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Abstract—The physical limitations on time-harmonic scatter-
ing processes are investigated on the basis of the optical theorem.
Previously derived least upper bounds on the total scattering and
absorption cross-sections are obtained from it in a straightfor-
ward manner. In addition, it reveals a practical upper bound for
the bistatic cross-section when evaluated in any direction. It is
proved further that the maximum upper bound of the bistatic
cross-section occurs in the forward scattering direction and that
the corresponding upper bound for the backscattering direction
is four times smaller than this maximum value. Metamaterial-
inspired electrically small antennas and scattering particles that
approach these upper bounds are demonstrated. These examples
numerically validate the derived upper bounds, as well as
illustrate the important physical principles underlying t hem.

Index Terms—Electromagnetic scattering, physical bounds,
antenna theory, electrically small antennas.

I. I NTRODUCTION

Scattering or re-radiation processes in receiving antennas
are of paramount importance from both fundamental and
technological points of view. The significance of their proper-
ties and their consequent impact on applications was already
recognized in the seminal book [1], and the related classic
papers on minimum scattering antennas [2], [3]. For instance,
these works established the fact that antennas with the same
gain and radiation pattern can have significantly different
scattering properties (see, e.g., [1] p. 317).

Taking advantage of the available degrees of freedom to
either minimize or maximize the scattering by a receiving
antenna is equally relevant. Minimizing the scattering, for
example, impacts the reduction of the overall radar cross
section [4], the mitigation of the blockage between neigh-
boring antennas [5], [6], and/or the avoidance of efficiency
penalties in near-field wireless power transfer [7]. On the other
hand, maximizing the scattering is of interest for radar-based
monitoring and/or imaging systems, passive RFID tags [8] and
architectural and health monitoring [9].

Receiving antennas are not physically different from any
other scatterer. In particular, while there is a certain degree of
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freedom in tailoring the scattering by a receiving antenna,there
are also fundamental limitations. For instance, as emphasized
by the optical theorem [10], [11], energy conservation imposes
the fact that absorption processes in far-field interactions
inevitably must be accompanied by scattering. This intrinsic
property limits the effective area of an antenna as a function
of its visibility.1 Moreover, even in the ideal limit of no mate-
rial dissipation, scattering processes encompass the scattering
resistance (see, e.g., [12]), which damps the excitation of
the currents in the scatterer and, hence, ultimately limitsthe
scattered power [12], [13].

Motivated by these physical constraints, upper bounds on
the powers extracted, scattered and absorbed from time-
harmonic fields by scatterers/receiving antennas have been
derived based on multipolar [7], [14], algebraic [13] and circuit
model [12] approaches. Yet another methodology is introduced
in this work to investigate the physical limitations on the
scattering of time-harmonic fields. Specifically, it will be
demonstrated that all previous bounds can be derived directly
from the optical theorem (see, e.g., [10], [11]) in a strikingly
simple manner. This optical theorem-based approach also
enables the derivation of novel upper bounds on the bistatic
cross-section, i.e., the amount of power that can be re-radiated
in a specific direction. Note, however, that the derivation will
be restricted to obstacles illuminated by propagating plane-
waves.

These bounds are particularly relevant from a practical
standpoint since, despite the fundamental interest in the ab-
sorbed and scattered powers, the bistatic cross-section isthe
quantity of interest for most engineering systems. Note that
while the extracted power can be indirectly measured through
the forward scattering [15], discriminating between the ab-
sorption and scattering contributions requires the recording
of the scattered fields in all directions, which is seldom, if
ever, truly feasible. In contrast, most sensing and imaging
systems illuminate their samples along a given direction,k̂i,
and then measure the scattered field along a single direction, r̂.
A natural choice is to measure the backscattering or reflection
from the sample, i.e., settinĝr = −k̂i. Thus, the monitoring
device is included with the source in a single transmit-receive
antenna system.

A deeper understanding of the physical limitations on
scattering is a necessary initial step towards the design of
more efficient receiving antennas that either maximize or

1As noted in [7], this limitation can be circumvented in near-field inter-
actions, where the receiving antenna can modify the power supplied by the
sources.
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Fig. 1. Geometry of the scattering problem: finite-size object enclosed within
the surfaceA, illuminated by a plane-wave propagating along thek̂i direction.

minimize their scattering processes. In particular, it will be
shown that forward-scattering receiving antennas are optimal
for maximizing the scattered and absorbed powers, as well
as for the bistatic cross-section. Several electrically small,
forward-scattering receiving antennas and scattering particles
that are based on metamaterial-inspired design concepts [16]
are introduced to illustrate and to validate numerically these
outcomes. Moreover, the designs selected for this discussion
actually approach the upper bounds and thus reveal several of
the basic principles needed to optimize general designs.

II. GEOMETRY AND DEFINITIONS

As a generic far-field scattering problem, consider a scat-
terer illuminated by a time-harmonic plane-wave that is lin-
early polarized along thêei direction and propagating along
the orthogonal̂ki direction (c.f., Fig. 1). With theejωt time
convention, the incident electric field can be written as follows

E
i (r) = êiE0e

−jk0k̂i·r (1)

where k0 is the wave number in the homogeneous region
outside the scatterer. The total electric field is given by the
superposition of this incident field and the scattered field,i.e.,
the field re-radiated by the scatterer, as:E

t = E
s + E

i. In
general, the scattered field can be of any form; it is a complex
function of the properties of the scatterer. However, for finite-
size objects, the scattered electric field in the far-zone reduces
to a spherical wave of the form:

lim
r→∞

E
s (r) = E0

e−jk0r

k0r
F (r̂) (2)

whereF (r̂) is the dimensionless (normalized to the incident
field magnitude) far-field vector scattering pattern along the di-
rection r̂. The set of powers scattered, absorbed and extracted
by the scatterer, as well as their respective normalized (total)
cross-sections are defined as follows (see, e.g., [17])

Pscat =

‹

A

S
s · n̂ dA, σscat =

Pscat

Siλ2
(3)

Pabs = −
‹

A

S
t · n̂ dA, σabs =

Pabs

Siλ2
(4)

Pext = Pabs + Pscat, σext =
Pext

Siλ2
(5)

with n̂ being the unit vector normal to the surfaceA which
encloses the scatterer.Su = 1

2
Re

{
E

u × (Hu)
∗
}

, for u =
i, s, t, is the Poynting vector field associated with the incident,

scattered and total fields, respectively. The incident power
density isSi = k̂i · Si. For a lossless receiving antenna, all
of the absorption is identified with the power collected in its
port. Thus, the absorption cross-section and the antenna gain
can be related in this idealized case by invoking reciprocity
(see, e.g., [18]) asG = 4πσabs, whereG denotes the realized
antenna gain for the polarization̂ei and direction̂ki.

All of the aforementioned figures of merit describe the
overall balance of powers involved in the scattering problem.
By contrast, the bistatic cross-section:σb (r̂), is the usual
figure of merit to describe the amount of power scattered along
a given direction̂r. It is defined as follows [17]

σb (r̂) = σscatDscat (r̂) (6)

whereDscat (r̂) is the scattering directivity along the direction
r̂ and is expressed as:

Dscat (r̂) = lim
r→∞

4πr2
r̂ · Ss (r̂)

Pscat

= 4π
|F (r̂)|2

˜

|F (r̂)|2 dΩ
(7)

III. O PTICAL THEOREM AND ASSOCIATEDPHYSICAL

BOUNDS

The optical theorem is a classical result that relates the
extinction cross-section to the imaginary part of the forward-
scattering amplitude that is co-polarized with the incident field
[10]

σext = σabs + σscat =
1

π
Im

{
êi ·F

(
k̂i

)}
(8)

It arises as a direct consequence of energy conservation, i.e.,
the power extracted by a scatterer from the incident field
must be removed by means of destructive interference. This
extraction, in turn, requires a certain amount of the incident
field to be scattered into its direction of propagation. Thus, the
imposition a certain scattered field enforces a correlationbe-
tween the absorption and scattering processes, whose powers
combine to yield the extracted power.

As demonstrated in [11], the following inequality can be
derived by simply noting that the imaginary part of the right
hand side of (8) is less than or equal to its absolute value:

σext = σabs + σscat ≤
√

1

π
Dscat

(
k̂i

)
σscat (9)

This inequality was employed extensively in [11] to investi-
gate the absorption efficiency of a receiving antenna, usually
defined asηabs = σabs/ (σabs + σscat), and the limitations on
the gain of a receiving antenna as a function of this absorption
efficiency. We have found that by manipulating Eq. (22) in
[11], the limitation on the receiving antenna gain can be
written in an elucidating manner as a function of its absorption
efficiencyηabs:

G ≤ Dscat

(
k̂i

)
4ηabs (1− ηabs) (10)

Eq. (10) clearly illustrates how the antenna gain of a minimum
scattering (cloaked) sensor must be ultimately reduced when
its scattering is minimized. It also emphasizes how the receiv-
ing antenna’s ability to channel its scattering into the forward
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direction, i.e., its forward directivity:Dscat

(
k̂i

)
, increases the

range of its achievable gain.
We also can demonstrate that the inequality (9) derived in

[11] can be manipulated to reproduce the upper bounds on the
scattered and absorbed powers presented in [7], [12]–[14] in
a simple manner for the restricted cases under consideration
here, i.e., when the incident electromagnetic field is a prop-
agating plane wave. It also enables the derivation of novel
bounds on the bistatic cross-section for individual observation
angles.

In particular, it directly follows from Eq. (9) thatσscat is
maximized when the absorption cross-section is zero (σabs =
0). Physically, this conclusion is consistent with the fact that
dissipation losses would only damp the excitation of currents
in the antenna. Thus, an upper bound on the scattering cross-
section can be derived simply by taking the lossless case
(σabs = 0) in (9) and reorganizing the terms to obtain:

σscat ≤
1

π
Dscat

(
k̂i

)
(11)

In order to maximize the absorption cross-section (absorbed
power), it is sufficient to moveσscat to the right hand side of
(9), take derivatives with respect toσscat, and set the result
to zero. In this manner, it follows thatdσabs/dσscat = 0
is achieved whenσscat = Dscat(k̂i)/(4π). Alternatively, the
upper bound ofσabs can be obtained by introducing the
inequality of geometric means:σabs + σscat ≥ 2

√
σabsσscat,

into (9) and then cancelling out theσscat terms. In either case,
it is found that the absorption cross section is upper bounded
by

σabs ≤
1

4π
Dscat

(
k̂i

)
(12)

It is worth noting that the absorption and scattering cross-
sections are equal,σabs = σscat, when the absorption cross-
section is maximized, i.e., whenσabs = Dscat(k̂i)/(4π).
This condition can be intuitively understood as a conjugate
matching condition when the scattering problem is represented
by equivalent circuit models [12], [13], [18].

Equivalently to Eq. (12), it can be stated that the maximal
gain of a lossless (except into the port) receiving antenna is
smaller than or equal to the forward-scattering directivity, i.e.,

Glossless ≤ Dscat

(
k̂i

)
(13)

Note that this statement is conceptually different from the
well-known fact that the gain of an antenna is always smaller
than or equal to its radiation directivity, i.e., since by definition,
G = efficiency × Drad, one hasG ≤ Drad. To understand
this fact, it is important to distinguish between the radiation,
Drad, and scattering,Dscat, directivities. The former describes
the directivity associated with the fields generated when an
antenna is fed at its ports, i.e., its radiation mode [18]. The
latter is the directivity associated with the fields re-radiated
(scattered) by the antenna in its receiving mode, e.g., when
the antenna is illuminated by an external plane-wave [11].
Note that the current distributions excited in the radiation and
receiving modes are in general different [19], which in turn
leads to the different radiation and scattering directivities. In
a similar manner, if the antenna is composed of reciprocal

materials, it can also be stated that the gain in the receiving
mode is upper bounded by the directivity in the radiation
mode. In direct contrast, Eq. (13) upper bounds the gain in
the receiving mode by the scattering directivity in the forward
direction, i.e.,G ≤ Dscat(k̂i).

The upper-bounds (11)-(12) emphasize how both absorption
and scattering are limited by the ability of the obstacle to
concentrate the scattered (re-radiated) field along the direction
of propagation of the incident field. Theoretically, the direc-
tivity in the forward direction,Dscat(k̂i), is unbounded even
for a finite-size scatterer. The same is true for the absorp-
tion and scattering cross-sections [20]. However, these super-
directive behaviors come at the cost of increasingly narrower
bandwidths and significant sensitivity to fabrication tolerances.
Note that the bounds (11)-(12) have been established for a
purely time-harmonic (single frequency) incident field. When
integrated over all frequencies, the resulting total absorption
and scattering cross-sections must be consistent with their
bounds as derived in [21]–[26].

Alternatively, one might wonder how one could attain a
particular scattering cross-section behavior from one or more
canonical responses of the scatterer. For example, when con-
sidering the response of a scatterer to the excitation of oneor
more spherical harmonics, it has been shown that each electric
or magnetic multipole of ordern increases the maximum
directivity by a factorn+ 1

2
[27], [28]. Equivalently, it can be

stated that if one can excite electric and magnetic multipoles
within a scatterer up to a maximum orderN , its response
features a maximal directivity:Dmax

scat

(
k̂i

)
= N2 + 2N . It is

also worth noting that substituting this maximal directivity into
(11)-(12), one finds that these inequalities are equivalentto the
upper bounds on the extracted and scattered powers introduced
in [7], [12]–[14]. Thus, the upper bounds presented in those
articles can be independently derived from the inequality
(9) presented in [11], which is a direct consequence of the
optical theorem, in a strikingly simple manner. However, to
re-emphasize, this simpler derivation is restricted to incident
fields consisting of propagating plane-waves. Despite this
limitation, the present demonstration does not assume an
invertible polarizability matrix. Therefore, it holds forthe
singular cases of scattering particles, i.e., for a particle having
a non-invertible polarizability matrix. These singular cases
were excluded from the algebraic demonstration presented for
the extracted and scattered powers in [13].

Once the limits on the integrated scattering responses, i.e.,
those which were obtained by integrating over allr̂ directions,
have been analyzed, one might wonder how large the scattering
into a specific direction can be. At first sight, one might
conclude that in order to maximize the scattering along a given
direction r̂, the scattering pattern should be as directive as
possible for that direction. However, by introducing (11) into
(6), the following upper bound on the bistatic cross-section
can be derived

σb (r̂) ≤
1

π
Dscat (r̂)Dscat

(
k̂i

)
(14)

Eq. (14) illustrates that in order to maximize the bistatic
cross-section, it is necessary instead to design a scatterer
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with two directive beams: one pointing towards the desired
direction, r̂, and another one pointing along the direction of
propagation of the incident field,̂ki. This constraint imposes
severe limitations on the achievable bistatic cross-sections.
This is particularly true for electrically small particles, for
which obtaining two simultaneous directive beams is a very
challenging task. Bearing in mind this limitation, the normal-
ized bistatic cross-section is maximized whenr̂ = k̂i, i.e.,
when the direction of incidence and the measurement direction
are equal. In such a case, the upper bound of the bistatic cross-
section is found by introducing the maximum directivity into
(14), which leads to the upper bound:

σb

(
k̂i

)
≤ 1

π
D2

scat

(
k̂i

)
≤ 1

π

(
N2 + 2N

)2
(15)

The upper bound in any other direction will be smaller.
For example, by using Eq. (14) and a multipolar analysis of
the forward-backward directivity product, the following upper
bound for the backscattering cross-section can be derived

σb

(
−k̂i

)
≤ 1

4π

(
N2 + 2N

)2
(16)

For the sake of brevity, the details of the mathematical
derivation of Eq. (16) have been included as supplementary
material. The derivation is even more complicated for an
arbitrary direction and any given number of multipoles.

It is evident from Eqs. (15) and (16) that the maximal
backscattering is four times smaller than the maximal bistatic
cross-section, i.e., the forward scattering cross-section. There-
fore, it reveals that the price to be paid for using a single
transmit-receive, monostatic interrogation system rather than
the optimum, forward-scattering bistatic one is minus 6 dB
(factor of 4). In addition, it is demonstrated in the supplemen-
tary material (refer to Eqs. (35) and (36) and the associated
discussion) that the bound (16) can be reached with either
electric or magnetic multipoles only, it demonstrates that,
in terms of backscattering, there is no benefit derived from
the simultaneous excitation of electric and magnetic dipoles,
nor from the coupling between the different multipoles via
non-reciprocal and/or magnetoelectric coupling phenomena.
The fact that the optimal backscattering configuration can be
constructed with only electric multipoles is a positive outcome,
particularly at high frequencies, where the magnetic response
of matter is inherently weak (see, e.g., [29]).

Eqs. (14)-(16) are the main analytical results of this work.
They represent the upper bounds on the achievable scattering
towards a specific direction that, to the best knowledge of
the authors, are presented here for the first time. Due to
their fundamental nature, they have far-reaching implications
in spectroscopy, radar, sensing and imaging technologies.
Moreover, they clarify the limits on the performance of any
system that relies on measuring the scattering of a given object
along a specific direction.

IV. ELECTRICALLY SMALL FORWARD-SCATTERING

PARTICLES

The optical theorem-based bounds provide a deeper insight
into the physical mechanisms that limit the absorption and

scattering processes. Thus, they are invaluable when one wants
to identify strategies for the design of scatterers/receiving
antennas that might approach them. Specifically, these upper
bounds suggest that a scatterer/receiving antenna that concen-
trates its scattering into the forward direction is optimalto
maximize the received power (12); the visibility, i.e., both the
overall scattering cross-section (11) and the scattering cross-
section in a specific direction (14); and the performance as
a cloaked sensor (10). Under this perspective, we discuss the
design and performance characteristics of electrically small
forward-scattering particles, antennas, and/or sensors based on
metamaterial-inspired structures. The design of scatterers that
maximize the backscattering, as suggested by Eq. (16), is left
for future efforts.

We emphasize that the response of an electrically small
particle can be approximated by the combination of its electric
and magnetic dipole moments. In such a case, the maximum
directivity is achieved by the balanced combination of perpen-
dicular electric and magnetic dipole moments [30], which is
usually termed as a Huygens source. Therefore, the Huygens
source directivity in the forward directionDscat

(
k̂i

)
= 3

can be introduced in the bounds (10)-(14) to establish a
reference/baseline case for electrically small devices. We will
denote it here as an ideal Huygens source particle/antenna.

In theory, an unlimited superdirective response can be
obtained by exciting higher order modes (HOMs) [31], [32].
However, practical implementations of HOM approaches are
hindered by increasingly narrower bandwidths; the fact that
they are ill-posed solutions and, hence, are extremely sensitive
to fabrication tolerances; and the dramatic damping that occurs
when realistic losses are included [18], [33], [34]. Therefore,
we will adhere here to the strategy of enhancing the directivity
to reach the upper bounds by achieving a balanced combina-
tion of perpendicular electric and magnetic dipole moments,
i.e., emulating a Huygens source.

The simplest implementation of a Huygens source scattering
particle could consist of an electrically small body with large,
low-loss and equal permittivity and permeability [35]. How-
ever, to the best of the authors knowledge, materials fulfilling
these three requirements are yet unknown. At optical frequen-
cies, Huygens source nanoparticle lasers have been designed
by using a combination of plasmonic and semiconductor layers
[36]. At microwave frequencies, successful implementations
of Huygens source antennas have been carried out based on
metamaterial-inspired concepts [16], [37] and chiral particles
[38], [39]. Here we will examine the scattering properties of
Huygens source antenna designs whose radiation properties
were investigated in [16], [37], as well as further evolutions of
those metamaterial-inspired scatterers, to illustrate how closely
they can approach the derived upper bounds.

A. Coin Scattering Particle

We begin with a particle that maximizes the scattering in
the forward direction. Following the philosophy of combining
perpendicular electric and magnetic dipoles, we propose the
use of a coin-like particle as schematically depicted in Fig. 2.
This coin particle consists of a cylindrical dielectric substrate
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rout = 15mm

tw = tr = 2mm

gw = 3mm

ts = 5.15mm

tg = 1mm

gs = 0.4mm

(a) (b)

(c) (d)

Fig. 2. Coin particle geometry: (a) HFSS model, (b) dimensions, and sketches
of its (c) electric and (d) magnetic resonators.

having electric and magnetic dipole resonators imprinted on
each of its sides. The substrate consists of two layers of
0.787 mm thick Rogers Duroid RO5880 with both resonators
being constructed with copper traces having 0.07 mm thick-
ness. The magnetic resonator is a pair of capacitively loaded
loops, whereas the electric resonator is a top-hat loaded dipole.
Despite the fact that both resonators are intrinsically coupled,
the frequency position of their resonances can almost be tuned
independently by modifying their respective loads, i.e., the
widths and lengths of the traces and gaps of both elements,
which enables a tailored superposition of the electric and
magnetic dipole resonances in a straightforward manner. While
this optimization process is not reported here for the sake
of brevity, the resulting geometry is detailed in Fig. 2. Note
that the design features an external radius ofrout = 15mm
(k0 rout = 0.47 at 1.5 GHz). Consequently, it can be regarded
fairly as an electrically small resonator.

Fig. 3 presents the HFSS-simulated values of the coin parti-
cle normalized bistatic cross-section in the forward direction,
σb

(
k̂i

)
, as a function of frequency, when the particle is

illuminated with aẑ-polarized plane-wave propagating along
the x̂ direction. In order to establish a reference frame-
work, the figure also includes the performance of the same
particle implemented with lossless materials (i.e., replacing
the copper strips with a PEC material and removing the
losses in the dielectric substrate); the upper bound (15); and
the hypothetical performance of an ideal Huygens particle.
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Fig. 3. Bistatic cross-section in the forward direction,σb

(
k̂i

)
, for the

coin particle, its lossless implementation, the upper bound (15), and an ideal
Huygens particle. Inset: Coin particle’s scattering directivity pattern in the
H-plane at 1.505 GHz.

It can be concluded from Fig. 3 that theσb

(
k̂i

)
spectra

of both the coin particle and its lossless counterpart are
each characterized by a single resonant peak which occur,
respectively, at 1.505 GHz and 1.508 GHz. The existence
of a single resonant peak suggests that both the electric and
magnetic resonances are overlapping, and, indeed, this canbe
ratified by inspecting the inset of Fig. 3, which depicts the
scattering directivity pattern of the coin particle in the H-
plane at its resonance frequency, 1.505 GHz. It is apparent
that the coin particle features a Huygens source-like pattern
that concentrates the scattered field into the forward direction.
The front-to-back ratio (FTBR) is larger than 100 (20 dB), and
the maximal directivityDscat,max

(
k̂i

)
= 3.245 is actually

slightly larger that 3.0, the ideal Huygens particle value.
This outcome is due to the fact that the effective lengths
of the electric and magnetic dipole resonators are somewhat
larger than those of the infinitesimal electric and magnetic
dipoles constituting the ideal Huygens source. Consequently,
the maximal bistatic cross-section according to the bound
(15) is σb

(
k̂i

)
≤ (3.245)2/π ≃ 3.352. Note that this

value is very closely approached by the peak of the lossless
implementation:σb

(
k̂i

)
= 3.347. In fact, the forward bistatic

cross-section of the ideal lossless coin particle is even slightly
larger than that of an ideal Huygens source particle, i.e,
σb

(
k̂i

)
= 32/π ≃ 2.865.

These simulation results suggest that the ideal coin particle
is an optimal strategy for maximizing the bistatic cross-section,
and that it also serves as a good test of the validity of the
upper bound (15). Notice, however, that the more realistic
implementation of the coin particle with copper strips and
commercially available substrates inevitably lies below this
theoretical value. Specifically, the damping introduced by
the dissipation losses reduces the peak value of the bistatic
cross-section to 76% of the upper bound. While it can be
considered a remarkable performance for such an electrically
small resonator, this result illustrates the difficulties involved in
the design of efficient electrically small radiators. Thus,while
we have demonstrated that the top theoretical performance in
terms of the bistatic cross-section can be obtained by meansof
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relatively simple resonators, these results also underscore the
fact that there are current practical challenges associated with
finding robust materials and techniques that enable reducing
the device size while minimizing the damping induced by
dissipation losses. It is is also important to emphasize that
any implementation relying on the excitation of HOMs would
be even more dramatically penalized by the presence of losses.
Consequently, these results further suggest that electrically
small designs based only on dipolar responses are the most
reliable strategy to reach the upper bounds from a practical
standpoint.

B. Coin Receiving Antenna: Single Port

Because of its copper and dielectric losses, the coin particle
has a non-negligible absorption cross-section. As is commonly
done in the analysis of resonant scattering particles [12],one
could tune the induced currents in the coin particle by modify-
ing its configuration and composition, notably its loss tangent,
to achieve maximal absorption. In fact, since the losses are
more or less uniformly distributed within the structure when it
is electrically small, the current distribution is quite insensitive
to changes in the conductivity. This property enables the ad-
justment of the absorption while keeping the scattering pattern,
which is controlled by the current distribution, intact. Onthe
other hand, the design of a receiving antenna to maximize its
response is significantly more complex. Receiving antennas
do discriminate between received and parasitically dissipated
powers. Consequently, the goal is to maximize the power
absorbed within a specific area (the load), while minimizing
the absorption in the rest of the device.

As an example of a proper receiving antenna, consider the
design schematically depicted in Fig. 4(a). It is the receiving
counterpart of the electrically small Huygens source intro-
duced in [37]. The design consists of the coin particle with
a dipole antenna printed in the middle of the two substrate
layers. This internal dipole antenna is near-field coupled to
both resonators. It converts a portion of the incident wave
captured by the resonators into voltages and currents alongits
coplanar stripline output transmission line, which is terminated
with a lumped port having a 50Ω intrinsic impedance. The
details of the geometry of the internal dipole are illustrated in
Fig. 4(b). The substrate, as well as the electric and magnetic
resonators, are the same as those in Fig. 2, except that now the
length of the loop capacitors is characterized byts = 5.7mm.

The HFSS-simulated absorption and scattering properties
of the coin receiving antenna are reported in Fig. 5. As shown
in Fig. 5(a), the scattering directivity pattern at its resonant
frequency, 1.473 GHz, is again the familiar Huygens source
cardioid pattern. By design, it is a balanced combination
of the electric and magnetic dipole resonators and, hence,
concentrates the scattering into the forward direction. Ithas
a FTBR that is larger than 100 (20dB) and a maximal direc-
tivity, Dscat = 3.211. Again, this maximum value is slightly
larger than that which can be obtained with the ideal Huy-
gens antenna constructed with infinitesimal dipoles. Fig. 5(b)
presents the gain - absorption efficiency pairs (G, ηabs) for

(a)

td = 1.2mm

Ld = 8.05mm

Lg = 16.4mm

gd = 0.4mm

(b)

Fig. 4. HFSS model of the coin antenna. (a) 3D view; (b) Details of the
internal dipole antenna geometry.

excitation frequencies ranging from 1.46 GHz to 1.49 GHz.
For comparison purposes, the figure also includes the lossless
implementation of the coin antenna, the upper bound (10),
and the performance of an ideal Huygens particle. It is
apparent that the lossless implementation of the coin antenna
approaches the upper bound (10) very closely (see the inset of
Fig. 5(b) for a zoom in of the main plot). This means the coin
antenna maximizes the absorbed power without producing any
more scattering than would be allowed by the optical theorem.
Moreover, it also suggests that the optimal performance of a
cloaked sensor can be approached with these metamaterial-
inspired antenna designs. In this sense, the coin antenna intro-
duced in this study can be considered as an optimal minimum
scattering sensor. Consequently, it could be employed, for
example, as a minimally disruptive probe. Moreover, since it
features a backscattering null, it would help to minimize the
interactions between it, as a probe, and any sample.

Note that the performance of a realistic implementation of
the coin antenna is degraded away from the upper bound
by the presence of unwanted absorption in both the copper
and dielectric pieces. Specifically, its peak antenna gain is
degraded from an ideal value of 3.207 to 2.709. Again, while
a gain of 2.709 is a remarkable value for an electrically small
receiving antenna, this result nevertheless emphasizes the
great challenges an antenna engineer faces to avoid unwanted
absorption when dealing with such an electrically small device.
It is also worth noting that the absorption efficiency of the
antenna in Fig. 5 is close to 50%, as it must be for maximal
absorption [7], [12]. In fact, the antenna gain,G = 3.207,
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Fig. 5. HFSS simulated performance of the coin antenna. (a) H-plane
scattering directivity pattern at its resonant frequency 1.473 GHz. (b) Gain
absorption-efficiency pairs (G, ηabs) of its lossy and lossless implementations
for excitation frequencies ranging from 1.46 GHz to 1.49 GHz. Solid arrows
indicate the directions in which frequency increases. Inset: Zoom in to the
maxima of their gain values. For comparison, the antenna gain which follows
the upper bound (10) and the antenna gain for an ideal Huygensparticle for
ηabs ranging from 0 to 1 are also provided.

of the lossless implementation approaches very closely its
maximal value given by the forward scattering directivity:
Dscat

(
k̂i

)
= 3.211. Thus, it also can be considered optimal

in the sense of maximizing the absorption.

On the other hand, it may be desirable, for instance, for
various sensor applications to have significantly less visible
antennas with higher absorption efficiency. Receiving antennas
of this type are perfectly possible. From a Norton or Thevenin
equivalent circuit perspective, it could be expected that in-
creasing the port impedance should directly lead to a higher
absorption efficiency. In fact, this strategy works perfectly well
for simple wire antennas [19] and core-shell resonators [12].
However, equivalent circuit representations are only valid as
long as the current distribution in the antenna is maintained.
Unfortunately, for the coin antenna depicted in Fig. 4, changes
in its port impedance modify the reflection coefficient at that

Fig. 6. Two-port coin antenna HFSS model. Front and back views. The
schematic positions of the lumped ports are shown in yellow.

end of the CPS feed line. These modifications subsequently
alter the field distributions that excite both the electric and
magnetic resonators. This effect breaks the balance between
the electric and magnetic resonators and, hence, ruins the
forward-scattering characteristics. Therefore, the geometry of
the coin antenna must be re-optimized for its operation at each
desired, different absorption efficiency level.

C. Coin Receiving Antenna: Two Ports

To overcome this difficulty and to more clearly illustrate the
performance of an antenna at different absorption efficiency
levels, the feeding mechanism of the original coin antenna
is modified so that its current distribution is less sensitive
to changes in the port impedance. As depicted in Fig. 6, the
antenna is now terminated at two lumped ports (marked in
yellow): one placed at the center of the top-hat-loaded dipole
resonator, and the other one placed in the middle of one of
the capacitively loaded loops. The length of the ports is 1 mm.
The geometries of the resonators are exactly the same as in
Fig. 2. In this two-port configuration, the coupling between
both ports is negligible, i.e.,S21 < 30 dB for all the following
simulations. The lumped ports of the dipole and the open loop
are characterized by the intrinsic impedancesC × 1.5Ω and
C × 5Ω, respectively, whereC is used as a scaling factor
to study the response of the receiving antenna to changes in
its input impedance. In particular,C = 1 corresponds to the
matched configuration at which the gain is maximized.

Fig. 7(a) gives the H-plane scattering directivity pattern
for the two-port coin antenna under its matched condition,
C = 1, at its resonant frequency, 1.504 GHz. Once again,
the antenna concentrates all of its scattering in the forward
direction with maximal directivity in excess of 3. On the
other hand, the FTBR in this case is only approximately 40
(16 dB). In order to analyze the response of the antenna to an
induced port mismatch, Fig. 7(b) represents the antenna gain
and its scattering directivity at the resonant frequency inthe
forward direction for impedance scaling factorsC ranging
from 1 to 5. As expected, the antenna gain monotonically
decreases along with theC factor due to the mismatch losses.
However, it is also observed that the scattering directivity in
the forward direction is mostly unaffected by the changes in
the port impedance. This behavior confirms the robustness of
the current distribution, including both electric and magnetic
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Fig. 7. HFSS simulated performance of the two-port coin antenna: (a) H-
plane scattering directivity pattern under the matched condition, C = 1, at its
resonant frequency 1.504 GHz, (b) antenna gain and scattering directivity in
the forward direction for impedance scaling factorsC ranging from1 to 5.

resonators, against impedance changes, for this two-port con-
figuration. This property enables the operation of the two-port
coin antenna at different absorption efficiency levels.

To illustrate this fact further, Fig. 8 represents the gain
- absorption efficiency pair (G, ηabs) as a function of the
frequency for the two-port coin antenna port impedance when
the C impedance parameter ranges from1 to 5. As antici-
pated, increasing theC impedance scaling factor increases the
absorption efficiency of the antenna. Moreover, the antenna
performance, as compared to the theoretical bound, is not
degraded by the induced mismatch. Rather, the antenna per-
formance approaches the upper bound as the port impedance
increases. This fact can be more clearly appreciated in the
inset of Fig. 8, which depicts a comparison of the upper bound
(10) with the gain absorption-efficiency pairs (G, ηabs), at the
maximal gain value for eachC value. We ascribe this behavior
to the fact that, as the port impedance increases, the proportion
of the power dissipated in the load to that lost in the copper
and dielectric is enhanced, reducing the negative impact ofthe
additional unwanted losses.

V. CONCLUSIONS

The optical theorem was used to derive upper bounds on
the far-field cross-sections associated with general scatterers.
These bounds were applied to understand the scattering and
absorption properties of receiving antennas. It was shown
via the optical theorem that energy conservation imposes the
constraint that any extraction of power from an incident field
via a scatterer, e.g., a receiving antenna, must be associated
with the re-radiation of fields in the forward direction. The
existence of this forwardly-directed scattered field imposes
a correlation between the scattering and absorption phenom-
ena and, hence, limits the amount of achievable absorption.
Furthermore, the associated scattering resistance damps the
excitation of currents in the scatterer and, thus, limits the
amount of achievable scattering even in the ideal limit of
no material dissipation [12], [13]. Previously derived bounds
on the time-harmonic absorption and scattering cross-sections
were reaffirmed independently by understanding these physical
effects and their limitations. Moreover, this approach revealed
novel upper bounds on the bistatic cross-section, i.e., the
amount of scattering into a specific direction. These boundsled
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Fig. 8. HFSS simulated performance of the two-port coin antenna: Gain
absorption-efficiency pairs (G, ηabs) for excitation frequencies ranging from
1.49 GHz to 1.53 GHz, and for impedance scaling factorsC ranging from1

to 5. Solid arrows indicate the directions in which the frequency is increasing.
For comparison purposes, the upper bound (10) and the (G, ηabs) pairs for
ηabs ranging from 0 to 1 are also provided. Inset: Comparison of the gain
absorption-efficiency pairs (G, ηabs) at the maximal gain value for eachC
value with the upper bound (10).

to the fact that the maximal bistatic cross-section can onlybe
achieved in the forward scattering direction. Moreover, itwas
also found that the upper bound of the backscattering cross-
section, of crucial importance for many practical applications,
is four times smaller than the forward scattering maximum
value. Furthermore, it was concluded that the backscattering
upper bound can be reached with the excitation of only electric
or magnetic multipoles, which was recognized as being a great
advantage at optical frequencies where the magnetic responses
of matter are weak.

The reported upper bounds were used to reveal the fact
that receiving antennas must concentrate their scattered fields
into the forward direction to maximize their absorption and
scattering cross-sections, as well as their bistatic cross-section.
It was demonstrated that this property is essential to achieve
the maximum performance of a receiving antenna, such as
a minimum scattering sensor. Understanding this constraint,
we designed several metamaterial-inspired receiving antennas
that exhibit Huygens source forward-scattering properties and
showed that their ideal realizations actually reach the derived
upper bounds. Issues that allow their realistic counterparts to
only approach these bounds were highlighted. These Huy-
gens source-based receiving antenna implementations further
revealed that relatively simple designs, based only on the
balanced combination of fundamental electric and magnetic
dipole resonators rather than on higher order modes, offer
performances that can very closely approach the physical
bounds while being realizable.
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