
Farran, I., Fernandez-San Millan, A., Ancin, M. et al. Mol Breeding (2014) 34: 457. 

https://doi.org/10.1007/s11032-014-0047-x 

 1 

Increased bioethanol production from commercial tobacco cultivars 
overexpressing thioredoxin f grown under field conditions 
 

Inmaculada Farran*, Alicia Fernandez-San Millan, Maria Ancin, Luis Larraya and Jon 

Veramendi 
 

Instituto de Agrobiotecnología, Dpto. Producción Agraria, Universidad Pública de Navarra-

CSIC-Gobierno de Navarra, Campus Arrosadia, 31006-Pamplona (Spain) 
 

*Corresponding author: Inmaculada Farran. E-mail: farran@unavarra.es; Phone: (+34) 948 

168 034; Fax: (+34) 948 232 191.  

 

Abstract 

Bioethanol is mainly produced from food crops such as sugar cane and maize while it has been 

held partly responsible for the rise of food commodity prices. Tobacco, integrated in biorefinery 

facilities for the extraction of different compounds, could turn into an alternative feedstock for 

biofuel production. When grown for energy production, using high plant densities and several 

mowings during the growing season, tobacco can produce large amounts of inexpensive green 

biomass. We have bred two commercial tobacco cultivars (Virginia Gold and Havana 503B) to 

increment the carbohydrate content by the overexpression of thioredoxin f in the chloroplast. 

Marker-free transplastomic plants were rescued and their agronomic performance under field 

conditions was evaluated. These plants were phenotypically equivalent to their wild types yet 

showed increased starch (up to 280%) and soluble sugar (up to 74%) contents in leaves relative 

to their control plants. Fermentable sugars released from the stalk were also higher (up to 24%) 

for transplastomic plants. After a heat pretreatment, enzymatic hydrolysis and yeast 

fermentation of leaf and stalk hydrolysates, an average of 20-40% more ethanol was obtained 

from transplastomic plants in relation to their control wild types. We propose an integral 

exploitation of the entire tobacco plant managed as a forage crop (harvesting sugar and starch-

rich leaves and lignocellulosic stalks) that could considerably cheapen the entire production 

process.  
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Introduction 

Transportation fuels depend basically on petroleum, a non-renewable fossil hydrocarbon. Oil 

consumption has grown continuously, being the USA the foremost end user followed by China 

with a rising economic growth rate. It has been predicted that petroleum resources will be 

drastically constrained in the mid-term, with a consequent steady price increase. In addition to a 

high petroleum cost, the release of polluting gases and their implication in the global climate 

change have fostered the use of renewable resources for the production of transportation fuels, 

such as for instance ethanol. These alternative fuels could substantially reduce the worldwide 

dependence on petroleum.  

Ethanol can be blended with gasoline in any ratio, thus obtaining fuels with different 

properties. Extensive international experience has already demonstrated that blends containing 

up to 10% ethanol do not require further engine modifications (Rutz and Janssen 2007). In 

Brazil, all brands of gasoline engines may run on 20-25% ethanol. Currently, flexible fuelled 

vehicles are manufactured with engines which can run on any type of blend ranging up to 85% 

of ethanol, while even completely dedicated ethanol vehicles are commercialised with an 

efficient use of absolute ethanol (Rutz and Janssen 2007). Consequently, all in all, it is not 

surprising that the fuel ethanol industry has been growing extensively worldwide, with a global 

production of 82,600 million litres recorded in 2012, being the USA and Brazil the main 

producers, representing more than 85% of the world production 

(http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production).  

First-generation bioethanol production is mainly based on food crops. Sugar (sugar cane and 

sugar beet) and starch (maize and wheat) crops are the most widely used for ethanol 

production. To state the point, grain ethanol refineries consumed almost up to 40% of the total 

USA maize production pertaining to the 2010/11 crop season (Du and McPhail 2012). Due to 

competition with the food supply, the biofuel boom has been held partly responsible for food 

commodity price increases (OECD 2008; Food and Agricultural Organization 2011; Kretschmer 

et al. 2012). Hence, a future increase of ethanol production will need to rely on exploiting other 

non-food/feed associated biomass products such as lignocellulosic feedstock (Hahn-Hägerdal 

et al. 2006; Sarkar et al. 2012), food wastes (Uncu and Cekmecelioglu 2011) and alternative 

plant species which are well adapted to particular agroecosystems and comprise a developed 

http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production
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infrastructure for crop management and harvest processing. Tobacco (Nicotiana tabacum L.) 

could become one of these dedicated energy crops given the highly plastic nature of the 

species, grown in over 125 countries and across 4 million hectares of land, a third of which are 

located in China alone. The tobacco plant is a high biomass producer, yielding up to 160 tonnes 

per hectare through multiple harvests (Wildman 1979). Production of tobacco in developed 

countries has lately declined due to the weak demand of both the internal and the export 

markets. The cultivated area in the last ten years has been reduced by 31% in the USA and 

45% in Europe (http://faostat3.fao.org/home/index.html). This tendency has sharply increased in 

the European Union due to the reduced incentives derived from the Common Agricultural Policy 

(Food and Agricultural Organization 2003). Part of this arable land area could be dedicated to 

tobacco biomass production and ethanol conversion. In fact, tobacco was commercially used as 

a feedstock for ethanol production in the 1980s in the USA (Floyd Agricultural Energy 

Corporation, Virginia) and has currently been proposed as the ideal crop for biobased products 

including ethanol (NewAgriculture Inc., http://www.newagriculture.com/home.html). For a cost-

effective ethanol production, tobacco could be integrated into a biorefinary facility for the 

extraction of other compounds (e.g. proteins and xhantophylls). 

Genetic engineering provides a tool to improve plant characteristics in order to derive 

raw biomass materials appropriate for use as biofuel feedstocks. Improvement includes 

increasing the overall biomass, rising polysaccharide content and inducing cell wall 

modifications so as to diminish the need for pretreatments (expressing deconstructing enzymes 

in plants or down-regulating lignin biosynthesis) (Vanholme et al. 2008; Verma et al. 2010). 

Recently, it has been shown that the overexpression of plastidial thioredoxin f (Trx f) from the 

chloroplast genome leads to an enhanced starch accumulation in leaves of the cultivar Petite 

Havana, a rather low biomass producer (Sanz-Barrio et al. 2013). Thioredoxins are 

oxidoreductases that mediate the thiol-disulfide exchange of Cys residues. Many starch 

metabolizing enzymes have been reported to be redox regulated (Kötting et al. 2010; Glaring et 

al. 2012). Therefore, Trx f could act as a reductant of the redox-regulated enzymes involved in 

the carbohydrate metabolism and, as a consequence, allow to increase the rate of carbohydrate 

biosynthesis (Sanz-Barrio et al. 2013). In the present work, we have overexpressed Trx f in the 

plastids of two commercial tobacco cultivars of high biomass production. Transplastomic plants 

http://www.newagriculture.com/home.html
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grown under field conditions showed in leaves increased starch and soluble sugar contents. 

The integral exploitation of tobacco biomass (leaves and stalks) was studied. Pretreatment 

experiments, enzymatic hydrolysis and yeast fermentation evidenced a better performance in 

these transplastomic plants as feedstock for ethanol production compared to their wild type 

relatives. 

 

Materials and methods 

Development of chloroplast transgenic plants overexpressing the trx f gene 

Two commercial cultivars of Nicotiana tabacum (Virginia Gold and Havana 503B) were used for 

the plastid transformations. In vitro grown tobacco leaves were transformed with the pL3-

PrrnG10LTrxf chloroplast transformation vector (Sanz-Barrio et al. 2013), where the tobacco Trx 

f gene (Sanz-Barrio et al. 2012) was expressed under the control of the rrn promoter fused to 

the leader sequence of the bacteriophage T7 gene 10. The aadA gene, conferring resistance to 

spectinomycin and streptomycin, was used as a selectable marker gene. The Bio-Rad PDS-

1000/He biolistic device was utilised for the integration of the transgenes into the plastid 

genome as previously described (Daniell 1997). Two rounds of selection and shoot 

development on RMOP medium containing 500 mg/L of spectinomycin were performed. 

Regenerated transformants were transferred to soil. 

 

Southern and western blot analysis 

Total plant DNA (10 μg) was digested with BglII, separated in a 0.8% (w/v) agarose gel and 

transferred to a nylon membrane. A 0.8-kb probe (P1), homologous to the flanking sequences, 

was used for hybridization (Farran et al. 2008). Probe labelling and hybridization were 

performed using the chemiluminescent Dig High Prime DNA labelling and detection kit (Roche, 

Indianapolis, USA). After Southern blot analysis confirmation of the T0 generation, selected 

plants were grown in the greenhouse for seed production.  

For western blot analysis, proteins from transformed and untransformed leaf samples 

were extracted and blotted using a specific Trx f antibody as previously described (Sanz-Barrio 

et al. 2012). 
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Removal of the antibiotic resistance gene by the Cre/lox site-specific recombination 

system 

The transit peptide of the tobacco Rubisco small subunit was translationally fused to the Cre 

recombinase from the P1 bacteriophage. The chimeric gene was introduced into a pBin20 

binary vector under the control of the CaMV 35S promoter and the nopaline synthase 

terminator. The Agrobacterium tumefaciens GV3101 strain was used for nuclear transformation 

of the transplastomic plants. Briefly, nuclear gene transformants were selected by kanamicin 

resistance on regeneration medium containing 50 mg/L kanamycin and 250 mg/L cefotaxime. 

Kanamycin-resistant shoots were subcultured to a rooting medium containing 50 mg/L 

kanamycin. Removal of the aadA gene in the regenerated plants was confirmed by Southern 

blot analysis (using P1 and aadA probes) and by the in vitro seed germination of the T2 

generation in a medium containing 500 mg/L spectinomycin. Additionally, loss of the nuclear 

nptII gene in seed progeny (T3 generation) was confirmed by kanamycin sensitivity. 

 

Field trial 

Transplastomic and wild-type Virginia Gold and Havana 503B tobacco plants were grown under 

standard field conditions in the Experimental Station of the INTIA (Sartaguda, Spain). The 

notification for the release of genetically modified higher plants (B/ES/12/16) was authorised by 

the Ministerio de Agricultura, Alimentación y Medio Ambiente. A randomized complete block 

design with three replications was used. For each transplastomic and wild-type lines, 15 plants 

were cultured per block (plantation density of 18,500 plants/ha; 90 cm between rows and 60 cm 

between plants). Field transplantation was undertaken on the 23rd of May of 2012. Topping 

(removal of the flower head and the first few top leaves to prevent the production of seeds) was 

performed 55 days after transplanting. Plant height and relative leaf chlorophyll content 

(measured with SPAD 502 chlorophyll meter, Minolta Optics Inc, Tokyo, Japan) were registered 

60 days after transplanting. Total weight per plant and specific leaf weight (SLW) were 

measured at the date of harvest (71 days after transplanting). For the calculation of the SLW 

five disks per leaf were cut with a cork borer. Disks from all plant leaves were collected and 

dried at 80 ºC for two days. Total dry weight refers to the total disk area and is expressed as 

mg/cm2.  



Farran, I., Fernandez-San Millan, A., Ancin, M. et al. Mol Breeding (2014) 34: 457. 

https://doi.org/10.1007/s11032-014-0047-x 

 6 

Total leaves and stalks derived from two plants per block (yielding a total of six 

individual wild-type or transplastomic plants per cultivar) were harvested, pooled, and stored at 

4 ºC until sample conditioning (less than a week).  

 

Conditioning of leaf and stalk samples 

The pooled leaf and stalk samples were dried separately in an air-dry oven at 45 ºC to further 

stop any biological reactions and possible contaminations. The dried plant material was milled 

to a size of 1 mm particles using an ultra-centrifugal mill (Retsch ZM200, Haan, Germany) and 

stored in hermetic plastic bags at 45 ºC until further experimental usage. Representative 

samples obtained from the pools were processed and analysed. 

 

Compositional characterization 

Leaf and stalk samples were dried at 105±2 ºC up to a constant weight and compositional 

values refer to dry weight. Ash content was determined after air combustion during 1 h at 

550±10 ºC in a muffle. Starch content was quantified by an enzymatic method including α-

amylase, protease and amyloglucosidase (Total Dietary Fibre AOAC 985.29, Megazyme, Bray, 

Ireland) and subsequently sugars were quantified by HPLC as described below. 

For the quantification of soluble sugars, 0.5 g of dried samples were mixed with 100 mL 

water and incubated during 1 h at 70 ºC. Samples were centrifuged at 6000 g during 10 min and 

the supernatant stored at -20 ºC until analysis. Monomeric sugars (soluble monosaccharides), 

cellobiose and total sugars (monosaccharides and oligosaccharides) were determined 

according to the procedure published by the National Renewable Energy Laboratory (NREL, 

Golden, Colorado, USA) (www.nrel.gov/biomass/pdfs/42632.pdf). Oligomeric sugars were 

subjected to acid hydrolysis by adding 72% H2SO4 (w/w), adding enough to bring the acid 

concentration of an aliquot of 10 mL up to 4%. Samples were stored at -20 ºC until analysis. 

Sugar analysis was carried out by HPLC. The content of monosaccharides (d-glucose, 

d-xylose-fructose-galactose, l-arabinose), disaccharides (cellobiose, maltose) and 

trisaccharides (maltotriose) were quantified by an HPLC system (Agilent Technologies, model 

1200) equipped with a refractive index detector. The separation was performed with an ICSep 

http://www.nrel.gov/biomass/pdfs/42632.pdf
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ION 300 column (7.8 x 300 mm, Transgenomics, Glasgow, United Kingdom) at 72 ºC, with the 

mobile phase consisting of 8.5 mM H2SO4 diluted in water.  

The contents of cellulose, hemicellulose (xylans and arabinans) and lignin were 

analysed using a two-step acid hydrolysis method according to the procedure published by the 

NREL (www.nrel.gov/biomass/pdfs/42618.pdf). Dried samples (0.3 g) were treated with 3 mL of 

72% H2SO4 (w/w) and placed in a water bath at 30 ºC for 1 h. Samples were diluted with 84 mL 

of water to give a H2SO4 concentration of 4%. Samples were autoclaved at 121 ºC during 1 h. 

After cooling, the samples were vacuum filtered through a 0.22 µm mesh and an aliquot was 

collected for the analysis of sugars and the acid soluble lignin (ASL) was measured at 320 nm 

in a spectrophotometer. Insoluble acid solids were washed with water, dried at 105 ºC, weighted 

and finally muffled at 575 ºC ± 25 ºC for acid insoluble lignin content determination.  

Protein content was determined by the Dumas method, which consists of sample high 

temperature combustion (about 900 °C) in the presence of oxygen, leading to the release of 

carbon dioxide, water and nitrogen. Nitrogen is separated from the rest of the components using 

a conductivity column. A conversion factor of 6.25 was used for protein content determination. 

 

Pretreatment and enzymatic hydrolysis of leaf samples 

Dried leaf samples were mixed with 0.1 M citrate buffer, pH 4.8, in a 10% (w/w) proportion of 

solid:liquid, and pretreated at 110 ºC for 1 h. The final weight of the sample was approximately 

28 g. 

Four different enzyme cocktails (Novozymes A/S, Bagsvaerd, Denmark) were used for 

the enzymatic hydrolysis. Concentration of enzymes is expressed as % (w/w dry sample): 

mixture 1 (α-amylase, 0.001; β-glucoamylase, 0.002; cellulases Cellic® Ctec 3, 10.0), mixture 2 

(α-amylase, 0.001; β-glucoamylase, 0.002; cellulases Cellic® Ctec 3, 10.0; carbohydrolase + 

protease, 1), mixture 3 (α-amylase, 0.001; β-glucoamylase, 0.002; cellulases Cellic® Ctec 2, 

10.0), and mixture 4 (cellulases Cellic® Ctec 3, 10.0). Samples were incubated in an orbital 

shaker (180 rpm) during 72 h at 50 ºC. With regard to mixtures 1, 2 and 3, samples were kept at 

80 ºC during the first hour. Cellulases were always added after the incubation at 80 ºC. Soluble 

sugars were quantified by HPLC as described above. 

http://www.nrel.gov/biomass/pdfs/42618.pdf


Farran, I., Fernandez-San Millan, A., Ancin, M. et al. Mol Breeding (2014) 34: 457. 

https://doi.org/10.1007/s11032-014-0047-x 

 8 

The efficiency of the enzymatic hydrolysis was calculated as follows: (glucose released 

after hydrolysis * hydrolysis volume / sample initial dry weight) * 100 / [% celullose * 1.11 

(conversion factor of cellulose to glucose) + % starch * 1.11 (conversion factor of starch to 

glucose) + % fermentable soluble sugars] contained in the initial biomass. 

 

Pretreatment and enzymatic hydrolysis of stalk samples 

Stalk samples were mixed with water in pressurized stirred-tank reactors (Autoclave Engineers, 

model M010SS) with a solid:liquid proportion of 10% (w/w dry sample) reaching a final weight of 

50 g, and subjected to three different temperature regimes (170, 190, 210 ºC) during 30 min. In 

addition to temperature, acid (1% w/w of H2SO4 with respect to dry sample) and pressure (20 

bars, supplied from 200 bars pressurized pure nitrogen bottle) treatments were also applied. 

Nine different combinations were assayed: temperature alone, temperature plus acid and 

temperature along with acid plus pressure, for each of the 3 temperature regimes. 

After pretreatment, samples were weighted to calculate the recoveries of the solid 

(insoluble) and liquid fractions. Previous to enzymatic hydrolysis, solid fractions had been dried 

at 45 ºC up to a constant weight. Soluble sugars and sugar degradation products (acetic acid 

and furfurals) of the liquid fractions were also determined. Acetic acid was quantified by HPLC 

as described above for the soluble sugars. Furfural and 5-hydroxymethylfurfural (HMF) were 

quantified by HPLC by way of a DAS index detection using a Zorbax column (250 x 4.6 mm, 

Agilent Technologies) at 50 ºC, and a mobile phase consisting of water:acetonitrile in a 

proportion of 80:20.  

Enzymatic hydrolysis was performed as described above for leaf samples however only 

using enzyme mixture 4 (cellulases Cellic® Ctec 3, 10% (w/w dry sample)). Soluble sugars 

were quantified by HPLC as has been described above. The efficiency of the enzymatic 

hydrolysis was calculated as follows: (glucose released after hydrolysis * hydrolysis volume / 

sample initial dry weight) * 100 * pretreatment recovery factor / [% celullose * 1.11 (conversion 

factor of cellulose to glucose) of the initial biomass]. 

 

Fermentation 
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After enzymatic hydrolysis, plant samples were subjected to fermentation with Saccharomyces 

cerevisiae (strain Ethanol Red, Fermentis, Marcq-en-Baroeul, France) with an inoculum 

concentration of 1 x 107 cfu/mL of hydrolysed material, in a final volume of approximately 28 mL 

and 4 mL, for leaves and stalks, respectively. The process was conducted at 37 ºC with a 

constant orbital agitation (180 rpm) during 24 h. Ethanol production was determined by a Gas 

Chromatography-Flame Ionization Detector using a DB Wax 15m column (Agilent 

Technologies, model 7890A) and 1-propanol as the internal standard. 

 

Results 

Generation and characterization of the transplastomic tobacco plants overexpressing 

Trx f 

The pL3-PrrnG10LTrxf vector (Fig.1a) was used for the plastid transformation (Sanz-Barrio et 

al. 2013). This vector includes the Trx f coding sequence under the control of the rrn promoter 

fused to the leader sequence of the phage T7 gene 10 (G10L), containing also the selectable 

spectinomycin resistance gene (aadA) flanked by two lox sequences suitable for Cre-mediated 

gene marker excision (Corneille et al. 2001). The plastid transformation vector targets the 

insertion of transgenes in the duplicated inverted repeat region, between the 16S3´/trnV and 

3´rps12 genes. 

Plastid transformation efficiency was assessed in six high-biomass tobacco cultivars 

with gfp as the reporter gene. Taken into account the number of transformed buds per 

bombarded leaf, shoot development, root formation and leaf fluorescence (data not shown), 

Virginia Gold and Havana 503B cultivars were selected (thereafter Virginia and Havana, 

respectively). Leaves from in vitro-grown plantlets of these two cultivars were transformed by 

biolistics. Single regenerated shoots selected after two rounds of spectinomycin application 

were rooted and transplanted. Transformation efficiency was similar to that of the well-

established Petite Havana cultivar: 5.2 and 3.9 transformed shoots were obtained per 

bombarded leaf in Havana and Virginia cultivars, respectively. In the case of Petite Havana, 

usually 4-5 shoots are observed per bombarded leaf (Molina et al. 2004). 

Southern blot analysis was performed to verify the site-specific integration and to 

confirm homoplasmy. Total plant DNA was digested with BglII. The flanking region probe (P1, 
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Fig.1a) identified a 4.5-kb fragment in wild-type plants whereas a 6.7-kb fragment in the plastid 

transgenic plants (Fig.1b). The absence of 4.5-kb bands in the transformed lines indicated 

homoplasmy. 

Overexpression of Trx f was confirmed by western blot with a specific Trx f antibody. 

Trx f was detected in both transplastomic cultivars (Virginia and Havana) (Fig.1c). No signal 

was detected in the wild-type plants. A lack of signal was also observed in wild-type Petite 

Havana plants when 10 µg of total leaf protein were loaded per lane (Sanz-Barrio et al. 2013). 

The spot intensity of Virginia and Havana transplastomic plants was equivalent to that of the 

transplastomic Petite Havana cultivar (Fig.1c), indicating a high Trx f expression level. 

 

Development of marker-free transplastomic plants 

Since the Cre-lox site-specific recombination system has already been efficiently used to obtain 

marker-free transplastomic plants (Corneille et al. 2001), transplastomic T1 plants were 

nuclearly transformed with the cre gene from the P1 phage via Agrobacterium tumefaciens. The 

transit peptide of the tobacco Rubisco small subunit (SSU) fused to the N-terminus of Cre 

recombinase (SSU-Cre) targeted Cre to the plastid (Fig.2a), allowing the excision of the lox-

flanked aadA gene from the plastid genome. Specific excision of the aadA gene was confirmed 

by Southern blot. The flanking sequence P1 probe identified the expected 5.4-kb fragment in 

the nuclear cre transformed transplastomic plants (VIR-TCre and HAV-TCre) (Fig.2b), which 

was lower than the 6.7-kb fragment identified in their related transplastomic plants (VIR-T and 

HAV-T). Confirmation of the aadA gene removal was obtained via the aadA probe. VIR-T and 

HAV-T showed the specific band, whereas VIR-TCre and HAV-TCre lacked the signal (Fig.2b). 

The nuclear nptII gene was subsequently removed by segregation in the T2 seed progeny of the 

VIR-TCre and HAV-TCre plants. In vitro germination in the presence of kanamycin allowed for 

the identification of the sensitive seedlings. These seedlings were rescued, cultured in 

kanamycin-free medium and transplanted to obtain seeds. T3 generation plants were again 

analysed to confirm the antibiotic sensitivity by in vitro germination assays (Fig.2c, d). As 

expected, VIR-TCre and HAV-TCre were sensitive to both spectinomycin and kanamycin, 

equivalent to the wild-type plants. An unrelated nuclear transgenic plant (NUC) was used as a 

control for kanamycin resistance. 
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Phenotypic and compositional characterization of Trx f-overexpressing plants grown 

under field conditions: increased leaf starch and soluble sugar levels 

The field trial was performed in Sartaguda (Navarre, Spain). Transplastomic plants did not differ 

from their respective wild types with respect to plant size, total weight and relative chlorophyll 

content (Table 1). HAV-Trxf plants showed an increase in specific leaf weight (SLW) of more 

than 20% compared to the wild-type plants. A slight non-statistically significant increase in SLW 

was also observed in VIR-Trxf (P=0.093; Table 1). Increased levels of SLW had been 

previously observed in the Petite Havana cultivar overexpressing Trx f (Sanz-Barrio et al. 2013). 

The leaf starch content of field grown transplastomic plants was monitored throughout 

the cultivation period with samplings at 55, 62, 71 and 93 days post-transplantation. The highest 

starch content corresponded to day 71 (data not shown). At that moment, harvested plants 

accumulated large quantities of starch in the leaves of both transplastomic cultivars, showing a 

130% and 280% increase (Virginia and Havana, respectively) relative to their wild types (Table 

2). This could likely explain the higher SLW values observed for these plants (Table 1). Plant 

material was harvested in the morning since levels of starch would be expected to run high 

during the whole light period, as had previously been demonstrated for the Petite Havana 

cultivar (Sanz-Barrio et al. 2013), making irrelevant the time of harvest. Additionally, high levels 

of soluble sugars were measured in the transplastomic plants of both cultivars (13% and 74% in 

Virginia and Havana, respectively; Table 2). No changes were observed in the hemicellulose 

content (measured as xylans and arabinans) between transplastomic and wild-type plants. 

However, a slight decrease of cellulose, lignin, proteins and ash were noted in the 

transplastomic plants compared to their wild types. 

Generally, Trx f overexpression in tobacco plastids did not seem to affect the stalk 

composition (Table 2). Cellulose was the most abundant fraction (∼30% weight/dry weight 

(w/dw)), followed by proteins (∼18%), hemicellulose (∼15%, mainly xylans plus a small 

proportion of arabinans) and lignin (∼11%). Starch was not detected and the content of soluble 

sugars was very low, approximately 3% (w/dw). These values were similar to those that have 

been previously reported for tobacco stalks (Martin et al. 2008; Akpinar et al. 2010).  
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Increased ethanol production from leaves of Trx f-overexpressing plants  

In previous experiments, we had observed that a relatively mild pretreatment (110-130 ºC), 

followed by an enzymatic hydrolysis, were sufficient for the total hydrolysis of starch and 

cellulose of tobacco leaves. Therefore, leaf samples were subjected to 110 ºC during 1 h. To 

assess the efficiency of different hydrolytic enzyme combinations, four mixtures were assayed. 

Irrespective of the mixture used, similar levels of total and fermentable sugars were obtained 

(Supplementary Table S1). In addition, fermentation of the hydrolysed sugars yielded equivalent 

levels of ethanol. Hence, the simplest mixture 4 (including just cellulases Cellic® Ctec 3) was 

used for further experiments. The high hydrolytic efficiency of this mixture can be explained by 

the presence of enhanced cellulase, hemicellulase and β-glucosidase activities 

(http://www.bioenergy.novozymes.com/en/cellulosic-ethanol/CellicCTec3/product-

description/Pages/default.aspx). Leaf hydrolysates of transplastomic plants of both cultivars 

showed higher levels of total and fermentable sugars with regard to their controls (Table 3). 

These results agree with those obtained by the initial compositional characterization (Table 2). 

Enzymatic hydrolysis was complete, with efficiencies higher than 100%. The hydrolysis yield 

overestimation could be explained by an underestimation of fructose, xylose and galactose 

(they showed the same retention time in HPLC) and an interference with the malic acid peak. 

More than 95% of the total sugars were fermentable in all of the lines analysed, implying an 

optimal composition of tobacco leaves for yeast fermentation and ethanol production. The 

fermentation efficiency was high, with observed conversion ratios of fermentable sugars to 

ethanol ranging 82-89% relative to the theoretical maximum production. The highest ethanol 

production was obtained after 16-20 h of fermentation (data not shown). Ethanol yields were 

24% and 44% higher (Virginia and Havana, respectively) in transplastomic plants in comparison 

to their relative wild types (Table 3). 

 

Preparation of hydrolysates from tobacco stalks for ethanolic fermentation 

In preliminary experiments, we had observed that relatively mild hydrothermal pretreatments (up 

to 130 ºC) were not sufficient for an efficient degradation of stalk cellulose. Therefore, we 

analysed the effect of harsher pretreatments based on higher temperatures (170-210 ºC) 

combined with diluted acid or diluted acid plus pressure in relation to the production of sugar-
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enriched hydrolysates. To monitor the sternness of the pretreatments, some degradation 

products were quantified (Supplementary Table S2). The maximum levels recorded were 5.19, 

0.96 and 0.24 g/L of acetic acid, furfural and HMF, respectively. It has been demonstrated, 

working with different feedstocks, that these concentrations do not decrease ethanol yields 

(Larsson et al. 1999; Palmqvist et al. 1999; Pienkos and Zhang 2009; Erdei et al. 2010).  

Comparing the different pretreatments, no clear effects were detected with regard to 

total sugars (Supplementary Fig.S3a). In contrast, a positive effect of temperature on the 

production of fermentable sugars after enzymatic hydrolysis of the solid fraction was observed 

(Supplementary Fig.S3b), which was not enhanced by the combination of temperature with 

diluted acid or pressure. Increased heat treatments of 170 to 190 ºC showed an increment of 

ethanol production after fermentation, which did not further increase at 210 ºC (Supplementary 

Fig.S3c). However, when data referred to the liquid and solid fractions (considering ratios of 

recovery), no remarkable differences between the pretreatments were observed, especially as 

to final ethanol production (Table 4), thus showing that the addition of acid and the use of a 

higher pressure were unnecessary. The lack of differences with regard to ethanol production 

between the pretreatments could be explained by a reduction of the solid fraction’s recovery 

with increasing temperatures. Differences between the total and fermentable sugar fractions 

within each sample were mainly due to hemicellulose hydrolysis, rendering xylans and 

arabinans that cannot be fermented by Saccharomyces cerevisiae. The enzymatic hydrolysis 

efficiency of the cellulase mixture (cellulases Cellic® Ctec 3) was far from complete (55-63%, 

Table 4). Hence, this is an important aspect for further improvement. Taking these results 

altogether, the pretreatment at 190 ºC was selected for further experiments as the enzymatic 

hydrolysis ratio was one of the highest. Besides, taking into consideration a scaled-up industrial 

process, in which there is no precise way to control temperature, 190 ºC would seem to 

guarantee ethanol yields similar to those obtained in the present experiment. 

 

Tobacco stalks are a relevant biomass source for ethanol production 

Stalk samples from transplastomic and wild-type plants of both cultivars were subjected to a 

190 ºC pretreatment. Soluble sugars in the liquid fraction obtained after the pretreatment were 

determined (Table 5). The solid fraction was subjected to enzymatic hydrolysis with cellulases 
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Cellic® Ctec 3 and a further fermentation of sugar hydrolysates with Saccharomyces cerevisiae. 

The content of total and fermentable sugars in both, liquid and solid fractions, together with 

ethanol production were higher in transplastomic than in wild-type plants (Table 5). The ethanol 

production increase of cultivar Virginia (23%) was statistically significant. Rates of enzymatic 

hydrolysis were in the same order as those previously obtained for the pretreatment assay 

(Table 4). Fermentation efficiency was high (91-100% relative to the theoretical maximum 

production), while the highest ethanol production was obtained after a 24 h period of 

fermentation (data not shown).  

The relative leaf and stalk proportions of the transplastomic plants were calculated. The 

leaf biomass (based on fresh weight) was 60% and 68% in the Virginia and Havana cultivars, 

respectively. These values are in accordance with a previous field experiment carried out in 

Cadreita (Navarre, Spain) in which 17 commercial cultivars were grown and evaluated under 

standard conditions, with a mean leaf biomass corresponding to 62%. Considering the leaf and 

stalk biomass, the proportion of the final ethanol yield derived from each plant organ was 

calculated. For the Virginia cultivar, 47% of ethanol was derived from stalks and 53% from 

leaves. The figures in the Havana cultivar corresponded to 36% (stalks) and 64% (leaves). 

These results reflect the importance of stalks for biomass processing when tobacco is cultivated 

for ethanol production: around 35-50% of the final ethanol yield was derived from stalks of 

plants grown under standard conditions. 

 

Discussion 

Although bioethanol is mainly produced from sugar cane, maize or other grain cereals, 

alternative starchy and lignocellulosic species are under investigation. Cassava, alfalfa, poplar 

and miscanthus are just few examples of biomass crops that have been proposed for ethanol 

production. Crop yields strongly depend on local agro-ecological conditions which hence 

influence the choice of the best feedstock for ethanol production. For instance, the performance 

of cassava in some tropical countries out yields that of maize, favouring cassava cultivation in 

such environments (Sánchez and Cardona 2008). In addition, the genetic modification of 

herbaceous plants to increase carbohydrate contents could facilitate their use as feedstocks for 
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biofuel production. Hence, well-adapted plants to local conditions and with an improved 

carbohydrate content could foster the geographical expansion of bioethanol production.  

Here, we propose that tobacco, a high biomass crop, with enriched carbohydrate 

content could develop into an alternative energy crop, particularly in some developed countries 

with dedicated infrastructure yet with a continuous reduction of cultivated area. Tobacco has 

been previously proposed as a production platform for biofuel by increasing the amount of lipids 

in leaves which would favour use for biodiesel production (Andrianov et al. 2010). The 

integration of tobacco biomass in biorefinery facilities for the extraction and purification of 

additional compounds could facilitate a more cost-effective ethanol production. Tobacco 

produces large protein amounts (18-30%, Table 2). These proteins are nutritionally complete 

with all of the human essential amino acids and could be used as a supply source for human 

diets or animal feed, inclusive with a higher protein efficiency rating than that of either milk or 

soy (Wildman 1979). A protein yield of up to 3 tonnes/ha has been estimated of which 

approximately half is extractable and consists of food grade protein (Long 1984). Nicotine 

content should not be a problem since tobacco biomass would be harvested very young, well 

before significant amounts of nicotine had been formed. Other valuable coproducts could 

consist of solanesol (used in the synthesis of vitamins E and K) and xanthophylls (additive in 

poultry food). 

We have obtained marker-free transplastomic plants of two commercial cultivars 

overexpressing Trx f. These plants were phenotypically indistinguishable from their wild type 

relatives although showed an increased content of leaf starch (up to 280%) and soluble sugars 

(up to 74%) relative to the control plants (Table 2). These results are in accordance with those 

previously obtained for cultivar Petite Havana, a low-biomass producer (Sanz-Barrio et al. 

2013). Moreover, fermentable sugar levels released from the stalk after enzymatic hydrolysis 

were higher in the transplastomic compared to the control plants (Table 5). However, soluble 

sugar differences were not observed for the initial stalk compositional characterization (Table 2), 

probably due to the mild pretreatment applied which impeded the solubilisation of stalk 

components. The observed differences after a harsher pretreatment at 190 ºC could be 

explained by a less organised cell wall matrix structure of the transplastomic plants that would 

favour the enzymatic hydrolysis and release of sugars. In previous studies, a reduction of the 
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cell wall recalcitrance was achieved by modifying the cellulose structure (Harris and DeBolt 

2010), for instance by expression of a foreign gene such as a bacterial endoglucanase 

(Brunecky et al. 2011) or by using synthetic biology to decrease lignin content (Yang et al. 

2013). Thioredoxins catalyse redox reactions and control a wide range of biological pathways. It 

has so far been unknown whether Trx f affects the cell wall structure yet there are some 

evidences connecting the redox status with cellulose synthesis. DTT treatment stimulated 

carbon flux to cell wall components, especially cellulose (Kolbe et al. 2006), and cellulose 

synthase has been reported to be redox regulated (Kurek et al. 2002). Therefore, we 

hypothesise that Trx f overexpression might mediate in the modification of the cell wall 

structure, with an ease of hydrolytic enzyme access. Finally, after fermentation of the leaf and 

stalk hydrolysates, an average of 20-40% more ethanol was obtained from the transplastomic 

plants compared to the control wild types (Tables 3 and 5). 

The efficiency of enzymatic hydrolysis of the pretreated leaves was absolute. However, 

the efficiency of the pretreated stalks with the cellulase mixture used (including cellulase, 

hemicellulase and β-glucosidase activities) was about 60%. Due to the fact that the 

carbohydrate composition of tobacco stalks (including mannans, galactans and arabinans) is 

similar to that of hardwoods, an increase in pretreatment sternness has been proposed to 

improve the enzymatic hydrolysis (Martin et al. 2002). In our experiments, temperatures of up to 

210 ºC combined with 1% H2SO4 or 20 bars of pressure were applied. Acid or pressure actions 

did not improve the pretreatment efficiency (Table 4). Steam pretreatment at 205 ºC (Martin et 

al. 2002) and wet oxidation at 195 ºC (Martin et al. 2008) have been previously used for tobacco 

stalks with similar results to those obtained in our experiments. A broad range of other chemical 

pretreatments such as alkali, organosolv and ionic liquids have been used with different 

lignocellulosic materials to increase cellulose digestibility and an efficient lignin solubilization 

(Alvira et al. 2010; Zhu and Pan 2010), which could also be appropriate for tobacco biomass. 

Additional physicochemical pretreatments include liquid hot water (up to 240 ºC) and ammonia 

fiber explosion (AFEX) (Alvira et al. 2010). Particularly, AFEX could be well suited for 

agricultural feedstocks as it reduces lignin content, removes some hemicellulose components 

and decrystallizes cellulose. It consists also of a very promising method with regard to operating 

costs (Hu et al. 2008). 
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Enzymatic saccharification improvement could also be achieved by increasing the 

enzyme loading (Sánchez and Cardona 2008) or by the addition of specific xilanases and β-

glucosidases to the enzyme cocktail. For example, a cellulose conversion of over 90% was 

achieved in wheat (Saha and Cotta 2006) or barley (Saha and Cotta 2010) straw using 

preparations which included the following three enzymes: cellulase, xilanase and β-glucosidase. 

A cost-effective way to perform the enzymatic hydrolysis would be the expression of cell-wall 

degrading enzymes in the same plant species which is used for biomass production. The 

chloroplast is an ideal subcellular compartment for this purpose with very high levels of foreign 

protein accumulation. Exo- and endoglucanases, β-glucosidases (Gray et al. 2009; Ziegelhoffer 

et al. 2009; Verma et al. 2010; Gray et al. 2011; Petersen and Bock 2011), endo-β-mannanase 

(Agrawal et al. 2011), hemicellulases (Kolotilin et al. 2013) and additional enzymes (pectate 

lyase, cutinase, swollenin, xylanase, acetyl xylan esterase, and lipase) (Verma et al. 2010) have 

been successfully expressed in transplastomic tobacco plants in their active forms. In some 

cases, plant crude-extract enzyme cocktails showed a higher activity level and yielded more 

glucose in contrast to commercial cocktails (Verma et al. 2010), demonstrating the great 

potential associated to plant-derived enzyme production. 

In order to efficiently use tobacco as a feedstock for biofuel production, maximum 

biomass yields of green tissue should be generated. Growing tobacco for biomass or either 

cigarette production comprises very different crop management practices. In the function of a 

biomass crop, tobacco should be managed more as a forage crop with a very high plant 

density, developing a kind of grass lawn. Plants would be harvested by mowing when they 

reached a height of 50 cm, leaving back the stumps to resprout thus forming a dense tangle of 

new shoots and leaves within days (van Beilen et al. 2007). Multiple harvests could be possible 

under optimal environmental conditions. These young shoots comprise the sugar-richest and 

highest protein stage of the plant’s growth cycle (van Beilen et al. 2007) which would make the 

process of ethanol production easier. It has been estimated that a cropping season of 6-8 

months could generate up to 160 tonnes/ha of green tissue based on wet weight, which is 

equivalent to 16-32 tonnes of dry biomass (Wildman 1979). Tobacco farming as a biomass crop 

is expected to be cheap (sowing instead of planting, reduced weed management and 

mechanised harvesting by mowing) (van Beilen et al. 2007). Integral exploitation of the whole 
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plant (sugar and starch-rich leaves and lignocellulosic stalks) would be performed in a single 

production process. Analogous to the tobacco leaf and stalk scenario, this idea of mixed 

feedstocks has already been investigated to facilitate the introduction of second generation 

technology for bioethanol production by mixing wheat straw and meal (Erdei et al. 2010). 

In conclusion, the overexpression of Trx f in tobacco chloroplasts led to high-starch and 

sugar phenotypes in field trials. These improved tobacco commercial cultivars, grown in very 

high plant densities for a maximum biomass yield, could be an alternative production platform 

for biofuel, with up to a 40% increase of ethanol production in relation to control plants. To our 

knowledge, this is the first field trial of genetically modified plants via chloroplast transformation 

for biofuel production. Furthermore, this technology also brings about the possibility to develop 

alternative crops potentially useful for improved biofuel generation.  
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Figure captions 
 

Fig.1 Integration of the Trx f gene into the plastid genome. (a) Wild-type and transformed plastid 

genomes. The P1 probe of the targeting region for homologous recombination is shown over 

the wild-type plastid genome. 16S3´, trnV, 3´rps12: original sequences of the plastid genome; 

aadA: aminoglycoside 3-adenylyltransferase gene; Prrn: 16S rRNA promoter and 5´-untraslated 

region; PrrnG10L: 16S rRNA promoter fused to the leader region of the bacteriophage T7 gene 

10; Trps16: 3´-untranslated region of the plastid rps16 gene; TpsbA: 3´-untranslated region of 

the plastid psbA gene; lox, recognition sites for Cre recombinase. Dotted lines under the maps 

indicate the expected size of the fragments after restriction enzyme digestion. (b) Confirmation 

of homoplasmy by Southern blot analysis. Total DNA (10 µg) was digested with BglII and 

probed with P1. Two lines per tobacco cultivar (Virginia and Havana) and their corresponding 

wild-type controls are shown. (c) Immunoblot analysis of Trx f expression by transplastomic 

plants with a specific Trx f antibody. Ten µg of total protein were loaded per lane. VIR-wt and 

HAV-wt, wild-type Virginia and Havana plants; VIR-T and HAV-T, transplastomic plants from 

both cultivars. As controls, a Trx f overexpressing sample (10 µg of total protein) of the tobacco 

Petite Havana cultivar (PH-T) and 10 ng of Trx f expressed in Escherichia coli (E. coli) were 

used  

 

Fig.2 Removal of the antibiotic marker gene from transplastomic plants. (a) Map of the vector 

for nuclear transformation via Agrobacterium tumefaciens. LB, RB: left and right borders; nptII, 

coding sequence of the neomycin phosphotransferase type II gene; Pnos, nopaline synthase 

gene promoter; Tnos, nopaline synthase gene terminator; P35S, promoter of the 35S gene from 

the cauliflower mosaic virus; SSU: transit peptide of the Rubisco small subunit from tobacco; 

cre, coding region of the Cre recombinase from the P1 bacteriophage. (b) Southern blot 

analysis to confirm loss of the aadA gene in transplastomic plants. VIR-wt and HAV-wt, wild-

type samples from Virginia and Havana cultivars; VIR-T and HAV-T, initial transplastomic plants 

from both cultivars; VIR-TCre and HAV-TCre, regenerated plants after nuclear transformation 

with the Cre recombinase. Samples were probed with the P1 targeting region (Fig.1) and aadA 

probes. (c, d) In vitro germination assay of sensitivity to (c) spectinomycin (500 mg/L) and (d) 
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kanamycin (100 mg/L) by T3 generation seeds. NUC, unrelated nuclear transgenic plant used 

as a control for kanamycin resistance 
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Table 1 Phenotypic analysis of Trx f-overexpressing field grown tobacco plants (cultivars Virginia 

and Havana) relative to their wild types 

Phenotypic character VIR VIR-Trxf HAV HAV-Trxf 

Total height (cm)  140±1.4 144±1.2 143±2.3 137±3.2 

Total weight/plant (g) 2940±380 2750±410 1980±350 1880±250 

Specific Leaf Weight (SLW, mg/cm2) 4.24±0.2 4.66±0.2 4.85±0.3a 5.99±0.2b 

Chlorophyll (SPAD) 36.3±0.8 35.3±0.7 39.1±0.5 41.3±0.7 

VIR: Virginia wild type. VIR-Trxf: Trx f-overexpressing Virginia plants. HAV: Havana wild type. HAV-
Trxf: Trx f-overexpressing Havana plants. Values are the mean ± SE of 15 individual plants. Different 
letters, within each cultivar, indicate statistically different values at a P≤0.05 (t-te
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Table 2 Compositional characterization of leaf and stalk samples 

Parameter (% w/dw) 

 Leaf    Stalk  

VIR VIR-Trxf HAV HAV-Trxf  VIR VIR-Trxf HAV HAV-Trxf 

Residual humidity 5.01±0.04 4.87±0.11 4.10±0.02 5.00±0.16  6.37 5.57 5.14 4.84 

Soluble sugars 6.66±0.01a 7.60±0.13b 7.20±0.04a 12.50±0.03

b 

 3.2 3.4 3.5 3.4 

Starch 1.88±0.01a 4.32±0.05b 0.94±0.00a 3.41±0.06b  nd nd nd nd 

Cellulose 5.27±0.18b 4.30±0.02a 4.83±0.09a 4.86±0.22b  28.7 29.1 27 27.4 

Xylan 2.29±0.04 2.13±0.00 2.57±0.05 2.15±0.11  13.3 13.8 14.1 13.9 

Arabinan 0.49±0.02 0.43±0.03 0.49±0.00 0.47±0.02  0.82 0.87 1.11 0.8 

Lignin 3.37±0.02b 2.85±0.02a 3.26±0.07 2.80±0.03  10.9 11.4 12.7 12.4 

Protein 30.20±0.44 28.60±0.19 26.90±0.04

b 

24.12±0.25

a 

 17.8 17.3 17.1 18.2 

Ash 19.03±0.04

b 

17.98±0.07

a 

20.13±0.01

b 

18.69±0.04

a 

 13.6 13.5 12.5 12.7 

Values are the mean ± SE (n = 4, leaf; n = 2, stalk). Different letters, within each cultivar, indicate statistically different values at a P≤0.05 
(ANOVA). nd, not detected. w/dw: weight/dry weight 
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Table 3 Leaf sample quantification of total and fermentable sugars released after pretreatment and enzymatic hydrolysis followed by ethanol production after 

fermentation 

Parameter VIR VIR-Trxf HAV HAV-Trxf 

Total sugars (% w/dw) 16.6±0.1a 20.3±0.0b 17.9±0.7a 23.9±0.0b 

Fermentable sugars (% w/dw) 15.9±0.1a 19.8±0.0b 17.1±0.6a 23.2±0.0b 

Efficiency of enzymatic hydrolysis (%) 109.9 115.0 126.6 106.8 

Fermentation efficiency (%) 88.7 85.1 81.9 86.2 

Ethanol (% w/dw) 6.9±0.2a 8.6±0.1b 7.1±0.2a 10.2±0.2b 

Values are the mean ± SE (n = 2-4). Different letters, within each cultivar, indicate statistically different values at P≤0.05 (ANOVA). w/dw: weight/dry weight 
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Table 4 Effect of nine different pretreatments on stalk samples of VIR-Trxf plants with regard to the concentration of total and fermentable sugars along with 

ethanol production based on the liquid and the recovered solid fractions 

 Pretreatment 

Parameter 170 ºC 190 ºC 210 ºC 170 ºC 190 ºC 210 ºC 170 ºC 190 ºC 210 ºC 
  + acid + acid + pressure 
Recovery of solid fraction (%) 61.2 52.4 48.9 57.5 51.0 47.7 57.2 50.3 47.9 

Total sugars (% w/dw) 35.1±0.9a 29.7±0.4bc 22.6±0.2e 31.6±0.1b 26.9±0.1cd 22.0±0.0e 31.9±0.2b 26.2±0.5d 20.6±0.2e 

Fermentable sugars (% w/dw) 21.5±0.6ab 22.2±0.3a 21.6±0.2ab 19.4±0.1b 20.4±0.1ab 21.1±0.1ab 19.6±0.2b 20.6±0.5ab 19.8±0.2b 

Efficiency of enzymatic hydrolysis (%) 60.7±1.8ab 62.8±0.9a 61.0±0.6ab 54.8±0.3b 57.6±0.3ab 59.6±0.1ab 55.2±0.5b 58.3±1.3ab 55.8±0.5b 

Ethanol (% w/dw) 10.1±0.3 10.0±0.0 10.2±0.3 9.4±0.1 9.9±0.1 9.5±0.6 9.5±0.2 10.3±0.2 9.2±0.1 

Values are the mean ± SE (n = 2-4). Different letters, within each line, indicate statistically different values at a P≤0.05 (Tukey test). w/dw: weight/dry weight 
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Table 5 Stalk sample quantification of total and fermentable sugars released after pretreatment at 190 ºC and enzymatic hydrolysis together with ethanol production 

after fermentation 

Parameter VIR VIR-Trxf HAV HAV-Trxf 

Recovery of solid fraction (%) 51.8 52.4 53.5 52.0 

Total sugars (% w/dw) 20.9±0.7a 29.7±0.4b 23.4±0.3 24.1±0.7 

Fermentable sugars (% w/dw) 17.9±0.1a 22.2±0.3b 18.3±0.2 20.1±0.6 

Efficiency of enzymatic hydrolysis (%) 51.5±0.3a 62.8±0.9b 55.5±0.7 60.1±1.9 

Fermentation efficiency (%) 90.9 99.8 93.2 91.7 

Ethanol (% w/dw) 8.1±0.0a 10.0±0.0b 8.5±0.2 9.2±0.1 

Values are the mean ± SE (n = 2-4). Different letters, within each cultivar, indicate statistically different values at a P≤0.05 (ANOVA). w/dw: weight/dry weight 
 

 


