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ABSTRACT 
 

The term soil surface roughness is used to describe the variations in soil surface 

elevation (micro-relief). Roughness affects different important hydrological processes 

such as surface depression storage, infiltration, overland flow and soil erosion. At the 

same time, it strongly affects the scattering of microwaves at the soil surface and 

determines the backscattering coefficient observed by radar sensors. Then, its 

characterization and quantification is relevant for different sciences areas. However, 

the current knowledge about this issue is far from being complete and universally 

accepted. Besides, the natural micro-relief of agricultural soils can be also affected by 

tillage action in many different ways. In this thesis, field experiments were carried out 

in agricultural soils affected by different types of conventional tillage, pursuing the 

following objectives. (i) The evaluation and characterization of different roughness 

parameters. (ii) The analysis of the influence of roughness measurement scale on 

radar backscattering. (iii) The analysis of the influence of roughness sample size on 

radar backscattering. (iv) The evaluation of Terrestrial Laser Scanner and Structure 

from Motion techniques for quantifying surface roughness.  

 

First, a detailed evaluation of different roughness parameters proposed in the 

literature was performed. In total, twenty one roughness parameters (divided into 

four categories) were analyzed. For this purpose, a database of 164 profiles (5-m-

long), measured in 5 different roughness classes, was used. Four of these classes 

corresponded to typical tillage operations (i.e., mouldboard, harrow, seedbed, etc.), 

and the fifth corresponded to a seedbed soil modified by rainfall. The roughness 

parameters which best separated the different roughness classes were the limiting 

elevation difference (LD) and the mean upslope depression (MUD). However, the 

roughness parameters most sensitive to roughness changes caused by rainfall were 

the limiting slope (LS) and the crossover lengths obtained by the semivariogram 

method (lSMV) and the root mean square method (lRMS). On the other hand, many of the 

roughness parameters showed high correlation values, thus providing the same 

information. 

 

Secondly, the influence of surface roughness measurement scale on radar 

backscattering in different agricultural soils was analyzed. To do this, a database of 

132 profiles (5-m-long) measured on agricultural soils with different tillage 



 

 
 

operations was used, coinciding with a series of ENVISAT/ASAR C-band observations. 

With this aim, the influence of measurement range (profile length) and the influence 

of low and high frequency roughness components on radar backscatter were explored. 

For each of these issues, eight roughness parameters values were computed, and their 

correlation with the backscatter coefficient and the goodness-of-fit with the Oh model 

were evaluated. Most of the parameters showed a significant correlation with the 

backscatter coefficient, especially the fractal dimension (D), the peak frequency (F) 

and the initial slope of the auto-correlation function (ρ'(0)). The medium frequency 

roughness components (scale of 5-100 cm) showed the highest influence in the radar 

backscatter observations at C-band. 

 

On the other hand, the sample size required to accurately measure surface roughness 

for radar applications in agricultural soils was studied. In this case, a database of 1-m-

long 635 profiles obtained over five different agricultural soils, and coinciding with 

ten ENVISAT/ASAR observations, was used. This time, the analysis was carried out 

considering different surface roughness sample sizes from 1 to 20 profiles. The 

behavior of the two commonly used roughness parameters (standard deviation of 

heights (s) and the correlation length (l)), their correlation with the backscatter 

coefficient and the goodness-of-fit of different backscatter models (IEM, GOM and Oh) 

were addressed. A sample size of 10-15 profiles could be considered sufficient for an 

accurate estimation of the standard deviation of heights (s), while 20 profiles have not 

seemed sufficient to accurately estimate the correlation length (l). The IEM and GOM 

models showed worse results than the Oh model, probably due to a greater 

uncertainly of the correlation length (l). 

 

Finally, the in-situ characterization of the surface roughness in agricultural soils using 

different measurement techniques was assessed. For this, Terrestrial Laser Scanner 

(TLS) and Structure from Motion (SfM) measurements were carried out in in the filed 

in three experimental plots (5 x 5 meters) representing different roughness 

conditions. Laser profilometer measurements were co-registered to TLS and SfM ones 

to assess the accuracy and suitability of the latter for quantifying surface roughness 

over agricultural soils. The results showed the ability of both TLS and SfM techniques 

to measure surface roughness over agricultural soils. However, both techniques 

(especially SfM) presented a loss of high frequency roughness information that 

affected the values of some roughness parameters. Altogether, both TLS and SfM 



 

 

 
 

techniques provide very useful 3D surface roughness information that enables a 

detailed directional analysis, being relevant for hydrological and soil erosion 

processes or radar remote sensing applications. 

 

With all this, it is expected that this thesis will contribute to a better understanding of 

the soil surface roughness phenomenon and its characterization in agricultural soils.   

 

 



 

 

 

 

 



 

 
 

RESUMEN 
 

El término rugosidad superficial del suelo es utilizado para describir las variaciones 

de elevación de la superficie del suelo (micro-relieve). La rugosidad afecta diferentes 

procesos hidrológicos importantes como el almacenamiento superficial, la infiltración, 

la escorrentía y la erosión del suelo. Al mismo tiempo, la rugosidad superficial 

también afecta la retrodispersión de las microondas en la superficie del suelo y 

determina el coeficiente de retrodispersión observado por los sensores radar. Debido 

a esto, su caracterización y cuantificación es relevante en diferentes áreas científicas. 

Sin embargo, el conocimiento actual sobre esta cuestión está lejos de ser completo y 

aceptado universalmente. Además, el micro-relieve natural de los suelos agrícolas 

puede verse afectado también de muy diferentes maneras por la acción del laboreo. 

En esta tesis doctoral, se ha llevado a cabo experimentación en suelos agrícolas 

afectados por diferentes tipos de tratamientos de laboreo, persiguiendo los siguientes 

objetivos: (i) La evaluación y caracterización de diferentes parámetros de rugosidad. 

(ii) El análisis de la influencia de la escala de medida de la rugosidad en la 

retrodispersión radar. (iii) El análisis de la influencia del tamaño de la muestra de 

rugosidad en la retrodispersión radar. (iv) La evaluación de las técnicas de Laser 

Escáner Terrestre y la denominada “Structure from Motion” para cuantificar la 

rugosidad superficial. 

 

Primero, se ha realizado una evaluación detallada de los diferentes parámetros de 

rugosidad propuestos en la literatura. En total, se han analizado 21 parámetros de 

rugosidad (divididos en cuatro categorías). Con este propósito, se ha utilizado una 

base de datos de 164 perfiles (de 5 m de longitud) medidos en 5 diferentes clases de 

rugosidad. Cuatro de estas clases han correspondido a operaciones típicas de laboreo 

(es decir, vertedera, rastra, siembra, etc.) y la quinta ha correspondido a un suelo 

sembrado modificado por la precipitación. Los parámetros de rugosidad que mejor 

han separado las diferentes clases de rugosidad han sido la diferencia de elevación 

límite (LD) y el índice MUD. Sin embargo, los parámetros de rugosidad más sensibles a 

los cambios de rugosidad causados por la precipitación han sido la pendiente límite 

(LS) y las longitudes de cruce lSMV y lRMS. Por otro lado, muchos de los parámetros de 

rugosidad han mostrado altos valores de correlación, proporcionando así la misma 

información. 

 



 

 
 

En segundo lugar, se ha analizado la influencia de la escala de medición de la 

rugosidad superficial en la retrodispersión radar en diferentes suelos agrícolas. Para 

ello, se ha utilizado una base de datos de 132 perfiles (de 5 m de longitud) medidos en 

suelos agrícolas con diferentes operaciones de labranza, coincidiendo con una serie de 

observaciones ENVISAT/ASAR en banda C. Con este objetivo, se ha explorado la 

influencia del rango de medida (longitud del perfil) y la influencia de los componentes 

de rugosidad de baja y alta frecuencia en la retrodispersión radar. Para cada una de 

estas cuestiones, se han calculado los valores de ocho parámetros de rugosidad, y se 

ha evaluado su correlación con el coeficiente de retrodispersión y el grado de ajuste 

con el modelo de Oh. La mayoría de los parámetros han mostrado una correlación 

significativa con el coeficiente de retrodispersión, especialmente la dimensión fractal 

(D), la frecuencia de picos (F) y la pendiente inicial de la función de auto-correlación 

(ρ'(0)). Los componentes de rugosidad de media frecuencia (escala de 5-100 cm) han 

mostrado la mayor influencia en las observaciones de retrodispersión radar en banda 

C. 

 

Por otro lado, se ha estudiado el tamaño de muestra requerido para medir con 

precisión la rugosidad superficial para aplicaciones radar en suelos agrícolas. En este 

caso, se ha utilizado una base de datos de 635 perfiles de 1 m de longitud obtenida en 

cinco suelos agrícolas diferentes y que coincide con diez observaciones 

ENVISAT/ASAR. Esta vez, el análisis se ha llevado a cabo teniendo en cuenta 

diferentes tamaños de muestra de rugosidad superficial de 1 a 20 perfiles. Para ello, 

han sido abordados el comportamiento de los dos parámetros de rugosidad más 

utilizados (la desviación estándar de las alturas (s) y la longitud de correlación (l)), su 

correlación con el coeficiente de retrodispersión y el grado de ajuste de diferentes 

modelos de retrodispersión (IEM, GOM y Oh). Un tamaño de muestra de 10-15 perfiles 

podría considerarse suficiente para una estimación precisa de la desviación estándar 

de las alturas (s), mientras que 20 perfiles podrían no ser suficientes para estimar la 

longitud de correlación (l) con precisión. Los modelos IEM y GOM han mostrado 

peores resultados que el modelo de Oh, probablemente debido a una mayor 

incertidumbre de la longitud de correlación (l). 

 

Por último, se ha evaluado la caracterización in-situ de la rugosidad superficial en 

suelos agrícolas utilizando diferentes técnicas de medición. Para esto, se han llevado a 

cabo mediciones con un láser escáner terrestre (TLS) y con la técnica denominada 



 

 
 

“Structure from Motion” sobre tres parcelas experimentales (de 5 x 5 m de superficie) 

que han representado diferentes condiciones de rugosidad. Medidas de perfilómetro 

laser se han co-registrado a las de TLS y SfM para evaluar la precisión e idoneidad de 

estas últimas para cuantificar la rugosidad superficial en suelos agrícolas. Los 

resultados han mostrado la capacidad de las técnicas TLS y SfM para medir la 

rugosidad superficial de suelos agrícolas. Sin embargo, ambas técnicas (especialmente 

SfM) han presentado una pérdida de información de rugosidad de alta frecuencia que 

ha afectado los valores de algunos parámetros de rugosidad. En conjunto, las técnicas 

TLS y SfM proporcionan una información muy valiosa de la rugosidad superficial 3D 

que permite un análisis detallado de la direccionalidad, siendo relevante en procesos 

hidrológico-erosivos de los suelos o en aplicaciones de teledetección radar. 

 

Con todo ello, se espera que esta tesis doctoral contribuya a un mejor entendimiento 

del fenómeno de la rugosidad superficial del suelo y su caracterización en suelos 

agrícolas. 

 

 



 

 
 

 

 



 

 
 

LABURPENA 
 

Lurrazalaren zimurtasun kontzeptua erabiltzen da lurrazalaren altueraren bariazioak 

(mikro-erliebea) deskribatzeko. Zimurtasunak prozesu hidrologiko garrantzitsuak 

eragiten ditu, hala nola, gainazaleko metatzea, infiltrazioa, isurketa, higadura, etab. 

Era berean, gainazalaren zimurtasunak eragina du gainazaleko mikrouhinen 

erretrodispertsioan eta radar sentsoreek behatutako erretrodispertsio koefizientea 

zehazten du. Hori dela eta, zimurtasunaren ezaugarritze eta kuantifikazioa 

esanguratsua da zenbait zientzia alorretan. Hala ere, gai honen inguruko ezagutza 

guztiz eta unibertsalki onartua izatetik urrun dago. Gainera, nekazal lurzoruen 

gainazaleko mikro-erliebe naturalak laborantza lanen eragin desberdinak jasan 

ditzake ere. Doktore-tesi honen esperimentazioa laborantza lanen eragina pairatu 

duten nekazal lurretan burutu da. Ondorengo helburu hauek jarraitu direlarik: (i) 

Zimurtasun parametroen ebaluazioa eta ezaugarritzea. (ii) Zimurtasuna neurtzeko 

eskalaren eraginaren analisia radar erretrodispertsioan. (iii) Zimurtasun laginaren 

tamainaren eraginaren analisia radar erretrodispertsioan. (iv) Lurrazalaren 

zimurtasuna ezaugarritzeko “Terrestrial Laser Scanner” eta “Structure from Motion” 

tekniken ebaluazioa. 

 

Lehenik, literaturan proposatutako zimurtasun parametroen ebaluazio zehatza egin 

da. Osotara, 21 zimurtasun parametro aztertu dira (lau kategoriatan banatuak). 

Horretarako, 164 profilez (5 m luzerakoak) osatutako datu basea erabili da, bost 

zimurtasun klase desberdinetan neurtuak. Horietako lau laborantza lanei lotutako 

klaseak izan dira, eta bosgarren klase bat prezipitazioak aldatutako ereindako lurra 

izan da. Zimurtasun klase desberdinak bereizteko zimurtasun parametrorik onenak 

“goratze muga desberdintasuna” (LD) eta MUD indizea izan dira. Hala ere, 

prezipitazioek eragindako zimurtasun aldaketekiko parametrorik sentikorrenak 

“malda muga” (LS) eta lSMV eta lRMS gurutze luzerak izan dira. Bestalde, zimurtasun 

parametro askok korrelazio balio altuak eman dituzte, eta, modu honetan, informazio 

bera eman dute. 

 

Bigarrenik, nekazal lurren gainazalaren zimurtasuna neurtzeko eskalaren eragina 

aztertu da radar erretrodispertsioan. Horretarako, laborantza teknika desberdinekin 

landutako nekazal lurzoruetan jasotako 132 profilez (5 m luzerakoak) osatutako datu 

basea erabili da, C bandan egindako ENVISAT/ASAR behaketekin bat etorriz. Helburu 



 

 
 

honekin miatu dira; alde batetik, neurketa tartea (profilaren luzera); eta, bestetik, 

maiztasun baxuko eta altuko zimurtasun osagaien eragina radar erretrodispertsioan. 

Gai horietako bakoitzarekin, zortzi zimurtasun parametroren balioak kalkulatu dira, 

eta hauen korrelazioa erretrodispertsio koefizientearekin eta Oh modeloaren doitze 

maila ebaluatu dira. Parametro gehienek korrelazio esanguratsua erakutsi dute 

erretrodispertsio koefizientearekiko, batez ere, dimentsio fraktalak (D), tontor 

maiztasunak (F) eta auto-korrelazio funtzioaren hasierako maldak (ρ'(0)). Maiztasune 

ertaineko zimurtasun osagaiek (5-100 cm eskala) erakutsi dute eraginik handiena C 

bandako radar erretrodispertsio behaketetan. 

 

Bestalde, nekazal lurren gainazalaren zimurtasuna zehaztasunez neurtzeko 

beharrezkoa den laginaren tamaina radar aplikazioetan ikertu da. Kasu honetan, bost 

nekazal lurzoru desberdinetan neurtutako 1 m luzerako 635 profilez osatutako datu 

basea erabili da, hamar ENVISAT/ASAR behaketekin bat egiten duena. Oraingo 

honetan, analisia 1 eta 20 bitarteko profilen zimurtasun lagineko tamaina kontuan 

hartuz burutu da. Horretarako, zimurtasun parametrorik erabilienen (altueren 

desbideraketa estandarra (s) eta korrelazio luzera (l)) portaera, hauen korrelazioa 

erretrodispertsioarekin, eta erretrodispertsio modelo desberdinen doitasun maila 

aztertu dira. Altueren desbideraketa estandarraren (s) estimazio zehatza egiteko 10-

15 profilen lagina nahikoa izan liteke, korrelazio luzera (l) estimatzeko, ordea, 20 

lagin ez lirateke nahikoak izango. IEM eta GOM modeloek Oh modeloak baino emaitza 

kaxkarragoak erakutsi dituzte, seguruenik, korrelazio luzeraren (l) ziurgabetasun 

handiagoa dela medio. 

 

Azkenik, nekazal lurren gainazalaren zimurtasunaren ezaugarritzea ebaluatu da, in-

situ neurketa teknika anitzak erabili direlarik. Horretarako, “Terrestrial Laser 

Scanner” (TLS) eta “Structure from Motion” (SfM) teknikekin egin dira neurketak, 

zimurtasun baldintza desberdinak irudikatu dituzten hiru partzelatan (5 x 5 m 

azalerakoak). Profilometroz jasotako neurketak ko-erregistratu egin dira TLS eta SfM 

teknikekin jasotakoekin, azkeneko horien egokitasuna ebaluatzeko zimurtasuna 

ezaugarritzean. Emaitzek erakutsi dute TLS eta SfM tekniken gaitasuna nekazal lurren 

gainazalaren zimurtasuna neurtzeko. Hala ere, teknika biek (SfM batez ere) maiztasun 

altuko zimurtasuneko informazio galera erakutsi dute, eta, hortaz, eragin zuzena izan 

dute zimurtasun parametro batzuetan. Osotara, TLS eta SfM teknikek gainazaleko 

zimurtasunaren inguruko 3D informazio baliotsua eman dute; norabidearen inguruko 



 

 
 

analisi zehatza ahalbidetzen baitute. Eta, hori, garrantzitsua da lurren higadura 

hidrologiko prozesuetan edota radar teledetekzio aplikazioetan. 

 

Horrekin guztiarekin, doktore-tesi honek nekazal lurren gainazaleko zimurtasunaren 

fenomenoa eta berorren ezaugarritzea hobeto ulertzen lagunduko duela espero da. 
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1.1. State of the art 

 

1.1.1. Surface roughness: definition and importance  

 

Roughly speaking, soil roughness is a measure of the variation in surface elevation 

from a reference value (Ulaby et al., 1982). Soil surface roughness affects different 

hydrological processes such as surface depression storage, water infiltration, overland 

flow velocity, organization of overland flow (connectivity) and consequently soil 

erosion by water as well. Thus, the characterization and quantification of roughness is 

of paramount importance in different areas of hydrology and earth sciences. However, 

and although a wheal of studies addressing this important issue have been carried out, 

the current knowledge about it is far from being complete and universally accepted. 

Most of the current definitions of roughness recognized that it is a scale-dependent 

phenomenon (Zobeck and Poppham, 1998; Pardini, 2003). But, in general it can be 

said that roughness is the topographic expression of the surface at scales lower than 

the common resolution of the digital elevation models (Govers et al., 2000; Mushking 

and Gillespie, 2005). On the other hand, the natural micro-relief of agricultural soils –

as a result of the soil particles and soil aggregates/clods arrangements– can be also 

strongly affected by tillage action.    

 

One of the best known classifications of surface roughness was proposed by Römkens 

and Wang (1986), which takes into account not only the spatial scale but also the 

spatial pattern of the surface roughness. The following categories were defined: 

 

- The micro-relief: surface variations due to individual particles or micro-

aggregates. This type of roughness is uniform in all directions (isotropic). The 

surface variations are of the order of millimeter (0-2 mm). 

 

- The random roughness: variations in the surface generated by soil clods 

caused by agricultural practices. This type or roughness is also non-

directional (isotropic). The variations are of the order of 100 mm (can reach 

up to 200 mm). 
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- The oriented roughness: systematic differences in elevation due to 

agricultural works. These forms are one-directional or anisotropic with 

variations between 100-200 mm. 

 

- The high-order roughness: elevation variations at field, basin or landscape 

level. These variations are usually non-directional (isotropic).    

 

The term surface roughness will be used from now on only to refer to the random 

component of roughness, unless stated otherwise. 

 

1.1.2. Surface roughness parameterization 

 

The parameterization of surface roughness in agricultural soils is not straightforward, 

because each tillage practice causes a particular type of micro-relief even under 

identical soil conditions (in terms of texture, moisture, density, etc.). Thus, considering 

the wide range of possible soil conditions, a very large variety of roughness type could 

result in an agricultural soil immediately after tillage. Furthermore, the micro-relief 

generated by the different tillage practices is more or less susceptible to change 

throughout time due to the action of meteorological agents, e.g., precipitations (Della 

Rosa et al., 2012), wind and temperature changes in the low atmosphere (Pardini, 

2003), or even by animal activity (e.g., earthworm). 

 

Although there are many parameters and indices for quantifying surface roughness 

(e.g., Helming et al., 1993; Magunda et al., 1997; Kamphorst et al., 2000; Vermang et 

al., 2013), it is not surprising, as mentioned above, that there are none of a universal 

nature. The roughness parameters most used in the literature can be divided into four 

groups, following a criterion similar to that of Smith (2014): (1) parameters 

measuring the vertical dimension of roughness or the magnitude of the elevation 

variations of the points at the soil surface, (2) parameters measuring the horizontal 

dimension of roughness or the relation between the height of a point and that of its 

neighbors, (3) parameters combining both dimensions, and (4) parameters based on 

fractal theory, which measure self-affinity or the balance between height variations at 

different spatial scales.  
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In the first group (vertical parameters) we find the standard deviation of surface 

heights (s) (Currence and Lovely, 1970), the limiting elevation difference (LD) (Linden 

and Van Doren, 1986), the Sill of the semivariogram (Helming et al., 1993), and the 

microrelief index (MI) (Römkens and Wang, 1986). Those measuring the horizontal 

dimension of roughness (horizontal parameters) are: the correlation length (lACF) and 

the initial slope of the autocorrelation function (ρ'(0)) (Ulaby et al., 1982), the limiting 

slope (LS) (Linden and Van Doren, 1986), the Range of the semivariogram, and the 

peak frequency (F) (Römkens and Wang, 1986). Among the combined parameters we 

find: parameter ZS (defined as the product of parameter s squared and lACF) (Zribi and 

Dechambre, 2003), parameter Q (defined as the root of the product of parameters LD 

and LS) (Linden et al., 1988), parameter MIF (defined as the product of the microrelief 

index and the peak frequency) (Römkens and Wang, 1986), Mean Upslope Depression 

index (MUD) index (Hansen et al., 1999), and the tortuosity index of Saleh (TS) (Saleh 

et al, 1993). With regard to the fractal parameters, although the fractality concept 

does not represent exactly the surface roughness, the estimation of the self-affinity 

measured by these parameters can supply information of interest in roughness 

analysis. In fractal parameters we have: the fractal dimension and the crossover 

length calculated by the semivariogram method (DSMV, lSMV) and by the root mean 

square method (DRMS , lRMS) (Vidal Vázquez et al., 2005); and the fractal dimension 

calculated by the box counting (DBC), power spectrum (DPS) (Gneiteng et al., 2012) and 

rescaled range (DRS) (Liu and Molz, 1996) methods.  

 

All these parameters proposed in the literature are described and evaluated in detail 

in this thesis (chapter 3). 

 

1.1.3. Surface roughness and radar backscatter 

 

Radar remote sensing has a great potential for the estimation of surface roughness 

over large areas. The influence of surface roughness on the backscatter coefficient 

observed by this type of sensors has been known for decades (Ulaby et al., 1978). 

However, the estimation of surface roughness from radar imagery has been 

complicated because of the influence of other variables such as soil moisture or 

vegetation, and also for the difficulty for obtaining field measurements on a scale 

comparable to that of radar observations (Zribi et al., 2005; Verhoest et al., 2008). In 

recent years, the concept of effective roughness has been deepened by calibrating the 
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roughness parameters necessary to obtain a good fit in the soil moisture estimation 

(Su et al., 1997). This research line provided adequate results in terms of soil moisture 

estimation (Baghdadi et al., 2006a; Álvarez-Mozos et al., 2008; Lievens et al., 2011). 

However, it remains to be seen if the effective roughness parameters estimated 

correspond to the real roughness of the observed surfaces or are just fitting 

parameters to enable soil moisture content estimation.  

 

Recently, Fung (2015) proposed that many natural surfaces, such as agricultural or 

sea surfaces, have multiscale roughness properties and not all roughness scale 

components contribute in the same way in the backscatter process. He proposed that 

only one specific roughness spectral component, 𝜅 = (4𝜋/𝜆) sin 𝜃, was responsible for 

microwave backscatter, where 𝜆 is the incident wavelength and 𝜃 is the incidence 

angle. Also, the spatial sampling of surface roughness measurements is an important 

factor which has been related to the wavelength of SAR sensors. In this aspect, Ulaby 

et al., (1982) recommended a sampling interval of ~1/10 of the wavelength and 

Barber et al., (2016) intervals of 15 mm for L-band and 5 mm for C-band, which is 

roughly coincident with Ulaby. Finally, due to the spatial variability of surface 

roughness, a minimum roughness sample size is required for accurately 

characterizing roughness parameters in agricultural soils. Regarding to this, Bryant et 

al., (2007) observed that at least 20 profiles were required to accurately determine s 

and Baghdadi et al., (2008a) reported 10% accuracy for parameter s and 20% 

accuracy for l when 10 profiles were used. 

 

Radar backscattering is a present but also a future and promising technique since 

some recently launched polarimetric radar sensors could be used for surface 

roughness estimation (Allain et al., 2003). In fact, recent studies have demonstrated 

that some polarimetric parameters obtained from this type of images have a direct 

relationship with surface roughness. Regarding to this, Marzahn and Ludwig (2009) 

used observations acquired by airborne sensors to accurately estimate the surface 

roughness degree of different agricultural soils cultivated with cereal. However, some 

other studies demonstrated a rather low sensitivity of most polarimetric parameters 

to surface roughness of agricultural soils (Baghdadi et al., 2013). 
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In this thesis the surface roughness scales that most affect the radar backscattering 

process in C-band observations were studied, along with the sample size needed to 

accurately characterize the surface roughness. 

 

1.1.4. Surface roughness measurement techniques 

 

The complexity of roughness reflects the wide range of surface measurement 

techniques used for its parameterization (Smith, 2014). The resolution, extent and 

availability of surface elevation datasets have been spectacularly improved over the 

last years (Vericat et al., 2014).  

 

The measurement techniques can be classified according to different criteria such us 

sensor type (contact/non-contact), precision (mm/cm) or dimensionality (2D/3D). 

However, most of the literature centered the classification by the sensor type into 

contact and non-contact devices (Govers et al., 2000; Verhoest et al., 2008; Aguilar et 

al., 2009; Thomsen et al., 2015; Nouwakpo et al., 2016). The most common contact 

techniques for characterizing soil surface roughness are the needle profilometers (e.g. 

Gilley and Kottwitz, 1995), the meshboard technique (Callens et al., 2004), the chain 

method –nowadays rather obsolete– (e.g. Saleh, 1993) and the automated relief 

meters (e.g. Hansen et al., 1999). The main benefits of these techniques are their low 

cost and easy handling. However, these techniques have a limited resolution and 

besides the physical contact between the instrument and the soil surface can cause 

measurement biases and experimental errors (Jester and Klik, 2005). 

 

This last problem is avoided when using non-contact techniques. The laser 

profilometer is the non-contact technique that has been mostly used (Verhoest et al., 

2008). However, nowadays, the most commonly used non-contact techniques for 

micro-topography measurements are laser scanners and image based 3D 

reconstruction technologies (Barneveld et al., 2013; Nouwakpo et al., 2016). 

Furthermore, laser based measurement techniques have been used since they enable 

a very high spatial resolution soil micro-topography measurements (Perez-Gutierrez 

et al., 2007; Aguilar et al., 2009; Castillo et al., 2012; Milenkovic et al., 2014; Nouwakpo 

et al., 2016). Specifically, Terrestrial Laser Scanner (TLS) technique presents 

accuracies of 0.1-0.5 mm for vertical measurements and 0.1-2 mm for horizontal ones 

(Aguilar et al., 2009). Although, the high acquisition cost and the bulky size of the 
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devices limited their used for field measurement campaigns (Nouwakpo et al., 2016), 

technical improvements in sensor design could improve this aspect in the near future. 

In recent years, different authors studied the suitability of TLS for surface roughness 

characterization in agricultural soils (e.g., Milenkovic et al., 2014; Thomsen et al., 

2015; Rodríguez-Caballero et al., 2016).  

 

On the other hand, image based 3D reconstruction technologies can be divided into 

traditional stereo-photogrammetry and Structure from Motion (SfM) 

photogrammetry (Nouwakpo et al., 2016). Traditional photogrammetric techniques 

required specific cameras, precise calibration and geometric constrains (Gilliot et al., 

2017), while SfM relaxes some of these specifications making image acquisition and 

processing significantly faster and easier (Castillo et al., 2012; James and Robson, 

2012; Woodget et al., 2015; Gomez et al., 2015). In the last years, the interest of 

scientists of different disciplines in this technology as a surface reconstruction tool 

has expanded since the development of readily available SfM software (e.g., Smith and 

Vericat, 2015; Nouwakpo et al., 2016).     

 

Also, within non-contact techniques it could be included the surface elevation 

measurements obtained from remote sensors. This group includes optical sensors 

(Mushkin and Gillespie, 2005), radar sensors (e.g. Raju, 2008), airborne 

photogrammetric techniques (e.g. Taconet and Ciarletti, 2007), unmanned aerial 

vehicles (UAV) as a flexible tool for measurement and monitoring (e.g. Laliberte et al., 

2010) and airborne laser scanners (Mallet and Bretar, 2009). 

 

In this thesis, a laser profilometer and the newly developed TLS and SfM techniques 

were used for the in-situ characterization of surface roughness in agricultural soils, 

and the relationship between surface roughness and radar remote sensing was also 

explored. 

 

 

1.2. Objectives 

 

The general objective of this thesis was to gain insight into the surface roughness 

characterization in agricultural soils using the most advanced measurement 
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techniques. In order to achieve this general objective, some particulars objectives 

were established as well:  

 

- The evaluation of the different parameters and the selection of the most 

suitable ones for characterizing and quantifying surface roughness on 

agricultural soils as affected by different types of conventional tillage. 

 

- The analysis of the influence of surface roughness measurement scale on 

radar observations across different agricultural soils determining the 

roughness scales which contribute to backscatter. 

 

- The analysis of the influence of surface roughness sample size on radar 

observations in agricultural soils, in order to determine the minimum number 

of profiles required in radar applications. 

 

- The evaluation of Terrestrial Laser Scanner and Structure from Motion 

techniques, so as to assess their accuracy and suitability for quantifying 

surface roughness in different agricultural soils. 

 

 

1.3. Structure of the thesis 

 

The core of this thesis has been written as a collection of research papers published in 

or submitted to international scientific journals. Since each paper was intended to be 

read independently, some overlap may occur between the various papers, especially 

in the introduction and the materials and methods sections. 

 

The first chapter consists of a general introduction in which the different works are 

presented and their thematic unit is justified and the second chapter describes the 

material and the methods used in this thesis. Next, the four central chapters are the 

published (or submitted) papers which correspond to the objectives presented above. 

The third chapter presents a detailed evaluation of different roughness parameters 

proposed in the literature, looking for the most suitable ones for surface roughness 

characterization in agricultural soils. The fourth chapter assesses the influence of 

surface roughness measurement scale on radar backscattering and the fifth chapter 
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the influence of the surface roughness sample size on radar backscattering. Finally, 

the sixth chapter presents an evaluation of Terrestrial Laser Scanner and Structure 

from Motion techniques for quantifying surface roughness on agricultural soils. To 

conclude, the specific conclusions obtained from the different analyses assessed and 

the general conclusions deducted throughout this thesis are presented.  
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This chapter aims to introduce the reader to the materials used in the data acquisition 

process and the methods applied for the data analysis throughout the thesis. For this, 

the description of the different materials and methods sections in the presented 

publications has been compiled and synthesized. 

 

 

2.1. Test sites 

 

In this thesis two different test sites were used to obtain the data for the different 

analyses. On the one hand, the experimental watershed of La Tejería (Navarre, Spain), 

which was studied in chapters 3, 4 and 5 (Martinez-Agirre et al., 2016; Martinez-

Agirre et al., 2017a; Martinez-Agirre et al., 2017b). On the other hand, the 

experimental fields at the School of Agricultural Engineers of the Public University of 

Navarre in Pamplona (Navarre, Spain), which was used in chapter 6 (Martinez-Agirre 

et al., 2017c). The location of the two study areas is shown in Fig. 2.1. 

 

 
Fig. 2.1. Location of La Tejería experimental watershed (1) and the experimental fields at the School of 

Agricultural Engineers (2). 

 

2.1.1. La Tejería experimental watershed (chapters 3, 4 and 5) 

 

This watershed is part of the Experimental Agricultural Watershed Network of 

Navarre, created by the local Government of Navarre in 1993 for the study of the 

impact of agriculture on the hydrological processes (Casali et al., 2008) (Fig. 2.1), and 

can be considered representative of rain-fed cereal cropping areas in the region 

(Álvarez-Mozos et al., 2011). The watershed covers 169 ha with quite homogenous 

slopes of about 12% and an altitude ranging from 469 to 649 m. The climate is humid 
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sub-Mediterranean, with a mean annual temperature of 13 ºC. Soils have a silty-clay 

texture (approximately 5% sand, 52% silt and 43% clay). 

 

Surface roughness measurements were performed over this site on 6 dates (Table 

2.1). On the first three dates four different roughness classes (corresponding to 

different tillage classes) were measured: Mouldboard Plough (MP), Harrowed Rough 

(HR), Harrowed Smooth (HS) and Planted Unmodified (PU). On the forth date a cereal 

crop was sown and hence the tillage class was referred to as Planted Unmodified (PU) 

or Planted Compacted (PC). Some months after planting, soils exhibited the 

consequences of rainfall, and thus a last roughness class was considered, i.e., Planted 

Modified (PM). The description of the different roughness classes considered is given 

in Table 2.2. 

 
Table 2.1. Roughness classes of the test field on the different measurement dates. 

Test field 22/09/2004 08/10/2004 24/10/2004 12/11/2004 17/12/2004 01/03/2005 

188 HR HR - PU PU* PM 

189 HR HR HS PU PU* PM 

193 HR HR PU* PU PU* PM 

194 - HR HR PU PU* PM 

199 MP MP MP PU PU* PM 

201 HS HS - PU PU* PM 

208 MP - - - PC - 

235 HS HS PU* PU PU* PM 

255 HS HS - PU PU* PM 

258 HR - - PU PU* PM 

* Planted Unmodified (PU) was referred to as planted (P) in chapters 4 and 5. 

 
Table 2.2. Description of the different roughness classes analyzed in chapter 3, 4 and 5. 

Tillage class Acronym Description 

Mouldboard Plough MP 

Tillage operation performed with a plough with multiple 

mouldboards at a depth of 15-20 cm, resulting in soil 

inversion and a very rough surface 

Harrowed Rough HR 

Operation performed normally with a tine harrow to break 

soil clods and provide a smoother surface suitable for 

seeding 

Harrowed Smooth HS 
In cases where the first harrowing did not smoothen 

sufficiently the surface a second harrowing is applied 

Planted Unmodified* PU* 
Seeding operation performed with conventional sowing 

machinery, normally seed drills 

Planted Compacted PC Planted operation followed by a compacting roller 

Planted Modified PM 
Planted soils modified by the action of the precipitation 

during 4 months (~250 mm) 

* Planted Unmodified (PU) class was referred as Planted (P) in chapters 4 and 5. 
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2.1.2. Experimental fields at the School of Agricultural Engineers (chapter 6) 

 

This study area is part of the Public University of Navarre’s Arrosadia Campus in 

Pamplona (Navarre, Spain) (Fig. 2.1). The climate is humid sub-Mediterranean with a 

mean annual temperature of ~13 ºC and an average precipitation of ~675 mm 

distributed over 95 days. Soils have a silty-clay-loam texture (13.7% sand, 48.3% silt 

and 38% clay). In this place three experimental plots (5x5 meters) were created using 

different tillage operations and obtaining different roughness classes (Table 2.3). 

Measurements were carried out on three days, November 25-27 2013, where no 

precipitation was recorded, with the aim of evaluating different roughness 

measurement techniques. 

 
Table 2.3. Description of the different roughness classes analyzed in chapter 6. 

Tillage class Acronym Description 

Mouldboard Plough MP 

Primary tillage operation performed with a plough with 

multiple mouldboards (15-20 cm depth) that break and 

turn over the soil 

Chisel CH 
Primary tillage operation that breaks and shatters the 

soil leaving it rough with residue in the surface 

Harrowed Compacted HS 
MP operation followed by a secondary operation using a 

spike harrow and a compacting roller 

 

 

2.2. Surface roughness measurement techniques 

 

In this thesis, three different techniques were used to obtain the data for the different 

analyses. On the one hand, the laser profilometer was used for measuring soil surface 

roughness consistently in all the studies presented in this thesis (chapters 3 to 6). On 

the other hand, Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) 

techniques were evaluated for quantifying surface roughness in agricultural soils 

(chapter 6). 

 

2.2.1. Laser profilometer (chapter 3, 4, 5 and 6) 

 

A laser profilometer was used to measure soil surface roughness in all the analyses 

presented in this thesis, thus it is described in chapters 3 to 6. The profilometer was 

originally designed for roughness measurements by our research group (Álvarez-
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Mozos et al., 2005). This instrument incorporates a laser sensor (SICK DME 2000) (Fig 

2.2) that measures the vertical distance from a reference aluminum bar (fixed to two 

tripods) to the soil surface (Fig. 2.2). The profilometer has a total measurement range 

of 5 m, a sampling interval set to 5 mm and a vertical accuracy of 1.25 mm. The 

surface roughness data obtained by the laser profilometer were processed as follows 

(Fig. 2.3): (1) correction of the bending of the aluminum bar due to its weight and that 

of the sensor carriage, (2) filtering of outliers (points with height differences higher 

than 10 cm with the previous and next high records) and (3) the correction of the 

terrain slope (thorough the subtraction of the linear trend along the profile). For more 

details about this technique, please see section 3.2.2 of the thesis. 

 

 
Fig. 2.2. SICK DME 2000 laser sensor (left) of the profilometer (right) used for data taking. 
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Fig. 2.3. Different steps of the profile processing. 

 

2.2.2. Terrestrial Laser Scanner (chapter 6) 

 

Terrestrial Laser Scanner (TLS) technique is used in chapter 6. The TLS instrument 

employed in this thesis was the FARO Focus 3D (Fig. 2.4). Four scans were obtained 

per experimental plot from a tripod ~ 1.75 m high, which were co-registered using 

five references spheres deployed around the plots (Fig. 2.4). The FARO Focus 3D has a 

specific ranging accuracy of 0.3 mm and the vertical and horizontal resolution was set 

to 0.0018º. Terrestrial Laser Scanner (TLS) data processing consisted of: (1) filtering 

each scan to exclude mixed pixels (using a self-implemented algorithm based on the 

signal intensity as a function of the incidence angle), and (2) co-registration of the 

scans using the ICP (iterative closest point) algorithm implemented in the OPALS 
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(Orientation and Processing of Airborne Laser Scanning) software developed by TU 

Wien (Otepka et al., 2013; Pfeifer et al., 2014). For more details about this technique, 

please see section 6.2.3.2 of the thesis. 

 

 
Fig. 2.4. FARO focus 3D (left) and the scanning setup (right) used for data acquisition. 

 

2.2.3. Structure from Motion (chapter 6) 

 

Structure from Motion (SfM) is a close range photogrammetric technique evaluated in 

chapter 6. The camera used in this thesis was the Canon EOS 5D Mark II (Fig. 2.5). For 

each experimental plot 24 photos of 20 megapixels resolution were acquired from a 

lifting platform (Fig. 2.5). For more details about SfM measurement technique, please 

see section 6.2.3.2 of the thesis. SfM data processing consisted in: (1) geo-referencing 

each photo using eight control points measured with a total station and (2) generating 

the dense point clouds in “ultra-high quality” mode using Agisoft Photoscan software. 

For more details about this technique, please see section 6.2.3.3 of the thesis. 

 

 

 
Fig. 2.5. Canon EOS 5D Mark II camera (left) and the lifting platform (right) used for data acquisition. 
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2.3. Radar data (chapters 4 and 5) 

 

ENVISAT/ASAR images were used in this thesis for the analysis of soil surface 

roughness on radar applications. ENVISAT was an Environmental Satellite operated 

by the European Space Agency (ESA) whose activity period ranged from March 2002 

to April 2012. One of the instruments carried by the satellite was the Advanced 

Synthetic Aperture Radar (ASAR) that operated in C band, with a spatial resolution of 

30 m and a selectable polarization configuration (VV was used in this thesis). 

ENVISAT/ASAR scenes were: (1) orthorectified using a 5 m resolution DEM, (2) 

calibrated using the local incidence angle, and (3) speckle filtered using a gamma MAP 

filter with a 5 x 5 window. Then, mean backscattering coefficient (σ0) values were 

calculated for each field per date. Further details are given in chapters 4 and 5, where 

a total of 10 ENVISAR/ASAR scenes acquired over La Tejería watershed were 

analyzed. 

 

 

2.4. Soil moisture data (chapters 4 and 5) 

 

In chapters 4 and 5, radar backscatter models were used to evaluate the influence of 

roughness scale on radar observations. For this, surface soil moisture (SM) data were 

needed, and thus, SM on La Tejería catchment was measured using a calibrated Time 

Domain Reflectometry (TDR) probe. For each agricultural field, five spatially 

distributed locations were monitored per date, so as to obtain a representative 

average on the fields’ SM content at a depth of 5 cm. SM measurements were taken on 

dates where SAR observations were acquired. However, in some dates no field 

campaigns could be conducted and therefore SM was modeled using a land-surface 

model TOPLATS calibrated with the available in-situ measurements. Further details 

are given in chapters 4 and 5. 

 

 

2.5. Data analysis 

 

In this section, a brief description of each of the analysis performed during the thesis 

is made. 

 



Chapter 2 

52 
 

2.5.1. Surface roughness parameters analysis 

 

In this thesis, a total of 21 surface roughness parameters were analyzed (Table 2.4). 

These parameters can be grouped in four categories depending on the roughness 

properties they quantify. In chapter 3, all the 21 parameters were assessed, whereas 

in the remaining chapters a lower number was considered. In particular, in chapter 4 

eight parameters were analyzed, in chapter 5 just two, and in chapter 6 six. These 

differences were due to the different objectives and scope of each chapter. For more 

information about roughness parameters definition, please see section 3.2.3 of the 

thesis.  

 
Table 2.4. Roughness parameters used in the thesis. 

Type Parameter Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Vertical s (cm)     

 LD (cm)     

 Sill (cm2)     

 MI (cm)     

Horizontal lACF (cm)*     

 ρ'(0)     

 LS     

 Range (cm)     

 F (cm-1)     

Combined ZS (cm)     

 Q (cm1/2)     

 MIF     

 MUD (cm)     

 TS     

Fractals DSMV **     

 DRMS     

 DBC     

 DPS     

 DRS     

 lSMV (cm)     

 lRMS (cm)     
* referred to as l in chapters 4, 5 and 6.  

** referred to as D in chapters 4 and 6. 
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2.5.2. Separability analysis (chapter 3) 

 

In chapter 3 the ability of each roughness parameter to discriminate different 

roughness types was evaluated. For that, the Jeffries-Matusita Distance (DJM) was 

calculated for each roughness parameter and pair of roughness classes analyzed: 

 

𝐷𝐽𝑀 = ∫ [(√𝑓(𝑥) − √𝑔(𝑥))
2

] 𝑑𝑥      (2.1) 

 

where 𝐷𝐽𝑀  is the distance between classes 𝑓(𝑥) and 𝑔(𝑥) measured by the parameter 

x. For more detail about Jeffries-Matusita Distance (DJM), please see section 3.2.4.2. 

 

2.5.3. Surface roughness scale analysis (chapters 4 and 5) 

 

In chapter 4 three different scaling issues on the surface roughness characterization 

were assessed: (1) the influence of measurement range (profile length) by dividing 

the original profile into 2 to 10 profiles, (2) the influence of low-frequency roughness 

components by smoothening the original profiles with an increasing window size (Fig. 

4.2 in chapter 4), and (3) the influence of high-frequency roughness components by 

subtracting the smoothened profiles from the original ones (Fig. 4.2 in chapter 4). 

 

On the other hand, the analysis presented in chapter 5 studied the influence of sample 

size (number of profiles) on the surface roughness characterization. Here, an 

increasing number of 1-m-long profiles (from 1 to 20) were considered for roughness 

parameters estimation. For each plot and date, four original 5-m-long profiles were 

divided into 20 1-m-long profiles. Further details are given in section 5.2.5 of this 

thesis. 

 

2.5.4. Correlation analysis (chapters 3, 4 and 5) 

 

In chapter 3 a correlation analysis was performed to study the relationship between 

the 21 roughness parameters evaluated. A correlation analysis was also used in 

chapters 4 and 5 to evaluate the correlation between backscatter and different 

roughness parameters and roughness scales. For this purpose, the Spearman 

correlation coefficient (R) was obtained. R measures the strength and direction of the 

monotonic relationship between two variables, since it is not limited to the linear case 
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it is considered to be the non-parametric version of the more common Pearson 

correlation coefficient. The Spearman coefficient was selected due to the non-linear 

shape of some of the relationship explored. 

 

2.5.5. Goodness-of-fit of backscatter models (chapters 4 and 5) 

 

In this thesis, the physically based Integral Equation Model (IEM) (Fung et al., 1992) 

and Geometrical Optics Model (GOM) (Ulaby et al., 1982), and the empirical model of 

Oh (Oh et al., 1992) were used. On the one hand, Oh model was selected in chapters 4 

and 5 because of its rather large validity domain including both rough and smooth 

roughness conditions. On the other hand, due to their different nature and validity 

range, IEM and GOM were considered only in chapter 5 (IEM for the smooth classes P 

and PC and GOM for the rough classes MP, HR and HS). Finally, models’ goodness-of-fit 

was evaluated by computing the root mean square error (RMSE) between simulated 

and observed average backscatter values per field.  

   

It must be clarified that, in chapter 5, some fields were slightly out of the validity 

range of the IEM and GOM models (Fig. 2.6), yet they were included in the analysis 

since their results were considered not significantly different from the rest of the 

fields of their classes. Not so in chapter 4, that when considering profile lengths and 

when performing the filtering of the low and high frequency roughness component, 

the values of the roughness parameters were further compromised with respect to the 

range of validity. 
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Fig. 2.6. Validity domain of the backscatter models considered in the thesis (IEM, GOM and Oh) and the 

mean s and l parameters values of the agricultural fields studied in chapters 4 and 5. 

 

2.5.6. Surface roughness measurement techniques (chapter 6) 

 

For the analysis of the measurement techniques, the surface elevation data obtained 

from the different techniques needed to be processed to be comparable. First, the 

point clouds obtained with TLS and SfM were co-registered using again the ICP 

algorithm. Then, profiles were extracted from the point-clouds coinciding with the 

location of the profiles measured with the profilometer (Fig. 2.7). Further details 

about this process are given in section 6.2.5. 
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Fig. 2.7. Detail of the profile extraction from a point cloud. 

 

Roughness measurement techniques evaluation was done, first, using 2D 

measurements, i.e., profiles. Profiles acquired with different techniques were 

compared first through a visual analysis, and next, with an analytical comparison 

consisting of scatterplots representation, regression analysis and RMSE calculation 

between the different techniques. To do this, three scatterplots were analyzed for each 

roughness class and measurement direction (in parallel and in perpendicular to the 

tillage direction); (1) Laser profilometer vs. TLS, (2) Laser profilometer vs. SfM and 

(3) TLS vs. SfM. Finally, an evaluation of the roughness parameter values obtained 

from the profiles with the three different techniques was performed. 

 

After the 2D analysis, the 3D information contained on TLS and SfM datasets was 

evaluated. On the one hand, a multidirectional analysis was performed to evaluate the 

directionality (or anisotropy) of roughness by using polar plots representing 

roughness parameter values obtained from profiles extracted every 15º azimuth. On 

the other hand, 5 x 5 mm resolution DEMs were obtained with the two techniques and 

then subtracted to visualize their differences. Further details about this analysis are 

given in section 6.2.5. 
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Abstract 

 

Surface roughness crucially affects the hydrological and erosive behaviours of soils. In 

agricultural areas surface roughness is directly related to tillage, whose action 

strongly affects the key physical properties of soils and determines the occurrence 

and fate of several processes (e.g., surface storage, infiltration, etc.). The 

characterisation of surface roughness as a result of tillage operations is not 

straightforward, and numerous parameters and indices have been proposed for 

quantifying it. In this article, a database of 164 profiles (each 5 m long), measured in 5 

different roughness classes, was analysed. Four roughness classes corresponded to 

typical tillage operations (i.e., mouldboard, harrow, seedbed, etc.), and the fifth 

represented a seedbed soil that was subject to rainfall. The aim of the research was to 

evaluate and select the surface roughness parameters that best characterised and 

quantified the surface roughness caused by typical tillage operations. In total, 21 

roughness parameters (divided into 4 categories) were assessed. The parameters that 

best separated and characterised the different roughness classes were the limiting 

elevation difference (LD) and the Mean Upslope Depression index (MUD); however, 

the parameters most sensitive to rainfall action on seedbed soils were limiting slope 

(LS) and the crossover lengths measured with the semivariogram method (lSMV) and 

the root mean square method (lRMS). Many parameters had high degrees of correlation 

with each other, and therefore gave almost identical information. The results of this 

study may contribute to the understanding of the surface roughness phenomenon and 

its parameterisation in agricultural soils. 

 

Keywords: surface roughness, roughness parameters, agricultural soils, tillage 

 

 



Evaluation of surface roughness parameters 

59 

 

3.1. Introduction 

 

Surface roughness is a key element in the hydrological and erosive behaviour of soils 

(Helming at al., 1998), and as a soil-atmosphere frontier, plays an important role in 

many processes, such as infiltration, runoff, the detachment of soil due to water or 

wind, gas exchange, evaporation and heat fluxes (Huang and Bradford, 1992).  

 

Depending on the order of magnitude of the soil surface elevation variations, and on 

the spatial arrangement of its microforms, surface roughness can be classified into 

different categories (Römkens and Wang, 1986): (1) Variations in the soil`s 

microrelief due to its individual particles and/or microaggregates (variations of the 

order of 1 mm, but up to 2 mm). (2) Variations in the surface generated by soil clods 

caused by agricultural practices (variations of the order of 100 mm, but up to 200 

mm); these two roughness types are considered random and isotropic (i.e., uniform in 

all directions). (3) Roughness due to the systematic differences in elevation (i.e., rows 

or furrows) caused by tillage implements (variations between 100 and 200 mm); 

these forms are one-directional and this component is, therefore, oriented or 

anisotropic. (4) Roughness due to the macroforms of the terrain (of the order of 

several meters), which together define the topography of the landscape; these 

elevation variations are usually non-directional. Although the classification of 

Römkens and Wang (1986) associated the effect of tillage with an oriented type of 

roughness (category 3), it is understood that random roughness (categories 1 and 2) 

is also affected, to a greater or lesser extent, by tillage. 

 

The order of magnitude in the elevation variations of the two (or three) first 

roughness types is lower than the spatial resolution of the digital elevation models 

that are conventionally used (Govers et al., 2000; Mushkin and Gillespie, 2005). Hence, 

in order to quantitatively characterise those microforms, it is necessary to take 

complementary measurements in situ, which permit the calculation of different 

surface roughness parameters or indices. 

 

The parameterisation of the random surface roughness caused by tillage (the first two 

categories cited above) is not straightforward. Each tillage practices (or implements) 

causes, in theory, a particular type of microrelief under identical soil conditions (in 

terms of texture, moisture, density, etc.). Considering the wide range of possible soil 
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conditions, a huge variety of roughness types could be found in agricultural soils 

immediately after tilling. In addition, soil physical properties, particularly surface 

roughness, can also be highly variable in space. To further complicate its 

characterisation, surface roughness also shows a multi-scale nature making any 

roughness measurement scale-dependent (Zhixiong et al., 2005; Verhoest et al., 2008; 

Álvarez-Mozos et al., 2011). Finally, the microrelief generated by the different tillage 

practices is more or less susceptible to change throughout time due to the action of 

meteorological agents, e.g., precipitation (Dalla Rosa et al., 2012), wind and 

temperature changes in the low atmosphere (Pardini, 2003), or even animal activity. 

  

Although there are many parameters and indices for quantifying surface roughness 

(e.g., Helming et al., 1993; Magunda et al., 1997; Kamphorst et al., 2000; Vermang et 

al., 2013), none work universally and interested scientists/technicians find it difficult 

to select the most appropriate one for their particular case. The random roughness 

parameters that are most commonly used in the literature, described in section 2.3, 

were considered in this study; these parameters can be divided into four groups, 

following a criterion similar to that of Smith (2014): (1) parameters measuring the 

vertical dimension of roughness or the magnitude of the elevation variations of the 

points at the soil surface (vertical parameters), (2) parameters measuring the 

horizontal dimension of roughness or the relation between the height of a point and 

that of its neighbours (horizontal parameters), (3) parameters combining both 

dimensions (combined parameters), and (4) parameters based on fractal theory, 

which measure self-affinity or the balance between height variations at different 

spatial scales (fractal parameters).  

 

In light of the above, the aim of this research was to evaluate and select the most 

appropriate surface roughness parameters to characterise and quantify the surface 

roughness caused by typical tillage operations. 
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3.2. Material and methods 

 

3.2.1. Test site 

 

Roughness data were taken in 10 agricultural fields, with an extension ranging from 3 

ha to 7.3 ha. Fields were located in the experimental hydrological watershed of La 

Tejería (N42º44’10.6’’ and W1º56’57.2’’) in Navarre (Spain), which has been used in 

different research works in the past (e.g., Casalí et al., 2008; Álvarez-Mozos et al., 

2009; Álvarez-Mozos et al., 2011). Each of the fields was subjected to different tillage 

operations (see Fig. 3.1. A-E and Table 3.1) following the conventional soil preparation 

calendar in the area. Thus, during the months of September and October, 2004, the 

obtained data corresponded to soils subjected to primary tillage, i.e., classes 

Mouldboard Plough (MP), Harrowed Rough (HR), and Harrowed Smooth (HS). In the 

month of November 2004, soils were sown with cereal crops, representing typical 

seedbed conditions; this class was referred to as Planted Unmodified (PU). Finally, a 

final measurement was carried out in March 2005. By this time, seedbed soils had 

been modified by the action of the rainfall that had occurred since sowing (~250 mm); 

this class was referred to as Planted Modified (PM). In total, 164 profiles were taken 

(see Table 3.1). Profiles were measured in parallel to tillage rows, to reflect the 

random roughness component. 
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Fig. 3.1. Examples of surface roughness triggered by agricultural treatments; (A) planted modified by 

rainfall, (B) planted unmodified, (C) harrowed smooth, (D) harrowed rough and (E) mouldboard plough; 

and (F) profilometer used for data taking. As a reference, the notebook in C, D, and E is 30 cm long; and 5 m 

the length of the profilometer bar in F. 
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Table 3.1. Description of the different roughness classes triggered by agricultural treatments. 

Tillage class Acronym Profiles Description 

Mouldboard Plough MP 20 

Tillage operation performed with a plough with 

multiple mouldboards at a depth of 15-20 cm, 

resulting in soil inversion and a very rough surface 

Harrowed Rough HR 43 

Operation performed normally with a tine harrow to 

break soil clods and provide a smoother surface 

suitable for seeding 

Harrowed Smooth HS 29 
In cases where the first harrowing did not smoothen 

sufficiently the surface a second harrowing is applied 

Planted Unmodified PU 44 
Seeding operation performed with conventional 

sowing machinery, normally seed drills 

Planted Modified PM 28 
Planted soils modified by the action of the 

precipitation during 4 months (~250 mm) 

 

3.2.2. Profile measurements 

 

Profiles were taken with a profilometer designed ad hoc for roughness measurement 

(Álvarez-Mozos et al., 2005). This instrument incorporates a laser sensor that 

measures the vertical distance from a reference bar down to the surface. The laser 

profilometer (see Fig. 3.1. F) consists of an aluminium bar with its ends fixed to two 

tripods. The laser distance meter is located inside a case that moves along the 

aluminium bar, propelled by a small electric motor. The laser profilometer has a 

vertical accuracy of 1.25 mm and a measurement interval of 5 mm. The total length of 

profiles was 5 m, so that in each one there are 1000 height records. 

 

Profiles were processed using a code developed ad hoc, consisting of: (1) the 

correction of the buckling effect on the aluminium bar by detrending profiles with a 

parabolic curve obtained from a perfect horizontal reference surface, (2) the 

application of a filter to eliminate the outliers eventually detected in the height 

records (e.g., plant material) by deleting and interpolating records with height 

differences larger than 10 cm with the previous and next records, and (3) the 

correction of terrain slope (i.e., profile detrending) through the subtraction of the 

linear trend observed in the data (Xingming et al., 2014). Once this process had been 

carried out, the profiles were ready for the calculation of the different roughness 

parameters. 
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It should be noticed that the data analysed in this study are 2D profiles and that 

inferences about 3D phenomena (e.g., depression storage) should be made with 

caution. 

 

3.2.3. Calculation of roughness parameters 

 

In total, 21 surface roughness parameters were analysed (Table 3.2); these 

parameters could be classified into vertical, horizontal, combined, and fractal 

parameters, as explained in the introduction. Next, each parameter is briefly 

described; parameter names are highlighted in bold for clarity. 

 
Table 3.2. Summary of roughness parameters analszed. 

Type Parameter Description Reference 

Vertical s (cm) Standard deviation of the heights Allmaras et al., 1966 

 LD (cm) Limiting elevation difference Linden and Van Doren, 1986 

 Sill (cm2) Sill of the semivariogram Croft et al., 2013 

 MI (cm) Microrelief index Römkens and Wang, 1986 

Horizontal lACF (cm) Correlation length  Ulaby et al., 1982 

 ρ'(0) Initial slope of the auto-correlation function Ulaby et al., 1982 

 LS Limiting slope Linden and Van Doren, 1986 

 Range (cm) Range of the semivariogram Croft et al., 2013 

 F (cm-1) Peak frequency Römkens and Wang, 1986 

Combined ZS (cm) Combined parameter Zribi and Dechambre, 2003 

 Q (cm1/2) Combined parameter Linden et al., 1988 

 MIF Combined parameter Römkens and Wang, 1986 

 MUD (cm) Mean Upslope Depression index Hansen et al., 1999 

 TS Tortuosity Saleh et al., 1993 

Fractals DSMV Fractal dimension (“semivariogram” method) Vidal Vázquez et al., 2005 

 DRMS Fractal dimension (“root mean square” 

method) 
Vidal Vázquez et al., 2005 

 DBC Fractal dimension (“box counting” method) Gneiting et al., 2012 

 DPS Fractal dimension (“power spectrum” method) 

 
Gneiting et al., 2012 

 DRS Fractal dimension (“rescaled range” method) Liu and Molz, 1996 

 lSMV (cm) Crossover length (“semivariogram” method) Vidal Vázquez et al., 2005 

 lRMS (cm) Crossover length (“root mean square” method) Vidal Vázquez et al., 2005 

 

Random roughness, one of the indices most frequently used to describe surface 

roughness, was proposed by Allmaras et al. (1966) as the standard deviation of 

heights after the elevations were transformed to natural logarithms and corrected for 

slope and tillage tool marks. After Currence and Lovely (1970) showed that the 
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parameter was more sensitive without any logarithmic transformation, most authors 

(e.g., Bertuzzi et al., 1990; Hansen et al., 1999; Kamphorst et al., 2000) calculate 

random roughness as the standard deviation of heights (s) (eq. 3.1): 

 

𝑠 = √
∑ (𝑧𝑖

2−𝑧̅2)𝑁
𝑖=1

𝑁−1
        (3.1) 

 

where 𝑁 is the number of height records, 𝑧𝑖  is the height corresponding to record 𝑖, 

and 𝑧̅ is the mean height of all the records. 

 

The correlation length (lACF) represents the horizontal component of roughness, i.e., 

it describes the relative location of heights or the way in which the heights vary along 

the surface (Ogilvy and Foster, 1989). The correlation length was calculated from the 

autocorrelation function (eq. 3.2) (Ulaby et al., 1982): 

 

𝜌(ℎ) =
∑ 𝑧𝑖𝑧𝑖+ℎ

𝑁(ℎ)
𝑖=1

∑ 𝑧𝑖
2𝑁

𝑖=1

       (3.2) 

 

where 𝜌(ℎ) is the autocorrelation function, which represents the correlation existing 

between height z of the point i (𝑧𝑖) and that of another point located at a lag distance h 

from it (𝑧𝑖+ℎ), and 𝑁(ℎ) is the number of pairs considered in each lag h. The 

correlation length (lACF) is then defined arbitrarily as the distance at which the heights 

of two points on the surface are considered independent; i.e., 𝜌(ℎ) is equal to 1/𝑒, so 

that 𝜌(𝑙) = 1/𝑒. Another parameter extracted from the autocorrelation function is its 

initial slope (ρ'(0)), which also provides a measure of the horizontal roughness 

(Borgeaud et al., 1995), but in this case at a more local scale, i.e., focusing on the height 

variations of a point with its nearest neighbours. Zribi and Dechambre (2003) 

proposed parameter ZS as a combination of s and lACF (eq. 3.3), and thus accounted for 

both vertical and horizontal roughness components: 

 

𝑍𝑠 = 𝑠2/𝑙𝐴𝐶𝐹         (3.3) 

 

The concepts of the limiting elevation difference (LD) and the limiting slope (LS) 

were developed to include the spatial aspect of roughness (Linden and Van Doren, 

1986). Parameter LD supplies information on the characteristics of roughness at long 
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distances, whereas LS is used to characterise roughness at short distances (Bertuzzi et 

al., 1990). The mean absolute-elevation-difference is defined as (eq. 3.4): 

 

∆𝑧ℎ = ∑
|𝑧𝑖−𝑧𝑖+ℎ|

𝑁(ℎ)

𝑁(ℎ)
𝑖=1        (3.4) 

 

The relationship between ∆𝑧ℎ  and the lag distance h was obtained from a hyperbolic 

linear model defined by (eq. 3.5): 

 

1/∆𝑧ℎ = 𝑎 + 𝑏(1/ℎ)       (3.5) 

 

where a and b are the fitting parameters obtained for an arbitrary horizontal distance. 

After testing different values, and following the recommendation of Linden and Van 

Doren (1986), this distance was set to 20 cm. Parameter LD (eq. 3.6) determines the 

shape of the variogram, assumed to follow a hyperbolic function: 

 

𝐿𝐷 = 1/𝑎        (3.6) 

 

Parameter LS (eq. 3.7) is the original variogram slope (Kamphorst et al. 2000), given 

by: 

 

𝐿𝑆 = 1/𝑏        (3.7) 

 

Linden et al. (1988) proposed a third parameter that was obtained as a combination of 

parameters LD and LS, called parameter Q (eq. 3.8). This parameter can be 

considered a combined roughness parameter. 

 

𝑄 = (𝐿𝐷 ∙ 𝐿𝑆)1/2        (3.8) 

 

The semivariogram represents how height data are related to distance. The 

semivariance function depending on the lag h can be calculated as: 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧𝑖+ℎ − 𝑧𝑖]

2𝑁(ℎ)
𝑖=1       (3.9) 

 

Once the experimental semivariogram was calculated, a spherical model was fitted to 

it (Vázquez et al., 2009; Croft et al., 2013): 
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𝛾(ℎ) = {
𝑐1 [1.5

ℎ

ℎ𝑎
− 0.5 (

ℎ

ℎ𝑎
)

3

] + 𝑐0 ; ℎ ≤ ℎ𝑎

𝑐1 + 𝑐0                                      ; ℎ > ℎ𝑎

    (3.10) 

 

where ℎ𝑎  is the Range, 𝑐1 is the Sill, and 𝑐0 is the Nugget. After testing different values, 

100 cm of maximum lag distance was deemed sufficient to accurately fit the spherical 

model to the experimental semivariogram. Sill represents the value of 𝛾(ℎ) where the 

fitted model reaches the plateau, and Range is the distance at which the Sill is found. 

No nugget effect was taken into account (Vermang et al., 2013). Both Sill and Range 

have been frequently used as soil surface roughness indices (e.g., Helming et al., 1993; 

Vázquez et al., 2009; Croft et al., 2009, Croft et al., 2013; Vermang et al., 2013). 

 

Parameter MIF (eq. 3.11) was formulated by Römkens and Wang (1986) with the aim 

of quantitatively describing surface roughness. This dimensionless parameter 

represents the integrated effect of the peak frequency (F) and the microrelief index 

(MI), and it is defined arbitrarily as:  

 

𝑀𝐼𝐹 = 𝑀𝐼 ∙ 𝐹        (3.11) 

 

where MI represents the area per unit of length between the measured surface profile 

and the regression line of least squares through all measured elevations on a transect 

(Römkens and Wang, 1986), and F is the number of peaks (i.e., points with higher 

elevations than their neighbours on both sides) per unit of length of the profile. 

Parameters MI and F (eq. 3.11) are evaluated separately as descriptive parameters of 

vertical and horizontal roughness, respectively. 

 

The Mean Upslope Depression index (MUD) (eq. 3.12) was specifically developed to 

predict surface storage capacity (Hansen et al., 1999). The MUD is based on the 

elevation differences (𝑧𝑖 − 𝑧𝑖+ℎ) between a reference point i and another i+h on a line 

segment positioned upslope from the reference point. Within each line segment, the 

calculation procedure is iterated for a number of sub-segments, each time taking a 

new upslope point as the reference point (Hansen et al., 1999): 

 

𝑀𝑈𝐷 = ∑ (∑
∆𝑧

𝑛

𝑛
𝑗=1 )𝑚

𝑖=1 𝑚⁄  {
∆𝑧 = 𝑧𝑖 − 𝑧𝑖+ℎ ; 𝑧𝑖 ≥ 𝑧𝑖+ℎ

∆𝑧 = 0               ; 𝑧𝑖 < 𝑧𝑖+ℎ
   (3.12) 
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where n is the number of points in a line sub-segment and m is the number of line sub-

segments. In Hansen et al. (1999), no particular segment length was recommended, 

but they considered a 30-cm length for their conditions. In our case, after testing 

different values, a segment length of 20 cm was selected. 

 

Tortuosity is a roughness index based on the ratio of the surface profile perimeter 

length (𝐿1) and its horizontal projection (𝐿0). Although variants do exist (e.g., Boiffin, 

1984; Planchon et al., 1998), the present study used the tortuosity index of Saleh (TS) 

(eq. 3.13) (Saleh et al., 1993): 

 

𝑇𝑆 = 100 ∙  
(𝐿1−𝐿0)

𝐿1
       (3.13) 

 

Different methods have been used to calculate the fractal dimension (and in some 

cases the crossover length), which characterises the self-affinity of surface roughness 

profiles. The semivariogram method (SMV) was introduced to study the variability 

of soil properties and subsequently used to quantify roughness (Burrough, 1983a,b; 

Armstrong, 1986; Huang and Bradford, 1992; Vidal Vázquez et al., 2005; Chi et al., 

2012; Vermang et al., 2013). The first step in the estimation of the fractal dimension is 

the calculation of the experimental semivariogram (eq. 9) (Vidal Vázquez et al., 2005). 

Assuming a fractal Brownian motion (fBm) model, the experimental semivariogram 

can be described as a function of the lag (Eq. 14): 

 

𝛾(ℎ) = 𝑙1−𝐻ℎ𝐻        (3.14) 

 

where l is the crossover length and H is the Hurst coefficient. After a log-log 

transformation of eq. 14, H can be estimated as the slope of the semivariance versus 

the lag distance. When applied to surface roughness profiles, the logarithmic 

transformation normally yields a curved trend rather than a line, thus revealing a 

multi-fractal nature (Vidal Vázquez et al., 2005; Moreno et al., 2008). In this study, 

only the fractality of the first stretch (where the linear assumption holds) was 

measured. For that purpose, a maximum lag distance of 10 cm was considered 

because it provided a good fit to the linear trend in all the profiles. Afterward, the 

Hurst coefficient was related to the fractal dimension as follows (Smith, 2014) (eq. 

3.15): 
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𝐷𝑆𝑀𝑉 = 1 + 𝑑 − 𝐻 = 2 − 𝐻      (3.15) 

 

where d is the Euclidean dimension of the system (i.e., 1 for profiles, 2 for surfaces, 

etc.). Further, the crossover length (lSMV) (eq. 3.16) can be calculated as follows (Huang 

and Bradford, 1992): 

 

𝑙𝑆𝑀𝑉 = 𝑒𝑥𝑝 [
𝑎𝑆𝑀𝑉

(2−2𝐻)
]       (3.16) 

 

where 𝑎𝑆𝑀𝑉  is the intercept of the linear trend fitted to the first stretch of the 

semivariogram. 

 

The root mean square method (RMS) is based on the evaluation of the root mean 

square deviation of elevation values for increasing lag distances, and it has been used 

in different studies (Malinverno, 1990; Gallant et al., 1994; Moreira et al., 1994; Vidal 

Vázquez et al., 2005). The average RMS values for increasing lag distances (h) are 

calculated as (Vidal Vázquez et al., 2005): 

 

𝑊̅(ℎ) =
1

𝑛ℎ
∑ {

1

𝑛
∑ [𝑧𝑖 − 𝑧ℎ̅]2

𝑖∈ℎ }
1

2⁄𝑛ℎ
𝑢=1      (3.17) 

 

where 𝑛ℎ is the total number of lags of size h and 𝑧ℎ̅ represents the average elevation 

values for all points of each lag. As in the semivariogram method, the slope of the 

logarithmic transformation of 𝑊̅(ℎ) gives an estimation of the Hurst coefficient, which 

enables the calculation of the fractal dimension (DRMS) and the crossover length (lRMS) 

(eq. 15 and 16). 

 

The estimation of the fractal dimension by the box counting method (BC) is 

motivated by the scale law defined by Mandelbrot (1977): 

 

𝐷(𝑟) =
log (𝑁𝑟)

log (1 𝑟⁄ )
        (3.18) 

 

where 𝑁𝑟 stands for the minimum number of boxes of a width r that can cover the 

object (i.e., surface profile). The basic idea is simple since the profile to be studied is 

initially covered by a single box. That box is divided into 4 quadrants, and the number 

of quadrants required to cover the profile are counted. Then, each quadrant is divided 
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into another four sub-quadrants, and this division goes on until the width of the boxes 

reaches the resolution of the data, counting the number of cells required to cover the 

profile in each step (Gneiting et al., 2012). Function 𝐷(𝑟) is transformed into 

logarithms and fitted to a regression line, from whose slope (𝛼) the fractal dimension 

DBC (eq. 3.19) (Liang et al., 2012) is obtained: 

 

𝐷𝐵𝐶 = −𝛼        (3.19) 

 

A further technique used to determine the Hurst coefficient, and hence the fractal 

dimension, is the power spectrum method (PS) (Gneiting et al., 2012). This 

estimator is based on the spectral density function 𝑆(𝑣) for a stationary stochastic 

process, obtained by the fast Fourier transform (FFT), which depicts how the 

roughness is distributed in components of different frequencies (𝑣). The Hurst 

coefficient is obtained through the regression line of the logarithmic transformation of 

function 𝑆(𝑣), and thereafter the fractal dimension (DPS) (eq. 3.15). 

 

Finally, the rescaled range method (RS) (Liu and Molz, 1996; Liang et. al, 2012) was 

also used, which is based on calculating the fitted range R in terms of the lag distance 

h: 

 

𝑅(ℎ) = 𝑅𝑎/𝑠(ℎ)        (3.20) 

 

where 𝑅𝑎 is the sum of the absolute values of the largest positive and negative 

deviations of lag points from its trend line, and 𝑠(ℎ) is the standard deviation of each 

lag. As in the previous cases, to obtain the Hurst coefficient, a linear regression of the 

logarithmic transformation of 𝑅(ℎ) is made, from which the fractal dimension (DRS) 

(eq. 3.15) is obtained. 

 

3.2.4. Parameter evaluation 

 

3.2.4.1. Descriptive analysis 

 

To assess the different parameters, first, the different roughness classes were visually 

analysed. The box plots generated by each of the parameters per roughness class were 

also visually analysed. 



Evaluation of surface roughness parameters 

 

71 

 

3.2.4.2. Separability analysis 

 

The evaluated roughness parameters did not necessarily follow Gaussian probability 

distribution functions, since they might have asymmetric distributions. Furthermore, 

the different roughness classes did not necessarily have comparable variances. Hence, 

the comparison of parameters and classes could not rely on classic statistical tools, 

such as the analysis of variance (requiring Normality and homoscedasticity), and thus 

the separability analysis was used to select the most suitable parameters for the 

characterisation of different roughness classes. Separability, or dissimilarity, is a 

statistical metric that quantifies how different two sets of data are; it can be evaluated 

by computing different statistical distance measures (e.g., Divergence, Bhattacharyya 

distance, etc.). In this study, the Jeffries-Matusita Distance (𝐷𝐽𝑀) (Swain and King, 

1973) was used, which was calculated for each parameter and pair of roughness 

classes. 𝐷𝐽𝑀  (eq. 3.21) has been frequently used to analyse similarity and feature 

selection processes, and a good number of studies recommend its use (e.g., Bruzzone 

et al., 1995; D’Urso and Menenti, 1996): 

 

𝐷𝐽𝑀 = ∫ [(√𝑓(𝑥) − √𝑔(𝑥))
2

] 𝑑𝑥      (3.21) 

 

where 𝐷𝐽𝑀  is the distance between classes 𝑓(𝑥) and 𝑔(𝑥) measured by the parameter 

x. 𝐷𝐽𝑀   has a range of variability between 0 and 2, i.e., 0 means 𝑓(𝑥) and 𝑔(𝑥) 

completely overlap and 2 means they are completely separable. Values below 1 can be 

considered of poor separability, whereas values from 1-1.5 corresponds to moderate 

separability, and 1.5-2 to high separability (Skriver, 2007). By using this analysis, we 

aimed to quantify the ability of the different parameters to discriminate between 

different roughness classes. 

 

3.2.4.3. Correlation analysis 

 

A correlation analysis was performed to study the relationships between the different 

roughness parameters. For this purpose, the Spearman correlation coefficient (R) was 

calculated, which is particularly indicated for detecting any type of monotonic 

relationship. 
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3.3. Results 

 

3.3.1. Descriptive analysis 

 

Roughness class MP presented a higher range of variation in its profile elevations (i.e., 

vertical roughness) as a result of the presence of soil clods of up to 10 cm in size, with 

no clear spatial pattern or arrangement (Fig. 3.2). Visually, classes HR and HS did not 

exhibit such a large vertical roughness (which was smaller in HS than in HR), but their 

horizontal roughness seemed greater than in MP, i.e., displaying more serrated 

profiles. Classes PU and PM showed an even smaller range of vertical variation, and 

although PU had a high horizontal roughness, the smoothing effect of the rain, which 

translated into a lesser horizontal roughness, could be clearly seen in PM. In this first 

visual analysis, they could be ranked –as we understand– in an increasing order of 

roughness, as follows: PM<PU<HS<HR<MP. 

 
Fig. 3.2. Examples of height profiles of each of the roughness classes studied. 
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3.3.2. Parameters per roughness class 

 

The behaviour of the different parameters in terms of the roughness classes were 

analysed using boxplots (Fig. 3.3). In the vertical parameters the mean class values 

increased with the roughness, which could be visually observed (Fig. 3.2). 

Furthermore, the variability of each class increased as its roughness did, with a 

minimum variability for classes PM and PU, followed by HS and HR, and with a 

maximum variability for MP. All in all, different types of tillage (i.e., classes PU, HS, HR, 

and MP) could be differentiated with relative clarity. The effect of rainfall lowered 

class PM’s values, compared to PU, in most vertical parameters, but their differences 

were rather small and both classes overlapped to a certain degree. 
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Fig. 3.3. Box diagrams per roughness classes of the estimated values of the different parameters. 
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Horizontal parameters did not exhibit the same trend as the vertical ones (Fig. 3.3). 

Regarding the variability per class, different patterns were observed for the different 

parameters, although MP was less variable than the other classes in all parameters. 

Parameters lACF and Range behaved similarly, with comparable values for the different 

classes and many outliers especially in the least rough classes (i.e., PM and PU). 

Parameters ρ'(0) and F followed a similar trend, showing a moderate differentiation 

between classes PU, HS, HR, and MP; however, the action of precipitation modified 

that trend and made class PM take lower ρ'(0) and F values than PU, indicating a 

higher correlation between the surface elevations. Finally, parameter LS took 

increasing values for increasing roughness conditions (i.e., PU, HS, HR, and MP), but 

there was a high overlap between classes; nevertheless, this parameter seemed to 

clearly differentiate PM from the other classes. 

 

The combined parameters followed a trend similar to the vertical parameters (Fig. 

3.3), i.e., their values increased with increasing roughness, but the combine 

parameters did not have the same marked difference in parameter variability than the 

vertical parameters did, at least not in all cases (see parameters Q and TS in Fig. 3.3). 

Parameters MIF and MUD, and to a lesser extent ZS, did behave very similarly to the 

vertical ones, with increases in variability as roughness increased; however, 

parameter Q did not follow this behaviour, as it had a very similar variability in all the 

classes. Finally, parameter TS followed a completely different pattern, with a good 

separation between classes PM and PU but minor differences between the rest. 

 

Regarding fractal parameters, the D values calculated with different techniques 

behaved similarly, although their absolute values differed slightly (Fig. 3.3); their 

performance resembled that of parameter ρ'(0). This pattern indicates a more self-

affine behaviour as tillage classes increased in roughness, although the precipitation 

effect modified that tendency. The variability of the fractal dimensions was rather 

homogeneous for all the classes, but the crossover lengths behaved completely 

differently. Parameter lSMV followed a very similar trend to the mixed parameters Q 

and MUD, with incrementing values for roughness classes, and a very homogeneous 

variability for all of them. Meanwhile, parameter lRMS was similar to the horizontal 

parameter LS, with similar values for most tillage classes, but with a clear 

differentiation of class PM. 
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3.3.3. Separability between roughness classes 

 

The vertical parameters and the combined parameters MUD and Q showed better 

mean separability with DJM values >1 (Table 3.3). More precisely, parameters LD and 

MUD were those with a higher mean separability (DJM~1.25). The rest of the combined 

parameters (MIF, ZS and TS) offered moderate separabilities (DJM~0.9). The horizontal 

parameters displayed somewhat lower mean separabilities, with DJM values of 0.6-0.7, 

but in the case of lACF and Range, DJM did not reach 0.3. Lastly, the fractal dimensions 

calculated with different techniques followed similar patterns, although their mean 

separabilities varied significantly, from 0.92 (DRMS) to 0.52 (DRS), though the crossover 

lengths behaved differently. Parameter lSMV ended up reaching a higher separability 

than 1, while parameter lRMS hardly exceeded the mean separability of 0.4. 

 
Table 3.3. Separability (DJM) of the parameters per pairs of roughness classes. The parameter with the 

highest separability is in dark grey, and the other two parameters with a high separability for each pair of 

classes in pale grey. 

Parameter 
Separability between classes 

PM-PU PM-HS PM-HR PM-MP PU-HS PU-HR PU-MP HS-HR HS-MP HR-MP Mean 

s (cm) 0.23 1.03 1.61 1.84 0.64 1.33 1.75 0.28 1.24 0.80 1.07 

LD (cm) 0.40 1.61 1.67 1.92 0.72 1.25 1.81 0.73 1.64 0.80 1.26 

Sill (cm2) 0.27 1.07 1.45 1.68 0.73 1.25 1.59 0.27 1.16 0.87 1.03 

MI (cm) 0.20 0.99 1.58 1.82 0.60 1.29 1.73 0.27 1.23 0.81 1.05 

lACF (cm) 0.09 0.08 0.17 0.73 0.01 0.02 0.52 0.03 0.58 0.46 0.27 

ρ'(0)ACF 0.40 0.09 0.11 1.00 0.15 0.82 1.66 0.34 1.11 0.83 0.65 

LS 0.90 1.38 1.47 1.70 0.11 0.16 0.29 0.01 0.06 0.04 0.61 

Range (cm) 0.05 0.08 0.27 0.17 0.01 0.16 0.13 0.12 0.11 0.08 0.12 

F (cm-1) 0.02 0.43 0.59 1.19 0.58 0.78 1.41 0.28 0.76 0.21 0.62 

ZS (cm) 0.69 1.26 1.44 1.83 0.24 0.71 1.39 0.37 0.98 0.21 0.91 

Q (cm1/2) 0.65 1.67 1.75 1.97 0.50 0.96 1.69 0.40 1.36 0.51 1.15 

MIF 0.22 0.81 1.37 1.73 0.43 0.98 1.60 0.17 1.06 0.75 0.91 

MUD (cm) 0.49 1.65 1.74 1.96 0.64 1.19 1.83 0.58 1.59 0.73 1.24 

TS 0.74 1.58 1.72 1.92 0.38 0.63 1.14 0.10 0.50 0.17 0.89 

DSMV 0.34 0.11 0.65 1.59 0.41 1.04 1.74 0.27 1.15 0.50 0.78 

DRMS 0.24 0.12 0.90 1.72 0.56 1.30 1.85 0.51 1.47 0.50 0.92 

DBC 0.38 0.04 0.59 1.62 0.37 1.11 1.86 0.37 1.35 0.47 0.82 

DPS 0.12 0.06 0.75 1.42 0.30 1.12 1.65 0.46 1.16 0.33 0.74 

DRS 0.28 0.06 0.15 0.66 0.27 0.81 1.50 0.27 0.95 0.25 0.52 

lSMV (cm) 0.82 1.61 1.70 1.87 0.38 0.82 1.35 0.35 0.96 0.25 1.01 

lRMS (cm) 0.85 1.10 1.03 0.93 0.04 0.02 0.01 0.00 0.04 0.02 0.40 
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The vertical parameters had the highest separability values between classes PU, HS, 

HR, and MP, especially parameter LD, but none of the vertical parameters was 

particularly successful at detecting rainfall smoothening, i.e., separating PM and PU, 

since in no case did DJM reach values above 0.4 for these two classes. Separability 

values between neighbouring tillage classes (i.e., PU vs. HS, HS vs. HR, and HR vs. MP) 

were not high for any of the vertical parameters; Sill and LD functioned best in these 

cases. For horizontal parameters, separability between class pairs was generally 

lower than for vertical parameters. Nevertheless, the highest DJM value between 

classes PM and PU was obtained by parameter LS with a value ~0.9. The behaviour of 

the combined parameters, once more, was similar to the vertical ones, offering 

separabilities comparable to those, especially for parameters MUD and Q. Regarding 

the separation between classes PM and PU, better separabilities were obtained than 

with the vertical parameters (especially for TS, ZS, and Q), although still lower than 

those of LS. In addition, parameters Q, MUD, and TS offered the highest separabilities 

between PM and classes HS, HR, and MP. Lastly, regarding fractal parameters, 

although the different dimensions did not generally exhibit high separabilities, DRMS 

had some of the highest separabilities between PU and classes HR and MP and 

between HS and HR and MP, and DBC had the highest separability between classes PU 

and MP. Regarding the crossover lengths, although the separability between the 

different tillage types (PU, HS, HR, and MP) was not high, the good separability 

obtained between class PM and the rest was highly noteworthy (especially for lSMV). 

 

3.3.4. Parameter correlation 

 

With regard to the correlations between parameters of one type, the vertical 

parameters were highly correlated with each other, with R~0.9 (Fig. 3.4); however, 

the horizontal parameters showed more heterogeneous behaviour with different R 

values. Parameters lACF and Range had a good correlation (R~0.85), as did ρ'(0) with F, 

lACF, and Range (although slightly lower, R~0.6), but the other parameters had 

relatively low correlations. Parameter LS, in general, had low correlations with the 

rest of the horizontal parameters. On the other hand, mixed parameters showed quite 

homogeneous behaviour with high correlations (R~0.9) with each other, but a little 

lower for ZS and MIF (R~0.75). Finally, the different fractal dimensions showed high 

correlations between each other (R≥0.8), except for parameter DRS (R~0.6). The 

crossover lengths (lSMV and lRMS) were only moderately correlated (R~0.6). 
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Fig. 3.4. Spearman correlation matrix of the roughness parameters (n=164). 

 

Overall, vertical parameters correlated well with mixed ones (R≥0.8), except for ZS and 

TS, which had somewhat lower correlations (R~0.6). A negative correlation was found 

between the vertical parameters and fractal dimensions, although they measure 

different phenomena; this would indicate that the greater the vertical roughness, the 

more self-affine a surface is. The crossover lengths (lSMV and lRMS) presented a 

disparate behaviour. Although lSMV had a good correlation with the different fractal 

dimensions (negative correlation), F (negative correlation), and most vertical and 

combined parameters, lRMS had no correlations with the different fractal dimensions 

and lower correlations than lSMV with the vertical and combined parameters. In both 
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cases, the correlation with parameter LS was high, especially in the case of lRMS 

(R≥0.9). 

 

 

3.4. Discussion 

 

3.4.1. Differentiation between tillage types 

 

The values of s and LD obtained for the different classes are comparable to those 

reported in the literature for similar conditions (e.g., Zobeck and Onstad, 1987; 

Helming et al., 1993; Arvidsson and Bolenius, 2006; Bauer et al., 2015). In the absence 

of significant changes caused by the rainfall, s and LD have been successfully related to 

the size of soil clods and then proposed as good indices for distinguishing different 

tillage types (Helming et al., 1993; Eltz and Norton, 1997; Magunda et al., 1997; 

Kamphorst et al., 2000; Vermang et al.. 2013; Bauer et al., 2015). The values of Sill 

obtained here were considerably higher (although within the range of variation) than 

those reported by Helming et al. (1993) and Vermang et al. (2013), partly because 

their experiments were carried out using artificial roughness and because of the 

measurement scale. 

 

Regarding the horizontal parameters, there is no agreement in the literature. For 

instance, several authors reported increasing values of lACF for increasing roughness 

conditions (Davidson et al., 2003; Baghdadi et al., 2008b), while others observed more 

similar behaviour to that obtained here, with no clear differences between roughness 

classes (Álvarez-Mozos et al., 2005; Verhoest et al., 2008). The Range values obtained 

in this study were, in general, higher (although within the range of variation) than 

those reported by other authors (Helming et al., 1993; Vermang et al., 2013), but with 

an important overlap between classes and frequent outliers. Parameters lACF and 

Range were obtained using different techniques but represent analogous concepts 

(Vidal Vázquez et al., 2005), and this is corroborated by the results presented here. 

Parameters ρ'(0) and F were the horizontal parameters that best differentiated tillage 

classes; this is due to the geometry of the microforms presented in the smooth classes 

and the macroforms presented in the roughest classes, since the smaller the size of the 

clods, the more parameter F increased (Bertuzzi et al., 1990). This same phenomenon 

explains that the reason that ρ'(0) took lower values in the roughest classes was due 
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to the presence of macroforms, which made the autocorrelation function descend 

more gently in these classes, whereas it did so more abruptly in smoother tillage 

classes with greater microform presence. 

 

On the other hand, the combined parameters have been rarely used as an approach to 

separate tillage types. Baghdadi et al. (2008b) mentioned that parameter ZS took on 

values of <0.1 cm for smooth soils and >0.1 cm for ploughed ones, but did not 

investigate different tillage practices in greater detail. Zribi and Dechambre (2003) 

found a direct correlation between the values of ZS and the clod’s size; they reported a 

variation range of ZS between 0.07 cm and 1.93 cm for agricultural soils. This trend 

agrees with our results, although we observed considerable overlapping between 

similar tillage classes and a slightly narrower range of values. On the other hand, MIF 

appeared to be good parameter to separate different tillage classes (Lehrsch et al., 

1988; Bertuzzi et al., 1990). 

 

In fractal parameters, although some authors found that the values of fractal 

dimensions and their respective crossover lengths (calculated with different 

techniques) should be relatively similar (Vidal Vázquez et al., 2005; Vivas Miranda et 

al., 2002), there is not always an agreement between the values shown in different 

works. For instance, some authors (e.g., Gallant et al., 1994) found substantial 

variations between methods. In our case, despite the differences in magnitude, we 

observed that the behaviour was very similar in the different procedures used. This is 

in accord (except for the case of lRMS) with Chi et al. (2012), who concluded that, 

generally, the fractal dimension (parameter D) decreased and the crossover length 

(parameter l) increased with the increment of soil clods. Vermang et al. (2013) also 

reported that the rougher the surface, the lower parameter D was.  

 

For all the above, parameter LD is recommended to separate the different types of 

tillage studied in terms of the vertical roughness, parameter ρ'(0) in terms of the 

horizontal roughness, parameter MUD in terms of both properties, and parameter 

DRMS in terms of its self-affinity. 
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3.4.2. Effect of rainfall on the different roughness parameters 

 

Although the values of all the vertical parameters changed after successive rainfalls, 

those changes were not significant enough to clearly differentiate the precipitation 

effect (Huang and Bradford, 1992; Vermang et al., 2013). In this sense, Bertuzzi et al. 

(1990) and Magunda et al. (1997) found that parameters representing the roughness’ 

vertical component were good indicators of roughness at higher scales (and then 

useful to differentiate tillage types), whereas the horizontal parameters were 

appropriate at lower scales (and hence suitable to evaluate changes in roughness due 

to rainfall). 

  

As opposed to the vertical parameters, in Vermang et al. (2013), the values of Range 

and lACF increased after rainfall events (applied with a rain simulator). Helming et al. 

(1993) and Croft et al. (2009) also observed an increase in parameter Range after rain, 

which Helming et al. (1993) attributed to the smoothing and broadening of the largest 

soil clods, and Croft et al. (2009) indicated a higher spatial correlation. From a 

semivariogram analysis, Helming et al. (1993) and Vermang et al. (2013) observed 

that, on surfaces with small roughness, rain events gave rise to more erratic Range 

patterns. Our results are in agreement with these trends, since the rainfall led to a 

reduction in vertical parameter values and increases in the Range and lACF values. 

 

There were other parameters that displayed a greater sensitivity to the effect of rain. 

Parameter LS was the most sensitive to the changes in roughness caused by 

precipitation, followed by lRMS and lSMV or TS. Taconet and Ciarletti (2007) concluded 

that TS was a more suitable parameter than s to detect soil smoothing due to rain. 

With regard to the fractal dimensions, in contrast to what was observed here, 

Vermang et al. (2013) reported that parameter D increased after rain events in the 

soils with small roughness, while it decreased in very rough soils. Eltz and Norton 

(1997) also observed an increase in parameter D and a reduction in l after 

precipitation. Further, Vidal Vázquez et al. (2007) and Paz-Ferreiro (2008) found 

similar behaviour to that seen here, with reductions both in D and in l after rain.  

 

Some of these variations can be, to some extent, explained if we take into account that 

rain can either smoothen the roughness, if the sealing processes in the soil are 

dominant, or increase roughness, if rills or gullies are developed (Vermang et al., 
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2013). The soils studied here had a single tillage treatment modified by the 

precipitation (roughness class PM), so that in order to confirm these trends, it would 

be necessary to carry out similar experiments in all the other treatments. 

 

3.4.3. Correlation between parameters 

 

Most of our findings are in agreement with previous investigations. We observed a 

strong correlations between the vertical parameters, such as: s and LD (Linden and 

Van Doren, 1986; Bertuzzi et al., 1990; Magunda et al., 1997); s and Sill (Croft et al., 

2013); LS and TS (Bertuzzi et al., 1990); lACF and Range (Vidal Vázquez et al., 2005); 

and s and DSMV (negative correlation) (Chi et al., 2012). However, some of our results 

partly disagreed with previous findings, e.g., the lack of correlation between MIF and 

other parameters, such as s or TS (Bertuzzi et al., 1990), or the high correlation 

between s and LS (Magunda et al., 1997). 

 

 

3.5. Conclusions 

 

In this study, the most widely used roughness parameters in earth sciences were 

selected and their ability to discriminate between the different soil roughness classes 

created by typical tillage operations was evaluated. 

 

Vertical and combined parameters took higher values as tillage became rougher. 

Horizontal parameters did not show such a clear pattern, with some parameters being 

rather insensitive to tillage (lACF and Range), and other increasing (LS) and some 

others decreasing (ρ'(0) and F) as tillage became rougher. On the contrary, the 

different fractal dimensions that were tested showed a consistent behaviour, with 

values decreasing (more auto-affine behaviour) as tillage became rougher. All in all, 

the best parameters for differentiating and characterising different tillage types were 

LD and MUD. 

 

The effect of rainfall was apparent in most parameters. The ones most sensitive to 

rainfall action were the horizontal parameter LS, the crossover lengths (lSMV and lRMS), 

and, to a lesser extent, the combined parameter TS. 
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Many of the evaluated parameters were highly correlated with each other (all the 

vertical parameters or the combined parameters Q and MUD) and therefore provided 

almost identical information. For these, our recommendation is to select the simplest 

ones (i.e., s or MUD); however, some parameters showed low correlation values with 

the rest, since they offered complementary information (i.e., lSMV, LS, or lACF). These 

parameters could be interesting depending on the particular application pursued. 

 

It is expected that the results of this study could contribute to the understanding of 

the surface roughness phenomenon and to its parameterisation in agricultural soils; 

however, more research is needed to better characterise roughness dynamics due to 

the action of rainfall. 
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Abstract 

 

Soil surface roughness strongly affects the scattering of microwaves on the soil 

surface and determines the backscattering coefficient (σ0) observed by radar sensors. 

Previous studies have shown important scale issues that compromise the 

measurement and parameterization of roughness especially in agricultural soils. The 

objective of this study was to determine the roughness scales involved in the 

backscattering process over agricultural soils. With this aim, a database of 132 5-m 

profiles taken on agricultural soils with different tillage conditions was used. These 

measurements were acquired coinciding with a series of ENVISAT/ASAR 

observations. Roughness profiles were processed considering three different scaling 

issues: (1) influence of measurement range, (2) influence of low frequency roughness 

components and (3) influence of high frequency roughness components. For each of 

these issues, eight different roughness parameters were computed and the following 

aspects were evaluated: (a) roughness parameters values, (b) correlation with σ0 and 

(c) goodness-of-fit of the Oh model. Most parameters had a significant correlation with 

σ0 especially the fractal dimension, the peak frequency and the initial slope of the 

auto-correlation function. These had higher correlations than classical parameters 

such as the standard deviation of surface heights or the correlation length. Very small 

differences were observed when profiles longer than 1 m were used as well as when 

small-scale roughness components (<5 cm) or large-scale roughness components 

(>100 cm) were disregarded. In conclusion, the medium frequency roughness 

components (scale of 5-100 cm) seem to be the most influential scales in the radar 

backscattering process on agricultural soils. 

 

Keywords: agriculture, rough surfaces, scattering, soil, synthetic aperture radar (SAR)  
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4.1. Introduction 

 

Soil surface roughness (SSR) is a variable that represents the microtopographic 

variations of soil surface elevations. As such, SSR greatly influences different 

processes at the soil-atmosphere interface including the partition of precipitation into 

infiltration or runoff (Govers et al., 2000; Zhao et al., 2013), the heat and energy 

balance at the soil surface (Matthisas et al., 2000; Cierniewsky et al., 2015), the 

occurrence of wind and water driven soil erosion (Helming et al., 1998; Vermang et al., 

2015), etc. As a result, SSR has been approached from different fields of science, 

addressing different research questions and using different instruments, parameters 

and analysis techniques (Smith, 2014). 

 

SSR-measuring instruments can be grouped into contact and non-contact devices 

(Verhoest et al., 2008). Non-contact devices have developed rapidly in the last years 

and offer a cost-effective way to survey the soil surface with unprecedented resolution 

and data (Marzahn et al., 2012a; Milenkovic et al., 2015). However, while different 

instruments have large differences in performance, versatility, comfort, etc. the 

resulting data can be considered very similar in terms of applications (Thomsen et al., 

2015).  

 

Different parameters have been proposed for measuring SSR ranging from very 

simple indices to more complex ones (Martinez-Agirre et al., 2016). The simplest ones 

characterize the height variations of the surface elevation records in a dataset (i.e., 

profile, point-cloud or Digital Elevation Model) and are normally referred to as 

vertical parameters. Some other parameters measure the spatial arrangement of 

surface heights, i.e., whether height variations occur in short or long horizontal 

distances, these can be referred to as horizontal parameters. To combine both 

properties, hybrid or combined parameters have been proposed, normally as a ratio 

or product of two parameters, one of each category. Finally, parameters based on 

fractal geometry have also been used in the context of SSR to measure the self-

similarity or self-affinity of soil surface elevations.  

 

In Synthetic Aperture Radar (SAR) remote sensing, the backscattered signal over bare 

soils, as measured through the backscattering coefficient (σ0), is influenced by a 

combination of factors including sensor configurations (frequency and polarization), 
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surface characteristics (soil moisture and surface roughness) and the incidence angle 

of the incoming microwave pulse (Fung, 1994; Ulaby et al., 1996). The ability to obtain 

accurate soil moisture estimations from SAR observations has received much interest 

from researchers across different disciplines (Wagner et al., 2007; Dobriyal et al., 

2012; Kornelsen and Coulibaly, 2013). However, for current space-borne systems, the 

main sources of retrieval errors were due to issues related to surface roughness 

parameterization (Verhoest et al., 2008; Bryant et al., 2007; Lievens et al., 2009).  

 

Therefore, many research efforts in SSR parameterization have focused on how to 

isolate its effect on soil moisture retrieval techniques (Verhoest et al., 2008). Early 

studies (e.g., Ulaby et al., 1982), based on field radiometers and scatterometers, were 

conducted in different experiments to understand the role of SSR in backscatter. 

These datasets were also used to develop or to evaluate mathematical models 

(physically based or empirical based) describing the scattering of microwave pulses at 

the soil surface (Fung et al., 1992; Oh et al., 1992; Fung, 1994; Dubois et al., 1995). 

These models were later numerically inverted to retrieve a variable of interest 

(mostly soil moisture) from σ0 observations, based on the previous knowledge of the 

other intervening variables (i.e., SSR parameters) or by making simplifying 

assumptions. 

 

When backscatter models were applied to observations obtained from space-borne 

platforms (SAR sensors), a problem arose related to the scale of observation (spatial 

resolution and wavelength) and the required roughness measurement scale (Verhoest 

et al., 2008). Roughness parameters especially the correlation length were found to 

have multi-scale properties, and their values appeared very sensitive to the 

measurement range (i.e., profile length) (Oh and Kay, 1998; Mattia et al., 2003). 

Callens et al. (2006) observed that some parameters reached equilibrium with 

increasing profile lengths. Other studies (Oh and Kay, 1998; Davidson et al., 2000; 

Manninen, 2003) defended the need for long profiles to include all roughness 

components present on the antenna-illuminated area (i.e., one pixel). However, this 

recommendation can be very difficult (if not impossible) to follow in practice because 

the spatial resolutions of SAR sensors ranges from ~1 m to ~1000 m depending on 

the sensors’ beam modes (European Spatial Agency, 2016).  
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The spatial sampling of SSR measurements is also a key element. In general, it has 

been related to the wavelength of the SAR sensors. For example, Ulaby et al. (1982) 

recommended a sampling interval of ~1/10 the wavelength of observations. Barber et 

al. (2016) evaluated the influence of sampling interval on the SSR statistics over 

agricultural soils and observed that class differences were reduced as the 

measurement interval increased. They also recommended intervals of 15 and 5 mm 

for L- and C-bands, respectively. 

 

These issues in SSR characterization caused some authors to use effective or optimum 

roughness parameters rather than real or measured ones (Su et al., 1997; Baghdadi et 

al., 2006a). The effective roughness parameters are those obtained by optimization or 

inversion of backscatter models (depending on whether soil moisture measurements 

are used or not). As such, they provide a good model fit without necessarily producing 

realistic values of roughness parameters (i.e., not comparable to field measurements). 

In recent years, several studies successfully implemented the effective roughness 

approach (Joseph et al., 2008; Lievens et al., 2011; Dong et al., 2013; Baghdadi et al., 

2015; Bai et al., 2016).  

  

Recently, Fung (2015) proposed that many natural surfaces (e.g., agricultural surfaces 

and sea surfaces) have multi-scale roughness properties, but not all their roughness 

scales contributed to backscatter. He proposed that only one specific roughness 

spectral component, 𝜅 = (4𝜋/𝜆) sin 𝜃, was responsible for microwave backscatter, 

where 𝜆 is the incident wavelength and 𝜃 is the incidence angle. Therefore, at 

centimeter wavelengths (typical of existing SAR sensors), meter-size roughness 

components should not play a role in backscatter from multiscale surfaces (Fung, 

2015).  

 

The aim of this research was to analyze the influence of surface roughness 

measurement scale on radar backscattering across different agricultural soils. The 

objective was to determine the roughness scales, which contribute to backscatter from 

agricultural soils and to provide some guidelines on how roughness should be 

characterized in these applications. 
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4.2. Materials 

 

4.2.1. Test site 

 

The data acquisition was carried out on the experimental watershed of La Tejería 

(N42º44’10.6’’ and W1º56’57.2’’) in the Spanish region of Navarre (Fig. 4.1). This 

watershed is part of the Experimental Agricultural Watershed Network of Navarre, 

created by the local Government of Navarre in 1993. The watershed is used to study 

the impact of agriculture on hydrological resources (Casalí et al., 2008). The total area 

of the watershed is about 169 ha with homogenous slopes of ~12% and an altitude 

range from 496 to 649 m. Its climate is humid sub-Mediterranean with a mean annual 

temperature of 13º C and an average annual precipitation of ~700 mm distributed 

over 105 days. Ten agricultural fields were monitored (Fig. 4.1), and their sizes ranged 

from 3.0 ha to 7.3 ha. 

 

 
Fig. 4.1. Location of La Tejería experimental watershed and distribution of control fields (fields in black 

were not used in this study). 
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Soils have a Silty-Clay texture (approximately 43% clay, 5% sand, 52% silt) and are 

relatively shallow (0.5-1.0 m deep) except for swales where deeper soils can be found. 

The monitored fields were cultivated with rain-fed winter cereal crops (wheat, barley 

or oats) sown at the end of October and harvested at the end of June. Soil preparation 

operations were performed sequentially during September and October. The different 

tillage operations (considered as different roughness classes) were Mouldboard 

Plough (MP), Harrowed Rough (HR), Harrowed Smooth (HS), Planted (P) and Planted 

Compacted (PC) (Table 4.1). 

 
  Table 4.1. Description of the different roughness classes caused by agricultural treatments. 

Tillage class Acronym Fields Profiles Description 

Mouldboard Plough MP 04 16 

Tillage operation performed with a plough with 

multiple mouldboards at a depth of 15-20 cm, 

resulting in soil inversion and a very rough surface 

Harrowed Rough HR 09 39 

Operation performed normally with a tine harrow 

to break soil clods and provide a smoother surface 

suitable for seeding 

Harrowed Smooth HS 07 29 

In cases where the first harrowing did not 

smoothen sufficiently the surface a second 

harrowing was applied 

Planted P 11 44 
Seeding operation performed with conventional 

sowing machinery, normally seed drills 

Planted Compacted PC 01 04 
In few cases farmers compacted the soil surface 

with a roller after sowing 

 

4.2.2. Surface roughness data 

 

Surface roughness was measured using a laser profilometer with a total measurement 

range (profile length) of 5 m, a resolution (sampling interval) of 5 mm and a vertical 

accuracy of 1.25 mm (Martinez-Agirre et al., 2016; Álvarez-Mozos et al., 2009). 

Profiles (n=132) were measured under bare soil conditions in parallel to the tillage 

direction and spatially distributed over each field, so as to obtain field average 

roughness parameters representative of the spatial variability within the field; in most 

cases 4 profiles were acquired per field and date of study (Table 4.2). For 6 satellite 

acquisition dates (Table 4.3), the surface roughness measurements were not available 

and the roughness data of the previous date were considered under the assumption of 

no roughness change between dates. This assumption was deemed plausible because 

roughness smoothening due to rainfall can be considered relevant only during the 

first precipitation events after tillage (Zobeck and Onstad, 1987; Gilley and Kootwitz, 

1995), which was not the case. For the time this assumption was applied a cumulative 



Chapter 4 

92 

 

rainfall of 103.3 mm had already been recorded since tillage, and besides subsequent 

precipitation events were weak (intensity <2 mm/h). 

 
Table 4.2. Roughness classes corresponding to each field and measurement date. Four roughness profiles 

were acquired per field, expect where indicated. 

Field ID. 22/09/2004 08/10/2004 24/10/2004 17/12/2004 

188 HR* HR - P 

189 HR* HR HS P 

193 HR* HR P P 

194 - HR HR P 

199 MP* MP MP P 

201 HS* HS - P 

208 MP** - - PC 

235 HS HS P P 

255 HS HS - P 

258 HR - - P 

- Fields not monitored on that particular day 

* Fields with 5 profiles measured 

** Fields with 3 profiles measured  

 

Profiles were processed using a code developed ad hoc, with following steps: (1) 

correction of the buckling effect on the aluminum bar using a parabolic calibration 

function, (2) filtering the outliers corresponding to plant material or small holes 

eventually present in the soil, by deleting and linearly interpolating any records with 

height differences larger than a certain threshold (i.e., 2 cm) with the previous and 

subsequent records, and (3) linear correction for the terrain slope. Further 

information on profile processing can be found in (Martinez-Agirre et al., 2016). 

 

4.2.3. Soil moisture data 

 

The soil moisture (SM) of the top 10 cm of the soil was measured using a commercial 

Time Domain Reflectometry (TDR) instrument (TRIME FM-3, IMKO GmbH) connected 

to a portable three-rod probe. On each field, five SM measurement locations were 

monitored per date, and these were spatially distributed to cover the entire field. On 

each location 3 TDR readings were taken. The TDR probe was calibrated with in situ 

soil moisture data measured with the thermogravimetric method. Here, soil samples 

with a known volume (necessary for the calculation of the bulk density) were also 

collected regularly. For four satellite acquisition dates (Table 4.3) the TDR 

measurements were not available and modelled SM values were used instead. For SM 

modelling TOPLATS was used (Famiglietti and Wood, 1994; Pauwels et al., 2001) to 
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calibrate and validate the surface SM per field using the available TDR measurements; 

this offered a RMSE of ~0.02 cm3cm-3. 

 

4.2.4. SAR data 

 

During the study period, 10 ENVISAT/ASAR scenes (C-band) were acquired over La 

Tejería watershed (Table 4.3). Scenes were ordered as VV polarization Precision 

Image products in swath IS2 (incidence angles around 19º-26º), multilooked (4 

looks), except for one scene (22/09/2004) that was acquired in swath IS1 and 

Alternate Polarization (HH-VV) mode with 2 looks. In the latter, only the VV channel 

was used for consistency with the rest of the dataset. Half of the scenes were obtained 

in ascending pass, and the other half in descending pass. In all cases, the resolution 

was 30 m x 30 m. Scenes were: (1) orthorectified (with an error <1 pixel), (2) 

calibrated (using the local incidence angle) and (3) speckle-filtered (Gamma MAP 

filter with a window of 5x5). The DEM used for preprocessing was obtained by 

photogrammetric techniques with a spatial resolution of 5 m. Mean backscatter 

coefficient values (σ0) were calculated for each field per date.  

 

Table 4.3. Summary of SAR data. 

Date SAR data θLOC (º) Pass Fields 

monitored 

Roughness 

data 

SM data 

22/09/2004 ENVISAT/ASAR* 7.2-16.2 Descending 9 Profilometer TDR 

08/10/2004 ENVISAT/ASAR 11.6-20.9 Descending 8 Profilometer TDR 

11/10/2004 ENVISAT/ASAR 20.9-31.4 Ascending 8 = TOPLATS 

24/10/2004 ENVISAT/ASAR 15.7-24.9 Descending 5 Profilometer TDR 

27/10/2004 ENVISAT/ASAR 16.9-27.2 Ascending 5 = TOPLATS 

17/12/2004 ENVISAT/ASAR 11.6-20.9 Descending 10 Profilometer TDR 

20/12/2004 ENVISAT/ASAR 20.8-31.2 Ascending 10 = TOPLATS 

02/01/2005 ENVISAT/ASAR 15.8-24.5 Descending 10 = TDR 

05/01/2005 ENVISAT/ASAR 16.8-26.9 Ascending 10 = TDR 

24/01/2005 ENVISAT/ASAR 20.9-31.3 Ascending 10 = TOPLATS 

* Scene acquired in Alternative Polarization (HH-VV) Mode with 2 looks in swath IS1 

 

 

4.3. Methods 

 

The analysis presented here focused on the influence of surface roughness scale on 

backscatter. Roughness was characterized through different parameters (explained in 

section 4.3.1) that were measured considering different scales. Here, three scaling 

issues were investigated: (1) the influence of measurement range (profile length), (2) 
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the influence of low frequency roughness components and (3) the influence of high 

frequency roughness components. 

 

To study the influence of the measurement range, each roughness parameter was 

calculated with decreasing profile lengths by dividing the original profile into 2, 3, …, 

10 profiles of equal length, leading to profiles of 2.5 m, 1.66 m,…, 0.5 m length. Next, to 

study the low frequency components, profiles were smoothened using moving median 

filters of increasing window size; 1 cm, 2 cm, 5 cm, 10 cm, 20 cm, 50 cm, 100 cm and 

200 cm. This way, the high frequency components of increasing wavelengths were 

masked from the profiles. Finally, to study the influence of high frequency 

components, the smoothened profiles obtained for increasing filter sizes were 

subtracted from their corresponding original profiles such that only the high 

frequency components remained (Fig. 4.2). 

 

 
Fig. 4.2. Example of profile filtering. Original profile (above), low frequency roughness components (left 

column) and high frequency roughness components (right column) for increasing filter sizes.  

 

For each of these three scaling issues, the following analyses were carried out: (1) 

assessment of the behavior of roughness parameters for the different scales 

investigated, (2) correlation of SAR backscatter with roughness parameters obtained 

at different scales and (3) evaluation of the goodness-of-fit of a backscatter model 

parameterized with roughness parameters obtained from different scales. 
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4.3.1. Behavior of roughness parameters  

 

In total, 8 roughness parameters were analyzed (Table 4.4). These parameters were 

selected after a detailed analysis (Martinez-Agirre et al., 2016), where their ability to 

discriminate different tillage classes was assessed. Some of these parameters were 

descriptors of the vertical roughness component (vertical parameters), i.e. the 

standard deviation of surface heights (s) (Allmaras et al., 1966) and the microrelief 

index (MI) (Römkens and Wang, 1986). Others parameters measured the horizontal 

component (horizontal parameters), i.e. the correlation length (l) (Ulaby et al., 1982), 

the initial slope of the autocorrelation function (ρ'(0)) (Ulaby et al., 1982) and the 

peak frequency (F) (Römkens and Wang, 1986). Some parameters combined both 

components (combined parameters), i.e. parameter MIF (Römkens and Wang, 1986) 

and the tortuosity index of Saleh (TS) (Saleh, 1993). Finally, fractal dimension (D) 

(Vidal Vázquez et al., 2005) was also considered. The behavior of the different 

roughness parameters was evaluated by comparing the average and standard 

deviation of each roughness parameter per class for the different scales under study. 

 
Table 4.4. Summary of the roughness parameters analyzed. 

Type Parameter Description Equations 

Vertical s (cm) Standard deviation of surface heights 𝑠 = √
∑ (𝑧𝑖

2 − 𝑧̅2)𝑁
𝑖=1

𝑁 − 1
 

 MI (cm) Microrelief index --- 

Horizontal l (cm) Correlation length  𝜌(ℎ) =
∑ 𝑧𝑖𝑧𝑖+ℎ

𝑁(ℎ)
𝑖=1

∑ 𝑧𝑖
2𝑁

𝑖=1

 

 ρ'(0) Initial slope of the auto-correlation function --- 

 
F (cm-1) Peak frequency --- 

Combined MIF Combined parameter 𝑀𝐼𝐹 = 𝑀𝐼 ∙ 𝐹 

 TS Tortuosity 𝑇𝑆 = 100 ∙  
(𝐿1 − 𝐿0)

𝐿1

 

Fractal D Fractal dimension (semivariogram method) 𝛾(ℎ) = 𝑙1−𝐻ℎ𝐻;  𝐷 = 2 − 𝐻 

s is the standard deviation of heights where N is the number of height records, zi is the height of record i, 

and 𝑧̅ is the mean height of all records. 𝜌(ℎ) is the autocorrelation function, the correlation length l is then 

defined arbitrarily as the distance at which the heights of two points are considered independent; i.e., 𝜌(ℎ) 
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is equal to 1/e, so that 𝜌(𝑙) = 1/𝑒. Another parameter extracted from the autocorrelation function is its 

initial slope 𝜌′(0). MIF is a combined parameter where MI represents the area per unit length between the 

measured surface profile and the regression line obtained through least squares, and F is the number of 

peaks per unit length. Tortuosity is a roughness index based on the ratio of the surface profile perimeter 

length (L1) and its horizontal projection (L0). Assuming a fractal Brownian motion (fBm) model, the 

experimental semivariogram can be described as a function of the lag, where l is the crossover length and H 

is the Hurst coefficient. Afterward, H was related to the fractal dimension as 𝐷 = 2 − 𝐻. 

 

4.3.2. Correlation of backscatter with roughness parameters 

 

To analyze the correlation between backscatter signal and roughness parameters, a 

two stage backscatter data normalization was applied to remove the influence of 

factors other than roughness on σ0 values. First, the σ0 values were normalized toward 

a reference incidence angle based on the generalized Lambert’s law (Abdel-Messeh 

and Quegan, 2000):  

 

𝜎𝜃𝑟𝑒𝑓

0 = 𝜎0 𝑐𝑜𝑠𝑛𝜃𝑟𝑒𝑓

𝑐𝑜𝑠𝑛𝜃
       (4.1) 

 

with σ0 being the linear backscatter observation at the incidence angle 𝜃, and 𝜎𝜃𝑟𝑒𝑓

0  

being the linear backscatter normalized to a reference incidence angle 𝜃𝑟𝑒𝑓 set to 20º 

(which corresponds to the average value of the observations). The exponent n 

represents the degree of Lambertianity of the target and was therefore optimized for 

each roughness class minimizing the correlation between 𝜎𝜃𝑟𝑒𝑓

0  and the incidence 

angle (n values between 2 and 8 were obtained for the different roughness classes). A 

second normalization was performed to compensate σ0 variations due to SM 

fluctuations. With this aim, a linear relation was assumed between 𝜎𝜃𝑟𝑒𝑓

0  and SM for 

fields of different roughness classes observed on dates with contrasting SM 

conditions. The resulting linear function was used to detrend 𝜎𝜃𝑟𝑒𝑓

0  leading to 𝜎𝑛𝑜𝑟𝑚
0 . 

The linear regression approach has offered good results in the past (e.g., Hegarat-

Mascle et al., 2002; Thoma et al., 2006). To assess the correlation between backscatter 

signal and roughness parameters, the Spearman R coefficient was computed between 

the field average 𝜎𝑛𝑜𝑟𝑚
0  and the roughness parameters obtained for each field and 

date. 

 

4.3.3. Goodness-of-fit of backscatter model 

 

In the last part, the empirical backscatter model of Oh et al. (1992) was considered. 

The Oh model was selected because of its ample validity range including both rough 
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and smooth conditions and its adequate simulation of the co-polarized backscatter 

(Baghdadi and Zribi, 2006b; Panciera et al., 2014). Other models (i.e. Integral Equation 

Model (IEM) (Fung et al., 1992), Geometrical Optic Model (GOM) and Small 

Perturbation Model (SPM) (Beckmann and Spizzichino, 1987) were discarded because 

a significant part of the measured fields were outside their validity range. Model 

goodness-of-fit was evaluated by computing the RMSE between simulated and 

observed σ0 values (without backscatter data normalization). It must be mentioned 

that the Oh model was empirically built based on in situ data with some particular 

roughness conditions (s values between 0.32 cm and 3.02 cm) and measurement 

techniques (1-m long profiles with 0.25 cm sampling interval), and this fact might 

have influenced the results obtained here. 

 

 

4.4. Results 

 

4.4.1. Roughness measurements using original profiles 

 

Prior to roughness scale analysis, the results obtained with the original profiles (5 m 

length, 5 mm sampling interval) were analyzed. The behavior of the different 

roughness parameters per roughness class is shown in the boxplots (Fig. 4.3). The 

vertical parameters s and MI and the combined parameter MIF presented a very 

similar behavior. The mean class values and class variability decreased from the 

roughest to the smoothest class (MP and PC, respectively). The combined parameter 

TS also showed decreasing mean class values but with similar variability in all classes. 

On the other hand, horizontal parameters ρ’(0) and F and fractal parameter D had 

increasing mean class values and similar variability. Finally, the horizontal parameter 

l, i.e. the correlation length, behaved completely different with no clear trends and 

overlapping values for the different classes.  
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Fig. 4.3. Box plots of the different roughness parameter values per roughness classes. 

 

The correlation of the normalized backscatter coefficient (𝜎𝑛𝑜𝑟𝑚
0 ) with the roughness 

parameters varied markedly depending on the parameter under study (Fig. 4.4). The 

fractal parameter D (R=−0.651) and the horizontal parameters F (R=−0.641) and ρ’(0) 

(R=−0.617) showed the highest correlations followed by the vertical parameters MI 

(R=0.585) and s (R=0.584). The combined parameters MIF (R=0.528) and especially TS 

(R=0.433) had a lower correlation. On the other hand, the horizontal parameter l had 

the lowest correlation (R=0.064). 
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Fig. 4.4. Scatterplots between 𝛔𝐧𝐨𝐫𝐦

𝟎  and the different roughness parameters by field. The Spearman 

correlation coefficient (R) is also given. 

 

Regarding the goodness-of-fit of the Oh model (Fig. 4.5), the mean RMSE value 

between the simulated and the observed backscatter was 1.323 dB. The fitting for the 

HS roughness class (RMSE < 1 dB) was very good. For the P, HR and MP roughness 

classes, the RMSE values ranged from 1 to 1.5 dB. Finally, for the PC roughness class 

(only one field at different dates) the RMSE value was close to 2 dB. 
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Fig. 4.5. Goodness-of-fit between simulated and observed backscatter coefficients per field. 

 

4.4.2. Influence of profile length 

 

Fig. 4.6 depicts the behavior of the different roughness parameters per class 

depending on the profile length. Vertical parameters (s and MI) increased with 

increasing profile lengths especially for rough classes (e.g., MP). The variability per 

class (error-bars in Fig. 4.6) of the vertical parameters normally decreased with 

increasing profile lengths. Horizontal parameters did not exhibit a consistent trend, 

and different patterns were observed for the different parameters. For instance, 

parameters ρ’(0) and F followed a generally decreasing trend, steeper in the shortest 

profile lengths and gentler at longer lengths. There were some exceptions, particularly 

in the MP class. Furthermore, the ρ’(0) and F values were quite different for the 

different classes regardless of the profile length. The variability per class of ρ’(0) and F 

parameters normally decreased with increasing profile lengths, with the variability of 

ρ’(0) being lower than that of F. The parameter l had a different pattern and a growing 

trend for increasing profile lengths, although values at short profile lengths were quite 

erratic and variable. In this case, the variability per class seemed to increase for longer 

profiles. The combined parameters (MIF and TS) had a similar trend as the vertical 

ones with slightly increasing values and decreasing class variabilities for increasing 

profile lengths. Finally, the fractal parameter D had a trend very similar to ρ’(0) except 

for the MP class.  
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Fig. 4.6. Influence of profile length on roughness parameters. Mean values of roughness parameters and 

standard deviation (error bars) for the different roughness classes depending on the profile length. 

 

The correlation of 𝜎𝑛𝑜𝑟𝑚
0  with the different roughness parameters depending on 

profile length is presented in Fig. 4.7. Spearman correlation values are given (R) for a 

more straightforward interpretation of results. Vertical parameters showed a very 

similar correlation trend with R values ranging from 0.5 to 0.6. These increased at 

short profile lengths (from 0.5 to 1 m) and then stabilized for longer profiles (from 1 

m to 5 m). Horizontal parameters did not show a consistent pattern. On one hand, 

ρ’(0) and F behaved similar to the vertical parameters (inverse correlation) with R 

values increasing for longer profile lengths. The R values achieved by these two 
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parameters, especially F, was very high (~−0.6). This was even higher than those for 

vertical parameters regardless of the profile length. In contrast, l had maximum R 

values of ~0.4 with short profile lengths and very low correlations with longer 

profiles. The combined parameters also behaved very similar to the vertical ones, but 

with slightly lower correlation values. Parameter D also showed an increasing trend 

with high R values (<−0.6) for profiles longer than 2-3 m and values dropping to 

~−0.5 for lengths below 1 m. 

 

 
Fig. 4.7. Spearman correlation coefficients (R) between 𝛔𝐧𝐨𝐫𝐦

𝟎  and the different roughness parameters 

depending on the profile length. (a) represents vertical and combined parameters and (b) horizontal and 

fractal ones. 
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The Oh model showed a consistent trend of decreasing RMSE values for increasing 

profile lengths. This was true across all of the different roughness classes (Fig. 4.8) 

with RMSE values decreasing mostly between 0.5 and 1 m profile lengths and then 

stabilizing for longer profiles. With short profiles, the errors were particularly large 

for class PC (the smoothest class and with only one field observed on different dates). 

On the other hand, the MP class showed a rather insensitive behavior with profile 

lengths. 

 

 
Fig. 4.8. Roughness class average Root Mean Square Error (RMSE) between simulated (Oh model) and 

observed field backscatter values depending on the profile length. 

 

The higher RMSE values observed for shorter profile lengths might be partly 

explained by the fact that the short profiles survey a much smaller soil surface sample 

than longer ones. That is, the field average roughness parameters computed using four 

1-m profiles (with a sampling interval of 5 mm) are based on 800 surface height 

records, whereas four 5-m profiles are based on 4000 records. This sampling effect 

might hide the influence of different roughness scale components in Fig. 4.8. 

Therefore, Fig. 4.9 shows the same results but obtained by increasing the number of 

profiles at shorter lengths to the maximum allowed by the original 5 m length (i.e., one 

5-m profile, two 2.5-m profiles, four 1.25-m profiles, etc.). This way, different profile 

lengths correspond to the same soil surface sample (same number of height records) 

and differences are only due to the influence of different roughness scale components. 

This time, the influence of profile length on the Oh model fit is much lower (Fig. 4.9). 

There were only slight increases in the RMSE values for profiles shorter than 1 m. 
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Fig. 4.9. Roughness class average Root Mean Square Error (RMSE) between simulated (Oh model) and 

observed field backscatter values depending on the profile length. The number of shorter profiles was 

increased so that the same soil surface sample was surveyed than for longer profiles. 

 

4.4.3. Influence of low frequency roughness components 

 

Most parameters (except l) had decreasing values for all roughness classes (Fig. 4.10) 

as profiles were smoothened (i.e. short frequency components discarded). However, 

this the decreasing trend varied. Vertical parameters s and MI decreased gently at the 

beginning but were steeper after a filter size of 10 cm (expect for PC). This indicates a 

higher sensitivity to larger scale components. Most horizontal, combined and fractal 

parameters had an opposite trend with a strong decrease at small filter sizes and a 

stabilization for larger ones. This illustrates the higher influence of small-scale 

components on their values. The parameter l showed a very unique trend (among 

horizontal parameters) of steady growth as the filter size increased. But then took 

higher increasing rates for filter size between 20 cm to 100 cm. Therefore, it seems 

that l is more strongly influenced by larger scale components than the other 

horizontal parameters. 
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Fig. 4.10. Influence of profile smoothening on roughness parameters. Mean values of roughness parameters 

and standard deviation (error bars) for the different roughness classes for increasing filter size. Filter size 

of 0.5 cm corresponds to original profiles. 

 

Correlation values of vertical parameters (s and MI) with 𝜎𝑛𝑜𝑟𝑚
0  slightly decreased as 

the profiles were smoothened until a window size of 50 cm. It then sharply decreased 

until 200 cm (Fig. 4.11). Horizontal parameters did not show a unique behavior. 

Parameter l increased in correlation as the finest roughness components (until 5 cm 

window size) were discarded. It then peaked at R~−0.35 and took the opposite trend 

with R values ~0 for window sizes longer than 50 cm. On the contrary, ρ’(0) had a 

strongly decreasing correlation as the finest components (<5 cm) were filtered out but 
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then increased again with filter sizes of 50-100 cm (R~−0.55). Parameter F showed 

high correlation values (R~−0.6) that were insensitive to the removal of high 

frequency components until a filter size of 10 cm. After this point, correlation 

decreased as filter sizes increased. The combined parameter MIF quickly decreased in 

correlation for increasing filter sizes. In contrast, TS showed a rather insensitive 

behavior as long as the roughness components below 50 cm were maintained with 

maximum correlation values of R~0.65 for a filter size of 10 cm. Finally, D had a 

similar pattern to F with maximum correlation values for profiles that maintained the 

small scale roughness components (filter size below 2 cm). 

 

 
Fig. 4.11. Influence of profile smoothening on the correlation between 𝛔𝐧𝐨𝐫𝐦

𝟎   and the different roughness 

parameters. Spearman correlation coefficients (R) are represented for increasing filter sizes. Filter size of 

0.5 cm corresponds to original profiles. (a) represents vertical and combined parameters and (b) horizontal 

and fractal ones. 
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The results obtained with the Oh model confirmed the observations above with RMSE 

values increasing consistently as high frequency roughness components were 

removed from the original profiles (i.e., window size increasing in Fig. 12). Smooth 

classes (i.e., PC and P) were more sensitive than medium or rough classes, and RMSE 

values increased faster on the first. Rough classes (in particular MP) were more 

insensitive and had similar RMSE values until filter sizes of 20-50 cm. 

 

 
Fig. 4.12. Roughness class average Root Mean Square Error (RMSE) between simulated (Oh model) and 

observed backscatter values depending on profile smoothening (filter size). Filter size of 0.5 cm 

corresponds to original profiles. 

 

4.4.4. Influence of high frequency roughness components 

 

Most roughness parameters clearly varied when low frequency components were 

subtracted from the roughness profiles. This variation was small when only roughness 

scale components larger than 1 m were subtracted (Fig. 4.13). In turn, when only the 

shortest components were left (filter window sizes below 10 cm) most parameters 

changed strongly, and the differences between tillage classes were reduced. 

Parameters s, MI and MIF also had some sensitivity to the removal of the longer 

roughness components. They showed a linear decay as the frequencies were 

discarded. The others were quite stable at least until a filter size of 50 cm (for ρ’(0) 

and D) or 20 cm (for F) was achieved. The TS was quite exceptional, and its values only 

changed when roughness components shorter than 5 cm were removed. Finally, l had 

a decaying trend taking lower values when longer frequency components were 
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discarded. However, this general pattern was altered by outliers particularly in 

smooth classes (PC and P). 

 

 
Fig. 4.13. Influence of high frequency roughness components on parameter values and standard deviation 

(error bars) for the different roughness classes for increasing filter size. Parameter values are computed 

from profiles obtained as a subtraction of smoothened profiles for increasing filter sizes from the original 

profiles. Filter size of 500 cm corresponds to original profiles without filtering. 

 

Correlation values of vertical parameters with 𝜎𝑛𝑜𝑟𝑚
0  decreased when lower frequency 

roughness components were subtracted (i.e., shorter filter window size) (Fig. 4.14). 

However, the decrease was only noticeable when the filter size was smaller than ~50 
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cm. Thus, the inclusion of roughness frequencies longer than this value did not result 

in additional enhancements in correlation with 𝜎𝑛𝑜𝑟𝑚
0 . Parameters ρ’(0), F and D 

showed a low dependence on the removal of low frequency components with 

correlation values decreasing when only scale components smaller than 1 cm 

remained. On the other hand, l showed a high sensitivity to roughness components 

longer than ~50 cm with correlation values dropping abruptly after this value. It is 

remarkable that when roughness components longer than 50 cm were discarded, l 

had R values ~0.6, which is similar to those of other horizontal roughness parameters 

(i.e., F or ρ’(0)). 

 

 
Fig. 4.14. Influence of high frequency components on the correlation between 𝛔𝐧𝐨𝐫𝐦

𝟎  and the different 

roughness parameters. Parameter values are computed from profiles obtained as a subtraction of 

smoothened profiles for increasing filter size from the original profile. Spearman correlation coefficients (R) 

are represented for increasing filter size. Filter size of 500 cm corresponds to original profiles without 

filtering. (a) represents vertical and combined parameters and (b) horizontal and fractal ones. 
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The Oh model simulations had a very clear pattern of increasing RMSE when 

roughness scales below 50 cm were subtracted (Fig. 4.15). They rose as high as 8-9 dB 

when only components smaller than 1 cm remained. However, for most classes the 

inclusion of roughness components longer than 20 or 50 cm did not result in 

additional improvements in RMSE. Only the smoothest class (PC) seemed to further 

improve when wavelengths of 100 cm or longer were included. 

 

 
Fig. 4.15. Influence of high frequency roughness components on Oh model fit. Roughness class average Root 
Mean Square Error (RMSE) between simulated and observed backscatter values are represented for 
increasing filter size. s values are computed from profiles obtained as a subtraction of smoothened profiles 
for increasing filter sizes from the original profile. Filter size of 500 cm corresponds to original profiles 
without filtering. 

 

 

4.5. Discussion and conclusions 

 

The results confirm the clear dependency between roughness measurement scales 

(i.e., profile lengths) and parameter values. They demonstrate the multiscale behavior 

of surface roughness, as also observed in the literature (Oh and Kay, 1998; Mattia et 

al., 2003; Zhixiong et al., 2005; Callens et al., 2006; Verhoest et al., 2008; Snapir et al., 

2014). Thus, it is necessary to determine which roughness scales are relevant in the 

backscattering of microwaves over bare soils. Regarding the influence of small-scale 

components, the results demonstrate that eliminating these small-scale roughness 

components from the profiles caused a strong variation in the values of horizontal 

parameters, while vertical ones were more insensitive. This is in agreement with 
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Barber et al. (2016) who observed that when the sampling interval increased, s 

decreased slightly and l increased causing the separability between different 

roughness classes to decrease. The results also confirm that l values did not stabilize 

with long profiles, but showed rather an increase in their variability (Callens et al., 

2006; Lievens et al., 2009). However, the correlation of most parameters with 𝜎𝑛𝑜𝑟𝑚
0  

and the results obtained with the Oh model did not show great sensitivity to the 

elimination of these short roughness components until a scale of 2 or 5 cm. 

 

Regarding the influence of large-scale roughness components, previous studies 

defended the need for long profiles so as to reflect all the roughness components 

present on a pixel (Davidson et al., 2000; Manninen, 2003) or for a statistically robust 

estimation of roughness parameters (Oh and Kay, 1998). However, this idea is not in 

agreement with the rather successful results obtained in studies based on short 

profiles, i.e., 1-2 m, (Baghdadi et al., 2006a; Davidson et al., 2003) or in some studies 

where best results were obtained when roughness parameters were computed after 

de-trending the underlying topographic trend, i.e., removing large-scale roughness 

(Bryant et al., 2007). Fung (2015) also proposed that meter size roughness scales did 

not influence the backscattering process at centimeter scale wavelengths. The results 

obtained here illustrate that incorporating roughness scales larger than 1-2 m to the 

measurements did not significantly improve the correlation with 𝜎𝑛𝑜𝑟𝑚
0  or in the 

goodness-of-fit of Oh model simulations. These results support the idea that the low 

frequency roughness components do not play an important role in backscattering and 

also distort different parameter values (especially l). 

 

Based on these results, it can be suggested that roughness scales between 5 and 50 cm 

are the most relevant for C-band backscatter. When the high frequency roughness 

components (scales below 5 cm) were smoothened, most roughness parameters only 

slightly decreased their correlation with observed backscatter. Similarly, few 

differences were observed in the Oh model results when profiles were smoothened up 

to a filter size of 5-10 cm. Roughness scales larger than 1-2 m might not be relevant in 

the backscattering of microwaves at C-band. The inclusion of these components in the 

profile did not provide additional enhancement to the correlation of roughness 

parameters with backscatter nor in the goodness-of-fit of the Oh model. In addition, 

large-scale roughness components had a distorting effect in some roughness 

parameters especially l. Whit regard to this, it is remarkable that some roughness 
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parameters (i.e., D, F and ρ’(0)) were more stable and showed a better correlation 

with backscatter. This could open new possibilities in backscatter modelling. It is 

important to note that this analysis was based solely on C-band SAR data, and any 

extrapolation of these results to other frequencies would require new data and 

analyses. 
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Abstract 

 

Soil surface roughness determines the backscatter coefficient observed by radar 

sensors. The objective of this study was to determine the surface roughness sample 

size required in SAR applications and to provide some guidelines on roughness 

characterization in agricultural soils for these applications. With this aim, a dataset 

consisting of ten ENVISAT/ASAR observations acquired coinciding with soil moisture 

and surface roughness surveys have been processed. The analysis consisted of (1) 

assessing the accuracy of roughness parameters s and l depending on the number of 1-

m long profiles measured per field, (2) computing the correlation of field average 

roughness parameters with backscatter observations and (3) evaluating the 

goodness-of-fit of three widely used backscatter models, i.e., Integral Equation Model 

(IEM), Geometrical Optics Model (GOM) and Oh model. The results obtained illustrate 

a different behavior of the two roughness parameters. A minimum of 10-15 profiles 

can be considered sufficient for an accurate determination of s, while 20 profiles might 

still be not enough for accurately estimating l. The correlation analysis revealed a 

clear sensitivity of backscatter to surface roughness. For sample sizes >15 profiles R 

values were as high as 0.6 for s and ~0.35 for l, while for smaller sample sizes R values 

dropped significantly. Similar results were obtained when applying the backscatter 

models, with enhanced model precision for larger sample sizes. However, IEM and 

GOM results were poorer than those obtained with the Oh model and more affected by 

lower sample sizes, probably due to larger uncertainly of l. 

 

Keywords: agricultural soils, backscatter models, surface roughness, synthetic 

aperture radar (SAR) 

 

 

 



Surface roughness sample size influence on radar backscattering 

115 

 

5.1. Introduction 

 

Synthetic Aperture Radar (SAR) sensors measure the backscatter of observed targets 

and offer valuable information for the identification of terrain covers and for the 

retrieval of bio-geophysical parameters of interest, such as soil moisture (SM), 

vegetation phenology and biomass. Among other terrain parameters, soil surface 

roughness (SSR) strongly affects the scattering of microwaves, and hence largely 

determines the backscatter coefficient (σ0) observed by radar sensors, complicating 

the interpretation and analysis of SAR data (Verhoest et al., 2008). In the SAR 

literature, SSR has been mostly parameterized by the standard deviation of the 

heights (s), the correlation length (l) and the shape of the autocorrelation function 

(Ulaby et al., 1982), generally assumed exponential for agricultural soils. Several 

backscatter models exist that use these parameters as input for simulating σ0. If 

backscatter observations are available, models can be inverted for retrieving a certain 

terrain parameter of interest (normally SM). An accurate estimation of roughness 

parameters is a prerequisite for this. Yet, their spatial variability and also the multi-

scalar nature of roughness makes it difficult to determine s and l values with the 

required accuracy for obtaining useful inversions (Ulaby et al., 1982). 

 

Surface roughness is known to be a multi-scalar phenomenon, causing instruments 

with different measuring range (i.e., profile length or surveying area) yield parameter 

values that are not comparable with each other (Ulaby et al., 1982). In particular, the 

presence of long wavelength roughness components (i.e., several meters) on a soil 

surface or profile can strongly affect the shape of the obtained autocorrelation 

functions, introducing uncertainty in the determination of l (Mattia et al., 2003). On 

the other hand, recent research has evidenced that these long wavelength components 

might not play a significant role in the scattering of microwaves at the frequencies 

used by Earth Observation satellites (Fung, 1994; Martinez-Agirre et al., 2017a). This 

is in line with previous studies that used profile lengths of 1-2 m for surface roughness 

characterization with good results (Davidson et al., 2003; Baghdadi et al., 2006a).  

 

However, due to the spatial variability of surface roughness, a minimum amount of 

samples might be required for accurately characterizing roughness parameters for a 

particular agricultural field or roughness class. Bryant et al. (2007) observed that at 

least 20 profiles were required to accurately determine s. Similarly, Baghdadi et al. 
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(2008a) reported a ±10% accuracy for parameter s and ±20% for l when 10 

roughness profiles were used. Yet, it is necessary to assess not only how the 

roughness sample size (i.e., number of profiles measured) affects the accuracy of the 

computed parameters, but also to evaluate how it influences the accuracy of 

backscatter simulations using observed σ0 data. 

 

The aim of this research was to evaluate the influence of surface roughness sample 

size on SAR backscattering in different agricultural soils. The objective was to 

determine the minimum number of 1-m long profiles required in SAR applications and 

to provide same guidelines on how roughness should be characterized for these 

applications. With this aim, a dataset consisting of ENVISAT/ASAR observations 

acquired coinciding with some ground surveys have been processed. The analysis 

consisted of (1) assessing the accuracy of s and l depending on the number of profiles 

measured per field, (2) computing the correlation of field average roughness 

parameters with backscatter and (3) evaluating the goodness-of-fit of backscatter 

models depending on the roughness sample size considered. 

 

 

5.2. Material and methods 

 

5.2.1. Test site 

 

The experimental data acquisition was carried out on the watershed of La Tejería 

(N42º44’10.6’’ and W1º56’57.2’’) in Navarre (Spain) (Casalí et al., 2008). The climate 

is humid sub-Mediterranean with a mean annual temperature of 13 ºC and an average 

annual precipitation of ~700 mm. Soils have a silty-clay texture and are relatively 

shallow (0.5-1.0 m deep). Ten agricultural fields were studied with an area ranging 

between 3 and 7.3 ha.  

 

Soil preparation operations were performed sequentially during September and 

October 2004 for cultivating winter cereal. Five different tillage treatments were 

observed from September to December 2004 (Table 5.1): Mouldboard Plough (MP), 

Harrowed Rough (HR), Harrowed Smooth (HS), Planted (P) and Planted Compacted 

(PC). 

 



Surface roughness sample size influence on radar backscattering 

 

117 

 

Table 5.1. Roughness classes corresponding to each field and measurement date. Four 5-m long roughness 
profiles were acquired per field 

Field ID. 22/09/2004 08/10/2004 24/10/2004 17/12/2004 

188 HR HR - P 

189 HR HR HS P 

193 HR HR P P 

194 - HR HR P 

199 MP MP MP P 

201 HS HS - P 

208 MP - - PC 

235 HS HS P P 

255 HS HS - P 

258 HR - - P 

- Fields not monitored on that particular day 

 

5.2.2. Surface roughness data 

 

Surface roughness was measured using a 5-m long laser profile meter with a 

resolution of 5 mm and a vertical accuracy of 1.25 mm (Martinez-Agirre et al., 2016). 

On each monitored field four 5-m long profiles were measured per date (except for 

field 208 in 22/09/2004) spatially distributed throughout the field and in parallel to 

the tillage direction. Each acquired profile was subdivided into five 1-m long profiles, 

and these were detrended using a linear function to subtract the terrain slope. Thus, 

twenty 1-m long profiles (i.e., independent samples) were obtained per field, making a 

total of 635 1-m long profiles. 

 

Two standard surface roughness parameters were analyzed: the standard deviation of 

surface heights (s) and the correlation length (l) obtained considering an exponential 

autocorrelation function [2]. Further details on the processing of profiles and 

roughness parameters are available in (Martinez-Agirre et al., 2016). 

 

5.2.3. Soil moisture data 

 

Soil moisture (SM) was measured using a commercial Time Domain Reflectometry 

(TDR) instrument. On each field, five spatially distributed measurement locations 

were monitored per date. Soil samples were used to calibrate the TDR probe. Also, 

TOPLATS (Famigliatti and Wood, 1994) modelled SM values were used for 4 satellite 

acquisition dates (Table 5.2) in which the TDR measurements were not available. 
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Table 5.2. Summary of SAR data 
Date SAR data θLOC (º)* Pass Fields 

monit

ored 

Roughness 

data 

SM data 

22/09/2004 ENVISAT/ASAR 7.2-16.2 Descending 9 Profilometer TDR 

08/10/2004 ENVISAT/ASAR 11.6-20.9 Descending 8 Profilometer TDR 

11/10/2004 ENVISAT/ASAR 20.9-31.4 Ascending 8 = TOPLATS 

24/10/2004 ENVISAT/ASAR 15.7-24.9 Descending 5 Profilometer TDR 

27/10/2004 ENVISAT/ASAR 16.9-27.2 Ascending 5 = TOPLATS 

17/12/2004 ENVISAT/ASAR 11.6-20.9 Descending 10 Profilometer TDR 

20/12/2004 ENVISAT/ASAR 20.8-31.2 Ascending 10 = TOPLATS 

02/01/2005 ENVISAT/ASAR 15.8-24.5 Descending 10 = TDR 

05/01/2005 ENVISAT/ASAR 16.8-26.9 Ascending 10 = TDR 

24/01/2005 ENVISAT/ASAR 20.9-31.3 Ascending 10 = TOPLATS 

*Local incidence angle 

 

5.2.4. SAR data 

 

Ten ENVISAT/ASAR scenes were acquired over La Tejería watershed during the study 

period (Table 5.2). Scenes were acquired as VV Single-Pol Image Mode Precision 

Image products in swath IS2 (except for 22/09/2004 that was HH-VV Alternate Pol in 

IS1), half of them in ascending pass and the other half in descending. In all cases, the 

resolution was 30 m x 30 m. Scenes were: (1) orthorectified (with an error < 1 pixel), 

(2) calibrated (using the local incidence angle) and (3) speckle-filtered (Gamma MAP 

filter with a window of 5x5). Mean backscatter coefficient values σ0 were calculated 

for each field per date.  

 

5.2.5. Data analysis 

 

The analysis presented here focused on the influence of sample size on the 

characterization of surface roughness for SAR applications. For this, an increasing 

number of 1-m long roughness profiles (from 1 to 20) was considered for each field, 

and the following analyses were carried out: (1) assessment of the behavior of 

roughness parameters, (2) evaluation of the correlation between normalized σ0 with 

roughness parameters and (3) evaluation of the goodness-of-fit of different 

backscatter models. 

 

The behavior of roughness parameters was evaluated by comparing the average and 

standard deviation of s and l per class as computed considering an increasing sample 

size (i.e. number of profiles). For the correlation analysis, field average σ0 values were 

normalized for incidence angle and soil moisture variations, so as to remove the 
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influence of factors other than surface roughness on σ0 values (Martinez-Agirre et al., 

2017a). Further details on the normalization can be found in (Martinez-Agirre et al., 

2017a). The Spearman R coefficient was computed between the 𝜎𝑛𝑜𝑟𝑚
0  (normalized σ0) 

series and field average s and l values as computed considering an increasing sample 

size. Finally, the goodness-of-fit of three backscatter models was evaluated by 

computing the RMSE between observed σ0 values and simulated ones, the latter were 

obtained using field average s and l values for an increasing sample size. Due to their 

different nature and validity range, three backscatter models were considered: the 

physically-based Integral Equation Model (IEM) (Fung et al., 1992) and Geometrical 

Optics Model (GOM) (Ulaby et al., 1982) for the smooth (P and PC) and rough classes 

(MP, HR and HS), respectively; and the semi-empirical Oh model (Oh et al., 1992) that 

was applicable to all classes.   

 

 

5.3. Results 

 

5.3.1. Behavior of roughness parameters 

 

Mean s values did not change significantly for increasing sample sizes, except for some 

minor variations when only 1-4 profiles were used (Fig. 5.1). However, class 

variability decreased as the sample size increased, stabilizing for a certain sample size 

that depended on the particular roughness class. The behavior of l was rather 

different (Fig. 5.1), with strongly variable mean values for small sample sizes, which 

only stabilized after 10 profiles. In this case the reduction of class variability with 

sample size was slower than in s, being still high for the largest sample sizes analyzed.  
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Fig. 5.1. Mean values of s (top) and l (bottom) and their standard deviation (error bars) for the different 
roughness classes depending on the sample size. 

 

Increasing sample sizes resulted in more clustered roughness classes in the s−l space 

and also in an increase in the correlation between s and l (results not shown). With 

twenty profiles, a correlation of R=0.640 was obtained for the linear function 

l=1.89+1.29s being similar to that found in (Davidson et al., 2003) in comparable 

conditions.  

 

5.3.2. Roughness correlation with backscatter 

 

The correlation of 𝜎𝑛𝑜𝑟𝑚
0  with both roughness parameters for all the sample sizes 

investigated is presented in Fig. 5.2. Parameter s showed a steady increase of R as 

sample size increased, reaching values of ~0.6 when the number of profiles was larger 

than 12. Parameter l presented a very low correlation with 𝜎𝑛𝑜𝑟𝑚
0  (R~0.1) when the 

sample size was smaller than 8 profiles. When the number of profiles ranged between 
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8 and 15, it showed a constant increase of correlation, and for greater sample sizes 

correlation stabilized at R~0.4. Small sample sizes lead to a higher class variability, in 

particular for l and for the planted (P) roughness class, and this was the main cause 

for R to drop. When a higher number of samples were used, fields were better 

clustered around the class-mean leading to higher R values. 

 

 
Fig. 5.2. Spearman correlation coefficient (R) between 𝛔𝐧𝐨𝐫𝐦

𝟎  and the roughness parameters s and l 
depending on sample size. 

 

5.3.3. Backscatter modeling 

 

The goodness-of-fit of physically based models (IEM and GOM) improved as the 

sample size increased (Fig. 5.3a, Fig. 5.4a-c). The improvements were clear when 

using the GOM for rough classes (MP, HR and HS), with RMSE reductions of ~1.5 dB 

when passing from 1-5 profiles to 15-20 profiles. Similar RMSE reductions were 

obtained when applying the IEM to planted fields (P class). In this case RMSE values 

passed form >4 dB for 1-5 profiles to ~3 dB for 15-20 profiles. On the contrary, the 

class PC had very stable RMSE values (~2.75 dB), independent of the sample size 

considered. Considering all the classes, an RMSE of ~2.5 dB was obtained in the best 

case (Fig. 5.4c), with the largest residuals corresponding to class P. The best RMSE 

values achieved per class (Fig. 5.3a) were still high, with values of 2-2.75 dB, except 

for class HS with ~1 dB. These values are too high for a viable retrieval of SM from 

SAR observations. 

 

The semi-empirical Oh model also showed a mostly decreasing RMSE trend for 

increasing sample sizes (Fig. 5.3b, Fig. 5.4d-f). However, this decreasing trend was 
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much weaker (Fig. 5.4d-f) with an overall RMSE reduction of only 0.078 dB when 

passing from 5 to 20 samples. The decreasing trend was different for each of the 

classes (Fig. 5.3b). For MP, HR and P the RMSE values (1.2-1.5 dB) were very stable 

and almost independent of the sample size. Conversely, decreasing RMSE values were 

observed for HS and PC with some stabilization for sample sizes above 5 profiles for 

PC (~2 dB) and 12 profiles for HS (~1 dB). The Oh model achieved significantly lower 

RMSE values than the GOM and IEM, with largest residuals (~1-2 dB) obtained at both 

the lowest and highest ends (Fig. 5.4f), where σ0 values were underestimated for some 

rough and smooth fields, respectively. From the analysis, the Oh model seemed to be 

less sensitive to the different sample sizes.   

 

 
Fig. 5.3. Roughness class Root Mean Square Error (RMSE) between simulated and observed field 
backscatter values depending on sample size: (a) GOM model for classes MP, HR and HS and IEM model for 
classes P and PC, and (b) Oh model. 
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Fig. 5.4. Goodness-of-fit between simulated and observed backscatter coefficients per field for different 
roughness sample sizes with GOM model for classes MP, HR and HS and IEM model for classes P and PC, and 
Oh model. 

 

 

5.4. Discussion and conclusions 

 

The results obtained illustrate a different behavior of the two classical roughness 

parameters, s and l (Fig. 5.1). On the one hand, s was rather insensitive to the influence 

of sample size, with quite stable class means, although, as expected, its variability 

decreased as the sample size increased. A minimum of 10-15 profiles can be 

considered sufficient for an accurate determination of s. On the other hand, class mean 

l values varied more strongly for low sample sizes, and even if its variability also 

decreased for increasing sample sizes, it was still much higher than that of s. In this 

case, depending on the particular roughness class a sample of 20 profiles might still be 

insufficient for estimating l with the required accuracy. Similarly, Baghdadi et al. 

(2008a) found that averaging ten profiles (1-m long), resulted in quite accurate s 

estimates (~10% error) but much more variable l estimates (~20% error). For larger 

sample sizes a significant correlation between s and l was observed, similar to 

(Davidson et al., 2003). The existence of an l=f(s) dependence could be used to reduce 

the number of unknown roughness parameters, which can be important for ill-posed 

algorithm inversion problems. 
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The correlation analysis (Fig. 5.2) revealed a clear sensitivity of backscatter to surface 

roughness, and in particular s, similar to (Zribi et al., 2016). However, when the 

number of profiles was insufficient for accurately determining the field mean 

roughness parameters, R values dropped significantly. On the contrary, for sample 

sizes >15 profiles R values were as high as 0.6 for s and ~0.35 for l. As the number of 

samples increased class variability decreased, leading to better clustered field means 

that positively correlated with backscatter. 

 

Similar results were obtained when applying the backscatter models (Fig. 5.3, Fig. 

5.4), with enhanced model precision for larger sample sizes. However, this analysis 

highlighted the influence of l on the physically-based IEM and GOM models. IEM and 

GOM results were poorer than those obtained with the semi-empirical Oh model, due 

to the higher uncertainly of l. This could be explained by the larger number of samples 

required for an accurate estimation of l, which caused larger errors in IEM and GOM 

simulations for a given number of profiles than in Oh model. 

 

To conclude, the results obtained evidence the existing relation between C-band SAR 

backscatter and soil surface roughness for roughness scales shorter than 1 m, as long 

as a sufficient number of samples is used to accurately characterize roughness. Due to 

the large spatial variability of roughness parameters a minimum of 10 samples was 

required for s and a value even larger than 20 might be required for l. The lower 

variability of s caused a better fit of the semi-empirical Oh model than the physically-

based IEM and GOM, which were affected by the higher variability of l. Altogether, the 

relatively small errors obtained with the Oh model (between 1-1.5 dB in most cases) 

recommend its use for the retrieval of soil moisture, as long as a minimum of 10-15 1-

m long roughness profiles are available per field. 
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Abstract 

 

Soil surface roughness on agricultural soils is mainly related to the type of tillage 

performed, typically consisting of an oriented and a random component. Traditionally, 

soil surface roughness characterization has been difficult, due to its high spatial 

variability and the sensitivity of roughness parameters to the instruments 

characteristics, including its measurement scale. Recent advances in surveying have 

improved spectacularly the resolution, extent and availability of surface elevation 

datasets. The objective of this paper is to evaluate Terrestrial Laser Scanner (TLS) and 

Structure from Motion (SfM) techniques, so as to assess their accuracy and suitability 

for quantifying surface roughness over different agricultural soils. With this aim, an 

experiment was carried out in three plots (5 x 5 meters) representing different 

roughness conditions, where TLS and SfM measurements were co-registered with 2D 

profiles obtained using a laser profilometer. Differences between techniques were 

evaluated visually and quantitatively using regression analysis and comparing the 

values of different roughness parameters. TLS and SfM measurements were further 

compared by evaluating multi-directional roughness parameters behavior and by 

Digital Elevation Models subtraction. The results obtained demonstrate the ability of 

both TLS and SfM techniques to measure surface roughness over agricultural soils. 

However, both techniques (especially SfM) showed a loss of high frequency elevation 

information that affected the values of some parameters. Altogether, both TLS and SfM 

provide very powerful 3D information that enables a detailed analysis of surface 

roughness directionality, which is very relevant for different applications such as 

those focused in hydrological and soil erosion processes or microwave scattering. 

 

Keywords: soil surface roughness, TLS, SfM, roughness parameters, agricultural soils 
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6.1. Introduction 

 

Soil Surface Roughness (SSR, also referred to as micro-topography or micro-relief) can 

be defined as the variation in soil surface elevation at scales smaller than the 

resolution of typical topographic surveys or Digital Elevation Models (DEMs) (Govers 

et al., 2000). In agricultural soils, SSR is mainly an anthropic factor determined by the 

type of tillage and management, typically with an oriented component consisting of 

pseudo-periodical height variations due to tillage implements and a random 

component representing soil clods or aggregates. In agricultural soils, SSR is a 

property with a high spatial variability, since the same type of tillage can result in 

surfaces with different SSR depending on the physical characteristics of the soil and 

atmospheric conditions. 

 

SSR is a key element in hydrology and soil erosion processes occurring at the soil-

atmosphere interface (Helming et al., 1998), such as infiltration, runoff, the 

detachment of soil due to water or wind, gas exchange, evaporation and heat fluxes 

(Huang and Bradford, 1992). Therefore, its knowledge can be useful for 

understanding and modelling processes relevant for different applications. However, 

the parameterization of the SSR is not straightforward because of the many different 

tillage tools that exist, which cause a particular type of micro-relief under identical soil 

conditions. Furthermore, considering the wide range of possible soil conditions, a 

huge variety of roughness types could be found in agricultural soils (Martinez-Agirre 

et al., 2016).   

 

Many different parameters and indices have been proposed for quantifying SSR (e.g. 

Helming et al., 1993; Magunda et al., 1997; Kamphorst et al., 2000; Taconet and 

Ciarletti, 2007; Vermang et al., 2013). These can be divided into four groups, following 

a criterion similar to that of Smith (2014): (1) parameters measuring the vertical 

dimension of roughness, (2) parameters measuring the horizontal dimension of 

roughness, (3) parameters combining both dimensions, and (4) parameters based on 

fractal theory (Martinez-Agirre et al., 2016). The first ones measure the magnitude of 

elevation differences along a transect or area. On the other hand, horizontal 

parameters evaluate the spacing at which these elevation differences occur. Combined 

parameters represent both properties, since they are normally obtained as the 

product or ratio of a vertical and a horizontal parameter. Finally, fractal parameters 
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measure the self-affinity of surfaces transect or areas, i.e., whether similar statistical 

properties can be obtained at different spatial scales along the surface. Although the 

number of parameters found in the literature is high, many of them measure similar 

properties and are thus strongly correlated (Martinez-Agirre et al., 2016). Depending 

on the particular application of interest some parameters have been preferred to 

others, being the standard deviation of heights (s), also referred to as RMSE of height 

(when their mean is zero), the most commonly used one.  

 

Recent advances in surveying have improved spectacularly the resolution, extent and 

availability of surface elevation datasets (Smith, 2014). Surface roughness 

measurement techniques can be classified according to different criteria: the 

dimensionality of measure (2D/3D), precision (mm/cm), sensor type, and whether 

the measure is done with contact to the soil surface or not (Jester and Klik, 2005; 

Gilliot et al., 2017). However, most of the literature in the topic centered the 

classification into contact and non-contact techniques (Govers et al., 2000; Verhoest et 

al., 2008, Aguilar et al., 2009; Thomsen et al., 2015; Nouwakpo et al., 2016). Regarding 

to this, non-contact devices are preferred because the physical contact between an 

instrument and the soil surface is associated with measurement biases and 

disturbances (Jester and Klik, 2005). Laser scanners and image based 3D 

reconstruction technologies are non-destructive and have been the most commonly 

used technologies for non-contact micro-topography measurements (Barneveld et al., 

2013, Nouwakpo et al., 2016).  

 

Image-based 3D reconstruction technologies can be divided into traditional stereo-

photogrammetry and Structure from Motion photogrammetry (SfM) (Nouwakpo et al., 

2016). Traditional photogrammetric techniques required specific and expensive 

cameras, precise camera calibration, and imposed geometric constrains while 

acquiring photographs (Gilliot et al., 2017). In contrast, SfM relaxes some of these 

constrains, making image acquisition and processing significantly faster and easier 

(Castillo et al., 2012; James and Robson, 2012; Woodget et al., 2015; Gomez et al., 

2015; Mosbrucker et al., 2017). Nowadays, the interest of scientists across different 

disciplines of geosciences in this technology as a surface reconstruction tool has 

expanded since the development of readily available SfM software (Nouwakpo et al., 

2016). 
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Laser-based technologies also known as light detection and ranging (LiDAR) have 

been used for high resolution soil micro-topography measurements (Perez-Gutierrez 

et al., 2007; Aguilar et al., 2009; Castillo et al., 2012; Milenkovic et al., 2015; Nouwakpo 

et al., 2016). Specifically, Terrestrial Laser Scanner (TLS) technique presents 

accuracies within a range of 0.1-0.5 mm and 0.1-2 mm for vertical and horizontal 

measurements, respectively (Aguilar et al., 2009). Although, TLS’s high hardware 

acquisition cost and bulky size have limited its widespread use for field measurement 

campaigns (Nouwakpo et al., 2016), technical improvements in sensor design may 

improve this in the near future. In the recent years different authors have studied the 

suitability of TLS for SSR characterization in agricultural soils (e.g. Milenkovic et al, 

2015; Thomsen et al., 2015; Rodríguez-Caballero et al., 2016). Yet, the large variety of 

SSR conditions in agricultural soils recommends further studies. 

 

Although some studies have already attempted to measure SSR with different 

techniques, there is still a need for further research comparing the accuracy and 

adequacy of recently developed 3D measuring techniques with conventional ones, in 

particular on agricultural soils with contrasting roughness conditions. The laser 

profilometer is a traditionally used technique as a high-resolution non-contact 

alternative to mechanical profiles (Mattia et al., 2003). Therefore, in this study 

terrestrial laser scanner (TLS) and Structure from Motion (SfM) 3D measurements 

were evaluated and compared with laser profilometer 2D measurements obtained on 

three experimental plots tilled with different tillage implements. The objective of this 

work was thus to evaluate TLS and SfM techniques, and to assess their accuracy and 

suitability for quantifying surface roughness in different agricultural soils. With this 

aim, an experiment was carried out where TLS and SfM surveys were precisely co-

registered with 2D profiles obtained using a laser profilometer. Differences between 

techniques were evaluated visually and analytically using regression analysis, and 

next by comparing the values of a number of roughness parameters obtained with the 

techniques evaluated. Then, DEMs obtained with TLS and SfM were compared to 

detect areas and surface features were a mismatch existed between techniques. 

Finally, polar plots showing multi-directional roughness parameters were computed 

and compared between TLS and SfM. 
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6.2. Materials and methods   

 

6.2.1. Study area 

 

This study was conducted in the experimental fields at the School of Agricultural 

Engineers of the Public University of Navarre in Pamplona (Navarre, Spain) (42.79º N, 

1.63º W). The climate is humid sub-Mediterranean with a mean annual temperature 

of ~13 ºC and an average annual precipitation of ~675 mm distributed over 95 days. 

The experimental field is almost horizontal (slope < 2%) and soils have a silty-clay-

loam texture (13.7% sand, 48.3% silt and 38% clay). 

 

Three experimental plots (5x5 meters) were created using different tillage 

implements, so as to represent different surface roughness conditions typical of 

agricultural soils (Fig. 6.1): Plot 1 corresponds to high roughness conditions 

(Mouldboard Plough), Plot 2 to medium roughness (Chisel), and Plot 3 to low 

roughness (Mouldboard Plough + Harrowed Compacted). Mouldboard Plough (MP) is 

a primary tillage operation performed with a plough with multiple mouldboards (15-

20 cm depth) that break and turn over the soil, resulting in very rough surface. Chisel 

(CH) is also a primary tillage operation that breaks and shatters the soil leaving it 

rough with residue on the surface, yet not as rough as MP. Mouldboard Plough + 

Harrowed Compacted (HC) consists of a MP operation followed by a secondary 

operation using a spike harrow and a compacting roller, leading to a smooth soil. 

 

 
Fig. 6.1. Experimental plots: Mouldboard Plough (MP) (left), Chisel (CH) (center) and Mouldboard Plough + 
Harrowed Compacted (HC) (right). 

 

6.2.2. Experimental protocol 

 

The data collection was carried out on three days, November 25-27 2013, where no 

precipitation was recorded. Profilometer measurements (Fig. 6.2) were performed on 
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November 25 afternoon in plot 2 (CH), and on November 26 afternoon in plot 3 (HC) 

and plot 1 (MP). On each plot eight profiles were measured, four in parallel to the 

tillage direction and four in perpendicular. The beginning and end points of each 

profile were marked with nails and referenced using a total station. The acquisition of 

photographs for SfM technique was done on November 26 afternoon, so as to avoid 

the influence of shadows. Twenty four photographs were taken per plot from different 

points of view using a lifting platform (Fig. 6.2). Eight surveying targets were spatially 

distributed around the experimental plots for referencing the data. Finally, TLS 

measurements (Fig. 6.2) were carried out on November 27 morning. Four scans were 

measured per plot (i.e., one from each side) which were co-registered using five 

reference spheres deployed around the plots. 

 

 
Fig. 6.2. Measurement techniques: Laser profilometer (left), Structure for Motion (center) and Terrestrial 
Laser Scanner (right). 

 

6.2.3. Measuring techniques  

 

Data collection was performed using three different measurement techniques (Fig. 

6.2). On the one hand, 2D measurements were performed using a laser profilometer, 

and on the other hand, 3D measurements were performed using Terrestrial Laser 

Scanner (TLS) and Structure from Motion (SfM) photogrammetric technique. A 

description of the three techniques is given below. 

 

6.2.3.1. Laser profilometer 

 

Profiles were taken with a laser profilometer (see Fig. 6.2) designed specifically for 

measuring roughness (Álvarez-Mozos et al., 2009). The device consists of a laser 

distance meter located inside a case that moves along an aluminum bar (fixed with 

two tripods) propelled by a small electric motor. The profilometer measures the 

vertical distance to the soil surface using a 3 mm wide laser beam with an accuracy of 
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1.25 mm and a sampling interval of 5 mm. For each experimental plot 8 profiles (4 in 

parallel to the tillage direction and 4 in perpendicular) were measured with the laser 

profilometer, making a total of 24 profiles. 

 

Profilometer data pre-processing was carried out following three steps: (1) aluminum 

bar buckling effect correction using a parabolic function, (2) outlier filtering by 

deleting and interpolating records larger than a threshold (i.e. 2 cm) with the previous 

and following records, and (3) terrain slope correction (i.e., profile detrending) 

subtracting the linear trend observed in the data, if any. 

 

6.2.3.2. Terrestrial Laser Scanning (TLS) 

 

Terrestrial laser scanners (TLS) utilize the light detection and ranging (LiDAR) 

technique to capture precise and detailed geometric information (point clouds) about 

natural and artificial objects (Milenkovic et al., 2015). The TLS used in this study was 

the FARO Focus 3D (see Fig. 6.2). The scans were obtained from tripod ~1.75 m high. 

The TLS has a specific ranging precision of 0.3 mm (90% reflectivity) and a small 

beam divergence of 0.16 mrad (0.009º), with a beam diameter of 3.8 mm. The scan 

vertical and horizontal resolution was set in 0.0018º (20480 3D pixel in 360º), so for a 

range distance of 6 meters (maximum distance in our measurements) the sampling 

interval was about 1.8 mm. For each of the three experimental plots four scans (i.e. 

one from each side of the plot) were measured. 

 

For TLS data processing, raw scans were first filtered to exclude mixed pixels 

measurements, and then, co-registered and merged into a single point cloud. The 

filtering of mixed-pixels measurements was performed using a self-implemented 

algorithm as the existing predefined filters in the manufacturer software did not 

provide satisfying results for our data. The co-registration of individual TLS scans was 

done globally and using the ICP (iterative closest point) algorithm implemented in the 

OPALS software (Otepka et al., 2013; Pfeifer et al., 2014). This ICP algorithm 

minimizes point-to-plane distances between the corresponding points (Glira et al., 

2015), and the standard deviation, based on more than 5000 such residuals, was 

about 1.1 mm for the CH and HC plots. For the MP plot, the standard deviation was 

slightly higher, i.e. 2.5 mm. Finally, for each 5x5 meters experimental plot ~30 million 
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point cloud was obtained by merging the individual co-registered TLS scans per plot 

(see details in Table 6.1). 

 
Table 6.1. Details of the data after pre-processing. 

Plot Measurement technique Nº of sampling locations Nº of readings 

MP Profilometer (PRO) 08 ~ 8.000 points 

MP Terrestrial Laser Scanner (TLS) 04 30.447.219 points 

MP Structure from Motion (SfM) 24 17.303.166 points 

CH Profilometer (PRO) 08 ~ 8.000 points 

CH Terrestrial Laser Scanner (TLS) 04 26.513.592 points 

CH Structure from Motion (SfM) 24 13.507.994 points 

HC Profilometer (PRO) 08 ~ 8.000 points 

HC Terrestrial Laser Scanner (TLS) 04 31.964.773 points 

HC Structure from Motion (SfM) 24 11.548.505 points 

   

6.2.3.3. Structure from Motion (SfM) 

 

Structure from Motion (SfM) technology was based on a set of overlapping 

photographs acquired from different points of view using a high quality digital 

camera, which are processed automatically to determine the scene geometry and 

camera parameters (Favally et al., 2012; Gilliot et al., 2017). For each plot 24 photos of 

20 megapixels were acquired with a Canon EOS 5D Mark II camera with a 21 mm 

objective. Photos were homogenously distributed and obtained from a height of ~8 

meters above ground (using a lifting platform) capturing the entire experimental plot 

from each photo (see Fig. 6.2). 

 

For SfM data processing, eight control points were measured with a total station and 

used for referencing the photos, obtaining a mean error lower than 2 mm for each plot 

(1.9 mm for MP class, 1.6 mm for CH and 1.1 for HC). The dense point cloud 

generation was done in “ultra-high quality” mode using the software Agisoft 

Photoscan. After this process, final point clouds were obtained with an average point 

spacing of ~1.7 mm corresponding to a minimum of 10 million points for each 

experimental plot (see details in Table 6.1). 
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6.2.4. Roughness parameters 

 

In total, six roughness parameters were analyzed (Table 6.2). These parameters were 

selected after a previous analysis (Martinez-Agirre et al., 2016), where their 

correlation and their ability to discriminate different tillage classes were assessed. 

 
Table 6.2. Summary of roughness parameters analyzed. 

Parameter Description Reference 

s (cm) Standard deviation of the heights Allmaras et al., 1966 

l (cm) Correlation length  Ulaby et al., 1982 

ρ'(0) Initial slope of the auto-correlation function Ulaby et al., 1982 

F (cm-1) Peak frequency Römkens and Wang, 1986 

TS Tortuosity Saleh et al., 1993 

D Fractal dimension Vidal Vázquez et al., 2005 

 

The standard deviation of heights (s) is a descriptor of the vertical roughness 

component: 

 

𝑠 = √
∑ (𝑧𝑖

2−𝑧̅2)𝑁
𝑖=1

𝑁−1
        (6.1) 

 

where 𝑁 is the number of the records registered in the profile, 𝑧𝑖  is the height 

corresponding to record 𝑖, and 𝑧̅ is the mean height of all the records. The correlation 

length (l) represents the horizontal component of roughness and is defined as the 

distance at which the heights of two points on the surface are considered 

independent. The correlation length is obtained from the autocorrelation function 

(Ulaby et al., 1982): 

 

𝜌(ℎ) =
∑ 𝑧𝑖𝑧𝑖+ℎ

𝑁(ℎ)
𝑖=1

∑ 𝑧𝑖
2𝑁

𝑖=1

       (6.2) 

 

where 𝜌(ℎ) is the autocorrelation function, representing the correlation existing 

between height of the point i (𝑧𝑖) and that of another point located at a lag distance h 

from it (𝑧𝑖+ℎ), and 𝑁(ℎ) is the number of pairs considered in each lag h. The 

correlation length (l) is then defined as the distance at which the heights of two points 

on the profile are considered independent; i.e., 𝜌(ℎ) is equal to 1/𝑒, so that 𝜌(𝑙) = 1/𝑒. 

The initial slope of the autocorrelation function (ρ'(0)) characterizes the horizontal 

component of roughness focusing on the height variations of a point with its nearest 

neighbors. The peak frequency (F) describes the horizontal component of roughness 
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as the number of peaks (i.e., points with higher elevations than their neighbours on 

both sides) per unit length of the profile (Römkens and Wang, 1986). The tortuosity 

index of Saleh (TS) is the ratio of the perimeter length of a profile (L1) and its projected 

distance on a horizontal surface taken as reference (L0) (Saleh et al., 1993): 

 

𝑇𝑆 = 100 ∙  
(𝐿1−𝐿0)

𝐿1
       (6.3) 

 

Finally, the fractal dimension (D), obtained by the semivariogram method, represents 

the self-affinity of surface roughness profiles (Vidal Vázquez et al., 2005). The 

semivariogram represents how height data are related to distance. The semivariance 

function depending on the lag h can be calculated as: 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧𝑖+ℎ − 𝑧𝑖]

2𝑁(ℎ)
𝑖=1       (6.4) 

 

Assuming a fractal Brownian motion (fBm) model, the experimental semivariogram 

can be described as a function of the lag: 

 

𝛾(ℎ) = 𝑙1−𝐻ℎ𝐻        (6.5) 

 

where l is the crossover length and H is the Hurst coefficient. After a log-log 

transformation, H is estimated as the slope of the semivariance versus the lag 

distance. Afterwards, the fractal dimension is obtained from the Hurst coefficient as D 

= 2 - H (Smith, 2014). 

 

6.2.5. Data analysis 

 

The analysis presented here focused on the suitability of different measurement 

techniques for surface roughness parameterization in agricultural soils. For doing so, 

data needed to be processed so as to ensure that different measurements were 

comparable. First, the point clouds (for each experimental plot) obtained with TLS and 

SfM were co-registered to the same reference system using again IPC algorithm 

implemented in OPLAS. The standard deviation of the point-to-plane residuals (and 

based on more than 1000 correspondences) was less than 2 mm for the three plots. 

Then, profiles were extracted from TLS and SfM point clouds coinciding with the 

location of the profiles measured with the profilometer. To extract these profiles, all 
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the points of the cloud closer than 3 mm (comparable to the laser beam size of the 

profilometer) to the profile centerline were selected. Then, these points were (1) 

filtered to avoid occlusion, (2) binned at bin intervals of 5 mm and (3) interpolated to 

avoid empty data. 

 

Next, measurement techniques were compared in two steps. First, a comparison based 

on 2D roughness (i.e., profiles) data was performed both in parallel and in 

perpendicular to the tillage direction. This comparison was done following three 

criteria: (1) visual analysis of the profiles obtained with the different techniques, (2) 

analytical comparison of the profiles using scatterplots, regression analysis and RMSE 

estimation; and (3) evaluation in terms of the roughness parameters values extracted 

from the profiles. Secondly, a 3D roughness analysis was carried out using point 

clouds obtained with TLS and SfM. Here, two elements were compared: (1) 

multidirectional roughness parameters values (using four profiles obtained in every 

15º azimuth); and (2) DEMs comparison (considering a pixel size of 5 mm).    

 

 

6.3. Results 

 

6.3.1. Visual analysis 

 

A first visual exploration of the same profiles obtained with the three different 

measurement techniques reveals interesting details (Fig. 6.3). Although, the analyzed 

profiles showed generally a very similar behavior, some differences were noticed, 

particularly in the roughest classes. Both TLS and SfM resulted in smoothed profiles 

when compared to the profilometer, with SfM yielding the smoothest profile (Fig. 6.3). 

Both techniques were not able to describe accurately sudden elevation changes (both 

positive and negative) typical at the edges of soil clods and larger aggregates. In the 

CH and HC classes the agreements were higher but still some slight differences were 

observed when height variations occurred at small distances. These differences are 

expected to affect particularly horizontal roughness parameters, such as the peak 

frequency (F) or those obtained from the autocorrelation function (l and ρ'(0)). 
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Fig. 6.3. Example profiles of the different roughness classes (Mouldboard Plough (MP), Chisel (CH) and 
Harrowed Compacted (HC)) in parallel (P) and in perpendicular (T) to the tillage direction with the 
different measurement techniques analyzed; Laser profilometer (black), Terrestrial Laser Scanner (red) 
and Structure from Motion photogrammetry (green).  

 

6.3.2. Scatterplot analysis 

 

Scatterplots representing the height of each point of the profiles obtained with the 

different techniques were represented for each roughness class and direction (parallel 

and perpendicular to the tillage). For each scatterplot a linear regression was fitted 

and the agreement between techniques was evaluated by means of the root mean 

square error (RMSE) and the coefficient of determination (R2). 

 

In Mouldboard Plough (MP) roughness class (Fig. 6.4) TLS and SfM techniques 

compared similarly to the profilometer (PRO) in both parallel and perpendicular to 

the tillage direction. However, they agreed better (higher R2 and lower RMSE) in 

perpendicular direction (RMSE ~ 13 mm and R2 ~ 0.9) than in parallel (RMSE ~ 20 

mm and R2 ~ 0.7). When comparing TLS and SfM, the error decreased and correlation 
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increased specially in perpendicular direction (R2 > 0.95). However, in parallel to 

tillage some outliers appeared in medium-high values of TLS and in medium-low of 

SfM which could represent interpolated TLS data in shadow regions (occlusions).  

  

In Chisel (CH) roughness class (Fig. 6.5) the errors between TLS and SfM with PRO 

were lower than in MP class with values of ~ 7 mm in parallel direction and ~ 8 mm in 

perpendicular. Also, the goodness-of-fit between TLS and SfM techniques was higher 

with a lower error (RMSE ~ 5 mm) and higher correlation than in MP, especially in 

perpendicular direction (R2 ~ 0.95). In this case, the number of outliers was lower 

than in MP class. 

 

The Harrowed Compacted (HC) roughness class (Fig. 6.6) presented the lowest errors 

between TLS and SfM with PRO, yielding RMSE values ~ 5 mm in both directions. Also, 

the values between TLS and SfM presented the best fit with an error ~ 3 mm and high 

correlation and slope values especially in perpendicular direction (slope and R2 > 

0.95). In this case, the presence of outliers was practically null.   

 
Fig. 6.4. Scatter plot between the different measurement techniques for Mouldboard Plough (MP) class in 
parallel (top) and in perpendicular (bottom) to the tillage direction. 
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Fig. 6.5. Scatter plot between the different measurement techniques for Chisel (CH) class in parallel (top) 
and in perpendicular (bottom) to the tillage direction.  

 
Fig. 6.6. Scatter plot between the different measurement techniques for Harrowed Compacted (HC) class in 
parallel (top) and in perpendicular (bottom) to the tillage direction. 
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6.3.3. Roughness parameters analysis 

 

The roughness parameters mean values and standard deviations obtained with the 

three techniques for each experimental plot and measurement directions are 

presented in Fig. 6.7. Parameter s showed very similar class mean values and standard 

deviations for the three techniques analyzed. However, PRO presented slightly higher 

values followed by TLS and SfM. The difference in MP roughness class between TLS 

and SfM technique was inappreciable. Obviously, MP class presented higher values 

followed by CH and HC and also the perpendicular direction showed higher values 

than the parallel one. The correlation length (l) presented a different behavior with 

lower values (and deviations) for CH class, followed by MP and HC (with higher values 

and especially larger deviations) and also the perpendicular direction showed higher 

values than the parallel one. Regarding the different techniques, in general PRO 

showed the lowest values followed by TLS and SfM. The initial slope of the 

autocorrelation function (ρ'(0)), although being similar to l in concept, presented a 

very different behavior, with higher values for HC class followed by CH and MP and 

higher values in parallel than in perpendicular. The differences between the 

measurement techniques were higher than in any other parameter evaluated with 

higher values for PRO followed by TLS and SfM. 

 

The tortuosity (TS) showed higher values for PRO followed by TLS and SfM, and also 

higher values for MP class followed by CH and HC. However, no remarkable 

differences were appreciated between parallel and perpendicular directions. The peak 

frequency (F) took higher values for PRO or TLS depending on the roughness class 

and lower values for SfM. In general, MP class showed lower values followed by CH 

and HC (except for PRO technique) and no remarkable differences were observed 

between parallel and perpendicular directions. The fractal dimension (D) had a 

similar behavior with higher values for PRO followed by TLS and SfM, lower values for 

MP roughness class followed by CH and HC, and with no important differences 

between parallel and perpendicular directions.  
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Fig. 6.7. Roughness parameters values for the different measurement techniques and for the different 
roughness classes analyzed: Mouldboard Plough (MP) in parallel (P) and in perpendicular (T), Chisel (CH) 
in parallel (P) and in perpendicular (T), and Harrowed Compacted (HC) in parallel (P) and in perpendicular 
(T). 

 

6.3.4. Multi directional roughness parameter analysis 

 

In order to analyze multidirectional roughness parameters behavior with TLS and SfM 

techniques, polar plots were used to represent mean values (out of four repetitions) of 

the roughness parameters. For Mouldboard Plough (MP) roughness class (Fig. 6.8), s 

showed a similar behavior for both techniques (with little exceptions) with higher 

values at 90º (and 135º) direction. The correlation length (l) also presented a similar 

behavior with both techniques, but no clear directionality was observed. Parameter 

ρ'(0) showed differences between techniques (higher values with TLS) and a notable 

anisotropic behavior with peak values in 0º direction. On the other hand, tortuosity 

(TS) and peak frequency (F) presented higher values for TLS technique and no 
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significant directional behavior. Finally, the fractal dimension (D) showed similar 

values from both techniques and an isotropic behavior. 

 

Regarding Chisel (CH) roughness class (Fig. 6.9), s and l parameters presented very 

similar values with both techniques. However, they showed an anisotropic behavior 

(especially l) with low values in 0º direction and higher values in 30º or 105º. 

Parameter ρ'(0) presented higher values with TLS and a strong anisotropic behavior 

with higher values in 0º direction. Finally, parameters TS, F and D showed clear 

differences with higher values obtained for TLS (only slight differences in D) and no 

significant directional behavior. 

 

For Harrowed Compacted (HC) roughness class (Fig. 6.10), s parameter presented 

similar values with both techniques and an anisotropic behavior with lower values in 

345º, 0º and 15º directions. The parameter l showed little differences with higher 

values for SfM technique (especially in some directions) and a clear anisotropic 

behavior with lower values in 345º and 0º directions. Parameter ρ'(0) presented clear 

differences with higher values observed for TLS and a strong directional behavior 

with highest values in 0º direction. Finally, parameters TS, F and D showed large 

differences with higher values for TLS technique (less differences in D) and isotropic 

behavior (with the exception of tortuosity (TS) in 0º direction). 
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Fig. 6.8. Roughness parameter values from TLS and SfM techniques in MP class. 

 
Fig. 6.9. Roughness parameter values from TLS and SfM techniques in CH class. 
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Fig. 6.10. Roughness parameter values from TLS and SfM techniques in HC class. 

 

6.3.5. DEM analysis 

 

The shadowed DEMs obtained with TLS and SfM techniques and their differences are 

shown in Fig. 6.11. In general, DEMs obtained with TLS seemed to be more detailed 

than SfM ones. This phenomenon is better appreciated in CH and HC classes where a 

difference in the higher frequency roughness component is apparent between TLS and 

SfM. 

 

Regarding the differences between roughness classes, in MP class some dark blue 

zones (with higher values for TLS) were observed due to interpolated shadow regions 

for TLS (occlusions). Also little dark red zones (with higher values for SfM) appeared 

in the lower part of some aggregates because of the smoothening surface behavior of 

SfM, especially in the border of the plot (due to a higher zenith incidence angle for 

TLS). In the center of the plot light blue color was predominant (0-5 mm), which could 

be caused by a higher detailed geometry of the clods (medium and high parts) with 

TLS, comparing with the surface smoothing behavior with SfM. For CH class, the 

differences were lower than in MP with just some little red zones (with higher values 
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for SfM) in the border of the experimental plot caused by the same phenomenon 

explained for MP class. Finally, the differences observed in HC class were practically 

null. 

 

It should be noticed that the blue zones appeared in different corners of the three 

experimental plots were caused by the reference spheres used for the TLS co-

registration. 

 

 
Fig. 6.11. Shadowed 5 mm DEMs obtained using TLS (left) and SfM (center), and their difference (TLS-SfM) 
(right); for Mouldboard Plough (MP) class (top), Chisel (CH) class (middle) and Harrowed Compacted (HC) 
class (bottom). 
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6.4. Discussion 

 

The analysis performed is quite unique since it considers experimental plots with 

different roughness (i.e., tillage) classes and significantly larger in size than other 

studies on this topic (e.g. Jester and Klik, 2005; Mirzaei et al., 2012, Marzahn et al., 

2012a; Milenkovic et al., 2015; Thomsen et al., 2015, Gilliot el al., 2017), and also 

because it enables a direct comparison of height profiles obtained with different 

techniques due to precise co-registration achieved. In this sense, the final point clouds 

obtained with the TLS and SfM techniques have a very good geometric accuracy. After 

co-registration, CGP mean errors ranged between 1.1 mm (for HC class) and 1.9 mm 

(for MP class), these values are comparable to Bretar et al. (2013), Snapir et al. (2014) 

and Gilliot et al. (2017) who reported errors ~ 1.5 mm. On the other hand, the average 

distance between the corresponding points among each TLS scan pair was ~ 1 mm 

(similar to Milenkovic et al., 2015), with the exception of MP (2.5 mm) due to a highly 

rough terrain that imposed occlusion, and thus, affected the ICP correspondences. 

Finally, the average distance between point clouds obtained by TLS and SfM 

techniques was less than 2 mm for all the three plots. 

 

Regarding the bidirectional (parallel and perpendicular to tillage direction) analysis of 

the different measurement techniques, the visual analysis provided interesting 

information. The rougher the surface the more evident the smoothing of the profiles 

obtained by TLS and SfM techniques was with respect to PRO, with SfM yielding the 

smoothest profiles (Fig. 6.3). An explanation to this phenomenon was addressed by 

Nouwakpo (Nouwakpo et al., 2016) who affirmed that in SfM technique computed 3D 

points positions are inherently influenced by loss of detail due to analog to digital 

conversion in RGB (red, green and blue) value interpolations. This process tends to 

smooth out irregularities from SfM-derived surfaces. There were also occlusion effects 

(especially in TLS) due to large aggregates on the soil surface (Heng et al., 2010) that 

together with TLS incidence angle caused considerable differences in some parts of 

the profiles, mainly due to interpolated shadow zones. Therefore, the eventual 

availability of a nadir-looking of TLS acquisition (e.g., installed on a lifting platform or 

even on board a Remotely Piloted Aerial System) could circumvent this limitation. 

 

Regarding the roughness parameters values obtained with different techniques, the 

slight differences for parameter s observed in the presented work are in agreement 
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with the harrowed and ploughed surfaces studied in Thomsen et al. (2015). 

Differences between roughness classes were clear with this parameter, which 

confirmed the results of different studies where s has been proposed for 

distinguishing different roughness classes (Helming et al., 1993; Magunda et al., 1997; 

Kamphorst et al., 2000; Vermang et al., 2013; Bauer et al., 2015; Martinez-Agirre et al., 

2016). For horizontal parameter l, there is no agreement in the literature. Some 

authors (Davidson et al., 2003; Baghdadi et al., 2008b) reported increasing values for l 

for increasing roughness conditions, while others observed more similar behavior in 

different roughness classes (Álvarez-Mozos et al., 2005; Verhoest et al., 2008). This 

parameter has been found to be strongly dependent on the scale of measurement with 

large values corresponding to larger sampling intervals (Barber et al., 2016) and low 

frequency roughness components (Martinez-Agirre et al., 2017a). For the rest of the 

parameters analyzed, the general behavior with SfM and, to a lesser extent, with TLS 

was the underestimation of the different parameters values when compared to PRO. 

 

In the multi directional analysis, both techniques (TLS and SfM) coincided in the 

directional behavior of the different roughness parameters analyzed, reveling notable 

differences in their values as a function of the direction. This phenomenon is 

especially relevant for ρ'(0), with higher values in parallel to tillage direction and 

lower values in directions near to the perpendicular, and to a lesser extent for s and l 

in CH and HC roughness classes. For these two parameters (especially for l), the 

highest values are obtained in oblique to the tillage direction (15º-75º or 105º-175º), 

this seems logical in the case of l, since the distance between the tillage marks were 

greater than in perpendicular (90º). This type of information is of great interest in 

radar remote sensing, since it has been observed that in agricultural soils the 

backscattering could be greatly affected by the directionality of the soil roughness 

(Wegmueller et al., 2011; Marzahn et al., 2012b). 

 

Regarding to the DEMs obtained with TLS and SfM, it could be said that both 

techniques were valid to represent the surface roughness of the typical agricultural 

soils. Despite this, some limitations must be taken into account. On the one hand, the 

high accuracy and resolution of TLS was limited by the data acquisition geometry 

(scans positions) generating shadow regions (occlusions) without data, especially in 

the roughest soils. On the other hand, in spite of the good geometry of the data 

acquisition of SfM (from a lifting platform), the generated DEMs (and also the point 



Chapter 6 

150 

 

clouds) showed a certain smoothing behavior with respect to other techniques, which 

was particularly apparent when horizontal roughness parameters were calculated. 

 

 

6.5. Conclusions 

 

The results obtained demonstrate the ability of both TLS and SfM techniques to 

measure surface roughness over agricultural soils. This is considered relevant since 

the experimental setting enabled a direct comparison of profiles measured with 

different techniques, due to the precise co-registration achieved. Also, the 

experimental plots represented different tillage classes and were larger than in other 

studies published on this topic, which adds value to the results obtained. The 

agreement between the elevation profiles obtained with TLS and SfM when compared 

to those obtained with a nadir-looking profilometer was reasonable and RMSE values 

were below 10 mm for smooth and intermediate roughness conditions. Rough soils 

(Mouldboard Plough) were more challenging and RMSE values as high as 20 mm were 

obtained for this class. Yet, these differences were not that relevant when different 

roughness parameters were computed. Parameter s and to a lesser extent l showed 

similar values when measured with the different techniques. However, some other 

roughness parameters, more sensible to the spatial arrangement of height variations 

like ρ'(0), F or TS showed a loss of high frequency elevation information in TLS and 

especially in SfM data. This smoothening effect seems to be inherent to the technique 

in the case of SfM surveys and related to occlusions due to the oblique viewing 

geometry in the TLS data. The latter could be avoided if a nadir-looking observation 

were available. Altogether, both TLS and SfM provide very powerful 3D information 

that enables a detailed analysis of surface roughness directionality, which is very 

relevant for applications like radar scattering or hydrology and soil erosion processes. 
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CONCLUSIONS 
 

This thesis focused on the characterization of soil surface roughness over agricultural 

soils, considering different aspects such as roughness parameterization, in-situ 

measurement techniques and radar remote sensing sensitivity to roughness scale. 

These works needs to be contemplated in the context of the different fields of Earth 

science where soil surface roughness intervenes, in which different research 

questions have been posed in the last years with different and complementary points 

of view. This research effort has tried to answer some of these questions and hopes to 

contribute to a better understanding of the soil surface roughness phenomenon on 

agricultural soils. 

   

On a first analysis, the most widely used roughness parameters proposed in the 

literature were evaluated in detail, in order to ascertain their ability to discriminate 

between different soil surface roughness classes typical on tilled soils. Roughness 

parameters values obtained for different classes showed that vertical and combined 

parameters took higher values as tillage became rougher, while horizontal parameters 

showed no clear pattern. On the contrary, fractal dimensions took lower values (more 

auto-affine behavior) as tillage became rougher. With all this, the best roughness 

parameters to discriminate between different tillage classes were the vertical 

parameter LD and the combined MUD. On the other hand, the parameters most 

sensitive to rainfall action were the horizontal parameter LS and the crossover lengths 

lSMV and lRMS. It is also important to note that some of the evaluated parameters were 

strongly correlated, and thus provided very similar information about surface 

roughness state. In this regard, it is recommended to select rather simple parameters 

(i.e., s or MUD) than more complex ones that might mostly provide the same 

information. On the contrary, some other parameters were poorly correlated with the 

majority (i.e., lSMV, LS or lACF) offering complementary information which could, 

therefore, be interesting for particular purposes. 

 

As already explained, surface roughness has a clear multi-scale behavior and, on the 

other hand, surface roughness strongly affects the backscattering observed by radar 

sensors. Therefore, in this thesis different scaling issues were analyzed to determine 

the roughness scales involved in the backscattering process. The results obtained 

confirm a clear dependence between roughness measurement scales and parameter 



Conclusions 

152 

 

values, which suggests that the most relevant roughness components for C-band 

backscatter ranged between 5 and 100 cm. When roughness scales shorter than 5 cm 

and larger than 1 m were filtered out from the original profiles, roughness parameters 

obtained did not provide additional enhancement to the correlation with backscatter 

nor in the goodness-of-fit of the Oh model. It is remarkable that some roughness 

parameters (i.e., D, F and ρ'(0)) were more stable and more strongly correlated with 

backscatter than those commonly used in radar applications (i.e., s and l parameters). 

This fact could open new possibilities in surface roughness characterization for 

backscatter modelling in agricultural soils.    

 

In relation to this, the sample size required for an accurate estimation of surface 

roughness parameters for radar applications on agricultural soils was also assessed in 

this thesis. The results obtained evidence the aforementioned correlation between 

roughness scales shorter than 1 m and C-band backscatter. To accurately characterize 

surface roughness a minimum of 10 samples (1-m-long profiles) were required for s 

parameter, while 20 samples might still be not enough for estimating l due to its large 

spatial variability. In relation to this, the lower spatial variability of s caused a better 

fit of the Oh model than that of the IEM and GOM because of a higher variability of l. All 

in all, for the retrieval of soil moisture with radar data it is recommended the Oh 

model as long as a minimum of 10-15 1-m-long roughness profiles are available per 

field. 

 

Finally, recently developed Terrestrial Laser Scanner (TLS) and Structure from Motion 

(SfM) 3D roughness measurement techniques were evaluated and compared in this 

thesis with the most typically used laser profilometer 2D technique for surface 

roughness characterization on different agricultural soils. The results showed a 

reasonable agreement between the elevation profiles obtained with TLS and SfM and 

those obtained with the laser profilometer. Also, when estimating different roughness 

parameters, s and to a lesser extent l showed similar values with the three techniques. 

However, some parameters like ρ'(0), F or TS showed a high sensitivity to high 

frequency roughness components lost in TLS and especially in SfM data.  In the light of 

the results obtained, it could be concluded that both TLS and SfM techniques are 

sufficiently accurate and provide very powerful 3D information for characterizing 

surface roughness directionality on agricultural soils. The latter is important, since 
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roughness directionality has been shown to be very relevant for fields like radar 

remote sensing or soil surface hydrology and erosion processes.  

 

Altogether, some guidelines about the most convenient parameters for surface 

roughness characterization in agricultural soil were presented. Also, the surface 

roughness scales involved in radar backscattering and the sample size required for an 

accurate estimation of roughness parameters for radar remote sensing applications 

was also addressed. And finally, the feasibility of different 3D measurement 

techniques for surface roughness characterization was evaluated. It is expected that 

the results obtained throughout this thesis will contribute to a better understanding of 

the surface roughness phenomenon in agricultural soils. 
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CONCLUSIONES 
 

Esta tesis doctoral se ha centrado en la caracterización de la rugosidad superficial en 

suelos agrícolas, considerando diferentes aspectos como la parametrización de la 

rugosidad, las técnicas de medición in-situ y la sensibilidad de la teledetección radar a 

la escala de rugosidad. Estos trabajos deben de comprenderse en el contexto de los 

diferentes campos de las ciencias de la tierra donde interviene la rugosidad superficial 

del suelo, sobre la que se han planteado diferentes cuestiones en los últimos años con 

diferentes y complementarios puntos de vista. Este esfuerzo investigador ha intentado 

responder alguna de estas preguntas y espera contribuir a una mejor comprensión del 

fenómeno de la rugosidad superficial en suelos agrícolas. 

 

En un primer análisis, se ha realizado una evaluación detallada de los parámetros de 

rugosidad más utilizados en la literatura, con el objetivo de determinar su capacidad 

para discriminar entre las diferentes clases de rugosidad superficial del suelo típicas 

en suelos laboreados. Los valores de los parámetros de rugosidad obtenidos para las 

diferentes clases han mostrado que los parámetros verticales y combinados han 

arrojado mayores valores a medida que el laboreo se hacía más rugoso, mientras que 

los horizontales no han mostrado un patrón claro. Por el contrario, las dimensiones 

fractales mostraron valores más bajos (comportamiento más auto-afín) cuanto más 

rugoso era el laboreo. Con todo ello, los mejores parámetros de rugosidad para 

discriminar entre diferentes clases de laboreo han sido el parámetro vertical LD y el 

combinado MUD. Por otro lado, los parámetros más sensibles a la acción de la 

precipitación han sido el parámetro horizontal LS y las longitudes de cruce lSMV y lRMS. 

También es importante tener en cuenta que algunos de los parámetros evaluados han 

estado fuertemente correlacionados, y por lo tanto han proporcionado una 

información muy similar sobre el estado de la rugosidad superficial. En este sentido, 

se recomienda seleccionar parámetros más simples (s o MUD) frente a los más 

complejos que podrían proporcionar la misma información. Por el contrario, algunos 

otros parámetros estaban muy poco correlacionados con la mayoría (lSMV, LS o lACF), 

ofreciendo información complementaria que, por lo tanto, podría resultar interesante 

para fines particulares. 

   

Como se ha explicado anteriormente, la rugosidad superficial tiene un claro 

componente multi-scala y, por otro lado, la rugosidad superficial afecta fuertemente la 
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retrodispersión observada por los sensores radar. Debido a esto, en esta tesis doctoral 

se han analizado diferentes cuestiones de la escala para determinar las escalas de 

rugosidad que intervienen en el proceso de retrodispersión. Los resultados obtenidos 

confirman una clara dependencia entre las escalas de medición de la rugosidad y los 

valores de los parámetros, lo que sugiere que las componentes de rugosidad más 

relevantes para la retrodispersión en banda C oscilan entre 5 y 100 cm. Cuando las 

escalas de rugosidad menores de 5 cm y  mayores de 1 m se han filtrado de los perfiles 

originales, los parámetros de rugosidad obtenidos no han proporcionado una mejora 

adicional en la correlación con la retrodispersión ni en el grado de ajuste del modelo 

de Oh. Es notable que algunos parámetros de rugosidad (D, F and ρ'(0)) han sido más 

estables y han tenido una mayor correlación con la retrodispersión que los 

parámetros comúnmente utilizados en aplicaciones radar (s y l). Este hecho podría 

abrir nuevas posibilidades en la caracterización de la rugosidad superficial para el 

modelado de la retrodispersión en suelos agrícolas. 

 

En relación a esto, en esta tesis doctoral también se ha abordado el tamaño de 

muestra requerido para una estimación precisa de los parámetros de rugosidad para 

aplicaciones radar en suelos agrícolas. Los resultados obtenidos evidencian la antes 

mencionada correlación entre escalas de rugosidad menores a 1 m y la 

retrodispersión en banda C.  Para caracterizar con precisión la rugosidad superficial, 

se han necesitado un mínimo de 10 muestras (perfiles de 1 m de largo) para el 

parámetro s, mientras que 20 muestras podrían no ser suficientes para estimar l 

debido a su gran variabilidad espacial. En relación a esto, la menor variabilidad de s ha 

provocado un mejor ajuste del modelo de Oh que el de IEM y GOM debido a una mayor 

variabilidad de l. Con todo ello, para la estimación de la humedad del suelo con datos 

radar se recomienda el modelo de Oh, siempre que haya un mínimo de 10-15 perfiles 

de rugosidad de 1 m de largo disponibles por parcela. 

 

Por último, en esta tesis doctoral se han evaluado y comparado las técnicas de 

medición de rugosidad 3D recientemente desarrolladas de láser escáner terrestre 

(TLS) y la denominada “Structure from Motion” (SfM) con la técnica 2D de 

perfilómetro láser, más utilizada para la caracterización de la rugosidad superficial en 

diferentes suelos agrícolas. Los resultados han mostrado un ajuste razonable entre los 

perfiles de elevación obtenidos con TLS y SfM y los obtenidos con el perfilómetro 

láser. Además, al estimar los diferentes parámetros de rugosidad, s y, en menor 
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medida, l han mostrado valores similares con las tres técnicas. Sin embargo, algunos 

parámetros como ρ'(0), F o TS han mostrado una alta sensibilidad a la pérdida de 

componentes de rugosidad de alta frecuencia en los datos obtenidos con TLS y, sobre 

todo, con SfM. En función de los resultados obtenidos, se podría concluir que ambas 

técnicas TLS y SfM son suficientemente precisas y proporcionan una poderosa 

información 3D para caracterizar la direccionalidad de la rugosidad superficial en 

suelos agrícolas. Esto último es importante, ya que se ha demostrado que la 

direccionalidad de la rugosidad es muy relevante para campos como la teledetección 

radar o los procesos hidrológico-erosivos de la superficie del suelo. 

 

Con todo esto, se han presentado algunas pautas sobre los parámetros más 

apropiados para la caracterización de la rugosidad superficial en suelos agrícolas. 

Además, también se han abordado las escalas de rugosidad involucradas en la 

retrodispersión radar y el tamaño de muestra necesario para una precisa estimación 

de los parámetros en aplicaciones de teledetección radar. Y finalmente, se ha evaluado 

la viabilidad de diferentes técnicas de medición 3D para la caracterización de la 

rugosidad superficial. Se espera que los resultados obtenidos a lo largo de esta tesis 

doctoral contribuyan a una mejor comprensión del fenómeno de la rugosidad 

superficial en suelos agrícolas. 
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ONDORIOAK 
 

Doktore-tesi hau nekazal lurreko gainazalaren zimurtasuna ezaugarritzean zentratu  

da, alderdi desberdinak kontuan hartuz, hala nola, zimurtasunaren parametrizazioa, 

in-situ neurtzeko teknikak eta teledetekzioaren sentikortasuna zimurtasunaren 

eskalaren arabera. Lan horiek lur gainazalaren zimurtasunak esku hartzen duen 

lurreko zientzien alorreko testuinguruan ulertu behar dira, azken urteotan hainbat gai 

planteatu baitira ikuspuntu osagarri eta desberdinekin. Ikerketa ahalegin honek 

galdera horietako batzuei erantzun nahi izan die, nekazal lurreko gainazalaren 

zimurtasunaren fenomenoa hobeto uler dadin.  

 

Lehenengo azterketan, literaturan gehien erabili izan diren zimurtasun parametroen 

ebaluazio zehatza egin da, nekazal lurretan ohikoak diren gainazalaren zimurtasun 

klase desberdintasunak bereizteko duten gaitasuna zehazteko helburuarekin. Klase 

desberdinetarako lortutako zimurtasun parametroen balioek erakutsi dute parametro 

bertikalek eta konbinatuek balio handiagoa eman dutela laborantza gero eta 

zimurragoa izatean, horizontalek, ordea, ez dute patroi argirik erakutsi. Dimentsio 

fraktalek, aldiz, balio baxuagoak erakutsi dituzte (auto-afinagoa den portaera) 

laborantza gero eta zimurragoa izatean. Horrekin guztiarekin, LD parametro bertikala 

eta MUD konbinatua izan dira parametrorik onenak, era bateko edo besteko 

laborantzak bereizteko. Bestalde, euriaren ondorioz LS parametro horizontala eta lSMV 

eta lRMS gurutze luzerak izan dira parametrorik sentikorrenak. Garrantzitsua da, 

halaber, aztertutako parametro batzuk biziki korrelazionatuta egon direla aintzat 

hartzea, eta, hortaz, gainazaleko zimurtasunaren inguruan emandako informazioa oso 

antzekoa izan dela. Horren harira, konplexuagoak beharrean, parametro sinpleagoak 

aukeratzea (s edo MUD) gomendatzen da, informazio bera eman baitezakete. Aitzitik, 

gehiengoarekin korrelazio gutxi duten beste hainbat parametrok (lSMV, LS edo lACF) 

helburu partikularretarako interesgarria izan daitekeen informazio osagarria 

eskaintzen dute.  

 

Aitzin aipatu moduan, gainazalaren zimurtasunak multi-eskala osagai argia du, eta, 

bestalde, gainazalaren zimurtasunak radar sentsoreek behatutako erretrodispertsioan 

eragin handia du. Hori dela eta, doktore-tesi honetan erretrodispertsioan parte 

hartzen duten zimurtasun eskalak zehazteko zenbait gai aztertu dira. Jasotako 

emaitzek zimurtasunaren neurketa eskalaren eta parametroen balioen arteko 
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menpekotasun argia egiaztatu dute, C bandako erretrodispertsioan zimurtasun 

osagairik nabarmenena 5 eta 100 cm artekoa dela iradokitzen dutelarik. Bestalde, 5 

cm baino gutxiagoko eta 1 m baino gehiagoko zimurtasun eskalak jatorrizko 

profiletatik iragazi direnean, lortutako zimurtasun parametroek ez dute hobekuntza 

gehigarri bat eman erretrodispertsioaren korrelazioan, ezta Oh modeloko egokitze 

mailan ere. Nabarmena da zimurtasun parametro batzuk (D, F eta ρ'(0)) radar 

aplikazioetan erabili ohi diren parametroak (s eta l) baino egonkorragoak eta 

korrelazio altuagoa izan dutela. Horrek nekazal lurreko gainazalaren zimurtasuna 

ezaugarritzeko aukera berriak ireki ditzake erretrodispertsioa modelizatzeko nekazal 

lurretan. 

 

Horrekin lotuta, doktore-tesi honetan nekazal lurretan radar aplikazioentzat 

zimurtasun parametroen estimazio zehatza lortzeko behar den laginaren tamainari 

heldu zaio. Lortutako emaitzek agerian utzi dute aurretik aipatutako 1 m baino 

gutxiagoko zimurtasun eskalak eta C bandako erretrodispertsioaren arteko 

korrelazioa. Gainazalaren zimurtasuna zehaztasunez ezaugarritzeko, gutxienez 10 

lagin behar izan dira s parametroarentzat (1 m luzerako profilak), l estimatzeko, 

ordea, 20 lagin ez lirateke nahikoak izango, bere aldakortasun espazial handia dela 

eta. Horren arabera, s parametroaren aldakortasun txikiagoak Oh modeloaren doitzea 

ekarri du, IEM eta GOM modeloen gainetik, l parametroaren aldakortasun handiagoa 

dela medio. Horrekin guztiarekin, radar datuekin gainazalaren hezetasuna 

estimatzeko Oh eredua gomendatzen da, betiere, 1 m luzerako 10-15 profil partzela 

bakoitzeko eskuragarri baldin badira.  

 

Azkenik, doktore-tesi honetan ebaluatu eta alderatu dira; alde batetik, berriki 

garatutako zimurtasuna neurtzeko “Terrestrial Laser Scanneer” (TLS) eta “Structure 

from Motion” (SfM) 3D teknikak; eta, bestetik, nekazal lurren gainazalaren 

zimurtasuna ezaugarritzeko gehien erabiltzen den laser profilometroa 2D teknika. 

Emaitzek doitze egokia erakutsi dute TLS eta SfM teknikekin lortutako altuera profilen 

eta laser profilometroarekin lortutakoen artean. Gainera, zimurtasun parametroak 

estimatzean, s parametroak eta, maila apalago batean, l parametroak balio 

berdintsuak erakutsi dituzte hiru teknikekin. Hala ere, parametro batzuek, ρ'(0), F edo 

TS, kasu, maiztasun handiko zimurtasun osagaien galerarekiko sentikortasun altua 

erakutsi dute TLS bidez jasotako datuetan, eta, batez ere, SfM teknikarekin 

jasotakoetan. Lortutako emaitzen arabera, ondoriozta daiteke biak ala biak, TLS eta 
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SfM, direla behar adina zehatz eta 3D informazio sendoa ematen dutela gainazalaren 

zimurtasuna nekazal lurretako norabidea ezaugarritzeko. Azken hori garrantzitsua 

da; izan ere, erakutsi dute zimurtasunaren norabidea oso esanguratsua dela 

teledetekzio radarraren alorrean edota lurreko higadura prozesu hidrologikoetan.  

 

Horrekin guztiarekin, nekazal lurren gainazaleko zimurtasuna ezaugarritzeko 

parametro egokienen inguruko hainbat jarraibide aurkeztu dira. Horrez gain, landu 

dira, bai radar erretrodispertsioan parte hartzen duten zimurtasun eskalak, bai 

zimurtasun parametroen estimazio zehatz bat egiteko beharrezko lagina teledetekzio 

aplikazioetarako. Eta, azkenik, gainazaleko zimurtasuna ezaugarritzeko 3D teknika 

desberdinen bideragarritasuna ebaluatu da. Horrenbestez, doktore-tesian zehar 

lortutako emaitzek nekazal lurren gainazaleko zimurtasunaren fenomenoa hobeto 

ulertzen lagunduko dute.  

 

 



 

 
 

 



References 

163 

 

REFERENCES 
 

Abdel-Messeh, M., Quegan, S., 2000. Variability in ERS scatterometer measurements 

over land. IEEE Transactions on Geoscience and Remote Sensing, 38 (4), 1767-1776. 

 

Aguilar, M.A., Aguilar, F.J., Negreiros, J., 2009. Off-the-shelf laser scanning and close-

range digital photogrammetry for measuring agricultural soils microrelief. Biosystems 

Engineering, 103 (4), 504-517.  

 

Allain, S., Ferro-Famil, L., Pottier, E., 2003. Surface parameters retrieval from 

polarimetric and multi-frequency SAR data. In In Proceedings of the International 

Geoscience and Remote Sensing Symposium (IGARSS), 1417-1419, Toulouse, France.  

 

Allmaras, R.R., Burwell, R.E., Larson, W.E., Holt, R.F., 1966. Total porosity and random 

roughness of the interrow zone as influenced by tillage. USDA Conservation Research 

Report, 7, 1-14. 

 

Álvarez-Mozos, J., Casalí, J., González-Audícana, M., Verhoest, N.E.C., 2005. Correlation 

between ground measured soil moisture and RADARSAT-1 derived backscattering 

coefficient over an agricultural catchment of Navarre (North of Spain). Biosystems 

Engineering, 92 (1), 119–133. 

 

Álvarez-Mozos, J., González-Audícana, M., Casalí, J., Larrañaga, A., 2008. Effective 

versus measured correlation length for radar-based surface soil moisture retraival. 

International Journal of Remote Sensing, 29 (17-18), 5397-5408.  

 

Álvarez-Mozos, J., Verhoest, N.E.C., Larrañaga, A., Casalí, J., González-Audícana, M., 

2009. Influence of surface roughness spatial variability and temporal dynamics on the 

retrieval of soil moisture from SAR observations. Sensors, 9 (1), 463–489. 

 

Álvarez-Mozos, J., Campo, M.T., Gimenez, R., Casali, J., Leibar, U., 2011. Implications of 

scale, slope, tillage operation and direction in the estimation of surface depression 

storage. Soil and Tillage Research, 111 (2), 142–153. 

 



References 

164 

 

Armstrong, A.C., 1986. On the fractal dimensions of some transient soil properties. 

European Journal of Soil Science, 37 (4), 641–652. 

 

Arvidsson, J., Bölenius, E., 2006. Effects of soil water content during primary tillage - 

laser measurements of soil surface changes. Soil and Tillage Research, 90 (1-2), 222–

229. 

 

Baghdadi, N., Holah, N., Zribi, M., 2006a. Calibration of the Integral Equation Model for 

SAR data in C-band and HH and VV polarizations. International Journal of Remote 

Sensing, 27 (4), 805-816.  

 

Baghdadi, N., Zribi, M., 2006b. Evaluation of radar backscatter models IEM, OH and 

Dubois using experimental observations. International Journal of Remote Sensing, 27 

(18), 3831-3852.  

 

Baghdadi, N., Cerdan, O., Zribi, M., Auzet, V., Darboux, F., Hajj, M.E., Kheir, R.B., 2008a. 

Operational performance of current synthetic aperture radar sensors in mapping soil 

surface characteristics in agricultural environments: application to hydrological and 

erosion modelling. Hydrological Processes, 22 (1), 9-20. 

 

Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., Anguela, T., 2008b. Analysis of 

TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural 

fields. Remote Sensing of Environment, 112 (12), 4370–4379. 

 

Baghdadi, N., Dubois-Fernandez, P., Dupuis, X., Zribi, M., 2013. Sensitivity of main 

polarimetric parameters of multifrequency polarimetric SAR data to soil moisture and 

surface roughness over bare agricultural soils. IEEE Geoscience and Remote Sensing 

Letters, 10 (4), 731-735. 

 

Baghdadi, N., Zribi, M., Paloscia, S., Verhoest, N.E.C., Lievens, H., Baup, F., Mattia, F., 

2015. Semi-empirical calibration of the integral equation model for co-polarized L-

band backscattering. Remote Sensing, 7 (10), 13626-13640.  

 



References 

 

165 

 

Bai, X., He, B., Li, X., 2016. Optimum Surface Roughness to Parameterize Advanced 

Integral Equation Model for Soil Moisture Retrieval in Prairie Area Using Radarsat-2 

Data. IEEE Transactions on Geoscience and Remote Sensing. 54 (2), 2437-2449.  

 

Barber, M.E., Grings, F.M., Álvarez-Mozos, J., Piscitelli, M., Perna, P.A., Karszenbaum, H., 

2016. Effects of spatial sampling interval on roughness parameters and microwave 

backscatter over agricultural soil surfaces. Remote Sensing. 8 (6), 458.  

 

Bauer, T., Strauss, P., Grims, M., Kamptner, E., Mansberger, R., Spiegel, H., 2015. Long-

term agricultural management effects on surface roughness and consolidation of soils. 

Soil and Tillage Research, 151, 28–38. 

 

Barneveld, R.J., Seeger, M., Maalen-Johansen, I., 2013. Assessment of terrestrial laser 

scanning technology for obtaining high-resolution DEMs of soils. Earth Surface 

Processes and Landforms. 38 (1), 90-94. 

 

Beckmann, P., Spizzichino, A., 1987. The Scattering of Electromagnetic Waves From 

Rough Surfaces. Norwood, MA, USA: Artech House. 

 

Bertuzzi, P., Rauws, G., Courault, D., 1990. Testing roughness indices to estimate soil 

surface roughness changes due to simulated rainfall. Soil and Tillage Research, 17 (1-

2), 87–99. 

 

Boiffin, J., 1984. La dégradation structurale des couches superficielles sous l’action des 

pluies. Thèse de Docteur Ingénieur, Paris INA-PG, 320pp. 

 

Borgeaud, M., Attema, E., Salgado-Gispert, G., Bellini, A., Noll, J., 1995. Analysis of bare 

soil surface roughness parameter with ERS-1 SAR data. In proceedings of the 

Symposium on the Extraction of Bio and Geophysical Parameters from SAR Data for 

Land Applications, 307–316, Toulouse, France. 

 

Bretar, F., Arab-Sedze, M., Champion, J., Pierrot-Deseilligny, M., Heggy, E., Jacquemoud, 

S., 2013. An advanced photogrammetric method to measure surface roughness: 

Application to volcanic terrains in the Piton de la Fournaise, Reunion Island. Remote 

Sensing of Environment, 135, 1-11.  



References 

166 

 

Bryant, R., Moran, M.S., Thoma, D.P., Holifield Collins, C.D., Skirvin, S., Rahman, M., 

Slocum, K., Starks, P., Bosch, D., González Dugo, M.P., 2007. Measuring surface 

roughness height to parameterize radar backscatter models for retrieval of surface 

soil moisture. IEEE Geoscience and Remote Sensing Letters. 4 (1), 137-141.  

 

Bruzzone, L., Roli, F., Serpico, S.B., 1995. Extension of the Jeffreys-Matusita distance to 

multiclass cases for feature selection. IEEE Transactions on Geoscience and Remote 

Sensing 33 (6), 1318–1321. 

 

Burrough, P.A., 1983a. Multiscale sources of spatial variation in soil. I. The application 

of fractal concepts to nested levels of soil variation. European Journal of Soil Science, 

34 (3), 577–597. 

 

Burrough, P.A., 1983b. Multiscale sources of spatial variation in soil. II. A non- 

Brownian fractal model and its application in soil survey. European Journal of Soil 

Science, 34 (3), 599–620. 

 

Callens, M., Verhoest, N.E.C., 2004. Analysis of soil roughness measurements using a 

25 m laser profiler and a 4 m wide meshboard. In Proceedings of the International 

Geoscience and Remote Sensing Symposium (IGARSS), 1653-1656, Anchorage, AK, 

USA. 

 

Callens, M., Verhoest, N.E.C., Davidson, M.W.J., 2006. Parameterization of tillage-

induced single-scale soil roughness from 4-m profiles. IEEE Transactions on 

Geoscience and Remote Sensing. 44 (4), 878-887.  

 

Casalí, J., Gastesi, R., Álvarez-Mozos, J., De Santisteban, L.M., Lersundi, J.D.V. d., 

Giménez, R., Larrañaga, A., Goñi, M., Agirre, U., Campo, M.A., López, J.J., Donézar, M., 

2008. Runoff, erosion, and water quality of agricultural watersheds in central Navarre 

(Spain). Agricultural Water Management, 95 (10), 1111–1128. 

 

Castillo, R.P., James, M.R., Quinton, J.N., Taguas, E.V., Gómez, J.A., 2012. Comparing the 

accuracy of several field methods for measuring gully erosion. Soil Science Society of 

America Journal, 76 (4), 1319-1332. 

 



References 

 

167 

 

Chi, Y., Yang, J., Bogart, D., Chu, X., 2012. Fractal analysis of surface microtopography 

and its application in understanding hydrologic processes. Transactions of the 

American Society of Agricultural and Biological Engineers, 55 (5), 1781–1792. 

 

Cierniewski, J., Kazmierowski, C., Królewicz, S., 2015. Evaluation of the Effects of 

Surface Roughness on the Relationship Between Soil BRF Data and Broadband Albedo. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 

(4), 1528-1533.  

 

Croft, H., Anderson, K., Kuhn, N.J., 2009. Characterizing soil surface roughness using a 

combined structural and spectral approach. European Journal of Soil Science, 60 (3), 

431–442. 

 

Croft, H., Anderson, K., Brazier, R.E., Kuhn, N.J., 2013. Modeling fine-scale soil surface 

structure using geostatistics. Water Resources Research, 49 (4), 1858–1870. 

 

Currence, H.D., Lovely, W.D., 1970. Analysis of soil surface roughness. Transactions of 

the American Society of Agricultural Engineers, 13 (6), 710–714. 

 

Dalla Rosa, J., Cooper, M., Darboux, F., Medeiros, J.C., 2012. Soil roughness evolution in 

different tillage systems under simulated rainfall using a semivariogram-based index. 

Soil and Tillage Research, 124, 226–232. 

 

Davidson, M.W.J., Toan, T.L., Mattia, F., Satalino, G., Manninen, T., Borgeaud, M., 2000. 

On the characterization of agricultural soil roughness for radar remote sensing 

studies. IEEE Transactions on Geoscience and Remote Sensing. 38 (2), 630-640.  

 

Davidson, M.W.J., Mattia, F., Satalino, G., Verhoest, N.E.C., Le Toan, T., Borgeaud, M., 

Louis, J.M.B., Attema, E., 2003. Joint statistical properties of RMS height and 

correlation length derived from multisite 1-m roughness measurements. IEEE 

Transactions on Geoscience and Remote Sensing, 41 (7), 1651–1658. 

 

Dobriyal, P., Qureshi, A., Badola, R., Hussain, S.A., 2012. A review of the methods 

available for estimating soil moisture and its implications for water resource 

management. Journal of Hydrology, 458-459, 110-117.  



References 

168 

 

Dong, L., Baghdadi, N., Ludwig, R., 2013. Validation of the AIEM through correlation 

length parameterization at field scale using radar imagery in a semi-arid environment. 

IEEE Geoscience and Remote Sensing Letters. 10 (3), 461-465.  

 

Dubois, P.C., van Zyl, J., 1995. Measuring Soil Moisture with Imaging Radars. IEEE 

Transactions on Geoscience and Remote Sensing. 33 (4), 915-926.  

 

D’Urso, G., Menenti, M., 1996. Performance indicators for the statistical evaluation of 

digital image classifications. ISPRS Journal of Photogrammetry and Remote Sensing, 

51 (2), 78–90. 

 

Eltz, F.L.F., Norton, L.D., 1997. Surface roughness changes as affected by rainfall 

erosivity, tillage, and canopy cover. Soil Science Society of America Journal, 61 (6), 

1746–1755. 

 

European Spatial Agenci, 2016. EO Portal Directory, Satellite Missions Database. 

[Online]. Available: http://directory.eoportal.org/web/eoportal/satellite-missions. 

 

Famiglietti, J.S., Wood, E.F., 1994. Multiscale modeling of spatially variable water and 

energy balance processes. Water Resources Research, 30 (11), 3061-3078.  

 

Favalli, M., Fornaciai, A., Isola, I., Tarquini, S., Nannipieri, L., 2012. Multiview 3D 

reconstruction in geosciences. Computers & Geosciences, 44, 168-176.  

 

Fung, A.K., Li, Z., Chen, K.S., 1992. Backscattering from a Randomly Rough Dielectric 

Surface. IEEE Transactions on Geoscience and Remote Sensing. 30 (2), 356-369.  

 

Fung, A.K., 1994. Microwave Scattering and Emission Models and Their Applications. 

Norwell, MA, USA: Artech House. 

 

Fung, A.K., 2015. Backscattering From Multiscale Rough Surfaces With Application to 

Wind Scatterometry. Norwood, MA, USA: Artech House. 

 



References 

 

169 

 

Gallant, J.C., Moore, I.D., Hutchinson, M.F., Gessler, P., 1994. Estimating fractal 

dimension of profiles: A comparison of methods. Mathematical Geology, 26 (4), 455–

481. 

 

Gilley, J.E., Kootwitz, E.R., 1995. Random roughness assessment by the pin and chain 

method. Applied Engineering in Agriculture, 12 (1), 39-43.  

 

Gilliot, J.M., Vaudour, E., Michelin, J., 2017. Soil surface roughness measurement: A new 

fully automatic photogrammetric approach applied to agricultural bare fields. 

Computers and Electronics in Agriculture, 134, 63-78.  

 

Glira, P., PfeifeR, N., Briese, C., ReSSl, C., 2015. A correspondence framework for ALS 

strip adjustments based on variants of the ICP algorithm. Photogrammetrie – 

Fernerkundung – Geoinformation, 2015 (4), 275-289.  

 

Gneiting, T., Ševcíková, H., Percival, D.B., 2012. Estimators of fractal dimension: 

Assessing the roughness of time series and spatial data. Statistical Science, 27 (2), 

247–277. 

 

Gomez, C., Hayakawa, Y., Obanawa, H., 2015. A study of Japanese landscapes using 

structure from motion derived DSMs and DEMs based on historical aerial 

photographs: New opportunities for vegetation monitoring and diachronic 

geomorphology. Geomorphology. 242, 11-20.  

 

Govers, G., Takken, I., Helming, K., 2000. Soil roughness and overland flow. Agronomie, 

20 (2), 131–146. 

 

Hansen, B., Schjønning, P., Sibbesen, E., 1999. Roughness indices for estimation of 

depression storage capacity of tilled soil surfaces. Soil and Tillage Research, 52 (1-2), 

103–111. 

 

Helming, K., Römkens, M.J.M., Prasad, S.N., 1998. Surface roughness related processes 

of runoff and soil loss: A flume study. Soil Science Society of America Journal, 62 (1), 

243–250. 

 



References 

170 

 

Helming, K., Roth, C.H., Wolf, R., Diestel, H., 1993. Characterization of rainfall - 

microrelief interactions with runoff using parameters derived from digital elevation 

models (DEMs). Soil Technology, 6 (3), 273–286. 

 

Heng, B.C.P., Chandler, J.H., Armstrong, A., 2010. Applying close range digital 

photogrammetry in soil erosion studies. The Photogrammetric Record. 25 (131), 240-

265.  

 

Huang, C., Bradford, J.M., 1992. Applications of a laser scanner to quantify soil 

microtopography. Soil Science Society of America Journal, 56 (1), 14–21. 

 

James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D surfaces and 

topography with a camera: Accuracy and geoscience application. Journal of 

Geophysical Research Earth Surface, 117, F03017.  

 

Jester, W., Klik, A., 2005. Soil surface roughness measurement—methods, applicability, 

and surface representation. Catena. 64 (2-3), 174-192.  

 

Joseph, A.T., Van Der Velde, R., O'Neill, P.E., Lang, R.H., Gish, T., 2008. Soil moisture 

retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations. IEEE 

Transactions on Geoscience and Remote Sensing. 46 (8), 2365-2374.  

 

Kamphorst, E.C., Jetten, V., Guérif, J., Pitkänen, J., Iversen, B. V, Douglas, J.T., Paz, A., 

2000. Predicting depressional storage from soil surface roughness. Soil Science 

Society of America Journal, 64 (5), 1749–1758. 

 

Kornelsen, K.C., Coulibaly, P., 2013. Advances in soil moisture retrieval from synthetic 

aperture radar and hydrological applications. Journal of Hydrology, 476, 460-489.  

 

Laliberte, A.S., Herrick, J.E., Rango, A., Winters, C., 2010. Acquisition, orthorectification, 

and object-based classification of unmanned aerial vehicle (UAV) imagery for 

rangeland monitoring. Photogrammetric Engineering & Remote Sensing, 76 (6), 661-

672.  



References 

 

171 

 

Le Hégarat-Mascle, S., Zribi, M., Alem, F., Weisse, A., Loumagne, C., 2002. Soil moisture 

estimation from ERS/SAR data: Toward an operational methodology. IEEE 

Transactions on Geoscience and Remote Sensing. 40 (12), 2647-2658.  

 

Lehrsch, G.A., Whisler, F.D., Römkens, M.J.M., 1988. Spatial variation of parameters 

describing soil surface roughness. Soil Science Society of America Journal, 52 (2), 311–

319. 

 

Liang, Z., Feng, Z., Guangxiang, X., 2012. Comparison of Fractal Dimension Calculation 

Methods for Channel Bed Profiles. Procedia Engineering, 28, 252–257. 

 

Lievens, H., Vernieuwe, H., Álvarez-Mozos, J., de Baets, B., Verhoest, N.E.C., 2009. Error 

in radar-derived soil moisture due to roughness parameterization: An analysis based 

on synthetical surface profiles. Sensors, 9 (2), 1067-1093.  

 

Lievens, H., Verhoest, N.E.C., De Keyser, E., Vernieuwe, H., Matgen, P., Álvarez-Mozos, J., 

De Baets, B., 2011. Effective roughness modelling as a tool for soil moisture retrieval 

from C- and L-band SAR. Hydrology and Earth System Sciences, 15, 151-162.  

 

Linden, D.R., Van Doren Jr, D.M., 1986. Parameters for characterizing tillage-induced 

soil surface roughness. Soil Science Society of America Journal, 50 (6), 1560–1565. 

 

Linden, D.R., Van Doren, D.M., Allmaras, R.R., 1988. A model of the effects of tillage-

induced soil surface roughness on erosion. In proceedings of the ISTRO 11th 

International Conference: Tillage and Traffic in Crop Production, 373-378, Edinburgh, 

Scotland. 

 

Liu, H.H., Molz, F.J., 1996. Discrimination of fractional Brownian movement and 

fractional Gaussian noise structures in permeability and related property 

distributions with range analyses. Water Resources Research, 32 (8), 2601–2605. 

 

Magunda, M.K., Larson, W.E., Linden, D.R., Nater, E.A., 1997. Changes in microrelief and 

their effects on infiltration and erosion during simulated rainfall. Soil Technology, 10 

(1), 57–67. 



References 

172 

 

Malinverno, A., 1990. A simple method to estimate the fractal dimension of a self-

affine series. Geophysical Research Letters, 17 (11), 1953–1956. 

 

Mallet, C., Bretar, F., 2009. Full-waveform topographic lidar: State-of-the-art. ISPRS 

Journal of Photogrammetry and Remote Sensing, 64 (1), 1-16.   

 

Mandelbrot, B.B., 1977. Fractals. Encyclopedia of Statistical Science. 

 

Manninen, A.T., 2003. Multiscale surface roughness description for scattering 

modelling of bare soil. Physica A: Statistical Mechanics and its Applications, 319, 535-

551.  

 

Martinez-Agirre, A., Álvarez-Mozos, J., Giménez, R., 2016. Evaluation of surface 

roughness parameters in agricultural soils with different tillage conditions using a 

laser profile meter. Soil and Tillage Research. 161, 19-30.  

 

Martinez-Agirre, A., Álvarez-Mozos, J., Lievens, H., Verhoest, N.E.C., 2017a. Influence of 

Surface Roughness Measurement Scale on Radar Backscattering in Different 

Agricultural Soils. IEEE Transactions on Geoscience and Remote Sensing. 55 (10), 

5925-5936.  

 

Martinez-Agirre, A., Álvarez-Mozos, J., Lievens, H., Verhoest, N.E.C., Giménez, R., 2017b. 

Influence of surface roughness sample size for C-band SAR backscattering applications 

on agricultural soils. IEEE Geoscience and Remote Sensing Letters, 14 (12), 2300-

2304. 

 

Martinez-Agirre, A., Álvarez-Mozos, J., Milenkovic, M., Pfeifer, N., Giménez, R., Valle 

Melón, J.M., Rodríguez Miranda, A., 2017c. Evaluation of Terrestrial Laser Scanner and 

Structure from Motion techniques for quantifying soil surface roughness parameters 

over agricultural soils. ISPRS Journal of Photogrammetry and Remote Sensing. Under 

Review. 

 

Marzahn, P., Ludwig, R., 2009. On the derivation of soil surface roughness from multi 

parametric PolSAR data and its potential fir hydrological modeling. Hydrology and 

Earth System Sciences, 13 (3), 381-394. 



References 

 

173 

 

Marzahn, P., Rieke-Zapp, D., Ludwig, R., 2012a. Assessment of soil surface roughness 

statistics for microwave remote sensing applications using a simple photogrammetric 

acquisition system. ISPRS Journal of Photogrammetry and Remote Sensing, 72, 80-89.  

 

Marzahn, P., Seidel, M., Ludwig, R., 2012b. Decomposing Dual Scale Soil Surface 

Roughness for Microwave Remote Sensing Applications. Remote Sensing. 4 (7), 2016-

2032.  

 

Matthias, A.D., Fimbres, A., Sano, E.E., Post, D.F., Accioly, L., Batchily, A.K., Ferreira, L.G., 

2000. Surface roughness effects on soil albedo. Soil Science Society of America Journal, 

64 (3), 1035-1041.  

 

Mattia, F., Davidson, M.W.J., Le Toan, T., D'Haese, C.M.F., Verhoest, N.E.C., Gatti, A.M., 

Borgeaud, M., 2003. A comparison between soil roughness statistics used in surface 

scattering models derived from mechanical and laser profilers. IEEE Transactions on 

Geoscience and Remote Sensing. 41 (7), 1659-1671. 

 

Milenkovic, M., Pfeifer, N., Glira, P., 2015. Applying terrestrial laser scanning for soil 

surface roughness assessment. Remote Sensing. 7 (2), 2007-2045.  

 

Mirzaei, M., Ruy, M.S., Ziarati, T., Salehi, A., 2012. Monitoring of soil roughness caused 

by rainfall using stereo-photogrammetry. International Research Journal of Applied 

and Basic Sciences, 3 (2), 322-338. 

 

Moreira, J.G., Da Silva, J.K.L., Kamphorst, S.O., 1994. On the fractal dimension of self-

affine profiles. Journal of Physics A: Mathematical and General, 27 (24), 8079–8089. 

 

Moreno, R.G., Álvarez, M.C.D., Alonso, A.T., Barrington, S., Requejo, A.S., 2008. Tillage 

and soil type effects on soil surface roughness at semiarid climatic conditions. Soil and 

Tillage Research, 98 (1), 35–44. 

 

Mosbrucker, A.R., Major, J.J., Spicer, K.R., Pitlick, J., 2017. Camera system 

considerations for geomorphic applications of SfM photogrammetry. Earth Surface 

Processes and Landforms. 42 (6), 969-986.  



References 

174 

 

Mushkin, A., Gillespie, A.R., 2005. Estimating sub-pixel surface roughness using 

remotely sensed stereoscopic data. Remote Sensing of Environment, 99 (1-2), 75–83. 

 

Nouwakpo, S.K., Weltz, M.A., McGwire, K., 2016. Assessing the performance of 

structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil 

surface microtopography of naturally vegetated plots. Earth Surface Processes and 

Landforms, 41 (3), 308-322.  

 

Ogilvy, J.A., Foster, J.R., 1989. Rough surfaces: gaussian or exponential statistics?. 

Journal of Physics D: Applied Physics, 22 (9), 1243–1251. 

 

Oh, Y., Sarabandi, K., Ulaby, F.T., 1992. An Empirical Model and an Inversion Technique 

for Radar Scattering from Bare Soil Surfaces. IEEE Transactions on Geoscience and 

Remote Sensing. 30 (2), 370-381.  

 

Oh, Y., Kay, Y.C., 1998. Condition for precise measurement of soil surface roughness. 

IEEE Transactions on Geoscience and Remote Sensing. 36 (2), 691-695. 

 

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R., Pfeifer, N., 2013. Georeferenced 

point clouds: A survey of features and point cloud management. ISPRS International 

Journal of Geo-Information, 2 (4), 1038-1065.  

 

Panciera, R., Tanase, M.A., Lowell, K., Walker, J.P., 2014. Evaluation of IEM, dubois, and 

oh radar backscatter models using airborne L-Band SAR. IEEE Transactions on 

Geoscience and Remote Sensing. 52 (8), 4966-4979.  

 

Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered 

smectite-rich soil regoliths. Geoderma, 117 (1-2), 157–167. 

 

Pauwels, V.R.N., Hoeben, R., Verhoest, N.E.C., De Troch, F.P., 2001. The importance of 

the spatial patterns of remotely sensed soil moisture in the improvement of discharge 

predictions for small-scale basins through data assimilation. Journal of Hydrology, 251 

(1-2), 88-102.  

 



References 

 

175 

 

Paz-Ferreiro, J., Bertol, I., Vidal Väzquez, E., 2008. Quantification of tillage, plant cover, 

and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical 

and fractal indices. Nonlinear Processes in Geophysics, 15, 575–590. 

 

Perez-Gutierrez, C., Martinez-Fernandez, J., Sanchez, N., Alvarez-Mozos, J., 2007. 

Modeling of soil roughness using terrestrial laser scanner for soil moisture retrieval. 

In Proceedings of the International Geoscience and Remote Sensing Symposium 

(IGARSS), 1877-1880, Barcelona, Spain.  

 

Pfeifer, N., Mandlburger, G., Otepka, J., Karel, W., 2014. OPALS - A framework for 

Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 

45, 125-136.  

 

Planchon, O., Esteves, M., Silvera, N., 1998. Micro-relief induced by ridging: 

Measurement, modelling, consequences on overland flow and erosion. In Proceedings 

of the 16th World Congress Soil Science, 477 (31), Montpellier, France. 

 

Raju, G., 2008. Radar Engineering. New Delhi, India: I.K. International Publishing 

House Pvt. Ltd.  

 

Rodríguez-Caballero, E., Afana, A., Chamizo, S., Solé-Benet, A., Canton, Y., 2016. A new 

adaptive method to filter terrestrial laser scanner point clouds using morphological 

filters and spectral information to conserve surface micro-topography. ISPRS Journal 

of Photogrammetry and Remote Sensing. 117, 141-148.  

 

Römkens, M.J.M., Wang, J.Y., 1986. Effect of tillage on surface roughness. Transactions 

of the American Society of Agricultural Engineers, 29 (2), 429–433. 

 

Saleh, A., 1993. Soil roughness measurement: chain method. Journal of Soil and Water 

Conservation, 48 (6), 527–529. 

 

Skriver, H., 2007. Signatures of polarimetric parameters and their implications on land 

cover classification. In Proceedings of the International Geoscience and Remote 

Sensing Symposium (IGARSS), 4195–4198, Barcelona, Spain. 

 



References 

176 

 

Smith, M.W., 2014. Roughness in the Earth Sciences. Earth-Science Reviews, 136, 202–

225. 

 

Smith, M.W., Vericat, D., 2015. From experimental plots to experimental landscapes: 

topography, erosion and deposition in sub-humid badlands from Structure-from-

Motion photogrammetry. Earth Surface Processes and Landforms, 40 (2), 1656-1671. 

 

Snapir, B., Hobbs, S., Waine, T.W., 2014. Roughness measurements over an agricultural 

soil surface with Structure from Motion. ISPRS Journal of Photogrammetry and 

Remote Sensing. 96, 210-223.  

 

Su, Z., Troch, P.A., De Troch, F.P., 1997. Remote sensing of bare surface soil moisture 

using EMAC/ESAR data. International Journal of Remote Sensing, 18 (10), 2105-2124.  

 

Swain, P.H., King, R.C., 1973. Two effective feature selection criteria for multispectral 

remote sensing. LARS Technical Reports, Paper 39, 536–540. 

 

Taconet, O., Ciarletti, V., 2007. Estimating soil roughness indices on a ridge-and-

furrow surface using stereo photogrammetry. Soil and Tillage Research, 93 (1), 64–76. 

 

Thoma, D.P., Moran, M.S., Bryant, R., Rahman, M., Holifield-Collins, C.D., Skirvin, S., 

Sano, E.E., Slocum, K., 2006. Comparison of four models to determine surface soil 

moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. 

Water Resources Research, 42, W01418.  

 

Thomsen, L.M., Baartman, J.E.M., Barneveld, R.J., Starkloff, T., Stolte, J., 2015. Soil 

surface roughness: comparing old and new measuring methods and application in a 

soil erosion model. Soil, 1, 399-410.  

 

Ulaby, F.T., Batlivala, P.P., Dobson M.C., 1978. Microwave Backscatter Dependence on 

Surface Roughness, Soil Moisture, and Soil Texture. Part I-Bare Soil. IEEE Transactions 

on Geoscience and Remote Sensing, 16 (4), 286-295. 

 



References 

 

177 

 

Ulaby, F.T., Moore, R.K., Fung, A.K., 1982. Microwave remote sensing: active and 

passive. Volume II. Radar remote sensing and surface scattering and emission theory. 

Reading, MA, USA: Addison-Wesley. 

 

Ulaby, F.T., Dubois, P.C., Van Zyl, J., 1996. Radar mapping of surface soil moisture. 

Journal of Hydrology, 184 (1-2), 57-84.  

 

Vázquez, E. V, Vieira, S.R., De Maria, I.C., González, A.P., 2009. Geostatistical analysis of 

microrelief of an Oxisol as a function of tillage and cumulative rainfall. Scientia 

Agricola, 66 (2), 225–232. 

 

Verhoest, N.E.C., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M.S., Mattia, F., 

2008. On the soil roughness parameterization problem in soil moisture retrieval of 

bare surfaces from synthetic aperture radar. Sensors, 8 (7), 4213–4248. 

 

Vericat, D., Smith, M.W., Brasington, J., 2014. Patterns of topographic change in sub-

humid badlands determined by high resolution multi-temporal topographic surveys. 

Catena, 120, 164-176. 

 

Vermang, J., Norton, L.D., Baetens, J.M., Huang, C., Cornelis, W.M., Gabriels, D., 2013. 

Quantification of soil surface roughness evolution under simulated rainfall. 

Transactions of the American Society of Agricultural and Biological Engineers, 56 (2), 

505–514. 

 

Vermang, J., Norton, L.D., Huang, C., Cornells, W.M., Da Silva, A.M., Gabriels, D., 2015. 

Characterization of soil surface roughness effects on runoff and soil erosion rates 

under simulated rainfall. Soil Science Society of America Journal, 79 (3), 903-916.  

 

Vidal Vázquez, E., Vivas Miranda, J.G., Paz González, A., 2005. Characterizing 

anisotropy and heterogeneity of soil surface microtopography using fractal models. 

Ecological Modelling, 182 (3-4), 337–353. 

 

Vidal Vázquez, E., Miranda, J.G. V, González, A.P., 2007. Describing soil surface 

microrelief by crossover length and fractal dimension. Nonlinear Processes in 

Geophysics, 14, 223–235. 



References 

178 

 

Vivas Miranda, J.G., Paz González, A., Rubio, J.L., Morgan, R.P.C., Asins, S., Andreu, V., 

2002. Fractal models for the description of soil surface roughness, in: Man and Soil at 

the Third Millennium. In Proceedings of the International Congress of the European 

Society for Soil Conservation, 2099–2112, Valencia, Spain. 

 

Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.-., Bizzarri, B., Wigneron, J.-., Kerr, Y., 

2007. Operational readiness of microwave remote sensing of soil moisture for 

hydrologic applications. Nordic Hydrology, 38 (1), 1-20.  

 

Wegmüller, U., Santoro, M., Mattia, F., Balenzano, A., Satalino, G., Marzahn, P., Fischer, 

G., Ludwig, R., Floury, N., 2011. Progress in the understanding of narrow directional 

microwave scattering of agricultural fields. Remote Sensing of Environment, 115 (10), 

2423-2433.  

 

Woodget, A.S., Carbonneau, P.E., Visser, F., Maddock, I.P., 2015. Quantifying submerged 

fluvial topography using hyperspatial resolution UAS imagery and structure from 

motion photogrammetry. Earth Surface Processes and Landforms, 40 (1), 47-64.  

 

Xingming, Z., Kai, Z., Xiaojie, L., Yangyang, L., Jianhua, R., 2014. Improvements in 

farmland surface roughness measurement by employing a new laser scanner. Soil and 

Tillage Research, 143, 137–144. 

 

Zhao, L., Wang, L., Liang, X., Wang, J., Wu, F., 2013. Soil Surface Roughness Effects on 

Infiltration Process of a Cultivated Slopes on the Loess Plateau of China. Water 

Resources Management. 27 (14), 4759-4771.  

 

Zhixiong, L., Nan, C., Perdok, U.D., Hoogmoed, W.B., 2005. Characterisation of soil 

profile roughness. Biosystems Engineering, 91 (3), 369–377. 

 

Zobeck, T.M., Onstad, C.A., 1987. Tillage and rainfall effects on random roughness: A 

review. Soil and Tillage Research, 9 (1), 1–20. 

 

Zobeck, T.M., Popham, T.W., 1998. Wind erosion roughness index response to 

observation spacing and measurement distance. Soil and Tillage Research, 45 (3), 

311-324. 



References 

 

179 

 

Zribi, M., Dechambre, M., 2003. A new empirical model to retrieve soil moisture and 

roughness from C-band radar data. Remote Sensing of Environment, 84 (1), 42–52. 

 

Zribi, M., Baghdadi, N., Holah, N., Fafin, O., Guérin, C., 2005. Evaluation of a rough soil 

surface description with ASAR-ENVISAT radar data. Remote Sensing of Environment, 

95 (1), 67-76. 

 

Zribi, M., Sahnoun, M., Baghdadi, N., Le Toan, T., Ben Hamida, A., 2016. Analysis of the 

relationship between backscattered P-band radar signals and soil roughness. Remote 

Sensing of Environment, 186, 13-21. 

 

 


