may be the 

key to the common response that has been associated with a plant proteolysis response 

[9]. Besides the amino acid metabolism, induction of ethanol fermentation has been 

described in plants treated with amino acid biosynthesis-inhibiting herbicides (ABIHs) 

including AHAS and EPSPS inhibitors [12–16]. However, the pyruvate dehydrogenase 

(PDH) bypass, a metabolic route that is intimately connected with the ethanol 

fermentation, has so far been overlooked in the response of plants to ABIHs. 

The PDH bypass involves the action of three enzymes: pyruvate decarboxylase 

(PDC, EC 4.1.1.1), aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and acetyl-CoA 

synthetase (ACS, EC 6.2.1.1) [17]. In the first reaction of the PDH bypass, the PDC 

catalyses the conversion of pyruvate to acetaldehyde (it is the first step of the ethanol 

fermentation pathway). Then acetaldehyde is metabolized to acetate by ALDH, and in 

the last step of the PDH bypass, acetyl-CoA is produced from acetate in a reaction 

catalysed by ACS. Compared to the reaction catalysed by the PDH complex, a small 

amount of acetyl-CoA is generated by the PDH bypass. The PDH bypass has been 

hypothesized to play a specialized role in certain cells and tissues [18]. Different 

studies reported the presence of the PDH bypass during pollen development [19,20]. In 

parallel with an increase in the ethanol fermentation during tobacco pollen 

development, which is primarily controlled by sugar supply rather than by oxygen 

availability [21,22], the existence of the PDH bypass has been suggested to prevent the 

accumulation of fermentation products including acetaldehyde and ethanol to toxic 

levels. In agreement with this, the inactivation of ADH1 in pollen did not affect normal 

pollen development, suggesting the existence of an alternative pathway to metabolize 

the acetaldehyde produced by PDC [23]. The existence of the PDH bypass in 

vegetative tissues has also been described [24,25]. In vegetative tissues, the PDH 

bypass has been proposed to contribute to the detoxification of the metabolites 
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produced during fermentation. On the one hand, one member of the ALDH family 2 

has been suggested to detoxify the acetaldehyde produced during reaeration (by the 

oxidation of the ethanol produced during anoxia) in rice [26,27]. On the other hand, 

plants lacking the ACS1 gene presented higher susceptibility to exogenously applied 

ethanol, acetaldehyde, and/or acetate than wild-type plants, indicating a role for the 

PDH bypass in the detoxification of these chemicals [24]. 

The induction of the ethanol fermentation in plants treated with ABIHs suggests 

that the PDH bypass might also be affected by the ABIHs, given that A. thaliana plants 

lacking the ADH1 gene did not present higher susceptibility to ABIH application [15]. 

To gain new insights into the physiological effects triggered by ABIHs, the current 

study examined their effect on the PDH bypass, particularly on the ALDHs. We found 

that the PDH bypass and the ALDH7B4 were upregulated following the treatment 

with the ABIHs. We discuss how the ALDH7B4 might be implicated in the PDH 

bypass and how the induction of ALDH7B4 alleviates the effects of the herbicides.

2 MATERIALS AND METHODS

2.1 Plant material, growth conditions and herbicide treatments

Arabidopsis thaliana Col-0 wild-type plants were used (wt). The A. thaliana 

Col-0 T-DNA insertion mutants defective in the ALDH7B4 gene (SALK line 

143309) (aldh7b4) [28,29], the transgenic line expressing the ALDH7B4 under the 

control of the CaMV 35S promoter (35S::ALDH7B4) [29], and the transgenic line 

expressing the ALDH7B4-promoter::GUS gene cassette were described previously 

[30].

Plants were grown as described by Zulet et al. [15]. Briefly, seeds were 

surface sterilized before sowing them on Seedholders (Araponics SA, Belgium) 

filled with 0.65% (w/v) plant agar. Seedholders were placed in tanks and plants 
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were grown in a growth chamber under 150 mol m−2s−1 PPF, 65% RH and 

25/20ºC day/night. The plants were maintained in a 12 h/12 h day/night 

photoperiod for the first 4 weeks and grown in 8/16 h day/night photoperiod 

afterward to prevent flowering. The nutrient solution was slightly modified from 

[31]: 1 mM NH4NO3, 1 mM KH2PO4, 1 mM MgSO4, 250 mM CaCl2, 0.1 mM Na-

Fe-EDTA, 50 mM KCl, 50 mM H3BO3, 5 mM MnSO4, 1 mM ZnSO4, 1 mM 

CuSO4, and 0.1 mM (NH4)6Mo7O24. Aeration was set in the tanks when the plants 

were six-week-old and maintained from then onwards.

When plants were approximately eight weeks old (rosette stage), herbicides 

were applied to the nutrient solution. The two herbicides were applied as 

commercial formulations at a final concentration of 1.5 mg active ingredient L−1 

(4.9 µM) of imazamox (Pulsar®40, BASF Española SA, Barcelona, Spain) or 20 

mg active ingredient L−1 (87.65 µM) of glyphosate (Glyfos®, Bayer CropScience, 

S.L, Paterna, Valencia, Spain). The experiment was performed in triplicate.

Samples were taken after three days of herbicide application, before obvious 

visual plant death was observed. This time point was chosen in order to allow the 

evaluation of physiological and biochemical plant responses induced by the 

herbicides but not directly resulting from cell death. Intact leaf and root samples 

were immediately frozen in liquid nitrogen and stored at -80°C for further analyses. 

Later, frozen samples were ground under liquid nitrogen using a Retsch mixer mill 

(MM200, Retsch®, Haan, Germany), the required amount of tissue for each 

analysis was separated and stored at -80°C. Fresh material was used for the 

histochemical detection and measurement of GUS activity.
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2.2 Plants grown under axenic conditions

Wild-type A. thaliana Col-0 (wt) and a double mutant of A. thaliana Col-0 

with a T-DNA insertion line for PDC1 and PDC2 (pdc1-pdc2) (kindly provided by 

Francesco Licausi PlantLab, Scuola Superiore Sant’Anna, Pisa, Italy) were used. 

To ensure axenic conditions all growth containers and medium were sterilized 

before use. Plants were grown in sterile six-well plates in liquid half-strength MS 

medium (pH 5.7) (Sigma-Aldrich Co., St. Louis, MO, USA) enriched with 1% 

(w/v) sucrose under continuous shaking. Ten seeds were placed in each well and 

plates were incubated for 3 days at 4°C in darkness for stratification. Plates were 

then placed in a growth chamber and seedlings were grown under 80 μmol m-2 s-1 

light, at 23°C/18°C day/night temperature and at a 12/12 h day/night photoperiod. 

When plants were six days old, the old growth medium was removed and 

replaced with fresh sucrose-free medium, and treatments were started. Seedlings 

were treated with imazamox, glyphosate for 5 days. The two herbicides were 

applied as commercial formulations at a final concentration of 1.5 mg active 

ingredient L−1 (4.9 µM) of imazamox (Pulsar®40, BASF Española SA, Barcelona, 

Spain) or 20 mg active ingredient L−1 (87.65 µM) of glyphosate (Glyfos®, Bayer 

CropScience, S.L, Paterna, Valencia, Spain). Seedlings from one individual well 

were collected as a biological sample and different wells were harvested as 

replicates. The plant material was immediately frozen. 

2.3 Determination of root growth on agar plates

Wild-type Arabidopsis thaliana Col-0 plants (wt), A. thaliana Col-0 T-DNA 

insertion mutants defective in the ALDH7B4 gene (SALK line 143309) (aldh7b4) 

[28,29], and three independent transgenic lines expressing the ALDH7B4 under the 
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control of the CaMV 35S promoter (35S::ALDH7B4, 35S::ALDH7B4_2 and 

35S::ALDH7B4_3) [29] were used.

Seeds were sterilized (section 2.1) and were then transferred to petri dishes 

containing 0.1% (w/v) plant agar. Plants were incubated for 3 days at 4°C in 

darkness before they were transferred to the growth chamber. Plants were grown 

under 120-150 μmol m-2 s-1 light, 65% relative humidity at 23°C/18°C day/night 

temperature and 12/12h day/night cycle. After 4 days in the growing chamber, 

when the root length was about 1 cm, seedlings were transferred to 12 x 12 cm 

plates containing half-strength Murashige and Skoog (MS) medium (pH 5.7), 1% 

sucrose (w/v) and 0.9% (w/v) plant agar (8 seeds per plate) and, where 

corresponding, the selected herbicide dose. The two herbicides were sterilized 

using 0.20 μm filters and were added to the medium before it solidified.

Since the applied herbicide concentration in the hydroponically grown A. 

thaliana plants was too high for agar plates (plants died within two days), 

preliminary studies were conducted to find a herbicide concentration that was not 

too aggressive and killed the plant in a few days, but that was sufficiently 

aggressive to have an effect on the plant growth. Thus, 0.005 mg active ingredient 

L-1 of imazamox (0.016 μM) and 0.4 mg active ingredient L-1 of glyphosate (1.75 

μM) were chosen as herbicide concentrations. Plants not treated with herbicide 

were used as control plants. Root elongation was measured 15 days after the 

transfer to 12 x 12-plates. The experiment was done in duplicate. 

2.4 Semi-quantitative Reverse-Transcription-Polymerase Chain Reactions 

(RT-PCRs)

Total RNA was extracted from about 0.1 g of previously ground frozen leaf or 

root samples as described by Missihoun et al. [32].
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Extracted RNA was subsequently quantified using a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). OD 260 and 

280 nm were read for every sample. The RNA quality was also checked in a 1% 

agarose gel. For the PCR analysis 2 µg of total RNA was treated with 10 U RNase-

free DNase I (Thermo Fisher Scientific Inc., Waltham, MA, USA) in a 10 μL 

reaction containing 1 x DNase I buffer (10 mM Tris/HCl (pH 7.5), 0.5 mM CaCl2 

and 2.5 mM MgCl2) at 37°C for 10 min. Then, 1 μL of 25 mM EDTA was added 

and the reaction was heated at 65°C for 10 min to deactivate the DNase I.

First-strand cDNA synthesis was performed using the RevertAid First Strand 

cDNA Synthesis Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

according to the manufacturer’s instructions.

After reverse transcription, RT-PCR was performed on an Eppendorf 

Mastercycler ep Gradient S (Eppendorf, AG, Hamburg, Germany). Each reaction 

was performed for 1 µL of cDNA in a total volume of 20 µL containing: 1 x 

ammonium buffer (Tris-HCl (pH 8.5), (NH4)2S04, 15 mM MgCl2, 1% Tween 20®), 

0.2 mM of each dNTPs, 0.4 µM specific forward primer, 0.4 µM specific reverse 

primer and 1 U Taq polymerase (Ampliqon A/S, Odense, Denmark).

The specific primers used for the RT-PCR analysis are detailed in appendix B, 

Suppl. Table S1. The parameters of the PCR programme were as follows: 5 min 

94°C; 25-32 cycles (30 s 94°C, 45 s 62°C and 2 min (3 min for ALDH3F1) 72°C); 

5 min 72°C and pause at 4°C. The specific number of cycles used for each gene is 

presented in appendix B, Suppl. Table S2.

Two-fold diluted PCR amplified products were loaded on a 1% agarose gel 

and run at 135 mA for 35 min. A 1Kb Gene Ruler was used as size marker. The 
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gels were visualized in a Bio-Rad Gel Documentation Gel DocTM 2000 System 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). To quantify the intensity of the 

bands given by the PCR amplified products the Quantity One® version 4.6.9 

Software (Bio-Rad Laboratories Inc., Hercules, CA, USA) was used. The signal 

intensity value for each sample and for a specific gene was divided by that of the 

ACTIN2 (At3g18780) gene for the same sample.

2.5 Quantitative Real-Time-Polymerase Chain Reactions (qPCR)

Total RNA was extracted from ground frozen seedlings (about 0.1 g FW) as 

described in Kosmacz et al. [33]. Total RNA was subjected to a DNase treatment 

using the RQ1-DNase kit (Promega Biotech Ibérica, SL., Alcobendas, Spain). Five 

hundred ng RNA were reverse transcribed into cDNA using the iScript™ cDNA 

Synthesis Kit (Bio-Rad Laboratories Inc., Hercules, CA, USA) following the 

manufacturer’s instructions.

The qPCR amplification was carried out with the ABI Prism 7300 sequence 

detection system (Applied Biosystems, Life Technologies, Darmstadt, Germany) 

using the iQ™ SYBR® Green Supermix (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). The parameters of the PCR program were as follows: 10 s 50°C, 3 min 

95°C, 40 cycles (15 s 95°C, 30 s 60°C), a dissociation curve (15 s 95°C, 30 s 60°C 

and 15 s 95°C). ACTIN2 was used as reference. The primer pairs used in the qPCRs 

are presented in appendix B, Suppl. Table S3. Relative quantification of the 

expression of each individual gene was performed using the 2−ΔΔC
T method [34].

2.6 Histochemical detection and measurement of the GUS activity

GUS staining was performed as described by Jefferson et al. [35]. 

Fluorometric GUS activity of crude plant samples was determined according to 

Jefferson et al. [35].
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2.7 Lipid peroxidation assay

The level of lipid peroxidation products was measured in the plant tissues by 

the thiobarbituric acid-reactive-substances assay. Modifications were introduced to 

correct interference generated by nonspecific turbidity, thiobarbituric acid-sugar 

complexes and other no-thiobarbituric acid reactive-substances absorbing at 532 

nm [36].

2.8 PDC and ADH activities

The in vitro activities of PDC were assayed in ground tissue samples as 

described in [12].

2.9 Free amino acid extraction and determination

Total free amino acids were measured from ground tissue samples. Amino 

acids were extracted with 1M HCl. After protein precipitation, amino acid 

concentrations were analysed in the supernatant. After derivatization with FITC, 

the amino acid content was measured using capillary electrophoresis equipped with 

a laser-induced fluorescence detector [37]. The cysteine contents were determined 

from the same acid extracts derivatized with 5-iodoacetamide fluorescein and 

reduced with tributylphosphine [38].

2.10 Carbohydrate extraction and determination

Soluble carbohydrate (glucose, fructose and sucrose) contents were 

determined in ethanol-soluble extracts. The ethanol-insoluble residue was extracted 

for starch analysis [39]. The determination of starch and soluble sugar 

concentrations was performed using capillary electrophoresis [39].
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2.11 Organic acid extraction and determination

Long-chain organic acids were measured in A. thaliana leaves and roots, the 

same extracts were used for the determination of ethanol-soluble sugars (as 

described above for carbohydrates extraction, section 2.9).

Short-chain organic acids were extracted from ground A. thaliana leaf and root 

samples. About 0.1 g of plant samples were homogenized in 0.5 mL 1M HCl. 

Tubes were centrifuged at 18,000 g for 25 min at 4°C and 250 µL of supernatant 

was transferred to a new tube and diluted to 1:10 in deionized water. Extracts were 

filtered with Ag filters (to eliminate Cl-) and H+ filters (to eliminate cations).

The organic acid content was determined by ion chromatography in a DX-500 

IC System (Dionex Corporation, Sunnyvale, CA, USA) that included a GP40 

Gradient Pump and an ED40 Electrochemical Detector. Ion-Pak AG11 and AS11 

columns were used for the separation. The gradient was used from 0.2 mM NaOH 

to 45 mM NaOH and from 10% methanol to 20% methanol, in 27 min, at a flux of 

1 mL min−1 for long-chain organic acid determination, and from 0.2 mM NaOH to 

15 mM NaOH in 25 min, at a flux of 1 mL min−1 for short-chain organic acid 

determination.

2.12 Total fatty acid extraction and determination

For total fatty acid extraction glass tubes with screw caps containing Teflon 

septa were used. Freshly collected ground plant samples were transmethylated after 

submergence in 1 M HCl in methanol, and extracted after addition of 0.9% NaCl: 

hexane (1:1). 

Total fatty acid determination was performed by gas chromatography with 

flame ionization detector on an Agilent 7890A Gas Chromatograph (Agilent 
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Technologies Inc., Santa Clara, CA, USA) using pentadecanoic acid (15:0) as 

internal standard [40].

2.13 Statistical analyses 

The data obtained from this study were analysed by the IBM SPSS Statistics 

(v.22) software package. Data are presented as mean ± SE and was calculated using 

samples from different individual plants as replicates.

First, for each studied parameter, the untreated plants of each genotype were 

compared to the untreated wild-type plants employing Student’s t-test to obtain the 

significance of the difference between the means of two independent samples 

(significance level of 5%, p < 0.05).

Second, the data of the herbicide-treated and non-treated plants of each 

genotype were compared using the one-way ANOVA test, after log transformations 

of the data if needed. To confirm homoscedasticity of variances, the Levene’s test 

was used. The HSD Tukey and Dunnett T3 post hoc statistical tests were applied to 

the homogeneity and non-homogeneity of variances cases, respectively. When the 

results were expressed in percentages, the data were first transformed according to 

the following formula: . In all cases, statistical analyses were  𝑎𝑟𝑐𝑠𝑖𝑛 𝑥/100

conducted at a significance level of 5% (p < 0.05). 

For the root elongation measurements, herbicide effects were expressed in 

percentages with respect to the untreated plants for each genotype. Percentages of 

transgenic genotypes (after transformation to were compared to the  𝑎𝑟𝑐𝑠𝑖𝑛 𝑥/100 

percentage in wild-type plants employing Student’s t-test to obtain the significance 

of the difference between the means of two independent samples (significance level 

of 5%, p < 0.05).
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3 RESULTS AND DISCUSSION

3.1 Induction of ACS gene expression in Arabidopsis plants treated with 

imazamox or glyphosate 

The induction of ethanol fermentation is a well-known physiological effect 

provoked by ABIHs in plants, although oxygen is not limited under these 

conditions. To examine the effects of ABIHs on the PDH bypass, the expression 

(mRNA transcript levels) of genes involved in the PDH bypass in A. thaliana 

plants was measured following the application of imazamox or glyphosate, which 

inhibit AHAS and EPSPS, respectively. The A. thaliana ALDH2B4 gene was found 

to be the primary contributor to the PDH bypass pathway in both vegetative and 

floral tissues [25], one step before of the unique ACS-coding gene in A. thaliana. 

Thus, the expression pattern of ALDH2B4 and ACS were measured in the leaves 

and the roots of A. thaliana plants treated with imazamox or glyphosate (Fig. 1). 

The results showed an increase in the expression of the ACS gene in the leaves and 

roots after ABIH treatment (Fig. 1). In the leaves, glyphosate provoked a higher 

increase in the ACS transcript levels, while in the roots, the effect of the two 

herbicides was similar. The induction of the ACS gene expression by ABIHs has 

not been previously described. This result indicates that the effect of these 

herbicides on primary plant metabolism has broader physiological consequences 

than a lack of certain amino acids alone, which suggests that that both AHAS and 

EPSPS inhibitors provoke similar physiological effects on treated plants, even 

though they act upon different pathways. 

In contrast, the expression of ALDH2B4 was not induced as a consequence of 

ABIH application (Fig. 1). This observation led us to analyse the expression of 

other ALDHs in response to herbicide treatments. 
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3.2 Induction of the ALDH7B4 gene expression is a new effect triggered in 

plants after ABIH application

 Sixteen genes code for members of ten ALDH protein families in A. thaliana 

[41,42]. We focused on the family 2, family 3 and family 7 because members of 

these three families have been described to play a role in the response of plants to 

abiotic stresses (such as flooding, salinity and dehydration) [29,43–46]. The 

transcript levels of the ALDHs belonging to family 2 (ALDH2B7 and ALDH2C4), 

family 3 (ALDH3F1, ALDH3H1, ALDH3I1) and family 7 (ALDH7B4) were 

analysed by RT-PCRs in leaves and roots of imazamox- or glyphosate-treated wild-

type A. thaliana Col-0 plants (Fig. 2). Except for ALDH7B4 in roots and ALDH7B4 

and ALDH2C4 in leaves, no changes in expression of the monitored ALDHs were 

found following imazamox or glyphosate application. The expression of the 

ALDH2C4 increased in the leaves of imazamox-treated plants. This gene encodes a 

protein known to play a role in the biosynthesis of ferulic acid and sinapic acid 

[47,48]. The increase in the ALDH2C4 expression suggests an increase of ferulic 

acid and sinapic acid, which have been reported to accumulate in imidazolinone-

treated pea plants [49]. Interestingly, the upregulation of ALDH7B4 was the only 

common effect triggered by both herbicide treatments in leaves and roots, with 

glyphosate inducing a stronger response than imazamox. 

To confirm the induction of ALDH7B4 after herbicide treatment, ALDH7B4-

promoter::GUS transgenic plants were grown and treated with imazamox or 

glyphosate and the promoter activity was monitored by histochemical GUS 

staining and by GUS enzyme activity measurements (Fig. 3). The activity of the 

promoter of ALDH7B4 is strongly induced in both leaves and roots in response to 

imazamox or glyphosate (Fig. 3.A and 3.B). The activity of the ALDH7B4 
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promoter dramatically increased after glyphosate treatment while the increase 

detected after imazamox application was lower. The histochemical GUS staining 

indicated a higher GUS activity in leaves of ALDH7B4::GUS transgenic plants 

treated with imazamox or glyphosate. These increases were not observed for roots, 

probably due to the high GUS activity already present in the roots of untreated 

plants [30]. RT-PCRs were also conducted for the ALDH7B4 and GUS genes in the 

leaves and the roots of ALDH7B4::GUS transgenic plants (Fig. 3.C). The GUS and 

ALDH7B4 transcript levels of both leaves and roots increased as a consequence of 

the two herbicide treatments. Glyphosate caused the highest increase in the 

expression of the two genes. The results observed in the analysis of the ALDH7B4 

promoter (Fig. 3) correlated with the ones obtained for the ALDH7B4 gene 

expression analysis carried out in wild-type A. thaliana Col-0 plants (Fig. 2), and 

confirmed the induction of ALDH7B4 at the transcriptional level. The prominent 

increase in the expression of the ALDH7B4 was comparable for the two herbicides 

and indicates that this enzyme plays an important role in response to ABIH-

treatment. 

It is important to elucidate the physiological implications of the ALDH7B4 

induction in the toxicity of ABIHs. Two, non-contradictory explanations, can be 

considered. Firstly, the induction of these two pathways could be a plant defence 

mechanism that promotes better tolerance of the herbicide, and/or secondly, it 

could be a consequence of the herbicide activity thus contributing to the chemical’s 

toxicity.
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3.3 Analysis of pdc1-pdc2 defective mutant seedlings shows a role of 

ALDH7B4 in the PDH bypass 

The only ALDH upregulated by the two herbicides in leaves and roots was 

the cytosolic ALDH7B4. This makes ALDH7B4 a good candidate for the cytosolic 

conversion of acetaldehyde into acetate in the PDH bypass following the herbicide 

treatment. Indeed, in the PDH bypass, acetaldehyde is produced in the cytosol from 

the decarboxylation of pyruvate in a reaction catalysed by the PDC, and the ACS 

enzyme converts acetate into acetyl-CoA in the plastids. It was proposed that either 

the conversion of acetaldehyde into acetate takes place in the cytosol and then 

acetate is imported to the plastids from the cytosol, or the conversion of 

acetaldehyde into acetate takes place in the plastids. However, it is very unlikely 

that acetaldehyde would freely cross the membrane due to its high reactivity and 

toxicity. Moreover, the expression of ALDH3I1, the only known plastid localized 

ALDH in A. thaliana, was not affected by the herbicides (Fig. 2). Consistent with 

our hypothesis, acetaldehyde has been shown to be metabolized by members of the 

family 7 ALDHs in rice [50]. To confirm that the conversion of the acetaldehyde 

derived from the induced PDC into acetate was catalysed by the ALDH7B4, an 

experiment was performed with a double pdc1-pdc2 mutant. The use of this mutant 

offered the opportunity of assessing the physiological role of ALDH7B4 with an 

expected lower availability of acetaldehyde, as this mutant lacks the two 

predominant pyruvate-consuming PDC enzymes. Seedlings of A. thaliana (wild-

type and pdc1-pdc2 mutants) were grown under sterile conditions and were treated 

with imazamox or glyphosate for 5 days. The transcript levels of the ALDH7B4 and 

ACS genes were measured by qPCR (Fig. 4). In wild-type seedlings, the expression 

of ALDH7B4 was induced after the two ABIH treatments (Fig. 4), as it was 
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detected in the plants grown in the non-sterile hydroponic system (Fig. 2). 

Additionally, both herbicides provoked an increase in the expression of the ACS. 

The concomitant increases in the expression of ALDH7B4 and ACS after ABIH 

treatment support the induction of the PDH bypass by the herbicides. However, the 

increase of the ALDH7B4 expression upon imazamox treatment was absent in the 

pdc1-pdc2 seedlings whereas the induction of ACS observed in wild-type plants 

after both ABIH applications was abolished in the pdc1-pdc2 double mutants (Fig. 

4). The simultaneous decrease in the expression of the ALDH7B4 and ACS 

enzymes in the pdc1-pdc2 mutants supports the hypothesis that the PDH bypass is 

induced in ABIH-treated plants, as an alternative pathway for pyruvate 

consumption. The results evidence that ALDH7B4 is involved in the PDH bypass, 

at least in the case of imazamox, because no induction of the expression of this 

gene was observed in the pdc1-pdc2 mutants after the application of this herbicide.

3.4 ALDH7B4 is not involved in the detoxification of aldehydes derived from 

lipid peroxidation 

Lipid peroxidation can be initiated by ROS produced under impaired 

photosynthesis conditions, and a decrease in the net photosynthesis rate has been 

described in several plant species (e.g. pea, sugar beet and barley) after AHAS- or 

EPSPS-inhibiting herbicide application [8,39,51–53]. The ALDH7B4 is the only 

member belonging to the ALDH family 7 present in A. thaliana. This protein has 

been shown to play a role during different stress conditions such as, dehydration, 

salinity, heavy metals and abscisic acid treatment [29,43]. ALDH7B4 contributes 

to stress tolerance since A. thaliana mutants overexpressing the ALDH7B4 gene 

showed improved stress tolerance, while ALDH7B4 mutant plants presented higher 

stress sensitivity [29]. Ectopic expression of a soybean ALDH7 gene in transgenic 
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A. thaliana and tobacco plants increased abiotic stress tolerance, and the plants 

contained lower levels of malondialdehyde, confirming the protective role of 

ALDH7 [45]. Additionally, rice plants lacking OsALDH7B6, a gene necessary for 

seed maturation and maintenance of seed viability, showed higher stress sensitivity, 

and this increased sensitivity has been related to the accumulation of 

malondialdehyde and of the yellow pigment oryzamutaic acid A [50]. Recently, A. 

thaliana plants ectopically overexpressing the wheat stress-inducible 

TraeALDH7B1-5A gene showed improved tolerance to water deficit [54]. Based on 

these reports and on the conclusion that the ALDH7B4 enzyme increases stress 

tolerance by detoxifying aldehydes [29,45], malondialdehyde content was 

measured as an indicator of lipid peroxidation, using the thiobarbituric acid-

reactive-substances assay. A. thaliana T-DNA mutants defective for ALDH7B4 

(aldh7b4) and a transgenic line expressing ALDH7B4 under the control of the 

CaMV 35S promoter (35S::ALDH7B4) were assayed alongside the wild-type. The 

validation of the mutant lines is presented in the Appendix C, Suppl. Figs. S1, S2. 

No phenotypical differences with respect to the wild-type plants were found in the 

aldh7b4 and 35S::ALDH7B4 mutants in the experimental conditions used. Our 

results showed that the malondialdehyde content only increased in the leaves of 

glyphosate-treated wild-type plants, and no increase in the malondialdehyde 

content was found in the roots of imazamox- or glyphosate-treated plants (Fig. 5). 

The transgenic lines showed the same pattern as in the wild-type plants, indicating 

that the malondialdehyde content is not influenced by the lack or the 

overexpression of the ALDH7B4 gene in ABIH-treated plants. Similar effects of 

ABIHs have been reported before: imazethapyr (another AHAS inhibitor) did not 

provoke oxidative stress [55] whereas glyphosate application was related with an 
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oxidative stress in plants [56,57]. Therefore, ALDH7B4 seems not to be related to 

the detoxification of aldehydes derived from lipid peroxidation because lipid 

peroxidation was not a common effect of the two types of herbicides and no 

differences were detected in the mutant lines.

3.5 Effect of ABIHs on fatty acid content and de novo fatty acid biosynthesis

Acetyl-CoA can follow different routes in the cellular compartments. In the 

plastids, acetyl-CoA is the substrate for de novo fatty acid biosynthesis. Although 

the acetyl-CoA pool generated by ACS from acetate seems to be redundant for 

fatty acid biosynthesis, ACS is hypothesized to play a specialized role in certain 

cells and tissues in which the PDH bypass is activated [18]. It was proposed that 

activation of the PDH bypass is needed to enable a high rate of lipid biosynthesis 

under nitrogen deprivation in the green alga Chlorella desiccata [58]. Different 

studies confirmed the incorporation of acetyl-CoA produced in the PDH bypass 

into fatty acids. Radiolabelled ethanol was shown to be incorporated into CO2, and 

amino acids derived from intermediates of the TCA cycle and lipids in tobacco 

pollen [19]. In vegetative tissues, incorporation of 14C-ethanol into fatty acids 

following the PDH bypass was described for A. thaliana [25].

To analyse whether the acetyl-CoA produced in the PDH bypass in plants 

exposed to herbicides is redirected to the biosynthesis of de novo fatty acids, the 

total fatty acid content and the expression pattern of different genes involved in the 

de novo fatty acid biosynthesis (ACC2, KASIII, KASI, KASII) (Fig. 6) were 

measured in leaves and roots of imazamox- or glyphosate-treated A. thaliana 

plants. 
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In general, the total fatty acid content was not significantly affected by the 

ABIH treatment, although some changes were observed. In leaves, a non-

significant decrease in the total fatty acid content was detected after application of 

the two herbicides (Fig. 6.A), even though the expression of the genes that 

participate in de novo fatty acid biosynthesis (ACC2, KASI, KASIII and KASII) was 

not affected by the herbicides. The only changes detected were an increase in the 

expression of KASIII following imazamox application and a decrease in the 

expression of KASI after treatment with glyphosate (Fig. 6.B). No changes in the 

total fatty acid content was detected in the roots after ABIH application (Fig. 6.A), 

even though the expression of the ACC2, KASIII, KASI and KASII genes decreased 

as a consequence of ABIH application. The expression of these genes was more 

affected through glyphosate than imazamox (Fig. 6.B).

Although an increase in the acetyl-CoA pool would be expected by the 

concomitant activation of the PDH bypass upon ABIH treatment, it was not clear 

whether the extra acetyl-CoA is employed for de novo fatty acid biosynthesis. 

Nevertheless, our results suggest that acetyl-CoA levels are limiting for fatty acid 

synthesis probably due to an affected PDH complex, which is the main pathway of 

acetyl-CoA biosynthesis. Although the specific effects of ABIHs on the PDH 

complex have not been studied yet, a negative effect of the ABIHs can be 

hypothesized on this complex, because carbon metabolism is often affected by 

ABIHs [14,39]. A decrease in some TCA intermediates has been described in pea 

roots treated with AHAS inhibitors [16], suggesting a blockage at the level of the 

synthesis of acetyl-CoA, the main substrate for the TCA cycle. 

Although the total fatty acid content was not modified by ABIHs, changes 

cannot be excluded in the relative amounts of individual fatty acids. The effect of 
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herbicides on the percentage of the individual fatty acid content in leaves and the 

roots of A. thaliana wild-type plants was measured (Fig. 7). The results showed 

that the effect of imazamox in the leaves was minor. Imazamox provoked a slight 

increase in the percentage of 16:2, and a small decrease in the percentage of 18:0, 

16:3 and 18:1 fatty acids. In contrast, the effect of glyphosate was stronger and it 

provoked an accumulation of 16:0, 16:1, 16:2, 18:1 and 18:2 fatty acids and a 

decrease in the 16:3 and 18:3 fatty acids (Fig. 7). In roots, the percentage of 14:0, 

16:1, 16:3 and 18:1 fatty acids increased as a consequence of imazamox application 

and, in contrast, the percentage of 16:0 fatty acids species decreased. The 

percentage of 14:0, 16:0 and 18:1 species increased, the 18:3 content decreased in 

response to glyphosate treatment.

The fact that the percentage of 16:0 fatty acids increases and of 18:3 decreases 

as a consequence of glyphosate application suggests that the synthesis of 18:3 fatty 

acids from the precursor 16:0 is affected. Indeed, a decrease in the transcript levels 

of KASII in roots (a gene encoding the condensing enzyme involved in the 

elongation of 16:0-ACP to 18:0-ACP, i.e. the precursor for 18:3 acyl groups) was 

detected as a consequence of glyphosate application, while imazamox did not affect 

the expression of this gene (Fig. 6). Thus, it seems that, in the case of glyphosate-

treated roots, the decrease in the 18:3 content is due to a reduced synthesis rate. 

Nevertheless, a specific degradation of 18:3 species could also contribute to the 

decrease in the 18:3 content. 18:3 is the substrate for jasmonic acid and other 

oxylipins. A connection between the 18:3 content and the expression of ALDH7B4 

has been proposed, since it has been observed that in the triple mutant fad3-2fad7-

2fad8, which does not accumulate 18:3, the expression of the ALDH7B4 was 

impaired [59,60]. A regulatory pathway for the expression of the gene ALDH7B4 
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upon wounding has been proposed recently whereby the oxylipins derived from 

linolenic acid (18:3) may activate the transcription factors for the activation of the 

expression of the ALDH7B4 [30]. This kind of parallelism between wounding and 

glyphosate has been proposed before, as both stresses have been reported to induce 

phenylalanine ammonia lyase activity [61].

To further elucidate a potential role of the induction of ALDH7B4 in fatty acid 

accumulation, the total fatty acid content was analysed in the aldh7b4 and the 

35S::ALDH7B4 mutants (Appendix C, Suppl. Fig. S3-4). Interestingly, the effects 

of ABIHs on the fatty acid content in the leaves and the roots of aldh7b4 and 

35S::ALDH7B4 mutants were very similar compared to the effects found in the 

wild-type plants, with few exceptions. A significant decrease in the total fatty acid 

content was detected in the leaves of ALDH7B4 overexpressing mutants after 

imazamox or glyphosate application and it was related to a decrease in the 

expression of the genes involved in the de novo fatty acid biosynthesis, especially 

the ACC2 and KASIII genes.

The fatty acid compositions (Appendix C, Suppl. Fig. S5) were similar 

between the wild-type plants, the aldh7b4 and 35S::ALDH7B4 mutants, so it seems 

that the ALDH7B4 does not affect the overall fatty acid composition.

3.6 ALDH7B4 alleviates the physiological effects of ABIHs on root carbon 

metabolism

We examined the role of the upregulation of ALDH7B4 in response to ABIHs, 

as the induction of this enzyme could be a plant defence mechanism promoting 

improved tolerance to the herbicide or it could be a consequence of the herbicide 

activity, thus contributing to the chemical toxicity. To this end, we evaluated 

ethanol fermentation, free amino acid content, soluble sugars and starch contents, 
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as well as the pyruvate content in leaves and roots of the wild-type compared to 

aldh7b4 and 35S::ALDH7B4 mutant Arabidopsis lines. A summary of the results 

(Fig. 8) shows where differences in the response to the herbicides have been 

detected between the wild-type and transgenic line. The PDC activity did not 

increase in the roots of the 35S::ALDH7B4 line after imazamox and glyphosate 

treatment compared to the wild-type plants. In leaves, the ADH activity 

significantly increased in the 35S::ALDH7B4 plants compared to the wild-type and 

the aldh7b4 mutant (Suppl. Fig. S6). No difference was seen for the total free 

amino acid content between the wild-type and the mutants (Suppl Fig. S7). In 

contrast, the increase in the total soluble sugars and in starch content after 

imazamox treatment was very minor in the leaves of 35S::ALDH7B4 mutants 

compared to the increased found in the leaves of wild-type and aldh7b4 plants. 

Similarly, the sucrose, glucose, and total soluble sugars contents increased less in 

aldh7b4 and 35S::ALDH7B4 leaves than in the wild-type after glyphosate treatment 

(Suppl Fig. S8). The untreated wild-type and two mutant plants showed similar 

values for almost all evaluated parameters, except for glucose and starch contents 

in the leaves (Suppl. Fig. S8), total soluble sugars (Suppl Fig. S9), and pyruvate 

and malate contents (Suppl Fig. S11) in the roots. As for the organic acids, notably 

pyruvate, the content of this metabolite did not increased after herbicide treatments 

in the leaves or roots of the two studied mutants compared to the wild-type plants 

(Suppl Figs. S10, S11). Overall, the results showed that the free amino acid profiles 

of the three genotypes were similar in contrast to the carbohydrate content. In 

leaves, only starch and pyruvate accumulation elicited by glyphosate were 

attenuated in the two transgenic lines. The effect of glyphosate was alleviated in the 

roots of the treated aldh7b4 plants as no total soluble sugars, starch or pyruvate 
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accumulation or PDC induction were detected (Fig. 8b, 8d, 8f, 8h). The 

accumulation of carbohydrate and pyruvate, and the induction of PDC detected in 

treated roots of wild-type plants were abolished in plants overexpressing the 

ALDH7B4 gene, indicating an attenuation of the typical effects of the two 

herbicides on carbohydrate accumulation and PDC induction. It seems that the 

increased expression of ALDH7B4 has increased the capacity of the plant to 

metabolize the acetaldehyde and thus helped the plant to survive the stress 

provoked by herbicide application. The PDH bypass may therefore serve to 

metabolize the accumulated pyruvate after the inhibition of AHAS or EPSPS, and 

to detoxify the acetaldehyde produced during ethanol fermentation. Indeed, the A. 

thaliana ALDH7B4 gene has been found to contribute to the survival of the plants 

to different stress conditions (such as, drought and salinity) [29]. Members of the 

ALDH7 family have also been observed to contribute to stress tolerance in soybean 

[45] and wheat [54]. Although the physiological disturbances on carbon 

metabolism of ABIHs on roots were slightly alleviated in ALDH7B4 

overexpressing plants, almost no changes were detected in aldh7b4 mutants. 

Possibly other ALDH enzymes compensate for the loss of ALDH7B4 in the 

aldh7b4 null mutant.

3.7 Overexpression of ALDH7B4 alleviates the inhibition of root elongation 

provoked by ABIHs 

Besides using physiological markers to evaluate the role of ALDH7B4 in plants 

treated with ABIHs, root elongation was used as an overall marker to compare the 

sensitivity among the genotypes (wild-type, aldh7b4, 35S::ALDH7B4). The objective 

of this experiment was to elucidate the possible physiological implications of the 

ALDH7B4 induction in the toxicity of ABIHs, whether as a plant stress response 
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phenomenon (a detoxification mechanism after the application of herbicides, which 

the plants use to protect their viability) or a contribution to the chemical toxicity.

To monitor herbicide effects, A. thaliana seedlings were grown on vertical 

agar plates and root growth was measured. This parameter was used to check 

sensitivities to ABIHs in different genotypes. Root growth assays have been 

frequently used to check sensitivities to other abiotic stresses such as exposition to 

heavy metals [62–65], osmotic stress [66] or application of the herbicide 2,4-D 

[67].

Figure 9 shows the results of the experiment. All genotypes were severely 

affected by both herbicides, as shown in the representative photograph of each 

treatment (Fig. 9a) and root growth arrest was significant in all cases (Fig. 9b). 

Interestingly, the arrest of root elongation provoked by ABIHs was significantly 

alleviated in 35S::ALDH7B4 genotype compared to the wild-type plants: 

imazamox and glyphosate effects were alleviated from 37% to 55% of root growth 

inhibition and from 8% to 14.6% of root growth inhibition (Fig. 9c). The relative 

effect detected in the aldh7b4 genotype was similar to the effect detected in the 

wild-type plants. 

To confirm that the alleviation of the effect of herbicides on root growth 

observed in the 35S::ALDH7B4 plants was due to the overexpression of the 

ALDH7B4 gene, an additional experiment was performed including using three 

independent A. thaliana 35S::ALDH7B4 lines (35S::ALDH7B4, 35S::ALDH7B4_2 

and 35S::ALDH7B4_3) and the wild-type (Suppl. Fig. S12). Although the absolute 

growth of the plants (Suppl. Fig. S12a,S12b) was higher in this experiment 

compared to the results shown in Figure 9, the relative effect of the herbicides on 

root elongation on wild-type was maintained (Suppl. Figs. S12c). Interestingly, 
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alleviation of  the effect of ABIHs in the three 35S:ALDH7B4 lines was significant 

the alleviation was from 38.3% to 46.3-68.1% in the case of imazamox and from 

7.9% to 10.4-12.9 % in the case of glyphosate (Suppl. Fig. S12c). These results 

showed that the root growth inhibition provoked by imazamox or glyphosate was 

alleviated in 35S::ALDH7B4 evaluated lines comparing to the wild-type plants. 

Thus, this experiment confirmed that the slight increase in the tolerance to the 

herbicides observed in the 35S::ALDH7B4 lines is due to ALDH7B4 

overexpression.

These results evidence that the overexpression of ALDH7B4 decreases the 

sensitivity to ABIHs, supporting that the induction of ALDH7B4 is a plant stress 

response helping in the tolerance to the herbicide. Further research would be 

necessary to confirm that the alleviation due to ALDH7B4 induction is directly 

related to its metabolic activity in the PDH bypass by the detoxification of toxic 

compounds. In this context, the comparison of the herbicide effects on mutant lines 

lacking other enzymes of the PDH bypass would be very helpful.

4 CONCLUSIONS

Even though modern agriculture depends on herbicides for a large-scale 

production, herbicide efficacy is now compromised by the rapid evolution of 

resistant weeds. Investigation into the processes that lead to lethality of current 

herbicides can help to elucidate why plants die as a consequence of herbicide 

treatment and would help in the discovery of new herbicides with new sites of 

action that will reduce the selection pressure for resistant weeds. Moreover, 

physiological studies would help in the discovery of possible biochemical markers 

for differential characterization of resistant and susceptible populations. Here new 

insights were provided in the processes following application of two widely used 
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herbicides with different targets. Our study has shown two effects that were not 

described before but are commonly provoked by ABIHs in treated plants: the 

induction of the PDH bypass and the upregulation of the ALDH7B4. We focused 

on the physiological role of ALDH7B4 in plants upon herbicide treatment and 

found out that the function of ALDH7B4, however, seemed not to be related to the 

detoxification of aldehydes derived from lipid peroxidation or to a higher rate of 

the de novo fatty acid synthesis, but rather to the carbon metabolism. No increase in 

the ALDH7B4 gene expression was detected in imazamox-treated plants lacking the 

PDC1 and PDC2 genes, suggesting a role of ALDH7B4 in the PDH bypass. Plants 

overexpressing ALDH7B4 were less sensitive to ABIHs supporting that ALDH7B4 

induction is a plant defence mechanism that promotes better tolerance of the 

herbicide and plant viability. The ALDH7B4 would function in the PDH bypass to 

detoxify the compounds produced during the aerobic fermentation. Nevertheless, 

further experiments to unravel the whole role of the PDH bypass in plants upon 

herbicide treatment would be needed.
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Figure captions

Fig. 1. Relative expression levels (transcripts) of the genes ALDH2B4 and ACS in 

the leaves and the roots of wild-type Arabidopsis thaliana Col-0 plants untreated 

(control, C) or treated with imazamox (IMX) or glyphosate (GLP) for 3 days. Gels 

shown are representative examples of the six RT-PCRs carried out. Graphs represent 

the relative band intensity (GENE OF INTEREST / ACTIN2) measured by the Quantity 

One software (Bio-Rad Laboratories Inc., Hercules, CA, USA). Values represent mean 

± SE (n=6, biological replicates).  and  indicate significant difference between 

control and imazamox- or glyphosate-treated plants, respectively (ANOVA, HSD 

Tukey/T3 Dunnet; p < 0.05). 

Fig. 2. Relative expression levels (transcripts) of the genes ALDH2B7, ALDH2C4, 

ALDH3F1, ALDH3H1, ALDH3I1 and ALDH7B4 in the leaves and the roots of wild-

type Arabidopsis thaliana Col-0 plants untreated (control, C) or treated with imazamox 

(IMX) or glyphosate (GLP) for 3 days. Gels shown are representative examples of the 

six RT-PCR assays. Graphs represent the relative band intensity (GENE OF 

INTEREST / ACTIN2) measured by the Quantity One software (Bio-Rad Laboratories 

Inc., Hercules, CA, USA). Values represent mean ± SE (n=6, biological replicates).  

and  indicate significant difference between control and imazamox- or glyphosate-

treated plants, respectively (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05). 

Fig. 3. Activity of the ALDH7B4 promoter upon herbicide treatments. A. In situ 

detection of the activity of ALDH7B4 promoter in leaves and roots of wild-type 

Arabidopsis thaliana Col-0 plants untreated (C) or treated with imazamox (IMX) or 

glyphosate (GLP) for 3 days. B. Measurement of the ALDH7B4 promoter-driven GUS 

activity in leaves and roots of ALDH7B4::GUS Arabidopsis thaliana plants untreated 

(control) or treated with imazamox or glyphosate for 3 days. C. Relative transcript 

levels of the ALDH7B4 and GUS genes in leaves and roots of ALDH7B4::GUS 
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Arabidopsis thaliana plants untreated (control, C) or treated with imazamox (IMX) or 

glyphosate (GLP) for 3 days. Gels shown are representative examples of the six RT-

PCR assays. The relative band intensity (GENE OF INTEREST / ACTIN2) was 

measured using the Quantity One software (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). Values represent the mean ± SE (n = 6, biological replicates). Significant 

variations are marked with  for differences between control and imazamox-treated 

plants, and with  for differences between control and glyphosate-treated plants 

(ANOVA, HSD Tukey/T3 Dunnet; p < 0.05). 

Fig. 4. Relative expression levels (transcripts) of the ALDH7B4 and ACS genes in 

untreated (control) or imazamox- or glyphosate-treated (for five days) wild-type (wt) 

Arabidopsis thaliana Col-0 and pdc1-pdc2 mutant seedlings grown under sterile 

conditions. Values represent mean ± SE (n=5, biological replicates).  and  indicate 

significant difference between control and imazamox- or glyphosate-treated plants, 

respectively (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).

Fig. 5. As a marker of lipid peroxidation, the malondialdehyde (MDA) content 

was measured in the leaves and the roots of wild-type (wt) Arabidopsis thaliana Col-0, 

aldh7b4 and 35S::ALDH7B4 mutant plants, untreated (control) or treated with 

imazamox or glyphosate for 3 days. Values represent the mean ± SE (n=5, biological 

replicates). Significant variations are marked with  for differences between control 

and imazamox-treated plants, and with  for differences between control and 

glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).

Fig. 6. Effect of herbicides on the fatty acid content and biosynthesis. A. Total 

fatty acid content in the leaves and the roots of wild-type (wt) Arabidopsis thaliana 

Col-0 plants, untreated (control) or treated with imazamox or glyphosate for 3 days. 
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Values represent mean ± SE (n=5, biological replicates). B. Expression pattern of 

ACC2, KASIII, KASI and KASII in the leaves and the roots of wild-type Arabidopsis 

thaliana Col-0 plants untreated (control, C) or treated with imazamox (IMX) or 

glyphosate (GLP) for 3 days. Gels shown are representative examples of the six RT-

PCRs carried out. Graphs represent the relative band intensity (GENE OF INTEREST / 

ACTIN2) measured by the Quantity One software (Bio-Rad Laboratories Inc., 

Hercules, CA, USA). Values represent mean ± SE (n=6, biological replicates).  and 

 indicate significant difference between untreated and imazamox- or glyphosate-

treated plants, respectively (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05). 

Fig. 7. Individual fatty acid content (expressed as the percentage of the total fatty 

acids) in the leaves and the roots of wild-type Arabidopsis thaliana Col-0 plants, 

untreated (control) or treated with imazamox or glyphosate for 3 days. In inset figure a 

portion of main figure data is plotted in close-up. Values represent mean ± SE (n=5). 

 and  indicate significant difference between control and imazamox- or 

glyphosate-treated plants, respectively (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).

Fig. 8. Differences in soluble sugar, starch, pyruvate contents and pyruvate 

decarboxylase (PDC) activity between herbicide-treated wild-type (wt) Arabidopsis 

thaliana and the aldh7b4 or 35S::ALDH7B4 mutants. The total soluble sugars content 

(a and b), the starch content (c and d), the pyruvate content (e and f) and the activity of 

PDC (g and h) in the leaves and the roots are presented. Values represent the mean ± 

SE (n = 5, biological replicates).  indicates differences between the untreated 

(control) plants of the corresponding genotype and the untreated wt plants (t-Test, p < 

0.05). Significant variations are marked with  for differences between control and 

imazamox-treated plants, and with  for differences between control and glyphosate-

treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).
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Fig. 9. As a marker of sensitivity to the herbicide, root length of seedlings was 

monitored in wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 35S::ALDH7B4 

mutants, untreated (control) or treated with imazamox or glyphosate A. Photographs 

shown are representative examples of the treatments. B. Root length was measured in 

seedlings of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 35S::ALDH7B4 

mutant plants, untreated (control) or treated with imazamox or glyphosate. Significant 

variations are marked with  for differences between control and imazamox-treated 

plants, and with  for differences between control and glyphosate-treated plants 

(ANOVA, HSD Tukey/T3 Dunnet; p < 0.05). C. Comparison of the inhibitory effect of 

each herbicide in each genotype. * indicates differences between the plants of the 

corresponding genotype and wild-type plants (t-Test, p < 0.05). Values represent the 

mean ± SE (n = 48, biological replicates).





















Appendix A. Supplementary Methods.

Methods S1. Polymerase Chain Reactions for the screening of the aldh7b4 mutants.

Genomic DNA was extracted from about 0.1 g of previously frozen leaves. The plant 

material was homogenized in 375 μL of 2× lysis buffer (0.6 M NaCl, 0.1 M Tris-HCl (pH 

8.0), 40 mM EDTA (pH 8.0), 4% sarcosyl, and 1% SDS) and 375 μL of 2 M urea. One 

volume (750 μL) of phenol/chloroform/isoamyl alcohol (25:24:1) was added to the 

mixture and mixed briefly. The homogenates were centrifuged at 20,000 g for 10 min at 

room temperature. To precipitate the DNA, 0.7 volume (525 μL) of cold isopropanol was 

added to the supernatants, and the tubes were centrifuged at 20,000 g for 15 min at 4 °C. 

The DNA pellet was washed twice with 1 mL of 70% ethanol, air-dried, and resuspended 

in 25 μL of resuspension buffer (10 mM Tris-HCl (pH 8.0), containing 30 μg mL−1 RNase 

A). Samples were briefly incubated at 37 °C for 5 min to degrade contaminating RNAs. 

Extracted DNA was subsequently quantified and analysed using a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). OD 260 and 280 nm 

were read for every sample. The DNA quality was also checked in a 1% agarose gel. Ten-

fold diluted DNA samples were loaded onto a 1% agarose gel and run at 75 mA for 35 

min. The gels were visualized in a Gel DocTM 2000 system (Bio-Rad Laboratories Inc., 

Hercules, CA, USA). 

A PCR was performed on an Eppendorf Mastercycler ep Gradient S (Eppendorf, AG, 

Hamburg, Germany). Each reaction was performed for 2 μL of genomic DNA in a total 

volume of 10 μL containing: 1x PCR Buffer (Takara Bio Inc., Shiga, Japan), 2.5 mM 

MgCl2, 0.25 mM of each dNTPs, 0.6 μM specific forward primer, 0.25 μM specific 

reverse primer and 0.25 U Takara Taq polymerase (Takara Bio Inc., Shiga, Japan). 

The specific primers used are detailed in Appendix B: Supplementary Table S4. The 

parameters of the PCR carried out for the screening of the aldh7b4 mutants were as 

follows: 5 min 95°C; 34 cycles (30 s 95°C and 8 min 30 s 68°C); 10 min 68°C and pause 

at 4°C. Five-fold diluted PCR amplified products were loaded in a 1% agarose gel and 

run at 135 mA for 35 min. A 1Kb Gene Ruler was used as control for the length of the 

bands. The gels were visualized in a Bio-Rad Gel Documentation Gel DocTM 2000 

System (Bio-Rad Laboratories Inc., Hercules, CA, USA).



Appendix B. Supplementary tables.

Table S1. Primers used in the RT-PCRs. 

GENE FORWARD REVERSE

ALDH2B4 (At3g48000) cctcttcttcaaccaggggca cttcgtctcgttcgccctct

ALDH2B7 (At1g23800) aggtgacaggcttggttcca ccaggcagggttcttgaggg

ALDH2C4 (At3g24503) gggtgaaatttgcgtggcga tgcgcatttgatcccttcct

ALDH3F1 (At4g36250) gaagccatggaagctatgaaggagac gtctctgtctctcactttccccctt

ALDH3H1 (At1g44170) cgtttcgccggactatatcttgacg tcaaccaactaagtccatgtttga

ALDH3I1 (At4g34240) ctactggatgtgcctgaagcatc catgagtctttagagaacccaaag

ALDH7B4 (At1g54100) gaagcaatagccaaagacacacgc gatatctcgattatcgtaggctcc

ACS (At5g36880) gtcaaaggttcatggcccgg tcgtctttggcaaccctggt

ACC2 (At5g16390) cgtctctctgctaagcccaa ctggagtaggtggggatggt

KASI (At5g46290) tcctccaaacccacttcgct aacccacggatctgaccacc

KASII (At1g74960) cgtgatgggagagggagctg tccgtatcgcctgcacagtt

KASIII (At1g62640) agctccaatggctcggtgtt atccccacgttaaaccggct

GUS cgtcctgtagaaaccccaacc gatagtctgccagttcagttcg

ACTIN2 (At3g18780) ggaatccacgagacaacctataac gaaacattttctgtgaacgattcct



Table S2. The specific number of cycles used in the PCR programme for each gene.

GENE LEAVES ROOTS

ALDH2B4 (At3g48000) 25 cycles 27 cycles

ALDH2B7 (At1g23800) 30 cycles 30 cycles

ALDH2C4 (At3g24503) 25 cycles 25 cycles

ALDH3F1 (At4g36250) 30 cycles 30 cycles

ALDH3H1 (At1g44170) 27 cycles 25 cycles

ALDH3I1 (At4g34240) 30 cycles 30 cycles

ALDH7B4 (At1g54100) 25 cycles 26 cycles

ACS (At5g36880) 27 cycles 26 cycles

ACC2 (At5g16390) 27 cycles 28 cycles

KASI (At5g46290) 27 cycles 28 cycles

KASII (At1g74960) 27 cycles 32 cycles

KASIII (At1g62640) 27 cycles 28 cycles

Table S3. Primers used in the qPCRs

GENE FORWARD REVERSE
ALDH7B4 (At1g54100) gagccgacaactcaatggatcg tgccaagaggattccacatctcc

ACS (At5g36880) aagagatgtgtggtggcaggatg ccattccacctcacacgatgttgg

ACTIN2 (At3g18780) tcttccgctctttctttccaagc accattgtcacacacgattggttg

Table S4. Primers used for the screening of the aldh7b4 mutants.

FORWARD REVERSE
ALDH7B4 (At1g54100) catacgaggatgatcgtggcaatgt

T-DNA cagtcatagccgaatagcctctcca



Appendix C. Supplementary Figures.

Fig. S1. Validation of the T-DNA mutant line defective for ALDH7B4 (aldh7b4) used in this study. The 

presence of the T-DNA insertion in the ALDH7B4 gene was checked (See Supplementary Methods S1). The 

wild-type (wt) line was used as a negative control.

Fig. S2. Validation of the T-DNA mutant line defective for ALDH7B4 (aldh7b4) and the transgenic line 

expressing ALDH7B4 under the control of the CaMV 35S promoter (35S::ALDH7B4) used in this study. A 

comparative analysis of the accumulation of the ALDH7B4 transcripts (mRNA levels) in the leaves and the 

roots of wild-type (wt) Arabidopsis thaliana, the T-DNA insertion mutants defective for ALDH7B4 (aldh7b4) 

and the ALDH7B4 overexpressing line (35S::ALDH7B4). See Materials and Methods section 2.3.



Fig. S3. Effect of herbicides on the fatty acid content and biosynthesis. A. Total fatty acid content in the leaves 

and the roots of mutant Arabidopsis thaliana plants defective for the ALDH7B4 gene (aldh7b4), untreated 

(control) or treated with imazamox or glyphosate for 3 days. Values represent mean ± SE (n=5, biological 

replicates). B. Expression pattern of ACC2, KASIII, KASI and KASII in the leaves and the roots of aldh7b4 

mutant plants untreated (C) or treated with imazamox (IMX) or glyphosate (GLP) for 3 days. Gels shown are 

representative examples of the six RT-PCRs carried out. Graphs represent the relative band intensity (GENE 

OF INTEREST / ACTIN2) measured by the Quantity One software (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). Values represent mean ± SE (n=6, biological replicates).  and  indicate significant difference 

between untreated and imazamox- or glyphosate-treated plants, respectively (ANOVA, HSD Tukey/T3 

Dunnet; p < 0.05).



Fig. S4. Effect of herbicides on the fatty acid content and biosynthesis. A. Total fatty acid content in the leaves 

and the roots of transgenic Arabidopsis thaliana plants expressing ALDH7B4 under the control of the CaMV 

35S promoter (35S::ALDH7B4), untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent mean ± SE (n=5, biological replicates). B. Expression pattern of ACC2, KASIII, KASI and KASII in 

the leaves and the roots of 35S::ALDH7B4 mutant plants untreated (C) or treated with imazamox (IMX) or 

glyphosate (GLP) for 3 days. Gels shown are representative examples of the six RT-PCRs carried out. Graphs 

represent the relative band intensity (GENE OF INTEREST / ACTIN2) measured by the Quantity One software 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). Values represent mean ± SE (n=6, biological replicates).  

and  indicate significant difference between untreated and imazamox- or glyphosate-treated plants, 

respectively (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S5. Individual fatty acid content (expressed as the percentage of the total fatty acids) in the leaves and 

the roots of the T-DNA mutant line defective for ALDH7B4 (aldh7b4) and the transgenic line expressing 

ALDH7B4 under the control of the CaMV 35S promoter (35S::ALDH7B4), untreated (control) or treated with 

imazamox or glyphosate for 3 days. Values represent mean ± SE (n=5, biological replicates).  indicates 

differences between the untreated plants of the corresponding genotype and the untreated wild-type plants (t-

Test, p < 0.05). Significant variations are marked with  for differences between control and imazamox-

treated plants, and with  for differences between control and glyphosate-treated plants (ANOVA, HSD 

Tukey/T3 Dunnet; p < 0.05).



Fig. S6. The in vitro activities of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) in the 

leaves (a and c) and the roots (b and d) of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 

35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent the mean ± SE (n = 5, biological replicates). Significant variations are marked with  for differences 

between control and imazamox-treated plants, and with  for differences between control and glyphosate-

treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S7. Total free amino acid content in the leaves (a) and the roots (b) of wild-type (wt) Arabidopsis thaliana 

Col-0, aldh7b4 and 35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate 

for 3 days. Values represent the mean ± SE (n = 5, biological replicates). Significant variations are marked 

with  for differences between control and imazamox-treated plants, and with  for differences between 

control and glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S8. The carbohydrate content in the leaves of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 

35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent the mean ± SE (n = 5, biological replicates).  indicates differences between the untreated plants of 

the corresponding genotype and the untreated wt plants (t-Test, p < 0.05). Significant variations are marked 

with  for differences between control and imazamox-treated plants, and with  for differences between 

control and glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S9. The carbohydrate content in the roots of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 

35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent the mean ± SE (n = 5, biological replicates).  indicates differences between the untreated plants of 

the corresponding genotype and the untreated wt plants (t-Test, p < 0.05). Significant variations are marked 

with  for differences between control and imazamox-treated plants, and with  for differences between 

control and glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S10. The organic acid content in the leaves of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 

35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent the mean ± SE (n = 5, biological replicates). Significant variations are marked with  for differences 

between control and imazamox-treated plants, and with  for differences between control and glyphosate-

treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S11. The organic acid content in the roots of wild-type (wt) Arabidopsis thaliana Col-0, aldh7b4 and 

35S::ALDH7B4 mutant plants, untreated (control) or treated with imazamox or glyphosate for 3 days. Values 

represent the mean ± SE (n = 5, biological replicates).  indicates differences between the untreated plants of 

the corresponding genotype and the untreated wt plants (t-Test, p < 0.05). Significant variations are marked 

with  for differences between control and imazamox-treated plants, and with  for differences between 

control and glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05).



Fig. S12. As a marker of sensitivity to the herbicide, root length of seedlings was monitored in wild-type (wt) Arabidopsis thaliana Col-0, and three independent ALDH7B4 
overexpressing mutants, untreated (control) or treated with imazamox or glyphosate A. Photographs shown are representative examples of the treatments. B. Root length was 
measured in seedlings of wild-type (wt) Arabidopsis thaliana Col-0, and the three 35S::ALDH7B4 independent transgenic lines (35S::ALDH7B4, 35S::ALDH7B4_2 and 
35S::ALDH7B4_3), untreated (control) or treated with imazamox or glyphosate. In each genotype, significant variations are marked with  for differences between control and 
imazamox-treated plants, and with  for differences between control and glyphosate-treated plants (ANOVA, HSD Tukey/T3 Dunnet; p < 0.05). C. Comparison of the inhibitory 
effect of each herbicide in each genotype. * indicates differences between the plants of the corresponding genotype and wild-type plants (t-Test, p < 0.05). Values represent the 
mean ± SE (n = 48, biological replicates).




