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Abstract—An overlay of higher refractive index than the 

cladding is deposited on a Long Period Fiber Grating (LPFG). 
This permits to improve in a great manner the sensitivity of the 
device to ambient and overlay refractive index changes. This 
causes large shifts of the attenuation bands in the transmission 
spectrum. To obtain a maximum sensitivity for specific refractive 
indices of the overlay and the ambient, an optimum overlay 
thickness must be selected. If the refractive index of the overlay is 
complex there is an additional phenomenon of vanishing of the 
attenuation bands in the transmission spectrum. This occurs for 
specific thickness values of the overlay. The problem is analyzed 
with a numerical method based on LP mode approximation and 
coupled mode theory. Experimental results are contrasted with 
theoretical ones. 
 

Index Terms—Coupled mode analysis, long period gratings, 
optical fiber sensors, refractive index, nanodeposition 
 

I. INTRODUCTION 

ong Period Fiber Gratings (LPFGs) consist of an index 
modulation of the refractive index of the core of a single 

mode fiber (SMF), with a much longer period than Fiber 
Bragg Gratings (FBGs). They have found many applications 
during the nineties in optical communications and sensors 
fields. In optical communications many devices have been 
developed, such as gain equalizers [1], band rejection filters 
[2], tunable filters [3] and optical switches [4]. If compared 
with FBGs, they are also sensitive to measurands such as strain 
or temperature [5]-[8], which may alter the period of the 
grating or the refractive of the core or cladding. Nonetheless, 
modes couple in a different way, which improves the 
characteristics of sensors in a great manner. They are highly 
sensitive to the surrounding media, which also includes the 
drawback of a dependence on temperature. Anyway, there 
exist techniques for avoiding this problem [7], [8], which 
permits multi-parameter sensing [6]. They also present low 
background reflections and insertion losses, and demodulation 
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schemes are economical. All these good properties make them 
adequate for more purposes than strain or temperature 
detection. They can be used as refractometers [9], [10], or for 
detection of chemical substances in the ambient [11]. 
Furthermore, if an overlay is deposited on the cladding, it 
modifies the coupling of modes [12]-[14]. If the material 
selected for the overlay is sensitive to a specific parameter, 
highly sensitive and specific devices will be obtained. 
Henceforward, the main purpose of this work is to analyze 
both theoretically and experimentally this last phenomenon. 

Regarding the fabrication of LPFGs, this can be obtained 
with several techniques, being ultraviolet (UV) irradiation the 
most extended one. Others are ion implantation, irradiation by 
femtosecond pulses in the infrared, irradiation by CO2 lasers, 
diffusion of dopants into the core, relaxation of mechanical 
stress, and electrical discharges. A good review on these 
techniques can be found in [15].  

Typically, the periodicity of LPFGs ranges between 100µm 
to 1mm. As a result, dips are created in the transmission 
spectrum at wavelengths where there is a coupling between the 
core and copropagating cladding modes, unlike in FBGs, 
where there is a coupling between contrapropagating modes. 
Each attenuation band presents a minimum, notated as 
resonance wavelength. This wavelength value is in close 
relation with the one that satisfies the Bragg condition between 
the coupled modes. A much better approximation can be 
obtained if the influence of the self coupling coefficient of the 
modes is included in the formulation [16], as it will be 
explained in next section. The third possibility is to solve the 
coupled mode equations. The consideration of all coupling 
coefficients will permit to obtain more exact values for the 
resonance wavelengths, and the transmission spectrum. The 
drawback of this option is a higher computational effort in 
comparison with the other two, where no differential equation 
has to be solved.  

Regarding the analysis of LPFGs, two different cases have 
been studied so far. In the first one it is assumed that the 
ambient refractive index is lower than the cladding [17]. As 
the ambient refractive index approaches that of the cladding, 
the sensitivity of the resonance wavelength to variations of the 
ambient refractive index is higher. Then, the second case 
occurs when the ambient refractive index exceeds that of the 
cladding. The core couples with radiation modes [10], [19], 
[19] and the dependence of the resonance wavelength on the 
ambient refractive index is not so accused. Instead, the 

Nanodeposition of Materials with Complex 
Refractive Index in Long Period Fiber Gratings  

Ignacio Del Villar, Ignacio R. Matías, Senior Member, IEEE, Francisco J. Arregui, Member, IEEE, 
and Miguel Achaerandio 

L



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

resonance depth is more dependent on this parameter for 
values close to the refractive index of the cladding [9]. In both 
cases, the sensitivity is higher when the ambient refractive 
index is similar to that of the cladding. 

In the previous two cases, the cladding was surrounded by a 
medium of infinite thickness. In this work, a third possibility is 
presented. A thin overlay of higher refractive index than the 
cladding is deposited between the cladding and the infinite 
surrounding media. One of the cladding modes will be guided 
by the overlay if it is thick enough. This causes a 
reorganization of the effective indices of the modes of the 
cladding. As a result, there are important variations of the 
Bragg condition, which leads to dramatic shifts of the 
resonance wavelengths if we work around the thickness value 
where the cladding mode becomes guided by the overlay.  

In addition to this, there is a second issue to keep in mind. 
So far, only Electrostatic Self-Assembly (ESA) [13], [14] and 
Langmuir Blodgett [12] techniques have been applied for the 
deposition of overlay thickness of tens of nanometers. In both 
cases the attenuation bands vanish for a range of thickness 
values and reappear as the thickness of the overlay increases. It 
was proved in [20] that ESA materials can present a high 
imaginary part due to scattering and material losses. If the 
imaginary part of the material of the overlay is considered, 
theoretical and experimental results agree. The vanishing of 
the attenuation bands coincides with the guidance of one of the 
cladding modes in the overlay as it will be explained in section 
3. The consequence of this vanishing of modes is negative in 
terms of wavelength shift detection, because it limits the 
overall shift of the attenuation bands. Nonetheless, high 
variations in amplitude can be exploited in the same manner as 
wavelength shift in sensors applications. Furthermore, the 
theory presented can be applied to other structures with 
nanodeposition on a substrate [21]. 

The numerical method used for determining the wavelength 
that satisfies the Bragg condition between the core mode and 
each cladding mode, and the transmittance of the LPG is based 
on that described in [16]. Coupled mode theory is the basis for 
the calculation of LP modes in a cylindrical multilayer 
waveguide and it is explained in next section. In section 3 the 
phenomenon is analyzed and corroborated with experimental 
results. Finally, some conclusions are given in section 4. 

II. THEORY 

Up to now coupled mode theory has proved to be a 
powerful tool for simulation of LPFG structures. In [17] a 
three layer model is presented, where the transmission 
spectrum can be obtained provided the ambient refractive 
index is lower than the cladding. Otherwise, different 
approximations are necessary [10], [19], [19].  

The structure analyzed in this work (see Fig. 1) presents 
four layers. The calculation of the modes in a cylindrical 
multilayer waveguide becomes a difficult and computational 
expensive task. To avoid this problem, in [16] a theoretical 
model is described based on the LP mode approximation [22]. 

Low LP modes of arbitrary azimutal number can be calculated 
for structures with arbitrary azimutal or radial refractive index 
profile. In [16] it is also proved that the high contrast between 
ambient and cladding refractive indices plays no important 
role in the results. For the sake of simplicity, the structure 
simulated presents no azimutal variation of the perturbed index 
profile after exposure to UV radiation. In this way, there are 
only interactions between LPνj (ν=0) modes, and each mode is 
not treated as two independent modes, as it is the case for ν>0 
modes. 
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Fig. 1. Transversal and longitudinal section of LPFG structure deposition of 
an overlay on the cladding. 
 

To calculate the transmission of the structure there are three 
main steps: 

A. Calculation of the propagation constants 
LP0j modes are calculated based on the transfer matrix 
formulation [23]. The transverse electric field component 
propagating along the z-axis is given by: 
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where �0j is the propagation constant of the LP0j mode, 

2
0

22
0,0 jiij nk βγ −=  is the magnitude of the transverse 

wavenumber, φ is the azimutal angle, and A0j,i and B0j,i are 
non-normalized field expansion coefficients determined by the 
boundary conditions within the cylindrical layer i. ( )ijrJ ,00 γ and 

( )ijrY ,00 γ  are the ordinary Bessel functions of first and second 

kind of order 0, while ( )ijrI ,00 γ  and ( )ijrK ,00 γ  are the modified 

Bessel functions of first and second kind of order 0. 
After solving the transfer matrix method, the effective indices 
of the modes, and the coefficients A0j,i and B0j,i in each layer 
will be calculated and normalized so that each mode carries 
the same power P0 [16], [17]: 
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B. Derivation of the coupling coefficients  
According to coupled mode theory [16], [17], [24], the 

interaction between optical modes is proportional to their 
coupling coefficient. The contribution of longitudinal coupling 
coefficient in coupled mode analysis can be neglected [16], 
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[17]. Consequently we will refer to the transversal coupling 
coefficient as the general coupling coefficient. In cylindrical 
coordinates, the coupling coefficient between each two modes 
can be expressed as: 
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where Ψ(r,φ)  is the transverse field for an LP mode as 
expressed in (1), and ∆ε(r,φ,z) is the permittivity variation. 
There is no azimutal variation of the perturbed index profile, 
and there is weak guidance between the core and the cladding 
of the fiber. Consequently, the permittivity can be expressed 
as: 

( ) ( )zrnrnzr ,)(2, 00 ∆≈∆ εε  (4) 

where ε0 is the free space permittivity, n0(r) is the refractive 
index profile of the structure without the perturbation, and 
∆n(r,z) is the variation of the refractive index. This last 
variable is the product of a perturbation constant and two other 
functions: 

( ) ( ) ( )zSzrpzrn σ)(, =∆  (5) 
where p(r) is the transverse refractive index perturbation, σ(z) 
is the apodization factor, and S(z) is the longitudinal refractive 
index perturbation factor. It will be approximated by a Fourier 
series of two terms: 

( ) ( )( )zsszS Λ+= /2cos10 π  (6) 

where Λ is the period of the grating. 
After these approximations, the coupling coefficients will be 

expressed as:  

kjkj zssK µνµν ςπ
,10,
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ςνj,µk is the coupling constant, even though it can show a slow 
‘z’ varying dependence [17].  

Under the assumption of a uniform index perturbation 
within the core of the fiber, the interactions occur between 
LP0k modes. As a result, there is no azimutal dependence and 
expression (8) of [16] can be simplified for the coupling 
coefficient: 
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Otherwise, the LP modes of higher azimutal order should be 
treated as two independent modes. An important reduction in 
computation time can be obtained if only half of the coupling 
coefficients are calculated. This can be obtained if the 
symmetry property is used: ς0j,0k =ς0k,0j*. 

C. Coupled mode equations 
After deduction of the propagation constants of the modes 

and the coupling coefficients, coupled mode theory will be 
introduced. Unlike in FBGs, backward propagating modes will 
be neglected. In this way, the generalized coupled mode 
equations describing an LPFG can be expressed as [16], [17]: 
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This can be expressed in a matrix form in the following 

way: 
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where F0j is the normalized amplitude of the j mode, and the 
differential equation  matrix elements are defined as: 
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where s0 and s1 are the coefficients of the first two Fourier 
components of the grating function S(z), β0j is the propagation 
constant of the j mode, and Λ is the period of the grating. 

The ± sign in the first exponential functions of V0j,0k 

depends on the sign of the difference between the propagation 
constants of the modes, which permits the coupling between 
each pair of them. If β0j > β0k, the minus sign is selected; 
otherwise the plus sign is chosen. The other two exponential 
functions in expression (12) consider the imaginary part of the 
leaky cladding modes.  

The transmission can be found by assuming that only one 
mode is incident (F01(0)=1 and F02(0)=·····=F0N(0)=0) and 
solving the differential equation. The transmission power at 
the end of the LPFG can be expressed as: 

2
01

2
01

)0(
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F
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where L is the length of the grating. 
If only the self coupling coefficients and the cross coupling 

coefficients between the core mode and the cladding modes 
are considered, the computational effort is one order of 
magnitude lower, but additional errors can be caused for 
gratings with strong refractive index modulation [16]. For this 
reason, only the full matrix formulation is used. In addition to 
this, the selection of modes is critical in the reduction of 
computational effort and some rules are presented in [17]. 

D. Methods for calculation of resonance displacement 
In the analysis of section III, one of the main purposes is to 

see the displacement of the resonance wavelengths as the 
parameter to detect experiments a variation. For this reason, 
alternative solutions to the application of coupled mode 
equations can be used if it is only necessary to analyze the 
displacement of the resonance wavelength. In this way 
computational effort is reduced. 

The first one is the calculation of the resonance wavelength 
with the Bragg condition: 
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Λ=− πλβλβ 2)()( 001 j  (14) 

where β01 and β0j are the propagation constants of the core and 
the j cladding modes respectively, and Λ is the period of the 
grating. Results obtained present appreciable variations related 
to those values calculated with coupled mode equations. 
However, if the modified first-order Bragg condition is 
applied, errors are lower than 0.1% [16]: 

( ) Λ=+−+ πλζλβλζλβ 2)()()()( 0,00001,01001 jjj ss  (15)     

If this error is compared with fabrication tolerances, it can 
be concluded that this approximation offers great advantages 
in terms of computational effort. Henceforward it will be used 
in some cases in next section.  

If the overlay presents a complex refractive index, the self 
coupling coefficients will vary as light propagates in ‘z’ 
direction. Consequently, the middle value of the self coupling 
coefficient between the beginning and the end of the grating 
was calculated:  
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In order to apply expression (15) when the overlay presents a 
complex refractive index, 

jj 0,0ς ′ replaces 
jj 0,0ς . 

III.  ANALYSIS OF LPFG STRUCTURES WITH DEPOSITED 
MATERIAL 

A commercial LPFG is selected for the analysis performed 
in this section. A modulation of the core refractive index is 
induced in a SMF28 single mode fiber. The parameters of the 
LPFG are: core diameter of 8.3 um, cladding diameter 125 um, 
core refractive index 1.47, cladding refractive index 1.4647, 
overlay refractive index 1.62+0.004i ([PDDA+/PolyR-47-]), 
period of the grating is 276 µm, and the length of the grating is 
25 mm. The modulation is considered sinusoidal. 
Consequently σ(z) = s0 = s1 = 1. The amplitude of the 
modulation is 2.85×10-4. The notation used for the modes is: 
core mode LP01, first order cladding mode is LP02, second 
order cladding mode is LP03 and so forth. 

If an overlay of higher refractive index than the cladding is 
deposited on this LPFG, cladding modes shift their effective 
index to higher values as the thickness of the overlay is 
increased. If a thickness value is exceeded, the overlay guides 
a mode. The important variation in comparison with overlays 
with low imaginary refractive index is that not always the 
lowest order cladding mode (highest effective index mode) is 
guided by the overlay. If the imaginary part of the refractive 
index in the overlay is high enough, the second, the third or a 
higher order cladding mode is guided by the overlay. This 
causes a reorganization of the effective index of the rest of 
modes as the thickness of the overlay is increased. Cladding 
modes of higher order than the one that is guided by the 
overlay shift their effective index value towards the original 
effective index before deposition of the immediate lower order 
cladding mode. On the other hand, cladding modes of lower 
order than the one that is guided by the overlay will shift their 

effective index value backwards to its original value before 
deposition. The final result is that the effective index 
distribution of modes before deposition is recovered.  

In Fig. 2a the effective index of the first twelve cladding 
modes is represented as a function of the overlay thickness for 
a fixed wavelength of 1200 nm. At 280 nm, the LP0,3 mode is 
guided by the overlay. The effective index of the LP0,8 mode 
will be now that of the LP0,7, the effective index of the LP0,7 
mode will be that of the LP0,6, and so forth. However, the LP0,2 
mode shifts in a different manner. Its effective index increases 
originally. But after the LP0,3 mode is guided it refuses to 
continue and recovers its original value before deposition.  
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Fig. 2. Effective index as a function of the overlay thickness of a) first twelve 
cladding modes and b) LP0,1, LP0,3, LP0,6, LP0,10 and  LP0,13 modes. 
 

The phenomenon is repeated each time a new mode is 
guided by the overlay, which implies new reorganizations of 
cladding modes. Moreover, the order of the cladding mode 
that is guided by the overlay is always higher or equal to the 
previous guided mode. And the same is true for the next 
guided modes. LP0,6, LP0,10 and  LP0,13, become guided by the 
overlay at about 1120, 1960 and 2800 nm. The effective index 
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of LP0,3 LP0,6, LP0,10 and  LP0,13 modes trends to the refractive 
index of the overlay (in this case 1.62) when each of them is 
guided by the overlay. To show this fact, these modes are 
represented with LP0,1 in Fig. 2b in a wider scale than Fig. 2a. 

The results obtained can be explained in terms of states of 
energy. There are allowed states for the effective indices of the 
modes. When the structure is perturbed by the deposition of an 
overlay, there exist not-allowed states that coincide with the 
transition to guidance of a cladding mode in the overlay. In 
lossless waveguides it is always the highest energy cladding 
mode (highest effective index), which is guided by the overlay. 

The structure analyzed in this section is a lossy waveguide. 
As a result, the mode guided by the overlay may not be the 
highest state of energy. A lossy waveguide may guide a lower 
energy state. The thicker is the ESA region, the lossier 
becomes the waveguide. Consequently a lower effective index 
mode will be guided. Because of high losses there is no sense 
in obtaining the fields of cladding modes. However, fields 
were analyzed theoretically when no losses are present. The 
result is that higher order cladding modes than the one that is 
guided by the overlay mutate its field profile to that of next 
lower order cladding mode. The field profile of the sixth 
cladding mode becomes that of the fifth cladding mode, the 
fifth cladding mode profile changes to that of the fourth one, 
and so on. This explains the shift in the effective index of 
cladding modes in Fig. 2: there is a mutation of modes.  

In addition to this, the imaginary effective index of the 
modes gives an important hint. In Fig. 3 the imaginary 
effective index of LP0,2, LP0,4, LP0,5 LP0,7, LP0,8 is plotted. The 
common point of all modes is that there is a maximum in the 
imaginary part of all modes around the thickness values where 
cladding modes are guided by the overlay. This has important 
consequences in terms of vanishing of resonances as it will be 
explained later.  

But there is another important idea that can be extracted 
from Fig. 3. Let us separate modes into two groups: lower and 
higher order cladding modes than the cladding mode that is 
guided by the overlay. The neighbor modes of the mode that 
becomes guided present the highest imaginary part in each of 
these two groups. This proves that the overlay attracts a 
specific state of energy and that the neighbor states also 
experience an influence of this attraction, which is appreciated 
in Fig. 3. At 280 nm LP0,3 mode is guided. The group of lower 
order cladding modes is only LP0,2 mode, consequently its 
imaginary part is the maximum in this group. For the group of 
higher order cladding modes, LP0,4 shows the highest 
imaginary part. The same is true for the LP0,5 and LP0,7 modes 
at 1120 nm, when LP0,6 is guided. At 1960 and 2800 nm the 
LP0,8 is the mode with higher imaginary part of those 
represented in Fig. 3, because it is closer to the modes with 
highest imaginary part at this two thickness values: LP0,9 and 
LP0,11 for 1960 nm, and LP0,12 and LP0,14 for 2800 nm. 
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Fig. 3. Imaginary effective index as a function of the overlay thickness for 
LP0,2, LP0,4, LP0,5, LP0,7 and LP0,8. 
 

Regarding the transmission spectrum of an LPFG, two 
important consequences are derived from the variation of the 
real and imaginary part of the cladding modes as an overlay is 
deposited on the cladding. The first one is that the shift in real 
effective index of the cladding modes leads to a displacement 
in all the attenuation bands. In analogy to the effective index, 
in Fig. 4 the attenuation band corresponding to the LP0,5 mode 
shifts its resonance wavelength to that of the LP0,4 mode and 
the same is true for the LP0,4 that shifts the wavelength to the 
attenuation band of the LP0,3. The same explanation is valid for 
the rest of attenuation bands corresponding to higher order 
cladding modes than the one that is guided by the overlay. 
This phenomenon was corroborated with experimental results 
in [13], and agrees with results of [12] and [24]. 

For lower order cladding mode resonances, there is a first 
shift to lower wavelengths. After a cladding mode is guided, 
the attenuation band recovers its original resonance 
wavelength; as it is the case in LP0,2 mode of Fig. 4. In this 
figure, both coupled mode equations and modified Bragg 
condition are contrasted to show that the error introduced by 
the last one is very low.  

LP0,3 resonance is not represented in Fig.4, because when 
the LP0,3 mode is guided by the overlay there is no longer a 
coupling with the core mode. Consequently, values obtained 
with the modified Bragg condition are only valid before the 
guidance at the overlay starts. 
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Fig. 4. LP0,2 LP0,4 LP0,5, LP0,6 LP0,7 and LP0,8 resonances as a function of the 
thickness of the overlay. Overlay refractive index: 1.62+0.004i. Ambient 
index 1. Dotted lines: modified Bragg condition. Straight lines coupled mode 
equations 
 

In addition to this, there is an optimal deposition thickness 
where the central wavelength shift as a function of the 
thickness of the overlay is highest. Henceforward the shift as a 
function of the ambient refractive index or the overlay 
refractive index is also highest. This is the optimum overlay 
thickness (OOT). This value depends mainly on two variables: 
the overlay and the ambient refractive indices. Consequently, a 
good choice for a specific ambient refractive index is to stop 
the deposition when the effective index value of a mode is 
located between the effective index of the mode itself before 
deposition, and that of the next lower cladding mode before 
deposition. This is an approximate solution. To calculate a 
more exact value, either the modified Bragg condition or the 
couple mode equations explained in section 2 will be used. In 
Fig. 4 the OOT for LP02, LP04, LP05, LP06, LP07 and LP08 is 
respectively Q2 = 242, Q4 = 247, Q5 = 254, Q6 = 264, Q7 = 
280.5 and Q8 = 309.5. These values correspond with the 
maxima of the derivative of the wavelength of the resonance as 
a function of the overlay thickness. 

The second consequence of the variation of the effective 
index of cladding modes is related to the imaginary part. In 
Fig. 3 it is proved that for all modes there is a maximum in the 
imaginary part of the effective index at the transition to 
guidance of one of the cladding modes in the overlay. The 
reason is that the field profile of the mode changes. This 
phenomenon is more important in higher order cladding modes 
than the one that is guided by the overlay, because the mode 
profile changes to the immediate lower cladding mode. At the 
middle of the mutation of the mode, the absolute value of the 
field is maximum at the interface between the cladding and the 
overlay. Since the overlay presents a complex refractive index, 
the cladding mode is more influenced when the field is 
maximum at the interface. In this way, a maximum in the 
imaginary part of the cladding mode is reached. When 
cladding modes present a negligible imaginary part, the 
coupling between the core mode and a cladding mode is 

constant along the grating. Consequently, at the output of the 
LPFG a part of the core mode power is transferred to the 
cladding mode. However, when cladding modes show a high 
imaginary part, there is a progressive reduction of the coupling 
between the cladding modes and the core mode along the LPG, 
because there is an attenuation factor in coupled mode 
equations (12). As a result, the core mode does not lose power 
at the output of the LPFG and a vanishing of the attenuation 
bands is caused. In Fig. 5, the minimum transmission of the 
attenuation bands is plotted as a function of the overlay 
thickness for LP02, LP04, LP05, and LP06 mode resonances. 

LP0,2 vanishes and recovers its original minimum transmission, 
LP0,4 vanishes and reaches the minimum transmission of LP0,3 

mode before deposition started, LP0,5 vanishes and reaches the 
minimum transmission of LP0,4 resonance before deposition 
started and so on. 
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Fig. 5. Minimum transmission of LP0,2 LP0,4 LP0,5 and LP0,6 attenuation bands 
as a function of the thickness of the overlay. Overlay refractive index: 
1.62+0.004i.. Ambient index 1.  
 

The vanishing of modes has been experimentally 
corroborated [14]. In Fig. 6 experimental results of the 
minimum transmission of LP0,7 and LP0,8 attenuation bands are 
contrasted with theoretical ones. The phenomenon of 
vanishing is clearly appreciated. The depth of the attenuation 
band is not the same mainly because of the LP approximation, 
which in higher order cladding modes is not so exact, and 
because a sinusoidal grating is assumed in theory, which is not 
exactly the case after UV irradiation. However, the wavelength 
of completely vanishing is well reproduced in both modes 
analyzed. 

After seeing this property of deposition of materials with 
high imaginary part, the OOT is limited to those thickness 
values where the attenuation band is still appreciable. 
Otherwise our detection system loses the signal. Anyway, even 
out of the OOT, shifts in resonance wavelength improve in a 
great manner the sensitivity of LPFGs towards the ambient or 
overlay refractive index. Furthermore, spectra can be analyzed 
in terms of depth of the attenuation band, which varies in an 
important way. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

200 220 240 260 280 300 320 340 360
-20

-15

-10

-5

0

Tr
an

sm
is

si
on

 (d
B

)

Overlay thickness (nm)

240 260 280 300 320 340 360 380
-20

-15

-10

-5

0

Overlay thickness (nm)

Tr
an

sm
is

si
on

 (d
B

)

Experimental results
Theoretical results

Experimental results

Theoretical results

LP07 resonance

LP08 resonance

 
Fig. 6. Minimum transmission of LP0,7 and LP0,8 attenuation bands as a 
function of the overlay thickness. Theoretical and experimental results. 
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Fig. 7. Transmittance spectra of LP0,5, LP0,6 and LP0,7 mode resonances of an 
LPFG as a function of four overlay refractive indices: 1.56+0.004i, 
1.6+0.004i, 1.62+0.004i and 1.64+0.004i. Ambient refractive index: 1. 

 
Finally, in Fig. 7 the shift in wavelength and the variation in 

the minimum transmission of the attenuation bands of LP0,5, 

LP0,6 and LP07 modes is represented. In this case it is proved 
that the phenomenon is also dependent on the refractive index 
of the overlay, and not only on its thickness. To this purpose, 
the transmission spectra of an LPFG are analyzed for four 
refractive index values of the overlay: 1.56+0.004i, 
1.6+0.004i, 1.62+0.004i and 1.64+0.004i. The ambient 
refractive index is 1. The thickness of the overlay is 280.5 nm. 
This value is the OOT of the LP0,7 resonance for a refractive 
index of the overlay of 1.62+0.004i. At 1.56+0.004i, 
resonance wavelength and depth are similar to that before 
deposition (point 1 of Fig. 7). At 1.60+0.004i LP0,7 mode 

shifts towards the original position of LP0,6 mode (point 2 of 
Fig. 7). At 1.62+0.004i the attenuation band vanishes (point 3 
of Fig. 7), which coincides with OOT for this resonance, and it 
reappears at 1.64+0.004i close to the LP0,6 mode attenuation 
band without deposition (point 4 of Fig. 7). A similar effect 
can be appreciated in LP0,6  resonance. 

Apart from the imaginary part of the overlay material, other 
additional effects may contribute to the vanishing of 
attenuation bands, such as radiation losses of the cladding 
modes. In this work it has been proved that the imaginary part 
of the refractive index of the material deposited is very 
important and permits to predict experimental results. 

IV. CONCLUSION 

Calculation of the LP modes in a multilayer waveguide and 
coupled mode equations permits to obtain the transmission 
spectrum in an LPFG with an overlay. The approximation is 
valid for low order LP modes. 

It has been demonstrated that if the overlay presents a 
higher refractive index than the core, it guides modes if a 
thickness value is exceeded. In the transition to guidance of 
each of these modes there is a fast shift of the resonance 
wavelength of the attenuation bands obtained in the 
transmission spectrum. Those attenuation bands corresponding 
to higher order cladding modes than the one that is guided by 
the overlay shift to the immediate lower order cladding mode 
resonance. For lower order cladding mode resonances than the 
one that is guided, the attenuation band firstly shifts to lower 
wavelengths and after the cladding mode is guided it recovers 
its original resonance wavelength before deposition. This 
phenomenon has been interpreted in terms of energy states. 

The sensitivity of the LPFG to ambient or overlay refractive 
index can be increased in a great manner if an appropriate 
thickness of the overlay is selected. However, both in 
Electrostatic Self-Assembly (ESA) Monolayer process and 
Langmuir Blodgett (LB) nanodeposition techniques there is an 
additional phenomenon of vanishing of the attenuation bands 
at a specific range of overlay thickness values. This limits the 
thickness values of the overlay if the design is aimed for a 
detection of wavelength shift. But it adds the possibility of 
detecting changes in the minimum transmission of the 
attenuation band instead of changes in wavelength. By 
considering a complex refractive index for the overlay material 
experimental results are reproduced theoretically. Other 
factors may also contribute to this phenomenon such as 
radiation losses of cladding modes, but have not been 
considered in this work. 

In our opinion, deposition of overlays on the cladding of 
LPFGs will permit to extend even more the applications of 
these structures. Furthermore the theory presented in this work 
could be also applied to other structures where nanodeposition 
is applied. 
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