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Summary 

 

The objective of this thesis is to study the proteins secreted by the edible and worldwide 

cultivated white rot basidiomycete fungus Pleurotus ostreatus with three major goals: to 

determine the set of proteins secreted under different nutritional conditions, to determine the 

effect of the monokaryotic and dikaryotic mycelial conditions on the secretome, and to 

explore the relationship between the transcriptome of the secreted proteins and the actual 

secretome in different monokaryotic strains. 

In the first chapter of this thesis, we will review several basidiomycete secretome analyses 

comparing the results obtained using different analytical techniques and discussing some 

representative examples. We will pay a special attention to the lignocellulolytic enzymes 

secreted and to the different fungal lifestyles. This chapter is an updated version of the paper 

entitled Comparative analysis of secretomes in basidiomycete fungi that we published in 

Journal of Proteomics in 2014 as a summary of the state of the art. The main conclusions of 

this chapter are that a combination of genomic, transcriptomic and proteomics techniques is 

still the best approach for analyzing fungal secretomes, allowing to the identification of 

secretion patterns associated to the different lifestyles. 

In the third chapter, we screened two P. ostreatus monokaryotic genomes to identify 

bioinformatically the genes coding for proteins targeted for secretion. The study was made 

using the two monokaryotic protoclones (mkPC9 and mkPC15) whose genomes had been 

previously sequenced and annotated in a collaborative project carried out with the Joint 

Genome Institute. These two protoclones contain the two nuclei present in the commercial 

dikaryotic strains dkN001. The results obtained showed that, surprisingly, both strains differ 

in their lignocellulose degrading genomic capabilities. mkPC9 have less CAZy genes 

annotated, especially in the Glycosil hydrolases (GH) class. Nevertheless, mkPC9 grows 

better than mkPC15 on lignocellulosic substrates and has a higher enzyme secretion capacity 

when growing in the presence of wood. The transcription of the genes coding for secretable 

proteins was studied by RNAseq analysis and we could conclude that, whereas the genome 

profile of the secretome was similar in the two strains, the corresponding transcriptome 
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profiles were different between them and in different culture conditions and we observed a 

concentrated transcriptional activity in few genes per function and an increased importance 

of the glycosil hydrolases and proteins without a functional classification. These results 

highlight the importance of adding additional data to the gene lists produced by genome 

sequence analysis for gaining a more accurate picture of the biological process under study. 

P. ostreatus secretes a huge variety of lignocellulose degrading enzymes when cultured in 

the presence of wood. More than 20% of them lack a known enzymatic function. 

Transcriptome analysis noted the importance of these proteins, further confirmed by 

proteomics. Using domain structure prediction, we were able to give an insight about the 

possible role of several proteins, including a xylanase and a AA10 LPMO. This chapter is a 

version of the manuscript entitled Comparative and transcriptional analysis of the predicted 

secretome in the lignocellulose‐degrading basidiomycete fungus Pleurotus ostreatus 

published in Environmental Microbiology. 

Finally, in the fourth chapter, mass spectrometry analyses were used to confirm the presence 

of these enzymes acting on the lignocellulosic substrates. We compared the proteins secreted 

by the two monokaryons studied in the bioinformatics analysis with that of dikaryon that 

contains the two nuclei present in them. Interestingly, monokaryons behave in a very 

different manner; mkPC15 showed a weakest production of lignocellulose degrading 

enzymes than mkPC9 and dkN001 when cultured using wood as a carbon source. Moreover, 

dkN001 was able to secrete more plant cell wall decomposing enzymes, correlating with their 

superior capacity to grow on lignocellulosic substrates. Furthermore, the three strains were 

cultured in three different media using with glucose, wood or both (glucose and wood) as a 

carbon source. As expected, we identify a higher number of lignocellulose degrading 

enzymes in wood-containing media, especially glycosyl-hydrolases, carbohydrate esterases 

and polysaccharide lyases.  

Fungal lignocellulose degradation is the result of the synergistic action of several enzymes. 

These thesis improve our overall understanding of plant biomass degradation as a step to 

achieve the goal of using biomass as a sustainable source of energy to support future needs.  
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Resumen 

 

El objetivo de esta tesis es estudiar las proteínas secretadas por el hongo basidiomiceto de la 

podredumbre blanca Pleurotus ostreatus, un excelente comestible ampliamente cultivado por 

todo el mundo, con tres propósitos principales: determinar el conjunto de proteínas secretadas 

en diferentes condiciones nutricionales, determinar el efecto de las cepas monocarióticas o 

dicarióticas en el secretoma, y explorar la relación entre el transcriptoma de las proteínas 

secretadas y su presencia en diferentes medios de cultivo. 

En el primer capítulo de esta tesis, revisaremos varios análisis de secretomas de 

basidiomicetos comparando los resultados obtenidos utilizando diferentes técnicas analíticas 

y discutiendo algunos ejemplos representativos. Prestaremos especial atención a las enzimas 

lignocelulolíticas secretadas y a los diferentes estilos de vida fúngicos. Este capítulo es una 

versión actualizada del artículo titulado “Comparative analysis of secretomes in 

basidiomycete fungi” que publicamos en Journal of Proteomics en 2014 como una  revisión. 

En este capítulo, concluimos que una combinación de técnicas genómicas, transcriptómicas 

y proteómicas sigue siendo el mejor enfoque para analizar secretomas fúngicos, y para 

permitir la identificación de patrones de secreción asociados a los diferentes estilos de vida. 

En el tercer capítulo, hemos seleccionado dos genomas monocarióticos de P. ostreatus para 

identificar bioinformáticamente los genes que codifican las proteínas dirigidas a la secreción. 

El estudio se realizó utilizando los dos protoclones monocarióticos (mkPC9 y mkPC15) 

cuyos genomas habían sido previamente secuenciados y anotados en un proyecto 

colaborativo llevado a cabo con el Joint Genome Institute. Estos dos protoclones contienen 

los dos núcleos presentes en las cepas dicarióticas de la cepa comercial dkN001. Los 

resultados obtenidos mostraron que, sorprendentemente, ambas cepas difieren en sus 

capacidades genómicas para degradar lignocelulosa. mkPC9 tiene menos genes CAZy 

anotados, especialmente glycosil hidrolasas (GH). Sin embargo, crece mejor que mkPC15 

sobre sustratos lignocelulósicos y tiene una mayor capacidad de secreción enzimática cuando 

crece en presencia de madera. La transcripción de los genes codificantes para proteínas 

secretables fue estudiada por RNAseq,  y se observó que mientras el número de genes 

clasificados para cada función es similar en las dos cepas, los correspondientes perfiles 

transcriptómicos son diferentes entre ellos y también diferentes según las condiciones de 
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cultivo. La actividad transcripcional se concentra en pocos genes por función, y se observó 

que las glicosil hidrolasas y las proteínas sin una clasificación funcional tienen una mayor 

importancia de lo que se infería analizando su número. Estos resultados ponen de relieve la 

importancia de agregar datos adicionales a las listas de genes producidos por el análisis 

genómico para obtener una imagen más precisa del proceso biológico en estudio. P. ostreatus 

secreta una gran variedad de enzimas degradadoras de lignocelulosa cuando se cultiva en 

presencia de madera. Más del 20% de las proteínas secretadas carece de una función 

enzimática conocida. El análisis de transcriptoma subraya la importancia de estas proteínas, 

confirmada además por la proteómica. Usando la predicción de la estructura de las proteínas, 

pudimos inferir el posible papel de varias proteínas, incluyendo una xilanasa y un AA10 

LPMO. Este capítulo es una versión del manuscrito titulado “Comparative and 

transcriptional analysis of the predicted secretome in the lignocellulose‐degrading 

basidiomycete fungus Pleurotus ostreatus” publicado en Environmental Microbiology en 

2016. 

Finalmente, en el cuarto capítulo, se utilizaron análisis de espectrometría de masas para 

confirmar la presencia de estas enzimas actuando sobre los sustratos lignocelulósicos. Las 

tres cepas se cultivaron en tres medios diferentes usando glucosa, madera o ambos (glucosa 

y madera) como fuente de carbono. Como era de esperar, identificamos un mayor número de 

enzimas de degradación de lignocelulosa en medios que contienen madera, especialmente 

glicosil hidrolasas, carbohidrato esterasas y polisacárido liasas. 

Además, observamos que las tres cepas se comportan de manera diferente. mkPC15 mostró 

una producción más débil de enzimas de degradación de lignocelulosa que mkPC9 y dkN001 

cuando se cultivó usando madera como fuente de carbono. La cepa dkN001 fue capaz de 

secretar más enzimas de descomposición de la pared celular de las plantas, como corresponde 

a su mayor capacidad para crecer en sustratos lignocelulósicos.  

La degradación fúngica de la lignocelulosa es el resultado de la acción sinérgica de varias 

enzimas. Esta tesis mejora nuestra comprensión general de la degradación de la biomasa 

vegetal para lograr el objetivo de utilizar la biomasa como una fuente sostenible de energía 

para el futuro. 
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1. – INTRODUCTION  

The fungal lifestyle depends on the absorption of environmental nutrients that are made 

available via the action of sets of secreted hydrolyzing enzymes. Consequently, protein 

secretion is crucial for fungal life and growth. This high capacity of enzyme secretion has 

been exploited by industry, where compounds secreted by fungi have been used for decades 

(Conesa, Punt, van Luijk, & van den Hondel, 2001; Shoji, Arioka, & Kitamoto, 2008). The 

secretome is defined as the set of proteins secreted by a cell or an organism at a given time 

(Tjalsma, Bolhuis, Jongbloed, Bron, & van Dijl, 2000). There are two points that must be 

kept in mind in this context. First, in a broad sense, the secretome includes both the proteins 

that are released into the surrounding medium and those that remain bound to the membrane 

or cell wall or that are integral membrane proteins. Second, the secretome, like the 

transcriptome, is highly variable depending on environmental conditions, including the 

growth substrate, temperature and growth phase. Although the number of fungal 

transcriptomic studies is steadily increasing, it is not sufficiently large to draw global 

conclusions to explain how a secretome is modulated in response to environmental conditions 

in different species. Hence, in this chapter, we review the characteristics of the secretomes of 

some model organisms that are representative of different basidiomycete lifestyles, paying 

special attention to the enzymes involved in lignocellulose degradation. 

Lignocellulose, the major reservoir of organic carbon on Earth, is recalcitrant to turnover and 

resistant to microbial and enzymatic attacks because of the combination of the protective 

action of lignin, the cementing action of hemicellulose and the crystalline structure of 

cellulose. From the perspective of a geological time frame, lignocellulose could have served 

as a major carbon sink until the appearance of saprophytic lignin-degrading fungi at the end 

of the Carboniferous period (Floudas et al., 2012). Filamentous fungi play an important role 

in carbon cycling because some of these fungi, grouped in the phylum Basidiomycota, secrete 

large amounts of lignocellulose-degrading enzymes. These fungi are the only organisms 

known to degrade lignocellulose at a global scale. Lignocellulolytic basidiomycetes use two 

alternative strategies for attacking lignocellulose. White rot basidiomycetes degrade the 

lignin moiety extensively before attacking cellulose, whereas brown rot basidiomycetes 

cause limited alterations of lignin while primarily degrading cellulose. These two processes 
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are carried out by complex portfolios of secreted enzymes whose expression and export are 

modulated in response to environmental and substrate changes. White rot basidiomycetes 

attack the lignin moiety of lignocellulose using oxidative enzymes classified as manganese 

peroxidases (MnP, EC 1.11.1.13), versatile peroxidases (VP, EC 1.11.1.16), lignin 

peroxidases (LiP, EC 1.11.1.14) and phenol oxidases (benzenediol:oxygen oxidoreductase 

Pox, laccase, EC 1.10.3.2). Not all white rot basidiomycetes contain all of these enzymes. 

For instance, Phanerochaete chrysosporium does not produce laccases, while Pleurotus 

ostreatus does not produce lignin peroxidases. In contrast, the production of manganese 

peroxidases and versatile peroxidases seems to be a common feature of this group. In addition 

to these main ligninolytic enzymes, there are a number of accessory enzymes that participate 

in the process, including hemeperoxidases such as cytochrome c peroxidases (EC 1.11.1.5), 

chloroperoxidases (EC 1.11.1.10) and dye decolorizing peroxidases (DyP, EC 1.11.1.19), in 

addition to glyoxal oxidases (GLOX) and aryl-alcohol oxidases (AAO, EC 1.1.3.7), pyranose 

dehydrogenases (EC 1.1.99.29), and methanol oxidases (EC 1.113.13).The cellulose moiety 

of the lignocellulose is degraded by carbohydrate-active enzymes (CAZy) classified as 

exocellulases (cellobiohydrolases, CBH, EC 3.2.1.91), subclassified as types I and II 

depending on their attack of the reducing or to the non-reducing end of cellulose, respectively, 

as well as endocellulases (EC 3.2.1.4) and cellobiases (beta-glucosidases, EC 3.2.1.21). 

Finally, the hemicellulose moiety of lignocellulose is degraded by endoxylanases (EC 

3.2.1.8), α-glucuronidases (EC 3.2.1.131), acetyl-xylan esterases (EC 3.1.1.72), 

arabinofuranosidases (EC 3.2.1.55), ferulic acid esterases (feruloyl esterases, EC 3.1.1.73) 

and β-xylosidases (EC 3.2.1.37), among other enzymes(Sun, Tian, Diamond, & Glass, 2012).  

In addition to the enzymatic complexity described above, there is another level of complexity 

that should be considered: each of these enzymes is encoded by multigenic families whose 

members are differentially regulated (R Castanera et al., 2012). For instance, the genome of 

the white rot basidiomycete P. ostreatus encodes 10 phenol oxidase genes, while the brown 

rot basidiomycete Postia placenta encodes 34 putative glycoside hydrolases (GH). This 

multilayered complexity precludes us from understanding the process of lignocellulose 

degradation a gene-to-gene level and from exploiting this process in more efficient industrial 

applications. 
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The vast renewable carbon resource represented by lignocellulose not only serves as the raw 

material of the paper industry but is also the focus of attention as a potential source of second-

generation biofuels. However, to fully utilize the potential of lignocellulose, various 

problems associated with its practical utilization must be solved. One of these key problems 

is the low susceptibility of lignocellulose to the hydrolysis processes used to produce 

fermentable sugars. This low susceptibility is due to the crystalline structure of cellulose 

fibrils surrounded by hemicellulose and to the presence of the lignin seal, which prevents 

penetration by degrading enzymes. To overcome these structural barriers, thermochemical 

lignocellulose pretreatments are necessary to break down the lignin protective shield and the 

cellulose crystal structure. However, these pretreatments are expensive in terms of energy 

costs and are environmentally unfriendly. Biological pretreatments based on the enzymatic 

activity of white rot basidiomycetes are considered safe and environmentally friendly 

methods for the removal of lignin from lignocellulose (Hatakka & Helsinki, 2013). However, 

our limited understanding of the ways in which environmental or the culture conditions affect 

the expression of the ligninolytic enzyme-encoding genes and the export of the corresponding 

enzymes results in a low efficiency of these processes. 

There are currently more than 781 available fungal genomes sequenced, more than 272 come 

from basidiomycetes (JGI Mycocosm, March 2017(I V Grigoriev et al., 2012). These 

sequences offer us the opportunity to predict proteins that can be secreted (bioinformatics 

secretome) before performing more costly and complex secretome analyses. However, one 

question that arises concerns the correlation between the bioinfosecretome and the actual 

secretome. This question is pertinent not only because the actual secretome represents the 

response to particular environmental culture conditions or developmental stages, whereas 

current bioinfosecretomes include all secretion possibilities, as discussed above, but also 

because novel secretion mechanisms and pathways have been discovered. 

In the following sections, we review the strategies for producing bioinformatics and 

experimental secretomes in basidiomycetes (Figure 1), comparing the results obtained 

through both approaches and discussing some representative examples of these secretomes, 

with special attention given to the lignocellulolytic enzymes and the different fungal 

lifestyles. 
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Fig. 1. Secretome analysis flowchart. 
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2. - BIOINFORMATIC SECRETOMES IN BASIDIOMYCETES 

 

Bioinfosecretomes (bioinformatics secretomes) are in silico-predicted secretomes based on 

the identification of secretion signals in the putative proteins corresponding to gene models 

that are automatically annotated in a genome sequence. A preliminary consideration to bear 

in mind is that the quality of a bioinfosecretome will depend on the quality of the genome 

annotation, and consequently, these secretomes will evolve along with new versions of 

genome assemblies and annotations.  

The conventional fungal protein secretion pathway requires secretion-oriented proteins to 

contain an amino-terminal peptide sequence (N terminal sequence, Signal Peptide, SP) that 

targets them to the endoplasmic reticulum (ER), where the proteins will be correctly folded, 

post-translationally modified (through glycosylation, disulfide bridge formation, 

phosphorylation, and subunit assembly), and pass through an ER quality control process, 

where misfolded proteins will be degraded via the unfolded protein response (UPR) and the 

ER-associated protein degradation (ERAD) mechanisms (Conesa et al., 2001). Subsequently, 

the secretion-targeted proteins enter vesicles of the cis-Golgi apparatus, where they dock and 

fuse, and additional modifications can take place. Finally, the proteins are ferried by the 

secretory vesicles to the plasma membrane, where vesicles fuse, and the proteins are secreted 

(Conesa et al., 2001; Fonzi, 2009; Shoji et al., 2008). 

The requirement for an SP sequence in secreted proteins can be used to predict the subcellular 

location of a protein via in silico methods. For a detailed review of the bioinformatics tools 

available for secretome analysis see Caccia et al.(2013). A commonly used protocol to initiate 

the analysis of fungal bioinfosecretomes was described by Müller et al. (2008), who predicted 

the occurrence of secretory targeting signals using SignalP software 

(http://www.cbs.dtu.dk/services/SignalP/), which takes into account the N-terminal region 

(70 amino acids) of the protein sequence (J Bendtsen at al., 2004). An alternative to the 

SignalP program is PHOBIUS software (http://phobius.sbc.su.se/), which predicts 

transmembrane topology and signal peptides from the amino acid sequence of a protein [13]. 

The initial bioinfosecretome prediction can be refined using other programs or utilities 

designed to predict the subcellular localization of the proteins, such as ProtComp software 

(www.softberry.com), TARGETP (http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson, 
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2000) or WoLF PSORT (http://wolfpsort.org/) (P Horton et al., 2007), to scan the protein for 

the presence of multiple transmembrane motifs (TMHMM; 

http://www.cbs.dtu.dk/services/TMHMM/), selecting those models with 0 or 1 

transmembrane motifs located at the N-terminus, and to predict GPI-anchor proteins (big-PI; 

http://mendel.imp.ac.at/gpi/fungi_server.html) (Eisenhaber at al., 2004). Most genome 

servers at a minimum contain unrefined information about the presence of SPs in annotated 

proteins, providing a starting point for a more complete bioinfosecretome analysis. 

The first report on the bioinformatics prediction of basidiomycete secretomes was for P. 

chrysosporium (Wymelenberg et al., 2005). The authors predicted 268 secreted proteins 

based on the first version of the genome of this white rot fungus (Martinez et al., 2004), 

although this number could be an underestimation of the actual number of secreted proteins 

due to inaccurate and incomplete gene model annotation. Subsequently, based on the second 

version of the genome assembly, these researchers carried out new secretome predictions, 

identifying 769 secreted proteins (Vanden Wymelenberg et al., 2006). The final bioinformatic 

secretome included 7.6% of the total annotated protein models. This number was higher than 

that obtained using a similar approach in the yeast Candida albicans (Lee et al., 2003), and 

407 of the predicted secreted proteins could be classified as glycosyl hydrolases (GH), 

oxidoreductases, peptidases and esterases-lipases. This secretome profile fits the 

saprotrophic lifestyle of P. chrysosporium. 

The secretome of the maize smut, Ustilago maydis, was also studied via in silico methods 

(Mueller et al., 2008). The initial analysis using SignalP and TargetP identified 776 candidate 

secreted proteins, and further refinement with the TMHMM utility (retaining the proteins 

with one predicted transmembrane domain and with one potential GPI-anchor) reduced the 

prediction to 168 secreted proteins and 386 proteins with other functions. The authors 

identified 39 GPI-anchored proteins involved in plant cell wall modification and the 

degradation of other plant components as well as proteins involved in modification of the 

fungal cell wall and a set of extracellular metabolic proteins with potential roles in 

pathogenicity. In addition to the secreted proteins, a large number of proteins without a 

predicted function were identified. These proteins included secreted proteins with internal 

repeats, repetitive protein precursors that are likely to be processed into small peptides in the 

http://wolfpsort.org/
http://mendel.imp.ac.at/gpi/fungi_server.html
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Golgi apparatus, hydrophobins, and effector proteins containing signals for targeting to the 

host nucleus. In summary, the U. maydis bioinfosecretome fits the biotrophic (in contrast to 

saprotrophic or necrotrophic) relationship established by this fungus and its host plant. 

Unconventional protein secretion pathways (UPS pathways) are ER/Golgi independent and 

do not require the presence of an SP sequence in the protein to be exported (Nickel & Seedorf, 

2008). UPS pathways can be experimentally demonstrated  as the export process is not 

affected by the inhibitor brefeldin A (Nickel, 2010). Although the molecular mechanisms and 

machinery components underlying these processes are still unknown, there are two general 

types of UPS: non vesicular (direct translocation across plasma membranes and ABC 

transporters) and vesicular (autophagy-based secretion and proteins that bypass the Golgi 

complex) (Nickel, 2010; Nickel, 2012). The occurrence of UPS pathways in fungi is well 

documented in the case of yeasts (Nombela, 2006). Jain et al. (Jain, 2008) conducted a 

bioinformatics analysis of non-classically secreted proteins in Laccaria bicolor using the 

SecretomeP method (http://www.cbs.dtu.dk/services/SecretomeP/) (Bendtsen et al., 2004). 

Among the proteins found to be unconventionally exported, the authors identified proteins 

involved in carbohydrate metabolism, lectins, and proteases. 

The use of  bioinformatics screening procedures similar to those described above has led to 

the construction of databases such as the Fungal Secretome Knowledgebase (Lum & Min, 

2011) and the Fungal Secretome Database (Choi et al., 2010).  

 

3. - PROTEOMICS METHODS USED TO INVESTIGATE BASIDIOMYCETE 

SECRETOMES 

In contrast to bioinfosecretomes, which provide information about the complete set of 

predicted secreted proteins present in a genome, wet secretomes provide information about 

the set of proteins secreted under given culture conditions, by specific sets of cells, and/or at 

a given time. Nevertheless, analyses of wet secretomes, like analyses of bioinfosecretomes, 

rely on the availability and quality of complete annotated genome sequences for the 

identification of protein tags. Additionally, there are three further considerations that must be 
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kept in mind when working with wet secretomes: they are still representations of the proteins 

exported during particular culture conditions or developmental stages; in the applied 

sampling processes, proteins secreted at a low level can fall below the detection sensibility 

limit; and there is a chance of contamination of the sample with intracellular proteins during 

the extraction process. On the other hand, the nature of the sampling process permits 

quantitative results to be produced that are beyond the possibilities provided by 

bioinfosecretomes. 

The increasing number of available fungal genomes (I V Grigoriev et al., 2012; Igor V 

Grigoriev et al., 2011) and the advances in complex protein mixture separation and analysis 

technologies have led to a great increase in research on fungal secretomes (Bouws, 

Wattenberg, & Zorn, 2008). In this  section, we will review the fundamentals of the different 

workflows used to carry out these laboratory-based analyses. The analysis of a secretome can 

be divided into two steps: separation and identification of the secreted proteins. The 

separation procedure can be based on electrophoretic (2D-PAGE) or chromatographic 

techniques (LC), or a combination of the two. The identification process is based on mass 

spectrometry (MS). For a detailed review of secretome methodologies, see Mijkherjee & 

Mani, 2013(2013). 

 

3.1. – PROTEIN AND PEPTIDE IDENTIFICATION 

Protein and peptide identification in proteomic analyses is based on mass spectrometry (MS, 

see Graham et al. (2011) and Han et al. (2008) for comprehensive reviews). MS permits the 

accurate measurement of the molecular mass of a protein or peptide and its identification by 

searching its mass in the complete set of molecular masses of the proteins or peptides 

produced by an organism whose genome sequence is known. 

 

Current mass spectrometers permit the analysis of intact proteins (top-down MS), but MS of 

proteolytic peptides (bottom-up MS) is more generally applied. Top-down MS provides 

information about the molecular mass, amino acid sequence, and positions and types of post-
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translational modifications of a protein (Collier, Hawkridge, Georgianna, Payne, & 

Muddiman, 2008; Waanders, Hanke, & Mann, 2007); however, its application to large-scale 

proteomic analyses is still a major challenge, and it requires the use of mass spectrometers 

with particularly high resolving power, which are therefore very expensive. Bottom-up 

proteomics can follow two different strategies: either the proteins are first separated and then 

digested (sort-then-break approach), or the digestion is carried out directly in the complex 

protein sample, and the proteolytic peptides are then separated (break-then-sort approach). 

Under the sort-then-break approach, a peptide mixture can either be directly analyzed to 

produce a peptide mass fingerprint (PMF, (Henzel et al., 1993)), or the peptides can be further 

sorted via LC, interfaced with a tandem mass spectrometer. In the break-then-sort approach, 

the peptides in the complex digestion mixture are separated and then analyzed through MS. 

This second approach is also referred to as shotgun proteomics and will be discussed below. 

 

3.2. – SEPARATION TECHNIQUES 

3.2.1. – 2D-PAGE 

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has been the principal 

technique employed to analyze secretomes for the last 10 years (Awdeh, Williamson, & 

Askonas, 1968; Dale & Latner, 1969; Macko & Stegemann, 1969; Margolis & Kenrick, 1969; 

O’Farrell, 1975; Shevchenko, Wilm, Vorm, & Mann, 1996). Using this technique, the 

proteins in a sample are separated in two dimensions, e.g., using different acrylamide gel 

concentrations, or they are first separated on the basis of their isoelectric point (isoelectric 

focusing, IEF) and then on the basis of their molecular mass (SDS-PAGE). With the 

introduction of the 2D-PAGE using IEF, as many as 300 protein spots can be separated, 

although the obtained spots are frequently smeared (Issaq & Veenstra, 2008). 

 

The orthogonal combination of both separation procedures permits the identification of new 

proteins and the measurement of their relative abundance within a sample. In addition, 2D-

PAGE permits the detection of post-translational modifications and isoforms of the studied 
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proteins. However, 2D-PAGE has general limitations in resolving proteins that are too basic 

or too acidic (outside the pH 3 to 10 range) or too large or too small (outside the range of 104 

to 106) and in detecting proteins that are present in low amounts (low sensitivity, dynamic 

range of 103 to 107 copies per cell) (Issaq & Veenstra, 2008; Minden, 2007). Once a high-

quality 2D-PAGE gel has been obtained, the secretome analysis continues, involving the 

identification, isolation and protein sequencing of spots corresponding to single proteins. 

Protein spot detection requires high-sensitivity staining techniques (i.e., silver staining) 

compatible with ulterior MS analysis of the samples (Rabilloud, Carpentier, & Tarroux, 

1988). The protein spots identified via 2D-PAGE analysis can be individually excised and 

digested within the gel according to the procedure initially described by Shevchenko et al. 

(Shevchenko, Tomas, Havlis, Olsen, & Mann, 2007; Shevchenko et al., 1996) using trypsin. 

These tryptic peptides can be subsequently analyzed via MS (see below). The low gel-to-gel 

reproducibility of 2D-PAGE has made it difficult to use this technology to compare different 

samples. To overcome this problem, the difference gel electrophoresis (DIGE) method has 

been developed, in which the two protein samples are covalently labeled with different 

fluorescent dyes and co-electrophoresed on the same 2D gel (Minden, 2007). It is important 

to emphasize that 2D-PAGE provides experimental data in which the observed size is larger 

than the predicted size due to post-transcriptional modifications. In the case of higher 

lignocellulolytic basidiomycetes, all of the secreted enzymes that have been purified are 

glycoproteins (Henzel et al., 1993). Moreover, these fungi produce large amounts of 

extracellular polysaccharides and other low-molecular-weight compounds that interact with 

the secreted proteins, making difficult the production of 2D-PAGE of secretomes with 

sufficient quality and resolution for spot analysis. A number of methodological techniques 

have been developed to avoid these problems (Abbas, Koc, Liu, & Tien, 2005; Fragner, 

Zomorrodi, Kues, & Majcherczyk, 2009; Ravalason et al., 2008; Vanden Wymelenberg et al., 

2006), but they have only been applied in submerged or semi-solid cultures, and high-quality 

secretomes from solid fermentation cultures have not been produced to date. 

 

3.2.2. – Liquid chromatography 

A highly efficient method for proteomic analysis is the separation of proteins or peptides 
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using liquid chromatography (LC). A more generalized method is the use of C18 reverse-

phase columns loaded with proteome digestion products, working under nano-flow 

conditions (≈ 100 nl/min). These columns are connected to mass spectrometers to allow on-

line analysis of the resolved peptides. 

For carrying out a powerful proteomics analysis, it is necessary to attain a high resolving 

power and high sensitivity to achieve a dynamic range of at least 105. These resolution and 

sensitivity levels can be reached using two-dimensional nano-liquid chromatographic (2D-

nLC) techniques in which strong cation exchange (SCX) columns are employed for the first 

dimension and reversed-phase (RP) columns for the second (MudPIT approach, (Nagele, 

Vollmer, & Horth, 2003, 2004). 

 

3.3. – SHOTGUN PROTEOMICS 

Under a shotgun proteomics approach, mass spectra are collected for as many peptide 

fragments as possible, and these masses are then compared against the complete set of peptide 

masses deduced from the genome sequence of the organism(s) being analyzed with 

bioinformatics tools such as SEQUEST [52], MASCOT (Perkins, Pappin, Creasy, & Cottrell, 

1999) and X!Tandem (Craig & Beavis, 2004). The results of shotgun proteomics are highly 

dependent on the quality of the peptide separation procedure and on the limits of the MS 

dynamic range , which causes peptides present at a high relative abundance to be 

preferentially sampled. Moreover, this approach is also affected by the presence of 

unexpected post-translational modifications that make the identification of the corresponding 

peptide difficult. Consequently, the results of this approach cannot be considered strictly 

quantitative. 

The separation of the peptidic fragments under the shotgun proteomics approach is more 

complex than in the top-down approach discussed above. There are at least three main 

strategies applied for peptide separation: pre-fractionation via one-dimensional 

electrophoresis (1D-PAGE LC-MS/MS)(Simpson et al., 2000); immobilized pH gradient 

isoelectric focusing (IPG-LC-MS/MS, (Cargile, Sevinsky, Essader, Stephenson Jr., & Bundy, 
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2005); and the gel-free LC-MS shotgun approach (Link et al., 1999; Washburn, Wolters, & 

Yates, 2001).  

The 1D-PAGE LC-MS/MS technique involves the pre-fractionation of proteins via one-

dimensional electrophoresis, followed by in-gel digestion and automated LC-MS/MS. Intact 

proteins are fractionated through 1D-SDS-PAGE, and approximately 25 contiguous slices 

are cut from the gel lane. Each gel slice is digested in situ with trypsin, and the resulting 

peptides are separated via reverse-phase liquid chromatography (RP-HPLC) and analyzed 

via MS. In 2D-PAGE, the pH range of the IPG strips is a limiting factor for the identification 

of proteins. Using a 1D-PAGE LC/MS approach, Vanden Wymelenberg et al. (2009) 

identified secreted proteins with an alkaline isoelectric point (10.6) in P. chrysosporium. 

Proteins in this alkaline isoelectric point range are very difficult to detect using 2D-PAGE.  

Under the IPG LC-MS/MS approach, the protein sample is digested, and the resulting peptide 

mix is loaded and focused onto an immobilized IEF strip. The IEF strip is cut into sections, 

and peptides in each section are eluted and subjected to LC/MS analysis. This strategy allows 

better separation of peptides than classical 2D-PAGE (Bjellqvist et al., 1982), and it has been 

used by Vincent et al. to study the secretome of L. bicolor (Vincent et al., 2009).  

Under the gel-free LC-MS shotgun approach (LC-LC-MS/MS), proteins are digested in 

solution to generate a complex mixture of peptides that are subsequently separated through 

multidimensional liquid chromatography. Typically, strong cation exchange (SCX) and 

reversed-phase (RP) liquid chromatography columns are used to separate peptides into 

fractions, prior to tandem mass (MS-MS) spectrometry analysis (Link et al., 1999; Washburn 

et al., 2001). This technique has allowed the detection of the largest number of secreted 

proteins in fungal secretomes. Vanden Wymelenberg et al. (2010) studied the secretome of 

P. placenta using two different techniques, 1D-PAGE-LC-MS/MS and the LC-LC-MS/MS 

shotgun approach, and detected 19 proteins via 1D-PAGE-LC-MS/MS and 63 proteins via 

LC-LC-MS/MS. Following the same strategy, these authors analyzed the P. chrysosporium 

secretome and identified 30 proteins through 1D-PAGE LC-MS/MS and 73 through LC-LC-

MS/MS (Vanden Wymelenberg et al., 2010). Several proteins (four in P. placenta and seven 

in P. chrysosporium) were detected only by 1D-PAGE LC-MS/MS, demonstrating the 

effectiveness of using several techniques in the analysis of fungal secretomes. 
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Vincent et al. (Vincent et al., 2012) carried out a comparative analysis of different separation 

techniques (IPG-IEF shotgun, 1D-PAGE LC-MS/MS and 2D-PAGE) when studying the 

secretome of Laccaria bicolor (see below). They found that the IPG-IEF LC-MS/MS 

approach detected the greatest number of proteins (142). In contrast, 1D-PAGE LC-MS/MS 

identified 116 proteins, and 2D-PAGE was the least efficient technique in terms of the 

number of proteins identified, detecting 77 proteins from 201 analyzed spots. This is a 

common characteristic of fungal secretome 2D-PAGE: many of the spots analyzed cannot be 

identified, and acidic proteins are more easily detected than alkaline proteins, demonstrated 

by the fact that among all of the spots excised, 134 were found in the gels at pH 3-11, 46 at 

pH 4-7, and 21 at pH 7-11. Another interesting difference between these techniques was that 

glycosylphosphatidyl inositol (GPI) small secreted proteins were identified only through 

SDS and IPG and not by 2D-PAGE, indicating the difficulty of separating small proteins 

using the last technique. Nevertheless, 16 proteins were only found in the 2D-PAGE 

experiments, again highlighting the need to combine various analytical approaches to identify 

as many proteins as possible in a given sample. 

 

3.4. – QUANTITATIVE PROTEOMICS 

A major drawback of conventional proteomics approaches is that they produce poor 

quantitative results. There are two basic issues addressed by quantitative proteomics: the 

estimation of protein abundance in a given sample and comparisons between proteins present 

in different samples. 

For the estimation of protein abundance in a given sample, the Protein Abundance Index 

(PAI) (Rappsilber, Ryder, Lamond, & Mann, 2002) and the exponentially modified Protein 

Abundance Index (emPAI) (Ishihama et al., 2005) have been developed. The rationale for 

these indexes is that larger proteins can give rise to more peptides, and the PAI represents the 

number of peptides identified (Nobserved) divided by the number of theoretically observable 

(Nobservable) tryptic peptides (PAI = Nobserved/Nobservable), whereas the emPAI is an 

exponential modification of the PAI (emPAI = 10PAI-1). The Nobserved peptides are 

determined experimentally, and Nobservable peptides are determined via in silico digestion 
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of the proteins.  

Several methods have been developed for using data acquired in MS to quantify the amount 

of proteins in a sample. The basic rationale underlying such quantitative methods involves 

the differential labeling of two or more samples being compared, combining the labeled 

samples and analyzing the samples using the proteomics approaches discussed above. One 

option for labeling samples is to provide stable isotope-labeled (i.e., using 13C or 15N) 

metabolic precursors to an organism that then incorporates them into proteins (see Beynon 

and Pratt for a review (Beynon & Pratt, 2005)). However, chemical labeling methods are 

required for samples to which labeled precursors cannot be added. There are three main 

strategies for chemical labeling for quantitative proteomics: the isotope-coded affinity tag 

(ICAT) (Gygi et al., 1999), isotope-coded protein label (ICPL) (Schmidt, Kellermann, & 

Lottspeich, 2005) and the isobaric tag for relative and absolute quantitation (iTRAQ) 

methods (Ross et al., 2004). 

The ICAT approach is based on the labeling of the cysteine residues present in a protein, prior 

to its digestion with the appropriate protease. The labeled peptides are enriched through 

affinity chromatography and subsequently analyzed. ICAT has some limitations: its results 

are not sufficiently robust; the requirement for cysteine residues limits the number of possible 

labels per protein; and the technique cannot be used in cysteine-free proteins (Wiese, 

Reidegeld, Meyer, & Warscheid, 2007). The requirement for cysteine residues is avoided in 

the ICPL approach, in which the primary amino groups present in lysine residues are labeled. 

This procedure shows a higher sensitivity than ICAT and is compatible with gel-based 

separation techniques. On the other hand, ICPL results in changes in the migration of peptides 

during IEF (Schmidt et al., 2005). 

The iTRAQ technique was developed to solve most of the drawbacks of the other quantitative 

techniques. In iTRAQ, peptides from different samples are labeled with different compounds 

that have been designed to have the same total mass but can be cleaved to produce different 

fragments. Consequently, the derivatized peptides are indistinguishable in MS but exhibit 

intense low-mass MS/MS signature ions that support quantitation (Ross et al., 2004). Up to 

four different isobaric tags can be simultaneously used in multiplex experiments. In the 

classical iTRAQ approach, the N-terminal and lysine residues present in the peptides of the 
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two samples to be compared are labeled with two different isobaric labels. After mixing the 

two samples, due to the isobaric design of the labels, the differentially tagged peptides will 

appear as a single peak in the MS analysis. Then, a second tandem MS analysis of the spots 

fragments the isobaric label, producing residues that can be differentiated, and the relative 

proportion of each peptide can be deduced from the relative intensities of the corresponding 

reporters (Ross et al., 2004). The iTRAQ approach can be used either with the proteolytic 

peptides from a protein sample or with intact proteins (Wiese et al., 2007). A limitation of 

iTRAQ is that its requirement for MS/MS limits the obtained quantitative information to the 

most abundant peptides, and consequently, this technique shows a greater propensity to 

identify the most abundant proteins. The iTRAQ approach has been successfully used to 

compare the proteomes of P. chrysosporium produced using different carbon sources (A. 

Manavalan, Adav, & Sze, 2011) or natural biomass (Adav, Ravindran, & Sze, 2012) and to 

study the proteins secreted by lignocellulolytic fungi in single cultures and in consortia 

(Adav, Ravindran, Cheow, & Sze, 2012). 

 

4. - BASIDIOMYCETE SECRETOMES 

4.1. – WHITE ROT BASIDIOMYCETES 

4.1.1. – Phanerochaete chrysosporium 

P. chrysosporium is a model white rot basidiomycete that contains lignin (LiP) and 

manganese (MnP) peroxidases but not phenol oxidases (Pox). The genome of this fungus has 

been sequenced by Martinez et al.(Martinez et al., 2004), and its secretome has been studied 

under different conditions. Automatic annotation of the P. chrysosporium genome predicted 

10,048 gene models (http://genome.jgi-psf.org/Phchr1/Phchr1.home.html). Vanden 

Wymelenberg et al. (Vanden Wymelenberg et al., 2006) predicted a P. chrysosporium 

bioinfosecretome of 769 proteins, accounting for nearly 7.7% of the predicted proteins. More 

than half of the secreted predicted proteins (407) were similar to other known proteins. 

Among these proteins, the most prominent groups were GHs (87), oxidoreductases (84), 

peptidases (52), esterases–lipases (21), hydrophobins (14), LiPs (10) and MnPs (5). 
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The use of lignocellulose-derived products as carbon source or as inducers in the analysis of 

white rot fungi secretomes often results in the co-extraction of brown water-soluble 

extractives and smearing in 2D-PAGE (Abbas et al., 2005; Zorn, Peters, Nimtz, & Berger, 

2005). These extractives and smears impede the correct visualization and cut off of the 

obtained spots, which has prompted the use of different approaches to analyze the P. 

chrysosporium secretome. Some examples of carbon sources or inducers that will be 

discussed below include purified cellulose, xylan, starch or synthetic lignin, wood or other 

natural lignocellulose substrates (Abbas et al., 2005; Zorn et al., 2005).  

Vanden Wymelenberg et al. (Vanden Wymelenberg et al., 2006) studied the P. chrysosporium 

secretome in shaken submerged cultures produced in synthetic media under carbon or 

nitrogen limitation using 1D-PAGE and LC-LC-MS/MS and identified 40 secreted proteins, 

including 13 peptidases, 6 esterases-lipases, 8 GHs, 5 LiPs and 3 MnPs. On the other hand, 

Manavalan et al. (A. Manavalan et al., 2011) analyzed the secretome in shaken submerged 

cultures supplemented with synthetic lignin, cellulose or a mixture of the two, using an 

iTRAQ-based approach. The largest group of secreted proteins identified in this experiment 

consisted of GHs (66), followed by lignin-degrading enzymes (16) and proteases (16). 

Surprisingly, LiPs and MnPs were absent, suggesting that synthetic lignin might not be an 

efficient inducer of these enzymes. The quantitative results of this experiment revealed that 

three different cellobiohydrolases were the most abundantly secreted proteins in the 

cellulose-containing cultures, whereas a pyranose 2-oxidase was the most oversecreted 

protein in the lignin-containing cultures. Hori et al. (C Hori, Igarashi, Katayama, & 

Samejima, 2011) studied the effect of starch or xylan addition in shaken submerged cultures 

containing cellulose as a carbon source. They identified 47 proteins in this secretome and 

found that xylan addition increased the synthesis of several GHs. These authors did not 

identify peptides corresponding to LiPs or MnPs. 

Adav et al. (Adav, Ravindran, & Sze, 2012) employed different complex lignocellulosic 

substrates (corn stover, sugarcane bagasse, wheat bran, hay, wood chips and sawdust) to 

quantitatively study protein secretion induction in shaken submerged cultures. In the obtained 

secretomes, they identified GHs (52%), lignin-depolymerizing enzymes (10%) and proteases 

(20%). However, LiPs and MnPs were absent, as in the experiment conducted by Manavalan 
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et al. The authors concluded that the expression and iTRAQ quantification of copper radical 

oxidase, cellobiose dehydrogenase, glucose oxidase, isoamyl alcohol oxidase, 

peroxiredoxins, pyranose 2-oxidase, quinone oxidoreductase, and iron-containing alcohol 

dehydrogenase indicated that P. chrysosporium degrades lignin through oxidases. 

All of these previous studies were performed in submerged cultures. In contrast, Abbas et al. 

(Abbas et al., 2005) followed a different approach and carried out a preliminary study of the 

proteins secreted in solid cultures on red oak (Quercus rubra) hardwood. They identified 45 

2D-PAGE spots, which corresponded mainly to GHs (15, including the two 

cellobiohydrolases indicated above). These authors also detected a signal corresponding to 

LiP. Subsequently, using 2D-PAGE and 1D-PAGE LC-MS/MS in liquid and solid media, 

Sato et al. (Sato, Liu, Koc, & Tien, 2007) identified GHs and proteases in solid cultures and 

GHs in submerged ones. 

Ravalason et al. (Ravalason et al., 2008) compared the P. chrysosporium secretome in shaken 

submerged cultures performed using synthetic medium (developed to promote peroxidase 

production under carbon limitation, ligninolytic culture) and polyurethane foam cubes to 

immobilize the fungus with the secretome produced under biopulping conditions (static 

semisolid cultures containing basal medium and wood chips from Pinus nigra, with final 

moisture content of 75%). They identified 18 spots in the ligninolytic and 19 in the biopulping 

cultures. The secretome in the ligninolytic medium was mainly comprised of peroxidases 

(LiPs and MnPs), whereas several wood-degrading enzymes and enzymes involved in fungal 

metabolism (mainly GHs) were detected in the biopulping cultures. Based on the comparison 

of these results with the other findings discussed above, it becomes clear that ligninolytic 

culture conditions produce a secretome profile similar to that observed in submerged cultures 

carried out under basal conditions (i.e., high expression of MnPs, LiPs, proteases and lipases), 

whereas the presence of complex lignocellulosic substrates promotes the predominant 

secretion of enzymes belonging to the group of GHs with respect to the relative abundance 

of proteases and lipases. 

The correlation of the changes in the transcriptome and secretome profiles under different 

culture conditions has been addressed by Vanden Wymelenberg et al. (Vanden Wymelenberg 

et al., 2006, 2009) using expression microarrays and LC-LC-MS/MS. These authors 
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compared the genes upregulated under carbon limitation (CLB, 33 genes), nitrogen limitation 

(NLB, 63 genes) and avicel versus glucose as a carbon source (HBA, 70 genes) with the 

secreted proteins detected under the same conditions (CLB, 46 proteins; NLB, 23 proteins; 

and HBA, 37 proteins). The expression of genes involved in nitrogen and in carbohydrate 

metabolism was dramatically upregulated under the NLB and HBA culture conditions, 

respectively. In general, a good correlation between expression levels and the LC-LC-

MS/MS identification of secreted proteins was observed, except for highly transcribed genes 

with putative secretion signals without LC-LC-MS/MS support and high-scoring peptides 

with low transcript levels. In some cases, these discrepancies can be associated with the 

presence of unconventional export signals. Using aspen or pine wood as a substrate, they 

carry out a comparative transcriptome and secretome analysis (Vanden Wymelenberg et al., 

2011) and identified 118 proteins in both media. Carbohydrate-active enzyme (CAZy)-

encoding genes represented 33% (20 of 61 genes) and 45% (40 of 88 genes) of the total P. 

chrysosporium protein genes identified in aspen and pine containing media, respectively. 

These differences show the influence of wood species in the secretome and may reflect the 

diversity of the strategies for degrading lignocellulose. 

 

4.1.2. – Phanerochaete carnosa 

P. carnosa is a P. chrysosporium relative that shows a preference for softwood, in contrast to 

the preference for hardwood shown by P. chrysosporium. Mahajan and Master (Mahajan & 

Master, 2010) conducted an LC-LC-MS/MS based analysis of the secretome of these species 

when cultivated statically with either microcrystalline cellulose (avicel) or with Picea glauca 

(white spruce) wood chips as a carbon source. This study was carried out before the P. 

carnosa complete genome sequence was available (H. Suzuki et al., 2012), and P. 

chrysosporium gene models were used for the identification of peptides. The major difference 

in ligninolytic genes between these species is that the P. carnosa genome encodes seven 

MnPs and four LiPs, whereas the P. chrysosporium genome encodes five MnPs and ten LiPs. 

Moreover, although P. carnosa does not appear to encode laccases (Pox) sensu stricto, there 

are nine gene models annotated as copper oxidases in this fungus. In contrast, Pox genes are 

absent in the P. chrysosporium genome. The main difference between the P. carnosa 
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secretomes obtained in cellulose and spruce-based cultures was the increase in GHs in the 

cellulose-based cultures (representing 46% of the identified proteins vs. 29 % in the spruce-

based cultures) and the increase in peptidases in the spruce-based cultures (40% vs. 25% in 

the cellulose-based cultures). 

 

4.1.3. – Ganoderma lucidum 

G. lucidum (Reishi or Ling Zhi, Polyporales) is an edible white rot basidiomycete that has 

been extensively studied because of its use in traditional Asian medicine. This fungus shows 

strong wood degradation ability, associated with potential in bioenergy production. The G. 

lucidum genome has been sequenced by Chen et al. (Chen et al., 2012). Its genome size is 

43.3 Mbp, presenting 16,113 annotated gene models. It contains a large set of cytochrome 

P450-encoding genes and one of the largest repertoires of wood-degrading enzymes. The 

secretome of G. lucidum cultivated in solid cultures on sugarcane bagasse following fruiting 

body harvesting (day 40 of culture) was studied by Manavalan et al. (T. Manavalan, 

Manavalan, Thangavelu, & Heese, 2012) using 1D-PAGE-LC-MS/MS. The authors 

identified 71 proteins that could be grouped into the GHs (cellulases, 24%; hemicellulases 

5%; and other 10%), lignin depolymerizing enzymes (24%, including five laccases, and a 

manganese peroxidase), proteases (2%), phosphatases (7%), transport proteins (10%) and 

hypothetical proteins (10%). 

 

4.1.4. – Pleurotus sapidus 

Using 2D-PAGE, Zorn et al. (Zorn et al., 2005) analyzed the secretome of the white rot 

basidiomycete P. sapidus in shaken submerged cultures in nitrogen-limited medium 

containing either Arachis hypogaea (peanut) shells or glass wool as a carrier material and 

glucose as a carbon source. The lignin-degrading strategy of P. sapidus differs from that of 

P. chrysosporium due to the presence of Poxs and the absence of LiPs in the genome. The 

role of LiPs in these organisms seems to be carried out by versatile peroxidases (VP). This 

work was carried out before a genome sequence for a Pleurotus species was available, and 
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the number of enzymes identified was consequently limited. Comparison of the two P. 

sapidus secretomes showed a broader spectrum of peptidases in the cultures grown on peanut 

shells in comparison with those grown on glass wool, where the versatile peroxidases clearly 

dominated. 

 

4.1.5. – Ceriporiopsis subvermispora 

C. subvermispora and P. chrysosporium are both members of the order Polyporales, but they 

differ in their ability to selectively degrade lignin. C. subvermispora depolymerizes lignin 

but may do so while causing relatively little cellulose degradation (Fernandez-Fueyo et al., 

2012). Fernandez-Fueyo et al. (Fernandez-Fueyo et al., 2012) conducted LTQ-Orbitrap (LC-

LC-MS/MS) analysis of TCA-precipitated filtrates from 5-day-old shake flasks containing 

ball milled aspen, glucose or avicel to compare the protein expression profiles of C. 

subvermispora and P. chrysosporium. They unambiguously identified 60 and 121 proteins in 

filtrates from aspen wood medium cultures of P. chrysosporium and C. subvermispora, 

respectively, among which 18 and three corresponded to GHs. A total of three MnPs were 

identified in the C. subvermispora filtrates, but no peroxidases were found in the P. 

chrysosporium cultures. 

 

4.1.6. – Trametes sp. 

Trametes is a white rot basidiomycete distributed worldwide that is commonly found growing 

on tree stumps. The sequenced genome of T. versicolor is 44.8 Mbp in size, presenting 14,296 

annotated gene models (http://genome.jgi.doe.gov/Trave1/Trave1.info.html) (Floudas et al., 

2012). Analysis of the secretome of T. versicolor cultivated under the same conditions used 

for P. chrysosporium and P. placenta (see below) resulted in the identification of 218 proteins, 

including 44 uncharacterized proteins, 65 GHs, 27 peptidases, 8 oxidases related to lignin 

degradation, 5 lipases, 4 Poxs, and 3 MnPs and Vps. (Floudas et al., 2012). 

Lebrun et al. (Lebrun et al., 2011) conducted a 1D-PAGE-LC-MS analysis of the effect of 
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metal ions (Zn, Cu, Pb and Cd) on the secretion profile of T. versicolor, with a particular 

focus on the extracellular hydrolases and ligninolytic oxidases. Their results showed that 

exposure of T. versicolor to metal ions modified its secretion profile in different ways. While 

the activity of hydrolases was inhibited by single metals or metal cocktails, oxidase activities 

were specifically stimulated by Cu and Cd (individually or in cocktails). Moreover, the 

glycosylation pattern of 2 laccases was affected by the presence of the metal ions. 

Using a more secretome-oriented approach, Ji et al. (Ji et al., 2012) studied the proteins 

secreted by T. trogii via 1D-PAGE-LC-MS. The identified proteins (64) were sorted into five 

categories: cell wall and lignin-degrading enzymes (29 %), carbohydrate metabolism 

proteins (20 %), fatty acid metabolism proteins (11 %), protein metabolism proteins (11 %) 

and other proteins (29 %). 

 

4.1.7. – Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora 

Hori et al. (Chiaki Hori et al., 2013) conducted a comparative LC-LC-MS/MS secretome 

analysis of monokaryotic strains of the white rot fungi Bjerkandera adusta, Ganoderma sp. 

and Phlebia brevispora grown in wood cultures under identical conditions. In the B. adusta 

cultures, among the 187 proteins detected, 33% were GHs, and 6% were other CAZys. In 

Ganoderma sp., a total of 105 proteins were identified, 37% of which were GHs, whereas 

6% were other CAZys. In P. brevispora, 178 proteins were identified; 39% and 4% of these 

proteins were GHs and other CAZys, respectively. Aldose 1-epimerase (ALE) was previously 

detected together with cellobiose dehydrogenase (CDH) and cellulases in the culture filtrates 

of white rot fungi (Vanden Wymelenberg et al., 2006), and genes encoding ALE were also 

present in the genomes of these 3 white rot basidiomycetes, suggesting a physiological 

connection between ALE, CDH, cellulase and possibly LPMO (lytic polysaccharide 

monooxygenase). 

4.1.8. - Schizophyllum commune 

Using LC-MS/MS, the authors (Zhu et al., 2016) compared the S. commune secretome with 

those of P. chrysosporium, C. subvermispora, and G. trabeum (BR) during solid-state 
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fermentation on Jerusalem artichoke stalks. A total of 229 proteins were identified in the S. 

commune secretome, 112 proteins in the P. chrysosporium secretome, 95 proteins in the C. 

subvermispora secretome, and 109 in the G. trabeum secretome. In this analysis, S. commune 

produced a much larger set of GH family enzymes than the other three species.  

As expected, oxidoreductase secretion differed substantially between the four fungi. P. 

chrysosporium secretes three lignin peroxidases and one manganese peroxidase, while C. 

subvermispora secretes two manganese peroxidases and one laccase. In contrast, neither of 

the S. commune and G. trabeum secretomes contained ligninolytic enzymes, such as 

manganese peroxidases, lignin peroxidases, or laccases. P. chrysosporium cannot produce 

laccases because it does not have laccase genes in its genome, but G. trabeum and S. 

commune have laccases (two and four, respectively) (Riley et al., 2014a). Both G. trabeum 

and S. commune share some genomic characteristics of brown rot fungi, such as the lack of 

class II peroxidases (PODs). S. commune was indeed not classified as white or brown rot 

when looking at its enzymatic arsenal for lignocellulose degradation (Riley et al., 2014a), 

despite how it has always been seen as a white rot fungus. Protein identifications in this paper 

support the use of the Fenton mechanism for lignin attack by S. commune, which was also 

suggested by Ohm et al. (2010). 

 

4.1.9. - Pycnoporus cinnabarinus 

Levasseur et al. (2014) analyzed the P. cinnabarinus secretome (1D LC-MS/MS) and 

detected 184 proteins in maltose medium, 166 proteins in maltose and micronized birch-

wood medium, 121 proteins in maltose, maize bran, and Avicel medium, and 139 proteins in 

SSF cultures (five different substrates: sugarcane bagasse, banana skins, wood shavings, 

hemp, and micronized birch wood. 

The authors also identified LPMOs of the AA9 family only in the conditions that included 

complex substrates, and no AA9 proteins were found in the control condition with maltose. 

Furthermore, different AA9 proteins were produced in response to different growth 

conditions, a result that could indicate growth substrate- or time-dependent regulation of the 

LPMO genes. In contrast, three AA1_1 laccases were identified in all the studied conditions, 
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indicating constitutive production by the fungus and a wide range of media where these 

enzymes can have roles. 

 

4.1.10. - Pycnoporus coccineus 

Couturier et al. (2015) analyzed Pycnoporus coccineus because of its ability to grow on both 

softwood and hardwood. This fungus displays similar sets of CAZymes when grown on these 

two types of wood. 1D LC–MS/MS was subsequently used to identify a total of 115, 135, 

and 135 CAZymes in maltose, pine, and aspen cultures, respectively; most of the detected 

proteins (84%) were common to the two wood cultivations. Among the CAZymes identified 

in pine and/or aspen that were not detected in maltose the authors identified proteins 

attributed to cellulose, hemicellulose, and pectin degradation, including GH families GH3, 

GH5_5, GH5_7, GH6, GH10, GH12, GH16, GH28, GH43, and GH45, as well as CE family 

CE1, two AA9 LPMOs, and AA2 and AA3 family enzymes with activities attributed to lignin 

degradation. Finally, only one protein bearing a CBM1 module was detected in the maltose 

secretome, whereas those of pine and aspen comprised 10 and 12 CBM1-containing 

CAZymes, respectively, which were largely attached to CAZy catalytic modules known to 

target cellulose or xylan and related to a white rot-type fungus (Riley et al., 2014a). 

Two AA1_1 laccases were detected in the secretomes of the fungi grown on pine and aspen, 

but low transcript levels were observed on these substrates. On the other hand, two other 

laccase genes were most abundantly transcribed on maltose. In the analyses of P. 

cinnabarinus (Levasseur et al., 2014), laccases were found in all the conditions studied. 

These facts suggest that laccase enzymes could be involved in other functions than 

lignocellulose degradation. 

Overall, the authors identified similar protein types in the two wood conditions, and the 

numbers of identified peptides were comparable, but the total amount of released sugars was 

higher in the pine preparations than in the aspen preparations. 

In summary, while P. coccineus seems to prefer hardwood for growing in nature, this fungus 

also contains the enzymatic arsenal appropriate for an efficient conversion of softwood. 
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Several parameters noted in previous studies, such as the expression of pectinolytic enzymes, 

P450 monooxygenases, and manganese peroxidases, might be critical for fungi to degrade 

coniferous wood. 

 

4.1.11. - Phlebiopsis gigantea 

Phlebiopsis gigantea acts as a pioneer colonizer of softwood because it can tolerate and 

utilize resinous extractives. Hori et al. (Chiaki Hori et al., 2014) studied this basidiomycete 

growing on freshly-harvested ground loblolly pine wood that had been ‘spiked’ with acetone 

and thoroughly dried (NELP) or on the same material after extended acetone extraction (to 

remove these extractives) and drying (ELP). Nano-LC-MS/MS analysis identified 

extracellular proteins in the culture filtrates harvested after 5, 7, and 9 days, corresponding 

to a total of 319 gene products. Most proteins were observed in both the NELP and ELP 

culture filtrates, which contained 294 and 268 proteins, respectively. 

P. gigantea's gene expression patterns revealed an important role of intracellular lipid and 

oxalate metabolism, together with the TCA and glyoxylate cycles, in the oxidation of the 

triglyceride and terpenoid components of resinous sapwood. As in all the other fungi 

analyzed in this review, many P. gigantea genes and proteins lack a functional classification 

(4744 genes annotated as hypothetical in the genome). Among them, the authors found genes 

that were highly expressed, regulated, and/or secreted. To fully understand the strategies used 

by P. gigantea to colonize resinous sapwood faster than other fungi, the biochemical 

characterization of these proteins is unavoidable. 

 

4.1.12. - Phlebia radiata 

Kuuskeri at al. (Kuuskeri et al., 2016) analyzed the total proteome (both extracellular and 

intracellular proteins) of Phlebia radiata growing on spruce wood solid-state cultures after 

7, 14, 21, 28, and 42 days of cultivation. In total, 1356 proteins were identified by peptide 

LC–MS/MS proteomics; among them, N-terminal signal peptide was predicted for 15% 

(210) of them. When looking at the functions of the identified proteins, they found that the 
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majority (77%) were classified as proteins with other functions, including many intracellular 

proteins involved in translation and metabolic processes. The authors pointed out the 

importance of a perfect annotation of the 5’ starting codon to correctly identify the secreted 

proteins by in silico methods, as mentioned previously (Manuel Alfaro et al., 2016). These 

annotation problems could be solved by the use of proteogenomics methodologies that 

include the mapping of identified peptide data to the translation of the three frames of the 

genome to achieve more accurate nucleotide gene and protein annotations. 

 The authors confirmed, in this P .radiata extensive analysis, the difficulty of directly 

comparing gene expression analyses, protein detection, and enzymatic activity 

measurements. As an example of very well-known proteins implicated in wood degradation, 

laccase-encoding genes were not upregulated in the wood cultures (had a constant expression 

level in all the media included) and only one secreted protein was identified, but laccase 

activity was found in all the cultures. Differences between them at specific time points of 

cultivation could be the result of time-dependent regulation, including transcriptional and 

post-transcriptional regulation; distinct isozyme proteins may be active only under specific 

environmental conditions. Furthermore, difficulties that are inherent to LC/MS-MS, such as 

those derived from proteins without trypsin cleavage sites, proteins attached to the wood 

matrix, or quickly degraded proteins, produced an underestimation or complete loss of 

detection of these proteins. Despite these limitations, transcriptome analysis supported the 

proteomic results for CAZy enzymes, and peroxidases show a clear upregulation in the early 

stages of wood degradation, confirming the white rot behavior of P. radiata. 

 

4.1.13. - Agaricus bisporus 

Patyshakuliyeva et al. analyzed the secreted proteins of A. bisporus mycelium growing on 

compost at six different time points related to the industrial production of this widely 

cultivated edible fungus. Interestingly, and in contrast to many other articles reviewed here, 

the correlation between the transcriptomics and proteomics data seems to be good in A. 

bisporus under these cultivation conditions; 641 proteins were identified, and among them, 

168 (26%) proteins were classified as CAZymes, and the cellulose-degrading enzymes GH6 
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and GH7 cellobiohydrolases and GH5_5 endoglucanases showed high correlations between 

the proteomics and RNA-seq data. Also, several hemicellulose hydrolyzing enzymes were 

identified and correlated with transcriptomic data: the GH10 and GH11 endoxylanases, 

GH27 α-galactosidase, GH31 α-xylosidase and α-glucosidase, GH35 β-galactosidase, and 

GH51 α-arabinofuranosidase were the most abundant enzymes. 

Ligninolytic enzymes were found in these growing conditions; the AA1_1 laccases were the 

most abundant and most highly expressed genes in the transcriptome data. Surprisingly, A. 

bisporus is grown in a substrate that suffers changes in its cellulose and hemicellulose 

composition, but the lignin content remains very constant during fungus growth. As can be 

seen in other papers analyzed here (Marie Couturier et al., 2015; Kuuskeri et al., 2016; 

Levasseur et al., 2014), laccases do not seem to be particularly influenced by the presence of 

lignin compounds in the substrate, highlighting the possibility of other functions for these 

interesting enzymes. 

Furthermore, a similar pattern of concordance between the secretome and transcriptome 

profiles was observed regarding differences between the various growth stages of A. 

bisporus, with the only episode of no correlation after the harvesting of the first flush of 

mushrooms, where the CAZy transcriptome profile showed a decrease but the corresponding 

CAZymes with cellulolytic activities were still present on the mushrooms grown in compost. 

The authors explained these results by assuming that proteins remained on the media from 

the previous sampling time, when the corresponding genes were highly expressed. This is 

certainly a possibility, but a bad correlation between transcriptomics and proteomics is also 

feasible. 

 

4.1.14. - Pleurotus ostreatus 

Fernández-Fueyo et al. (2016) studied the secretome of P. ostreatus after 21 days of growth 

on woody (poplar chips) and non-woody (wheat straw) lignocellulosic substrates (with 

distilled water as the only additive) by nLC-MS/MS, and compared the secreted proteins with 
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those found in a glucose medium. A total of 241, 391, and 206 extracellular proteins were 

identified in the poplar, wheat straw, and glucose fungal cultures, respectively. 

In agreement with data from A. bisporus (Patyshakuliyeva et al., 2015) and in contrast to 

other fungi described here (Marie Couturier et al., 2015; Kuuskeri et al., 2016; Levasseur et 

al., 2014), P. ostreatus broadly uses laccases when growing on lignocellulosic substrates and 

significantly reduces their lignin content, as shown by 2D NMR analyses (Fernández-Fueyo 

et al., 2016). Oxidoreductases are overrepresented when this fungus grows on wood 

lignocellulosic substrates, compared to what is observed in glucose medium. One laccase 

occupied the first position in both wood secretomes, and three more were overproduced, 

together with one Versatile Peroxidase (VP) and one Manganese Peroxidase (MnP). 

 

4.1.15. – Summary of white rot basidiomycetes 

In summary, GHs are the principal group of proteins secreted by white rot basidiomycetes. 

Peptidases are the second most commonly detected group, especially when using complex 

substrates in these experiments. Among the lignin-degrading enzymes, the oxidoreductases 

are the most prominent group, and the detection of MnPs and LiPs is less frequent, with the 

exception of cultures performed in media designed to induce their production. 

 

4.2. – BROWN ROT BASIDIOMYCETES 

4.2.1 – Postia placenta 

P. placenta is a brown rot basidiomycete that is closely related to the white rot model species 

P. chrysosporium. Brown rot fungi rapidly depolymerize the cellulose in wood (especially 

conifer wood, (Hibbett & Donoghue, 2001) without significant lignin removal). The P. 

placenta genome sequence is available (Martinez et al., 2009), and 17,173 gene models have 

been annotated. The genome contains two Pox genes, whereas no LiP, MnP or VP genes were 

detected. Surprisingly, genes encoding exocellobiohydrolases and cellulose-binding 
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domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading 

fungus. The lack of exocellobiohydrolases is especially relevant because these enzymes are 

predominant among the GHs secreted by P. chrysosporium. On the basis of these results, a 

role for Fenton chemistry has been proposed as reaction mechanism, in which Fe(II) and 

H2O2 react to form hydroxyl radicals, which are highly reactive oxidants capable of 

depolymerizing cellulose (Martinez et al., 2009).  

Signal peptides have been annotated in 834 P. placenta gene models (4.9 % of the models) 

(data not shown). This number is lower than that reported for P. chrysosporium, but it may 

be underestimated due to the large number of gene models predicted in this draft genome. 

Vanden Wymelenberg et al. (2010) conducted an LC-LC-MS/MS comparison of the P. 

chrysosporium and P. placenta secretomes in shaken submerged cultures using either ball 

milled aspen (Populus) or glucose as the sole carbon source. A total of 73 and 67 secreted 

proteins were identified in P. chrysosporium and P. placenta, respectively. P. chrysosporium 

secreted an array of extracellular GHs to simultaneously attack cellulose and hemicelluloses, 

while P. placenta secreted an array of hemicellulases (34), but few potential cellulases. In 

addition, experimental evidence of the secretion of enzymes involved in the extracellular 

peroxide generation was found (including a copper radical oxidase, a FAD-linked 

oxidoreductase, and a glucose oxidase). An exceptional characteristic of the P. placenta 

genome is its impressive set of 236 cytochrome P450 genes, some of which can participate 

in the biodegradation of lignin, and experimental evidence of the secretion of a P450 protein 

has been obtained. 

In another transcriptome and secretome comparison between P. Placenta and P. 

chrysosporium (Vanden Wymelenberg et al., 2011) a total of 413 P. placenta proteins were 

identified, of which a total of 71 were identified in either aspen or pine containing media. 

Among differentially regulated P. placenta gene products, they identified eight extracellular 

proteins using LC-MS/MS with no apparent homologs in P. chrysosporium and no function 

assigned, opening an interesting field for future research. 

On the other hand, Ryu et al. (Ryu et al., 2011) performed another LC-LC-MS/MS analysis 

of the proteins secreted by P. placenta while colonizing aspen chips in solid cultures. These 
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authors were able to recover four secreted proteins (3 endo-1,4-β-D-glucanases and an endo-

1,4-β-xylanase) that exhibited cellulase activity when expressed heterologously, and they 

concluded that non-highly processive cellulases can participate in the degradation of 

cellulose by P. placenta. 

 

4.2.2. – Serpula lacrymans 

S. lacrymans (Boletales) is a brown rot basidiomycete that is phylogenetically distant from 

P. placenta (Polyporales). Eastwood et al. (Eastwood et al., 2011) performed an LC-LC-

MS/MS analysis of the S. lacrymans secretome when grown for 30 days in solid cultures 

using Picea abies wood as a substrate, with or without CaSiO3 supplementation. Of the 39 

identified proteins, only 29 contained a signal peptide, which were classified as follows: 16 

GHs (including an endo-1,4-β-D-glucanase and an endo-1,4-β-xylanase, as found in P. 

placenta), four oxidoreductases (including a laccase), six proteases, and five 

esterases/lipases. Comparison of the S. lacrymans and P. placenta genomes revealed the 

presence of cellobiohydrolases and proteins containing a cellulose-binding motif (CBM) in 

S. lacrymans, while these proteins are absent in P. placenta. Finally, analysis of the S. 

lacrymans secretome and genome indicated non-enzymatic disruption of cellulose by this 

brown rot basidiomycete (Fenton mechanism). 

4.2.3. - Wolfiporia cocos 

Gaskell et al. (Gaskell et al., 2016) studied the secretome of Wolfiporia cocos using Populus 

grandidentata (aspen, Asp), Pinus contorta (lodgepole pine, LP) or microcrystalline 

cellulose (MCC) as the sole carbon source and 704 W. cocos proteins were identified. In order 

to avoid analyzing proteins likely to be involved in intracellular processes, the authors 

focused on proteins with a secretion signal (132 proteins), noting that inaccurate 5′ termini 

and non-classical signals may have reduced the number of proteins included in the analyses. 

A relevant example includes a laccase model. The authors underlined the fact that among 

12,746 predicted W. cocos genes, only 48% had assigned Pfam domains. Consequently, the 

transcriptomic study found many upregulated genes without a functional classification. 
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Among them, 33 proteins with predicted secretion signals were upregulated on MCC, Asp, 

or LP relative to a glucose (Glc) control medium; 51, 84, 117, and 112 proteins were 

identified in Glc, MCC, Asp, and LP media, respectively. More proteins were found in media 

that contained wood, in accordance with the higher carbon source complexity. Asp and LP 

wood differ substantially in their structures and compositions; nevertheless, W. cocos gene 

expression patterns were remarkably similar on these substrates, despite some differences in 

specific genes. 

Furthermore, the authors used the transcriptome and secretome of W. cocos to analyze the 

production of key reactants (H2O2 and Fe2) for Fenton chemistry, thought to be used by brown 

rot fungi. Among others, genes encoding benzoquinone reductases (BQR), laccases (Lac), 

ferroxidase (FET3), ferric reductase transmembrane component (FRE), iron permease (FTE), 

and oxalate decarboxylase (ODC) were observed. The upregulation of FET3 and FTR1 in 

the W. cocos transcriptome supports enhanced iron acquisition, consistent with a Fenton-

based system. Hydroquinone redox cycling has been proposed to generate hydroxyl radicals 

for Fenton chemistry, but in W. cocos, in contrast to P. placenta, BQR and MOX genes are 

not upregulated when the fungus grows on wood, suggesting that the Fenton mechanism is 

less important and that a unique repertoire of genes is involved in lignocellulose degradation. 

 

4.2.4. - Gloeophyllum trabeum 

In a very interesting approach to studying the secretome in this species (Presley & Schilling, 

2017; Zhang et al., 2016a), wood wafers were colonized by S. lacrymans or G. trabeum in a 

directional way that allowed the researchers to observe a spatial separation of the decay 

stages linearly along the substrate. G. trabeum produced more proteins (209 in total) than S. 

lacrymans (93), especially at the section nearest the hyphal front, the earlier stages of wood 

colonization. In S. lacrymans cultures, 65, 81, and 72 proteins were found at distances of 0 

to 5, 10 to 15, and 20 to 25 mm behind the hyphal front, respectively, and 200, 150, and 120 

proteins in the equivalent wafer sections colonized by G. trabeum. After transcriptomic and 

proteomic studies of the spatially separated stages of wood colonization, the authors proposed 

a two-step decay mechanism where oxidoreductases were more important at the hyphal front 
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and endoglucanase and hemicellulase activities increased in a second stage of wood 

colonization. 

The existence of an actual differentiation between white and brown rot basidiomycetes was 

questioned by Riley et al. (2014). Some fungi showed characteristics from both white and 

brown rot fungi, making it very difficult to classify them as one specific type of rot. 

 

4.2.5. – Comparison of the secretomes of white and brown rot basidiomycetes 

In a comparative study of 31 diverse saprotroph fungi, Floudas et al. (Floudas et al., 2012) 

examined the secretomes of 11 basidiomycetes, comprising six white rot species (Auricularia 

delicata, Dichomitus squalens, Fomitiporia mediterranea, Punctularia strigosozonata, 

Stereum hirsutum and Trametes versicolor) and five brown rot species (Coniophora puteana, 

Dacryopinax sp., Fomitopsis pinicola, Gloeophyllum trabeum and Wolfiporia coccos). In the 

white rot species, 977 secreted proteins were identified, while 1012 were identified in the 

brown rot species. To compare the two types of basidiomycetes, the following principal 

functional groups of proteins were examined (white rot / brown rot): uncharacterized 

proteins, 230 / 205; GHs, 302 / 204; 132 / 92 peptidases; 29 / 15 oxidases related to lignin 

degradation; 34 / 25 esterases and lipases; 14 / 1 Poxs; and 11 / 0 MnPs and Vps. 

More recently, Hori et al. (2013) conducted a comparative LC-LC-MS/MS secretome 

analysis of seven Polyporales (the white rot species D. squalens, T. versicolor, Bjerkandera 

adusta, Ganoderma sp. and Phlebia brevispora and the brown rot species F. pinicola and W. 

cocos) grown in wood cultures under identical conditions. They found that genes encoding 

cellulases belonging to families GH6, GH7 and GH9 and the carbohydrate-binding module 

family CBM1 were lacking in the brown rot polyporales. In addition, the presence of CDH 

and expansion of LPMO were observed only in the white rot genomes. Indeed, GH6, GH7, 

CDH and LPMO peptides were identified only in white rot polyporales. In contrast, peptides 

corresponding to quinone reductase (QRD) were identified only in brown rot fungi in this 

study. This finding is consistent with previous studies in the brown rot fungus P. placenta 

(Martinez et al., 2009; Vanden Wymelenberg et al., 2010) and may constitute a key 
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component of a redox cycle supporting Fenton chemistry (Paszczynski, Crawford, Funk, & 

Goodell, 1999; M. R. Suzuki, Hunt, Houtman, Dalebroux, & Hammel, 2006). Regarding 

hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 

endo-xylanase, GH79β-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl 

methylesterase were significantly increased in white rot compared to brown rot 

basidiomycetes. As proposed by Hori et al., these results collectively suggest that white rot 

basidiomycetes employ both extracellular hydrolytic and oxidative reactions for cellulose 

degradation, a strategy that is distinct from the Fenton systems of brown rot basidiomycetes 

(Hori et al., 2013). 

The existence of an actual differentiation between white and brown rot basidiomycetes has 

been questioned by Riley et al. (Riley et al., 2014). Some fungi showed characteristics from 

both white and brown rot fungi, making very difficult to classify them in a type of rot. 

 

4.3. – SYMBIOTIC BASIDIOMYCETES 

4.3.1. – Laccaria bicolor 

L. bicolor has a life cycle that includes a soil saprotrophic phase and a long mutualistic 

ectomycorrhizal (ECM) interaction with its host tree species, which is preferentially a pine 

(Pinus) or birch (Betula). The Laccaria genome (60.71 Mbp) has been sequenced by Martin 

et al. (Martin et al., 2008). Bioinformatics analysis of this genome revealed 2,931 secreted 

proteins (14.2 % of the predicted protein models), although a function could not be ascribed 

to most of them (69%), and 89% of these proteins appeared to be specific of L. bicolor 

(Vincent et al., 2012). Among these proteins, a large number were cysteine-rich small 

secreted proteins (SSP) that play a role in the interaction between the host and the symbiont 

(Mycorrhizal-induced Small Secreted Proteins, MiSSP). An unexpected finding was a lack 

of carbohydrate-active enzymes (CAZymes) involved in the degradation of the plant cell 

wall. However, L. bicolor maintained the ability to degrade non-plant cell wall 

polysaccharides (Martin et al., 2008; Vincent et al., 2012). 

The L. bicolor secretome was studied in a shaken submerged culture by Vincent et al. 
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(Vincent et al., 2012) using three different fractionation approaches (IPG-IEF, 1D-PAGE and 

2D-PAGE), followed by LC-ESI-MS/MS. A total of 224 proteins were identified, 103 of 

which were annotated as being secreted: 41 of these 103 proteins had an unknown function, 

and 15 of the 41 unknown proteins could be classified as MiSSPs. Many CAZymes that are 

likely involved in modifications of the fungal cell wall were also identified in the secretome. 

Additionally, these authors proposed that the dual lifestyle of this fungus requires two sets of 

proteins to be secreted in the two phases of the life cycle: enzymes involved in nutrient 

acquisition via the degradation of substrates (proteases, GHs) and proteins participating in 

morphogenetic and defense mechanisms prevail in the saprotrophic phase; whereas proteins 

involved in recognition, adherence and host-defense modulation are predominant in the 

symbiotic phase. 

 

4.3.2. - Tricholoma vaccinum 

Tricholoma vaccinum, a fungal symbiont of Norway spruce (Picea abies), was cultivated in 

vitro to identify secreted proteins (Wagner et al., 2015). After the addition of spruce root 

exudates, the authors looked for differentially regulated proteins that acted as communication 

signals in early ectomycorrhizal interaction, before physical contact happens. Using 2D-

PAGE to separate proteins prior to MS identification, the authors identified 22 different 

proteins from the 2D gels, including five small secreted proteins. Twelve proteins showed a 

typical secretion signal at their N-termini. Five proteins were predicted to be excreted via a 

non-classical pathway, and five more were not predicted to be intracellular proteins. Seven 

proteins were regulated after the addition of root exudates. The root exudates changed the 

secretome of the fungus, but in an unspecific manner. The small number of proteins identified 

(usually when using 2D PAGE secretomes) prevented the authors from determining the 

regulation of more ectomycorrhizal-related proteins. 

 

4.3.3. - Hebeloma cylindrosporum 
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Doré et al. (2015) analyzed the exoproteome of H. cylindrosporum in Melin-Norkrans 

(MMN) medium and identified proteins of unknown function; SSPs and CAZymes were 

among the 10% most abundant proteins. An extensive analysis of H. cylindrosporum’s 

capacity to use several carbon sources showed that this fungus cannot grow when using any 

polysaccharide constituents of the plant cell wall (PCW) as carbon sources; however, it can 

grow on starch and β-1,3-glucan, two other polysaccharides that are normally absent from 

PCWs. This is a common feature of ectomycorrhizal fungi (Martin et al., 2008; Vincent et 

al., 2012). Interestingly, H. cylindrosporum possesses the genetic arsenal necessary to 

degrade cellulose, although the corresponding proteins either could not be detected by mass 

spectrometry in culture filtrates or were detected at low concentrations. The only exception 

was a GH28-encoded polygalacturonase that was highly concentrated in the filtrates. This 

protein was also present in the L. bicolor genome and was suggested to be involved in cell 

wall remodeling during fungal tissue differentiation because it was upregulated in fruiting 

bodies and ectomycorrhizae (Martin et al., 2008). Most of the CAZymes found in high 

concentrations in the filtrate could be involved in fungal cell wall metabolism or related to 

the degradation of cellobiose, starch, or β-1,3 glucans. Besides CAZymes, H. cylindrosporum 

abundantly secreted proteases, one laccase, and four glucose-methanol-choline (GMC) 

oxidoreductases. 

 Based on these findings, the authors proposed an adaptation of H. cylindrosporum to use soil 

organic nitrogen, although avoiding host damage. Furthermore, SSP regulation suggests a 

role for these proteins in symbiosis and the degradation of organic matter. 

4.4. – PLANT PATHOGENIC BASIDIOMYCETES 

4.4.1. – Ustilago maydis 

U. maydis is a biotroph pathogen that causes smut disease in maize. The U. maydis genome 

(Kämper et al., 2006) consists of 20.5 Mbp and contains 6,902 predicted proteins. At the level 

of gene cataloging, U. maydis displays few of the pathogenicity signatures found in the 

genomes of aggressive pathogenic fungi (for instance, cell wall-degrading enzymes such as 

cellobiohydrolases and endoglucanases; polyketide synthases; and enzymes involved in 

antibiotic or mycotoxin production). The presence of GH enzymes is also reduced in U. 
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maydis in comparison with the white rot species P. chrysosporium and Coprinopsis cinerea 

(30 GH genes in U. maydis vs. 50 in P. chrysosporium and 42 in C. cinerea). 

However, the U. maydis genome contains several clusters of small secreted proteins (SSPs) 

that are co-regulated and induced in the infected tissue in most cases. Of the 554 proteins 

predicted to be secreted, 70% could not be ascribed to any function, and 65 % were only 

found in U. maydis. Some of these proteins are essential for the infection to proceed. SSPs 

were also prevalent in the symbiotic L. bicolor and were not found in the saprotrophic 

basidiomycetes discussed above.  

Müller et al. (Muller et al., 2008) employed a combination of molecular (signal sequence 

trap) and bioinformatics tools to determine the secretome of U. maydis. They identified 29 

proteins, including hydrophobins and proteins containing repetitive structures, some of which 

are essential for the infection process ((Kämper et al., 2006). 

Using a solely bioinformatic approach, Müller et al. (Mueller et al., 2008) identified 554 

predicted secreted proteins. Only 168 of  them(39%) could be functionally annotated, which 

included enzymes involved in the degradation of cellulose and hemicellulose and 

modification of the fungal cell wall as well as peptidases esterases-lipases, oxidases and 

laccases. Surprisingly, shaken submerged cultures of U. maydis performed using 15 g/l maize 

bran as a carbon source were found to efficiently release sugars from micronized wheat straw 

(M Couturier et al., 2012). In this work, the U. maydis secretome was analyzed via 1D-SDS-

PAGE LC-MS/MS, and the 86 proteins identified were functionally annotated as follows: 29 

unknown proteins, 22 GHs, 11 esterases and lipases, 10 proteases, and 7 oxidases. 

 

4.4.2. – Armillaria mellea 

Armillaria spp. are among the most serious plant root pathogens and have been studied 

because of their virulence, bioluminescent properties and ability to produce natural products 

(Collins et al., 2013). Collins et al. identified a total of 293 proteins in culture supernatants 

using several different carbon sources (lignin, xylan, cellulose, rutin or yeast extract). 

Through 1D-LC–MS/MS analysis, 157 unique proteins were identified, while 37 proteins 
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were uniquely identified via a shotgun strategy without SDS-PAGE fractionation. SignalP 

analysis predicted the presence of a signal peptide in 50.2% (147) of the secreted proteins. 

Furthermore, SecretomeP indicated that 99 of the secreted proteins (34%) contained a non-

classical secretion signal, meaning that less than 20% (55) of these proteins do not contain a 

secretion signal. GO analysis showed peptidase activity as the largest functional category 

(15). 

Additionally, the supernatant from co-cultures of A. mellea and Candida albicans was 

analyzed using a LC-LC-MS/MS approach, and 30 A. mellea proteins were identified that 

have not been observed under any other culture conditions. The presence of these proteins 

and the existence of a significant killing effect on C. albicans induced by A. mellea appears 

to demonstrate the existence of  a defensive  response of A. mellea against C. albicans 

(Collins et al., 2013). 

 

4.5. – OTHER BASIDIOMYCETES 

4.5.1. – Coprinopsis cinerea 

C. cinerea is a classic experimental model of multicellular development in fungi, as it grows 

on defined media, completes its life cycle in 2 weeks, produces a total of 108 synchronized 

meiocytes and can be manipulated in all stages in development via mutation and 

transformation (Stajich et al., 2010). Based on analysis of the annotated genome of C. cinerea 

(formerly C. cinereus), 1,769 proteins were predicted to be potentially secreted (data not 

shown), and 76 extracellular proteins have been experimentally confirmed thus far by means 

of 2-D PAGE and MS. The secretome of C. cinerea in a liquid complex medium containing 

glucose, yeast extract, peptone, and mineral salts includes glyoxal oxidases, β-glucosidases, 

β-1,3-glucanases, glucoamylases, metallopeptidases, and serine peptidases. However, a 

significant number of spots could not be identified on basis of sequence homology with 

known proteins (Bouws et al., 2008; Hoegger et al., 2007; Stajich et al., 2010). 
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5. – CONCLUDING REMARKS 

The use of several complementary proteomic techniques to analyze secretome samples 

appears to be the best method for obtaining broad insight into the complex and highly 

dynamic mixture of proteins that basidiomycetes use to degrade lignocellulose. Among the 

proteins identified in these secretomes, there is a large number of proteins that are not 

predicted to be secreted. Avoiding intracellular contamination of secretome samples can be 

highly challenging due to cellular lysis occurring before or during secretome sample 

extraction; however, the extracellular functions of some non-secretome predicted proteins 

detected in these analyses demonstrate the importance of non-classical secretion among 

fungi. Eastwood et al. (2011) identified 39 GHs in extracellular media, but only 29 were 

predicted to be secreted. These data also indicate the importance of in vitro experiments to 

demonstrate the accuracy of in silico data. 

Quantitative proteomics techniques are beginning to be widely applied in fungal studies. 

However, at the time of this review, Dr. Sze’s (Adav et al., 2012; Adavat al., 2012b;  

Manavalan et al., 2011) studies were the only ones that applied iTRAQ techniques to 

basidiomycete secretomes, allowing them to compare enzyme regulation when different 

carbon sources are used. Other quantitative approaches range from 2D-PAGE spots 

quantitation to the use of label free proteomics (like emPAI (Ishihama et al., 2005)), based 

on the peptide peak intensity or number of peptides identified from a given protein,  which 

is increasing its use in fungal secretomes. One of the main aims of the basidiomycete 

secretome analyses reviewed here is to search for valuable enzymes that can be utilized to 

obtain energy from lignocellulosic materials, and quantitative proteomics can contribute 

valuable data on the importance of each enzyme involved in every step of fungal decay. 

Furthermore, the increasing number of available sequenced fungal genomes, 278 of which 

come from basidiomycetes (April 2017), and the increasing quality of the annotated genomes 

will increase the number of proteins detected using proteomic techniques and improve our 

overall understanding of plant biomass degradation, with the goal of using such biomass as 

a sustainable source of energy to support future needs. This can yield a reciprocal benefit, 

because the use of proteogenomics methodologies (Nesvizhskii, 2014) can provide protein-

level evidence of gene expression to help refine gene models annotation. 
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The number of experimentally determined secretomes in basidiomycetes is increasing, but 

there is a lack of information about the function of many proteins that seem to be involved 

in how fungal interact with its environment. This is now the main reason why only coarse 

pictures of the secretome differences in association with fungal lifestyles can be drawn  

We can generalize, however, as a preliminary model that saprotrophs secretomes are 

characterized by the abundance of glycosyl hydrolases and peptidases, whereas these two 

groups are more reduced in symbionts and pathogens. Among the saprotrophs, the two lignin-

degrading styles (white and brown rot) can be clearly correlated with the presence of 

cellulases and lignin degrading enzymes (WR) and the limited presence of these enzymes 

and the occurrence of enzymes involved in the Fenton-based cellulose degradation reactions 

(BR).  
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P. ostreatus (Jacq.) P. Kumm. is one of the most widely cultivated edible fungi in the world 

under the common name of the Oyster mushroom. It is broadly accepted as an excellent 

comestible because of its organoleptic characteristics. This industrial background provides a 

deep knowhow about its cultivation needs and behavior and makes P. ostreatus a good 

scientific model for basidiomycete laboratory work. Furthermore, this already stablished 

fungal cultivation industry is a nice starting point for exploring new applications of fungi, 

such as biofuel production. 

In nature, P. ostreatus is a saprophyte that lives on decaying wood and stands out among 

other wood rotters as a specific lignin degrader (van Kuijk, Sonnenberg, Baars, Hendriks, & 

Cone, 2015). P. ostreatus takes the nutrients necessary to survive from lignocellulosic 

materials by means of proteins secreted to the extracellular media. These proteins are a 

complete catalog of tools targeted to each one of the compounds that form lignocellulose, 

which are known for being recalcitrant against degradation by the majority of living 

organisms; therefore, this decomposition is a major step in the carbon cycle, considering that 

cellulose and lignin are the most abundant carbon polymers in nature (J. Pérez, Muñoz-

Dorado, De La Rubia, & Martínez, 2002). 

This extracellular digestion carried out by fungi requires enzyme secretion. Fungi need to 

access the lignocellulose sugars and produce enzymes specifically suited to digest 

lignocellulose in different environments, including those that are hostile for the enzymes. 

Different strategies were followed by basidiomycete fungi to degrade wood. In a rough 

classification based on the aspect of the rotting material, they were classified as white or 

brown rot fungi. White rot fungi are generally noted to degrade all the lignocellulosic 

compounds, but degrade lignin in a higher percentage than brown rotters, which employ a 

different mechanism and don’t need extensive lignin degradation. These different strategies 

were shown to have a blurred separation, as some fungi shared characteristics from both rot 

types (Riley et al., 2014). 

The P. ostreatus dikaryotic strain N001 is a hybrid strain that has been used as a source for 

commercial cultures for many years. The two nuclei present in this dikaryotic strain were 

separated, and two monokaryotic strains (PC9 and PC15) were produced and maintained 
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(Luis M. Larraya et al., 1999). PC15 was sequenced with the Sanger whole-genome shotgun 

approach (Riley et al., 2014a) and PC9 was sequenced using Sanger whole genome shotgun 

and 454 paired end sequencing reads. PC15 genome assembly version 2.0 (34.3 Mb) was 

subjected to targeted genome improvement, which led to a complete assembly of 12 scaffolds 

with a very low gap content (1 gap of 91 base pairs in the whole assembly) that matched the 

corresponding P. ostreatus chromosomes (eleven nuclear plus one mitochondrial 

chromosome) (Luis M. Larraya et al., 1999). In contrast, PC9 assembly v1.0 (35.6 Mb) 

contains 572 scaffolds and a total of 476 gaps that cover 9.72% of the whole assembly (Raúl 

Castanera et al., 2016) (Figure1).  

Figure 1. P. ostreatus lifecycle and genomes. Data from DOE Joint Genome Institute (I V 

Grigoriev et al., 2012). 

In this thesis, we use the term ‘strain’ to refer to these two monokaryons that are genetically 

compatible and reconstitute the dikaryotic strain N001 when mated. Sequencing shows that 
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the two monokaryotic strains are very similar in terms of genome size or number of genes, 

despite the poorest assembly of the PC9 sequence. 

1. – P. ostreatus LIGNINOLYTIC CAPABILITIES 

P. ostreatus possesses an impressive arsenal of enzymes involved in degrade lignocellulose 

decomposition. Comparing to other well–known basidiomycetes, such as the brown rot 

Laccaria bicolor (Martin et al., 2008), the ectomycorrhizal symbiont Postia placenta 

(Martinez et al., 2009), the white rot model Phanerochaete chrysosporium (Martinez et al., 

2004), and the edible agarical Agaricus bisporus (Morin et al., 2012), P. ostreatus 

monokaryons PC15 and PC9 exhibit its huge genomic potential: they have more enzymes 

involved in peroxide generation and lignin degradation (AA), more glycosil hydrolases 

(GHs) and carbohydrate esterases (CEs) to break down constituents of the PCW, and 

more polysaccharide lyases (PLs) that cleave uronic acid-containing polysaccharide chains 

(Lombard et al., 2010) and thus are involved mainly in pectin degradation. Glycosil 

transferases (GTs) are more involved in polysaccharide biosynthetic pathways than in 

polymer degradation, acting in the formation of the fungal cell wall. 

Total Lacbi2 Pospl1 Agabi_H97 Phchr1 PleosPC15 PleosPC9 

AA 55 29 81 84 114 82 

CBM 29 32 42 56 74 66 

CE 18 15 33 15 28 20 

GH 170 129 174 175 235 162 

GT 96 24 54 65 65 47 

PL 7 1 9 4 23 14 

EXPN 12 12 9 9 8 7 

Total 387 242 402 408 547 398 
Table 1. Brown rot Laccaria bicolor (Lacbi2), Symbiont Postia placenta (Pospl1), White 

rot Phanerochaete chrysosporium (Phchr1), Edible Agaricus bisporus var. bisporus H97 

(AgabiH97) and Pleurotus ostreatus Monokaryons PC15 (PleosPC15) and PC9 

(PleosPC9). Data from JGI Mycocosm (Igor V Grigoriev et al., 2014). 

The Carbohydrate-Active enZYmes database (CAZy) (Lombard et al., 2010) is today the 

most broadly accepted classification of enzymes involved in lignocellulose degradation. This 

classification is based on sequence similarity, giving us the opportunity to classify enzymes 

without any biochemical evidence about their catalytic properties, as is the case for the 
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thousands of uncharacterized protein sequences generated by genome sequencing. In contrast 

to other enzyme classification databases that are based on the catalytic properties of the 

enzymes, enzymes belonging to one CAZy family can have different substrates. Most of the 

GH families comprise enzymes with different functions, and up to 28 different enzyme 

activities have been described for proteins belonging to a single GH family (Busk & Lange, 

2013). It is therefore not possible to predict the activity of a GH simply by assigning it to a 

GH family. Likewise, the prediction of function is complicated by the fact that proteins with 

the same enzymatic function can belong to different GH families (Busk & Lange, 2013). 

Having said that, proteins with very similar sequences and subsequently belonging to the 

same CAZy family have structurally-related catalytic activities, like transglycosylases that 

are mechanistically related to retaining GHs. Some enzymes can even share both enzymatic 

activities (Bissaro, Monsan, Fauré, & O’Donohue, 2015).  

 

1.1. – CELLULOSE-DEGRADING ENZYMES 

Lignocellulose is the carbon source of P. ostreatus in nature. Consequently, this fungus can 

degrade all the constituents of the PCW, which is mainly composed of cellulose, 

hemicellulose, pectin, and lignin. Cellulose is, because of its composition based on only one 

sugar monomer (D-glucose) linked by β(1→4) glycosidic bonds, a highly ordered molecule. 

This spatial conformation allow hydroxyl groups on the glucose from one chain to form 

hydrogen bonds with oxygen atoms on the same or on a neighbor chain, forming microfibrils 

with high tensile strength that are arranged in layers (Alberts et al., 2002). 

 

Cellulose-degrading enzymes 

Endoglucanase 

GH5,CBM1 endoglucanase 

GH5_5 endo-β-1,4-glucanase 

GH9 Endoglucanase 

GH12  β-glycanase 

GH12 endo-1,4-β-glucanase 

GH45 endo-β-1,4-glucanase 
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Exoglucanase 

GH6 exocellobiohydrolase CBH II 

GH7 reducing end-acting exocellobiohydrolase CBH I 

β-glucosidase 

GH1 β-glucosidase 

GH3 β-glucosidase 

GH30 β-glucosidase 

Table 2. Cellulose-degrading enzymes 

P. ostreatus possesses all the enzymes necessary to degrade cellulose (Table 2). Three types 

of enzymes are involved in this process: endoglucanases, exoglucanases, and beta-

glucosidases. Endoglucanases can hydrolyze internal bonds (preferably in cellulose 

amorphous regions), releasing new terminal ends. Exoglucanases act on the existing or 

endoglucanase-generated chain ends. Both enzymes can degrade amorphous cellulose but, 

with some exceptions, exoglucanases are the only enzymes that efficiently degrade 

crystalline cellulose. Exo- and endoglucanases release cellobiose molecules. Beta-

glucosidases break down cellobiose, releasing two glucose molecules (Kirk & Cullen, 1998; 

J. Pérez et al., 2002). 

 

1.2. – HEMICELLULOSE-DEGRADING ENZYMES 

Hemicellulose links cellulose fibers, creating a complex network of bonds that provide 

structural strength to the PCW (Rubin, 2008). Hemicelluloses include xylan, glucuronoxylan, 

arabinoxylan, glucomannan, and xyloglucan. Contrary to cellulose, these polysaccharides 

include several monosaccharides apart from glucose: xylose, mannose, galactose, rhamnose, 

and arabinose, among others. In accordance with this huge variety of compounds, fungi can 

use a broad portfolio of enzymes to break down this barrier. Again, P. ostreatus possesses 

more enzymes dedicated to this task than other basidiomycete fungi (Table x). Carbohydrate 

esterases are also involved in the degradation of hemicelluloses, especial acetyl xylan 

esterases belonging to CE families 1, 4, 5, 8, 9, 12, 15, and 16. 
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1.3. – OTHER PROTEINS RELATED TO CELLULOSE AND HEMICELLULOSE 

DEGRADATION 

Carbohydrate binding modules (CBM) are usually found in the protein domains involved in 

lignocellulose degradation. They are usually within a carbohydrate-active enzyme and target 

the enzyme to the appropriate substrate, binding polysaccharides, including cellulose, xylan, 

pectin, mannans, starch, and chitin(Table 3). These domains present the so-called “CBM 

promiscuity” in ligand binding; they can discriminate strongly against some polysaccharides 

while remaining relatively promiscuous toward other compounds. This domain can target 

fungal enzymes to different components to efficiently degrade complex substrates like 

hemicellulose (Charnock et al., 2002). 

List of Carbohydrates and Interacting CBM Families (From CAZypedia) 

Cellulose 
CBM1, CBM2, CBM3, CBM4, CBM6, CBM8, CBM9, 

CBM10, CBM16, CBM17, CBM28, CBM30, CBM37, 

CBM44, CBM46, CBM49, CBM59, CBM63, CBM64 

Xylan 
CBM2, CBM4, CBM6, CBM9, CBM13, CBM15, CBM22, 

CBM31, CBM35, CBM36, CBM37, CBM44, CBM54, 

CBM59, CBM60 

Plant Cell Wall - Other 
(eg: beta-glucans, porphyrans, 

pectins, mannans, gluco- and 

galacturonans) 

CBM4, CBM6, CBM11, CBM13, CBM16, CBM22, 

CBM23, CBM27, CBM28, CBM29, CBM32, CBM35, 

CBM39, CBM42, CBM43, CBM52, CBM56, CBM59, 

CBM61, CBM62, CBM65, CBM67 

Chitin 
CBM1, CBM2, CBM3, CBM5, CBM12, CBM14, CBM18, 

CBM19, CBM37, CBM50, CBM54, CBM55 

Alpha-glucans 
(starch/glycogen, mutan) 

CBM20, CBM21, CBM24, CBM25, CBM26, CBM34, 

CBM41, CBM45, CBM48, CBM53, CBM58 

Table 3. Several CBM families can target different ligands (from CAZypedia). 

In primary cell walls, the matrix in which the cellulose network is embedded is composed of 

pectin, a highly hydrated network of polysaccharides rich in galacturonic acid (Alberts et al., 

2002). PLs are the main enzymes that degrade these components. The P. ostreatus genome 

presents PL1, 3, 4, 8, and 14 family enzymes, which are mainly pectate and 
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rhamnnogalacturonan lyases. GH16, 28, 43,53,78,79, and 93 and CE8 and 12 are also 

involved in pectin degradation. 

Secondary cell walls contain additional components, such as lignin, which is recalcitrant to 

degradation and occupies the interstices between the other components, making the walls 

rigid and permanent. 

Recently, the lytic polysaccharide monooxygenases (LPMOs) (Vaaje-Kolstad et al., 2010) 

have broken into the category of enzymes involved in the degradation of cellulose, chitin, 

and hemicelluloses (Agger et al., 2014). These enzymes, previously classified as GH61, 

cleave the β-(1→4) glycosidic bonds by inserting oxygen into C-H bonds that are adjacent 

to the glycosidic linkage of the polysaccharide backbone (Phillips et al., 2011). The majority 

of lignocellulose-degrading fungi contain genes that encode LPMOs, whose function is 

proposed to be the creation of access points for classical hydrolytic enzymes, such as 

cellulases (Kracher et al., 2016). 

 

1.4. – LIGNIN DEGRADATION 

The AA1 enzymes are multicopper oxidases, including laccases (EC 1.10.3.2), ferroxidases 

(EC 1.10.3.-), and laccase-like multicopper oxidases (EC 1.10.3.-). Family AA2 contains 

class II lignin-modifying peroxidases, including manganese peroxidase (EC 1.11.1.13), 

versatile peroxidase (EC 1.11.1.16), lignin peroxidase (EC 1.11.1.14), and peroxidase (EC 

1.11.1.). Both protein families are among the best studied families in basidiomycete fungi 

because of their ability to degrade lignin, a highly recalcitrant polymer that protects 

hemicelluloses and cellulose from enzymatic attack. The main function of lignin is to provide 

strength and rigidity to plant tissues by infiltrating the intricate web formed by cellulose, 

hemicellulose, and pectin. 

Family AA4 contains vanillyl-alcohol oxidases (VAO) that catalyze the conversion of a wide 

range of phenolic compounds produced during lignin degradation (Levasseur, Drula, 

Lombard, Coutinho, & Henrissat, 2013).  
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AA6 (1,4-benzoquinone reductases) enzymes are involved in the fungal degradation of 

aromatic compounds in a quinone redox cycle that generates extracellular reagents 

(Levasseur et al., 2013).  

Along with AA8 iron reductases, both CAZy classes are involved in generating H2O2 and 

reduced iron and carry out a non-enzymatic Fenton reaction (H2O2+ Fe 2 + + H+→ H2O + Fe 

3+ + OH) in which highly reactive hydroxyl radicals depolymerize lignocellulosic compounds 

(Cullen, 2013; Xu & Goodell, 2001). It is widely accepted that brown rot lignocellulose 

degradation involves oxidation by hydroxyl radicals as a first step for hydrolysis (Cullen, 

2013).  

AA3 enzymes belong to the glucose-methanol-choline (GMC) oxidoreductase family and 

can be divided into 4 subfamilies: AA3_1 (mostly cellobiose dehydrogenases), AA3_2 

(including both aryl alcohol oxidase and glucose 1-oxidase), AA3_3 (alcohol oxidase), and 

AA3_4 (pyranose 2-oxidase) (Levasseur et al., 2013). 

Family AA5 is comprised of copper radical oxidases and the family includes two subfamilies: 

AA5_1 contains characterized glyoxal oxidase and AA5_2 contains galactose oxidase and 

alcohol oxidase enzymes.  

The AA3, AA5, and AA7 (Glucooligosaccharide oxidases) families are involved in peroxide 

generation. New substrates for these enzymes are still being discovered, broadening the 

spatial localization of peroxide generation by these enzymes (Yin et al., 2015). 

The enzyme cellobiose dehydrogenase (CDH, AA3_1) can deliver electrons to LPMOs, 

initiating the cellulose attack. Other enzymes belonging to the AA3 class can also reduce 

LPMOs through plant/fungal phenols that act as mediators (Kracher et al., 2016). There is 

evidence of AA3 and LPMO co-expression during lignocellulose degradation (Marie 

Couturier et al., 2015). Taken together, these findings show new connections between the 

decomposition of polysaccharide and lignin in fungal lignocellulose degradation (Martínez, 

2016). Products from lignin degradation act as electron donors for cellulose-degrading 

LPMOs, linking the whole fungal lignocellulose degradation process. 
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2. – CONCLUDING REMARKS 

This enzymatic diversity gives basidiomycete fungi (and specifically P. ostreatus) a broad 

portfolio of enzymatic possibilities to act on a wide variety of compounds and in different 

environments. As an example, P. ostreatus possesses several gene models whose enzymatic 

function is presumably the same. Among them, ligninolytic peroxidases are broadly studied 

because of their lignin-degrading capabilities. These enzymes show different levels of 

transcription and activity at different pH levels (Fernández-Fueyo et al., 2014). In a P. 

ostreatus previous study, the weight of the transcriptional activity was mainly supported by 

only one gene model per enzymatic function (Alfaro et al., 2016). Nevertheless, the 

advantages of genetic redundancy are clear (Kafri et al., 2009) and have been demonstrated 

to be useful in maintaining P. ostreatus’ activity level by inactivating the most expressed MnP 

genes (Salame et al., 2013). Genome editing technologies like CRISPR-CASP9 applied to 

basidiomycete fungi (Schuster et al., 2016) will shed light on the role of genetic redundancy 

in lignocellulose fungal degradation.  

Surprisingly, the two P. ostreatus monokaryotic strains seem to be different in their 

lignocellulose degrading genomic capabilities. PC9 have less CAZy genes annotated (403 

versus 549 in PC15), especially in the Glycosil hydrolases(GH) class (86 versus 114 in 

PC15). Nevertheless, PC9 grows better than PC15 on lignocellulosic substrates and has a 

higher enzyme secretion capacity when growing in the presence of wood, as we will see in 

the next chapters of these dissertation. 

 

 Lacbi2 Pospl1 

Agabi_

H97 Phchr1 

Pleos 

PC15 

Pleos

PC9 

AA Auxiliary Activities family 55 29 81 84 114 86 

AA1 Auxiliary Activity Family 1 15 6 13 5 12 11 
AA1 Auxiliary Activity Family 1 0 1 0 4 0 0 

AA1_1 Auxiliary Activity Family 1 / Subf 1 10 4 12 0 11 10 

AA1_2 Ferroxidase 3 1 1 1 1 1 

AA1_dist Multicopper oxidase 2 0 0 0 0 0 

AA12 Auxiliary Activity Family 12 0 0 1 1 1 0 

AA2 Auxiliary Activity Family 2 1 1 2 15 9 9 

AA3 Auxiliary Activity Family 3 12 18 37 36 41 29 
AA3 Auxiliary Activity Family 3 0 2 0 0 0 0 

AA3_1 Cellobiose dehydrogenase 0 0 1 1 1 1 

AA3_2 GMC oxidoreductase 10 15 31 31 36 26 

AA3_3 Alcohol oxidase 2 1 5 3 4 2 

AA3_4 Auxiliary Activity Family 3 / Subf 4 0 0 0 1 0 0 

AA5 Auxiliary Activity Family 5 11 2 9 7 16 11 
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AA5_1 Auxiliary Activity Family 5 / Subf 1 11 2 9 7 16 11 

AA6 Auxiliary Activity Family 6 2 0 4 4 2 2 

AA7 Auxiliary Activity Family 7 1 0 3 0 3 2 
AA7 Auxiliary Activity Family 7 1 0 1 0 3 2 

AA7_dist Glucooligosaccharide oxidase 0 0 2 0 0 0 

AA8 Auxiliary Activity Family 8 0 0 1 2 1 1 

AA9 Auxiliary Activity Family 9 13 2 11 14 29 21 
AA9 Auxiliary Activity Family 9 8 2 11 14 29 21 

AA9_dist Lytic polysaccharide monoox. (GH61) 5 0 0 0 0 0 

CBM Carbohydrate-Binding Module family 29 32 42 56 74 66 

CBM1 Carbohydrate-Binding Module Family 1 1 0 17 30 32 31 

CBM12 Carbohydrate-Binding Module Family 12 2 0 1 0 1 1 

CBM13 Carbohydrate-Binding Module Family 13 9 18 8 8 22 19 

CBM18 Carbohydrate-Binding Module Family 18 1 2 1 1 1 1 

CBM20 Carbohydrate-Binding Module Family 20 1 2 1 2 3 3 

CBM21 Carbohydrate-Binding Module Family 21 2 3 2 2 2 2 

CBM35 Carbohydrate-Binding Module Family 35 0 0 1 1 1 1 

CBM43 Carbohydrate-Binding Module Family 43 5 1 1 1 1 1 

CBM48 Carbohydrate-Binding Module Family 48 3 1 2 3 2 2 

CBM5 Carbohydrate-Binding Module Family 5 1 5 3 2 1 0 

CBM50 Carbohydrate-Binding Module Family 50 3 0 5 6 1 1 

CBM52 Carbohydrate-Binding Module Family 52 1 0 0 0 0 0 

CBM67 Carbohydrate-Binding Module Family 67 0 0 0 0 7 4 

CE Carbohydrate Esterase family 18 15 33 15 28 20 

CE1 Carbohydrate Esterase Family 1 0 0 1 4 2 2 

CE12 Carbohydrate Esterase Family 12 0 0 2 0 2 1 

CE15 Carbohydrate Esterase Family 15 0 2 1 2 1 0 

CE16 Carbohydrate Esterase Family 16 2 4 11 2 9 6 

CE4 Carbohydrate Esterase Family 4 11 2 9 4 11 9 

CE5 Carbohydrate Esterase Family 5 1 0 6 0 0 0 

CE8 Carbohydrate Esterase Family 8 4 4 2 2 2 2 

CE9 Carbohydrate Esterase Family 9 0 3 1 1 1 0 

EXPN Distantly related to plant expansins 12 12 9 9 8 7 

GH Glycoside Hydrolase family 170 129 174 175 235 162 

GH1 Glycoside Hydrolase Family 1 0 2 1 2 3 3 

GH10 Glycoside Hydrolase Family 10 0 1 2 6 3 2 

GH105 Glycoside Hydrolase Family 105 0 0 2 0 2 2 

GH11 Glycoside Hydrolase Family 11 0 0 2 1 2 1 

GH115 Glycoside Hydrolase Family 115 0 0 2 1 1 1 

GH12 Glycoside Hydrolase Family 12 3 2 2 2 2 1 

GH125 Glycoside Hydrolase Family 125 0 0 1 1 1 1 

GH128 Glycoside Hydrolase Family 128 5 2 2 5 4 3 

GH13 Glycoside Hydrolase Family 13 10 3 7 9 10 3 
GH13_1 Glycoside Hydrolase Family 13 / Subf 1 3 2 1 2 2 0 

GH13_22 Glycoside Hydrolase Family 13 1 0 1 1 1 0 

GH13_25 Glycoside Hydrolase Family 13 1 0 1 1 1 1 

GH13_32 Glycoside Hydrolase Family 13 / Subf 

32 0 0 1 1 3 1 

GH13_40 Glycoside Hydrolase Family 13 3 0 1 2 1 0 

GH13_5 Glycoside Hydrolase Family 13 1 0 1 1 1 1 

GH13_8 Glycoside Hydrolase Family 13 1 1 1 1 1 0 

GH131 Glycoside Hydrolase Family 131 1 0 0 3 2 1 

GH133 Glycoside Hydrolase Family 133 1 0 1 1 1 1 

GH135 Glycoside Hydrolase Family 135 0 0 0 1 0 0 

GH15 Glycoside Hydrolase Family 15 2 2 2 2 3 3 



 

Introducing the Oyster Mushroom Pleurotus ostreatus Chapter2 

66 
 

GH16 Glycoside Hydrolase Family 16 31 23 24 23 30 18 

GH17 Glycoside Hydrolase Family 17 4 2 6 2 3 2 

GH18 Glycoside Hydrolase Family 18 11 15 13 11 12 13 

GH2 Glycoside Hydrolase Family 2 2 5 2 2 3 2 

GH20 Glycoside Hydrolase Family 20 2 2 4 3 2 1 

GH23 Glycoside Hydrolase Family 23 1 2 1 0 1 1 

GH24 Glycoside Hydrolase Family 24 3 0 1 0 3 2 

GH25 Glycoside Hydrolase Family 25 0 0 4 1 2 2 

GH27 Glycoside Hydrolase Family 27 1 2 4 3 7 2 

GH28 Glycoside Hydrolase Family 28 7 7 6 4 6 2 

GH29 Glycoside Hydrolase Family 29 0 0 1 0 0 0 

GH3 Glycoside Hydrolase Family 3 2 8 8 10 13 8 

GH30 Glycoside Hydrolase Family 30 9 0 3 2 4 1 
GH30 Glycoside Hydrolase Family 30 1 0 1 1 2 0 

GH30_3 Glycoside Hydrolase Family 30 / Subf 3 7 0 2 1 2 1 

GH30_dist Glycoside Hydrolase Family 30 1 0 0 0 0 0 

GH31 Glycoside Hydrolase Family 31 5 6 6 6 8 4 

GH32 Glycoside Hydrolase Family 32 0 0 0 0 1 1 

GH35 Glycoside Hydrolase Family 35 1 2 1 3 4 2 

GH37 Glycoside Hydrolase Family 37 2 7 2 2 2 2 

GH38 Glycoside Hydrolase Family 38 1 1 1 1 1 0 

GH43 Glycoside Hydrolase Family 43 0 0 4 4 8 8 

GH44 Glycoside Hydrolase Family 44 0 0 1 0 1 1 

GH45 Glycoside Hydrolase Family 45 0 1 2 0 3 3 

GH47 Glycoside Hydrolase Family 47 11 7 7 6 9 5 

GH5 Glycoside Hydrolase Family 5 23 12 19 19 21 16 
GH5_12 Glycoside Hydrolase Family 5 4 3 2 2 2 2 

GH5_15 Glycoside Hydrolase Family 5 / Subf 15 3 1 1 1 1 0 

GH5_22 Glycoside Hydrolase Family 5 0 1 2 2 2 2 

GH5_30 Glycoside Hydrolase Family 5 / Subf 30 2 0 1 0 1 1 

GH5_31 Glycoside Hydrolase Family 5 / Subf 31 0 0 0 1 0 0 

GH5_5 Glycoside Hydrolase Family 5 1 3 3 2 4 3 

GH5_50 Glycoside Hydrolase Family 5 / Subf 50 2 0 2 2 1 0 

GH5_7 Glycoside Hydrolase Family 5 0 1 1 3 4 4 

GH5_9 Glycoside Hydrolase Family 5 11 3 7 6 6 4 

GH51 Glycoside Hydrolase Family 51 0 2 1 2 3 2 

GH53 Glycoside Hydrolase Family 53 0 0 1 1 1 1 

GH55 Glycoside Hydrolase Family 55 2 1 1 2 2 2 

GH6 Glycoside Hydrolase Family 6 0 0 1 1 3 3 

GH62 Glycoside Hydrolase Family 62 0 0 0 0 1 1 

GH63 Glycoside Hydrolase Family 63 1 2 1 1 1 1 

GH7 Glycoside Hydrolase Family 7 0 0 1 8 16 11 

GH71 Glycoside Hydrolase Family 71 4 4 3 3 5 3 

GH72 Glycoside Hydrolase Family 72 7 1 1 1 1 1 

GH74 Glycoside Hydrolase Family 74 0 0 1 4 3 2 

GH76 Glycoside Hydrolase Family 76 0 0 0 0 2 2 

GH78 Glycoside Hydrolase Family 78 0 1 4 1 2 2 

GH79 Glycoside Hydrolase Family 79 11 0 6 5 7 6 

GH85 Glycoside Hydrolase Family 85 1 2 1 1 1 1 

GH88 Glycoside Hydrolase Family 88 2 1 1 1 1 2 

GH89 Glycoside Hydrolase Family 89 0 0 0 2 0 0 

GH9 Glycoside Hydrolase Family 9 1 0 1 1 1 1 

GH92 Glycoside Hydrolase Family 92 2 0 5 4 6 2 

GH95 Glycoside Hydrolase Family 95 1 1 1 1 1 1 

GT Glycosyl Transferase family 96 24 54 65 65 47 

GT1 GlycosylTransferase Family 1 6 1 3 6 3 2 
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GT15 GlycosylTransferase Family 15 7 1 3 2 4 4 

GT17 GlycosylTransferase Family 17 1 0 1 1 1 0 

GT18 GlycosylTransferase Family 18 2 0 0 0 1 0 

GT2 GlycosylTransferase Family 2 21 7 11 13 12 10 

GT20 GlycosylTransferase Family 20 4 1 3 3 3 3 

GT21 GlycosylTransferase Family 21 1 0 1 1 1 1 

GT22 GlycosylTransferase Family 22 4 1 3 2 3 2 

GT24 GlycosylTransferase Family 24 1 0 1 1 1 0 

GT3 GlycosylTransferase Family 3 1 0 1 1 1 1 

GT31 GlycosylTransferase Family 31 1 0 1 1 1 0 

GT32 GlycosylTransferase Family 32 1 0 1 1 0 0 

GT33 GlycosylTransferase Family 33 1 0 1 1 1 1 

GT35 GlycosylTransferase Family 35 1 0 1 1 1 1 

GT39 GlycosylTransferase Family 39 8 0 3 3 3 3 

GT4 GlycosylTransferase Family 4 6 2 4 4 4 4 

GT41 GlycosylTransferase Family 41 0 0 0 1 0 0 

GT48 GlycosylTransferase Family 48 2 0 2 2 2 2 

GT49 GlycosylTransferase Family 49 0 0 1 1 1 1 

GT5 GlycosylTransferase Family 5 3 0 1 1 1 0 

GT50 GlycosylTransferase Family 50 1 0 1 1 1 0 

GT57 GlycosylTransferase Family 57 2 0 2 2 2 0 

GT58 GlycosylTransferase Family 58 1 0 1 1 1 0 

GT59 GlycosylTransferase Family 59 1 0 1 1 1 0 

GT66 GlycosylTransferase Family 66 1 1 1 1 1 1 

GT69 GlycosylTransferase Family 69 3 2 1 2 1 0 

GT76 GlycosylTransferase Family 76 1 0 0 1 1 1 

GT8 GlycosylTransferase Family 8 7 8 2 9 7 6 

GT90 GlycosylTransferase Family 90 8 0 3 1 6 4 

Myosin_motor Glycosyltransferase Family 2 4 1 1 1 2 1 

PL Polysaccharide Lyase family 7 1 9 4 23 14 

PL1 Polysaccharide Lyase Family 1 0 0 2 0 10 6 
PL1 Polysaccharide Lyase Family 1 0 0 0 0 5 3 

PL1_2 Polysaccharide Lyase Family 1 / Subf 2 0 0 1 0 1 0 

PL1_7 Polysaccharide Lyase Family 1 0 0 1 0 4 3 

PL14 Polysaccharide Lyase Family 14 6 1 4 3 4 2 
PL14 Polysaccharide Lyase Family 14 2 1 0 1 1 1 

PL14_4 Polysaccharide Lyase Family 14 / Subf 4 3 0 3 2 2 1 

PL14_5 Polysaccharide Lyase Family 14 / Subf 5 1 0 1 0 1 0 

PL3 Polysaccharide Lyase Family 3 0 0 1 0 3 3 
PL3_2 Polysaccharide Lyase Family 3 0 0 1 0 3 3 

PL4 Polysaccharide Lyase Family 4 0 0 1 0 2 2 
PL4_1 Polysaccharide Lyase Family 4 / Subf 1 0 0 1 0 2 2 

PL8 Polysaccharide Lyase Family 8 1 0 1 1 4 1 
PL8_4 Polysaccharide Lyase Family 8 1 0 1 1 4 1 

Total 391 243 403 409 549 403 

Supplementary Table 1. Comparison between P. ostreatus monokaryons(PleosPC15 and 

PleosPC9) and 4 basidiomycetes: Laccaria bicolor(Lacbi2), Postia placenta (Pospl1) 

Agaricus bisporus var. bisporus  H97(Agabi_H97) and Phanerochaete 

chrysosporium(Phchr1) Data from JGI Mycocosm. 
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1. – INTRODUCTION 

Fungi in the phylum Basidiomycota occupy a large variety of ecological niches: 

ectomycorrhizal (ECM) fungi form symbiotic relationships with the roots of most tree 

species (Hess et al., 2014; Plett & Martin, 2011; Vincent et al., 2012); saprotrophic fungi 

(SAP), such as white rot (WR) (Martinez et al., 2004) and brown rot (BR) (Eastwood et al., 

2011), use decaying matter as carbon sources (Stajich et al., 2010); plant pathogens (PPT) 

invade living tissues of plants to obtain nutrients (Kämper et al., 2006); and animal pathogens 

(APT) (Loftus et al., 2005) infect animals, including humans. Furthermore, some fungi can 

switch between different lifestyles over their life cycles (e.g., Moniliophthora perniciosa) 

(Mondego et al., 2008). These different lifestyles are associated with the ability of the fungi 

to produce high amounts of secreted enzymes that are crucial tools to obtain nutrients, a 

characteristic that has been widely exploited by industry (Conesa et al., 2001; Shoji et al., 

2008). The secretome is defined as the set of proteins secreted by a cell or an organism at a 

given time (Manuel Alfaro, Oguiza, Ramírez, & Pisabarro, 2014; Tjalsma et al., 2000). This 

definition includes proteins released into the surrounding medium and also proteins that 

persist anchored to the membrane or cell wall, including integral membrane proteins. The 

secretome is a very dynamic fungal tool that varies over time depending on the growth 

substrate, temperature or growth phase. One of the main objectives of fungal secretome 

studies is to understand secretome modulation due to environmental changes. 

Lignocellulose is the largest reservoir of organic carbon on Earth and is a renewable resource 

that serves not only as the raw material of the pulp and paper industry but also as a promising 

potential source of second-generation biofuels. Basidiomycetes are the only organisms 

known to degrade lignocellulose on a global scale by producing a large amount of 

lignocellulolytic secreted enzymes and playing a key role in the global carbon cycle. From a 

geological time frame perspective, lignocellulose could have served as a major carbon sink 

until the appearance of SAP lignin-degrading fungi at the end of the Carboniferous period 

(Floudas et al., 2012). Lignin degradation can be achieved using two strategies: WR fungi 

secrete enzymes that remove the lignin polymer before they start to enzymatically degrade 

the cellulose, whereas BR fungi barely degrade the lignin and attack the cellulose layer via a 

Fenton reaction-based mechanism. However, these two lignocellulose-degrading strategies 

do not seem to be mutually exclusive because the Jaapia argillacea and Botryobasidium 
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botryosum genome sequences simultaneously show similarities to the WR (presence of gene 

families coding for  carbohydrate and lignin active enzymes) and BR (absence of genes 

coding for the class II peroxidases) fungi (Riley et al., 2014b).  

The degradation of the lignin moiety of lignocellulose is achieved by a set of principal 

enzymes that include manganese peroxidases (MnP, EC 1.11.1.13), versatile peroxidases 

(VP, EC 1.11.1.16), lignin peroxidases (LiP, EC 1.11.1.14) and phenol oxidases 

(benzenediol:oxygen oxidoreductase Pox, laccases, EC 1.10.3.2) that are accompanied by 

other accessory enzymes, such as cytochrome c peroxidases (EC 1.11.1.5), 

chloroperoxidases (EC 1.11.1.10), dye decolorizing peroxidases (DyP, EC 1.11.1.19), 

glyoxal oxidases (GLOX), aryl-alcohol oxidases (AAO, EC 1.1.3.7), pyranose 

dehydrogenases (EC 1.1.99.29), and methanol oxidases (EC 1.113.13). The cellulose moiety 

is attacked by secreted carbohydrate-active enzymes (CAZy) (Cantarel et al., 2009) such as 

exocellulases (cellobiohydrolases, CBH, EC 3.2.1.91) that are subclassified as types I and II 

depending on their attack of the reducing or non-reducing cellulose ends, endocellulases (EC 

3.2.1.4), and cellobiases (beta-glucosidases, EC 3.2.1.21). Finally, the cementing role of the 

hemicellulose is disrupted by the action of endoxylanases (EC 3.2.1.8), α-glucuronidases (EC 

3.2.1.131), acetyl-xylan esterases (EC 3.1.1.72), arabinofuranosidases (EC 3.2.1.55), ferulic 

acid esterases (feruloyl esterases, EC 3.1.1.73) and β-xylosidases (EC 3.2.1.37), among other 

enzymes (Sun et al., 2012). All of these enzymes are frequently encoded by multigenic 

families whose members are differentially regulated [see (R Castanera et al., 2012) as an 

example in P. ostreatus]. 

The identification of the set of secretable proteins encoded in the genome of a fungal species 

should permit the development of hypotheses about its lifestyle. Bioinfosecretomes are in 

silico-predicted secretomes based on the identification of secretion signals in the predicted 

proteins using the automatically annotated gene models of a genome sequence (Manuel 

Alfaro et al., 2014). Therefore, the quality of a bioinfosecretome depends on the quality of 

the genome sequence and annotation. Fungi secrete proteins using either the conventional 

(CSP) or the unconventional (USP) secretion pathways. CSPs require that secretion-oriented 

proteins contain an amino-terminal peptide sequence (N-terminal sequence, signal peptide, 

SP) that targets them to the endoplasmic reticulum (ER), where they will be correctly folded 

and post-translationally modified (Conesa et al., 2001). Subsequently, proteins pass through 
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the Golgi apparatus and are transported in secretory vesicles that fuse to the plasma 

membrane to perform the secretion process (Conesa et al., 2001; Fonzi, 2009; Shoji et al., 

2008). Alternatively, proteins secreted by the UPS pathways do not require the presence of 

an SP sequence to guide the protein through the ER/Golgi pathway (Nickel & Seedorf, 2008). 

The occurrence of UPS pathways in fungi has been well documented in the case of yeasts 

(Nombela et al., 2006). The computational prediction of the bioinfosecretome is based on the 

initial screening of the required SP sequences in the secreted proteins (Caccia et al., 2013) 

using programs such as SignalP (Bendtsen et al., 2004) and TargetP (Olof Emanuelsson, 

Brunak, von Heijne, & Nielsen, 2007), followed by a subsequent scan to determine the 

presence of transmembrane motifs. This approach was used to identify 168 secreted proteins, 

including 39 glycosylphosphatidyl inositol (GPI)-anchored proteins, encoded in the genome 

of the basidiomycete maize smut Ustilago maydis (Mueller et al., 2008). Additionally, the 

first bioinfosecretome of a WR basidiomycete was  constructed for Phanerochaete 

chrysosporium (Vanden Wymelenberg et al., 2005) using the first genome version. It 

consisted of 268 secretion-predicted proteins (Martinez et al., 2004), although this number 

could be an underestimation due to inaccurate and incomplete gene model annotation. 

Subsequently, 769 secreted proteins were identified based on the second assembled version 

of this genome (Vanden Wymelenberg et al., 2006). Many predicted secreted proteins were 

classified as glycosyl hydrolases (GH), oxidoreductases, peptidases and esterases-lipases, as 

expected for the SAP lifestyle of P. chrysosporium. Finally, Jain et al. (Jain et al., 2008) 

focused on non-classically secreted proteins using the SecretomeP method (Bendtsen et al., 

2004) to analyze genome sequences of Laccaria bicolor, Botrytis cinerea, P. chrysosporium, 

and five other fungal species and found proteins involved in carbohydrate metabolism, lectins 

and proteases. There are currently more than 135 basidiomycete genome sequences available 

in the MycoCosm database (Igor V Grigoriev et al., 2014) from the Joint Genome Institute 

(JGI, October 2014) (I V Grigoriev et al., 2012). These sequences offer the opportunity to 

predict the bioinfosecretomes of these basidiomycetes and correlate them with their 

corresponding lifestyles in order to identify characteristics that permit the deduction of the 

set of secreted proteins. 

However, the bioinfosecretome is a static list of secretable proteins that does not produce a 

complete picture of how the toolbox of secreted proteins is actually used. To approximate to 
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its actual use, we propose here to color the bioinfosecretome with data derived from whole 

transcriptome studies of the same individual cultured under different conditions as a proxy 

for the actual secretome. Moreover, we hypothesize that because the secretome reflects the 

fungal lifestyle, the analysis of the bioinfosecretome should permit the prediction of the 

fungal lifestyle. To test this hypothesis, we studied the secreted proteins released into the 

surrounding medium (membrane-bound proteins were excluded) and compared the 

bioinfosecretomes of different fungi and their expression under different culture conditions. 

We show that although the secretome is conserved in different strains of the same species, 

its expression varies among strains and culture conditions. Moreover, the secretome’s 

transcriptional effort is more similar within strains, even when they are cultured under 

different conditions, than between different strains cultured under the same conditions. We 

also show that the expansion of gene families does not imply the expression of more genes 

in the expanded family. We identify new families of secreted proteins with unknown 

functions and suggest a function for some of these groups. Finally, we show that fungal 

secretomes cluster according to the fungal lifestyles rather than according to their taxonomic 

or phylogenetic classifications.  
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2. RESULTS AND DISCUSSION 

The P. ostreatus dikaryotic strain N001 is a hybrid strain that has been used as a source for 

commercial cultures for many years. The two nuclei present in this dikaryotic strain were 

separated, and two monokaryotic strains (PC9 and PC15) were produced and maintained. 

The genomes of these two strains have been sequenced (Riley et al, 2014). In this paper, we 

use the term “strain” to refer to these two monokaryons that are genetically compatible and 

that reconstitute the dikaryotic strain N001 when mated. 

 

P. ostreatus PC9 and PC15 bioinfosecretomes 

The protein models of the P. ostreatus PC9 (12,206 proteins) and PC15 (12,330 proteins) 

monokaryons were analyzed with SECRETOOL to identify putatively secreted proteins. A 

total of 659 gene models were identified as encoding secretable proteins. These included 538 

(PC9) and 554 (PC15) models that represented 4.41 % and 4.49 % of the total number of 

protein models, respectively (Fig. 1).  

 

Figure 1. SECRETOOL pipeline for the prediction of secreted proteins in the P. ostreatus 

PC15 and PC9 monokaryons. 
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A total of 433 of these proteins were identified as secretable in both PC9 and PC15 (Fig. 2A), 

whereas 105 and 121 were predicted to be secreted exclusively by PC9 or PC15, respectively. 

There was no corresponding allele predicted in PC15 for 23 of the 105 PC9-exclusive 

proteins (i.e., they were encoded for genes solely identified in the PC9 genome); an allele for 

the remaining 82 proteins was found in PC15, although it encoded a protein that did not 

match the criteria for secretion used in the SECRETOOL pipeline. Conversely, an allele in 

PC9 was not found for 30 of the 121 PC15-exclusive proteins; for the remaining 91 proteins, 

an allele was found in PC9 that did not encode a protein meeting the secretion criteria 

established in the SECRETOOL pipeline.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. a. Number of predicted proteins in the P. ostreatus monokaryons PC9 and PC15. . 

b. Signal peptide position in allelic protein models not predicted to be secreted. 
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other monokaryon (91 PC9 alleles and 82 PC15 alleles =173 gene models, see above). To 

accomplish this, we used the first 210 bp of each model (starting at the initial ATG) as a 

query in a BLASTN search (Camacho et al., 2009) performed in the genome of the 

monokaryon in which the corresponding protein was not predicted to be secreted. The 

rationale was to search for the corresponding signal peptide in the non-secreted alleles. For 

172 out of the 173 searches, a sequence similar to the signal peptide query was found in the 

model not predicted to be secretable (Fig. 2B). There was an exception that corresponded to 

a gene model identified in PC15 as carrying a signal peptide whose sequence was not found 

in the entire PC9 genome; thus, this gene model could correspond to a protein secreted by 

one of the monokaryons but not the other (PC9/PC15 gene model 91216/1109867).  

The 172 (82+90) gene models could be grouped into three categories (Fig. 2B): (i) gene 

models in which a sequence similar to the corresponding signal peptide was found in the non-

secreted allele at the expected position for a signal peptide (31 PC9 and 22 PC15 gene 

models); (ii) gene models in which the sequence similar to the corresponding signal peptide 

was found at different positions upstream of the expected position (36 in PC9 and 39 in 

PC15); and (iii) gene models in which the sequence similar to the corresponding signal 

peptide was found at different positions downstream of the start of the corresponding non-

secreted model (23 in PC9 and 21 in PC15). In the case of genes in which the putative signal 

peptide was found upstream of the predicted gene model, the distance between the signal and 

the model varied from a few base pairs to 11 Kbp. The signal appeared in the inverted 

orientation in two of the PC9 models in which the putative signal peptide was far upstream 

from the gene model. Similarly, there was one PC15 gene model in which the sequence 

corresponding to the signal peptide was found downstream of the gene model and in an 

inverted orientation. Finally, in one of the models in which the signal peptide was far 

upstream from the protein start (PC15 gene model 1103939), the intervening sequence was 

identified as an LTR-Gypsy transposable element. 

In summary, 53 gene models (31 PC9 and 22 PC15 gene models under the first category of 

the preceding paragraph) were discarded as secretable by the SECRETOOL pipeline 

although they had a bona fide signal peptide at the expected position. This discard is due to 

the stringent conditions of the SECRETOOL algorithm. For the remaining 120 gene models, 

the sequence differences between the alleles could reflect the dynamic nature of the genomes 
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due to identifiable insertion of a transposon-related sequence and inversion events. This result 

emphasizes the need for refined automatic annotation systems that prevent artifactual biases 

in the annotation of genomes. 

Because the 173 gene models described above had different types of alterations that 

prevented them from qualifying as encoding secretable proteins according to the standard 

established by SECRETOOL, we discarded them for the remainder of the studies described 

in this paper. Moreover, there could be protein models for which neither of the two alleles 

fulfill the conditions imposed by the SECRETOOL algorithm and have been undetected in 

this analysis. Consequently, the list of secreted proteins described in this work should not be 

taken as exhaustive, since stringency has prevailed over sensitivity in the process.  

 

Functional categories of the proteins identified in the predicted P. ostreatus 

bioinfosecretome 

Functional characteristics were associated with the P. ostreatus putative secreted proteins 

after the individual manually curated annotation. Figure 3 shows that the functional profiles 

of the PC9 and PC15 predicted secretomes were highly similar.  
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Figure 3. Function of proteins predicted to be secreted by the P. ostreatus monokaryons PC9 

and PC15 and a comparison between the number of proteins predicted to be secreted and the 

number of RPKM by protein function 

A protein function, being enzymatic or structural (i.e. hydrophobins), could not be predicted 

for 197 putative secreted proteins in PC9 (36.6% of the SECRETOOL positive models) and 

209 in PC15 (37.7%). Most of these proteins with unknown function (145 gene models 

corresponding to 26% of the PC15 putative secreted protein set) appeared to be conserved in 

other basidiomycetes. For the rest of the models, the functional groups of carbohydrate active 

enzymes (CAZy), redox and proteases were the more abundant, accounting for more than 

75% of the models with an assigned function. 
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A total of 166 gene models that could be grouped into 53 CAZy groups were identified as 

secretable. The most abundant groups corresponded to AA9 (copper-dependent lytic 

polysaccharide monooxygenases or LPMOs, formerly classified as group GH61, 20 gene 

models), GH16 (endoglucanase, 13 gene models) and GH7 (cellobiohydrolase I, 10 gene 

models). The most abundant Carbohydrate Binding Module (CBM domain) was the ricin-

like CBM13 (8 gene models). A total of 70 gene models related to redox reactions were 

identified. These models could be further classified into 17 functional groups of which those 

corresponding to the GMC oxidoreductases (17 gene models), proteins containing a 

cupredoxin motif (11 gene models) and laccases (11 gene models) were the most abundant. 

A total of 53 gene models encoding different types of peptidases could be classified into 18 

classes, among which peptidase type A1 (aspartic endopeptidases) and S8 (subtilases) were 

the most abundant (6 gene models each). A total of 12 different groups of secretable esterases 

were identified within 33 gene models that included the ribonucleases (7 gene models) and 

carboxylesterases (6 gene models, the most abundant). Finally, a total of 16 lipase genes were 

identified, of which 14 were classified as lipase 3. Four PC15 and three PC9 lipase 3 gene 

models were identified in only one of the two strains without an allele in the other strain. 

Given the relevance of the group of gene models encoding proteins with unknown functions, 

we used a complementary approach to generate hypotheses about their functions. We used 

the Phyre2 web server (Kelley & Sternberg, 2009), which uses the more sensitive PSI-

BLAST algorithm, to predict the structures and functions of these proteins, and then we used 

MCL (Enright, Van Dongen, & Ouzounis, 2002) to cluster them into families. This approach 

allowed us to identify two protein clusters with a common predicted function among the 

family members (Supplementary File 1, Table 4). The first cluster was formed by 16 proteins 

(10 of which could be folded with a level of confidence higher than 90%) as putative cell 

invasion proteins with a MAC/perforin domain (MACPF) (Lukoyanova et al., 2015). A 

protein with this domain that was involved in transmembrane pore formation (Pleurotolysin) 

was previously described as a cytolysin present in the basidiocarp of P. ostreatus 

(Bernheimer & Avigad, 1979; Tomita et al., 2004). Similarly, pore-forming proteins have 

been described in other eukaryotes and bacteria, and many play key roles in immunity and 

pathogenesis (Rosado et al., 2007). The second cluster was formed by four proteins whose 

predicted structures and functions matched a bacterial xylan esterase (confidence > 95%) of 



 

Comparative and transcriptional analyses of the predicted secretome in P. ostreatus Chapter3 

82 
 

the soil bacterium Cellvibrio japonicum. This saprophytic bacterium has been experimentally 

shown to degrade all of the major plant cell wall polysaccharides, including xylan (DeBoy et 

al., 2008). Both groups have similar proteins that are present in many other basidiomycete 

genomes, where they have also been annotated as proteins without a predicted function. 

These results emphasize the need to use structure–based algorithms for the prediction of 

functions in proteins with unknown functions because they greatly diverge in sequence but 

maintain a more conserved global structure.  

 

Pfam enrichment in the bioinfosecretome of P. ostreatus  

To elucidate whether there was an enrichment of functional categories in the secretome 

versus the whole genome, both the bioinfosecretome protein models and all the filtered 

models of the P. ostreatus PC15 genome were subjected to a Pfam domain search using the 

InterPro standalone program (Apweiler et al., 2000; Bateman et al., 2004). The Pfam 

categories with an enrichment higher than six-fold are shown in Figure 4.  
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Figure 4. Percentage of domains from a Pfam category in the bioinfosecretome and in all 

filtered models of the genome sequence of P. ostreatus PC15. Only Pfam categories with at 

least 6 domains found in the secretome are shown. 

Pfam domains involved in lignocellulose degradation were overrepresented in the P. 

ostreatus PC15 bioinfosecretome. The most overrepresented Pfam domains were the 

multicopper oxidase domain (which can be found in laccases and other proteins), the Pfam 

domains related to small secreted proteins [hydrophobins and ceratoplatanins, that are about 

100 ± 25 amino acids long, cysteine-rich, hydrophobic fungal surface proteins able to self-

assemble in vitro  (Peñas, Rust, Larraya, Ramírez, & Pisabarro, 2002; Sbrana et al., 2007), 

and ricin type beta trefoil lectin domains] which are always among the most highly expressed 

genes in the P. ostreatus cultures as shown below, and domains involved in cellulose or 

hemicellulose degradation (families of GH5 and GH16 endoglucanases, GH7 

cellobiohydrolase I, AA9/GH61, pectate-lyases and fungal cellulose-binding domains). 

Overall, the prevalence of Pfam domains related to lignocellulose degradation in proteins 

predicted to be secreted compared to the complete genome proteins demonstrated the 

influence of the ecological niche on the fungal secretome composition. 

 

Transcriptional evaluation of the PC9 and PC15 secretomes  

The bare enumeration of the genes encoding putative secreted proteins does not provide 

information about the relevance of each model or functional group in the performance of the 

organism. To investigate this relevance, we used the data obtained in four transcriptome 

analyses of the PC9 and PC15 monokaryons grown in rich medium (SMY) under static and 

shaking culture conditions. For this purpose, we scored the expression data values (RPKM) 

for each of the models identified with SECRETOOL. Expression was detected for 93.9% 

(505/538) and 91.5% (507/554) of the genes encoding secretable proteins in PC9 and PC15, 

respectively. Specifically, 99.3% (430/433) of the secretable proteins with alleles in the two 

protoclones were expressed by at least one of them. If we focused on the secretable proteins 

identified in only one of the two protoclones (105 and 121 for PC9 and PC15, respectively, 

Fig. 2), 100 (95.2%) and 109 (90.1%) showed expression signals in PC9 and PC15, 
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respectively. In summary, among the 659 P. ostreatus proteins predicted to be secreted by at 

least one monokaryon, transcripts of 639 (96.97%) were expressed in liquid cultures. 

The transcriptome pie chart of the expression values of the different gene models encoding 

secretable proteins differs significantly from the chart containing only the gene models (Fig. 

3). From the perspective of the large groups of secreted proteins (i.e., those described in the 

pie-chart), in all cases the weight of the genes without an assigned function increased to more 

than 50%.  

If we focus our study to the gene or gene family level, it is possible to study the conservation 

of gene expression within strains cultured under different conditions and between different 

strains cultured under the same conditions (Figure 5).  
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Figure 5. Gene expression (log2 RPKM) comparison within strains cultured under different 

conditions (static or shaking) and between different strains (PC15 and PC9) cultured under 

the same conditions. 

This analysis revealed a high correlation of gene expression between samples of the same 

strain cultured under different conditions (static or shaking, determination coefficients higher 

than 85%), whereas there was a low correlation of gene expression between samples of 

different strains cultured under the same conditions (determination coefficient lower than 

50%). This result suggests that the gene by gene expression profiles of the secretome differ 

more among strains than between the two conditions tested within a given strain and 

emphasizes the convenience of studying the transcriptome of different independent 

genetically related individuals to identify genes whose expression is environmentally 

regulated.  

The study of the accumulated gene expression values indicated that between 11 and 16 genes 

were responsible for 50% of the total expression under each condition. In PC15, 61 (static) 

and 65 (shaken) genes scored RPKM values higher than 100, whereas these values were 

exhibited by 79 genes in the two culture conditions in PC9. The genes with transcription 

signals higher than 100 represented nearly 90% of the total expression signals of the 

bioinfosecretome. In summary, most genes encoding secretable proteins were expressed, 

although this expression was concentrated in less than 25% of them. 

Four genes were among the most highly expressed genes in the four analyzed transcriptomes. 

Highly conserved counterparts for these four genes were found in other fungal genomes 

available. The first one (PC9/PC15 models 115427/1089609) encoded a small secreted 

protein (SSP, 128 amino acids) with unknown function that contains an 80 amino acid region 

well conserved in proteins found in other fungal genomes. Within this conserved region, 

there are some residues compatible with a putative Pfam10342 domain (glycosyl-

phosphatidyl-inositol-anchored, GPI-anchored) suggesting that this protein can remain 

trapped in the cell wall when exported. The second gene (PC9/PC15 models 

117301/1089988) was automatically annotated and KOG-described as β-1,6-

acetylglucosaminyltransferase. The third (PC9/PC15 models 114382/172522) encoded a 

barwin-like protein that was distantly related to plant expansins containing a double-φβ-
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barrel fold; incidentally, this fold was also present in cerato-platanins, whose genes were also 

among the top expressed genes in PC15 under both culture conditions. The fourth (PC9/PC15 

models 116525/1067734) encoded a protein conserved across the fungal kingdom for which 

no functional clues are available. In summary, the highest transcriptional effort in all strains 

and culture conditions was focused on the synthesis of proteins associated with cell wall 

constituents with different putative activities. 

If we study the top expressed genes encoding secreted proteins in PC15 under both 

conditions, we can see that these genes are also among the most expressed in PC9 (both 

conditions). However, the four more expressed genes in PC9 (static growth) were not among 

the most expressed genes in PC15 (both conditions). These four PC9 expression-enhanced 

genes encoded hydrophobin Vmh3 (Peñas et al., 2002) (PC9/PC15 models 80078/1114379) 

which was the most expressed gene encoding for secretable proteins in PC9sta, and three 

SSPs (192, 256 and 145 aminoacids) with unknown functions. 

CAZy-encoding genes 

The expression of the genes encoding secreted CAZy was biased towards a limited number 

of families. The five most highly expressed families accounted for more than 66% of the total 

CAZy expression level, and the top ten represented nearly 90% of the total expression of this 

gene group. In all cases, the gene-rich families of the lytic polysaccharide monooxigenase 

(LPMO, AA9/GH61), the glucanase of the GH16 family and CBM13-containing proteins 

were among the top five most highly expressed CAZy genes. Surprisingly, two CAZy 

families contained few members with expression among the top three in all cases: the barwin-

like endoglucanases (GH45) and the PL14 (glucuronan lyase) families contained only two 

genes each. The correlation coefficient of the global transcriptomes of the four secretomes 

was always higher compared to the corresponding coefficients for the top ten most highly 

expressed gene families. Finally, we observed that one gene model was preferentially 

expressed in each gene family, that the same gene model was the most highly expressed in 

all conditions and, that the expression of this predominant gene represented more than 75% 

of the gene family expression in most cases. The most obvious exception to this pattern was 

the gene family GH16, for which two gene models were preferentially expressed at similar 
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levels under each condition; their combined expression accounted for between 58 and 74% 

of the expression of this gene family.  

In summary, the genes encoding secreted CAZy included 53 gene families and 166 gene 

models that represented roughly a quarter of the P. ostreatus bioinfosecretome. However, if 

we consider these genes weighted by their expression values, most of the CAZy expression 

was concentrated in a much smaller number of gene families and furthermore in only one or 

two genes per family. Notwithstanding, expression was detected for most of the CAZy-

coding genes, albeit at a rather low level. 

Redox enzymes 

Among the 17 gene families classified as redox, genes encoding proteins containing the 

cupredoxin motif (cupredoxin family, 11 gene models in addition to the 11 laccase models 

that also contain the cupredoxin fold, see below) were the most highly expressed in all of the 

strains and conditions tested and accounted for 44-45% and 58-63% of the family expression 

in PC9 and PC15, respectively. The second and third most highly expressed gene families in 

all tested conditions were the glyoxal oxidase and the GMC oxidoreductase families, 

respectively. Within the cupredoxin family (11 members), more than half of the family’s 

gene expression corresponded to a single gene model in PC15, whereas two genes (one that 

was the most expressed allele in PC15) were needed to accumulate this expression level in 

PC9. In the GMC oxidoreductases (17 genes), between two (PC9 shaken) and four genes 

(PC15 both conditions) were needed to accumulate 50% of the family expression. Gene 

expression within the glyoxal oxidase family was strongly biased towards the expression of 

a single gene that accounted for more than 90% of the family’s gene expression under all 

conditions. Finally, the phenol oxidase family (laccases, 11 genes) was especially relevant in 

the WR fungus P. ostreatus. In this family, 50% of the accumulated expression was due to 

the gene model encoding laccase 6 either alone (PC9 static) or accompanied by a second gene 

model: laccase 3 in PC15 and laccase 12 in PC9 shaken. These results were similar to those 

observed by Castanera et al. in glucose-based liquid media using RT-qPCR (R Castanera et 

al., 2012; Raúl Castanera et al., 2013). The manganese-peroxidase and versatile-peroxidase 

encoding genes displayed a low expression level in all strains and conditions tested. 
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In summary, similar to the observations in the CAZy gene family, most of gene expression 

in the redox group of families depended on a limited number of gene families and a limited 

number of predominantly expressed genes within each family. Notably, the most highly 

expressed families in the CAZy and redox categories corresponded to proteins using copper 

as a cofactor.  

Peptidases 

The accumulated expression of the peptidase-encoding genes was similar under the four 

strains/conditions tested; however, the detailed expression profiles were different. In PC15, 

only four out of 18 gene families displayed an expression level higher than 100 RPKM, 

whereas six families were over this threshold in PC9. Three of the gene families ranked high 

for expression under all four conditions (S8 serine endopeptidases, M36 

metalloendopeptidases using Zn as a cofactor, and a protein annotated as similar to the 

disintegrin). Moreover, one family was selectively expressed in PC15 (serine-

carboxypeptidase S10) and two in PC9 (peptidase A1 and S53) 

Esterases  

Of the 12 gene families classified as encoding esterases, two accounted for more than 50% 

of the expression in PC9 and PC15, although they differed between the two strains. The 

phospholipase C-like gene family was the most highly expressed in all strains and conditions 

except in PC9-Shk, where it ranked second. However, the next most highly expressed 

esterase family was different in the two strains: arylesterase in PC15 cultured under static 

and shaken conditions and carboxylesterases and genes classified as putative 

esterases/lipases in PC9 cultured under static and shaken conditions. The two richer esterase 

gene families (carboxylesterases, six gene models, and ribonucleases, seven gene models) 

exhibited higher expression in PC9 than in PC15 (217.9 vs. 84.96 for the carboxylesterase 

family and 137.24 vs. 20.73 for the ribonuclease family for PC9 and PC15, respectively). In 

all case, this increase in the relative transcription was due to only one of the family members. 

Lipases 

For the 16 genes identified as lipases, the largest gene family was lipase 3 (14 genes). This 

family was the most highly expressed in all strains and conditions, accounting for between 

56.86 and 95.25% of the family expression. Within this family, the most expressed genes 
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differed in the four strains and conditions tested, suggesting that each strain adapted to the 

different culture conditions in different ways.  

Non-enzymes  

The group of secreted proteins functionally classified as non-enzymes was overrepresented 

in terms of its transcription level compared with its representation in the number of proteins 

(Figure 3). Hydrophobins are structural proteins widely studied in fungal systems. The nine 

hydrophobin genes identified by SECRETOOL have been found expressed in the P. 

ostreatus cultures. However, most of their expression corresponded to the gene coding for 

the Vmh3 protein, a glycosylated hydrophobin found detected during vegetative growth and 

in fruit bodies. This protein is supposed to play a role in development similar to that proposed 

for SC3 in Schizophyllum commune. (Peñas et al., 2002).  Vmh3 expression represented more 

than 94% and 69% of the expression of the identified hydrophobins in PC9 and PC15, 

respectively. The expression of these genes was increased approximately eight-fold in PC9 

compared to PC15; this difference was due to the high expression of the vmh3 gene in PC9. 

In both strains, the total hydrophobin expression level was higher in the static compared to 

the shaken cultures. This difference in gene expression in the static cultures could be related 

to the aerial growth observed in the mycelium cakes produced in the static cultures compared 

with the pellet structure produced in the submerged shaken cultures. 

Cerato-platanins are a group of small secreted proteins that were first identified in the fungal 

pathogen Ceratocystis platani as plant defense elicitors. There are seven genes encoding 

cerato-platanins in P. ostreatus. The expression of the cerato-platanin genes was 

concentrated in two genes that accounted for more than 50% of the family expression (one 

gene in PC9-Shk). Cerato-platanin genes were highly expressed in PC15 (especially in 

shaken cultures), where the two most highly expressed cerato-platanin genes ranked as the 

second and fifth most expressed genes encoding secretable proteins. The biochemical 

functions of cerato-platanins remain elusive. De Oliveira et al. (de Oliveira et al., 2011) 

showed that they had a structure similar to expansins and barwin-like endoglucanases, 

suggesting an activity involved in carbohydrate metabolism (Baccelli, Luti, Bernardi, Scala, 

& Pazzagli, 2014)(Gaderer, Bonazza, & Seidl-Seiboth, 2014). However, they have no 

activity against a variety of carbohydrates. If we consider the P. ostreatus cerato-platanin-
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like proteins as CAZY enzymes and analyze them in conjunction with the genes encoding 

proteins annotated as Barwin-like endoglucanases (which are the five most highly expressed 

CAZy genes), the sum of these two groups represents the majority of all secreted genes.  

 

Genome mapping of the P. ostreatus secretome genes  

We studied the mapping positions of the genes encoding secretable proteins using the PC15 

strain because it had a better genome assembly. The gene models encoding the 554 secreted 

proteins appeared to be distributed across the 11 scaffolds (chromosomes) of the P. ostreatus 

PC15 genome (Figure 6). 

 

Figure 6. Location of secreted proteins in the chromosomes, three selected clusters of P. 

ostreatus PC15 and clusters of secreted proteins (REEF program, FDR corrected p-value < 

0.05).  

 The number of genes encoding secretable proteins mapping to each chromosome increased 

linearly with the chromosome size (R2=0.92) . Using the Reef program (Coppe, Danieli, & 

Bortoluzzi, 2006), we identified five clusters of secreted proteins: two clusters mapping to 

the subterminal region of chromosome 4 and to an internal region of chromosome 8 were 

mainly formed by proteins without a predicted function, a cluster formed by six laccase genes 

(out of 12 in PC15) appeared to be located at the subterminal region of chromosome 6, six 

CBM13 genes (out of eight in PC15) appeared to be clustered at a subterminal region of 

chromosome 1, and a cluster that included seven genes encoding cerato-platanin-related 

proteins was found at the subterminal region of chromosome 3. The occurrence of clusters 

of genes involved in environmental adaptation (species-specific) at subterminal 

chromosomal locations has been reported in several organisms and could be the result of the 
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exploitation of the high variability associated with these chromosomal regions (G. Pérez, 

Pangilinan, Pisabarro, & Ramírez, 2009; Ramírez, Pérez, Castanera, Santoyo, & Pisabarro, 

2011). 

 

Comparative analysis of the P. ostreatus bioinfosecretome with the proteomes of 54 

basidiomycetes 

The 554 proteins of the P. ostreatus PC15 bioinfosecretome were used as queries to search 

for similar proteins in other basidiomycete proteomes. The presence or absence of proteins 

similar to those of the P. ostreatus PC15 bioinfosecretome was used as a characteristic to 

classify the corresponding fungal species in a dendrogram. For a comparison, we built up a 

phylogenetic tree based on the predicted proteomes of all the fungal species used in this work 

(using Aspergilus nidulans as outgroup). The comparison of both trees revealed that the 

studied basidiomycetes appeared to be grouped according to their lifestyle (Figure 7). 
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Figure 7a. Data from Table 1 arranged in a dendrogram (number of homologous proteins (e-

20) to PC15 secreted proteins in basidiomycetes).   
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Figure 7b. Phylogeny of the fungal species analyzed in this study. Branches are colored 

following the pattern of colors in figure 7a. 

Two major branches were observed in the dendrogram: the first branch could be subdivided 

into a group that included WR and SAP species and a second group of BR and ECM species, 

and the second branch included PPT, APT and endophytes (END) (Figure 7). The cluster of 

BR and ECM supports previous studies showing similarities in their organic matter 

degradation mechanisms (Rineau et al., 2012) and a parallel contraction of the lignin-

degrading peroxidase gene family (Floudas et al., 2012; Kohler et al., 2015). The groups 

formed in this analysis reflected the fungal lifestyle rather than their evolutionary 

relationships, supporting the hypothesis that the fungal secretome could be used to predict 

the lifestyle because it is targeted to the ecological niche of the organism ( Alfaro et al., 2014; 

Krijger et al., 2014; Lowe & Howlett, 2012; Martinez et al., 2009). Two species of the genus 

Amanita (A. thiersii (Hess et al., 2014) and A. muscaria (Kohler et al., 2015)) with different 
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lifestyles were included in this analysis; they appeared to be grouped according to their 

lifestyle rather than their phylogenetic classification. Moreover, this analysis revealed that 

the secretomes of J. argillacea (classified as an uncertain WR) and Gloeophyllum trabeum 

(classified as a BR fungus) were highly similar, supporting the finding that both fungi belong 

to sister groups (Riley et al., 2014). Finally, the analysis placed B. botryosum, which is a 

species with enzymes typical of both WR and BR (Riley et al., 2014b), into a small sister 

group of the WR fungi. Interestingly, this group included two PPT (Rhizoctonia solani and 

M. perniciosa) and a root endophyte and growth promoting fungus (Piriformospora indica) 

that exhibited a dual lifestyle, with a switch to a SAP lifestyle during their infection cycles 

(Mondego et al., 2008; Wibberg et al., 2013; Zuccaro et al., 2011). Moreover, a mycorrhizal 

association of some species of the genus Botryobasidium with the orchid genus Apostasia 

has been suggested (Yukawa et al., 2009). The data presented here support a secretome 

profile for this fungus that is more closely related to other plant-interacting fungi than to pure 

WR or BR.  

It is worth emphasizing that 209 predicted secreted proteins of P. ostreatus with unknown 

enzymatic function were included in this comparative analysis with other species of 

basidiomycetes. These proteins have been ignored in previous studies of lifestyle-associated 

proteins. Many of these proteins were present in nearly all the basidiomycetes compared in 

this study, and other proteins were clearly less represented in some lifestyles compared to 

others. Sorting fungi according to their lifestyles is not an easy issue, especially because 

many fungal species can switch between several lifestyles over the course of their life cycle. 

Our results suggest that the study of the secretome composition would provide a certain 

insight and add valuable data that could enable us to infer the roles of proteins with unknown 

functions. 

 

Conclusions 

The quality of a fungal bioinfosecretome will depend on the quality of the genome 

annotation. Thus, these in silico-predicted secretomes will evolve along with new versions 

of genome assemblies and annotations. The accuracy of bioinfosecretomes can be improved, 

but in vivo analyses will always be necessary to determine the pool of enzymes that fungi 
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secrete to adapt to their ecological niches. Because mass spectrometry and transcriptomic 

analyses cannot identify every single enzyme involved in this process, a combination of in 

silico and in vivo techniques is still the best approach to analyze fungal secretomes. In all 

cases, the transcriptomic analyses of the data associated with bioinfosecretomes provides 

important information about the actual use of the available gene repertoire. This 

transcriptome analysis revealed that the secretome’s transcriptome was more dependent on 

the strain genotype than on the environmental conditions. This finding indicates that the 

transcriptomes of a strain cultured under different conditions are more similar than the 

transcriptomes of other strains cultured under similar conditions. 

Classical genome analyses emphasize the expansion of gene families. However, gene family 

expansion does not correlate with an increase in the number of actively expressed genes. We 

suggest that gene family expansions are associated with an increase in potential rather than 

with an increase in activities in a given environmental condition. 

Among the P. ostreatus PC15 predicted secreted proteins that were conserved in other 

basidiomycetes, more than 20% have an unknown enzymatic function. Transcriptome 

analysis noted the importance of these proteins, underlining the need for further studies to 

decipher their role in fungal biology. For example, we used domain structure prediction to 

predict the function of two new protein families: a putative xylanase and a putative MAC 

perforin domain protein. 

The functional categories found in proteins predicted to be secreted showed that domains 

associated with lignocellulose degradation were overrepresented compared to the whole 

proteome. This finding reflects the matching between the secretome and the lifestyle. Indeed, 

a blind grouping of organisms using their secretomes as distinctive characteristics produces 

a dendrogram in which the fungi are grouped by their lifestyle rather than by their phylogeny. 

Taken together, these data emphasize the dynamic, environmentally dependent, and 

ecologically influenced characteristics of fungal secretomes ( Alfaro et al., 2014; Krijger et 

al., 2014; Lowe & Howlett, 2012; Martinez et al., 2009).  
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3. –EXPERIMENTAL PROCEDURES 

Fungal strains and growth conditions 

Two P. ostreatus monokaryotic strains were used in this work. PC9 and PC15 were produced 

by dedikaryotization of the original dikaryotic strain (N001). Details of their genetics and 

molecular biology have been published elsewhere (L. Larraya et al., 1999; L M Larraya, 

Pérez, Ritter, Pisabarro, & Ramírez, 2000; Luis M. Larraya et al., 1999). Their two genomes 

were sequenced by the Joint Genome Institute and are accessible at 

http://genome.jgi.do.gov/PleosPC9_1 and http://genome.jgi.do.gov/PleosPC15_2. Both 

strains were maintained in Petri dishes containing solid SMY medium (10 g/L sucrose, 10 

g/L malt extract, 4 g/L yeast extract, and 15 g/L agar) at 24ºC in the dark and subcultured 

every 8 days. The liquid cultures were performed using SMY (same composition as above 

but without agar) in the dark at 24ºC under either static (Sta) or shaking (Shk, 200 rpm) 

conditions. The samples for the transcriptome experiments were harvested when the cultures 

were in the exponential growth phase (Alejandra Parenti et al., 2013), although the two 

growth conditions differed due to the inherent effects of the static (growth as a floating cake) 

or shaking (growth as pellet) conditions. 

 

RNA-seq data analysis 

Total RNA was purified from the corresponding cultures using a fungal E.Z.N.A. RNA kit 

(Omega Bio-Tek, Norcross, GA, U.S.) following the manufacturer’s indications. Four 

samples were prepared corresponding to each of the two strains in the two culture conditions 

(static and shaking): PC9-Sta, PC9-Shk, PC15-Sta and PC15-Shk. The sequencing 

experiments were performed using the SOLiD platform at Sistemas Genomicos (Valencia, 

Spain). The RNA-seq reads were mapped to the P. ostreatus PC15 (assembled in 12 

scaffolds) and PC9 (assembled in 572 scaffolds) genome sequences using TopHat (Trapnell, 

Pachter, & Salzberg, 2009). HTseq-count (Anders, Pyl, & Huber, 2014) was used to 

determine the number of reads mapped to every predicted gene model. Samtools (Li et al., 

2009) and custom Python scripts were used to handle the data and calculate the RPKM(Reads 

Per Kilobase of exon per Million reads mapped) values, which were used to evaluate the 

transcriptional levels of the secreted proteins.  
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Prediction of secreted proteins in P. ostreatus PC9 and PC15 

The complete sets of proteins (best filtered models) predicted in PC9 and PC15 were obtained 

from MycoCosm (http://jgi.doe.gov/fungi) (I V Grigoriev et al., 2012; Igor V Grigoriev et 

al., 2014), and the prediction of the secreted proteins were performed using the web analysis 

tool SECRETOOL (Cortázar, Aransay, Alfaro, Oguiza, & Lavín, 2014). This tool starts 

processing the data with TargetP (Olof Emanuelsson et al., 2007), SignalP (Bendtsen et al., 

2004) and PredGPI (Pierleoni, Martelli, & Casadio, 2008). Then, the proteins predicted by 

these three methods are merged into a common list that is evaluated for transmembrane 

domains (TMD) using the TMHMM tool (Krogh, Larsson, von Heijne, & Sonnhammer, 

2001). The candidate proteins with 0 or 1 TMDs are kept as input for WoLF PSORT (Paul 

Horton et al., 2007) (thereby eliminating them from our secretome analysis as transmembrane 

proteins) to retain the sequences labeled as extracellular. When proteins were identified as 

allelic pairs in PC9 and PC15 but only one of the alleles was predicted to be secreted, we 

used Python scripts to extract the sequence 210 bp upstream from the 5’ region of the gene 

models used as queries to search for similar regions in the genome of the monokaryon with 

alleles not predicted to be secreted using the BLASTN standalone program (Camacho et al., 

2009). Alleles were defined as Blast Reciprocal Best Hits (RBH) between the PC15 and PC9 

gene models (Santoyo et al., unpublished data). 

Hypothetical functions for the predicted secreted proteins were assigned using the utilities 

available at the JGI webpage (Igor V Grigoriev et al., 2014), Pfam database (Finn et al., 

2006), Gene Ontology and Interpro Domain database (Apweiler et al., 2000).  

If we could not assign a hypothetical function using this procedure (proteins classified as 

unknown), we used the MCL program to cluster proteins (I=2) (Enright et al., 2002) and the 

Phyre2 server (Kelley & Sternberg, 2009) to predict the structure and function of the proteins. 

BLASTP (cut-off E<10-10) in JGI MycoCosm (Igor V Grigoriev et al., 2014) was used to 

identify similar proteins in other basidiomycetes. 

The Pfam domain search was performed using the InterProScan standalone program 

(Apweiler et al., 2000; Bateman et al., 2004; Jones et al., 2014) and database version. Fisher’s 



 

Comparative and transcriptional analyses of the predicted secretome in P. ostreatus Chapter3 

98 
 

exact test was used to reveal enriched Pfam domains (p<0.05) in the bioinfosecretome 

compared to the genome data of P. ostreatus. 

The OmnimapFree program was used to visualize the position of individual and cluster genes 

on the P. ostreatus PC15 chromosomes (Antoniw et al., 2011). We used the REEF 

(“Regionally Enriched Features”) program (Coppe et al., 2006) to identify genomic regions 

enriched in specific features using a statistical test based on the hypergeometric distribution 

with a sliding window approach and adopting the false discovery rate to control multiplicity. 

A window width of 100 kb, a shift of 20 kb and an FDR-corrected p-value of <0.05 were 

used. The minimum number of genes to form a cluster was 3. 

 

Comparative analysis of the P. ostreatus PC15 bioinfosecretome with the 

basidiomycetes’ proteomes  

For the comparison of the P. ostreatus PC15 bioinfosecretome with 54 basidiomycetes 

proteomes, the protein filtered models were obtained from the JGI webpage (Igor V 

Grigoriev et al., 2014). BLASTP standalone (cut-off E < 10-20) (Camacho et al., 2009) was 

used to identify proteins similar to the PC15 secreted proteins. Python scripts were developed 

to arrange the results of the BLASTP search into a matrix of the presence or absence of 

similar proteins in the basidiomycete proteomes. The R program (R Core Team, 2013) with 

the function hclust was used to plot the dendrogram. 

Phylogenetic analyses 

The predicted proteomes of all species were downloaded from Mycocosm database 

(http://genome.jgi.doe.gov/programs/fungi/index.jsf) and proteins were clustered with MCL 

(Enright et al., 2002) using an inflation value of 2. Clusters containing single copy genes of 

each genome were retrieved (allowing 2 missing taxa) and proteins were aligned with 

MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002). The alignments were concatenated after 

discarding poorly aligned positions with Gblocks (Castresana, 2000). Phylogeny was 

constructed using RaxML (Stamatakis, 2014) under PROTGAMMAWAGF substitution 

model and 100 rapid bootstraps. 
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Introduction 

Lignin synthesis has been a key step in the adaptation of plants from an aquatic to terrestrial 

environment. Traqueophytes are defined as those land plants that have lignified tissues (the 

xylem) for conducting water and minerals throughout the plant, enabling an efficient 

transport and higher sizes of plants. Lignin waterproofs the otherwise permeable (because of 

hydrophilic polysaccharides) xylem, and provides a structural rigidity crucial to reach these 

high sizes that provides vascular plants a competitive advantage to reach the sunlight 

(Boerjan et al., 2003). Furthermore, lignin is a recalcitrant polymer, due to its molecular 

architecture, where different non‐phenolic phenylpropanoid units form a complex three‐

dimensional network linked by a variety of ether and carbon–carbon bonds (Ruiz-Dueñas 

and Martínez, 2009), constituting a protective layer against pathogens and predators. 

Lignin is the second major sink for carbon in plants after cellulose it represents as much as 

30% of the organic carbon produced in the biosphere (Boerjan et al., 2003; Weng and 

Chapple, 2010), and is the major precursor of coal (Robinson, 1990). 

Besides some bacteria, the main lignin degraders are white rot fungi belonging to 

Agaricomycetes, that play a key role in recycling carbon from lignocellulose since the onset 

of lignified compounds (Floudas et al., 2012), even if late adaption of fungi to lignin 

degradation may not be the main reason of coal accumulation on the Carboniferous period 

(Nelsen et al., 2016). 

These fungi have the ability to secrete large amounts of enzymes, are capable of adapt to near 

all the terrestrial ecosystems and show diverse strategies for attacking lignocellulose, ranging 

from white rot basidiomycetes that degrade lignin extensively before attacking cellulose, to 

brown rot basidiomycetes that cause limited alterations of lignin while primarily degrading 

cellulose, through fungi sharing characteristics of both rot types (Riley et al., 2014a). 

Furthermore, each fungus possesses a huge library of diverse enzymes and is able to modulate 

their expression and export in response to environmental and substrate changes, even in a 

sequentially regulated way (Zhang et al., 2016a). 

This set of proteins secreted by a cell or an organism at a given time is defined as the 

secretome (Tjalsma et al., 2000). The secretome includes the proteins that are released into 
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the surrounding medium, those that remain bound to the membrane or cell wall and the 

integral membrane proteins. Fungi use these enzymes as a tool to obtain nutrients from their 

environment, and consequently, protein secretion is crucial for fungal growth and the 

secretome is different depending on the ecological niche of the fungus (Alfaro et al., 2014; 

Lowe and Howlett, 2012). Furthermore, the secretome is highly variable depending on 

environmental conditions, including the growth substrate, temperature and growth phase. 

Lignocellulose is composed by three main compounds: lignin, cellulose and hemicellulose. 

White rot basidiomycetes attack lignin using oxidative enzymes classified as manganese 

peroxidases (MnP, EC 1.11.1.13), versatile peroxidases (VP, EC 1.11.1.16), lignin 

peroxidases (LiP, EC 1.11.1.14) and phenol oxidases (benzenediol:oxygen oxidoreductase 

Pox, laccases, EC 1.10.3.2). In addition to these main ligninolytic enzymes, there is a number 

of accessory enzymes that participate in the process, including hemeperoxidases such as 

cytochrome c peroxidases (EC 1.11.1.5), chloroperoxidases (EC 1.11.1.10), and dye 

decolorizing peroxidases (DyP, EC 1.11.1.19), in addition to glyoxal oxidases (GLOX) and 

aryl-alcohol oxidases (AAO, EC 1.1.3.7), pyranose dehydrogenases (EC 1.1.99.29), and 

methanol oxidases (EC 1.113.13). 

Cellulose is degraded by enzymes classified as exocellulases (cellobiohydrolases, CBH, EC 

3.2.1.91), subclassified as types I and II depending on their attack of the reducing or to the 

non-reducing end of cellulose, respectively, as well as endocellulases (EC 3.2.1.4) and 

cellobiases (β-glucosidases, EC 3.2.1.21). 

Finally, hemicellulose lignocellulose is degraded by endoxylanases (EC 3.2.1.8), α-

glucuronidases (EC 3.2.1.131), acetyl-xylan esterases (EC 3.1.1.72), arabinofuranosidases 

(EC 3.2.1.55), ferulic acid esterases (feruloyl esterases, EC 3.1.1.73), and β-xylosidases (EC 

3.2.1.37), among other enzymes (Sun et al., 2012) (Alfaro et al., 2014). 

Many of these enzymes are classified in the CAZy database (Cantarel et al., 2009; Lombard 

et al., 2014), that has become the reference database for the carbohydrate active enzymes in 

bacteria and fungi. 

The enzymes described above are not a fixed list and new enzymes involved in this process 

are still being discovered, like AA9, AA10 and AA11, previously classified as GH61, 

CBM33. All of them are copper dependent mono-oxygenases; but only AA9 was classified 
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as Lytic polysaccharide Monooxigenase (LPMO) because its activity has been proved on 

polysaccharides by a novel oxidative mechanism (Quinlan et al., 2011; Vaaje-Kolstad et al., 

2010). Furthermore, many of the genes transcriptionally upregulated during lignocellulose 

degradation do not belong to any of these classes. In some cases, more than 50% of the total 

transcripts belong to proteins without a known function (Alfaro et al., 2016). 

The strategy of basidiomycetes to degrade lignocellulose has another level of complexity: 

many of these enzymes are encoded by multigenic families whose members are differentially 

regulated (Castanera et al., 2012). For instance, the genome of the white rot basidiomycete 

Pleurotus ostreatus encodes 21 glycosyl hydrolase family 5 (GH5, cellulase) genes, while 

the brown rot basidiomycete Postia placenta encodes 12 and the white rot Phanerochaete 

chrysosporium 19. Furthermore, fungi are able to regulate the expression and secretion of 

these enzymes in a temporal sequence, in accordance with the phase of degradation of 

lignocellulose. This staggered mechanism, proved in the brown rot fungus P. placenta, 

consist in two steps: first, reactive oxygen species are created to attack lignified compounds 

and, second, enzymes are secreted to hydrolyze polysaccharides from cellulosic compounds 

(Zhang et al., 2016b). Gene expression is, however, a multistep process that involves the 

transcription, translation and turnover of messenger RNAs and proteins, and transcript levels 

are not always related to protein levels and enzyme activities (Schwanhäusser et al., 2011), 

making the proteome analysis a crucial step to verify the presence of these enzymes acting 

on substrates. 

Solar energy is collected by plants and stored as lignocellulose. It is an abundant renewable 

resource that can be used for the production of alternative transportation fuels (Rubin, 2008). 

Nevertheless, plant biomass has evolved complex structural and chemical mechanisms for 

resisting attacks from microbial and animal predators. 

At the molecular level, the crystalline cellulose core of cell-wall microfibrils is highly 

resistant to chemical and biological hydrolysis because of its highly ordered structure. The 

hydrophobic face of cellulose sheets makes crystalline cellulose resistant to acid hydrolysis 

and the strong inter-chain hydrogen-bonding network makes crystalline cellulose resistant to 

enzymatic hydrolysis. (Himmel et al., 2007; Nishiyama et al., 2002). Hemicelluloses and 

lignin create a complex matrix, and lignin is highly recalcitrant as we discussed above. 
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White rot basidiomycetes are seen as an excellent environmental-friendly alternative to 

thermochemical treatments to overcome the recalcitrance of plant biomass, despite the cost 

of the alternative enzymatic treatment is still too high (Hatakka and Helsinki, 2013). A deeper 

understanding of the mechanism of lignocellulose degradation by fungi is necessary to reduce 

costs and make lignocellulosics ethanol a real alternative for liquid fuels. 

There are currently 781 available fungal genomes sequenced, 272 come from basidiomycetes 

(JGI Mycocosm, March 2017) (Grigoriev et al., 2014, 2012, 2011). Among all these fungi, 

P. ostreatus, the oyster mushroom, stands out as an edible mushroom, the third most 

cultivated mushroom in the world, and a preferential lignin degrader (Martínez et al., 1994). 

These features make this fungus interesting for biofuel production and are good reasons to 

analyze which enzymes P. ostreatus secretes while using lignocellulose as a carbon source. 

Two strains were sequenced at the JGI: PC15 and PC9, that are monokaryons (mk) derived 

by dedikaryotization from the dikaryon (dk) N001(Borgognone et al., 2017; Castanera et al., 

2016; Larraya et al., 1999), a commercial strain used by the mushroom industry able to 

produce a high number of mushrooms with excellent organoleptic properties. 

The genome sequence offers us the opportunity to predict proteins that can be secreted 

(bioinformatics secretome, (Alfaro et al., 2016) before performing more costly and complex 

secretome analyses. However, as said before, the correlation between the bioinfosecretome 

(which provide information about the complete set of predicted secreted proteins present in 

a genome and can be seen as the arsenal that fungi possess to attack lignocellulose), the in 

vitro secretome (the actual group of enzymes used in a precise step of lignocellulose 

degradation, under given culture conditions, by specific sets of cells, and/or at a given time) 

is going to be deciphered by using proteomics secretome analyses. 

Nevertheless, analyses of in vitro secretomes, like analyses of bioinfosecretomes, rely on the 

availability and quality of complete annotated genome sequences for the identification of 

protein tags. 

In this article analyze P. ostreatus secretome using wood, glucose or both as a carbon source 

to identify the proteins that P. ostreatus uses to adapt to this media using LC MS-MS. This 

is the first in vitro secretome analysis comparing P. ostreatus sequenced strains PC15, PC9 

and the dikaryon from they are derived, N001 (Riley et al., 2014). 
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2. – RESULTS AND DISCUSSION 

General qualitative analysis 

The secretomes of P. ostreatus grown in submerged shaking cultures using poplar (Populus 

alba) chips (wood, W), wood supplemented with glucose (WG) and glucose (G) as carbon 

sources were studied by LC-MS/MS. The strains used in the analysis were the dikaryon 

dkN001 and the monokaryotic protoclones mkPC9 and mkPC15 (which contain each one of 

the two nuclei present in the N001 dikaryon)(Luis M. Larraya et al., 1999). The purposes of 

the experiment were (i) to shed light on the regulation of protein secretion by wood and 

glucose (end product of cellulose biodegradation), and (ii) to determine the effect of the 

monokaryotic and dikaryotic condition of the fungus on the secretome profile. The rationale 

of the experiment was as follows: we considered the G cultures as a basal condition, the 

proteins detected in the W cultures were assumed to be induced by wood, and the proteins 

recovered in the WG cultures were considered induced by wood and insensitive to glucose 

repression. 

A total of 552 proteins were identified in the nine secretome analyses with, at least, two 

positively matched peptides for each protein. The number of proteins identified in each 

experiment is shown in Table 1. 

 

Strain Glucose Wood Wood + glucose Total 

dkN001 52 107 63 222 

mkPC9 60 69 38 167 

mkPC15 54 62 47 163 

Total 166 238 148 552 

Table 1. Number of proteins identified in each strain and culture conditions 

The number of proteins identified reflects the complexity of the corresponding secretome. 

The results shown in Table 1 indicate that secretome complexity found was higher in the 

cultures made using wood as sole carbon source than in those that contained glucose (which 

were considered a basal state), and suggest that wood could be an inducer of the secretome 
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complexity. Furthermore, the results obtained in the cultures containing glucose plus wood 

suggest that the presence of the sugar decreased the secretome complexity in the three strains, 

and suggest that glucose could act as a repressor of the secretome complexity. 

A closer look at the number of proteins secreted by each of the strains in each culture shows 

that there the increase in the secretome complexity is more relevant in the dikaryon than in 

the monokaryons (Figure 1) suggesting that the dikaryon is more adapted to strive in a wood 

environment than the monokaryons. Furthermore, the global behavior of the two 

monokaryons is quite similar. 

 

Figure 1. Number different proteins identified in the secretomes of 

dikaryon dkN001 and monokaryons mkPC9 and mkPC15 cultivated in 

liquid shaken media containing glucose (G), wood (W) or glucose plus 

wood (WG) as carbon sources. 

 

If we compare the number of proteins identified in the three strains, it was found that dkN001 

produced a secretome more complex (222 proteins) than those observed in mk PC9 and 

mkPC15 (167 and 163 proteins, respectively) (Table 1, Figure 2). In a previous study of our 

group (Alfaro et al., 2016) we have shown that the number of proteins predicted to be secreted 

was similar in mkPC9 and mkPC15 (538 and 554, respectively). In this study we confirm 

that the complexity of the two monokaryotic secretomes was similar and we show that it was 
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higher in the dikaryon, suggesting an advantage of dikaryons for the adaptation to the 

environment.  

275 different proteins were identified in the nine secretomes. This number is lower than the 

total number of proteins identified since many proteins were recovered from more than one 

experimental condition. Figure 2 shows the Venn diagrams of the proteins identified in each 

culture/condition. As it was seen and discussed above, dkN001 was the strain in which a 

higher number of different proteins were identified (154), whereas the numbers in 

monokaryons mkPC9 and mkPC15 were lower (122 and 101, respectively). 

 

 

Figure 2. Venn diagram showing the number of proteins identified in the three 

strains (dkN001, mkPC9 and mkPC15) cultivated using wood (W), sugar (G) or 

wood plus sugar (WG) as carbon source. The numbers inside the diagram indicate 

the number of different proteins identified in each strain and condition. 

The Venn diagrams reveal that most of the differences in the secretome complexity between 

strains were due to the proteins secreted when only wood was used as carbon source. These 

proteins, according to our working hypothesis, are proteins whose secretion is induced by 

wood but repressed by glucose. Moreover, previous results from our group and others ((A. 

Parenti et al., 2013)) indicate that shaking P. ostreatus cultures use preferentially glucose 

when it is available and that they exhaust this carbon source in six to seven days of 

cultivation. The long-term differences between the cultures started using only wood (W) or 
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wood plus glucose (WG) could suggest that this initial condition would have a long lasting 

effect on the lignocellulose degradation strategy displayed by the fungus. 

 

Protein families found in the secretomes 

The proteins identified in the LC-MS/MS experiments were individually annotated using 

different databases (JGI, Interpro, Pfam and Gene Ontology) and were manually classified 

into 11 groups: esterases/lipases, glycosyl hydrolases, intracellular proteins, isomerases, 

lyases, non-enzyme proteins, other hydrolases, phosphatases, proteases, RedOx enzymes and 

unknown proteins. 

Figure 3 shows the functional classification of the proteins identified in the three 

secretomes. The functional classification of the whole set of secreted proteins identified 

revealed that glycosyl hydrolases (GH), proteins with unknown function, RedOx enzymes, 

proteases and esterases/lipases were the more represented groups and accounted for more 

than the 75% of the secreted proteins identified. These five groups correspond to the five 

larger groups of secretable proteins identified in the bioinfosecretome ((Manuel Alfaro et 

al., 2016)). The major difference between the predicted and the experimental secretomes 

appeared when comparing the proteins with unknown function, which includes a large 

number of Small Secreted Proteins (SSPs), whose relative importance seemed to be smaller 

in the recovered secretome than in the predicted one. In the analysis described in this paper, 

the low number of unknown proteins can reflect either an unintentional bias against the SSPs 

in protein sampling or analysis in the LC-MS/MS, a poor correlation between expression 

secretion and/or significant differences in protein lives. 
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Fig 3. Functional classification of the proteins identified in all samples  

Figure 4 shows the functional classification of the secreted proteins recovered from the three 

strains in the different substrates studied. Panels A, B and C permit the comparison of the 

behavior of each strain in each of the culture conditions. The main groups of proteins 

recovered when cultures had glucose as sole carbon source were glycosyl hydrolases (GH), 

proteases, RedOx and proteins with unknown function (panel A). In these cultures, mkPC15 

differed from mkPC9 and dkN001 in that it produced more GH and less proteases and RedOx 

enzymes. In the cultures performed in the presence of wood (panel B), the production of GH 

increased in mkPC9 and dkN001, but not in mkPC15; there was an increase in the production 

of esterases/lipases and lyases in the three strains and a reduction of the presence of proteases 

in mkPC9. Finally, in the cultures that used glucose and wood as carbon source (panel C), 

the increase in the production of GH, esterases/lipases and lyases seen in the wood cultures 

was reversed. In summary, the presence of wood induces the production of glycosyl-

hydrolases and, in a smaller extent, of esterases/lipases and lyases. 

If we compare the secretomes for each strain in the three culture conditions, the induction of 

the production of esterases/lipases, GH and lyases in dkN001 (panel D) and mkPC9 (panel 

E) was clearly visible, whereas there was not a wood induction of GH in PC15 (panel F). 

Unknown function; 57

Glycosidases; 90

RedOx-
enzymes; 32

Proteases; 26

Esterases/Lipases; 23

Non-Enzyme; 9

Intracellular cont.; 18

Phosphatases; 2
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Moreover, the basal production of these enzymes in mkPC15 was higher than in the other 

two strains. In mkPC9 and dkN001 the wood induction of GH was reversed by the presence 

of glucose in the culture medium. This effect was also partially seen in the cultures of 

mkPC15. Also, the small induction of esterases/lipases and lyases seen in the wood cultures 

seemed to be reversed by the presence of glucose in the WG cultures. Additionally, the 

production of RedOx enzymes by mkPC9 seemed to be repressed in the presence of wood. 

Finally, mkPC15 seemed to be a poor producer of RedOx enzymes in all the conditions 

tested. 

 

Fig 4. Functional classification of the proteins identified per fungal strain. 

 

In summary, these qualitative results suggest that the glucose-dependent regulatory 

mechanisms controlling the production of glycosyl-hydrolases differ in mkPC9/dkN001 and 

in mkPC15. Even though it was not seen an induction of GH by wood in mkPC15, this 

protein group is the more abundant in the secretome of this strain indicating that the basal 

production of these enzymes in this strain is higher than in dkN001 and mkPC9. 



 

The Pleurotus ostreatus secretome: Lignocellulose degrading machinery  Chapter 4 

126 
 

Consequently, mkPC15 shows two peculiar characteristics: (1) a higher level of basal 

production of GH and (2) a lack of wood-dependent induction of GH production.  

General quantitative analysis 

In order to add quantitative data of protein abundance, we determined the emPai (Ishihama 

et al., 2005) values for every protein identified in these analyses. EmPai quantitation gives 

us an insight about which proteins are found in high concentration in our samples. 

The emPai quantitative secretome profiles were largely similar to those based on the number 

of different proteins identified (Figures 4 and 5)).  

 

Fig 5. Quantitative (emPai) secretome profile of dikaryon dkN001 and monokaryons 

mkPC9 and mkPC15 cultivated using glucose (G), wood (W) or glucose plus wood 

(WG) as carbon source). 

If we compare the emPai accumulation of the different protein families in the different 

conditions, the results discussed in the preceding section were more clearly seen. Panel A in 

Fig 5 shows that, in the sole presence of glucose, mkPC9 and dkN001 accumulated RedOx 

enzymes, whereas mkPC15 accumulated GH. When the cultures were made in the sole 
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presence of wood (panel B), the production of glycosidases was induced in mkPC9 and 

dkN001, the production of lyases was induced and that of RedOx enzymes was repressed in 

the three strains. Interestingly, in the cultures carried out in the presence of glucose and 

wood, the induction of glycosidases and of lyases and the repression of RedOx observed in 

the sole presence of wood appeared to be abolished(Fig 6). 

When the results were compared strain by strain, the wood induction of GH (mkPC9 and 

dkN001) and lyases (the three strains), and repression of RedOx (three strains) production 

was clearly seen (panels D, E and F). As observed in the qualitative analysis, the basal 

production of GH was higher in mkPC15 than in the other two strains and it was insensitive 

to the induction by wood. The wood dependent induction of lyases and GH would be 

presumably mediated by different mechanisms since there is a clear wood dependent 

induction of lyases in mkPC15 whereas wood is not a GH inducer in this strain. 

. 
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Fig.6. EmPAI of proteins identified in P. ostreatus secretomes 

Figure 6 shows general view of EmPAI level of proteins identified in all the samples, and 

shows the higher protein concentration in dkN001 cultured on wood samples 
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Focus on the main secreted protein families 

Glycosidases 

The five GH families more represented in the studied secretomes were: GH7 (putative 

reducing-end cellobiohydrolase, seven proteins), GH10 (endoxylanase, three proteins), GH5 

(endoglucanase, four proteins,), GH28 (polygalacturonase, four proteins), GH61/AA9 

(copper-dependent lytic polysaccharide monooxigenase, LPMO, three proteins) and GH79 

(glucuronidase, three proteins). GH7 and GH61/AA9 are among the largest 

glycosylhydrolase families found in the genome of P. ostreatus (16 and 29 gene models, 

respectively, in PC15 genome). 

 dkN001 mkPC9 mkPC15 

Total GH 54 42 33 

Found in G 12 9 22 

Found in W 44 35 21 

Found in WG 18 9 16 

All three 5 1 7 

Glucose-repressed 31 25 3 

Wood-induced 6 6 7 

Glucose-induced 3 5  

                  Table 2. GH detected in the three strains by carbon source 

54 GH were identified in the secretomes of dkN001: 12 in the G cultures, 44 in the W cultures 

and 18 in the WG cultures containing. Five of these proteins were detected in the three 

cultures (putatively constitutive). 31 of these proteins were found in the wood (W) but absent 

in the glucose containing cultures (WG and G, putative glucose repression), six appeared 

only in cultures containing wood (W and WG, putative wood induction), and three only in 

cultures with glucose as sole carbon source (G). The GH involved in cellulose degradation 

displayed either glucose repression (GH5, GH10 and GH61/AA9) or wood induction (GH7). 
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In mkPC9, 42 GH were identified: nine in G, 33 in W, and nine in WG cultures. Only one 

protein was putatively constitutive, 25 seemed to be glucose repressed, six putatively wood 

induced, and five only present in cultures with glucose as sole carbon source. As for dkN001, 

the GH families involved in cellulose degradation displayed either glucose inhibition 

(GH45) or of wood induction (GH7). 

Cultures with wood as carbon source (W and WG), in particular cultures without sugar (W), 

had a higher number of GH identified (Fig X). This was true for mkPC9 and dkN001, but 

mkPC15 seemed not to have this ability to secrete more GH when cultured on wood. dkN001 

and mkPC9 have shown to behave in a similar way in many culture conditions whereas 

mkPC15 is a slow grower in all the substrates used in our lab, especially on lignocellulosic 

substrates (L M Larraya et al., 2001; A. Parenti et al., 2013). In opposition to dkN001 and 

mkPC9, the largest number of GH was found in mkPC15 glucose samples: 33 GH were 

identified: 22 in G cultures, 21 in W, and 16 in WG.  

Only three proteins were found in mkPC15 growing in wood media (W) that were absent in 

glucose containing cultures (WG and G). This number is much lower than that found in 

dkN001 (31 proteins) or mkPC9 (25 proteins). This result suggests that the wood degrading 

mechanism was not working in mkPC15 as well as it was in mkPC9 and dkN001, and that 

the wood degrading mkPC9 behavior is dominant over that of mkPC15 as the observed 

phenotype in dkN001 is closer to that observed in mkPC9. 

Additionally, there were seven proteins that appeared only in wood-containing cultures (W 

and WG), and which can be supposed to be induced by wood, and 11 proteins that were 

present solely in cultures made using glucose as sole carbon source. 

Interestingly, 10 and 49 out of 90 GH protein models identified in these experiments were 

not predicted as secreted by SignalP software and Secretool pipeline respectively, due to 

alternative secretion pathways and the high stringency of the bioinformatics pipeline used. 
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 Cellulose  

Cellulose-degrading enzymes found in P. ostreatus secretomes. 

Endoglucanase  Cellobiohydrolases Β-glucosidase LPMO 

GH5 GH6 GH3 GH61/AA9 

GH12 GH7 GH5  

GH45    

GH7    

Table 3.(Note that several of this GH classes have different enzymatic activities, and 

therefore are included in several of this classes). 

Glycosyl-hydrolases are the enzymes responsible of cellulose degradation process that 

requires the action of cellobiohydrolases (CBH), endoglucanases (EGL) and β-glucosidases 

(BGL). These enzymatic activities are carried out by GH classified in different families in 

the carbohydrate-active enzyme database (CAZy). 

The endoglucanases (GH12 and GH45) and cellobiohydrolases (GH6, GH7) required for the 

degradation of cellulose were only detected in the cultures that contained wood as carbon 

source (W and WG). GH3 β-glucosidases (BGL, GH3) were not detected in these cultures 

and peptides for this enzyme were only recovered from cultures of mkPC15 made using 

glucose as sole carbon source. GH5 endoglucanases is one of the largest CAZy GH families 

and possesses a huge variety of enzymatic activities, including β-glucosidases and 

endoglucanases. According to this broad activity range, these enzymes were detected in all 

the different carbon source cultures, but mainly in wood containing cultures. 

The GH7 enzymes were the predominant GH detected in the wood containing media in 

mkPC9 and dkN001: five out of the top ten more detected proteins in dkN001 growing in W 

cultures (one in mkPC9W and none in mkPC15W) were GH7, whereas only one was present 

in the top ten in dkN001 and in mkPC9 growing in WG (none in mkPC15), and no peptide 

for this enzyme was detected among the more abundant in the glucose based cultures in the 

three strains. 

Consequently, we can hypothesize that the production of enzymes of GH7 family is induced 

by wood and that this induction is partially repressed by glucose. GH7 enzymes were present 

in every wood containing media from the three strains used here. Furthermore, this enzyme 
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was absent in G media. The presence of cellulose justifies the identification of this protein 

here and supports the presence of wood as the main reason of the enhanced presence of GH 

in W media. 

LPMOs function is proposed to be the creation of access points to allow classical hydrolytic 

enzymes such as cellulases a massive degradation of cellulose (among other polysaccharides) 

(Kracher et al., 2016). Four GH61/LPMO proteins were identified here, only in W cultures, 

confirming their involvement in lignocellulose degradation. Other proteins participate in 

LPMO degradation mechanism, including CDH, AA3 and Aldose epimerase; their role in 

lignocellulose degradation is discussed below.  

As expected, cellulase encoding genes were mainly found in cultures with wood as the sole 

carbon source, without added sugar (W cultures). 

 EmPai values of cellulose-degrading enzymes found in P. ostreatus secretomes: 

Gene Model GH Family G W WG Strain 

PoPC9FM84996 GH12  0,7  N001 

PoPC9FM84996 GH12   0,53 PC9 

PoPC15FM1108932 GH12  0,5  N001 

PoPC15FM1108932 GH12  0,66 0,5 PC15 

PoPC15FM41613 GH3 0,25   PC15 

PoPC15FM1035754 GH3 0,32   PC15 

PoPC15FM1049518 GH3 0,27   PC15 

PoPC9FM54135 GH45  0,47  N001 

PoPC9FM54135 GH45  0,47 0,33 PC9 

PoPC15FM42791 GH5 0,11 0,07  PC15 

PoPC9FM75659 GH5  0,26  N001 

PoPC9FM75659 GH5 0,2   PC9 

PoPC9FM116228 GH5  0,41  N001 

PoPC9FM125269 GH5  0,6  PC9 

PoPC9FM114400 GH5 0,07 0,07  PC9 

PoPC15FM1041397 GH5   0,3 PC15 

PoPC9FM85079 GH5  0,34  N001 

PoPC9FM85079 GH5  0,26 0,12 PC9 

PoPC9FM45206 GH6  0,35  N001 

PoPC9FM45206 GH6  0,35  PC9 

PoPC9FM43698 GH6  0,35  PC9 

PoPC9FM87701 GH61/AA9  0,16  N001 

PoPC9FM59310 GH61/AA9  0,44  PC9 
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PoPC9FM46220 GH61/AA9  0,29  N001 

PoPC9FM122311 GH61/AA9  0,95  N001 

PoPC9FM122311 GH61/AA9  1,44  PC9 

PoPC15FM27620 GH7  1,91 0,31 N001 

PoPC15FM27620 GH7  0,8 0,38 PC15 

PoPC15FM1038048 GH7  0,67  N001 

PoPC15FM1039504 GH7  4,12 0,76 N001 

PoPC15FM1039504 GH7  0,48 0,57 PC15 

PoPC15FM1092970 GH7  1 0,82 PC15 

PoPC9FM114771 GH7  2,47 1,33 N001 

PoPC9FM83320 GH7  1,91 0,31 N001 

PoPC9FM83320 GH7  1,48 1,23 PC9 

PoPC9FM83849 GH7  4,12  N001 

PoPC9FM83849 GH7  1,2  PC9 

PoPC15FM1105963 GH7  0,22  PC15 

PoPC9FM100398 GH7  1,01  PC9 

PoPC9FM47295 GH7  0,23  N001 

PoPC9FM47295 GH7  0,58  PC9 

(One gene model can be included several times in this table if it was identified in several 

strains) 

 Hemicelluloses 

Hemicelluloses include xylan, glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan 

and several monosaccharides. In accordance with this huge variety of compounds, fungi can 

use a broad portfolio of enzymes to break down this cell wall component. Enzymes with 

hemicellulolytic activities identified in these analyses are classified into the GH5, GH10, 

GH11, GH27, GH31, GH35, GH44, GH74 and GH115 CAZy families. Carbohydrate 

esterases are also involved in the degradation of hemicelluloses, especially acetyl xylan 

esterases. CE families 1, 4, 12, 15, 16 were found in P. ostreatus secretome. 

In accordance to the secretion of cellulolytic enzymes, peptides belonging to hemicelluloses 

were found mainly in W media. 22 times (out of 33) hemicellulases were found only in W 

media, and five times more in W and/or WG media, suggesting that the production of these 

enzymes was induced by wood and partially repressed by glucose. 

Galactose residues connected to mannan can be cleaved by -galactosidases. We identified 

one GH27 in P. ostreatus secretomes, but its behavior was not the expected; GH27 was found 
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in all the different carbon source media. Interestingly, enzymes of GH27 family also showed 

α-N-acetylgalactosaminidase activity in Aspergillus niger (Kulik et al., 2010) an enzyme 

usually found in lysosomes whose deficiency leads to a human disease (Clark & Garman, 

2009). It is therefore argued that some GH27 α-galactosidases are not only involved in 

hemicellulose degradation (Kulik et al., 2010; van den Brink & de Vries, 2011), a thesis 

supported by our findings.  

GH35 enzymes also act in a non-expected way; they were found only in G media, without 

contact with lignocellulosic materials, even when they are predicted to be a β-galactosidase. 

The presence of terminal β-linked D-galactose residues in some hemicelluloses, e.g., xylan, 

xyloglucan, and galactoglucomannans, suggested that β-galactosidases (GH35) could play a 

role in the degradation of hemicelluloses (Sims et al., 1997).  

A GH5 family gene model (PoPC9FM123701) similar to other fungal mannanases (van den 

Brink & de Vries, 2011) was identified in the analyses described here, as well as a GH44 

family enzyme characterized as a xyloglucan hydrolase (Ye et al., 2012). GH115, α-

glucuronidase, was demonstrated to be a crucial in the Schizophyllum commune 

deconstruction of softwood glucuronoarabinoxylan (McKee et al., 2016) 

In conclusion, hemicellulases are, as expected, more abundant in wood containing cultures, and show 

a broad diversity necessary target the hemicellulose complexity. 

 

 EmPai values of hemicellulose-degrading enzymes found in P. ostreatus secretomes: 

Gene model CAZy Family G W WG Strain 

PoPC15FM1097054 CE1   0,38 N001 

PoPC9FM117351 CE1  0,77  N001 

PoPC15FM1078467 CE4  0,66  N001 

PoPC9FM125794 CE4  0,66  PC9 

PoPC15FM1102068 CE12  0,69  PC15 

PoPC15FM1086797 CE15  0,2  N001 

PoPC9FM89668 CE15  0,28  PC9 

PoPC9FM82810 CE16 0,74   PC9 

PoPC15FM1075485 CE16  1,53  N001 

PoPC9FM96445 CE16  1,72  N001 

PoPC9FM96445 CE16  1,12  PC9 

PoPC9FM123701 GH5  0,27  N001 
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PoPC9FM125911 GH10  0,69  N001 

PoPC9FM125911 GH10  0,3  PC9 

PoPC9FM81650 GH10  1,41  N001 

PoPC9FM96691 GH10  0,48  N001 

PoPC9FM96691 GH10  0,37  PC9 

PoPC15FM1079521 GH11  0,71  N001 

PoPC15FM1079521 GH11  1,12 1,12 PC15 

PoPC9FM110996 GH11  0,73  N001 

PoPC9FM110996 GH11  0,73  PC9 

PoPC15FM1035175 GH27 0,21 0,47 0,57 N001 

PoPC15FM1035175 GH27 0,67 0,9 1,02 PC15 

PoPC15FM1088219 GH27 0,6 0,6 1,02 PC15 

PoPC15FM51341 GH27  0,69 0,39 PC15 

PoPC15FM1105441 GH35 0,11   PC15 

PoPC15FM1066752 GH35 0,13   PC15 

PoPC9FM54923 GH44  0,28  N001 

PoPC9FM54923 GH44  0,52  PC9 

PoPC15FM1111407 GH74  0,3 0,15 N001 

PoPC15FM162095 GH115  0,87  N001 

PoPC9FM127463 GH115   0,05 N001 

PoPC9FM127463 GH115  1,56  PC9 

(One gene model can be included several times in this table if it was identified in several 

strains) 

 Fungal cell wall related enzymes 

Chitin, composed of β-1,4 linked N-acetylglucosamine (GlcNAc) units, is present in the 

fungal cell wall. Enzymatic degradation of chitin is catalyzed by a two-component 

chitinolytic enzyme system. One component is chitinases (EC 3.2.1.14, GH18), which 

hydrolyze chitin polymers, and release chitooligosaccharides as chitobiose The other is β-N-

acetylhexosaminidases (EC 3.2.1.52, GH20), which degrade chitooligosaccharides into 

monomers  (Konno, Takahashi, Nakajima, Takeda, & Sakamoto, 2012). We identified both 

enzymes in P. ostreatus secretomes, and we assume that they could be likely involved in the 

modification of fungal cell wall during growth (together with β-glucans related enzymes) 

The GH71 (α1,3 glucanase) enzymes are able to degrade cell walls of some phytopathogenic 

fungi degrading (S-glucans), which represent the major cell wall matrix polysaccharides for 

most fungi; in some instances, like in Aspergillus nidulans, S-glucans account for 

approximately 25 % of the dry weight of the cell wall.(Ait-Lahsen et al., 2001). 
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 Other GH families (cannot degrade cellulose, hemicellulose or pectin) identified in 

P. ostreatus  

GH13 and GH15 are αamylases that cleave 1,4 glycosidic bonds, therefore can degrade 

starch but not hemicellulose or cellulose, formed by  -1,4 or -1,3 glycosidic bonds. Both 

enzymes were found only in W media, on the contrary to other αamylase GH31, which was 

found only in G media. 

GH131 is a relatively new GH family demonstrated to be a β-glucanase with exo-β-1,3/1,6- 

and endo-β-1,4-glucanase activity, therefore, it could act on several glucans including 

cellulose, but also on other fungal compounds as β-glucans linked by 1,3 glycosidic bonds 

with 1,6 branches. Two proteins from this class were identified in secretomes of Podospora 

anserina and Aspergillus niger (Lafond, Navarro, Haon, Couturier, & Berrin, 2012; Poidevin 

et al., 2014), growing on cultures with plant compounds as carbon sources. In P. ostreatus, 

this protein was found only in cultures using wood as a sole carbon source, giving an insight 

about a role in lignocellulose degradation. Nevertheless, more research is needed to decipher 

the role of this enzyme. 

GH47 and GH92 α-mannosidases are Ca2+-dependent enzymes related with fungal 

metabolism, usually related with Golgi apparatus. Out of six GH92 -1,2 mannosidases 

present in P. ostreatus genome (in both PC9 and PC15) we identified three in the secretomes. 

One of them has no signal peptide for secretion, and the other two show a signal peptide 

using SignalP but the more restrictive Secretool pipeline discard them as secreted. In the 

ascomycete Magnaporthe orizae, α1,2 mannanase is also encoded by a multi-gene family 

with nine genes, including four that are predicted to encode secreted proteins. (Zhou et al., 

2009). 

These enzymes are known to be important in protein glycosylation, and are localized in the 

endoplasmic reticulum and Golgi complex. In eukaryotes, proteins translocated across the 

ER membrane (the secretion signal peptide drives the protein to the endoplasmic reticulum) 

are, by default, transported through the Golgi apparatus and exported by secretory vesicles, 

but some proteins have specific signals (poorly characterized) and are retained in the ER or 
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the Golgi or are targeted to lysosomes (Olof Emanuelsson et al., 2007). The web based 

pipeline Secretool (Cortázar et al., 2014) includes tools able to identify proteins targeted to 

stay at Golgi/ER, like TargetP or PSORT(Paul Horton et al., 2007).  

Fungal GH72 and GH76 enzymes have been speculated to be involved in cross-linking of 

GPI-anchored proteins into the cell wall, where they are proposed to act as transglycosylases 

that elongate and remodel the 1,3-β-glucan of the cell wall(Kitagaki, Wu, Shimoi, & Ito, 

2002).  

 

Lyases 

Polysaccharide lyases (PL) were also found more abundantly when wood was used as a sole 

carbon source (W cultures), whereas cultures made in WG media do not show such 

abundance. Polysaccharide lyases PL4 (rhamnogalacturonase), PL1 and PL3 (pectate lyases) 

were identified in W media, being the most abundant proteins in these media (Supp Table 

X). The lignocellulosic carbon source can explain this high recovery of PL in these 

experiments.  

 Pectin 

In primary cell walls, the matrix in which the cellulose network is embedded is composed of 

pectin, a highly hydrated network of polysaccharides rich in galacturonic acid (Alberts et al., 

2002) Polysaccharide lyases (PL) are the main enzymes that degrade these components. P. 

ostreatus secretome presents PL1, 3, 4, 8 family enzymes, which are mainly pectate and 

rhamnnogalacturonan lyases. GH16, 28, 43, 53, 62, 78, 79, 88 and 105 and CE 8, 12 are also 

involved in pectin degradation and were identified in P. ostreatus secretomes. 

Some of these enzymes are required for the hydrolysis of the pectin backbone as α-

rhamnosidases (GH78) and unsaturated glucuronyl hydrolases (GH88)(van den Brink & de 

Vries, 2011). 

• EmPai values of pectin-degrading enzymes found in P. ostreatus secretomes: 

Gene Model CAZy Family G W WG Strain 

PoPC15FM1044335 CE8 0,7   PC15 

PoPC15FM1061918 CE8   0,74 PC15 
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PoPC9FM116926 CE8  1,2  PC9 

PoPC15FM1113799 CE12  1,19  PC15 

PoPC9FM78619 CE12  0,39  PC9 

PoPC9FM128131 GH105  0,37  PC9 

PoPC15FM1063776 GH105 0,5 0,22  N001 

PoPC15FM1063776 GH105 0,22 0,83 0,14 PC15 

PoPC9FM47522 GH105 0,5 0,22 0,14 N001 

PoPC9FM47522 GH105  0,31  PC9 

PoPC9FM132563 GH16  0,22  N001 

PoPC15FM40942 GH16 0,23 0,39  PC15 

PoPC9FM87194 GH16   0,13  PC9 

PoPC15FM1076482 GH16 0,51 0,51  PC15 

PoPC9FM82945 GH16 0,17 0,27  N001 

PoPC9FM90953 GH28  0,52  PC9 

PoPC9FM59334 GH28  0,34  PC9 

PoPC9FM85018 GH28   0,26 N001 

PoPC9FM85018 GH28  0,48 0,37 PC9 

PoPC9FM51760 GH28 0,26 1,32  PC9 

PoPC9FM89478 GH28 0,21  0,21 N001 

PoPC9FM89478 GH28  0,46  PC9 

PoPC9FM97623 GH43  0,18  N001 

PoPC9FM45547 GH43  0,75  PC9 

PoPC9FM127963 GH43  0,26  PC9 

PoPC15FM1074766 GH43  0,6  N001 

PoPC15FM1074766 GH43  1,15 0,6 PC15 

PoPC15FM1061994 GH53   0,35 N001 

PoPC9FM116896 GH53  0,95 0,35 PC9 

PoPC9FM116896 GH53  0,95  N001 

PoPC9FM121125 GH 62  0,14  N001 

PoPC9FM58710 GH78  0,61  PC9 

PoPC15FM13903 GH78 0,24 0,24  PC15 

PoPC15FM1067626 GH79 0,68 0,38 0,48 PC15 

PoPC9FM116181 GH79 0,23   N001 

PoPC9FM116181 GH79 0,23   PC9 

PoPC9FM116292 GH79 0,16   N001 

PoPC9FM116292 GH79 0,34   PC9 

PoPC9FM48699 GH79  0,76  N001 

PoPC9FM48699 GH79  0,33 0,12 PC9 

PoPC15FM1031712 GH88 0,67   PC15 

PoPC9FM100039 PL1  0,4  N001 

PoPC9FM100039 PL1  0,4  PC9 

PoPC15FM1075634 PL1  0,41  N001 
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PoPC15FM199583 PL1  0,23  PC15 

PoPC9FM123331 PL1   0,42 N001 

PoPC9FM123331 PL1  1,01  PC9 

PoPC9FM83989 PL1  0,41  N001 

PoPC9FM83989 PL1  0,98  PC9 

PoPC15FM1113870 PL3  3,15  N001 

PoPC15FM1113870 PL3  6,64 1,5 PC15 

PoPC9FM116196 PL3  2,42  N001 

PoPC9FM116196 PL3  3,65  PC9 

PoPC15FM1044820 PL4  0,75  PC15 

PoPC9FM58117 PL4  0,51  N001 

PoPC9FM58117 PL4  0,67  PC9 

PoPC15FM1109346 PL4  0,96  N001 

PoPC9FM128966 PL4  0,96  N001 

PoPC9FM128966 PL4  5,16  PC9 

PoPC15FM1109346 PL4  4,54 1,97 PC15 

PoPC15FM1111478 PL8 0,07 0,42  PC15 

PoPC9FM53101 PL8   0,32 PC9 

(One gene model can be included several times in this table if it was identified in several 

strains) 

 Oxalate decarboxylase 

Oxalic acid is a common fungal metabolite that is synthesized as a waste compound by 

tricarboxylic acid cycle in mitochondria, and by glyoxylate cycle in glyoxysomes and 

peroxisomes. Oxalic acid is toxic; therefore the regulation of its concentration is crucial. To 

achieve this, fungi express specific oxalate-degrading enzymes such as oxalate 

decarboxylase (Mäkelä et al., 2014). The proteins of the two alleles of this gene have been 

identified in the P. ostreatus secretomes (PC9FM55739 and PC15FM1078793). Both genes 

code for proteins which carry a signal peptide for secretion, and were found in all the different 

carbon source media. 

In brown rot fungi, oxalate decarboxylase has been proposed to have a role in Fenton 

mechanisms: reactive hydrogen species have no substrate specificity, and a spatial separation 

between oxidants and GH (as well as fungal hyphae) seems to be necessary to avoid damage. 

Fe3+ near the hyphae is strongly chelated by secreted oxalate, hindering its reduction to the 

Fe2+ required for Fenton chemistry (Zhang et al., 2016). 
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RedOx 

Dikaryon dkN001 and monokaryon mkPC9 present a higher number and also a higher sum 

of emPai values for RedOx enzymes when cultured in glucose containing media (G and WG). 

mkPC15 cultures have a higher number of redox enzymes when glucose is used as a carbon 

source (G) but the secretome profile of WG is more similar to W than to G media.  

Some of these enzymes have a clear relationship with the presence of glucose, as it is the 

case for glucose oxidase (PoPC15FM154703, PoPC9FM91123) or FAD-oxidase (putative. 

glucooligosaccharide oxidase, PoPC15FM1101230, PoPC9FM90315) that catalyze the 

oxidation of glucose (Lee et al., 2005) and were found in mkPC15 and mkPC9G cultivated 

in G media.  

A cupredoxin domain containing protein (PoPC9FM87572) corresponding to a protein 

predicted to be secreted was the most abundantly found protein among redox enzymes in P. 

ostreatus secretomes, being present in all media despite the carbon source present. 

Cupredoxin domains are involved in inter-molecular electron transfer reactions and are 

present in multicopper oxidases and laccases, which contain three of these domains on their 

sequence. Many other proteins can include this domain, making the information available on 

this gene model not enough to infer an enzymatic function. (Phyre2 99.9% similarity to 

plastocyanin/azurin). 

 Lignin 

Several enzymes belonging to this RedOx classification, such as those belonging to the AA1 

and AA2 CAZy classes, are known to have the ability to degrade or modify lignin.. The AA1 

enzymes are multicopper oxidases including laccases (EC 1.10.3.2), ferroxidases (EC 

1.10.3.-), and multicopper oxidase (EC 1.10.3.-). Family AA2 contains class II lignin-

modifying peroxidases, including manganese peroxidases (EC 1.11.1.13), versatile 

peroxidases (EC 1.11.1.16), lignin peroxidases (EC 1.11.1.14), and peroxidases (EC 1.11.1.). 

Only two laccases (AA1_1) have been identified in these analyses, and have been found in 

all the different carbon source media. No laccases have been found in cultures of strain 

mkPC15. The mkPC15 genome includes 11 laccases and one ferroxidase (AA1_2) 
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(Castanera et al., 2012; Palmieri et al., 2000) while mkPC9 codes for 10 laccases and one 

ferroxidase; only mkPC9 laccases Lacc2 (PoPC9FM116143) and Lacc10 (PoPC9FM81117) 

and  have been identified here, confirming previous findings on the importance of these two 

genes for the laccase activity (Castanera et al., 2012). 

In the Phlebia radiata (Kuuskeri et al., 2016) secretome, laccases were also found regardless 

the carbon source, suggesting the importance of laccases besides lignin degradation. 

Proposed functions for laccases range from mushroom development to fungus/host 

interactions (Kües & Rühl, 2011; Mate & Alcalde, 2016). 

Only DyP2 (Faraco et al., 2007)  has been identified with enough confidence in these analyses 

among the Heme peroxidase group (Ruiz-Dueñas, Fernández, Martínez, & Martínez, 2011). 

DyP4, that is reported to be able to oxidize Mn(Fernández-Fueyo et al., 2015), was also 

detected, but without enough confidence level. 

Copper radical oxidases (AA5) were found in high concentrations in nearly all the media 

analyzed here. Glyoxal oxidase, a peroxide-producing enzyme, is the most intensively 

studied representative of this CAZy class (Kersten and Cullen, 2014). Together with glucose 

methanol choline aryl-alcohol oxidases (AA3), these enzymes may supply extracellular 

hydrogen peroxide for the fungal wood decay carried out by class-II peroxidases(Ferreira, 

Carro, Serrano, & Martinez, 2015). AA5 enzymes are enzymes very common in fungal 

cultures, and are recently reported to exhibit a broad substrate range (Yin et al., 2015) 

explaining the ubiquity of this CAZy class in the P. ostreatus secretomes. 

Cellobiose dehydrogenase CDH (AA3_1/AA8) is a key enzyme in the recently discovered 

pathway of cellulose degradation by LPMO (Kracher et al., 2016; Phillips, Beeson, Cate, & 

Marletta, 2011). It binds to the cellulose surface despite the absence of a CBM (Henriksson, 

Salumets, Divne, & Pettersson, 1997) and  oxidizes cellobiose (Tan et al., 2015) The only 

gene present in P. ostreatus genome has a signal peptide for secretion and corresponding 

peptides have been found only in wood containing media (W), in agreement with their 

function.  

The two alleles of the unique gene in P. ostreatus genome coding for a soluble quinoprotein 

glucose/sorbosone dehydrogenase has been identified in the P. ostreatus secretomes. A new 

CAZy family (AA12) was created after the discovery of the oxidation activity toward 
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monosaccharides of this proteins (Matsumura et al., 2014). Like CDH, AA12 enzymes 

contain a cytochrome domain that could transfer electrons to an LPMO (Kracher et al., 2016) 

to allow cellulose degradation, and also have a CBM1 domain that could be related with their 

binding affinity for insoluble cellulose (Matsumura et al., 2014) suggesting a role similar to 

CDH in the extracellular oxidative degradation of cellulose.  

 All together, these findings highlight the connections between polysaccharide and 

lignin biodegradation in plant materials (Martínez, 2016). Products from lignin 

degradation can act as electron donors for cellulose degrading LPMOs, linking the 

whole lignocellulose fungal degrading process. EmPai values of Red-Ox enzymes 

found in P. ostreatus secretomes 

Gene Model CAZy Family G W WG Strain 

PoPC9FM116143 AA1_1  0,8 0,56 N001 

PoPC9FM116143 AA1_1 0,41  0,22 PC9 

PoPC9FM81117 AA1_1  0,49  N001 

PoPC9FM81117 AA1_1  0,22  PC9 

PoPC9FM115057 DyP  0,49  PC9 

PoPC9FM62103 AA3_1  0,29  PC9 

PoPC15FM1087553 AA3_2 0,3   PC15 

PoPC15FM154703 AA3_2 0,18   PC15 

PoPC9FM116309 AA3_2 0,14 0,14 0,43 N001 

PoPC9FM116309 AA3_2 0,86   PC9 

PoPC9FM59433 AA3_2 0,14   N001 

PoPC9FM59433 AA3_2 0,24   PC9 

PoPC9FM93955 AA3_2 0,37   PC9 

PoPC15FM1098737 AA3_2 0,14   PC15 

PoPC15FM1081617 AA5_1   1,16 N001 

PoPC15FM1109334 AA5_1 0,14   PC15 

PoPC15FM1114640 AA5_1 0,55   N001 

PoPC9FM101121 AA5_1 1,08 0,75 1,08 N001 

PoPC9FM101121 AA5_1 0,69  0,47 PC9 

PoPC9FM134564 AA5_1  0,6 1,02 N001 

PoPC9FM134564 AA5_1 0,73 0,68 0,37 PC9 

PoPC15FM1079389 AA5_1  0,07  N001 

PoPC9FM62166 AA5_1 1,22 0,68 1,51 N001 
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PoPC9FM62166 AA5_1 1,22 1,31 1,61 PC9 

PoPC9FM94009 AA5_1 0,48   N001 

PoPC15FM1101230 AA7 2,04   PC15 

PoPC15FM1114567 AA12 0,69 0,42 0,9 N001 

PoPC15FM1114567 AA12 0,69  0,26 PC15 

PoPC9FM90832 AA12 0,51 0,34 0,6 N001 

PoPC9FM90832 AA12 1,02 0,6 1,27 PC9 

PoPC15FM1064574 Amino acid oxidase  0,33  PC15 

PoPC9FM114605 Amino acid oxidase 0,38   N001 

PoPC9FM88952 Copper radical oxidase 0,43  0,37 N001 

PoPC9FM88952 Copper radical oxidase   0,13 PC9 

PoPC9FM43770 Cupredoxin domain  0,33 0,24 PC9 

PoPC15FM1062660 Cupredoxin domain  0,38  N001 

PoPC15FM1062660 Cupredoxin domain  0,47 0,57 PC15 

PoPC9FM71620 Cupredoxin domain 0,67   N001 

PoPC9FM71620 Cupredoxin domain  0,21  PC9 

PoPC9FM79407 Cupredoxin domain  0,31  N001 

PoPC9FM87572 Cupredoxin domain 7,6 1,66 6,07 N001 

PoPC9FM87572 Cupredoxin domain 6,07 2,93 7,6 PC9 

PoPC9FM100586 FAD-linked oxidase 0,57  0,11 PC9 

PoPC9FM90315 FAD-oxidase 0,53  0,45 PC9 

PoPC9FM91123 Glucose oxidase 0,34   PC9 

(One gene model can be included several times in this table if it was identified in several 

strains) 

 

Proteases 

Many proteases have been identified in the P. ostreatus secretomes. Proteases have a role on 

the fungal cell wall reorganization and degradation during hyphal growth, to recycle essential 

nutrients (Kuuskeri et al., 2016). Another function of these enzymes could be nitrogen 

acquisition from decomposing organic matter proteins in the nitrogen-limited wood 

environment (Wymelenberg et al., 2005).  

Secreted proteases can also have a role in modulating the amount of fungal enzymes in 

extracellular media as suggested in P. ostreatus (Palmieri et al., 2000) and P. radiata 

(Kuuskeri et al., 2016). 
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26 different proteases have been found here, including serine peptidases S8, S9, S10, S28, 

S33, S41 and metallopeptidases M28, M35, M36, M43. 21 of them have a signal peptide for 

secretion, pointing out their targeting to extracellular functions. 

 EmPai values of proteases found in P. ostreatus secretomes 

Gene Model Merops Family G W WG Strain 

PoPC9FM115140 A1 0,36   PC9 

PoPC9FM115424 M28 0,51   N001 

PoPC15FM1113156 M28  2,29  PC15 

PoPC9FM52745 M35  0,7  N001 

PoPC15FM1037634 M35  0,78  PC15 

PoPC15FM62198 M36 0,2 0,25 0,25 N001 

PoPC15FM62198 M36 0,5 0,2 0,31 PC15 

PoPC9FM91073 M36 0,2 0,25 0,25 N001 

PoPC9FM91073 M36 0,43   PC9 

PoPC15FM1092788 M43  0,1  N001 

PoPC15FM1088548 S8 0,44 0,44 0,34 PC15 

PoPC9FM71759 S8 0,92  0,24 PC9 

PoPC15FM1087304 S9  0,37  PC15 

PoPC9FM127085 S10 0,46   N001 

PoPC9FM51352 S10  0,43 0,23 N001 

PoPC15FM1066015 S10  0,32  N001 

PoPC15FM1066015 S10 0,43  0,27 PC15 

PoPC15FM175915 S10 0,98   PC15 

PoPC9FM83972 S10  0,48 0,63 N001 

PoPC9FM83972 S10 0,55   PC9 

PoPC9FM88317 S10 0,22  0,32 N001 

PoPC9FM88317 S10 0,27   PC9 

PoPC9FM85063 S28 0,25   N001 

PoPC9FM85063 S28 0,31   PC9 

PoPC9FM57949 S28 0,21   N001 

PoPC9FM57949 S28 0,26   PC9 

PoPC9FM115072 S33  0,2  N001 

PoPC15FM1102733 S33  0,2  N001 

PoPC15FM1102733 S33  0,72  PC15 

PoPC9FM132884 S33 0,27 0,27 0,21 N001 

PoPC9FM82641 S41 0,68   PC9 
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PoPC9FM47034 S53 0,2   PC9 

PoPC15FM1064502 S53 0,18   PC15 

PoPC15FM1077652 S53 0,56 0,31 0,2 N001 

PoPC15FM1077652 S53 0,31  0,25 PC15 

(One gene model can be included several times in this table if it was identified in several 

strains) 

Aldose epimerase 

Other enzymes have been reported to have a role in lignocellulose degradation. Aldose 1 

epimerase (ALE) is present in several media analyzed here. ALE encoding genes are broadly 

distributed among wood-decay fungi including white-rot and brown-rot Polyporales 

genomes (Chiaki Hori et al., 2013). ALE role has been connected with cellulose degradation 

through the generation of cellobiohydrolases (CDH) substrate, β- cellobiose (Higham, 

Gordon-Smith, Dempsey, & Wood, 1994) and, therefore, could influence the LPMO action 

(Kracher et al., 2016). ALE enzymes were previously found in secretomes of P. 

chrysosporium (A. Manavalan et al., 2011; Vanden Wymelenberg et al., 2011) and P. radiata 

(Kuuskeri et al., 2016). The two gene models found in P. ostreatus secretomes show a signal 

peptide for secretion, supporting a role outside the cytoplasm besides the classical eukaryotic 

metabolism function, as noted for P. chrysosporium (Wymelenberg et al., 2005). 

Unknown proteins 

All the proteins without a clear function defined by previous annotation methods (JGI data, 

Pfam and Blast) were submitted to the Phyre2 Server (Kelley and Sternberg, 2009; Kelley et 

al., 2015), a web tool to predict and analyze protein structure and function. 28 mkPC15 and 

30 mkPC9 models were subjected to analysis and 10 and 12 models, respectively, were found 

to be very similar (>99% of confidence) to other well know protein structures. 

Among them, three proteins from mkPC9 and one from mkPC15 appeared to be very similar 

to a toxin structure (PDB:4O9X, Crystal Structure of TcdB2-TccC3) that appears in a two-

subunits pore forming protein found in Photorhabdus luminescens (Meusch et al., 2014). 

This Gram-negative γ-proteobacteria of the family Enterobacteriaceae is found exclusively 

in symbiotic association with nematodes of the genus Heterorhabditis, widely used as a 

biological control agent for insect-pests of crops. These nematodes carry the symbiont 
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bacteria in their gut and release them in insect hemocoel upon infection of new insect host. 

TcdB2-TccC3 subunits form a strong, dimeric, oval-shaped complex (Gatsogiannis et al., 

2013) that harbors the biological activity; TccC3 subunit is an ADP-ribosyltransferase which 

target the actin cytoskeleton by modification of actin (Sheets et al., 2011). 

PoPC15FM110984 appeared to be very similar to an AA10 LPMO structure (PDB ID: 5FTZ) 

(Chaplin et al., 2016), recently known to be an important enzyme in lignocellulose 

degradation. AA10 catalyzes cleavage of glycosidic bonds in crystalline chitin, thus opening 

the inaccessible polysaccharide material for hydrolysis by normal glycoside hydrolases 

(Vaaje-Kolstad et al., 2010). 

Protein model PoPC9FM116255 was annotated as unknown and appeared to be similar to a 

Ricin B/Lectin like protein, with a carbohydrate binding module. This protein has a 

carbohydrate binding module 13 (CBM13), but its function remains unknown. This domain 

was first identified in several plant lectins such as ricin or agglutinin of Ricinus communis 

which bind galactose residues. These modules have since then been found in a number of 

other proteins of various functions including glycoside hydrolases and glycosyltransferases, 

and binding to xylan has been demonstrated in the Streptomyces lividans xylanase A and 

arabinofuranosidase B (CAZy database (Cantarel et al., 2009)), therefore this protein seem 

to be involved in lignocellulose degradation. In our study, this model was found in all the 

dkN001 cultures and in mkPC9 grown in G and mkPC9 grown in W media, so this protein 

seems to be secreted in the presence of lignocellulose but also in media with glucose as sole 

carbon source. Analyses using Phyre2 program (Kelley et al., 2015) revealed the structure 

similarity of this model to PDB 3A23 (putative secreted α-galactosidase; c3a23A_), a 

glycoside hydrolase family 27 (GH27) β-L-arabinopyranosidase identified in Streptomyces 

avermitilis (Ichinose et al., 2009). A BlastP search confirms the presence of homologs of this 

protein in many other fungi. 

Some of the proteins identified with a higher emPai value were proteins of unknown function. 

In mkPC15 cultured in WG, the three more abundant proteins were unknown proteins 

(PoPC15FM165420, PoPC15FM1087565, and PoPC15FM1065820).  

PoPC15FM165420 model was found to be very similar to the structure PDB: 3L1N crystal 

structure of mp1p ligand binding domain 2, a cell wall mannoprotein present in the cell wall, 
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hyphae, and conidia of Penicillium marneffei (Liao et al., 2010). Furthermore, it showed a 

domain HsbA (Hydrophobic surface binding protein A, pfam:12296) and had BlastP 

homologs in several basidiomycetes. This mkPC15 model 165420 was among the most 

abundant proteins recovered in PC15 cultures made in W. 

PoPC15FM1065820 was very similar to PDB: 2LIE, nmr structure of the lectin CCL2, a 

fruiting body lectin from the ink cap mushroom Coprinopsis cinerea, toxic towards 

Caenorhabditis elegans and Drosophila melanogaster and believed to be part of a defense 

system against nematodes and insects. The trisaccharide specifically recognized by CCL2 is 

a key carbohydrate determinant of pollen and insect venom allergens implying this particular 

glycoepitope is targeted by both fungal defense and mammalian immune systems (Schubert 

et al., 2012). This protein model was also among the most abundant proteins in PC15W. 

Further research will be necessary to confirm the function of this proteins, which are present 

in many other fungi. Heterologous expression in other organisms and accurate protein 

structure determination will help to decipher their biological role.  

 

Mass spectrometry identified proteins versus predicted to be secreted proteins 

Only 18 out of the 275 different proteins identified were annotated as intracellular by 

functional classification because they have no known function outside the cell. Consequently, 

enzymes with an extracellular role are considered as secreted even if they have also an 

intracellular function. Some of these proteins were not predicted to be secreted by in silico 

methods. During fungal cultivation is not possible to avoid cell disruption, releasing 

intracellular proteins to the extracellular medium. If fungal mycelium is cultured using wood 

particles as carbon source and under shaking conditions, cell disruption is increased. During 

the separation of extracellular medium from mycelia, it is also possible to cause cell 

disruption. Nevertheless, the main cause of differences between predicted and in vitro 

secretome could be the non-conventional pathways of secretion (Rabouille et al., 2012).  

In our study, from the 275 proteins identified in the different media, 202 were predicted to 

be secreted using SignalP (Bendtsen et al., 2004) and 146 using Secretool (that uses more 

restrictive parameters, see (Cortázar et al., 2014) for details). 
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Two proteins identified as a Ribonuclease T2 (PoPC9FM78300, and alleles 

PoPC9FM110190 and PoPC15FM1062961), were found to have a Signal peptide for 

secretion, and were found in the extracellular media (dkN001, mkPC9, and PC15 grown in 

G; and mkPC15 grown in W). A broad range of biological roles for these ribonucleases has 

been suggested, including scavenging of nucleic acids, degradation of self-RNA, serving as 

extra- or intracellular cytotoxins, and modulating host immune responses (Luhtala and 

Parker, 2010). Ribotoxins are fungal extracellular ribonucleases highly toxic due to their 

ability to enter host cells and their effective ribonucleolytic activity against the ribosome 

(Olombrada et al., 2014) 
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Concluding remarks 

 

This is the first analysis of the lignocellulose degrading capacity of two P. ostreatus 

monokaryons together with the dikaryon formed by the combination of the two nuclei. 

mkPC15 behave different than mkPC9 and dkN001, showing a lower number of 

lignocellulose degrading enzymes when cultured using wood as a carbon source. On the 

contrary, mkPC9 showed to be able to secrete plant cell wall decomposing enzymes in a 

comparable manner to dkN001. Which mechanisms drive these differences between the two 

monokaryons is to be deciphered with deeper genetic analyses. 

The wood-decay machinery of P. ostreatus is typical for a traditional white-rot fungus. The 

broad repertoire of lignocellulose-attacking enzymes expressed by P. ostreatus permit the 

degradation of all the components of the fungal cell wall and range from red-ox enzymes 

laccases, dye decolorizing peroxidases, cellobiose dehydrogenases and glyoxal oxidases to 

cellobiohydrolases GH6 and GH7. All these enzymes are more frequent in white than brown 

rot fungi, although the separation of rot types is now blurred by the existence of fungal 

species sharing characteristics from both(Riley et al., 2014b). 

P. ostreatus secreted a huge variety of glycosil hidrolases, carbohydrate esterases and 

polysaccharide lyases when cultured in the presence of wood, and especially when wood is 

the unique carbon source. As expected, the presence of glucose in addition to wood 

diminished the need of different enzymes to degrade lignocellulose, because fungi could use 

sugar as a carbon source. On the contrary, Red-ox enzymes and proteases were not so 

influenced by wood, probably because they have a broader range of functions in fungal 

metabolism.  

Many of the enzymes detected lacked an enzymatic function or at least a defined role in 

fungal biology. Other enzymes can degrade several compounds, some of them related and 

others not related with lignocellulose degradation. Next steps of fungal lignocellulose 

degradation research must involve linking the whole lignocellulose fungal degrading process. 

As seen by latest findings, the synergistic action of several enzymes could be necessary to 

degrade cell wall compounds. Heterologous expression, fungal transformation and accurate 

protein structure determination will help to decipher their biological role.
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3. - MATERIAL AND METHODS 

Fungal strains and culture conditions  

Cultures of P. ostreatus strains dkN001 (dikaryon), mkPC9 and mkPC15 (monokaryons) 

were maintained on malt agar medium (20 g/l malt extract and 15 g/l agar) at 24°C in the 

dark. Populus alba wood was chopped to particles of approximately 1-5 x 0.5 x 1 mm 

and dried for three days at 80°C (moisture content of 4.4% and water content of 4.2%). 

Three 10 mm diameter pieces of one week old agar cultures were used for inoculation of 

100 ml liquid pre-cultures containing SMY-medium (sucrose 10 g/l, malt extract 10 g/l, 

yeast extract 4 g/l). After five days of growth in the conditions described below, the 

mycelium was washed once with sterile water using a nylon filter and resuspended in 200 

ml of sterile water. The mycelium was homogenized for 15 seconds at 8000 rpm, 

(Ultraturrax T25, Janke & Kunkel, IKA Labortechnik, Staufen, Germany) and 3 ml 

aliquots were used as inoculum for the 150 ml experimental cultures. All experiments 

were prepared in liquid medium containing 0.1 g/l Na2B4O7·H2O, 0,07 g/l ZnSO4·7H2O, 

0,01g/l CuSO4·5H2O, 0,01g/l MnSO4·4H2O, 0,01g/l FeSO4·4H2O, and 0,01g/l; 

(NH4)6Mo7O2·4H2O. The culture medium was supplemented with glucose (4 g/l) and/or 

wood (4 g/l) as required for each experiment. All cultures were incubated for 14 days at 

24°C in dark under shaking conditions (130 rpm). 

Protein extraction 

Culture supernatants containing extracellular proteins were separated from mycelia by 

filtration through Whatman paper filter and frozen at -20°C overnight. After thawing the 

samples, insoluble polysaccharides were removed by centrifugation at 13000 rpm for 60 

min at 4ºC,  and the supernatant was frozen again. The processed supernatants from eight 

parallel cultures were combined and proteins concentrated by freeze-drying. 

Freeze-dried samples were dissolved in 100 ml of distilled water and centrifuged at 4000 

rpm for 30 min. After removing the undissolved debris, SDS, sodium chloride, and 

sodium deoxycholate were added to the samples to final concentrations of 1% (w/vol), 

1M and 0.05% (w/vol), respectively (Bensadoun and Weinstein, 1976). The dissolved 

proteins were precipitated by addition of TCA and phosphotungstic acid (Yeang et al., 

1995)(Yeet Yeang et al., 1998). In the first step, TCA was added from a 100% TCA stock 

solution containing 100 g TCA in 45.4 ml water to obtain a 10% final TCA concentration. 

After mixing, the samples were allowed to stand on ice for 30 min. Thereafter, 
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phosphotungstic acid was added from a 10% (w/vol) stock solution in water to the final 

concentration of 0.5%. The samples were mixed well and were kept on ice overnight. The 

precipitated proteins were collected by centrifugation at 25,000xg for 30 min and 

precipitation agents removed through subsequent washings with ice-cold 20% Tris-buffer 

(50 mM, pH 7.5) in acetone vol/vol. In most instances, three washing steps were required 

to remove TCA from the protein pellets. Finally, protein samples were washed with pure, 

ice-cold acetone, air-dried and then stored at −20°C for further processing through 

subsequent washings with ice-cold 20% Tris-buffer (50 mM, pH 7.5) in acetone v/v. In 

most instances, three washing steps were required to remove TCA from the protein pellets 

(Fragner et al., 2009). The recovered proteins were dissolved in 100 mM ammonium 

bicarbonate and the total protein amount was determined using Bradford Reagent (Pierce, 

Germany). 

Protein digestion 

The proteins were digested with trypsin in two steps as previously described (Eastwood 

et al., 2011). Briefly, aliquots containing approximately 500 μg of protein from each 

experiment (three replicates) dissolved in 100 mM ammonium bicarbonate, were digested 

with sequencing grade trypsin (Promega, Germany) using an enzyme to substrate ratio of 

1:40 (w/w) at 37°C for 16 h. Thereafter, the proteins in the samples were reduced using 

1,4-DL-dithiothreitol (DTT) (5 mM) and tris-(2-carboxyethyl)phosphine) (TCEP, 5 mM), 

and alkylated with iodoacetamide (15 mM). After addition of a new amount of trypsin 

(enzyme to substrate ratio of 1:50), the samples were digested again for 60 min at 58°C 

(Havlis et al., 2003). The digested peptides were de-salted with a C18 Sep-Pak column 

(Waters, Milford MA) and dried in a vacuum centrifuge. The samples were dissolved in 

20 mM ammonium formate pH 10 and the total peptide amount was determined using 

BCA Protein Reagent (Pierce, Germany) calibrated with a tryptic bovine serum albumin 

(BSA) digest. 

Shotgun protein identification by LC-MS/MS 

The digested peptides were first fractionated at pH 10 (Gilar et al., 2005) using a Reprosil 

Gold 3µm C18 column (150 x 2 mm; Dr. Maisch GmbH, Ammerbuch, Germany). 

Samples with 300 µg of peptides in 300 µl ammonium formate were separated using a 

linear gradient of acetonitrile in 20 mM ammonium formate pH 10. 25 fractions were 

collected, dried in a vacuum centrifuge and stored at -20°C. 
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Peptide analysis by LC-MS/MS was performed using 1100 HPLC (Agilent, Böblingen, 

Germany) interfaced to an Esquire 3000 ion trap mass spectrometer (Bruker-Daltonic, 

Germany) via an electro spray ionization (ESI) unit. Each one of the 25 collected peptide 

fractions was dissolved in 10 μl of 5 % (vol/vol) formic acid and 4 μl of the sample were 

loaded onto a 180 μm i.d. capillary column packed with 3 μm Reprosil-Pur C18-AQ (Dr. 

Maisch GmbH, Ammerbuch, Germany), conditioned with 98% of solvent A (0.1% formic 

acid in water) and 2% of solvent B (0.1% formic acid in 90% acetonitrile-water). After 

20 min isocratic elution at 2 μl/min, the peptides were eluted using a step-gradient of 

solvent B: 15% in 5 min, 40% in 90 min, 50% in 5 min, and 90% in 5 min. 

The Mass spectrometer was set up to take four averages of MS-spectra (200 to 1500 

mu) and four averages of MS/MS-spectra (200 to 3000 mu) of two most abundant 

precursor ions. The Dynamic Exclusion was set to non-single charged precursor ions 

and an exclusion time of 1 min. The MS/MS spectra were extracted by DataAnalysis 

(V. 3.0, Bruker Daltonic) and peptides identified using Mascot (V. 2.4, Matrix Science, 

UK). The target database was constructed from annotated genomes of P. ostreatus 

mkPC15 and mkPC9 (http://genome.jgi.doe.gov/PleosPC15_2, 

http://genome.jgi.doe.gov/PleosPC9_1) and the SwissProt database. Peptide 

identifications were adjusted to 1% false discovery rate (FDR) against a decoy database. 

All searches were run as a tryptic digest with one missing cleavage allowed, fixed 

carbamidomethylation of cysteine and variable oxidation of methionine. Mass 

tolerances were set to 1.4 Da and 0.4 Da for the MS and MS/MS spectra, respectively. 

Mascot results were extracted from raw DAT-files and transferred to an SQL-database 

(Microsoft SQL Server 2005). SQL queries were used to extract proteins with at least 

two peptides with scores higher than the corresponding identity score. emPai values 

were calculated by MASCOT program using emPai algorithm (Ishihama et al., 2005). 

Determination of protein concentration 

The total protein concentration was measured by the Bradford assay using a protein 

determination reagent from Pierce (Coomassie Plus, Thermo Scientific, Bonn Germany). 

Ultrapure BSA (GERBU Biochemicals, Gaiberg, Germany) was used as a calibration 

standard. Fresh samples from fungal cultures supernatants were centrifuged for 10 min at 

13 000×g before processing. Concentrated protein samples dissolved in electrophoresis 

buffers were diluted with pure water to fit the measurement range and to reduce the 

concentrations of buffer components below the interfering limits for protein assays.  
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General discussion and concluding remarks 

The aim of this thesis is to identify the proteins secreted by the edible and worldwide 

cultivated basidiomycete fungus P. ostreatus to shed light into this essential mechanism 

for fungal metabolism. P. ostreatus secretes large amounts of a broad variety of enzymes 

to obtain nutrients from the environment. These enzymes include biotechnological useful 

enzymes such as proteases, laccases and cellulases, broadly used in plant biomass ethanol 

production or food industry, among other processes. The search for valuable enzymes is 

one of the main aims of the basidiomycete secretome analyses. 

Basidiomycete lifestyles include pathogens, symbionts (mycorrhizas) and saprotrophs 

(leaf litter degraders, white and brown rots) fungi, although the separation of rot types is 

now blurred by the existence of fungal species sharing characteristics from both (Riley et 

al., 2014). All these fungi use secreted proteins to occupy its ecological niche, therefore 

producing a different secretome. In the first chapter of this thesis, we reviewed several 

basidiomycete secretome analyses comparing the results obtained using different 

analytical techniques and discussing some representative examples, with a special 

attention to the lignocellulolytic enzymes and the different fungal lifestyles. A 

combination of genomic, transcriptomic and proteomics techniques is still the best 

approach to analyze fungal secretomes, and allow to identify patterns of secretion by 

lifestyle, such as the cellulase secretion by white rot fungi, the Fenton mechanism used 

by brown rot fungi to initiate the wood decay or the diminished presence of carbohydrate 

active enzymes in symbiotic or pathogenic fungi. 

In the second chapter, we screened the two P. ostreatus monokaryotic genomes to identify 

the broad variety of enzymes that this fungus secretes to interact with its environment. 

Surprisingly, the strains differ in their lignocellulose degrading genomic capabilities. 

mkPC9 have less annotated CAZy-coding genes, especially in the Glycosyl-hydrolases 

(GH) class. Nevertheless, mkPC9 grows better than mkPC15 using lignocellulosic 

substrates and has a higher enzyme secretion capacity when growing in the presence of 

wood. 

In the third chapter, the P. ostreatus potentially secreted proteins were identified by 

bioinformatics methods. Following the previous pattern, less proteins were predicted to 

be secreted in mkPC9. Afterwards, using transcriptomic analyses to obtain information 



General discussion and concluding remarks 

160 
 

about the actual use of these genes, we compare the number of proteins predicted to be 

secreted and the number of RPKM by protein function, and we observed a concentrated 

transcriptional activity in few genes per function and an increased importance of the 

glycosil hydrolases and proteins without a functional classification. 

In P. ostreatus, the functional categories found in proteins predicted to be secreted 

showed that domains associated with lignocellulose degradation were overrepresented 

compared to the whole proteome, coupling secretome and fungus lifestyle. Indeed, a blind 

grouping of organisms using the similarity of their secretomes with the secretome of P. 

ostreatus produces a dendrogram in which the fungi are grouped by their lifestyle rather 

than by their phylogeny. Enzymes classically attributed to white rot (GH6, GH7, laccases 

and others) contribute to this grouping, but proteins without a functional classification 

can influence also the lifestyle association in this dendrogram.  

Classical genome analyses emphasize the expansion of gene families. However, gene 

family size does not correlate with an increase in the number of actively expressed genes. 

Usually, one gene is the responsible for the majority of the expression in a gene family. 

We suggest that gene family expansions are associated with an increase in potential rather 

than with an increase in activities in a given environmental condition. Furthermore, 

functional redundancy has been demonstrated within the P. ostreatus MnP gene family 

by transcriptional and enzymatic compensation after inactivation of one of its members 

(Salame et al., 2013).  

Nowadays, most of the secretome analyses rely on transcriptomics studies to explain 

fungal rot behavior. Nevertheless, biological processes are mainly mediated by proteins, 

which can be regulated post-transcriptionally. Genome analyses by bioinformatics 

methods provide information about the repertoire of genes available for the fungus, 

transcriptomic analyses provide important information about the actual use of these 

genes, and mass spectrometry goes a step further on the actual presence of these enzymes 

acting on the lignocellulosic substrates, demonstrating (or not) the accuracy of 

transcriptomics and in silico data. This can yield a reciprocal benefit, because the use of 

proteogenomics methodologies (Nesvizhskii, 2014) can provide protein-level evidence 

of gene expression to help refine genes annotation.  

In the fourth chapter, mass spectrometry analyses were used to confirm the presence of 

these enzymes acting on the lignocellulosic substrates. Three P. ostreatus strains were 
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cultured in three different media using with glucose, wood or both (glucose and wood) as 

a carbon source. As expected, we identify a higher number of lignocellulose degrading 

enzymes in wood-containing media, especially glycosyl-hydrolases, carbohydrate 

esterases and polysaccharide lyases.  On the contrary, RedOx enzymes and proteases do 

not showed an increment when cultured in wood medium, probably because they have a 

broader range of functions in fungal metabolism. 

Nevertheless, the importance of each secreted enzyme in a given medium can be highly 

modulated by fungi. Genes coding enzyme families present in P. ostreatus change 

dramatically its transcripts expression and protein secretion depending on the growing 

medium. These data emphasize the dynamic and environmentally dependent nature of 

fungal secretomes. 

As said in chapter 4, the wood-decay machinery of P. ostreatus is typical for a traditional 

white-rot fungus. P. ostreatus can degrade all the components of the fungal cell wall using 

a broad repertoire of lignocellulose-attacking enzymes ranging from red-ox enzymes as 

laccases, dye decolorizing peroxidases, cellobiose dehydrogenases and glyoxal oxidases 

to cellulases belonging to CAZy families GH6 and GH7. All these enzymes are more 

frequent in white rot fungi lifestyle (Nagy et al., 2016). 

Furthermore, we had the opportunity to compare the behavior of two monokaryons with 

a complete knowledge of their genomic composition, as well as the dikaryon from which 

they are derived when cultured in the three previously mentioned media. Interestingly, 

monokaryons behave in a very different manner; mkPC15 showed a weakest production 

of lignocellulose degrading enzymes than mkPC9 and dkN001 when cultured using wood 

as a carbon source. Moreover, dkN001 was able to secrete more plant cell wall 

decomposing enzymes, correlating with their superior capacity to grow on lignocellulosic 

substrates. Therefore, the genetic background of each strain is determinant to determine 

its protein secretion behavior. Future research will focus on the genetic mechanisms 

driving these differences between the three strains. 

The number of secretome analyses is in basidiomycetes is increasing along with the 

number of sequenced genomes (278, April 2017), and the increasing quality of the 

genome annotations. Nevertheless, many of the enzymes detected lacked a defined role 

in fungal biology, giving only coarse pictures of how fungal use secreted proteins to  
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More than 20% of P. ostreatus secreted proteins that were conserved in other 

basidiomycetes have an unknown enzymatic function. Transcriptome analysis underlined 

the importance of these proteins, further confirmed by proteomics. Using domain 

structure prediction, we were able to give an insight about the possible role of several 

proteins, including a xylanase and a AA10 LPMO. 

Fungal lignocellulose degradation is the result of the synergistic action of several 

enzymes (Martínez, 2016). Future research must involve the use of heterologous 

expression, fungal transformation and accurate protein structure determination, added to 

transcriptomic and proteomics analyses, to decipher their biological role, improving our 

overall understanding of plant biomass degradation as a step to achieve the goal of using 

biomass as a sustainable source of energy to support future needs. 
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Conclusions 

 

1.  This is the first analysis of the lignocellulose degrading capacity of two P. 

ostreatus monokaryons together with the dikaryon from which they are derived. 

 

2. Secretome composition and lifestyle are related in P. ostreatus. 

 

3. Gene family expansion does not correlate with an increase in the number of 

actively expressed genes.  

 

4. The genetic background of each strain is decisive to determine its protein 

secretion behavior. 

 

5. Among the P. ostreatus secreted proteins that were conserved in other 

basidiomycetes, more than 20% do not have a functional classification. 

 

6. The use of several complementary techniques to analyze secretome samples 

appears to be the best method for obtaining a broad insight into the complex and 

highly dynamic mixture of proteins that basidiomycetes use to degrade 

lignocellulose. 

 

7. Proteomic analyses are essential to demonstrate the accuracy of in silico and 

transcriptomics data.  
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