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Abstract

Based on previous investigations, we have proposed two different methods
to extend lattice-valued fuzzy connectives (t-norms, t-conorms, negations
and implications) and other related operators, considering a generalized no-
tion of sublattices. Taking into account the results obtained and seeking to
analyze the behavior of both extension methods in face of fuzzy operators
related to image processing, we have applied these methods so as to ex-
tend restricted equivalence functions, restricted dissimilarity functions and
Ee,N -normal functions. We also generalize the concepts of similarity mea-
sure, distance measure and entropy measure for L-fuzzy sets constructing
them via restricted equivalence functions, restricted dissimilarity functions
and Ee,N -normal functions.
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1. Introduction

Let’s consider the following issue: assuming that M is a sublattice of
L and that T is a fuzzy operator (a t-norm, a t-conorm, fuzzy negation,
fuzzy implication, etc.) defined on M ; how can we extend T to L preserving
its properties? Our studies in recent years on this issue led us to provide
two different extension methods based on a relaxed notion of sub-lattice.
In [27], we presented an extension method via retractions (shortly EMR)
that aimed to obtain a minimum extension of a given operator and was able
to preserve its properties; yet, results have shown that some properties of
fuzzy connectives are not preserved by this method. In order to fix this
weakness, we have proposed in [30] another extension method that uses a
special function named e-operator. Unlike EMR, the extension method via
e-operators (shortly EMEP) is able to preserve most of the properties of
extended operators. However, the operator generated from the extension is
not minimal, in general.

A crucial step of several applications is the construction of measures for
the global comparison of objects which are represented by fuzzy sets. How-
ever, there are many situations in which, due to the high degree of uncer-
tainty, the objetcs we need to compare are better represented by extensions of
fuzzy sets, such as interval-valued fuzzy sets, type-2 fuzzy sets or L-fuzzy sets
in a more general way [9]. In these sets, membership degrees are not given
by a real number in [0, 1], but by an element of a bounded lattice. Therefore,
this kind of measures must be generalized to an arbitrary bounded lattice,
which is not a trivial task.

A frequent methodology to generate these measures defined over fuzzy
sets consists on the aggregation of functions which take values on [0, 1] (rep-
resenting the membership degree). For example, those given in [11, 12] for
the global comparison of grayscale images aggregates the values of restricted
equivalence functions.

From our point of view, this means that the problem can be divided into
two different steps:

• to develop a theoretical study of the functions used to compare the
different elements of the object (for example, the elements belonging
to an L-fuzzy set);
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• to develop a theoretical study to aggregate the local information ob-
tained in the previous step in order to achieve a global comparison.

Therefore, the objetive of this paper is, firstly, to study the extension of
some functions that are commonly used for constructing comparison mea-
sures, such as restricted equivalence functions, restricted dissimilarity func-
tions and Ee,N -normal functions. In order to do this, we study the application
of EMR and EMEP methods to extend these functions from [0, 1] to bounded
lattices. Secondly, to study the aggregation of previous functions in order
to obtain global comparison measures, namely similarity measures, distances
and entropy measures to compare L-fuzzy sets.

We start by recalling elementary concepts in lattice theory and defining
other essential ones in Section 2. In Section 3 we state some results about
negations obtained from REF, whereas Section 4 is devoted to address the
extension of restricted equivalence functions. In the framework we also make
the extension of restricted dissimilarity functions and Ee,N -normal functions
in Sections 5 and 6 respectively. The construction of similarity, dissimilarity
and entropy measure is added in Section 7. Conclusion and some remarks
are discussed in Section 8.

2. Preliminaries

2.1. Bounded Lattices and its Morphisms

Most definitions and results in this subsection are well known from the
literature, so we just present here a clear formalization of them. Moreover,
some other key concepts such as retract are defined. For a deeper reading
about these concepts we recommend [6, 13, 14, 16, 17, 18, 27].

Definition 2.1. Let L be a nonempty set. If ∧L and ∨L are two binary
operations on L, then 〈L,∧L,∨L〉 is a bounded lattice provided that for each
x, y, z ∈ L, the following properties hold:

1. x ∧L y = y ∧L x and x ∨L y = y ∨L x (symmetry);

2. (x ∧L y) ∧L z = x ∧L (y ∧L z) and (x ∨L y) ∨L z = x ∨L (y ∨L z)
(associativity);

3. x ∧L (x ∨L y) = x and x ∨L (x ∧L y) = x (absorption law) ;

4. There are elements 0L (bottom) and 1L (top) of L such that x∨L0L = x

and x ∧L 1L = x, for each x ∈ L.
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It is also possible to establish a partial order on L by relation

x 6L y if and only if x ∧L y = x (1)

Moreover, L is called complete whenever each subset of L has a supre-
mum1 and an infimum element.

Throughout this paper we take L as a bounded lattice as defined above.
If L represents another thing, the appropriate distinction will be made.

When there are two elements x and y belonging to L such that neither
x 6L y nor y 6L x, these elements are said to be incomparable and we
denote this by x ‖ y. Otherwise we say that these elements are comparable
(notation: x ¨ y).

Definition 2.2. Let (L,∧L,∨L, 0L, 1L) and (M,∧M ,∨M , 0M , 1M) be bounded
lattices. A mapping f : L −→ M is said to be a homomorphism if, for all
x, y ∈ L, we have

1. f(x ∧L y) = f(x) ∧M f(y);

2. f(x ∨L y) = f(x) ∨M f(y);

3. f(0L) = 0M and f(1L) = 1M .

Notice that every lattice homomorphism preserves the order (see for ex-
ample [30]).

Definition 2.3. [4] Let L be a bounded lattice and Ln the Cartesian product
of n copies of L. Given a function f : Ln → L, the action of an automorph-
ism2 ρ of L over f results in the function f ρ : Ln → L defined as

f ρ(x1, . . . , xn) = ρ−1(f(ρ(x1), . . . , ρ(xn))) (2)

In this case, f ρ is said to be a conjugate of f .

Classically, a (ordinary) sublattice of a lattice L is a subset M of L such
that x, y ∈ M imply x ∧L y ∈ M and x ∨L y ∈ M . Here we consider a
generalized notion of sublattice as in Definition 2.4 using retration as follows.

1Let X be a subset of L. An element a ∈ L (b ∈ L) is called a supremum (infimum)
of X if for all x ∈ X , x 6L a (b 6L x) and if there is a′ ∈ L (b′ ∈ L) such that x 6L a′

(b′ 6L x) then a 6L a′ (b′ 6L b).
2An automorphism on L is a homorphism from L to L.
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Definition 2.4. [14] A homomorphism r of a lattice L onto a lattice M is
said to be a retraction if there exists a homomorphism s of M into L which
satisfies r ◦ s = idM . A lattice M is called a (r, s)-retract3 (or just a retract)
of a lattice L if there is a retraction r, of L onto M , and s is then called a
pseudo-inverse of r.

Notice that saying that M is a retract of L means that it is possible to
identify M with the subset K = s(M) of L preserving the lattice structure
of M and therefore K is a sublattice of L. In other words, K is isomorphic
(since r|K is an isomorphism) to M and hence K is an algebraic copy of M
embedded into L.

Remark 1. It follows from the above definition that every retraction r sati-
fies r(0L) = 0M and r(1L) = 1M . Indeed, for every y ∈M there is x ∈ L such
that r(x) = y since r is surjective. Thus r(0L) = r(0L∧Lx) = r(0L)∧M r(x) =
r(0L)∧M y and hence r(0L) = 0M . Similarly, one can prove that r(1L) = 1M .

Definition 2.5. Every retraction r : L −→ M (with pseudo-inverse s) that
satisfies s ◦ r 6 idL

4 (idL 6 s ◦ r) is called a lower (an upper) retraction. In
this case, M is a lower (an upper) retract of L.

Remark 2. It should be noted that given a lower retraction r with pseudo-
inverse s, it is sometimes possible, to define an upper retraction r′ that also
has s as a pseudo-inverse (see Example 2.2 and Remark 2.3 in [30]). More-
over, if M is a retract of L, then the retraction r could be lower, upper or
neither.

Definition 2.6. Let M be a (r1, s)-retract of L. We say that

1. M is a lower (r1, s)-retract of L if r1 is a lower retraction. Notation:
M < L with respect to (r1, s);

2. M is an upper (r1, s)-retract of L whenever r1 is an upper retraction.
Notation: M > L with respect to (r1, s);

3In papers [27, 28, 30, 29] we call (r, s)-retract by (r, s)-sublattice in order to emphazise
that for each pair of homormorphims (r, s) we have different retracts.

4Let f and g be functions on a lattice L. We write f 6 g when f(x) 6L g(x) for all
x ∈ L.
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3. If r1 is a lower retraction and there is an upper retraction r2 : L −→M

such that its pseudo-inverse is also s, then M is called a full (r1, r2, s)-
retract of L. Notation: M E L with respect to (r1, r2, s).

Some examples of the kinds of (r, s)-retracts stated in the Definition 2.6
above can be found in [30] (Example 3.1 and 3.2).

2.2. Negations on L

A natural extension of the notion of fuzzy set can be made by considering
arbitrary bounded lattices as possible sets of truth values. This is the case
of L-fuzzy sets introduced in [16] by Goguen. Lowen in 1978 proposed a
notion of negation as involutive and antitonic functions [23]. In the following
definition the concept of negation on a bounded lattice L is presented in the
sense of Trillas [37].

Definition 2.7. [33] A mapping N : L → L is a negation on L or just an
L-negation, if the following properties are satisfied for each x, y ∈ L:
(N1) N(0L) = 1L and N(1L) = 0L and
(N2) If x 6L y then N(y) 6L N(x).
Moreover, the L-negation N is considered strong if it also satisfies the invo-
lution property, i.e.
(N3) N(N(x)) = x for each x ∈ L.
The L-negation is strict if satisfies the property:
(N4) N(x) <L N(y) whenever y <L x.
The L-negation N is frontier if satisfies the property:
(N5) N(x) ∈ {0L, 1L} if and only if x = 0L or x = 1L.

Remark 3. One can easily verify that for each strong L-negation we have
that x ‖ y if and only if N(x) ‖ N(y). Notice that although every lattice
admits a negation N , it is not true that every lattice admits an involutive
negation (see Example 2.10).

Example 2.8. Let L be any lattice such that there exists x0 ∈ L with x0 6=
0L, 1L. Then the mapping:

N(x) =











0L if x = 1L ;

1L if x = 0L ;

x0 otherwise.

is a frontier negation. Notice that this example proves that for every lattice
L with at least three elements, it is possible to define a frontier negation.
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Notice that an element e ∈ L is a fixed point of an L-negation N if
N(e) = e. Unlike the usual case and the interval-valued case (see [3]), strong
L-negations may not have fixed points. If it exists, the fixed point needs not
be unique.

Example 2.9. Let L and M be bounded lattices as shown in the Figure 1
(note that M is a 4 elements Boolean Algebra). The function N1 : M → M

defined by N1(0M) = 1M , N1(x) = y, N1(y) = x and N1(1M) = 0M is a
strong M-negation. Nevertheless, N1 has no fixed points.
Now, consider a function N2 : L → L given by N2(0L) = 1L, N2(a) = e,
N2(e) = a, N2(1L) = 0L and N2(u) = u for each u ∈ L\{a, e, 0L, 1L}. In this
case, N2 is a strong L-negation with three fixed points, namely b, c and d.

M

◦

◦ ◦

◦

1M

x y

0M
❅
❅❅

 
  

 
  

❅
❅❅

L
◦

◦

◦ ◦ ◦

◦

◦

1L

e

b c d

a

0L

❅
❅❅

 
  

 
  

❅
❅❅

Figure 1: Hasse diagrams of lattices M and L

Example 2.10. Consider the lattice L0 obtained from lattice L in Figure
1 by omitting the point a. Then, it does not exist a strong negation for
this lattice. If N is such negation, then we should consider 0L <L N(e) <L

N(b), N(c), N(d) <L 1L which is not possible due to the injectivity of a strong
negation.
Thus, in general we cannot define a strong negation over a lattice as shown
here. This is neither due to the fact that it is considered a partial order on L

nor due to the fact that the lattice has a discrete structure. For instance, it
is easy to see that it is not possible to define a strong negation on the linear
ordered lattice L = {0, 1} ∪ [2, 3] as well, considering the usual linear order
of real numbers 6L on L.

Proposition 2.11. [4] Let N : L→ L be a function, ρ be an automorphism
of L and i ∈ {1, 2, 3, 4, 5}. N satisfies (Ni) if and only if its conjugate Nρ
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satisfies (Ni). Moreover, e is a fixed point of N if and only if ρ−1(e) is a
fixed point of Nρ.

Corollary 2.12. Let N : L → L be a function and ρ be an automorphism
of L. N is an (strong, strict, frontier) L-negation if and only if Nρ is an
(strong, strict, frontier) L-negation.

2.3. Restricted Equivalence Functions

As it has been stated in the introduction, the concept of restricted equiv-
alence function (REF) was given in order to obtain (by aggregation) global
measures for comparing images satisfying certain conditions. Evidently, the
use of these functions can be also extend to any other object which is repre-
sented by a fuzzy set. In situations where the objects are represented by an
extension of fuzzy sets, such as interval-valued fuzzy sets, restricted equiv-
alence functions must be redefined to the concrete setting. For example, in
[34] the extension of mathematical morphology operators to lattice structures
is studied, as well as in [26], where images are represented as interval-valued
fuzzy sets. Moreover, the RGB color scheme (commonly used in color im-
ages) can be seen as a Cartesian product of lattices [5, 32]. Finally, there are
other applications, such as fuzzy rule-based classification systems in which
some extension of REFs have been used [36]. Since all these extensions take
place in lattice theory, there are some important reasons to consider in a
general way restricted equivalence functions defined on bounded lattices.

One of the most common definition of equivalence was proposed by Fodor
and Roubens in [15].

Definition 2.13. A function EF : [0, 1]2 → [0, 1] is called an equivalence if
it satisfies the following conditions:

1. EF (x, y) = EF (y, x) for all x, y ∈ [0, 1];

2. EF (0, 1) = EF (1, 0) = 0;

3. EF (x, x) = 1 for all x ∈ [0, 1];

4. If x 6 y 6 z 6 t then EF (x, t) 6 EF (y, z).

Naturally, this concept can be generalized for bounded lattices as follows.

Definition 2.14. Let L be a bounded lattice. A function EF : L2 → L is
called an L-equivalence if it satisfies the following conditions:
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(F1) EF (x, y) = EF (y, x) for all x, y ∈ L;

(F2) EF (0L, 1L) = EF (1L, 0L) = 0L;

(F3) EF (x, x) = 1L for all x ∈ L;

(F4) If x 6L y 6L z then EF (x, z) 6L EF (y, z) and EF (x, z) 6L EF (x, y).

Nonetheless, equivalence functions as those described in Definition 2.14
do not allow us to ensure that only (0L, 1L) and (1L, 0L) are assigned to 0L,
i.e., it could exist a pair (x, y) ∈ L\{0L, 1L} such that EF (x, y) = 0L. This
is a disadvantage for comparing images since it cannot be ensured that two
images in black and white are opposite if and only if one is the negative
of the other. This is also a backdraw of Definition 2.13. In order to solve
this problem among others, Bustince et al. in [7] redefined (on [0, 1]) Fodor
and Roubens equivalences by adding some constraints and introducing the
concept of restricted equivalence function. A generalization for bounded
lattices is given in the following definition.

Definition 2.15. Let N be a strong negation on L. A function REF : L2 →
L is called a restricted equivalence function on L with respect to N , or just
an L-REF with respect to N , if it satisfies, for all x, y, z ∈ L, the following
conditions:

(L1) REF (x, y) = REF (y, x);

(L2) REF (x, y) = 1L if and only if x = y;

(L3) REF (x, y) = 0L if and only if {x, y} = {0L, 1L};

(L4) REF (x, y) = REF (N(x), N(y));

(L5) if x 6L y 6L z then REF (x, z) 6L REF (x, y).

As we have discussed in Example 2.10 it is not possible to determine
for which kind of lattice a strong fuzzy negation can be defined. However,
for defining restricted equivalence funtions on lattice the associated fuzzy
negation must be strong to ensure no conflits between properties (L2) and
(L4) arise. Hence, definition 2.15 is retricted to those lattices where a strong
fuzzy negation may be defined.
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Example 2.16. Let L be a lattice with at least three elements, and take
x0 ∈ L\{0L, 1L}. Then we can define

REF (x, y) =











1L if x = y;

0L if {x, y} = {0L, 1L};

x0 otherwise,

which is a restricted equivalence function with respect to any strong negation
N .

Notice that from (L4), (L5) and (L1), it is also possible to conclude that
REF (x, z) 6L REF (y, z) whenever x 6L y 6L z.

Example 2.17. Let M be the bounded lattice in Figure 1 and N1 be a strong
M-negation as in Example 2.9. Thus, a function REF : M2 → M as defined
in the Table 1 is a L-REF with respect to N1 in the sense of Definition 2.15.

REF 0L x y 1L

0L 1L x y 0L
x x 1L x y

y y x 1L x

1L 0L y x 1L

Table 1: Restricted equivalence function on lattice M

In this case the mapping N(x) = REF (0L, x) defines a strong negation
on the lattice M .

3. Fuzzy Negation Constructed from REF

The remark in Example 2.17 is just a particular case of the following
general result.

Proposition 3.1. Let REF be a restricted equivalence function on the lat-
tice L with respect to some strong negation N . Then, the mapping

NREF (x) = REF (0L, x) (3)

is a frontier negation on L.

10



Proof: Straightforward. �

Example 3.2. Notice that a given function can sometimes be an L-REF
with respect to one negation but not with respect to another one. For in-
stance, consider Example 2.17. In this case, following the notation of Propo-
sition 3.1, we have that NREF (0L) = 1L; NREF (x) = x, NREF (y) = y and
NREF (1L) = 0L, which is different from the negation N1 considered for the
definition of the REF. But for this NREF we see that REF (0L, x) = x 6= y =
REF (1L, x), so property (L4) does not hold.

Corollary 3.3. Let REF be a restricted equivalence function on L with re-
spect to some strong negation N and let NREF be defined as in Proposition
3.1. Then, NREF = g ◦N with g : L→ L defined as g(x) = REF (1L, x).

Example 3.4. Let’s consider again the lattice L of Example 2.17. Take as
REF the function defined in Example 2.16 with x0 = y. This is a restricted
equivalence function with respect to any strong negation defined on L; there-
fore, in particular for N = N1. Yet, with the notation of Proposition 3.1, we
have that NREF (x) = REF (0L, x) = y = REF (0L, y) = NREF (y); so NREF

is not injective and hence, it is not strong.

Definition 3.5. Let REF be a restricted equivalence function. REF is
called strict if for each x, y, z ∈ [0, 1] such that x <L y <L z, REF (x, z) <L

REF (x, y).

An example of strict restricted equivalence function is the given in [7, Ex-
ample 1] whereas example given in [7, Example 4] are examples of restricted
equivalence functions that are not strict.

Proposition 3.6. Let REF be a strict restricted equivalence relation. Then
NREF is an strict negation.

Proof: Straightforward. �

Lemma 3.7. If REF is a restricted equivalence function on L with respect
to some strong negation N and e is a fixed point of N then REF (1L, e) =
REF (0L, e).

Proof: REF (0L, e) = REF (N(0L), N(e)) = REF (1L, e).
�
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Proposition 3.8. Let REF be a strict restricted equivalence function on L

with respect to the strong negations N1 and N2. If e1 and e2 are fixed points
of N1 and N2 respectively, such that e1 ¨ e2 then e1 = e2.

Proof: Let e1 and e2 be the fixed points ofN1 andN2, respectively. Without
loss of generality we can assume that e1 6L e2.

NREF (e1) = REF (0L, e1) by eq. (3)
= REF (1L, e1) by Lemma 3.7
6L REF (1L, e2) by (L5)
= REF (N2(1L), N2(e2)) by (L4)
= REF (0L, e2)
= NREF (e2)

So, NREF (e1) 6L NREF (e2). But by (L5), NREF (e2) = REF (e2, 0) 6L

REF (e1, 0) = NREF (e1) and hence, NREF (e1) = NREF (e2). Therefore, by
Proposition 3.6 NREF is strict and hence e1 = e2.

�

4. Extension of Restricted Equivalence Functions

This section starts with the application of two different methods for ex-
tending fuzzy operators defined in previous works [27, 30]. In [27] it was
introduced an extension method via retractions that generalizes the exten-
sion proposed by Saminger-Platz et al. in [35]. In [30] we proposed a new
extension method, called extension method via e-operators, which was aimed
at achieving more efficiency to preserve the properties of extended operators.

4.1. Extension via Retractions

Let M be a complete ordinary sublattice of L and TM be a t-norm on
M . Under these conditions, Saminger-Platz et al. in [35] have proposed a
method for extending a t-norm T from M to L in a natural but drastic and
particular way since it collapses all elements of L\M onM and only considers
complete sublattices.

Seeking to propose a more general and flexible extension method, Palmeira
and Bedregal presented in [27, 28, 31] another way to extend t-norms, t-
conorms and fuzzy negations considering (r, s)-sublattices which generalizes
the extension proposed in [35].
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Proposition 4.1. [27] Let M < L with respect to (r, s). If T is a t-norm
on M then TE : L× L −→ L defined by

TE(x, y) =

{

x ∧L y, if 1L ∈ {x, y}
s(T (r(x), r(y))), otherwise.

(4)

is a t-norm which extends T from M to L.

In a similar way, it is possible to extend t-conorms (see Proposition 4.1
in [27]). For negations we have

Proposition 4.2. [27] Let M be a (r, s)-retract of L and N : M −→ M be a
fuzzy negation. Then NE(x) = s(N(r(x))) for each x ∈ L is a fuzzy negation
that extends N from M to L.

It is worth noting that, in Proposition 4.1, r must be a lower retraction,
whereas in Proposition 4.2, it is arbitrary (i.e., it could be lower, upper or
neither). This fact shows negations can be extended in a more flexible way.

An advantage of this extension method is that it can be applied for several
operators in the framework of fuzzy logic and applications. We have inves-
tigated the behavior of this method for t-subnorms, lattice automorphisms
and some other particular classes of fuzzy operators (see [28, 31]).

Theorem 4.3. Let M be a (r, s)-retract of L and EF : M2 → M an equiv-
alence function. Then the function

EFE(x, y) = s(EF (r(x), r(y))) (5)

for each pair (x, y) ∈ L2 is an equivalence function that extends EF from M

to L.

Proof: It is clear that EFE satisfies (F1) since EF is an equivalence
function. Moreover, for all x ∈ L we have

EFE(x, x) = s(EF (r(x), r(x))) = s(1M) = 1L

and

EFE(0L, 1L) = s(EF (r(0L), r(1L))) = s(EF (0M , 1L)) = s(0M) = 0L

13



Analogously, one can prove that EFE(1L, 0L) = 0L. Thus, (F2) and (F3)
hold.

It remains to prove (F4). To do so, note that for all x, y, z ∈ L such that
x 6L y 6L z it follows that r(x) 6M r(y) 6M r(z) and hence EF (r(x), r(z)) 6M

EF (r(x), r(y)). Thus

EFE(x, z) = s(EF (r(x), r(z))) 6L s(EF (r(x), r(y))) = EFE(x, y).

�

Notice that Definition 2.15 refines Definition 2.14, since it imposes some
new constraints. Aside from property (L4), Definition 2.15 also requires that
the unique elements assigned to 0L by REF are (0L, 1L) and (1L, 0L) and
that REF is evaluated as 1L only for pairs with the same value in both
coordinates. Thus, it reveals that we cannot extend restricted equivalence
functions using the method provided by Propositions 4.1 and 4.2.

If M is a (r, s)-retract of L , N is a strong fuzzy negation on M and
REF : M2 → M a restricted equivalence function with respect to N then
the function REFE : L2 → L given by REFE(x, y) = s(REF (r(x), r(y)))
satisfies property (L4)

REFE(NE(x), NE(y)) = s(REF (r(NE(x)), r(NE(y))))
= s(REF (r(s(N(r(x)))), r(s(N(r(y))))))
= s(REF (N(r(x)), N(r(y))))
= s(REF (r(x), r(y)))
= REFE(x, y)

Moreover, if r is such that r(x) = 0L if and only if x = 0L and r(x) =
1L if and only if x = 1L then supposing REFE(x, y) = 0L we have that
s(REF (r(x), r(y))) = 0L. Since s is an injective function it follows that
REF (r(x), r(y)) = 0M and hence r(x) = 1M and r(y) = 0M or r(x) = 0M
and r(y) = 1M by (L3), what allows us to conclude that x = 1L and y = 0L
or x = 0L and y = 1L, i.e. REFE satisfies property (L3) (the necessity side
of (L3) is shown in Theorem 4.3). Nevertheless REFE does not satisfy (L2),
in general, as the following example shows.

Example 4.4. Let M and L be the bounded lattices depicted in Figure 1.
Then function s : M → L defined by s(0M) = 0L, s(x) = b, s(y) = d and
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s(1M) = 1L is a pseudo-inverse of the retraction

r(t) =















0M , t = 0L;
1M , t = 1L;
y, t = d;
x, otherwise.

and hence M is a (r, s)-retract of L. Then, considering the REF as in Exam-
ple 2.17, its extension to L is such that REFE(e, c) = s(REF (r(e), r(c))) =
s(REF (x, x)) = s(1M) = 1L showing that REFE does not satisfies (L2).

The above discussion allows us to enunciate the following proposition
(extension of a weak version of restricted equivalence functions).

Proposition 4.5. Let M be an (r, s)-retract of L, N be a fuzzy negation on
M and REF : M2 → M a restricted equivalence function with respect N .
Then, REFE : L2 → L given by

REFE(x, y) = s(REF (r(x), r(y))) (6)

satisfies (L1), (L4) with respect NE, (L5) and (WL2) REFE(x, x) = 1L for
all x, y ∈ L. Moreover, if

r(x) = 0M if and only if x = 0L (7)

and
r(x) = 1M if and only if x = 1L (8)

then (L3) holds.

Notice that property (L2) holds for the L-REF defined in Equation (6)
only when M and L are isomorphic once otherwise there exist x, y ∈ L such
that x 6= y and r(x) = r(y) imply REFE(x, y) = s(REF (r(x), r(y))) =
s(1M) = 1L. This is the motivation for defining the following weakened
notion of restricted equivalence functions.

Definition 4.6. Let L be an arbitrary bounded lattice. A function REF :
L2 → L satisfying properties (L1), (WL2), (L3), (L4) and (L5) is called a
weak restricted equivalence function.
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Proposition 4.7. Let M be a (r, s)-retract of L, N be a fuzzy negation on
M and REF : M2 → M a weak restricted equivalence function with respect
N . If r satisfies Equations (7) and (8) then REFE : L2 → L given as in
Equation (6) is a weak restricted equivalence function with respect NE.

The idea behind Proposition 4.8 below is that, although it is not possi-
ble to extend REFs using the extension method via retractions, negations
generated from the (weak) restricted equivalence functions can be extended.

Proposition 4.8. Let M be a (r, s)-retract of L. If REF is a weak re-
stricted equivalence function on M with respect to N then NREFE(x) =
s(REF (0M , r(x))) for each x ∈ L is a fuzzy negation which satisfies (NREF )

E =
NREFE .

Proof: Straghtforward. �

4.2. Extension via e-operators

As we have seen in the previous subsection, the extension method pro-
posed in [27] is not good enough to extend restricted equivalence functions.
Similar problems arise when we try to verify which properties of fuzzy connec-
tives are preserved by extension via retractions. For instance, Archimedian
t-norms, as well as strong fuzzy negations are not preserved.

Seeking to develop a extension method more efficient in preserving the
properties we have provided in [30] a method based in the idea of interval
constructor using e-operator.

Definition 4.9. Let be M E L with respect to (r1, r2, s). A mapping ⊙ :
M ×M −→ L is called an e-operator on M if it is isotonic and satisfies the
following conditions for each a, b ∈M and for each x ∈ L:

r1(a⊙ b) = a ∧M b and r2(a⊙ b) = a ∨M b (9)

r1(x)⊙ r2(x) = x (10)

In other words, if M E L with respect to (r1, r2, s) (by Definition 2.6,
there are two retractions r1, r2 : L −→ M with the same pseudo-inverse
s : M −→ L such that s ◦ r1 6 idL 6 s ◦ r2) the e-operator ⊙ describes an
isotonic way to relate retractions r1 and r2 with the meet and join operators
of M , respectively, by (9).
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Example 4.10. Let us see how to consider e-operators for extending [0, 1]
into the interval-valued setting. Let M = [0, 1] with the usual order relation
of numbers and let L be the set of all closed subintervals of the interval [0, 1]
(L = {x = [x, x]|0 ≤ x ≤ x ≤ 1} with the order relation ≤L given by: for
each x,y ∈ L

x ≤L y if and only if x ≤ y and x ≤ y.

Then, we may define retractions r1, r2 : L→ M by r1(x) = x and r2(x) = x

and s : M → L by s(x) = [x, x]. Therefore, M E L with respect to (r1, r2, s)
and an e-operator can be defined by x⊙ y = [x ∧ y, x ∨ y].

Lemma 4.11. [30] Consider M E L with respect to (r1, r2, s) and let ⊙ be
an e-operator on M . Then, for all a, b ∈ M and x, y ∈ L, the following
properties hold:

1. a 6M b if and only if r1(a⊙ b) = a and r2(a⊙ b) = b;

2. For every a ∈M we have s(a) = a⊙ a;

3.
r1(x) 6M r1(y) and r2(x) 6M r2(y) iff x 6L y; (11)

4. r1(x) = r1(y) and r2(x) = r2(y) if and only if x = y;

5. ⊙ is commutative.

Proposition 4.12. [30] Consider M E L with respect to (r1, r2, s) and a
mapping ⊙ : M ×M −→ L satisfying equation (9).Then ⊙ is an e-operator
if and only if Equation (11) is satisfied.

Now, we have conditions to define the extension of t-norms and fuzzy
negations via e-operator.

Theorem 4.13. [30] Let M E L with respect to (r1, r2, s) and ⊙ be an e-
operator on M . Given a t-norm T on M , the function TE

⊙
: L2 −→ L defined

by
TE
⊙
(x, y) = T (r1(x), r1(y))⊙ T (r2(x), r2(y)) (12)

is a t-norm on L.

Proposition 4.14. Let MEL with respect to (r1, r2, s) and ⊙ an e-operator
on M . If N is a fuzzy negation on M then

NE
⊙
(x) = N(r1(x))⊙N(r2(x)) (13)

is a fuzzy negation on L. Moreover,
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1. If N is strong, then NE
⊙

is also strong;

2. If N is strict then NE
⊙

is also strict;

3. If a is a fixed point of fuzzy negation N , then s(a) is a fixed point of
NE
⊙
.

Proof: Notice that items (1) and (3) are already proved in [30]. Thus,
it remains to prove only item (2). To do so, suppose that N is a strict
negation and x <L y then by the item 3 of Lemma 4.11, r1(x) 6M r1(y)
r2(x) 6M r2(y). Besides, taking into account item 4 of Lemma 4.11 and
the fact that x <L y then both cannot be equal and r1(x) <M r1(y) or
r2(x) <M r2(y). Suppose r1(x) <M r1(y), then

r1(N
E
⊙
(y)) = r1(N(r1(y))⊙N(r2(y)))

= N(r2(y))
6M N(r2(x)) = r1(N

E
⊙
(x))

and
r2(N

E
⊙
(y)) = r2(N(r1(y))⊙N(r2(y)))

= N(r1(y))
<M N(r1(x)) = r2(N

E
⊙
(x))

Again by item 4. of Lemma 4.11 we have NE
⊙
(x) 6= NE

⊙
(y). Consequently,

since NE
⊙
(y) 6L NE

⊙
(x) due to x <L y it holds NE

⊙
(y) <L NE

⊙
(x) i.e. NE

⊙
is

strict.
The case for r2(x) <M r2(y) is analogous. �

Lemma 4.15. Let be MEL with respect to (r1, r2, s) and let ⊙ : M×M → L

be an e-operator. For each a, b ∈ M ,

1. If a⊙ b = 0L then a = 0M and b = 0M ;

2. If a⊙ b = 1L then a = 1M and b = 1M .

Proof:

1. Supposing a⊙ b = 0L we have that a ∧M b = r1(a⊙ b) = r1(0L) = 0M
and a ∨M b = r2(a ⊙ b) = r1(0L) = 0M , what means that a = 0M and
b = 0M .

2. Analogous to item 1.

�
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Theorem 4.16. Let be MEL with respect to (r1, r2, s) and let ⊙ : M×M →
L be an e-operator. If REF : M2 → M is a restricted equivalence function
with respect to a strong negation N , then the function REFE

⊙
: L2 → L given

by
REFE

⊙
(x, y) = REF (r1(x), r1(y))⊙ REF (r2(x), r2(y)) (14)

for all x, y ∈ L, is a restricted equivalence function on L with respect to NE
⊙
.

Proof: It is easy to see that REFE
⊙

is commutative since ⊙ is a commuta-
tive operator. Hence (L1) holds.
(L2)
Note that by Lemma 4.11 (item 2) and (L2) we have that REFE

⊙
(x, x) =

REF (r1(x), r1(x)) ⊙ REF (r2(x), r2(x)) = 1M ⊙ 1M = s(1M) = 1L. On
the other hand, if REFE

⊙
(x, y) = 1L it follows that REF (r1(x), r1(y)) ⊙

REF (r2(x), r2(y)) = 1L and then by Lemma 4.15 we have thatREF (r1(x), r1(y)) =
1M and REF (r2(x), r2(y)) = 1M . Since REF is a restricted equivalence func-
tion then r1(x) = r1(y) and r2(x) = r2(y). Therefore, by Lemma 4.11 we can
conclude that x = y.
(L3)
It is clear that

REFE
⊙
(1L, 0L) = REF (r1(1L), r1(0L))⊙ REF (r2(1L), r2(0L))

= REF (1M , 0M)⊙REF (1M , 0L) = 0M ⊙ 0M
= s(0M) = 0L

Similarly it holds that REFE
⊙
(0L, 1L) = 0L.

Conversely assume thatREFE
⊙
(x, y) = 0L. We have thatREF (r1(x), r1(y))⊙

REF (r2(x), r2(y)) = 0L and thenREF (r1(x), r1(y)) = 0M andREF (r2(x), r2(y)) =
0M by Lemma 4.15. Hence, by Lemma 4.11 we have

(i) r1(x) = 1M and r1(y) = 0M ; or

(ii) r1(x) = 0M and r1(y) = 1M ; and

(iii) r2(x) = 1M and r2(y) = 0M ; or

(iv) r2(x) = 0M and r2(y) = 1M .

Note that (i) and (iv) cannot happen simultaneously, since otherwise there
should be 0M = r2(x) <M r1(x) = 1M what is a contradiction with the fact
that r1(x) 6M r2(x) for every x ∈ L. A similar argument works to show that
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(ii) and (iii) cannot happen simultaneously. It remains to analyze two other
possibilities:
(i) and (iii)
In this case, by Lemma 4.11, item 4, we have that

{

r1(x) = 1M = r1(1L)
r2(x) = 1M = r2(1L)

⇒ x = 1L

and
{

r1(y) = 0M = r1(0L)
r2(y) = 0M = r2(0L)

⇒ y = 0L

Analogously, it can be proved that (ii) and (iv) imply x = 0L and y = 1L.
(L4)
Let N be a strict negation on M and hence NE

⊙
is a strict negation on L by

item 2. of Proposition 4.14. We shall prove thatREFE
⊙
(x, y) = REFE

⊙
(NE

⊙
(x), NE

⊙
(y))

for each x, y ∈ L. Indeed, we have that

REFE
⊙
(NE

⊙
(x), NE

⊙
(y)) = REF (r1(N

E(x)), r1(N
E(y)))⊙

REF (r2(N
E(x)), r2(N

E(y)))
(15)

Since by Lemma 4.11 item 1

REF (r1(N
E(x)), r1(N

E(y))) = REF (r1(N(r1(x))⊙N(r2(x))),
r1(N(r1(y))⊙N(r2(y))))

= REF (N(r2(x)), N(r2(y)))
(16)

and

REF (r2(N
E(x)), r2(N

E(y))) = REF (r2(N(r1(x))⊙N(r2(x))),
r2(N(r1(y))⊙N(r2(y))))

= REF (N(r1(x)), N(r1(y)))
(17)

Based on the commutativity of ⊙ and Equation (15), it follows that

REFE
⊙
(NE

⊙
(x), NE

⊙
(y)) = REF (N(r1(x)), N(r1(y)))⊙ REF (N(r2(x)), N(r2(y)))

= REF (r1(x), r1(y))⊙ REF (r2(x), r2(y))
= REFE

⊙
(x, y)

(L5)
Let x, y, z ∈ L such that x 6L y 6L z. In this case we have r1(x) 6M

r1(y) 6M r1(z) and r2(x) 6M r2(y) 6M r2(z) and hence REF (r1(x), r1(z)) 6M
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REF (r1(x), r1(y)) and REF (r2(x), r2(z)) 6M REF (r2(x), r2(y)). Then,
from the isotonicity of ⊙ we have that

REFE
⊙
(x, z) = REF (r1(x), r1(z))⊙REF (r2(x), r2(z))

6L REF (r1(x), r1(y))⊙ REF (r2(x), r2(y))
= REFE

⊙
(x, y)

�

Example 4.17. Let REF : [0, 1]2 → [0, 1] be the restricted equivalence func-
tion given by

REF (x, y) = 1− | x− y |

with respect to the standard negation, introduced in [7]. So, taking the e-
operator ⊙ : M×M → L introduced in 4.10, we have the following restricted
equivalence function on L

REFE
⊙
(x,y) = REF (r1(x), r1(y))⊙ REF (r2(x), r2(y))

= [(1− | x− y |) ∧ (1− | x− y |),

(1− | x− y |) ∨ (1− | x− y |)]

4.3. Extension of negations obtained from a REF

Now we turn our attention to a special class of fuzzy negations constructed
from restricted equivalence functions, as defined in Section 3.

Notice that if M is a (r1, r2, s)-retract of L, given a restricted equivalence
function REF onM , its extension using e-operators is naturally an extension
for the negation obtained from this REF , i.e. an extension of NREF (x) =
REF (0M , x) which is given by

(NREF )
E
⊙
(y) = NREF (r1(y))⊙NREF (r2(y))

= REF (0M , r1(y))⊙ REF (0M , r2(y))

for all y ∈ L. This is obviously a fuzzy negation on L (see Section 4).
On the other hand, we have that

NREFE

⊙
(y) = REFE

⊙
(0L, y)

= REF (r1(0L), r1(y))⊙ REF (r2(0L), r2(y))
= REF (0M , r1(y))⊙REF (0M , r2(y))

So, it follows that (NREF )
E
⊙
= NREFE

⊙
.
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5. Restricted Dissimilarity Function

According to the literature, there are different ways to define functions
to measure similarity or dissimilarity between two images. Bustince et al.
[10] provided the notion of restricted dissimilarity functions based on error
metric for images proposed by [1].

Definition 5.1. Let L be a bounded lattice. A function dL : L2 → L is called
a restricted dissimilarity function on L (for short L-RDF) if it satisfies, for
all x, y, z ∈ L, the following conditions:
(D1) dL(x, y) = dL(y, x);
(D2) dL(x, y) = 1L if and only if either x = 1L and y = 0L or x = 0L and
y = 1L;
(D3) dL(x, y) = 0L if and only if x = y;
(D4) if x 6L y 6L z then dL(x, y) 6L dL(x, z) and dL(y, z) 6L dL(x, z).

As we have made for restricted equivalence functions, here we apply both
extension methods via retractions and via e-operators to extend restricted
dissimilarity functions.

Proposition 5.2. Let M be a (r, s)-retract of L and suppose r is such that
r(x) = 0M if and only if x = 0L and r(x) = 1M if and only if x =
1L. If dM : M2 → M a restricted dissimilarity function, then dEM(x, y) =
s(dM(r(x), r(y))) for each x, y ∈ L satisfies (D1), (D2) and (D4). More-
over, dL(x, x) = 0L for every x ∈ L.

Proof: It is clear that (D1) holds from commutativity of dM . Moreover,
for every x ∈ L it follows that dEM(x, x) = s(dM(r(x), r(x))) = s(0M) = 0L.
So, it remains to prove (D2) and (D4).

Supposing dEM(x, y) = 1L then we have that s(dM(r(x), r(y))) = 1L which
implies dM(r(x), r(y)) = r(1L) = 1M and hence either r(x) = 1M and r(y) =
0M or r(x) = 0M and r(y) = 1M . Since r(x) = 0M if and only if x = 0L
and r(x) = 1M if and only if x = 1L then either x = 1L and y = 0L or
x = 0L and y = 1L. On the other hand, dEM(1L, 0L) = s(dM(r(1L), r(0M))) =
s(dM(1M , 0M)) = s(1M) = 1L. By item 1 it holds that dEM(0L, 1L) = 0L.
Therefore, dEM satisfies (D2).

Now, take x, y, z ∈ L such that x 6L y 6L z. In this case, we have that
r(x) 6M r(y) 6M r(z) and hence dM(x, y) 6L dM(x, z). Then

dEM(x, y) = s(dM(r(x), r(y))) 6L s(dM(r(x), r(z))) = dEM(x, z)
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Analogously, one can prove that dEM(y, z) 6L dEM(x, z), so (D4) holds.
�

In other words, Proposition 5.2 says that the extension method via retrac-
tions is not efficient to extend restricted dissimilarity functions, since only a
weak version of this kind of function is recovered. The same happened for
the extension of restricted equivalence functions with this method, as seen
in Section 4.1. Using the extension method via e-operators, though, makes
possible to extend restricted dissimilarity functions successfully.

Proposition 5.3. Let M E L with respect to (r1, r2, s), ⊙ : M ×M → L be
an e-operator and dM : M2 → M a restricted dissimilarity function. Then
the function (dM)E

⊙
: L2 → L given by

(dM)E
⊙
(x, y) = dM(r1(x), r1(y))⊙ dM(r2(x), r2(y)) (18)

for all x, y ∈ L, is a restricted dissimilarity function on L.

Proof: Similar to proof of Theorem 4.14.
�

The following theorem proposes a way to construct restricted dissimilarity
functions from restricted equivalence functions.

Theorem 5.4. Let REF : L2 → L be an L-REF with respect to N . If N ′

a frontier L-negation (not necessarily equal to N) then, the function defined
by

dL(x, y) = N ′(REF (x, y)) for all x, y ∈ L (19)

is a restricted dissimilarity function.

Proof: Analogously to the proof of Theorem 5 in [8].
�

Corollary 5.5. Let M E L with respect to (r1, r2, s), ⊙ : M × M → L

be an e-operator and REF : M2 → M a restricted equivalence function
with respect to a negation N . If N ′ is a frontier fuzzy negation on M , then
dL : L2 → L given by dL(x, y) = N ′E

⊙
(REFE

⊙
(x, y)) for all x, y ∈ L, is a

restricted dissimilarity function.

Proof: Straightforward from Proposition 4.14, Theorem 4.16 and Theorem
5.4.

�
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6. Normal Ee,N-functions

In this section we turn our attention to study the extension of the Normal
Ee,N -funtions and its properties preserved by the extension method. Normal
Ee,N -funtions are general comparison operators that consider the fixed point
of a given negation.

It is known that not every strong fuzzy negation N defined on a bounded
lattice has a fixed point e. But if such point exists, the concept of normal
Ee,N -functions can be defined as follows.

Definition 6.1. [8] Let e be a fixed point of a strong L-negation N . A
function Ee,N : L→ L is called a normal Ee,N -function associated to N if it
satisfies the following conditions:

1. Ee,N(x) = 1L if and only if x = e;

2. Ee,N(x) = 0L if and only if x = 0L or x = 1L;

3. For all x, y ∈ L such that either e 6L x 6L y or y 6L x 6L e it follows
Ee,N(y) 6L Ee,N(x);

4. Ee,N(x) = Ee,N(N(x)) for all x ∈ L.

Proposition 6.2. Let M be a (r, s)-retract of L and e be a fixed point of a
strong negation N : M → M . If Ee,N : M → M is a normal Ee,N -function
associated to N then the function given by (Ee,N)

E(x) = s(Ee,N(r(x))) for
each x ∈ L satisfies

1. (Ee,N)
E(s(e)) = 1L;

2. if r is a lower retraction and (Ee,N)
E(x) = 1L then s(e) 6L x;

3. if r is an upper retraction and (Ee,N)
E(x) = 1L then x 6L s(e);

4. if r(x) = 0M if and only if x = 0L and r(x) = 1M if and only if x = 1L
then (Ee,N)

E(x) = 0L if and only if x = 0L or x = 1L;

5. For all x, y ∈ L such that either s(e) 6L x 6L y or y 6L x 6L s(e) it
follows (Ee,N)

E(y) 6L (Ee,N)
E(x);

6. (Ee,N)
E(x) = (Ee,N)

E(NE(x)) for all x ∈ L;

Proof: First of all, notice that if e is a fixed point of N , then NE(s(e)) =
s(N(r(s(e)))) = s(N(e)) = s(e) what means that s(e) is a fixed point of NE .
Taking this into account, it follows that:

1. (Ee,N)
E(s(e)) = s(Ee,N(r(s(e)))) = s(Ee,N(e)) = s(1M) = 1L;
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2. If (Ee,N)
E(x) = 1L for a x ∈ L then s(Ee,N(r(x))) = 1L what implies

Ee,N(r(x)) = 1M and hence by Definition 6.1 we have r(x) = e. Since
r is a lower retraction s ◦ r 6 idL then s(e) = s(r(x)) 6L x.

3. Analogous to the previous item, considering that idL 6 s ◦ r if r is an
upper retraction.

4. Suppose (Ee,N)
E(x) = 0L for a x ∈ L. Thus, = s(Ee,N(r(x))) = 0L

which means that Ee,N(r(x)) = 0M implying r(x) = 0M or r(x) =
1M . Hence x = 0L or x = 1L. On the other hand, it is clear that
(Ee,N)

E(0L) = (Ee,N)
E(1L) = 0L.

5. If s(e) 6L x 6L y then e 6M r(x) 6M r(y). In this case, we have
that (Ee,N)

E(y) = s(Ee,N(r(y))) 6L s(Ee,N(r(x))) = (Ee,N)
E(x) since

Ee,N(r(y)) 6M Ee,N(r(x)). Analogously, one can prove the same thesis
supposing y 6L x 6L s(e).

6. For each x ∈ L it follows

(Ee,N)
E(NE(x)) = s(Ee,N(r(N

E(x))))
= s(Ee,N(r(s(N(r(x))))))
= s(Ee,N(N(r(x))))
= s(Ee,N(r(x)))
= (Ee,N)

E(x)

�

Remark 4. Proposition 6.2 shows again that the extension method via re-
traction is not efficient in extending normal Ee,N -functions, since property
1 of Definition 6.1 is not met by (Ee,N)

E, and just a weaker version holds
(items 2 and 3 of Proposition 6.2), as observed for restricted equivalence
functions and restricted dissimilarity functions.

Proposition 6.3. Let M E L with respect to (r1, r2, s), ⊙ : M ×M → L

be an e-operator and e be a fixed point of strong negation N : M → M . If
Ee,N : M → M is a normal Ee,N-function then its extension (Ee,N)

E
⊙
: L→ L

given by
(Ee,N)

E
⊙
(x) = Ee,N(r1(x))⊙Ee,N(r2(x))

for each x ∈ L, is a normal Es(e),NE

⊙
-function.

Proof: It is clear that s(e) is a fixed point of NE
⊙

since e is a fixed point of
N . Moreover,
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1. if (Ee,N)
E
⊙
(x) = 1L then Ee,N(r1(x))⊙Ee,N (r2(x)) = 1L and by Lemma

4.15 we have Ee,N(r1(x)) = 1M and Ee,N(r2(x)) = 1M which means
that r1(x) = e and r2(x) = e. Hence s(e) = s(r1(x)) 6L x and x 6L

s(r2(x)) = s(e) allowing to conclude that x = s(e). On the other hand,

(Ee,N)
E
⊙
(s(e)) = Ee,N(r1(s(e)))⊙ Ee,N(r2(s(e)))

= Ee,N(e)⊙Ee,N(e)
= 1M ⊙ 1M = s(1M) = 1L

Therefore, (Ee,N)
E
⊙
(x) = 1L if and only if x = s(e).

2. Note that

(Ee,N)
E
⊙
(0L) = Ee,N(r1(0L))⊙ Ee,N(r2(0L))

= Ee,N(0M)⊙ Ee,N(0M)
= 0M ⊙ 0M = s(0M) = 0L

Similarly, one can verify that (Ee,N)
E
⊙
(1L) = 0L.

Now, suppose (Ee,N)
E
⊙
(x) = 0L, i.e. Ee,N(r1(x)) ⊙ Ee,N(r2(x)) = 0L.

Thus, Ee,N(r1(x)) = 0M and Ee,N(r2(x)) = 0M by Lemma 4.15 and
hence either r1(x) = 0M or r1(x) = 1M or r2(x) = 0M or r2(x) = 1M
which implies that x = 0L or x = 1L.

3. Supposing s(e) 6L x 6L y it is easy to see that e 6M r1(x) 6M

r1(y) and e 6M r2(x) 6M r2(y), then Ee,N(r1(y)) 6M Ee,N(r1(x)) and
Ee,N(r2(y)) 6M Ee,N(r2(x)) and hence Ee,N(r1(y)) ⊙ Ee,N(r2(y)) 6L

Ee,N(r1(x))⊙ Ee,N(r2(x)) since ⊙ is isotonic. Therefore, (Ee,N)
E
⊙
(y) =

Ee,N(r1(y))⊙ Ee,N(r2(y)) 6L Ee,N(r1(x)) ⊙ Ee,N(r2(x)) = (Ee,N)
E
⊙
(x).

Case y 6L x 6L s(e) is analogous.

4. Finally, take x ∈ L. We know that r1(x) 6M r2(x) and henceN(r2(x)) 6M

N(r1(x)) and by Lemma 4.11 we have that r1(N(r1(x))⊙N(r2(x))) =
N(r2(x)) and r2(N(r1(x))⊙N(r2(x))) = N(r1(x)). Therefore,

(Ee,N)
E
⊙
(NE

⊙
(x)) = Ee,N(r1(N

E
⊙
(x)))⊙ Ee,N(r2(N

E
⊙
(x))

= (Ee,N(r1(N(r1(x))⊙N(r2(x)))))⊙
(Ee,N(r2(N(r1(x))⊙N(r2(x)))))

= Ee,N(N(r2(x)))⊙Ee,N(N(r1(x)))
= Ee,N(N(r1(x)))⊙Ee,N(N(r2(x)))
= (Ee,N)

E
⊙
(x)

�
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Theorem 6.4. Let N be a strong L-negation and e be a fixed point of N .
If REF : L2 → L is an L-REF, then the function given by Ee,N(x) =
REF (x,N(x)) for all x ∈ L is a Ee,N -function.

Proof:

1. Suppose that Ee,N(x) = 1L. Thus, REF (x,N(x)) = 1L and by (L2)
we have x = N(x). Then x = e. Reciprocally, if x = e then Ee,N(e) =
REF (e,N(e)) = REF (e, e) = 1L.

2. If Ee,N(x) = 0L, then REF (x,N(x)) = 0L. Hence either x = 1L and
N(x) = 0L or x = 0L and N(x) = 1L, i.e. x = 1L or x = 0L. On the
other hand, if x = 0L then Ee,N(x) = REF (0L, N(0L)) = 0L and if
x = 1L then Ee,N(x) = REF (1L, N(1L)) = 0L.

3. Note that if e 6L x 6L y then N(y) 6L N(x) 6L N(e). Since N(e) = e

we have that N(y) 6L N(x) 6L x 6L y and hence REF (y,N(y)) 6L

REF (x,N(x)) by (L5). Thus Ee,N(y) 6L Ee,N(x).
Now, suppose that y 6L x 6L e. In this case, we have that y 6L

x 6L N(x) 6L N(y) and again by (L5) it can be concluded that
REF (y,N(y)) 6L REF (x,N(x)), i.e. Ee,N(y) 6L Ee,N(x).

4. For all x ∈ L we have

Ee,N(N(x)) = REF (N(x), N(N(x)))
= REF (N(x), x)
= REF (x,N(x))
= Ee,N(x)

�

Corollary 6.5. Let M EL with respect to (r1, r2, s), ⊙ : M ×M → L be an
e-operator and REF : M2 → M a restricted equivalence function. If e is a
fixed point of a strong negation N on M , then the function Es(e),NE

⊙
: L2 → L

given by Es(e),NE

⊙
(x) = REFE

⊙
(x,NE

⊙
(x)) for all x ∈ L, is a normal Es(e),NE

⊙
-

function.

Proof: Straightforward from Proposition 4.14 and Theorem 6.4.
�
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7. Construction of similarity, distance and entropy measures

Restricted equivalence functions and restricted dissimilarity functions on
the unit interval have been used to define similarity measures and distance
measures [8] between fuzzy sets.

In this section we define similarity measures and distance measures on
general L-fuzzy sets giving some methods to construct them. In particular,
restricted equivalence and restricted dissimilarity functions on a bounded
lattice L are applied.

Definition 7.1. [16] Let L be a bounded lattice. An L-fuzzy set over the
finite universe U is a mapping F : U −→ L. We denote by n ∈ N the
cardinal number of the universe U and by LF (U) to the set of all the L-fuzzy
sets in the universe U .

In the development of this section we need the concept of aggregation
function. Besides, the aggregation functions used in the constructions must
fulfill some extra properties.

Definition 7.2. [25] Let L be a bounded lattice. An aggregation function A

is a mapping A : Ln −→ L satisfying the properties:

(A1) A(0L, . . . , 0L) = 0L, A(1L, . . . , 1L) = 1L, and

(A2) A(x1, . . . , xn) 6L A(y1, . . . , yn) whenever xi 6L yi for all i = {1, . . . , n},
namely, A is monotonic increasing in all its arguments.

The properties we demand are:

(A3) A(x1, . . . , xn) = 0L if and only if xi = 0L for all i ∈ {1, . . . , n};

(A4) A(x1, . . . , xn) = 1L if and only if xi = 1L for all i ∈ {1, . . . , n}.

Both L-REF and L-RDF can be used to compare two L-fuzzy sets. How-
ever, it is important to mention that there exist different axiomatic defi-
nitions of similarity measures on fuzzy sets (the lattice L = [0, 1]). We
base our definition on the one by Liu [22], but generating a slightly differ-
ent notion of similarity measure on L-fuzzy sets. In the rest of this section
U = {u1, . . . , un}.
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Definition 7.3. Let L be a bounded lattice and N a negation on L. A sim-
ilarity measure on L-fuzzy sets is a mapping SM : LF (U) × LF (U) −→ L

such that:

(SM1) SM(F1, F2) = SM(F2, F1) for every F1, F2 ∈ LF (U).

(SM2) SM(F1, F2) = 0L if and only if {F1(ui), F2(ui)} = {0L, 1L} for all
ui ∈ U .

(SM3) SM(F1, F2) = 1L if and only if F1(ui) = F2(ui) for all ui ∈ U.

(SM4) For all F1, F2, F3 ∈ F (X), if F1 ≤LF F2 ≤LF F3, then SM(F1, F3) 6L

SM(F1, F2) and SM(F1, F3) 6L SM(F2, F3).

Proposition 7.4. Let L be a bounded lattice, and let N be a strict negation
on L. If A : Ln −→ L is an aggregation function satisfying (A3) and (A4)
and REF : L2 −→ L is an L-REF with respect to N , then the mapping
SM : LF (U)× LF (U) −→ L given by:

SM(F1, F2) = A(REF (F1(u1), F2(u1)), . . . , REF (F1(un), F2(un)))

is a similarity measure.

Proof: Straightforward by Prop. 4 of [7]. �

Similar to the case of similarity measure, we base the generalization of
distance measure in Liu’s axiomatic definition [22].

Definition 7.5. Let L be a bounded lattice and N a negation on L. A dis-
tance measure on L-fuzzy sets is a mapping D : LF (U)×LF (U) −→ L such
that:

(D1) D(F1, F2) = D(F2, F1) for every F1, F2 ∈ LF (U).

(D2) D(F1, F2) = 0L if and only if F1(ui) = F2(ui) for all ui ∈ U.

(D3) D(F1, F2) = 1L if and only if {F1(ui), F2(ui)} = {0L, 1L} for all ui ∈ U .

(D4) For all F1, F2, F3 ∈ F (X), if F1 ≤LF F2 ≤LF F3, then D(F1, F2) 6L

D(F1, F3) and D(F2, F3) 6L D(F1, F3).

Proposition 7.6. Let L be a bounded lattice. If A : Ln −→ L is an aggre-
gation function satisfying (A3) and (A4) and dL : L2 −→ L is an L-RDF,
then the mapping D : LF (U)× LF (U) −→ L given by:

D(F1, F2) = A(dL(F1(u1), F2(u1)), . . . , dL(F1(un), F2(un)))

is a distance measure.
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Proof: Straightforward by Prop. 4 of [8]. �

Finally, normal functions on the lattice L are applied to construct entropy
measures on [0, 1] [8]. Next, we define and generate entropy functions on a
general lattice L using L-normal Ee,N functions.

Definition 7.7. Let L be a bounded lattice and N a negation on L. An
entropy measure on L-fuzzy sets is a mapping E : LF (U) × LF (U) −→ L

such that:

(E1) E(F ) = 1L if and only if F (u) = e for all u ∈ U ;

(E2) E(F ) = 0L if and only if F (u) = 0L or F (u) = 1L for all u ∈ U ;

(E3) For all F1, F2 ∈ LF such that for all u ∈ U either e 6L F1(u) 6L F2(u)
or F2(u) 6L F1(u) 6L e, it holds E(F2) 6L E(F1);

(E4) E(F ) = E(N(F )) for all F ∈ LF , where N(F ) denotes the L-fuzzy set
whose membership degree for each element u ∈ U is N(F (u)).

Proposition 7.8. Let L be a bounded lattice. If A : Ln −→ L is an ag-
gregation function satisfying (A3) and (A4) and Ee,N is a normal function
associated to N (a strong negation with a fixed point e), then the mapping
E : LF (U)× LF (U) given by

E(F ) = A(Ee,N(F (u1)), . . . , Ee,N(F (un)))

is an entropy measure.

Proof: Straightforward by Prop. 4 of [8]. �

Remark 5. Note that each color image is composed of several channels. For
example, an RGB image is composed of three channels: red, green and blue.
In this setting, each pixel of the image is associated with three values in the
chain (bounded lattice L = {0, 1, . . . , 255}, i.e., the pixel xij = (aij , bij, cij)
where aij , bij, cij ∈ L.
Thus given k ∈ N

+, the lattice of matrixes of Lk with dimension m× n can
be seen as the set of all images of m× n pixels with k channels.
Consequently, the given constructions on this section can be applied to define
the similarity, dissimilarity and entropy measures on color images.

Example 7.9. Due to the inherent uncertainty associated with the inten-
sity of each pixel, the representation of an image by means of interval-valued
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SM(A,B) SM(A,C) SM(A,D)
[0.9466, 0.9735] [0.8834, 0.9374] [0.8215, 0.8998]

Table 2: Similarity measure between image A and images B, C and D

has been proposed in the literature [2, 19, 21, 24]. Based on this repre-
sentation, each pixel is associated with an interval (a closed subinterval of
the unit interval, as in Example 4.10). The interval associated with each
pixel can be easily generated by taking the minimum intensity (of the orig-
inal image) of a small area around the pixel as the lower bound and the
maximum intensity as the upper bound. Considering the interval-valued im-
ages in Figure 2, which image (B, C or D) is more similar to image A?
In order to answer this question, in this example we propose to use a sim-
ilarity measure constructed by means of Proposition 7.5 taking as aggrega-

tion function A(x1, . . . ,xn) =

[

1
n

n
∑

i=1

xi,
1
n

n
∑

i=1

xi

]

and as restricted equivalence

function the one used in Example 4.17. In this way, the similarity mea-
sure allows to stablish a comparison between images. The similarity obtained
is shown in Table 2. Observe that, according to this similarity measure,
SM(A,D) ≤L SM(A,C) ≤L SM(A,B), which agrees with visual compari-
son of images.

8. Final Remarks

This work has addressed two different methods (via retractions EMR and
via e-operators EMP) to extend restricted equivalence functions, restricted
dissimilarity functions and Ee,N -normal functions.

As observed in previous works [28, 30, 31], results have shown that the
EMP method is more efficient in preserving properties of extended operators.
We have noted that it is not possible to extend restricted equivalence func-
tions by using EMR (just a weakened version of it, see Section 4.1). However,
the extension by e-operators has worked successfully.

We have also studied a methodology to obtain information measures,
such as similarities, distances and entropy measure for L-fuzzy sets. This
methodology is based on the aggregation, with certain conditions, of re-
stricted equivalence functions, restricted dissimilarities functions and Ee,N -
normal functions, respectively.

We have illustrated the theoretical developments of this work with several
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Interval-valued image A

Interval-valued image B

Interval-valued image C

Interval-valued image D

Figure 2: Interval-valued images (lower bound on the left and upper bound on the right)
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examples where restricted equivalence functions have been extended to the
interval setting. By aggregating interval restricted equivalence functions,
we have obtained similarity measures that can be used to compare interval-
valued images, where the intensity of each pixel is represented by an interval.

For future works we intend to continue studying information measures
defined on lattices, specially on those where there are elements which are not
comparable. We also believe that some already defined concepts, for instance
the length, might be useful for the interpretation of these measures.
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