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Abstract. We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which
we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction

theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an

approximation of this vector field in an energy surface. This approximate system is also built using normal
forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space.

Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting
three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family

of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the

nature of the critical point.

1. Introduction

We present a way of studying perturbed resonant Hamiltonian systems with n degrees of freedom (n ≥ 2)
that we have developed during the last few years. It is a very classical problem that has been approached
from different points of view by many authors, see for instance [55, 51, 12, 33, 34, 16, 56, 2] or [23] and
references therein. As in our previous works the point of view is qualitative, and we provide results on the
existence of periodic solutions, their stability and possible bifurcations. The procedure can be applied to
study the stability of equilibria or the existence of invariant tori. We have tried to present a methodology
to analyze resonant Hamiltonians which exposes our results in an intuitive manner.

The features of the software Mathematica have been applied to perform all the computations and make
the pictures that are essential in the understanding of the problem.

In [45] we give some preliminary results on the existence of families of periodic solutions and their bifur-
cations for two degrees of freedom Hamiltonians in semi-simple resonance k:−1 (k a positive integer). These
solutions are typically found in the planar circular restricted three body problem around the Lagrange
equilateral equilibria L4 and L5.

Our primary goal is to look at classical perturbation theory through the lens of invariant theory and
singular reduction introduced in [3], with the goal of exposing some of the underlying geometry. The papers
[57, 35, 2] and the book [8] are also relevant in the context of singular reduction theory. Previous approaches
using this perspective can be found in the literature; see, for instance [6]. The case of regular reduction was
addressed in [44, 61]. Here we study small perturbations of maximally super-integrable systems and our
prime example is perturbations of a system of two harmonic oscillators with rationally related frequencies.
Examples of Hamiltonians with more than two degrees of freedom will be given in [46].

Let H : M → R be a smooth Hamiltonian of n degrees of freedom on a symplectic manifold M of
dimension 2n. Since H is an integral the set N = Nh = {z ∈ M : H(z) = h} is a smooth invariant
submanifold of dimension 2n − 1 when h ∈ R is a regular value. The orbit space O = Oh is the quotient
space obtained from N by identifying orbits to a point. In general quotient spaces are not even Hausdorff,
but in some important examples in mechanics the orbit space is a manifold of dimension 2n−2. For example
Moser [47] showed that the orbit space for the regularized spatial Kepler problem with negative energy is
S2 × S2. What is essential for Moser Theorem and our example treated below is that all the solutions are
periodic so that N is foliated by circles. However, in our case not all the solutions have the same period and
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so our orbit space is a symplectic orbifold. Another example of a system whose solutions are all periodic is
the case of n harmonic oscillators with the same frequency. Moser [47] handled this problem, proving that
the orbit space is the complex projective space CPn−1.

We attack our problem from two points of view. First, the periodic solutions of H define a symplectic
Lie group action Z : S ×M →M where S is just the circle group so the action is proper and locally free.
With this we show that the orbit space O = N/S is a symplectic orbifold by viewing cross sections to the
flow as symplectic charts on O. Related recent work is presented by Dullin et al. [13]. These authors focus
on diffeomorphisms and introduce the concept of reduction by lifting. They show that after finding a global
Poincaré section of the symmetry flow, there are coordinates in which the map takes a reduced form allowing
for a decrease of dimensionality. A Hamiltonian function that is invariant under the action Z is well defined
on O and is called reduced Hamiltonian, while its associated equations of motion are called reduced system.
In many cases a normal form computation together with a truncation of the tail is carried out in order to
get a Hamiltonian with a continuous symmetry so that reduction can be applied [61].

Second, we study the integrals and the invariant spaces defined by them. Any collection of harmonic
oscillators is integrable if the system has n independent integrals in involution but, due to resonance, our
problem is super-integrable, i.e. it has more than n independent integrals [37, 19, 20]. Actually our system
has 2n− 1 independent integrals, thus it is called maximally super-integrable [25, 26]. In this latter case one
has to study the reduced Hamiltonian system with n−1 degrees of freedom obtained after averaging a given
perturbation along the periodic solutions of the unperturbed system [53, 61], then reducing by the acquired
S1-symmetry. As the perturbation analysis has to be performed in a space of dimension 2n− 2 it becomes
more complicated. We proceed by means of the polynomial invariants associated to the reduction. In the
particular case of resonant Hamiltonians this leads to get 3n−2 polynomial invariants with n−1 constraints
and a model for O as a semi-algebraic variety embedded in R3n−2. Besides the n− 1 constraints one has to
add some inequalities that the invariants are required to fulfill so that O makes sense, as we shall show with
more detail in the forthcoming sections. The dimension of the orbit space is always 2n− 2.

When n = 2 we shall provide local symplectic coordinates for both the regular and singular points of
O. These coordinates are related to the polynomial invariants and are obtained from the action-angle
coordinates. They are useful in the analysis of the dynamics of the reduced system, for instance we use them
to establish the stability and bifurcations of the critical points of the Hamiltonian. An interesting feature
of the coordinates that we introduce is that they desingularize the singular points of the orbifold O. The
corresponding symplectic coordinates for the general case n ≥ 2 will be given in [46].

Another goal of our study is to present a classification of the types of points occurring in the orbit spaces
resulting from the reduction of resonant Hamiltonians with n degrees of freedom. Concretely we distinguish
among plateau, peaks and ridges. The plateau is the set of regular points of the orbifold, the peaks are
isolated singular points and the ridges correspond to the singular points lying in sets of dimensions greater
than or equal to 1. In a peak only one of the n principal modes of the unperturbed Hamiltonian is non-zero
and it is always a critical point of the reduced Hamiltonian. A ridge may or may not be composed of critical
points of the reduced system and at least two modes are non-zero and interact. The main purpose of our
classification is that in the reconstruction of the periodic solutions related to the critical points of the orbit
space, the characteristic multipliers of these solutions are approximated differently, depending on whether
they correspond to plateau, peaks or ridges. An extra singularity of O happens in the zero level set of the
unperturbed Hamiltonian when it corresponds to an indefinite quadratic form in rectangular coordinates.
This singularity corresponds to the origin in R2n.

We provide two examples for n = 2 in detail which illustrate that our approach is particularly useful
when there are many parameters and bifurcations. The flows come from normalized Hamiltonians which
are truncated at a convenient order. They are depicted for different values of the parameters by using
Mathematica to exhibit different parametric bifurcations occurring in each example. In addition to that,
these approximate flows can be understood as cross sections to the flow of the full problem in adequate
symplectic charts on the orbit space.

In our approach we survey some known theory combining it with new results. In this respect the main
achievements of our development are: (i) We provide a new insight of regular and singular reduction of
resonant Hamiltonians from the point of view of cross sections and how this procedure is related to the
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reduction theory of symmetric Hamiltonians. (ii) When n = 2 we give a methodology to obtain symplectic
coordinates in the orbit space around critical points that are either regular or singular, considering all the
possible cases. In the singular case the new coordinates desingularize the orbit space in a neighborhood
of the critical point. (iii) We classify the possible singularities of resonant Hamiltonians with n degrees of
freedom, providing new results about the characteristic multipliers of the periodic solutions related to these
singularities.

The case n > 2 deserves a deeper insight and we shall give more theoretical results as well as related
examples in [46]. In particular the general case requires to handle techniques from computer algebra theory
in order to achieve the analysis of resonances successfully.

The paper is structured in seven sections. In Section 2 we deal with the unperturbed fully resonant
Hamiltonian with n degrees of freedom in rectangular and action-angle coordinates. Section 3 is devoted to
the study of the orbit space through cross sections for arbitrary n, but specializing later on for n = 2. For the
maximally super-integrable resonant Hamiltonian, HR, we obtain the set of polynomial invariants from the
independent integrals and then the orbit space defined by these invariants in Section 4. Also the classification
of the different types of points in the orbit space O is given. Moreover the case n = 2 is studied in full detail,
analyzing all possible cases of the orbifolds, which in this circumstance are 2-dimensional surfaces. In Section
5 we introduce symplectic coordinates for the q:p resonance, dealing with both regular and singular points.
The case of small perturbations attached to a Hamiltonian with n degrees of freedom is studied in Section
6 where the type of the characteristic multipliers of the periodic solutions is determined from the critical
points in O. In addition to that, the case of the extremal bifurcation (also called saddle-center bifurcation)
of periodic solutions is tackled from the point of view of reduction theory. The purpose of Section 7 is to
study the existence and bifurcations of periodic solutions for Hamiltonian systems in resonances 2:−1 and
3:2.

2. The Unperturbed System

Consider a quadratic Hamiltonian which gives rise to a linear Hamiltonian system of differential equations,
specifically let HR = 1

2 z
T S z and ż = Az where z ∈ R2n, S is a 2n × 2n symmetric matrix, A = J S a

Hamiltonian matrix and J is the standard 2n× 2n skew symmetric matrix

J =

[
0 I
−I 0

]
.

Here N = {z ∈ R2n : HR(z) = h, z 6= 0}.
Let the Hamiltonian matrix A be semi-simple and have only pure imaginary eigenvalues that are all

rational multiples of one another. More specifically, let the eigenvalues be

±k1 ωi, ±k2 ωi, . . . , ±kn ωi

where ω is positive real, ki ∈ Z \ {0}, with gcd(k1, k2, . . . , kn) = 1. By a change of the time scale we may
take ω = 1. In this case the Hamiltonian can be put into the form

(1) HR(x, y) =
1

2
[k1(x21 + y21) + k2(x22 + y22) + · · ·+ kn(x2n + y2n)],

where z = (x, y) ∈ Rn × Rn.
Let Z(t) = eA t be the fundamental matrix solution all of whose entries are cos kjt or sin kjt so, they have

period 2π/|kj |. Since the gcd of the ki’s is 1, the matrix Z(t) is periodic of period 2π. Thus N is foliated
by circles. Let S = R1/(2π) so that Z defines a symplectic Lie group action

(2) Z : S ×N → N : (t, z) 7→ Z(t) z.

Since S is just the circle group it is compact and the action is proper. Let O = N/S be the orbit space and
Π : N → O the projection map.

Change to action-angle coordinates by Ij = x2j+y2j , θj = tan−1(yj/xj) which is symplectic with multiplier
2 so that the Hamiltonian becomes

HR(I, θ) = k1 I1 + k2 I2 + · · ·+ kn In
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and in these coordinates the equations of motion are

İj = 0, θ̇j = −kj .

(This is a slight variation of the usual definition of action-angle variables that reduces the number of 2’s in
the paper.)

3. Orbit Space by Cross Sections

3.1. Orbifolds, Sections and Poincaré Maps. In general the orbit space of a proper locally free Lie
group action on a manifold is an orbifold, see [54] where the concept of orbifold was introduced with the
name V -manifold. It is easy to check the conditions for O to be an orbifold and in fact it can be inferred
from our discussion. If the manifold and the action are both symplectic then so is the orbit space. See [36]
for all the definitions related to symplectic orbifolds.

The basic tool used to prove these results depends on the concept of a slice, a group action invariant
neighborhood of an orbit. However, since we are interested in bifurcation theory our key concept is a cross
section in an energy surface which we use here. We will simply say section for cross section in an energy
surface. It is well known that sections are symplectic, the flow induced map between sections, the Poincaré
map, is symplectic and fixed points in the section maps often correspond to periodic solutions [43].

Now we will show that O is a symplectic orbifold by giving an atlas of symplectic charts. Use action-angle
coordinates and let d ∈ O and (I∗1 , . . . , I

∗
n, θ
∗
1 , . . . , θ

∗
n) ∈ Π−1(d). At least one of the I∗i ’s is nonzero so for

simplicity let I∗1 6= 0 and k1 > 0, and let T = 2π/k1. Take θ1 = 0 as a section in the level HR = h and let
this section be F ⊂ N with F restricted by the inequalities

1

2
δ < |Ii − I∗i | < δ if I∗i 6= 0 or 0 ≤ |Ii − I∗i | < δ if I∗i = 0

with δ small. Also let P ′ : F → F be the Poincaré map. Let U ⊂ R2n−2 be the open set with action-angle
variables (I2, . . . , In, θ2, . . . , θn) with the same restriction on the Ii’s as above and let

Ψ : U → F : (I2, . . . , In, θ2, . . . , θn) 7→ (I1, I2, . . . , In, 0, θ2, . . . , θn)

be the prechart with I1 determined by HR = h.
The section map P = Ψ−1 ◦ P ′ ◦Ψ as a mapping of U is

(3)
I2 7→ I2, . . . , In 7→ In

θ2 7→ θ2 − (k2/k1) 2π, . . . , θn 7→ θn − (kn/k1) 2π

which is a linear symplectic map written in action-angle coordinates.
Clearly P k1 = id, i.e. the identity map, and let Pκ = id where κ is a minimal divisor of k1 with that

property. If a ∈ U then the orbit through a meets the set U in the points a, P (a), P 2(a), . . . , Pκ−1(a), so in
the orbit space these points are identified to one point. Let G = {P 0 = id, P, P 2, . . . , Pκ−1} be the group

of linear symplectic maps of U and define Ψ̃ : U/G → O. The map Ψ̃ is a homeomorphism and it is a
symplectic orbifold chart at d.

The identification defined by Ψ̃ pinches the cross section forming what we will call a peak or a ridge. This
is illustrated later in this section for n = 2 in Figures 2 and 4. In the later section on symplectic smoothing,
Section 5.2, we show how to reconstruct the cross section so that we can apply classical perturbation theory.

Since the Poincaré map from one section to another is symplectic then given two such precharts Ψi : Ui →
O, i = 1, 2 the mapping Ψ−11 ◦ Ψ2 is symplectic where defined. The collection of such orbifold charts is a
symplectic atlas.

The non-trivial multipliers of the periodic solution corresponding to d ∈ O are

(4) e±(k2/k1) 2πi, . . . , e±(kn/k1) 2πi,

see more details on characteristic multipliers in [43, 61]. We shall return to this issue in Section 6 where
it will be shown how the multipliers are affected when a small perturbation is attached to the Hamiltonian
HR.
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3.2. Models for q:p Resonance. Look at the two degrees of freedom example by setting k1 = q, k2 = p
with gcd(q, p) = 1 and q > 0, p 6= 0. The resonant harmonic oscillator is expressed by the Hamiltonian

(5) Hqp =
1

2

[
q
(
x21 + y21

)
+ p

(
x22 + y22

)]
= q I1 + p I2,

where x1, x2, y1, y2 are rectangular coordinates and I1, I2, θ1, θ2 are action-angle coordinates. If q < 0 we
change the sign of the Hamiltonian.

Model for N When q > 0, p > 0. We can use action-angle variables to introduce coordinates on the sphere
N , provided we are careful to observe the conventions of polar coordinates: (i) I1 ≥ 0, I2 ≥ 0; (ii) θ1 and θ2
are defined modulo 2π; and (iii) I1 = 0 or I2 = 0 corresponds to a point. For a careful explanation of these
conventions see [43], Sections 1.8 and 1.9.

For simplicity let h = 1. Starting with the symplectic coordinates I1, θ1, I2, θ2 for R4, we note that since
Hqp = q I1 + p I2 = h = 1 on N we can discard I2 and make the restriction 0 ≤ I1 ≤ 1/q (note that I2 will
return). We use I1, θ1, θ2 as coordinates on N . Now I1, θ1 with 0 ≤ I1 ≤ 1/q are just coordinates for the
closed unit disk in R2 which is drawn in green in Figure 1(b). For each point of the open disk, there is a
circle with coordinate θ2 (defined mod 2π), but I2 = 0 when I1 = 1/q, so the circle collapses to a point over
the boundary of the disk.

(a) Coordinates on N (b) An orbit on N

Figure 1. A model of N

The geometric model of N is given by two solid cones with points on the boundary cones identified as
shown in Figure 1(a). Through each point in the open unit disk with coordinates I1, θ1 there is a line segment
(the red dashed line) perpendicular to the disk. The angular coordinate θ2 is measured downward on this
segment: θ2 = 0 is the disk, θ2 = −π is the upper boundary cone, and θ2 = +π is the lower boundary cone.
Each point on the upper boundary cone with coordinates I1, θ1, θ2 = −π is identified with the point on the
lower boundary cone with coordinates I1, θ1, θ2 = +π. This is our model for the sphere N .

There are two special orbits in this model. The first one is right up the center where I1 = 0 which is
periodic with period 2π/p and the second one is around the edge where I1 = 1/q or I2 = 0 which is periodic
with period 2π/q. Both of them are drawn in purple in Figure 1(b). All the others wrap around a torus
where I1 = I0 and I0 is a constant such that 0 < I0 < 1/q, as illustrated in Figure 1(b). These orbits hit
the open disk where θ2 = 0 in one point, drawn in yellow in Figure 1(b). These solutions have period 2π if
gcd(q, p) = 1 and are torus knots.
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Sections in N . We select two sections to the flow defined by Hamiltonian (5). Each of them will be a
2-dimensional symplectic submanifold diffeomorphic to a closed disk and such that each orbit intersects at
least one of the cross sections and maybe more than once. Refer to Figure 2.

Figure 2. Sections in N

The first section, S, is the disk where θ2 = 0 and 0 ≤ I1 ≤ 3/(4 q) and all θ1. Denote the boundary
of S by the oriented circle a. The section S is a symplectic submanifold of dimension 2 with action-angle
coordinates (I1, θ1). Orbits cross S upwardly since θ̇2 = −p and θ2 increases downwardly.

The second section, Γ, is the disk where θ1 = 0 and 1/(4 q) ≤ I1 ≤ 1/q. At first sight Γ, the region
bounded by the orange curve on the left picture of Figure 2, looks like a triangle but when the identification
is taken into account as illustrated in the figure it is indeed a disk. Specifically, Γ is a symplectic submanifold
of dimension 2 with action-angle coordinates (I2, θ2). Orbits cross Γ since θ̇1 = −q. Denote the boundary
of Γ by the oriented circle α. Here one sees the reason why we measure θ2 downward, because with that
convention I2, θ2 are oriented to be symplectic coordinates in Γ.

Due to the overlap of these two sections every orbit crosses one or the other or both.

Regular Reduction: q = p = 1. Now we illustrate that O is a symplectic sphere when q = p = 1 thus
illustrating Reeb’s Theorem [50, 61]. All solutions are 2π-periodic and θ1 and θ2 both decrease by one full
revolution in time 2π. In our figures the orbit is a left handed helix traversed upward.

Symplectic maps of 2-dimensional surfaces preserve area and orientation. We will take artistic liberties
with area, but be slaves to the orientation. At the top of Figure 3 are the two sections S and Γ with their
boundary curves a and α. Because the two sections overlap, the forward image of a meets Γ in an oriented
circle a′ as illustrated, and similarly the forward image of α meets S in an oriented circle α′. Since θ2 − θ1
is constant in this case the curves are oriented as illustrated.

The flow maps the band between α and a′ onto the band between α′ and a symplectically. (We recall that
section maps are symplectic.) The point and its image are on the same orbit and so should be identified to
form the quotient space O. Thus we have shown that O is a 2-sphere with symplectic coordinates.

Singular Reduction: q = 2, p = 3. Now we illustrate that N is a symplectic orbifold when q = 2, p = 3. The
two sections are slightly different now so a little more care is needed.
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Figure 3. Gluing sections when q = p = 1

The section S is defined by θ2 = 0 and has coordinates I1, θ1. The first return time is T = 2π/3 and the
section map is

I1 7→ I1, θ1 7→ θ1 − 4π/3.

A point not at the origin hits S three times and repeats. That is

θ1 7→ θ1 − 4π/3 7→ θ1 − 8π/3 7→ θ1 − 12π/3 ≡ θ1.

Thus an orbit other than I1 = 0 hits S three times equally spaced in θ1, so we should take the sector
0 ≤ θ1 ≤ 2π/3 and identify the lines θ1 = 0 and θ1 = 2π/3 as shown on the left-hand side of Figure 4 to get
a sharp cone.

Similarly the section Γ is defined by θ1 = 0 and has coordinates I2, θ2. The first return time is T = π and
the section map is

I2 7→ I2, θ2 7→ θ2 − π.
A point not at the origin hits S two times and repeats. That is

θ2 7→ θ2 − π 7→ θ2 − 2π ≡ θ2.

Thus an orbit other than I2 = 0 hits Γ two times equally spaced in θ2, so we should take the sector 0 ≤ θ2 ≤ π
and identify the lines θ2 = 0 and θ2 = π as shown on the right-hand side of Figure 4 to get a cone.

The boundary curves a, α, a′, α′ play the same role in identifying the two parts as in the previous case,
see Figure 4.

4. Integrable and Maximally Super-Integrable Systems

4.1. Orbit Spaces and Invariants for n Degrees of Freedom. Again let H : M → R be a smooth
Hamiltonian on a symplectic manifold M of dimension 2n. An integral or invariant for the system is a
smooth function I : M → R such that {H, I} = 0 where {·, ·} is the Poisson bracket. An integral I is
constant along the solutions of the Hamiltonian system defined by H. Two integrals I1, I2 are said to be
in involution if {I1, I2} = 0. The system defined by H is integrable if there exist n independent integrals in
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Figure 4. Gluing sections when q = 2, p = 3

involution. A fact usually attributed to Arnold is that an integrable system is foliated almost everywhere by
n-dimensional invariant tori and cylinders upon which one can find action-angle coordinates [37].

The system defined by H is super-integrable since it has more than n independent integrals, in fact it
is maximally super-integrable as it has 2n − 1 independent integrals. The number 2n − 1 is the maximal
number of independent integrals a non-trivial H can have since holding 2n − 1 independent integrals fixed
would define a solution curve in the 2n-dimensional space M. The classical example is the Kepler problem
which has in addition to energy and angular momentum, that are common to all central force problems,
the vector which fixes the pericenter. In general integrable systems are rare and amongst integrable systems
super-integrable systems are rarer still — see [37].

Return to the discussion of the Hamiltonian HR in Section 2. We see that this system is integrable as
I1, I2, . . . , In are n independent integrals in involution, i.e. {Ij , Im} = 0. Actually, the use of action-angle
variables makes obvious it is a maximally super-integrable system since there are 2n−1 independent integrals,
namely

(6) I1, I2, . . . , In, k1 θn − kn θ1, k1 θn−1 − kn−1 θ1, . . . , k1 θ2 − k2 θ1.

We return to rectangular coordinates by being mindful of the d’Alembert character [43] and defining

(7)

a1 = I1 = x21 + y21 , a2 = I2 = x22 + y22 , . . . , an = In = x2n + y2n,

an+1 = a
|k1|/2
n a

|kn|/2
1 cos(k1 θn − kn θ1) = Re[(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],

an+2 = a
|k1|/2
n a

|kn|/2
1 sin(k1 θn − kn θ1) = Im[(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],

...

a3n−3 = a
|k1|/2
2 a

|k2|/2
1 cos(k1 θ2 − k2 θ1) = Re[(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|],

a3n−2 = a
|k1|/2
2 a

|k2|/2
1 sin(k1 θ2 − k2 θ1) = Im[(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|].
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Clearly a1 ≥ 0, a2 ≥ 0, . . . , an ≥ 0 and the familiar identity cos2 φ+ sin2 φ = 1 yields

(8)

a2n+1 + a2n+2 = a
|k1|
n a

|kn|
1 ,

...

a23n−3 + a23n−2 = a
|k1|
2 a

|k2|
1 .

Specifying the integrals a1, a2, . . . , a3n−2 subject to the constraints given above uniquely specifies an orbit

because the constraint a2n+1+a2n+2 = a
|k1|
n a

|kn|
1 allows one to solve for cos(k1 θn−kn θ1) and sin(k1 θn−kn θ1)

and hence to find the angle k1 θn− kn θ1. Similarly the angles k1 θn−1− kn−1 θ1, . . ., k1 θ2− k2 θ1 are found.
We will call the polynomial invariants a1, . . . , a3n−2 in (7) a basis set of invariants. Fixing the energy level

HR = h we also get the additional constraint k1 a1 + · · · + kn an = h. The invariants aj , j = 1, . . . , 3n − 2
together with the n constraints and the inequalities aj ≥ 0, j = 1, . . . , n define the orbit space O, thus one
can think of the aj ’s as the coordinates of the (2n− 2)-dimensional orbifold O embedded in R3n−2.

Consider the geometry of the orbit space. When kj = 1 for all j then O is diffeomorphic to CPn−1
provided h > 0. However when there is at least one pair ki, kj with ki 6= kj but where kj > 0 for all j, the
orbit space for h > 0 is bounded, but has different types of singularities as we shall see in Section 4.2. In
this case the orbifold O is still homeomorphic to CPn−1, more specifically it has the structure of a weighted
complex projective space [4] with weights kj ’s. On the other hand if the kj ’s have different signs, that is,
when HR in (1) is an indefinite quadratic form, the orbifold O is not compact.

Proposition 4.1. A Hamiltonian in total resonance (1) is integrable since I1, . . . , In are n integrals in
involution and in fact it is maximally super-integrable since there are 2n − 1 independent integrals (6). In
this case there are 3n− 2 polynomial invariants (7) subject to n− 1 constraints (8).

A model for the orbit space O is the semi-algebraic variety in R3n−2 generated by the invariants {a1, . . .,
a3n−2} introduced in (7) where a1 ≥ 0, . . . , an ≥ 0, HR = k1 a1 + · · · + kn an = h and (8) holds, therefore
O is realized by a set of dimension 2n − 2. When HR in (1) is a definite quadratic form, O is a weighted
complex projective space, it is compact and homeomorphic to CPn−1 and it is diffeomorphic to it if kj = 1
for all j and h > 0. When HR is indefinite the orbifold O is unbounded.

One cannot expect more. Consider the Hamiltonian HR = ω1 I1 + ω2 I2 written in action-angle variables
with ω1/ω2 irrational. This Hamiltonian is integrable since I1, I2 are two independent integrals in involution.

Fixing I1 and I2 defines a 2-torus T ⊂ R4 and the equations on this torus are θ̇1 = −ω1, θ̇2 = −ω2 with
orbits that are dense on T [43]. Thus any continuous integral must be constant on T and therefore a function
of I1, I2. Therefore this Hamiltonian is integrable but not super-integrable.

Resonances in Hamiltonian systems with three or more degrees of freedom have received also the atten-
tion of many authors from the point of view of the determination of periodic solutions and their possible
bifurcation, reduction theory through polynomial invariants, existence of chaos and other related topics, see
for instance [58, 59, 31, 34, 24, 23, 30, 21, 17, 52]. In this case the dimension of the orbit space is at least
four and the theory turns out rather cumbersome.

One of the issues when n > 2 is the number of invariants needed in order to treat a specific resonance.
Concretely, given a Hamiltonian with unperturbed part (1) with its higher order terms in normal form with
respect to HR, the invariants of a basis set are not enough to write down the Hamiltonian as a polynomial
of them. For instance, the Poisson brackets among the invariants (7) cannot be represented as polynomials
in the aj ’s. Indeed one needs to determine a Hilbert basis related to (1), that is, a finite set of invariant
polynomials, such that every invariant polynomial may be written as a polynomial function of these basis
elements, see [7]. In particular, Egilsson [14] has proved that the minimal size possible for a Hilbert basis
associated to a Hamiltonian like (1) is n2. Thus the theory for Hamiltonians with n > 2 requires a special
consideration. We shall relegate its study to [46], where we will provide an efficient algorithm due to Derksen
and Kemper [11] to compute a Hilbert basis of invariants for a given HR. We will also discuss the treatment
of resonant Hamiltonian systems with small perturbations, starting from the reduced Hamiltonian written
in terms of the invariants of the Hilbert basis.

4.2. Plateau, Peaks and Ridges. For our perturbation analysis that we shall perform in Sections 6 and
7 we need to consider various types of subsets of O.

9



The plateau L ⊆ O consists of all those points d ∈ O such that if z ∈ Π−1(d) then the minimal period
through z is 2π. The only solution to Z(t) z = z is t = 0 mod 2π and so the action Z is free at d, so
locally free. Since Z(2π) is the identity matrix all the characteristic multipliers of the solution through z are
+1. Clearly L is an open subset and it inherits a symplectic structure from M just as in Reeb’s Theorem
[50, 61] or in regular reduction theory [40], see also [38]. The plateau maybe the whole orbifold as in the case
of regular reduction or it may exclude some of the structures given below. In any case the plateau always
contains the image under Π of all the points R2n where Ij 6= 0 for all j = 1, . . . , n.

To understand the substructures of O we first look at some subsets of R2n and establish some notation.
Let D = {1, 2, . . . , n} be the set of indexes, F ⊆ D and F † the complement of F in D, so D = F ∪F †. Now
let

IF = {z = (x1, . . . , xn, y1, . . . , yn) ∈ R2n : Ij = x2j + y2j = 0 for all j ∈ F †}.
The set IF is an invariant symplectic linear subspace of R2n of dimension 2f where f is the number of

elements in F . It is filled with periodic solutions. For example, taking F = D one has ID = R2n, ID† is the
origin in R2n. For each of these linear spaces one can perform the reduction as previously defined by fixing
H = h where h is a regular value and identifying orbits to a point to obtain an orbifold OF of dimension
2f − 2. Thus O is a complicated union of suborbifolds. The various periods of the solutions in O single out
which of these suborbifolds will be interesting for perturbation analysis.

If F = {s} then IF = {z = (0, . . . , 0, xs, 0, . . . , 0, ys, 0, . . . , 0)} is a 2-dimensional linear subspace filled
with periodic solutions of period T = 2π/|ks| which is traditionally called a normal mode. The image of
this linear subspace under Π is a single point Ps ∈ O and it is a peak if |ks| > 1 and ki/ks is not an integer
when i 6= s. The maximum number of peaks in O is n. All the nonzero solutions in IF are periodic with
least period T and multipliers e±k1T i, e±k2T i, . . . , e±knT i where e±ksT i = 1 while all the other multipliers are
different from one. The only solutions of Z(t) z = z are t = 0, 2π/|ks|, 2(2π/|ks|), . . . , (|ks| − 1)(2π/|ks|)
mod 2π and so the action Z is locally free at this point.

A ridge is in the complement of the plateau and the peaks. Let F = {s1, . . . , sm} be a proper subset of
D, so 1 < m < n. The linear space IF has dimension 2m and the suborbifold OF has dimension 2m− 2. A
ridge is the subset GF ⊆ OF formed by the points d ∈ OF such that z ∈ Π−1(d) has action-angle coordinates
with Is1 6= 0, . . . , Ism 6= 0 and all the other Ij ’s are zero, z is filled with periodic solutions of least period
T = 2π/κ with κ = gcd(|ks1 |, . . . , |ksm |) > 1 such that 2(n−m) characteristic multipliers are different from
one. The solutions of Z(t) z = z are t = 0, 2π/κ, . . . , (κ − 1)(2π/κ) mod 2π, thence the action Z is locally
free at this point.

Since each point falls into one of the above categories the action Z defined in (2) is locally free at every
point.

For insight consider the case when all the ki’s are positive so HR = h with h = 1 is an ellipsoid or a
topological sphere of dimension 2n − 1. For n = 2 the flow on the 3-sphere was discussed above. But a
ridge can only occur for systems of at least three degrees of freedom where the integral manifold is at least
5-dimensional and the orbit space is at least 4-dimensional. For higher dimensions we need a more symbolic
representation. To this end return to action-angle variables and project N onto (I1, . . . , In)-space as follows,

P : N → S : (I1, . . . , In, θ1, . . . , θn) 7→ (I1, . . . , In)

where
S = {(I1, . . . , In) ∈ Rn : k1 I1 + · · ·+ kn In = 1, Ij ≥ 0}.

S is the simplex illustrated in Figure 5 for n = 2, 3. In this figure each point in the simplex represents a
torus Tj , the j-dimensional torus (the circle is the 1-torus). That is, if d ∈ S then P−1(d) ∈ N is a torus and
we say the torus P−1(d) is above d. Above each vertex is a circle T1, above each edge is a 2-torus T2 and
above each interior point of a triangle is a 3-torus T3. This simplistic representation does not tell us just
how these tori are attached to each other, so we refer the reader to the beautiful theory found in Fomenko
et al. [22].

For n = 2 refer to the image on the left in Figure 5. If k1 = k2 = 1, gcd(k1, k2) = 1 then every point is
in the plateau, i.e. the orbit space is regular. If k1 = 1, k2 = 2, gcd(k1, k2) = 1 then above (0, 1/k2) is a
peak and all the other points are in the plateau. If k1 = 2, k2 = 3, gcd(k1, k2) = 1 then above (0, 1/k2) and
(1/k1, 0) are peaks and all the other points are in the plateau, i.e. the orbit space has two singular points.
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Figure 5. The simplex S for n = 2 (left) and n = 3 (right)

For n = 3 refer to the image on the right in Figure 5. If k1 = 2, k2 = 3, k3 = 5 then gcd(k1, k2, k3) =
gcd(k1, k2) = gcd(k2, k3) = gcd(k3, k1) = 1 and the vertices correspond to peaks and all the other points
are in the plateau (even the edges). If k1 = 6, k2 = 10, k3 = 15 then gcd(k1, k2, k3) = 1, gcd(k1, k2) =
2, gcd(k2, k3) = 5, gcd(k3, k1) = 3 then the vertices correspond to peaks, the edges correspond to ridge points,
and the interior points are in the plateau. If k1 = 1, k2 = 2, k3 = 3 then gcd(k1, k2, k3) = 1, gcd(k1, k2) =
1, gcd(k2, k3) = 1, gcd(k3, k1) = 1, the vertex that corresponds to k1 is not a peak but is a plateau point
whereas the other two vertices are peaks. The rest of points are in the plateau.

Any solution of the Hamiltonian system (1) is periodic with period T = 2π/g where g is a positive integer.
Let z ∈ R2n, z 6= 0, so as we have seen above the only solutions of Z(t) z = z are t = 0, T, 2T, . . . , (g − 1)T .
This means that the isotropy subgroup of Z is non-trivial for all nonzero z ∈ R2n. Thus we have a well
defined orbifold with regular points at the plateau and singularities at the peaks and ridges.

The only exception to the classification made above occurs when the Hamiltonian (1) is indefinite. Con-
sider the solutions passing though a point Ps ∈ O with xj = yj = 0 if j 6= s and take the level set h = 0.
Then the only possible solution to the system related to (1) is z = 0, hence xs = ys = 0. The isotropy
subgroup of Z is trivial for all z ∈ R2n. This gives rise to the point (a1, . . . , an, . . . , a3n−2) = (0, . . . , 0, . . . , 0)
on O which is a singularity in the orbifold but different from a peak or a ridge. Its isotropy subgroup of Z is
trivial, so Ps is related to a unique point of R2n, which is the origin of this space. For n = 2 see Section 4.3.

4.3. Orbits Spaces and Invariants for the q:p Resonance. One of our main goals is the study of the
unfolding of resonant systems subject to small perturbations using normalization and invariants. Let us
consider again the two degrees of freedom system Hqp in (5) of Section 3.2. In this section we give the
geometry of the orbit spaces for two degrees of freedom systems in preparation for the bifurcation analysis in
Section 7. This resonance has been treated by many authors from different points of view; see for example
[27, 55, 32, 33, 8, 16, 48, 18, 28, 56, 29].

From (7) a basis set of invariants associated to the q:p resonance is

(9)

a1 = I1 = x21 + y21 ,

a2 = I2 = x22 + y22 ,

a3 = I
|p|/2
1 I

q/2
2 cos(q θ2 − p θ1) = Re[(x1 − sgn(p)y1i)|p|(x2 + y2i)q],

a4 = I
|p|/2
1 I

q/2
2 sin(q θ2 − p θ1) = Im[(x1 − sgn(p)y1i)|p|(x2 + y2i)q],

subject to the constraint

(10) a23 + a24 = a
|p|
1 aq2, a1 ≥ 0, a2 ≥ 0.

Note that a3 and a4 are polynomials in x, y of degree q + |p|.
The Poisson brackets associated to the invariants are computed using the relations of the aj ’s in terms of

the action-angle coordinates Ij ’s, θj ’s and then transformed back to the invariants. The explicit expressions
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are given in Table 1. All Poisson brackets are polynomial in the invariants as q and p are nonzero integers.
In fact the invariants (9) form a Hilbert basis.

{ , } a1 a2 a3 a4

a1 0 0 2 p a4 −2 p a3

a2 0 0 −2 q a4 2 q a3

a3 −2 p a4 2 q a4 0 a
|p|−1
1 aq−1

2 (q2 a1 − p |p| a2)

a4 2 p a3 −2 q a3 −a|p|−1
1 aq−1

2 (q2 a1 − p |p| a2) 0

Table 1. Poisson algebra of the invariants a1, . . . , a4. The ai’s of the first column are put in the left-hand

side of the bracket, and the ones of the first row are placed on the right-hand side of the brackets

As discussed above, an orbit of the system is uniquely specified by the four invariants subject to the
constraints (10) and so the orbit space O is determined by (9), (10) and

(11) Hqp = q a1 + p a2 = h.

Solve (11) for a2 and substitute into the constraint equation to get

(12) a23 + a24 = a
|p|
1

(
h− q a1

p

)q
,

which defines a surface in (a1, a3, a4)-space. This surface is a representation of the orbit space O. We
distinguish different situations according to the values of q and p. Note that (12) defines a surface of
revolution, so let ρ, ψ be polar coordinates in the (a3, a4)-plane so that equation (12) becomes

(13) ρ2 = a
|p|
1

(
h− q a1

p

)q
.

We will say that the orbit space O is an orange, turnip or a lemon if the surface (12) is compact and has
0, 1 or 2 peaks respectively. In the non-compact case we will say that O is a cap (yarmulke) if it is smooth
or a trumpet if it has a singular point (which may or may not be a peak) of conical type.

Case p > 0. In this situation let h > 0. The surface in (a1, a3, a4)-space is compact. See Figure 6 above for
the views of the (ρ, a1)-sections of the orbit spaces when p > 0.

First let us specify p = q = 1. Then by completing the square we have ρ2 + (a1−h/2)2 = h2/4 which is a
circle of radius h/2 centered at (ρ, a1) = (0, h/2), and so (13) defines a sphere in a-space of radius h/2 and
center at (a1, a3, a4) = (h/2, 0, 0), see Figure 6(a). Here there are no singularities so this case falls under
regular reduction.

Now consider the case where q and p are positive and q 6= p, then the right-hand side of equation (13) is
positive for 0 < a1 < h/q and the surface of revolution is smooth for a1 in that range. But the right-hand
side is zero for a1 = 0 and a1 = h/q and these are the candidates for singularities. Near a1 = 0 from (13)

we see that ρ ∼ c a
p/2
1 where c > 0 is a constant. Thus the surface of revolution is only smooth at a1 = 0 if

p = 1. For p > 1 the surface at a1 = 0 has a peak which is cone-like when p = 2 and is cusp-like for p > 2.
The peak gets sharper for larger p. According to Section 4.2 this peak is labelled by P2.

Similarly near a1 = h/q we see that ρ ∼ c(h − q a1)q/2 where c > 0 is a constant. Thus the surface of
revolution is only smooth at a1 = h/q if q = 1. When q > 1 the surface has a peak at a1 = h/q and the
peak gets sharper for larger q. The peak is cone-like when q = 2 and cusp-like for q > 2. See Figures 6(b)
and 6(c). This peak is labelled by P1.
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(a) Orange 1:1 (b) Turnip 2:1 (c) Lemon 2:3

Figure 6. Case p > 0. Above: ρ versus a1. Below: Orbit spaces

a1

Ρ

h < 0

a1

Ρ

h = 0

a1

Ρ

h > 0

Out[2314]=

(a) Cap (b) Trumpet (not a peak) (c) Trumpet (a peak)

Figure 7. Case q = 3, p = −1. Above: ρ versus a1. Below: Orbit spaces

Case p < 0. The surface of revolution is unbounded and it is smooth when the right-hand side of (12) is
positive. As always a1 ≥ 0 but a2 ≥ 0 implies a1 ≥ h/q. See Figure 7.

When h < 0 the right-hand side of (12) is zero only at a1 = 0 and nearby ρ ∼ c a
|p|/2
1 with c a positive

constant. Thus the surface is smooth, that is, a cap at a1 = 0 when |p| = 1, it is cone-like when |p| = 2 and
is cusp-like when |p| > 2, i.e. one gets trumpets. Thus the surface has a peak at a1 = 0 when |p| ≥ 2. The
peak is called P2.
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When h = 0 the right-hand side of (12) is zero at a1 = 0 and nearby ρ ∼ c a(q+|p|)/21 with c > 0 a constant.
Thus the surface is cone-like when q+ |p| = 2 and is cusp-like when q+ |p| > 2, thence it is always a trumpet.
So when h = 0 there is always a conical singularity at a1 = 0. This is the point of O that corresponds to the
origin in R4. It is not a peak nor a ridge, see the last paragraph of Section 4.2.

When h > 0 the right-hand side of (12) is zero at a1 = h/q and nearby ρ ∼ c(q a1 − h)q/2 where c > 0 is
a constant. Thus the surface is smooth, i.e. a cap, at a1 = h/q when q = 1, is cone-like when q = 2 and is
cusp-like when q > 2. So there is a peak at a1 = h/q provided q ≥ 2 and then the orbifolds O are trumpets.
In this case the peak is named P1.

5. Symplectic Coordinates in the Orbit Space for the q:p Resonance

5.1. Coordinates for the Regular Points. In order to analyze the stability of equilibria, the possible
bifurcations of periodic solutions or the existence of KAM tori, it is convenient to introduce symplectic
coordinates valid in neighborhoods of a regular point. We present the procedure for two degrees of freedom
and its generalization to n ≥ 2 will appear in [46]. It is emphasized that as far as we know there is
not a systematic approach to build symplectic coordinates around a regular point of the orbit space, thus
our procedure is new, although a procedure to get Darboux coordinates in a constructive way using Lie
transformations can be seen in [41]. However our approach is more appropriate for resonant Hamiltonians.

Working with action-angle coordinates we build a linear transformation requiring that it is a 1:1 trans-
formation. We also take into account that the occurrence of the angles θj ’s in the expressions for a3, a4
in (9) is through the combination q θ2 − p θ1. Also for a fixed energy h one has h = q I1 + p I2, so we let
J1 = q I1 + p I2 and simplify the calculations a bit by assuming that J2 does not depend on I2. A slightly
different change is derived when J2 is considered to be a function of I2 as we shall see later. So we start with

(14)
J1 = q I1 + p I2, J2 = α I1,

ψ1 = β θ1 + γ θ2, ψ2 = δ(q θ2 − p θ1),

with unknowns α, β, γ and δ.
The change (14) is symplectic when β = 0, γ = 1/p and δ = −1/(αp). Writing down the ak’s in terms of

the Jk’s, ψk’s we end up with

(15)

a1 =
J2
α
,

a2 =
αJ1 − q J2

αp
,

a3 =

(
J2
α

)|p|/2(
αJ1 − q J2

αp

)q/2
cos(αpψ2),

a4 =

(
J2
α

)|p|/2(
αJ1 − q J2

αp

)q/2
sin(αpψ2).

In order to get a 1:1 transformation we need that the arguments of the cosine and sine in (15) be ±ψ2.
Thus we set α = 1/|p| so J2 = I1/|p| and ψ2 = |p|[θ1 − (q/p) θ2].

Now we are ready to define action-angle coordinates, J , ψ, through

(16) J ≡ J2 =
I1
|p|
, ψ ≡ ψ2 = |p|[θ1 − (q/p) θ2],

noting that J and ψ are well defined for a regular point of (10) and that {J, ψ} = 2.
14



Applying (16) to (9), or to (15), and taking into account that J1 = h, the relation among the invariants
aj ’s and the action-angle variables J , ψ is

(17)

a1 = |p| J,

a2 =
h− q |p| J

p
,

a3 = (|p| J)|p|/2
(
h− q |p| J

p

)q/2
cosψ,

a4 = −sgn(p)(|p| J)|p|/2
(
h− q |p| J

p

)q/2
sinψ.

Rectangular coordinates x, y are introduced in terms of J and ψ by means of J = x2+y2, ψ = tan−1(y/x),
noticing that {x, y} = 1. After a few manipulations we arrive at

(18)

a1 = |p|(x2 + y2),

a2 =
h− q |p|(x2 + y2)

p
,

a3 = |p||p|/2x(x2 + y2)(|p|−1)/2
[
h− q |p|(x2 + y2)

p

]q/2
,

a4 = −sgn(p)|p||p|/2y(x2 + y2)(|p|−1)/2
[
h− q |p|(x2 + y2)

p

]q/2
.

Obviously in (a1, x, y)-space the transformed surface is given by the first equation of (18).
If we assume that J2 depends only on I2 we make

(19)
J1 = q I1 + p I2, J2 = α I2,

ψ1 = β θ1 + γ θ2, ψ2 = δ(q θ2 − p θ1),

and proceeding similarly as above we arrive at the 1:1 transformation

(20)

a1 =
h− q p(x2 + y2)

q
,

a2 = q(x2 + y2),

a3 = q(q−|p|)/2x(x2 + y2)(q−1)/2
[
h− q p(x2 + y2)

]|p|/2
,

a4 = q(q−|p|)/2y(x2 + y2)(q−1)/2
[
h− q p(x2 + y2)

]|p|/2
,

which is an alternative to (18).
The inverse of (18) is given by

(21) x = |p|−1/2a(1−|p|)/21 a
−q/2
2 a3, y = −sgn(p)|p|−1/2a(1−|p|)/21 a

−q/2
2 a4,

while the inverse of (20) yields

(22) x = q−1/2a
−|p|/2
1 a

(1−q)/2
2 a3, y = q−1/2a

−|p|/2
1 a

(1−q)/2
2 a4.

We need to make an extra transformation to get the desired symplectic coordinates around a specific
regular point of the surface (10) for a given Hamiltonian in O. If (a01, a

0
3, a

0
4), together with a02 = (h−q a01)/p,

represents a particular critical point of the equations of motion associated to the Hamiltonian, the change
(21) (or (22)) is used to obtain the point (x0, y0) in the projection defined through (18) (or through (20)).
Then, we introduce new coordinates x̄, ȳ as x = x̄ + x0, y = ȳ + y0 and perform a Taylor expansion of the
Hamiltonian function in terms of x̄, ȳ around x̄ = ȳ = 0. Since the point of the surface (12) we are analyzing
is regular, the transformations (18) and (20) and their respective inverses (21) and (22) have to be analytic in
a neighborhood of (x0, y0). When p = 1 the change (20) cannot be applied around the point (0, 0, 0), but one
applies instead the transformation (18), while when q = 1 the change (18) cannot be applied around (h, 0, 0)
but (20) can be used. In the remaining cases both (18) and (20) and their inverses are analytic. Therefore,
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one can always obtain x̄, ȳ as a pair of symplectic rectangular coordinates. When applying either (18) or
(20) to a given Hamiltonian we divide the resulting Hamiltonian by 2 since in the change from rectangular
to action-angle coordinates we multiplied the transformed Hamiltonian by 2.

Proposition 5.1. Let H be a Hamiltonian in q:p resonance defined in the orbit space O with q and p
as in (5). Let (a01, a

0
3, a

0
4) satisfying (12) represent a regular critical point of the vector field associated to

H and let (a01, x0, y0) be the critical point in (a1, x, y)-space where x0, y0 are obtained from (a01, a
0
3, a

0
4) by

means of (21) or of (22). The successive changes given by (18) (or (20)) and by x = x̄ + x0, y = ȳ + y0
transform H into a function in the symplectic rectangular coordinates x̄ and ȳ in a neighborhood of the
critical point (a01, a

0
3, a

0
4). The surface (12) is transformed into a1 = |p|[(x̄ + x0)2 + (ȳ + y0)2] (or into

a1 = {h− q p[(x̄+ x0)2 + (ȳ + y0)2]}/q).

5.2. Symplectic Smoothing. In order to study the eventual singular points appearing in the orbit space
defined by (12) and the flow of the harmonic oscillator in q:p resonance (usually with an attached pertur-
bation) around the singular points, we construct a set of symplectic changes of coordinates with the aim
of removing the conical singularities on the surface O and perform local studies around these points. The
procedure is presented for arbitrary values of integers q > 0, p 6= 0 and gcd(q, p) = 1. We focus on the
singularities occurring at a1 = 0 (the peak P2 and the singularity of the origin in a-space when h = 0) and
at a1 = h/q (the peak P1) whereas the generalization for n ≥ 2 will appear in [46]. We stress that our
analysis covers all possible cases of singular orbits spaces when n = 2. In addition, although a few particular
situations have been studied previously, see for instance [23, 24], our approach is new, straightforward and
can be extend to any dimension easily.

In order to unfold the singularity at a1 = 0 we introduce the change

w = a3 + a4i, w̄ = a3 − a4i, w w̄ = a23 + a24.

Making w = z|p| the constraint (12) is transformed into

z|p| z̄|p| = a
|p|
1

(
h− q a1

p

)q
,

whence one gets

z z̄ = a1

(
h− q a1

p

)q/|p|
.

Then, the variables we use to perform a local study around the point are (a1, u, v), where u = Re(z) and
v = Im(z). The expression of the smoothed surface in the new variables is

(23) u2 + v2 = a1

(
h− q a1

p

)q/|p|
.

Since u, v are not symplectic we modify them to get local symplectic coordinates. We shall achieve it
using action-angle coordinates as in Section 5.1, having in mind that we are looking for a |p|:1 covering.

The singularity at a1 = h/q is unfolded similarly, but introducing z so that w = zq. We get

(24) u2 + v2 = a
|p|/q
1

(
h− q a1

p

)
,

thus we need to build a q:1 covering, and we shall deal with it by means of adequate action-angle coordinates.
For the singularity a1 = a2 = 0, h = 0 one has that p < 0, so |p| = −p. Making w = zq+|p|, (12) becomes

(25) u2 + v2 =

(
q

|p|

)q/(q+|p|)
a1,

concluding that the symplectic change we shall make is a (q + |p|):1 covering.
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Case a1 = 0, h p > 0. This is the smoothing of the peak P2. We consider the singular point (a1, a3, a4) =
(0, 0, 0) when h 6= 0, noticing that a2 = h/q 6= 0. The inequality |p| > 1 also holds.

Analogously to how we proceeded in the precedent subsection we introduce action-angle coordinates J1,
J2, ψ1, ψ2 from the Ik’s, θk’s and such that J2 depends only on I1 and ψ2 is a multiple of p θ1 − q θ2. In
order to get a symplectic transformation that is a |p|:1 covering we obtain specific values for Jk’s, ψk’s. Next
we introduce J ≡ J2 and ψ ≡ ψ2 where

(26) J = I1, ψ = θ1 − (q/p)θ2.

The angle ψ is undefined at a1 = 0 but this trouble will be handled below. Note that {J, ψ} = 2.
Putting in (9) I1, I2 in terms of J and h (using (26) and the identity h = q I1 + p I2) and writing θ1, θ2

as functions of ψ the invariants aj ’s are given by

(27)

a1 = J,

a2 =
h− q J
p

,

a3 = J |p|/2
(
h− q J
p

)q/2
cos(pψ),

a4 = −J |p|/2
(
h− q J
p

)q/2
sin(pψ).

As in the regular case we define x, y in terms of J and ψ through J = x2 + y2, ψ = tan−1(y/x), thus
{x, y} = 1. Using the identities

(28)

(r2 + s2)|m|/2 cos[m tan−1(s/r)] =

b|m|/2c∑
k=0

(−1)k
(
|m|
2k

)
r|m|−2ks2k,

(r2 + s2)|m|/2 sin[m tan−1(s/r)] = sgn(m)

b(|m|−1)/2c∑
k=0

(−1)k
(
|m|

2k + 1

)
r|m|−2k−1s2k+1,

for reals r, s and integer m, we get the unfolding transformation

(29)

a1 = x2 + y2,

a2 =
h− q(x2 + y2)

p
,

a3 =

[
h− q(x2 + y2)

p

]q/2 b|p|/2c∑
k=0

(−1)k
(
|p|
2k

)
x|p|−2ky2k,

a4 = −sgn(p)

[
h− q(x2 + y2)

p

]q/2 b(|p|−1)/2c∑
k=0

(−1)k
(
|p|

2k + 1

)
x|p|−2k−1y2k+1.

The transformation (29) is well defined near x = y = 0. In (a1, x, y)-space the transformed surface is given
by the smooth constraint a1 = x2 + y2. Since the angle ψ enters in (27) through cos(pψ), sin(pψ), the
change (29) is a |p|:1 covering.

Case a1 = h/q, h > 0. This is the smoothing of the peak P1. Now q > 1 and the singular point is
(a1, a3, a4) = (h/q, 0, 0). We make a1 = (h − p a2)/q and introduce Jk’s, ψk’s following the procedure
explained in Section 5.1 having in mind that we wish to obtain a q:1 covering. The pair J ≡ J2, ψ ≡ ψ2 is

(30) J = I2, ψ = θ2 − (p/q) θ1.

The angle ψ is not well defined at a2 = 0 but this is not a problem when passing to rectangular coordinates.
The action-angle pair satisfies {J, ψ} = 2.
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We replace in (9) I2 by J and I1 by (h− p J)/q and express θ1, θ2 in terms of ψ through (30). Then we
introduce x, y as in the previous case. With the aid of (28), it is concluded that the aj ’s are given by

(31)

a1 =
h− p(x2 + y2)

q
,

a2 = x2 + y2,

a3 =

[
h− p(x2 + y2)

q

]|p|/2 bq/2c∑
k=0

(−1)k
(
q

2k

)
xq−2ky2k,

a4 =

[
h− p(x2 + y2)

q

]|p|/2 b(q−1)/2c∑
k=0

(−1)k
(

q

2k + 1

)
xq−2k−1y2k+1.

The transformation (31) is well defined near x = y = 0. Transformation (31) is a q:1 covering. In (a1, x, y)-
space the transformed surface is given by a1 = [h − p(x2 + y2)]/q. The pair x, y is a set of symplectic
rectangular coordinates in a neighborhood of x = y = 0.

Case a1 = 0, h = 0. We treat the situation a1 = 0 when h = 0 so a2 = 0. Observe that p < 0 and the
singular point of O becomes (0, 0, 0).

Proceeding analogously to the precedent cases we introduce action-angle coordinates Jk’s, ψk’s assuming
that ψ2 is a multiple of p θ1 − q θ2, J2 is a function of I1 and I2 and the change we are constructing is a
symplectic (q + |p|):1 covering. Thus we define J ≡ J2 and ψ ≡ ψ2 by means of

(32) J = I1 + I2, ψ =
1

q + |p|
(q θ2 + |p| θ1) .

It is easily checked that {J, ψ} = 2.
The invariants aj ’s are written in terms of J and ψ. Next rectangular coordinates x, y are introduced as

functions of J and ψ as in the previous cases. After some manipulations including making use of (28) we
get the unfolding

(33)

a1 =
|p|

q + |p|
(x2 + y2),

a2 =
q

q + |p|
(x2 + y2),

a3 = qq/2|p||p|/2(q + |p|)(p−q)/2
b(q+|p|)/2c∑

k=0

(−1)k
(
q + |p|

2k

)
xq+|p|−2ky2k,

a4 = qq/2|p||p|/2(q + |p|)(p−q)/2
b(q+|p|−1)/2c∑

k=0

(−1)k
(
q + |p|
2k + 1

)
xq+|p|−2k−1y2k+1.

The transformation (33) is polynomial, so it is well defined near x = y = 0. The change (33) is a (q + |p|):1
covering. Since {J, ψ} = 2 then {x, y} = 1.

In (a1, x, y)-space the transformed surface is given by a1 = |p|(x2 + y2)/(q + |p|). The variables x, y
represent a pair of symplectic rectangular coordinates valid in a neighborhood of x = y = 0.

In Figure 8 we show the smoothing technique for the 2:3 resonance at the points (a1, 0, 0) = (0, 0, 0) and
(a1, 0, 0) = (h/2, 0, 0) for the energy level h = 10/3. Around (0, 0, 0) we employ the transformation (29) and
the unfolded surface is drawn in red. For (h/2, 0, 0) we use (31) and the unfolded surface is drawn in brown.
We also present the smoothing for the 3:−1 resonance at h = 0 performed through the change (33). The
local smoothed surface appears in green. Furthermore we illustrate how a regular point of the trumpet (in
dark red) is projected into four points of the surface a1 = (x2 + y2)/4, due to the (q + |p|):1 covering.

As in the regular case, given a Hamiltonian in a-space when expressing it in (a1, x, y)-space using either
(29), (31) or (33) we divide the transformed Hamiltonian by 2.

We summarize the previous paragraphs in the following.
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Figure 8. Symplectic smoothings for the resonances 2:3 (left) and 3:−1 (right)

Proposition 5.2. Given the Hamiltonian (5) in q:p resonance the surface given through (12) has a singular
point of conical type at (a1, a3, a4) = (0, 0, 0) when |p| > 1, h p > 0, at (a1, a3, a4) = (h/q, 0, 0) when q > 1,
h > 0 and at (a1, a3, a4) = (0, 0, 0) when p < 0, h = 0. For |p| > 1, h p > 0 an unfolding of the point
(0, 0, 0) is provided by the change (29) together with the constraint a1 = x2 + y2. An unfolding of (h/q, 0, 0)
for q > 1, h > 0 is provided by (31) with the constraint a1 = [h − p(x2 + y2)]/q. When p < 0, h = 0 the
unfolding is given by (33) with the constraint a1 = |p|(x2 + y2)/(q + |p|).

6. Attaching Perturbations

6.1. Normalizing Small Perturbations. Consider a small Hamiltonian perturbation of HR, i.e. take

(34) Hε = HR + εHP

where HP is a smooth function on R2n (the perturbation) and ε is a small parameter. Our analysis starts
with normalizing the Hamiltonian possibly to very high order, i.e. we transform the Hamiltonian by a
symplectic change of variables to the form

(35) Hε = HR + εHN + ε2HH

where HN is in normal form with respect to HR, that is, {HN ,HR} = 0. Besides it is assumed that HN
is already reduced, which for us means it is written totally in terms of invariants, as a projection Π from
Nε = H−1ε to O has been performed. For the normalization we use the method by Deprit [10]. Since the
transformation to normal form does not converge in general it is necessary to stop at a certain order leaving
a remainder term HH called the higher order terms. (In the various applications the powers of ε will vary.)

6.2. On the Plateau. In order to stress our point of view we recall in this subsection some results about
the reconstruction of the flow of a Hamiltonian system related to the points of the reduced space for which
regular reduction holds. In particular we give a new description of the center-saddle bifurcation of periodic
solutions in the context of regular reduction.

To investigate solutions that are perturbations of plateau points we use averaging as we did in [61].
Specifically let the average of HP be

(36) H̄(z) =
1

2π

∫ 2π

0

HP (Z(t) z)dt.

Clearly H̄ is constant on the orbits of HR and so, after projecting into O, it can be considered as a function
on O which is smooth on the plateau L. (Observe that we keep the same name for the averaged Hamiltonian
after projection through Π.) As a consequence, for Hamiltonians like (35) one has that H̄ = HN , that is,
the normal form computation is equivalent to the averaging over the periodic solutions of HR. By Reeb’s
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Theorem the plateau has a symplectic structure and H̄ defines a Hamiltonian system on L. Let v be
symplectic coordinates on L then the Hamiltonian system of equations on L in these coordinates is

v̇ = J ∂H̄
∂v

where J is the usual (2n− 2)× (2n− 2) matrix of Hamiltonian mechanics.
A critical point d ∈ L of H̄ (i.e. ∂H̄/∂v(d) = 0) is nondegenerate if the Hessian at the critical point,

∂2H̄/∂v2(d), is nonsingular. The linearization about the critical point is

v̇ = Ā v = J ∂
2H̄
∂v2

(d) v.

Let the eigenvalues of Ā be ν1, . . . , ν2n−2.
Indeed, all the local results in Section 2 of [61] hold at plateau points. For example:

Theorem 6.1. If H̄ has a nondegenerate critical point at Π(z) = d ∈ L ⊂ O, z ∈ Nε(h) = H−1ε (h) then
there are smooth functions z(ε) = z +O(ε) and T (ε) = 2π +O(ε) for ε small, such that the solution of Yε,
the vector field associated to Hε, through z(ε) is T (ε)-periodic. The characteristic multipliers are

+1,+1,+1 + 2πε ν1 +O(ε2), . . . ,+1 + 2πε ν2n−2 +O(ε2).

Proof. This is an immediate consequence of Corollary 2.2 in [61], where we have used the fact that T (ε) =
2π +O(ε). �

An illustrative bifurcation result is the proof of the existence of an extremal bifurcation of periodic
solutions using reduction theory. We could handle other cases such as the pitchfork or the period doubling
bifurcations similarly.

For simplicity let n = 2 so the orbit space O is 2-dimensional and consider the case where HP and H̄
depend on a parameter δ which may be an external parameter or h ∈ I ⊂ R. A critical point d ∈ L ⊂ O of
H̄ for δ = 0 will be called an extremal critical point [39, 43] if there are symplectic coordinates u, v for O at
d such that

(37) H̄ = H̄u = H̄v = H̄vv = H̄uv = 0, H̄uu 6= 0, H̄vδ 6= 0, H̄vvv 6= 0,

when u = v = δ = 0. The canonical example of the extremal critical point is given by

H̄ = u2/2 + δ v + v3/3.

An extremal bifurcation is sometimes called a saddle-center bifurcation, or creation in [1], or fold in catas-
trophe theory [49].

Lemma 6.1. An extremal critical point d lies on a smooth one-parameter family d(δ), d(0) = d, of critical
points of H̄ and δ achieves a non-degenerate maximum or minimum on this family at d. The point d
divides the family of critical points in two subfamilies, one subfamily is all saddle points and the other is all
non-degenerate maxima (or minima).

This is an elementary result, but for a proof and discussion, see [49].

Let Hε,δ be the Hamiltonian (35) with HN = H̄, let Yε,δ be the vector field associated to Hε,δ and let

Nε,δ(h) = H−1ε,δ(h).

Theorem 6.2. If H̄ has an extremal critical point at Π(z) = d ∈ L ⊂ O with z ∈ Nε,0(h) when δ = 0 then
there are smooth functions z(ε, δ) and T (ε, δ) for ε and δ small with z(0, 0) = z, T (0, 0) = T , z(ε, δ) ∈ Nε,δ(h)
and the solution of Yε,δ through z(ε, δ) is T (ε, δ)-periodic.

For a fixed small ε the family of periodic solutions z(ε, ·) has a unique degenerate periodic solution which
divides the family into a subfamily of elliptic periodic solutions and a subfamily of hyperbolic periodic solu-
tions.

Proof. We follow the proof found in [15]. From the proof of Theorem 2.2 and Lemma 2.1 of [61] the
cross section map in an energy level is of the form P : σ → σ : y 7→ P (y, δ) where y = (u, v) are local
coordinates in O and P (y, δ) = y + ε T J ∇y H̄(y, δ) + O(ε2). Define Q by P (y, δ) = y + ε T J Q(y, δ, ε),
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so Q(y, δ, ε) = ∇y H̄(y, δ) + O(ε). A fixed point of P gives rise to a periodic solution so we must solve
P (y, δ) = y or equivalently Q(y, δ, ε) = 0.

The equations for a fixed point are Q1(u, v, δ, ε) = H̄u + O(ε) = 0, Q2(u, v, δ, ε) = H̄v + O(ε) = 0, and
when u = v = δ = ε = 0 the Jacobian matrix of these equations is

∂(Q1, Q2)

∂(u, v, δ)
=
∂(H̄u, H̄v)
∂(u, v, δ)

=

[
H̄uu 0 H̄uδ

0 0 H̄vδ

]

which is of rank 2 by (37). Thus, we can find functions ξ(v, ε) and η(v, ε) such that

Q1(ξ(v, ε), v, η(v, ε), ε) = Q2(ξ(v, ε), v, η(v, ε), ε) = 0.

From these identities we compute

ξv(0, 0) = ηv(0, 0) = 0, ηvv(0, 0) = −H̄vvv(0, 0, 0)/H̄vδ(0, 0, 0) 6= 0.

By the implicit function theorem there is a function w(ε) such that ηv(w(ε), ε) = 0 and ηvv(w(ε), ε) 6= 0.
For a fixed small ε the function η(v, ε) has a non-degenerate maximum or minimum at w(ε) and ηv(v, ε)
changes sign at w(ε).

Let E be the identity matrix and A = E + εA∗ be a 2 × 2 matrix with determinant 1. From detA = 1
obtain that trace A∗ = −ε detA∗ and so A is elliptic if detA∗ > 0 and it is hyperbolic if detA∗ < 0 for
small ε.

Now differentiate the equations Q1 = Q2 = 0 with respect to v to get

Q1uξv +Q1v +Q1δηv = 0,

Q2uξv +Q2v +Q2δηv = 0,

all evaluated at (ξ(v, ε), v, η(v, ε), ε). Use Cramer’s rule to solve for ηv to get

(38) det

[
Q1u Q1δ

Q2u Q2δ

]
ηv = −det

[
Q1u Q1v

Q2u Q2v

]
.

When ε = 0 one obtains

det

[
Q1u Q1δ

Q2u Q2δ

]
= H̄uu(0, 0, 0)H̄vδ 6= 0

so for small ε the determinant on the left in (38) is nonzero. Thus,

det

[
Q1u Q1v

Q2u Q2v

]
= det

[
Q2u Q2v

−Q1u −Q1v

]
is zero when v = w(ε), changing sign at this value of v.

Using these facts we compute the characteristic multipliers from

∂P

∂y
= E + ε T J ∇y Q(ξ(v, ε), v, η(v, ε), ε)

= E + ε T

[
Q2u Q2v

−Q1u −Q1v

]
(ξ(v, ε), v, η(v, ε), ε).

Thus for v = w(ε) the critical point (ξ(v, ε), v, η(v, ε)) is degenerate, a saddle point for v on one side of
w(ε) and a non-degenerate maximum or minimum for v on the other side of w(ε). �

Thus if a reduced Hamiltonian system of two degrees of freedom undergoes an extremal bifurcation then
the periodic solutions of the full system do the same.
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6.3. At a Peak. It is possible to approximate the characteristic multipliers of a periodic solution related to
a peak. Specifically we have the following result.

Theorem 6.3. Let Ps = d ∈ O be a peak with frequency ks and z ∈ Π−1(d). Since kj/ks is not an integer
for j 6= s then the solution through z of (34) for ε = 0 is periodic with period 2π/|ks| and characteristic
multipliers

e±(k1/ks) 2πi, . . . , e±(ks/ks) 2πi, . . . , e±(kn/ks) 2πi.

Of course e±(ks/ks) 2πi = +1 as one expects from a periodic solution of a Hamiltonian system, but all the
others are not equal to +1.

For ε small, the system (34) has a periodic solution near z of period 2π/|ks| + O(ε) and characteristic
multipliers

e±(k1/ks) 2πi +O(ε) , . . . , e±(ks−1/ks) 2πi +O(ε),

e(ks/ks) 2πi = +1, e−(ks/ks) 2πi = +1,

e±(ks+1/ks) 2πi +O(ε) , . . . , e±(kn/ks) 2πi +O(ε).

Proof. This result is classical and does not use reduction, see [42, 43]. �

In order to obtain the ε order correction terms for the multipliers, decide stability and analyze the
bifurcations it is necessary to use symplectic smoothing techniques which are given in Section 5.2 for n = 2
and are illustrated by examples in Sections 7.2.3 and 7.3.2. The general case when n ≥ 2 will be discussed
in [46].

For n = 2 we present a result on the characteristic multipliers of a periodic solution related to a peak that
improves the approximation given in Theorem 6.3. In this case we have provided symplectic coordinates
v = (x, y) given by (29) for the peak P2 and by (31) for P1 with the aim of making smooth the orbit space
around these peaks. Let H̄(v) be the normal form Hamiltonian written in terms of these coordinates with
its associated Hamiltonian equations

(39) v̇ = J ∂H̄
∂v

.

Since the peak P1 is transformed into (x, y) = (0, 0) through (31), respectively P1 is transformed into (0, 0)
by means of (29), the linearization about the peak points is

(40) v̇ = Ā v = J ∂
2H̄
∂v2

(0) v.

Let the eigenvalues of Ā be ±ν.

Theorem 6.4. Let n = 2 and let P2 = d ∈ O be a peak with frequency |p| > 1 and z ∈ Π−1(d). For ε small
the system associated to the Hamiltonian (34), where HR is given in (5), has a periodic solution near z of
period 2π/|p|+O(ε) and characteristic multipliers +1,+1 and

(41) e(q/p) 2πi[1 + (2π/p) ε ν] +O(ε2), e−(q/p) 2πi[1− (2π/p) ε ν] +O(ε2).

For P1 simply interchange p and q. When ν is real we assume that it is positive whereas when it is pure
imaginary we assume that its imaginary part is positive.

Proof. When p and q are positive refer to the figures in Section 3.2. As in Theorem 6.2 we use the theory
of [61], specifically the proof of Theorem 2.2 and Lemma 2.1. Consider the Hamiltonian Hε of (34) and
compute the cross section map in the energy level h + O(ε), which is of the form P : σ → σ : v 7→ P (v, h),
where v = (x, y) introduced in (29) are local coordinates in O valid around the peak point P2 and P (v, h) =
v + ε T J ∇v H̄(v, h) +O(ε2) and T = 2π/|p|+O(ε). As we know from [61], the fixed point of P , v = O(ε),
leads to the periodic solution related to P2.

In case that P2 were a critical point in the plateau, the nontrivial characteristic multipliers of the periodic
solution would be the eigenvalues of ∂P (0, h)/∂v, where

∂P

∂v
(0, h) = E + ε T J ∂

2H̄
∂v2

(0, h) +O(ε2) = E + ε T Ā+O(ε2)
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with Ā defined in (40), thus the multipliers would be 1± (2π/p)εν +O(ε2). However we need to modify the
map P since we have made a |p| : 1 covering when introducing coordinates x, y in (29). Thus we have to
compose P with a rotating map related to Hqp given in (5). Observe that x21 + y21 = x2 + y2 then the section
map P ′ related to the periodic solution x = y = 0 (i.e. the periodic solution P2) is obtained integrating the
equations of motion ẋ = ∂Hqp/∂y = qy, ẏ = −∂Hqp/∂x = −qx between 0 and 2π/|p|. One gets

v 7→ P ′(v) = B v with B =

[
cos(2πq/p) sin(2πq/p)

− sin(2πq/p) cos(2πq/p)

]
.

In particular P ′ is the section map corresponding to the cross section θ2 = 0 associated to the periodic
solution P2 (the set S in Figure 2).

Composing P with P ′ we get P ′′ = P ◦ P ′ with P ′′ : σ → σ : v 7→ P ′′(v, h) = B [v + ε T J ∇v H̄(v, h)] +
O(ε2). The Jacobian of P ′′ at v = 0 is

∂P ′′

∂v
(0, h) = B + ε T B Ā+O(ε2)

and its eigenvalues are the approximate characteristic multipliers of the periodic solution related to P2.
These eigenvalues are given in (41). �

The reader could notice that the factor 1/p in the multipliers (41) comes from the fact that we have
performed a |p| : 1 covering when passing to the coordinates x, y.

6.4. At a Ridge. Ridges can only be found in systems with three or more degrees of freedom and one is
not assured that a periodic solution is generated from a ridge in general. We will develop the general theory
of symplectic smoothing for ridges in [46].

7. Bifurcations in the q:p Resonance

7.1. Cherry’s Example: 2:−1 Resonance. To show that linear stability does not imply nonlinear stability
for Hamiltonian systems Whittaker [60] gives an example that he attributes to Cherry [5]. In his original
variables the differential equation is

dx1
dt

=
∂H

∂y1
,

dx2
dt

=
∂H

∂y2
,

dy1
dt

= − ∂H
∂x1

,
dy2
dt

= − ∂H
∂x2

,

where

H =
1

2
λ(x21 + y21)− λ(x22 + y22) +

1

2
α[x2(x21 − y21)− 2x1 y1 y2],

with λ and α arbitrary parameters. He explicitly gives solutions

(42)
x1 =

√
2

α(t+ ε)
sin(λ t+ γ), y1 =

√
2

α(t+ ε)
cos(λ t+ γ),

x2 =
1

α(t+ ε)
sin[2(λ t+ γ)], y2 =

−1

α(t+ ε)
cos[2(λ t+ γ)],

where ε and γ are constants of integration. These solutions represent orbits which spiral to the origin as
t → +∞ and t → −∞, but which have branches with all coordinates spiraling to infinity as t tends to −ε.
Think of these solutions on two surfaces in R4. The equilibrium at the origin is therefore unstable, in spite
of being stable to the first order.

Whittaker gives no hint as to the origin of this example — no discussion of normal forms or invariants.
Cherry on the other hand was looking at systems which have an additional integral and hence were solvable.
A closer look at this example reveals that the system is in 2:−1 resonance and the Hamiltonian is written
in terms of our invariants. To be consistent with our notation we specialize by taking λ = −1, α = 1 and
reverse the subscripts so that

H = 2 a1 − a2 + a3.

The orbit space O when 2 a1 − a2 = h is the surface

a23 + a24 = a1(h− 2 a1)2, a1 ≥ 0, a1 ≥ h/2.
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The Hamiltonian H is already in normal form and so the reduced Hamiltonian is H̄ = a3. Using the
Poisson structure given in Table 1 with q = 2 and p = −1, we obtain the equations of motion, arriving at

ȧ1 = {a1, H̄} = −2 a4, ȧ3 = {a3, H̄} = 0, ȧ4 = {a4, H̄} = −a2(4 a1 + a2).

The system has also been studied in [45] using the invariants ak’s. Recall that on the orbit space a2 = 2 a1−h.
For a critical point one must have a4 = 0 and a2(4 a1 + a2) = 0 and since not both a1 and a2 can be zero
or negative the conditions for an equilibrium are a2 = a4 = 0. But in the orbit space a2 = 0 only when
a1 = h/2 and that occurs when h ≥ 0; this is a singular point of the orbit space (a peak when h > 0) which
is always an equilibrium of the reduced system even when the equations of motion are not well defined in
non-regular points. When h ≥ 0 the orbit space is a trumpet whereas for h < 0 it is a cap.

Look at the flow lines in Figure 9. The flow lines lie in H̄ = a3 = constant and a4 is decreasing. These flow
lines can be interpreted as approximations of the flow of the two degrees of freedom problem in symplectic
charts on the orbit space. These charts are the different trumpets and caps defined when varying h.

Out[1045]=

h < 0 h = 0 h > 0

Figure 9. Flow of Cherry’s example in O

When h = 0 the origin in a-space corresponds to the origin in R4 and it is a singularity (not a peak).
There is an orbit on O tending to the origin as t→ +∞ and there is an orbit on O tending to the origin as
t → −∞. These represent a surface of solutions that spiral to the origin as t → ±∞ and are geometrically
the solutions given by Whittaker in (42).

When h > 0 there is an equilibrium (a peak) on O at a1 = h/2, a3 = a4 = 0. This gives rise to a periodic
solution of period T ∼ π for each h ≥ 0. These solutions form the short periodic family given by Liapunov
Center Theorem [43]. Note that here too there is an orbit on O tending to the equilibrium as t→ ±∞. Thus
the solutions in the short period family are unstable.

When h < 0 there are no equilibria and so all solutions recede far away as t→ ±∞.

7.2. Detuning the 2:−1 Resonance. Look at a detuning of the previous example, namely,

H = (2 + µ)a1 − a2 + a3,

where µ is a parameter. This system has also been dealt with partially in [55] and in [9]. We also treated it
in the setting of singular reduction in [45]. Here we give a much deeper insight using the results of Sections
5 and 6. In particular the bifurcation analysis by means of the symplectic smoothing is new.

When 2 a1 − a2 = h the orbit space is still the surface

(43) a23 + a24 = a1(h− 2 a1)2, a1 ≥ 0, a1 ≥ h/2.

7.2.1. Equations of Motion and Equilibria. The reduced Hamiltonian on the orbit space is H̄ = µa1 + a3
and the equations of motion are obtained through the Poisson brackets of Table 1, yielding that

ȧ1 = {a1, H̄} = −2 a4, ȧ3 = {a3, H̄} = 2µa4, ȧ4 = {a4, H̄} = −2µa3 − a2(4 a1 + a2).

Recall that on the orbit space a2 = 2 a1 − h. For an equilibrium point one must have

(44) a4 = 0, −2µa3 − a2(4 a1 + a2) = 0, a2 = 2 a1 − h, a23 + a24 = a1(h− 2 a1)2,
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with a1 ≥ max{0, h/2}. Solving (44) in {a1, a3, a4} we obtain up to three solutions, namely,

P1 = (h/2 , 0 , 0),

L± =

(
1

18
(3h+ µ2 ± |µ|

√
6h+ µ2) ,

1

27µ
[−µ4 ± |µ|(3h− µ2)

√
6h+ µ2] , 0

)
.

These solutions correspond to critical points of the system (44) when the three components of each point
are real numbers and a1 ≥ max{0, h/2}. Indeed the point P1 should be discarded from the solutions of (44)
as the orbit space O is not defined in it since it is a singular point. However it is always an equilibrium of a
reduced system defined in O. We get

(i) P1 is an equilibrium for h ≥ 0, that is, in regions I, II of Figure 10.
(ii) L+ is an equilibrium when −µ2/6 ≤ h ≤ µ2/2, i.e. in regions II and III of Figure 10.
(iii) L− is an equilibrium when −µ2/6 ≤ h ≤ 0, i.e. in region III of Figure 10.

The value of h as a function of the Hamiltonian H = e on the three equilibria is represented in Figure 11.
The flow of the reduced system appears in Figure 12.

7.2.2. Bifurcation Curves. Bifurcations of equilibria occur when a critical point appears or disappears or
when two or the three possible equilibria collide. Solving the equations for this to happen we end up with
the bifurcation plane appearing in Figure 10. The plane is symmetric with respect to µ = 0, so we only plot
the bifurcation lines for µ ≥ 0.

h=
μ2

2

h=-
μ2

6

I

II

III
IV

μ

h

Figure 10. Bifurcation plane in the detuning of the 2:−1 resonance

In region I, when h ≥ µ2/2, the orbit space has a peak at P1 and it is the only equilibrium point.
In region II the orbit space O has a peak at P1 and the point L+ is also an equilibrium in the plateau.

When h . µ2/2 the point L+ approaches P1 and finally collides with it when h = µ2/2. See the point where
the green and the red lines meet in Figure 11.

For h = 0 the situation is qualitatively the same as in region II, but the singularity moves to the origin of
a-space.

For h < 0 the orbit space becomes regular and P1 is not an equilibrium. The point L− appears as an
equilibrium up to h = −µ2/6 while L+ still persists for these values. This situation corresponds to region
III of Figure 10. For values of h . 0 the point L−, which is in the plateau, is close to P1 colliding with it
when h = 0, and only the point P1 survives for h > 0 as a peak. See the point where the red and the blue
lines meet in Figure 11.

When h & −µ2/6 the two equilibria L+ and L− get close until they collide when h = −µ2/6. After
crossing this line, once in region IV, the equilibrium disappears, i.e., for h < −µ2/6 there are no equilibria.
See Figure 12 and the point where the blue and the green lines meet in Figure 11.

When h = µ = 0 the only equilibrium is the origin of the orbit space.
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Figure 11. Value of h at each equilibrium as a function of H = e for µ fixed. Solid lines
correspond to elliptic points and dashed lines to hyperbolic ones. The red line is associated to
P1, the blue line to L− and the green one to L+. Bifurcations take place where two different
colors meet, in particular a center-saddle bifurcation occurs at h = −µ2/6; a vanishing of
periodic solution at h = 0; and a subcritical Hamiltonian flip bifurcation when h = µ2/2
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Figure 12. Flow in the different regions of the bifurcation plane for the detuning of the 2:−1 resonance

7.2.3. Bifurcation Analysis and Reconstruction. In order to determine the stability of the equilibria and
classify their bifurcations we distinguish between singularities and points in the plateau.

Hamiltonian flip bifurcation: The peak, P1, is associated to a π-periodic solution. Its stability is analyzed
applying the symplectic smoothing technique of Section 5.2, defining a set of adequate coordinates around
P1. We use the transformation (31) with q = 2 and p = −1, obtaining

(45) a1 =
1

2
(h+ x2 + y2), a2 = x2 + y2, a3 =

1√
2

(x2 − y2)
√
h+ x2 + y2, a4 =

√
2x y

√
h+ x2 + y2.

The change (45) is applied to H̄/2 and making a Taylor expansion around (0, 0) one ends up with

H̄ =

√
h

2
√

2
(x2 − y2) +

µ

4
(x2 + y2) +

1

4
√

2h
(x4 − y4) + . . . ,
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after discarding constant terms. The ellipsis stands for terms that are at least sixth order. The expansion is
valid for h > 0.

Hamiltonian H̄ represents a Z2-symmetric one degree of freedom system in (a1, x, y)-space. The eigen-
values of the Hessian matrix related to H̄ evaluated at (x, y) = (0, 0) (i.e., the point corresponding to the

peak in a-space) are ν± = ±(1/2)
√

2h− µ2, thus (0, 0) is unstable (a saddle) for h > µ2/2 and stable (a
center) for 0 < h < µ2/2. For h = µ2/2 it is a cusp point and the normal form around it is x2 − y4/(2µ2)
for µ > 0, hence it is unstable. Note that the stability of the peak is difficult to guess from Figure 12, as the
flow in region I and on the bifurcation h = µ2/2 look alike. Calculating the other valid critical points of the
system in (a1, x, y)-space from the 4-jet above we see that for h > µ2/2 the origin is the only equilibrium,
whereas for 0 < h < µ2/2 two more hyperbolic equilibria (saddles) arise. This is the typical scenario of
a subcritical Hamiltonian pitchfork bifurcation occurring at h = µ2/2. The coordinates (x, y) of the two

saddles are (0,±(h/2)1/4
√
µ− (2h)1/2) and their eigenvalues ±(1/

√
2)
√
µ2 − 2h. Returning to a-space the

previous considerations tell us that the reduced Hamiltonian H̄ undergoes a subcritical Hamiltonian flip (or
period doubling) bifurcation in O because the two hyperbolic equilibria become a unique saddle, this point
being L+; see Figure 12.

Reconstructing the dynamics of the full system in R4 we conclude that there is a Hamiltonian flip bifurca-
tion of periodic solutions. The unstable periodic solution corresponding to the peak point has period near π
and bifurcates at h ≈ µ2/2, changing its stability character and giving rise to an unstable periodic solution
whose period is near 2π. Applying Theorem 6.4, the approximate non-trivial multipliers of the periodic so-

lution related to P1 are e(−1/2)2πi[1+(2π/2)ν+] and e−(−1/2)2πi[1+(2π/2)ν−], that is, −1± (π/2)
√

2h− µ2.
We exclude the case µ = 0 in the analysis.

Vanishing of the periodic solution: We study the behavior of H when h passes through 0. When h & 0
the peak is stable while for h . 0 it becomes a regular non-critical point and near to it the point L− emerges
as a regular point. For h = 0 the stability of the singular point corresponds to the stability of the origin in
R4 for H in the coordinates (x1, y1, x2, y2) and we analyze it by applying the change (33). The unfolding is
given by

(46) a1 =
1

3
(x2 + y2), a2 =

2

3
(x2 + y2), a3 =

2

3
√

3
x(x2 − 3 y2), a4 =

2

3
√

3
y(3x2 − y2).

The reduced Hamiltonian reads as

H̄ =
1

6
µ(x2 + y2) +

1

3
√

3
x(x2 − 3 y2),

which is a Z3-symmetric Hamiltonian. We get that the origin is an elliptic point whenever µ 6= 0 whereas for
h = µ = 0 it is a degenerate unstable point. Concretely the eigenvalues of (0, 0) are ±µ i/3. Apart from the

origin we obtain three saddle points with coordinates (−µ/
√

3, 0), (µ/(2
√

3),±µ/2) and eigenvalues ±µ/
√

3,
provided µ 6= 0. The three saddles correspond to the point L+ in the orbit space O. See Figure 13 where
the 3:1 covering induced by the transformation (46) is clearly discerned.

Dealing with the flow of H in R4 we know that when h & 0 the point P1 represents a stable periodic
solution with period close to π. For h . 0 the singularity disappears but L− is born close to the point
(0, 0, 0) in a-space as a regular point. Thus L− corresponds to a periodic solution of the full system with
period near 2π. Hence the stable periodic solution of period near π shrinks down to the origin when h = 0
and reappears for h < 0 also as a stable periodic solution though duplicating its period.

Center-saddle bifurcation: In this case the bifurcation occurs in the plateau of O thus we apply the theory
of Section 6.2. We also make use of the local transformation (18). Let (a01, a

0
3, a

0
4) represent either the

coordinates of L+ or of L−. Applying (21) we obtain (x0, y0) = (− 1
6 (µ±

√
6h+ µ2), 0) with the upper sign

for L+ and the lower one for L−. Thus we define symplectic coordinates x̄, ȳ according to the study carried
out in Section 5.1. By means of (18) we get

a1 = x2 + y2, a2 = 2(x2 + y2)− h, a3 = x[2(x2 + y2)− h], a4 = y[2(x2 + y2)− h],
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Figure 13. Symplectic smoothing of the 2:−1 resonance for h = 0 and µ = 0 (left) and for
h = 0 and µ = 2 (right)

and replace x, y by x̄+ x0, ȳ+ y0 where x0, y0 are taken differently for L+ or for L−. Plugging the changes
in H̄, dividing the result by two, expanding in terms of x̄, ȳ and dropping constant terms we end up with

H̄ =
1

3
µ ȳ2 ∓ 1

6

√
6h+ µ2(3 x̄2 + ȳ2) + x̄(x̄2 + ȳ2) + . . . ,

where the upper sign is for L+ and the lower one for L− and the ellipsis means that the remaining terms
start at degree four. The eigenvalues are

± 1√
3

√
−6h− µ(µ− 2

√
6h+ µ2) for L+, ± 1√

3

√
−6h− µ(µ+ 2

√
6h+ µ2) for L−.

We conclude that L− is an elliptic equilibrium when −µ2/6 < h < 0, i.e. in region III, see Figures 11
and 12, whereas L+ remains a saddle when −µ2/6 . h. For h = −µ2/6 there is a collision between L+ and
L− that gives rise to an extremal point that disappears once in region IV, see Figure 12. We can use the
3-jet given above either in a neighborhood of L+ or of L− to check that the normal form of the bifurcation
happening at h = −µ2/6 corresponds to the one studied in Section 6.2. In summary, at h = −µ2/6 there is
a center-saddle bifurcation of relative equilibria in the orbifold O.

Applying Theorem 6.1 we assure the existence of two (families of) periodic solutions for the Hamiltonian
H related to L+ and L− whose periods are near 2π. Besides the periodic solution associated to L− is elliptic
while the one associated to L+ is hyperbolic and their non-trivial approximate multipliers are, respectively,

1± (2/
√

3)π[−6h−µ(µ+ 2
√

6h+ µ2)]1/2 and 1± (2/
√

3)π[−6h−µ(µ−2
√

6h+ µ2)]1/2. These multipliers
are valid whenever the periodic solutions exist. According to Theorem 6.2, these periodic solutions undergo
a center-saddle bifurcation in R4 when h ≈ −µ2/6.

7.3. The 3:2 Resonance.

7.3.1. Hamiltonian, Equations of Motion and Relative Equilibria. We consider the detuning of the 3:2 reso-
nance as it is presented and analyzed by Schmidt in [55]. The starting point is the Hamiltonian

(47) H = 3 a1 + 2 a2 + ε2
(
λ1 a1 + λ2 a2 +

A

2
a21 +B a1 a2 +

C

2
a22

)
+ ε3(D1 a3 +D2 a4)

with the relations

(48) a2 =
1

2
(h− 3 a1), a23 + a24 =

1

8
a21(h− 3 a1)3, a1 ≥ 0, a2 ≥ 0,

where we have fixed an energy level h > 0. The constants A, B, C, D1, D2 have real values, λ1 and λ2 are
detuning parameters and ε is a small parameter. The orbit space is the second constraint of (48) together
with 0 ≤ a1 ≤ h/3. The reduced Hamiltonian is given by

H̄ = λ1 a1 + λ2 a2 +
A

2
a21 +B a1 a2 +

C

2
a22 + ε(D1 a3 +D2 a4).
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Apart from the peaks, the relative equilibria are the solutions of the system

ȧ1 = {a1, H̄} = 4 ε(a4D1 − a3D2) = 0,

ȧ3 = {a3, H̄} = −[h(2B − 3C) + 2(2λ1 − 3λ2)]a4 − (4A− 12B + 9C)a1 a4

+
ε

4
D2(15 a1 − 2h)(h− 3 a1)2a1 = 0,

ȧ4 = {a4, H̄} = [h(2B − 3C) + 2(2λ1 − 3λ2)]a3 + (4A− 12B + 9C)a1 a3

− ε

4
D1(15 a1 − 2h)(h− 3 a1)2a1 = 0,

a23 + a24 =
1

8
a21(h− 3 a1)3.

From the first equation we infer that the solutions (a1, a3, a4) satisfy a4D1 = a3D2. Then, considering
the generic case D1, D2 6= 0 and substituting this relation in the second and third equations we arrive at
ȧ3D1 = −ȧ4D2. Therefore our system can be reduced to two equations in (a1, a3), which are the third and
the fourth ones. From the third equation it is natural to define the following parameters, as it is done in
[55],

M = 2B − 3C, σ = 2λ1 − 3λ2, ∆ = 4A− 12B + 9C.

The relevant factors of the resultant of these two equations with respect to a3 are

R(a1) = a21(3 a1 − h)3 {675 ε2(D2
1 +D2

2)a31 + [2 ∆2 − 405h ε2(D2
1 +D2

2)]a21

+ 4[18h2 ε2(D2
1 +D2

2) + ∆(hM + 2σ)]a1

+ 2[−2h3 ε2(D2
1 +D2

2) + (hM + 2σ)2]}.
The roots a1 = 0, h/3 lead to the peak points in O. (Strictly speaking one cannot conclude the existence of
the peaks from the equations of motion, however they are critical points of the reduced system.) The peak
P1 = (h/3, 0, 0) corresponds to the q = 3 singularity in O, i.e. the family of short periodic solutions in R4.
The peak P2 = (0, 0, 0) corresponds to the p = 2 singularity in O, i.e. the family of long period solutions
in R4. The solutions of the equation R(a1) = 0 with 0 < a1 < h/3 are related to the critical points in the
plateau L ⊂ O. So they are the roots of the cubic polynomial in a1 given by

p3(a1) = 675Da31 + (2 ∆2 − 405hD)a21 + 4[18h2D + ∆(hM + 2σ)]a1

+ 2[(hM + 2σ)2 − 2h3D],

such that 0 < a1 < h/3. We have introduced the new parameter D = ε2(D2
1 +D2

2).
The bifurcations take place when there is a multiple root of the cubic polynomial, say a01, such that

0 < a01 < h/3 or when a root of this cubic polynomial is 0 or h/3.

(i) The appearance of multiple valid roots of the cubic polynomial corresponds to a multiple collision
of relative equilibria in the plateau. This occurs when the discriminant D of the cubic polynomial is
zero, where D is

D = 4D[2 ∆h+ 15(hM + 2σ)]2{8 ∆4 h+ 24 ∆3(hM + 2σ)− 3564 ∆2 h2D

− 29160 ∆hD(hM + 2σ)

+ 10935D[−5(hM + 2σ)2 + 2h3D]}.

So when D = 0 the cubic polynomial has a multiple root, but we need 0 < a01 < h/3 and it is not
possible when 2 ∆h + 15(hM + 2σ) = 0, but only when the last factor of D vanishes. Thence a
bifurcation in the plateau takes place when

Γ1 ≡ 8 ∆4 h+ 24 ∆3(hM + 2σ)− 3564 ∆2 h2D − 29160 ∆hD(hM + 2σ)

+ 10935D[−5(hM + 2σ)2 + 2h3D] = 0.

This is the blue line appearing in Figure 14.
(ii) When a valid root of the cubic polynomial is 0, then a relative equilibrium in the plateau collides

with the peak at a1 = 0. So a bifurcation involving P2 happens when

Γ2 ≡ (hM + 2σ)2 − 2h3D = 0.
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Figure 14. Bifurcation plane and flows for the detuning of the 3:2 resonance. In each picture of the

orbit space one can also see the flow in the back

This is the red line appearing in Figure 14.
(iii) When a valid root of the cubic polynomial is h/3, then a relative equilibrium in the plateau collides

with the peak at a1 = h/3. Thus a bifurcation involving P1 takes place when

Γ3 ≡ ∆h+ 3(hM + 2σ) = 0.
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This is the green line appearing in Figure 14.

7.3.2. Bifurcations and Flow of the Full System. We start by applying the symplectic smoothing technique
in order to unfold the peak points. For P2 we use formulae (29) while for P1 we apply (31). Specifically for
the peak at a1 = 0 we get

(49)
a1 = x2 + y2, a2 =

1

2
[h− 3(x2 + y2)],

a3 =
1

2
√

2
(x2 − y2)[h− 3(x2 + y2)]3/2, a4 = − 1√

2
x y[h− 3(x2 + y2)]3/2

while for the peak at a1 = h/3, the change is

(50)
a1 =

1

3
[h− 2(x2 + y2)], a2 = x2 + y2,

a3 =
1

3
x(x2 − 3y2)[h− 2(x2 + y2)], a4 =

1

3
y(3x2 − y2)[h− 2(x2 + y2)].

Now we plug (49) and (50) in H̄/2 and obtain the reduced Hamiltonian around the peaks. Linearizing the
Hamiltonian around (0, 0) for the two peaks we compute their eigenvalues, arriving at

ν±2 = ±1

4

√
2h3D − (hM + 2σ)2, ν±1 = ± 1

18
[−∆h− 3(hM + 2σ)] i,

the first one applies for P2 and the second one for P1. It is immediate to deduce that P2 is hyperbolic when
2h3D− (hM + 2σ)2 > 0 and elliptic when 2h3D− (hM + 2σ)2 < 0. This expression vanishes on the curve
Γ2. Regarding P1, it is a center (elliptic) provided ∆h+ 3(hM + 2σ) does not vanish, but this is precisely
the expression of Γ3.

The peak points are reconstructed as periodic solutions of the full system in R4 of periods near π for
P2 and near 2π/3 for P1. If we apply Theorem 6.4, the approximate non-trivial characteristic multipliers
of the periodic solution related to P2 are e(3/2) 2πi[1 + (2π/2) ε2 ν+2 ] and e−(3/2) 2πi[1 + (2π/2) ε2 ν−2 ] thence

−1± (π/4) ε2
√

2h3D − (hM + 2σ)2. The multipliers of the periodic solution related to P1 are e(2/3) 2πi[1+

(2π/3) ε2 ν+1 ] = −(1 +
√

3 i)/2 − [(
√

3 − i)/54]π ε2 [∆h + 3(hM + 2σ)] and e−(2/3) 2πi[1 + (2π/3) ε2 ν−1 ] =

−(1−
√

3 i)/2− [(
√

3 + i)/54]π ε2 [∆h+ 3(hM + 2σ)], thus the stability of these periodic solutions depends
basically on the eigenvalues ν±1 , ν±2 , hence on the parameters involved in the study. We shall be more specific
in the next paragraphs.

Now we can deal with the bifurcation analysis. To simplify the presentation a bit we fix specific values of
the parameters ∆,M and D and draw a bifurcation plane for σ and h, which are the significant parameters,
see Figure 14. The main feature when varying the values of ∆,M and D is that the sequence of bifurcations
is the same but occurs in a different order. In Figure 14 we also present a sketch of the flow of the reduced
system throughout all regions and bifurcation lines. In the following paragraphs we describe the evolution
of the flow starting from the left in the bifurcation plane and going on to the right. In the flow pictures we
start by the top left and continue clockwise.

In region I the only relative equilibria are the peaks P1 and P2 and both are elliptic points.
On the first branch of the red line that we call Γ1

2 a bifurcation involving P2 happens though on the line
P2 and P1 are still centers. After crossing this line, when being in region II, P2 changes from elliptic to
hyperbolic and the stable equilibrium L1 in the plateau will emerge from it. The peak P1 stays stable. The
bifurcation occurring on Γ1

2 is a supercritical Hamiltonian flip bifurcation and can be analyzed analogously
as we did in Section 7.2. In particular L1 reconstructs to an elliptic periodic solution of period near 2π and
a Hamiltonian flip bifurcation of periodic solutions occurs for values of the parameters with Γ1

2 ≈ 0.
On the first branch of the blue curve, i.e. Γ1

1, a center-saddle bifurcation in the plateau takes place. A
cusp L2 appears near the peak P1, that continues to be stable. The points P2 and L1 remain hyperbolic and
elliptic respectively. The coordinate a01 of L2 is obtained as a solution of p3(a1) = 0.

After crossing the bifurcation curve, in region III, the cusp L2 in the plateau becomes a saddle and a
new stable equilibrium L3 appears from it in the plateau. The center-saddle bifurcation in O involving L2,
L3 is reconstructed as a center-saddle bifurcation of periodic solutions for the Hamiltonian H with Γ1

1 ≈ 0,
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in a similar way to the analysis of the 2:−1 resonance of Section 7.2. Thus L2, L3 correspond to periodic
solutions of H with periods near 2π. The stability of P1, P2 and L1 is the same as in region II and on Γ1

1.
On the purple line, Γ4, the energy of the saddle L2 is the same as the energy of P2 and there is a connection

of saddles, that is a global bifurcation. The line Γ4 has been obtained numerically. We present in Figure
15 a view of the reduced flow near P2 in the coordinates x, y of (49). Due to the 2:1 covering (p = 2) all
the equilibria in the picture excepting the origin appear duplicated, thus the two saddles placed outside the
point (0, 0) correspond to the point L2. Since the eigenvalues of the corresponding Hessian at the points P2

and L2 do not vanish at Γ4 a global bifurcation of hyperbolic periodic solutions occurs for the full system
H in R4.

0

0

x

y

Figure 15. Unfolding of the 3:2 resonance: projection of a neighborhood of the point (a1, a3, a4) =

(0, 0, 0) in the (x, y)-plane. The red curve corresponds to Γ4, i.e. to the connection between the two saddle

points in a-space

In region IV the number of equilibria together with their stability is the same as in region III but, out of
the global bifurcation, the stable equilibrium L1 (that was attached to P2) is now attached to the saddle L2,
and the stable equilibrium L3, that was attached to L2, is now attached to P2.

On Γ3 a bifurcation of P1 occurs. The saddle L2 in the plateau collides with P1 (which was an elliptic
point) and disappears while P1 becomes a cusp. The stable equilibrium L1 is attached to P1 and the peak
P2 continues to be hyperbolic and the stable equilibrium L3 is linked to it. From this point on, we continue
by reversing all the bifurcations. In region V the peak P1 turns into a center and a new saddle L4 appears.
The bifurcation involving P1, L2 and L4 is studied with the Hamiltonian H̄ in the coordinates x, y defined
through (50). Thus the peak P1 behaves like a 3-bifurcation point, see [39, 43] due to the 3:1 covering (q = 3)
caused by the transformation (50). The rest of points keep on their stability character. The point L4 gives
rise to an unstable periodic solution in R4 of period near 2π. This bifurcation translates into a bifurcation
of periodic solutions of the same type that takes place for the Hamiltonian (47) when Γ3 ≈ 0.

On the second branch of the blue line, Γ2
1, a center-saddle bifurcation in the plateau occurs. The center

L1 collides with the saddle L4 and becomes a cusp point. Once in region VI the cusp in the plateau vanishes
while P1 remains elliptic, P2 hyperbolic and L3 elliptic. Then a center-saddle bifurcation of periodic solutions
occurs for H given in (47) when Γ2

1 ≈ 0.
In the second branch of the red line, Γ2

2, a bifurcation of P2 occurs. The elliptic point in the plateau, L3,
collides with P2 and the peak becomes stable. The other peak, P1, remains stable. This is a Hamiltonian
flip bifurcation involving P2 and L3 that translates into a Hamiltonian flip bifurcation of periodic solutions
for the full system.

Finally in region VII the situation is the same as in region I, the peaks are the only critical points and
they are elliptic.
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