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Abstract

The Human Visual System carries out multiple tasks, such as focusing objects at different
distances or capturing high dynamic range images. Nevertheless, the most remarkable function
is connected with the high-resolution images it can generate thanks to visual hyperacuity: the
capability of the human eye to resolve details beyond the acuity defined by the number, size

and distribution of photoreceptors.

Even though it may at first seem a complex scheme, the visual system shows an impressive
performance based on a simple architecture and obtains high-resolution images starting from a
limited number of sensors. The main hypothesis of this research work is that the diffraction
introduced by the optical system of the human eye could have a fundamental role in achieving

visual hyperacuity.

The implementation of the visual hyperacuity concept may be of great interest in many
technological fields, such as imaging or antenna systems, where the resolution is an important
matter. This idea is of particular relevance for the systems working in the terahertz frequency
range, where there exist technological constraints to use a large number of sensors. Besides, the
achievement of high angular resolutions in antenna systems usually involves the use of large size
devices which can generate diverse problems. The application of the visual hyperacuity enables

the use of smaller aperture antennas without a meaningful loss in terms of angular resolution.

This doctoral thesis presents a method that aims to simulate and implement the visual
hyperacuity in the human eye by introducing of a controlled distortion to improve the final
resolution of images or signals when the number of available sensors is limited. Likewise, a
detailed study is developed, in order to show its potential and the possibilities of the method

for imaging applications and antenna systems.
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Resumen

El Sistema Visual Humano es capaz de llevar a cabo multiples tareas, tales como enfocar
objetos a diferentes distancias u obtener imagenes con un amplio rango dindmico. Sin embargo,
la funcion mas impresionante esta relacionada con las imagenes de alta resolucidn que es capaz
de generar gracias a la hiperagudeza visual: la capacidad del ojo humano de resolver detalles

mas alld de la agudeza definida por el niUmero, el tamafio y la distribucion de los fotorreceptores.

Aunque en un principio pueda parecer complicado, el sistema visual esta basado en una
arquitectura relativamente sencilla y obtiene imdgenes de alta resolucidon partiendo de un
numero limitado de sensores. La hipdtesis principal de este trabajo de investigacion se basa en
que la difraccion introducida por el sistema dptico del ojo humano desempefia un papel

fundamental en la obtencidn de la hiperagudeza visual.

La implementacidn del concepto de la hiperagudeza resulta de gran interés para diversas
aplicaciones tecnoldgicas, como los sistemas de captacién de imagenes o antenas, donde la
resolucidn es un aspecto importante. Esta idea tiene especial relevancia para los sistemas que
trabajan en el rango de frecuencias de los terahercios, donde existen limitaciones tecnoldgicas
para utilizar un elevado nimero de sensores. Por otro lado, la obtencién de altas resoluciones
angulares en los sistemas de antenas suele implicar el uso de dispositivos de grandes
dimensiones que pueden generar problemas de diferente naturaleza. La aplicacion de la
hiperagudeza visual posibilita el uso de antenas con aperturas menores sin suponer una

significante pérdida en términos de resolucién angular.

En esta tesis doctoral se presenta un método que pretende simular e implementar la
hiperagudeza visual del ojo humano mediante la introduccién de una distorsidn controlada que
mejora la resolucidn final de las imagenes o sefiales cuando se dispone de un limitado niumero
de sensores. Asimismo, se desarrolla un estudio cuyo objetivo principal es mostrar su potencial
y las posibilidades que este método ofrece para aplicaciones relacionadas con sistemas de

imagenes y antenas.



upna

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa



List of Figures

Figure 1.1. lllustration of the muscles of the right eye.
Figure 1.2. Schematic diagram of the human eye.
Figure 1.3. Diagram of the optical system of the human eye.

Figure 1.4. lllustration of the retina: light enters from the left penetrating the retina before reaching
photoreceptors on the right.

Figure 1.5. Rendering of the layers of the retina. Photoreceptors are at the top, close to the pigment
epithelium.

Figure 1.6. Anatomy of a cone cell (left) and a rod cell (right).

Figure 1.7. (A) Photography of a normal human macula, optic nerve and blood vessels around the fovea.
(B) Optical coherence tomography image of the same macula, where the fovea is marked with an arrow.

Figure 1.8. Normalized human eye photoreceptor absorbances for different wavelengths of light.
Figure 1.9. Cross sections of the human retina: cones in the fovea (top) and cones and rods in the near
periphery (bottom).

Figure 1.10. Density of rods and cones along the horizontal meridian on the retina.

Figure 1.11. Diagram of the human eye (left) vs. optical system of a digital camera (right).

Figure 1.12. Sensor architecture schematics: (a) CCD sensor and (b) CMOS sensor.

Figure 1.13. Schematic of Bayer filter overlain on a sensor (left). Side-view of color photosites and
resulting RGB patterns (right).

Figure 1.14. Representation of visual detail using a single glance of the eyes.

Figure 1.15. Scheme of the angular resolution of the human eye from the perspective of geometrical
optics.

Figure 1.16. Configuration of lines in which location differences can be detected with a precision higher
than the MAR. (a) orientation deviation from the vertical; (b) Vernier acuity; (c) bisection of a spatial
interval; (d) deviation from straightness.

Figure 1.17. Application of Huygens'’ principle to plane and spherical wavefronts.

Figure 1.18. Point source illumination of a plane screen.

Figure 1.19. Scheme of variables for the Fresnel approximation.

Figure 1.20. Transformation of spherical waves into plane waves in the far field.

Figure 1.21. Scheme of variables in an Airy Disk.

Figure 1.22. (a) Airy Disk’s intensity distribution. (b) Computer-generated Airy Disk.

Figure 1.23. Diffraction-limited systems: diffraction pattern fits most of the energy into a single pixel.
Figure 1.24. The Rayleigh criterion.

Figure 1.25. Rayleigh criterion representation between two lines: (a) resolved; (b) unresolved.

Figure 1.26. Scheme of the semi-hexagonal lattice structure of cones on the retina and the size of the
Airy Disk for an aperture of 2 mm (green) and 6 mm (blue).

Figure 1.27. A point source that cannot be detected in principle (a), is detected thanks to the spreading
of light produced by diffraction (b).

Figure 2.1. Graphic representation of the visual hyperacuity simulation method.

Figure 2.2. (a) Original test image. (b) Image blurred because of diffraction.

Figure 2.3. Square sinc type intensity profile of a slit aperture.

Figure 2.4. Intensity pattern of a slit (a) and a square aperture (b).

Figure 2.5. Intensity pattern of a circular aperture.

Figure 2.6. Square sinc type approximation of a circular aperture.

Figure 2.7. Radial cross-section through the Airy Disk (blue) and the approximation sinc? function.
Figure 2.8. Kernel convolution.

Xl



Figure 2.9. (a) Delta-like pixel and (b) the effect produced by the discrete convolution with the PSF.
Figure 2.10. (a) Original image. (b) Spatially invariant distortion. (c) Spatially variant distortion.
Figure 2.11. Image padding to incorporate boundary conditions.

Figure 2.12. Image blurring and de-blurring process by multiplying Fourier Transforms, using sinc? type
(left) and Airy Disk (right) Point Spread Functions. Original image f (top center) and from top to bottom:
cross sections of the PSF h through the central plane, blurred images g and recovered images f'.

Figure 2.13. The sampling function.

Figure 2.14. (a) Spectrum X[f] of band-limited 1D signal. (b) Spectrum X;[f] of a correctly sampled band-
limited signal (fs>2fuax). (c) Spectrum X[f] of an incorrectly sampled band-limited signal (fs<2fuax):
aliasing.

Figure 2.15. FWHM of a Gaussian PSF (top) and minimum sampling intervals T;=FWHM in a diffraction-
limited system.

Figure 2.16. 1D discrete signal.

Figure 2.17. Gaussian PSF with FWHM=5 samples (top). Signal sampled by a diffraction-limited system
Ns=40 samples (red markers), compared to the original signal (grey).

Figure 2.18. Gaussian PSF with FWHM=1 sample (top). Signal sampled by a diffraction-limited system
Ns=200 samples (red markers), compared to the original signal (grey).

Figure 2.19. 1D discrete signal (grey) sampled at sampling intervals T;=1 sample using a PSF of FWHM=5
samples (red markers).

Figure 2.20. Cubic interpolation of a diffraction-free (top) and a diffracted signal (bottom).

Figure 2.21. 1D discrete signal (grey) sampled at sampling intervals T,=2 samples using a PSF of FWHM=5
samples and subsequently interpolated (red markers).

Figure 2.22. Block diagram of the visual hyperacuity simulation method: original image (observed real
scene), captured image (input image) and recovered image (estimation).

Figure 2.23. Original test image used for simulation, reproducing the high-resolution real scene.

Figure 2.24. (a) Blurred image projected over the sensors. (b) Subsampling process. (c) Input image:
blurred and low-resolution.

Figure 2.25. Interpolated image.
Figure 2.26. Recovered image.

Figure 3.1. The 1951 USAF resolution test chart, set by US Air Force in 1951.

Figure 3.2. The concept of multi-frame SR: reconstruction of HR image from multiple LR observations by
means of sub-pixel shifts.

Figure 3.3. Diagram of the observation model relating HR image with LR frames.
Figure 3.4. The SR imaging model.

Figure 3.5. The main stages of the SR nonuniform interpolation method.

Figure 3.6. Graphical representation of the SR nonuniform interpolation method.
Figure 3.7. Aliasing relationship betwen LR images and HR image.

Figure 3.8. Consecutive exposures captured at subsequent time steps (ti, t; and t3) and the resultant
HDR image.

Figure 3.9. LDR image exposure sequence (left) and HDR image (right), showing small details.
Figure 3.10. The therahertz gap lying between 300 GHz and 30 THz.
Figure 3.11. Terahertz image of a human tooth where caries are detected.

Figure 3.12. Sample sub-THz transmission images of a knife hidden in a book (left) and a gun replica
hidden in a textile cover (right).

Figure 3.13. Picture of four hazelnuts (right) and THz image of the same hazelnuts at 100 GHz (right).
The upper nut is infected with fungus.

Figure 3.14. THz image of a fresh leaf (left) and the same leaf after 48 h (right), where it can be observed
that water has clearly evaporated, except from the stems of the leaf.

Figure 3.15. Terahertz imaging camera of 4096 pixels (64x64 array) and linear camera of 1024 pixels
(256x4 array).

X



Figure 3.16. Layout for linear THz imaging system installation on a conveyor (left) and THz security body
scanner (right).

Figure 3.17. Block diagram of the hyperacuity simulation system.

Figure 3.18. Direct form 1D discrete FIR filter diagram.

Figure 3.19. System input 2D Point Spread Function (45x45 pixels).

Figure 3.20. High-resolution original test image (567x755 pixels).

Figure 3.21. Low-resolution blurred captured image (284x378 pixels).

Figure 3.22. Inverse form 1D discrete IIR filter diagram.

Figure 3.23. 2D IIR filter performing by rows and columns, positioned to calculate the output sample
f'one

Figure 3.24. High-resolution recovered output image (567x755 pixels).

Figure 3.25. Distortion-free image (284x378 pixels), captured by a diffraction-limited system.

Figure 3.26. Image detail of: (a) original test image of 567x755 pixels; (b) high-resolution recovered
image of 567x755 pixels; (c) distortion-free image of 284x378 pixels.

Figure 3.27. Original test images and details of: (a) original test image of 511x511 pixels;
(b) high-resolution recovered image of 511x511 pixels; (c) distortion-free image of 256x256 pixels.

Figure 3.28. Block diagram of the visual hyperacuity simulation method for RGB images: original test
image (observed real scene), captured RGB images (input images, blurred and low-resolution) and
recovered image (enhanced resolution).

Figure 3.29. Original test image used for simulation, reproducing the high-resolution observed real
scene (1600x1100 pixels).

Figure 3.30. (a) MATLAB 3D plot of the sinc2 type PSF of 1600x1600 pixels. (b) Cross section of the PSF
through the central plane.

Figure 3.31. Image captured by the sensor: blurred and low-resolution (160x110 pixels).
Figure 3.32. Interpolated image: blurred and increased data points (1600x1100 pixels).

Figure 3.33. High-resolution recovered image (1600x1100 pixels), using the Fourier-based visual
hyperacuity simulation method.

Figure 3.34. Block diagram of a diffraction-limited system simulation method: original test image
(observed real scene), captured image (input image, low-resolution but diffraction-free) and recovered
image (interpolated).

Figure 3.35. Recovered image (1600x1100 pixels) simulating a diffraction-limited system and
interpolation.

Figure 3.36. Visual comparison of (a) original test image, (b) visual hyperacuity simulation method
(diffraction) and (c) diffraction-limited method.

Figure 3.37. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.

Figure 3.38. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.

Figure 3.39. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.

Figure 3.40. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.

Figure 3.41. Original test image: checkerboard with a black edge (540x540 pixels).

Figure 3.42. Images captured by sensors (108x108 pixels): diffracted (a) and diffraction-free (b).
Figure 3.43. Recovered images (540x540 pixels): with diffraction (a) and diffraction-free (b).

Figure 3.44. Checkerboard paterns and corresponding periodograms of: original test image (a), image
recovered with diffraction (b) and image recovered difraction-free.

Figure 4.1. 3 dB beamwidth of an antenna radiation pattern in polar-coordinates.

Figure 4.2. C-band SAR of Sentinel-1 satellite (left) and LFI/HFI instruments of the Planck spacecraft
(right).

Figure 4.3. Arecibo Observatory (left), Haystack Observatory (center) and Sardinia Radio Telescope
(right).

Figure 4.4. ALMA astronomical interferometer (left) and VLA observatory (right).

Figure 4.5. Gaussian antenna patterns used for simulation. BW.34g=1° (red) and BW.34g=4° (blue).
Figure 4.6. Original test signal: target distribution over the scanned FOV of 360° in polar coordinates.

Xl



Figure 4.7. Simulation of data acquisition by scanning the FOV with antennas of BW.345=1° (a) and
BW._34s=4" (b), SNR=35 dB.

Figure 4.8. Simulation of data acquisition with the antenna beam of BW_343=1° (black) and estimation
when capturing with the antenna beam of BW_343=4° and inverse filtering (blue) for: (a) SNR=15 dB,
(b) SNR=25 dB, (c) SNR=35 dB and (d) SNR=45 dB.

Figure 4.9. Target distribution over the FOV of 360°: (a) multiple size targets at different ranges and
angular distances; (b) sum of different frequency square waves.

Figure 4.10. Gaussian beam antenna patterns used for simulation. BW.4=1° (blue), BW.34s=2° (red) and
BW._345=4° (green).

Figure 4.11. Simulation of data acquisition with antenna beams of BW_343=1°, BW_345=2° and BW _343=4°
and corresponding spectra (original test signal: multiple size targets at different ranges and angular
distances). SNR=25 dB.

Figure 4.12. Simulation of data acquisition with antenna beams of BW_3gs=1°, BW_34s=2° and BW.34=4"
and corresponding spectra (original test signal: sum of different frequency square waves). SNR=25 dB.

Figure 4.13. Estimation of the real scene after performing the inverse filtering for signals captured with
antenna beams of BW.345=1°, BW.343=2° and BW.34g=4° and corresponding spectra (original test signal:
multiple size target at different ranges and angular distances).

Figure 4.14. Estimation of the real scene after performing the inverse filtering for signals captured with
antenna beams of BW.345=1°, BW.343=2° and BW.34g=4° and corresponding spectra (original test signal:
sum of different frequency square waves).

Figure 4.15. Target distribution over FOV of 360° (original test signal). N=720 samples.

Figure 4.16. Gaussian antenna beam patterns of BW_34s=2" (red) and BW_343=0.5" (blue) used for
simulation.

Figure 4.17. Signal acquisition with antennas of BW 343=0.5" (blue) and BW_343=2" (red), compared to the
original test signal (grey). N=720 samples, SNR=25 dB.

Figure 4.18. Spectra of acquired signals for BW.343=0.5" (blue) and BW.34s=2" (red), compared to the
spectrum of the original test signal (grey).

Figure 4.19. Low-resolution subsampled signal of N=360 samples (red) and original test signal (grey).

Figure 4.20. Spectrum of the low-resolution subsampled signal (red) compared to original test signal
spectrum (grey).

Figure 4.21. Recovered estimation of the original signal (red), signal acquired with BW.345=0.5" (blue)
and original test signal (grey). N=720 samples.

Figure 4.22. Spectra of the recovered signal (red) and the signal acquired with BW.34g=0.5" (blue),
compared to the original test signal spectrum (grey).

Figure A.1. Original test pattern image.

Figure A.2. Results of introducing a sinc? type varying-radius diffraction filter h; with main lobes of 40,
48, 50, 52 and 60 pixels and inversely filtered with a fixed radius filter h, of r=50 pixels.

Figure A.3. 1D PSF and the corresponding Toeplitz matrix.

Figure A.4. Original test signal (left) and the blurred and noisy signal (right).

Figure A.5. Singular Value Decomposition of the PSF.

Figure A.6. Truncated singular values and vectors.

Figure A.7. Signal reconstruction by TSVD, including 15 (a), 30 (b), 50 (c) and 70 (d) singular values.
Figure A.8. Original test signal f (left) and the blurred and noisy signal g (right).

Figure A.9. (a) Norm of the solution error, versus the regularization parameter a. (b) f, for a=0.0389. (c)
fq for a=0.00001. (d) f, for a=0.7444.

Figure A.10. (a) Original test pattern image. (b) PSF. (c) Burred and noisy image.

Figure A.11. Results for different values of the regularization parameter a, when applying Tikhonov
regularization for image deconvolution.

XV



List of Tables

Table 1.1. Human eye cone types, wavelength sensitivities and absorbance peaks.

Table 1.2. Pixel densities of single lens color cameras.

Table 3.1. PSNR of images with the hyperacuity simulation method, diffraction-limited simulation
method and the obtained improvement.

Table 3.2. PSNR of images with the hyperacuity simulation method, diffraction-limited simulation
method and the improvement obtained using the proposed system.

Table 4.1. Average Mean Squared Error for different SNR and T values (1000 iterations).

Table 4.2. MSE for different BW.s45 and T values, comparing the captured signal g[n] and the
estimation of the original test signal f'[n].

XV



upna

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa



Acronyms

APS
BTTB
BW .34
ccb
CFA
CMOS
DFT
DSLR
DSP
FFT
FOV
FT
HDR
HDRI
HR
HVS
LDR
LPF
LR

LTI
MAR
MSE
PSF
PSNR
SAR
SNR
SR
SVD
TSVD

Active-Pixel Sensor

Block Toeplitz with Toeplitz Blocks
3 dB Beamwidth
Charge-Coupled Device

Color Filter Array
Complementary Metal-Oxide Semiconductor
Discrete Fourier Transform
Digital Single-Lens Reflex
Digital Signal Processing

Fast Fourier Transform

Field of View

Fourier Transform

High Dynamic Range

High Dynamic Range Imaging
High Resolution

Human Visual System

Low Dynamic Range

Low-Pass Filter

Low Resolution

Linear Time-Invariant
Minimum Angle of Resolution
Mean Squared Error

Point Spread Function

Peak Signal-to-Noise Ratio
Synthetic Aperture Radar
Signal-to-Noise Ratio
Super-Resolution

Singular Value Decomposition

Truncated Singular Value Decomposition

Xvii



upna

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa



Index of Contents

LAY T L=To T o T1=T o] o L PSP Vv
ABSTIACE ... ..o e e st r e b e e e re e eeeanes Vil
RESUMIBN ...ttt a e s s a e s be e s s IX
T B o) T (U TR Xl
LISt OFf TABIES ...ttt e st e bt e e sab e e s beeenee bY
ACTONYIMIS ...ttt ettt et ettt ettt et ee e e e e e e ee et e et e s et eaeaesesatetaaaaaeaeeaaeeaeaeaaeaaeeaeeeeeaeaeeeaeesans XVl
INA@X OFf CONEENLS ... e st e e e e s e s XIX
INEFOTUCTION ... 1
Motivation and OBJECTIVES ....c.c.eiiiiieiiie e e s 3
B IC O g2 T a1 4= Y d o ] o USSP 4
Chapter 1. The Human Eye. Visual Hyperacuity..............ccccoooiiinninncenees 7
0 B 14 o o To [¥ o1 f [ I PO SPURPPRTOPR 9
1.2. Anatomy and Physiology of the HUMan Eye.......ccccccvviiiiiiii it 9
1.3. Optical System of the HUMAN EYE ........ueeeeiiiiiieeee ettt et e e 11
1.4. Photoreceptors on the Retina: Cones and ROAS......c.ueeeeciiiieeiiieei st ecee e 12
1.5. Human Visual System vs. Conventional Imaging SYySte€mMS........eceeeveviirrveeeeeeiiiiiiieeeeeeeeenns 16
1.5.1. Analogies of the Optical SYSTEM .....cc.ueviiiiiiieeee e e e 16

1.5.2. Comparative Analysis Of SENSOIS ........eiiiiiiiiiiiiee e 17

1.5.3. ANGUIAr RESOIULION ....viiiiiiiiie ettt ettt e e e seae e e e sara e e e enanee s 22

1.5.4. Summary of the COMPAriSON .......ccccciiieiiiiie et e e e 24

1.6. Human Eye Visual HYypPeraCUity .......cccueieieciee ittt ettt et iree e e vaee e 25
1.7. Diffraction and HYPeraCUity......ceeeeeiciiiiieeee ettt e e e e et e e e e e e e ateae e e e e e e nnreees 26
1.7.1. Mathematical Modeling of Diffraction .........cccccueeeeeiiiiicciee e, 27

1.7.2. Diffraction in Optical SYStEMS......coiviiiiiiiieecee e e 30

1.7.3. Diffraction-Limited Imaging Systems. The Rayleigh Criterion ...........cccccceeennnns 31

1.7.4. Diffraction in the HUMaN EYe.......coocuiiiiiiiiie ettt 33

1.7.5. Other Causes Contributing to Blur the Retinal Image ........cccceccvveeivcieeecciiee e, 34

1.7.6. Diffraction Enabling Hyperacuity ......cccceeeeeieeciiiieee e 35

1.8, CONCIUSIONS .ttt ettt sttt st ettt et e bt e bt e s bt e s bt e smeesmeesmeesnneeanenas 37

XIX



Chapter 2. Visual Hyperacuity Simulation Method......................ccccoooiiiiiiiin. 39

2.0, INErOTUCTION ettt ettt st e et e e b e e e s bt e sbe e e snseesmseesareesneeenns 41
P R b | - Tot o o KA T OO OO TUPTUPPOPRUPRRPONt 42
2.2.1. Mathematical Model for Image BIUITing........cccveeiiiieiiiiiieeeeciee et 42

2.2.2. The Point Spread FUNCLION ......ueiiii ittt e e 44

2.2.3. Image Blurring in the Spatial Domain: Convolution.........cccceeeecveeeeciieeeecieee e 46

2.2.4. Image Blurring in the Frequency DOmMain .......ccccceeeiiieeieiiiee e 49

D T [ g ¥ 1= LT 1 o o111 Y= SRR 51
2.3.1. The Sampling Process in Diffraction-Limited Systems ........ccccecvveevicieeeccieee e, 53

2.4, SigNal OVErSAMPIING ....ciiiiciiie et ee e e e e e e e e e rba e e e e beee e enrees 55
2.4.1. Oversampling through Interpolation ........cccceeeeciiiiei e e 56

2.5. The INVErse Problem ....c...ooii ittt sttt 58
2.5.1. The Singular Value Decomposition. Regularization Methods...........ccccccceeennes 59

2.5.2. Convolution-Based Methods. Toeplitz Matrices......ccccccevveevviieeeeeeiciciireeee e 62

2.5.3. Fourier-Based Methods.........cccceriiriiiiiiiieieeeceeee e 63

2.5.4. Least-Squares Methods. The Wiener Filter........ccooviveieeiiccciiieeee e 65

2.5.5. 1terative Methods. .......cooiiiiiie e s 65

2.6. General Overview of the Visual Hyperacuity Simulation Method.........ccccccceeeeeinnnneee.n. 69
2.7, CONCIUSIONS ..tieitiieiie ettt ettt ettt ettt et e st e bt e e bt e e s abe e sabeeebe e e aneeesaseesabeeesseeesnseesnreesnenanns 72
Chapter 3. Visual Hyperacuity for Imaging Systems and Applications................ 73
18/ (014 o To [¥ T d o o KOO TP TR UPOTRP 75
3.2, SUPEr-ReSOIULION IMAGINEG ....uviiiiciiiee ittt e e e etre e e e stae e e sntaeeesbaeeeeensaeeesans 76
3.2.1. The Observation MOdel.........cccooriiiiiiiniieiieeieeieesee ettt st 78

3.2.2. SR Image Reconstruction Methods...........cccceeveieiiiieiii e 80

3.2.3. Challenges for IMage SR .......uei ettt e e e e e rae e e 82

3.3. High Dynamic Range IMaging.....c..ceeiriuiiiiiiiiieeciieeeeeiee st ee s svie e e e stee e e sentaee e ssveaeeesbeeaeeans 83
N N Y =Y w2 o o T o4 = S SRRNE 85
3.4.1. Applications of Terahertz SYStEMS .......ccucuieeeeiiiie et e 85

3.4.2. THz Imaging Technological Difficulties.......cccceeeeeciiiieiee e 88

3.4.3. Visual Hyperacuity for Terahertz Imaging.......ccoceeeeciieeeiiiee e 90

3.5. Kernel-Based Hyperacuity Simulation Method. A Local Approach.......c.ccccceeevvcvvveeeeeeenn. 90
3.5.1. Pre-Processing: Diffraction and Image Sensing .......ccccceeveecviieeeeeeeeccciiieeee e, 91

3.5.2. Post-Processing: Interpolation and Inverse Filtering ........cccccoecvveeeicieeeecciee e, 93

3.5.3. ANalysis Of the RESUILS......c.uiiiiiiiieeciie ettt 95

3.5.4. Comments on the Method ..o 98

XX



3.6. Fourier-Based Hyperacuity Simulation Method. A Global Approach........ccccceeeviveeennnneen. 99

3.6.1. Image Capture: Diffraction and SENSING ........ccccvveiiiiiiii i 100

3.6.2. Post-Processing: Interpolation and Inverse Filter........cccoocvvveiiicieeiiciiee e, 102

3.6.3. ANalysis Of the RESUILS ...cccceiieiiiiieeee et e 104

3.6.4. Comments on the Method..........cccooiiiiiiiiiii e 106

3.7. Spectral Benefits of Diffraction for IMaging .........coooeevvveeieiieecciiieeeee e, 109
3.8, CONCIUSIONS ..neieiieeeite ettt ettt ettt e et e bt e e st e st e e be e e sateesabeesbeeesnseesaseesareeennseenns 112
Chapter 4. Applications of Visual Hyperacuity in Antenna Systems................... 115
B 131 o o [F ot i o ] W TP PP TOUPTURP 117
4.2. Angular Resolution of AntenNna SYSTEMS .....cccuviiiiiiiieicieee et e 117
4.2.1. High Directivity ANTENNGAS ..ccccvieeiiiiie ittt e e are e s e e e saaee s 119

4.3, Hyperacuity in ANTENNA SYSEEMS .....uuueeiiiiiiieteteieiere et er e e e e e reerrerrrreerrreeeeeseeeees 121
4.4. 4x Reduction in Antenna Size. Angular Resolution & SNR Variations ........cccccceeeecveennn. 121
4.4.1. SIMUIation MEthOd ....ccceviiiiiiee e e e 122

B.4.2. RESUILS ..ottt sttt st st s e s s s re e s e sree s 124

4.5. Antenna Beamwidth vs. Angular Resolution from a Spectral Perspective..................... 125
4.5.1. SIMUIation MEthOd .....cc.euiiiiiiiiie e e e e 127

B.5.2. RESUILS ..ottt s s e e s s s e e s 131

4.6. Antenna Size Reduction and SUbsampling ........ccoeciiiiiiiiii i 134
4.6.1. SIMUlation Method ......cc.uiiiiiiie e 134

B.6.2. RESUILS ..ceiiiieiieieitee ettt s ne e e s e ree s 137

A.7. CONCIUSIONS ..eniviiiiieeiiee ettt ettt ettt et e sttt s bt e e sate e s bt e sabteesabeesabaesabaesbaeesabeesnseenn 139
Chapter 5. Conclusions and Future Research Lines...............ccocooiiieiicccnenennn. 141
LT R @0 T o] [V 1] o T 3PP SP 143
5.2, FULUre RESEAICH LINES.....ueiiiiieiiieciiee ettt sttt ettt e s e e sane e 144
Appendix: Testing some Aspects of the Method ..., 147
a) The Effect of Variations in the PSF...........ooo ittt 147
b) TSVD for 1D Signal DECONVOIULION .......uiiiieiiiie ettt e e e 149
c¢) Tikhonov Regularization for 1D Signal Deconvolution .........cccceccveeeicieeeccciee e 151
d) Tikhonov Regularization for Image Deconvolution ..........cccccceeeeciieeeeciee e, 153
231 Lo Y= =] Y SRR 155
List Of PUBIICAtIONS .......comiiiiiii e e e 163

XXI



o=

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa



Introduction



upna

Universidad Publica de Navarra
Nafarroako Unibertsitate Publikoa



Introduction

Motivation and Objectives

It is widely known that the human eye is able to carry out many impressive functions: it
presents a high dynamic range with a high sensitivity in low light conditions and avoiding
saturation when working under strong lighting conditions; it can focus objects at different
distances without any apparent difficulty; but, the most remarkable characteristic is the high-
resolution images it can generate. This performance is obtained thanks to visual hyperacuity,
which is the capability of the human visual system to resolve details beyond the acuity defined
by the number, size and distribution of photoreceptors. In other words, it could be said that
thanks to visual hyperacuity, the human eye outperforms artificial imaging systems with

comparable optical and sensor characteristics.

The phenomenon of hyperacuity was discovered many years ago, but there are multiple
different theories and approaches that attempt to explain it. From our point of view, even
though it may at first seem a complex scheme, the visual system shows an impressive
performance based on a simple architecture and obtains high-resolution images starting from a
considerably low number of sensors. The main hypothesis of this research work is based on the
assumption that the diffraction introduced by the optical system of the human eye could have

a fundamental role in achieving visual hyperacuity.

The application of the visual hyperacuity concept in other technological fields may be of high
interest since it can provide diverse advantages and benefits. One of the most obvious and direct
area of application is oriented to imaging systems and technologies, where the resolution of
images is a matter of great importance. In most cases, the maximum resolution that these
systems can achieve is defined by the number, size and separation of the sensors. Nevertheless,
there exist technological limits when reducing the size of the sensors endlessly and, in some
instances, it is not possible to use a high number of sensors. Therefore, breaking the link
between the number of sensors and the final image resolution of a system could be particularly

interesting.

Besides, in connection with antenna systems, the achievement of high angular resolutions
usually involves the use of antennas with large apertures, which result in antenna systems of
considerable dimensions. The use of so oversized devices can generate challenges in relation to
weight, power supply or mechanical scanning difficulties, for example, that need to be
considered at the design, implementation and construction phases, but also during its operation
lifetime. The application of visual hyperacuity concepts to antenna systems could significantly
relax these problems and constraints, because it is possible to improve the angular resolution
by means of post processing techniques that would allow the use of less directive—smaller—

antenna systems.



Application of Visual Hyperacuity to Imaging and Antenna Systems

Based on the above described principal hypothesis, the general purpose of this thesis is to
develop a method that aims to explain and simulate the visual hyperacuity of the human eye,
while suggesting some of its possible technological applications. Based on this general objective,

more specific and concrete goals have been generated:

= Design, implement and test a method which takes advantage of the introduction of

a controlled diffraction to improve the final resolution of signals and images.

= Compare the humane eye against conventional imaging devices, finding the most

remarkable similarities and differences in relation to the optical system and sensors.

= Describe the possible benefits of diffraction to achieve high-resolution signals and
images when the number of available sensors or samples is reduced, far from being

a limiting factor.

= Explain and demonstrate the advantages of the application of the visual hyperacuity

simulation method to imaging systems in general and THz imaging more specifically.

= Analyze the application of the visual hyperacuity simulation method to improve the
angular resolution of antenna systems and its associated technological benefits, such

as the reduction of the antenna size or the decrease of the required sampling rate.

By meeting these objectives, this research work aims to bring new points of view and fresh
approaches in relation with the design, the implementation and the main characteristics of

imaging and antenna systems when it comes to signal or image resolution.

Thesis Organization

The structure of the document is organized in five main chapters which contain the logical
evolution of the research work carried out. Due to the multidisciplinary nature of the thesis,
each chapter will have its own state of the art and introduction, but at the same time, they are

linked coherently in a progressive way.

The first chapter is devoted to describing the anatomy and physiology of the human eye,
mainly focusing on the optical system and the photoreceptors (cones and rods), for subsequent
comparison with conventional imaging systems. Afterwards, the concept of visual hyperacuity
is introduced to conclude with the principal hypothesis of this investigation work: the diffraction
introduced by the optical system of the human eye could play a key role in achieving visual

hyperacuity.

Chapter 2 can be considered one of the most important section of this thesis, for the reason
that it describes the visual hyperacuity simulation method in detail, emphasizing different

aspects of each step involved in the proposed scheme: diffraction, sampling and the inverse
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problem. Finally, the chapter concludes with some tests based on the previously described

method.

The following chapter covers the potentials of the visual hyperacuity for imaging systems and
applications. First of all, some of the most relevant imaging techniques are described, such as
Super-Resolution or High Dynamic Range Imaging, relating them with the hyperacuity simulation
method. Then, the emerging applications of THz imaging are described, explaining how
hyperacuity could help to overcome many current technological limitations and difficulties. The
last sections of the chapter describe two implementations of the method: the first approach

based on a local kernel function and, the other, a methodology based on Fourier Transforms.

Chapter 4 is oriented to analyze the application of visual hyperacuity to antenna systems,
mainly connected with the angular resolution. It aims to examine the possibility of reducing the
aperture and, therefore, the size of a given antenna, as well as the possibility of decreasing the

sampling rate of the system without a significant loss of angular resolution.

The last chapter brings together the most important conclusions and lessons learned from
the development of this research work and makes some suggestions for future work and

research lines.

Finally, the document closes with an appendix that provides some tests of the visual
hyperacuity simulation method, from the modification of multiple parameters to the application

of different deconvolution methods.
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The Human Eye. Visual Hyperacuity

1.1. Introduction

The visual perception is the ability of humans and other animals to generate and interpret
colored and moving images. This basic physiological capacity is carried out by the visual system
and mainly thanks to a sense organ: the human eye. Despite the apparent complexity of the eye
when analyzing its anatomy and physiology, it operates in a relatively simple way: the light
enters the eye through an aperture (the pupil) and an optical lens system (the cornea and
crystalline) responsible for projecting it over the retina where photoreceptors (cones and rods)
are placed. The image projected over these sensory cells is sent in the form of electrical signals

to the brain where the visual perception is generated.

Given this main function, the human visual system can be considered a biological imaging
system totally comparable with conventional imaging devices, such as digital cameras with CCD
or CMOS sensors. On the basis of this comparison, it can be said that the human eye and digital
cameras have many similarities when analyzing the structure of the optical system, RGB-type
color sensors or peak sensor densities. However, the eye largely outperforms digital cameras
with similar optical and sensor characteristics when evaluating features related to sensitivity,

dynamic range or angular resolution.

Among many others, the most impressive function of the human eye is the high-resolution
images it can obtain. This feature is known as visual hyperacuity, which can be defined as the
capability of the eye to resolve details beyond the acuity defined by the number, size and
distribution of photoreceptors. Even if hyperacuity has been known for a long time, there are
significant differences when trying to explain how it is achieved, existing multiple explanations
and complex approaches. Nevertheless, our central hypothesis is based on a simple scheme: the
diffraction introduced by the optical system of the human eye plays a key role in achieving visual

hyperacuity.

1.2. Anatomy and Physiology of the Human Eye

The eye is the vital part of the human body sensible to light, a specialized sense organ capable
of receiving visual images which are carried to the brain. In short, it allows vision, one of the

most fundamental of our senses, and generates moving, colored and three dimensional images.

The eye is fitted with an auxiliary structure for its correct performance [1], formed by diverse
elements: the orbit is a cavity of the scull which encloses the eye to protect it from mechanical
injury; the eyelids are responsible for remaining the front surface of the eyeball (the cornea)
moist and they also have an additional function of preventing injuries from foreign objects; the
conjunctiva is an outer covering and helps lubricate the eye by producing mucus and tears,
although less than the lacrimal glands, which create secretions to keep the eye humid. The eye

movement mechanism is governed by six extraocular muscles inserted into the sclera: four
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rectus muscles—superior, inferior, medial and lateral—and the superior and inferior oblique
muscles (see Figure 1.1). These muscles produce movements to rotate the eyeball in orbits,
while allowing the image to be focused on the fovea of central retina, controlling precisely the

direction of the gaze.

Focusing on the eye itself, the eyeball is shaped as a semi-sphere, rather it is the result of
fusing a small strongly curved sphere—anterior segment formed by cornea, iris and lens—and a
larger posterior sphere composed of the sclera, choroid, retina and the vitreous. The ring joining
both spheres is called the limbus. Looking at the eye from the front, one can see the white sclera
surrounding the cornea, under the cornea is located the iris, the structure that determines the
color of the eye, and in its central section appears the pupil, dark because the light passing into

the eye is absorbed and not reflected.

The eye has a fairly constant vertical diameter of 24 mm (varying among normal individuals
by 1-2 mm) and it is covered with three layers enclosing the aqueous humor, lens and vitreous
body. The external coat consists of the cornea and the sclera. Middle layer is formed by the
choroid, the ciliary body and the iris and contains the main blood supply. The innermost coat is
the retina that lies on the choroid. Inside the cavities covered by these coats there are other
elements: the crystalline lens, connected to the ciliary body by fine fibers; the aqueous humor,
a transparent fluid between the cornea and the lens and iris; the vitreous body, a clear jelly that
fills the cavity enclosed by the sclera, the ciliary body and the lens. Figure 1.2 provides better

insight into the human eye structure.

. trochlea
levator palpebrae superioris Ak

superior oblique

superior rectus

medial rectus

lateral rectus

inferior rectus

inferior oblique

Figure 1.1. lllustration of the muscles of the right eye.

Source: Encyclopedia Britannica, Inc.
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30 29 28 37 26
1:Posterior segment of eyeball 16:Medial rectus muscle
2:Ora serrata 17:Retinal arteries and veins
3:Ciliary muscle 18:Optic disc
4:Ciliary zonules 19:Dura mater
5:Canal of Schlemm 20:Central retinal artery
6:Pupil 21:Central retinal vein
7:Anterior chamber 22:Optic nerve
8:Cornea 23:Vorticose vein
9:lris 24:Bulbar sheath
10:Lens cortex 25:Macula
11:Lens nucleus 26:Fovea
12:Ciliary process 27:Sclera
13:Conjunctiva 28:Choroid
14:Inferior oblique muscle 29:Superior rectus muscle
15:Inferior rectus muscle 30:Retina

Figure 1.2. Schematic diagram of the human eye.
Source: modified from Wikimedia Commons (Licensed under the CC BY-SA 3.0).

1.3. Optical System of the Human Eye

The main function of the optical system in the eye is to refract light to produce or project an
inverted and focused image of the visual field on the retina, where photoreceptors (cones and
rods) are located. The complete system acts as convex lens, but refraction occurs at four
separate surfaces: anterior and posterior surfaces of the cornea and of the crystalline lens. Each
of these surfaces change the direction of propagation of light rays toward the visual axis,

converging the incoming light and projecting it onto the retina.

The crystalline lens is attached by the zonular fibers to the ciliary muscle which can contract
or loosen changing the shape and, consequently, the refractive power of the lens. This
mechanism of accommodation controls the view of objects at varying distances, always
projecting them on the retina. Accommodation is a reflex act (involuntary) and the stimulus for
accommodation is the nearness of the object but, nevertheless, the way in which this nearness

is converted into a stimulus seems not to be clear. According to [2], the cornea itself has an

Figure 1.3. Diagram of the optical system of the human eye.
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average refractive power of 42.4 diopters. Besides, in its non-accommodative state, the
crystalline lens contributes about 15-20 diopters of the approximately 60 diopters of convergent
refractive power of a normal human eye [3], for a normal focal length of 16.7 mm. When
accommodation is produced to focus on nearby objects, the ciliary muscle contracts the lens—

it becomes more spherical—and its refractive power increases.

The light entering the eye is controlled and restricted by the aperture in the iris, the pupil. It
appears black because the light rays are absorbed by the tissues inside the eye and no energy is
reflected. The state of pupil—the aperture—is determined by the degree of illumination: in low
light conditions, the pupil aperture increases to capture the incoming energy (mydriasis).
Instead, when under strong lighting conditions, the pupil is closed to prevent photoreceptors
from saturation (miosis). This physiological response of dilation and constriction is known as
pupillary response and occurs together with accommodation. The aperture of the pupil is
controlled by the muscles of the iris: constriction of the pupil is produced by shortening the
circular ring of fibers (the sphincter) and dilation is brought about by shortening of the fibers
oriented radially. The pupil size in adults can vary from 2 mm in diameter in bright light to 8 mm

in the dark, approximately.

1.4. Photoreceptors on the Retina: Cones and Rods

The retina is a filmy piece of tissue (about 0.5 mm thick) which covers the inside of the
eyeball. This inner coat of the eye is considered part of the brain [4], since it includes light-
sensitive sensory neurons and intricate neural circuits responsible for the first stages of image
processing, permitting a good deal of image assembly to take place in the eye itself.

Nevertheless, the final perception of sight is done in the brain.

Figure 1.4. lllustration of the retina: light enters from the left penetrating the retina
before reaching photoreceptors on the right [4].
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Figure 1.5. Rendering of the layers of the retina. Photoreceptors are at the top, close
to the pigment epithelium [4].

Light enters the eye through the pupil, the photons travels across the vitreous fluid of the
eyeball and penetrate the retina before reaching the photoreceptors. Contrary to expectations,
the sensory cells are placed at the very back of the retina, meaning that light rays must pass
through the entire retina before exciting pigment molecules. The pigment-bearing membranes
of photoreceptors are in contact with the eye’s pigment epithelial layer, a very dark tissue
behind the retina full of melanin granules responsible for absorbing strayed photons, to prevent
their back reflection into the photoreceptors and protect these cells from overexposure to light
(see Figure 1.5). The signals captured by photoreceptors pass through a series of neural
connections toward the surface of the retina, where the ganglion-cell nerve-fiber layer relays
the processed information to the optic nerve, the responsible for sending an electrical signal

into the brain for further processing and visual perception.

Looking at the sensory cells, all vertebrate eyes contain at least two types of photoreceptors:
cones (for daylight, colored vision) and rods (for low-light vision), as can be observed in Figure
1.6. However, the eyes of different animal species evolved differently trying to adapt to the
different environments where they live. Primates (including humans) and raptors have front-
projecting eyes, which allow the perception of depth (binocular vision). Moreover, their eyes
are specialized for daylight vision and can discriminate fine details and color thanks to a highly
cone-rich spot devoid of rods called fovea, responsible for sharp central vision. The fovea lies in
the center of the macula—an oval-shaped pigmented area near the center of the retina—and it

is an area where the maximum density of cone photoreceptors is concentrated (Figure 1.7).
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Figure 1.6. Anatomy of a cone cell (left) and a rod cell (right).

Source: Wikimedia Commons (Licensed under the CC BY-SA 3.0). Author: Ivo Kruusamdgi.

Figure 1.7. (A) Photography of a normal human macula, optic nerve and blood vessels
around the fovea. (B) Optical coherence tomography image of the same macula,
where the fovea is marked with an arrow [5].

As previously mentioned, two basic types of photoreceptors exist in the human retina: cones
and rods. The cone vision is oriented to color vision in bright conditions (photopic vision),
adapting photoreceptors to the surrounding brightness and the circuitry in the retina modulates
the eye’s response. In a similar way, rods and the neural circuits to which they are connected
are adapted to lower intensities of light (scotopic vision). Nevertheless, cones and rods report
rather different image properties: cones, detecting bright signals, can detect more abrupt and

rapid light fluctuations; rods, dealing with dim light signals, usually respond to slow variations.

Related to the frequency response, rods are sensitive to blue-green light and present a peak

sensitivity around 500 nm wavelength of light. Cones, in contrast, are sensible to three different
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wavelengths and provide the basis of color perception in the human visual system (HVS). This 3-

cone mechanism is also called trichromatic vision (Red, Green and Blue: RGB). In this way, we

can classify cones as follows:

L-Cones Long 564 nm Red
M-Cones Medium 534 nm Green
S-Cones Short 420 nm Blue

Table 1.1. Human eye cone types, wavelength sensitivities and absorbance peaks.

When looking at the distribution of rods and cones in the human retina, they are organized

in a quasi-exact mosaic [5]. It is important to analyze the spatial distribution of different sensory

cell types in the retina: in the fovea, cones are packed in a semi-hexagonal lattice structure.

Outside the fovea, rods split this hexagonal structure forming a sort of rings surrounding cone

cells (observe Figure 1.9).
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Figure 1.8. Normalized human eye photoreceptor absorbances for different
wavelengths of light.

Cones

Figure 1.9. Cross sections of the human retina: cones in the fovea (top) and cones and
rods in the near periphery (bottom) [6].
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In terms of density (Figure 1.10), the average human retina contains 4.6 million cones and
presents the maximum density in the fovea centralis in an area as large as 0.032 degrees [6], but
the density decreases quickly with increasing eccentricity outside the fovea to an almost
constant and insignificant value into the peripheral retina. Besides, the average number of rods
in the retina is about 92 million. The highest rod densities are placed at a ring at the eccentricity
of the optic disc, but it becomes nearly null in the foveal pit defining a rod-free zone with an
average diameter of 0.350 mm (1.25 degrees). Rod density decreases slowly from the ring to the
far periphery of the retina. The optic nerve is free of photoreceptors and, therefore, it creates a

blind spot in the area through which it leaves the eye orbit via the optic canal.
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Figure 1.10. Density of rods and cones along the horizontal meridian on the retina [5].

1.5. Human Visual System vs. Conventional Imaging Systems

The HVS is considered a biological imaging system since it gives the ability to process and
generate images. In this regard, it might be worth comparing it against conventional imaging

systems, such as digital cameras. This analysis can be approached from different perspectives:

a) The optical system.
b) The image sensor.

c) Angular resolution.

1.5.1. Analogies of the Optical System

The optical system of the human eye and common digital cameras have multiple similarities
and coincidences (Figure 1.11). In both systems light enters through an aperture set by the iris,
which is called pupil in the eye. For preventing the light from entering the imaging system from

any direction other than the aperture the eye uses the sclera, while in digital cameras this role
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Figure 1.11. Diagram of the human eye (left) vs. optical system of a digital camera
(right).

is played by the camera body. Refraction of light is performed by a lens system—being possible
to change the focal distance—and the image is projected upside down on the retina (eye) or the
image sensor (digital cameras). Finally, photons are converted into electrical signals by
photoreceptors (cones and rods) in the eye and digital sensors in cameras, and subsequently

sent to the brain by the optic nerve (or wires) to be processed.

In terms of physical dimensions, the aperture of an adult pupil can variate from 2 mm
(contracted) to 8 mm (dilated) in diameter depending on lighting conditions. Considering the
commonly quoted focal length of 16.7 mm, it is easy to calculate the f-number N of the human

eye based on equation 1.1,
f
N==< (1.1)
D

where f corresponds to the focal length and D is the diameter of the entrance pupil (effective
aperture). Using this formula and the aperture values previously established, the human eye can
be defined as an f/8.3 lens for bright light conditions and as an f/2.1 lens in dimly light
environments [7]. Comparing against standard f-stop scale of modern lenses in digital cameras

these values fall within the normal range.

1.5.2. Comparative Analysis of Sensors

Actual digital camera image sensor technology is mostly based on Charge-Coupled Devices
(CCD) and Complementary Metal-Oxide Semiconductors (CMOS). The CCD was developed in
1969 at AT&T Bell Labs by George Smith and Willard Boyle (in 2009 they were awarded the Nobel
Prize of Physics). CCD devices offer high image quality and flexibility—in return the size of the
system tends to be greater—and it makes this technology suitable for high-quality imaging
applications, normally oriented to professional, medical and scientific purposes. On the other

hand, active-pixel sensors (APS), which include CMOS sensors, where established by Tsutomu
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Nakamura in 1985 [8], and more broadly defined by Eric Fossum in 1993 [9]. When comparing
with the performance of CCD imaging technologies, CMOS imagers offer superior characteristics
related to integration, power dissipation and system size, but at the cost of image quality (mostly
in low light), making it fit for high-volume, space-constrained applications with low quality
requirements. CMOS technology is more focused in consumer cameras (smartphones,
webcams, digital pocket cameras) with lower quality standards and professional digital cameras:

digital single-lens reflex cameras (DSLR).

In relation to the image capturing process of digital cameras, an image of the visual field is
projected through the lens onto the sensor (photoactive region), which is a square grid array of
pixelated metal oxide semiconductors. Each pixel accumulates a signal charge proportional to
the local light intensity acting as a spatial sampling function and capturing a 2D image of the
scene projected onto the focal plane, where the sensor is positioned. When the exposure time
is complete, the CCD sensor transfers sequentially the charge packet of each pixel to a common
external structure (a printed circuit board) for further processing: convert charge to a voltage,
buffer and send it off-chip. The main difference between these technologies is that a CMOS
sensor performs the charge-to-voltage conversion locally in each pixel and most functions are
integrated into the chip. This variation on readout techniques (see Figure 1.12) directly affects

the sensor architecture, capabilities and limitations [10].

To capture color images, digital camera sensors make use of a Color Filter Array (CFA) known
as Bayer filter, for arranging RGB color-sensitive filters on a square grid of photosensors. The
Bayer array sensor strategy consists of alternating green (G), red (R) and blue (B) color filters,
but using twice as many green elements (50 %) as red (25 %) or blue (25%), trying to mimic the
physiology and the distribution of sensors in the human eye (Figure 1.13). The RGB values
obtained from these photosites are then combined in an intelligent way to create full color pixels

by means of a process called demosaicing. Even if the Bayer filter is nearly universal on digital
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Figure 1.12. Sensor architecture schematics: (a) CCD sensor and (b) CMOS sensor [10].
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Inceming Light

Filter Layer

Sensor Array

Resulting Pattern

Figure 1.13. Schematic of Bayer filter overlain on a sensor (left). Side-view of color
photosites and resulting RGB patterns (right).

camera applications, there are also multiple alternatives and variations (modifications of the

Bayer filter mosaic).

At first glance, the sensing method of digital cameras appears to have close similarities with
the image capturing mechanism of the human eye. However, it is worth analyzing some aspects

more deeply, to draw a more detailed comparison.
= Photon Capturing and Dynamic Range

The European Machine Vision Association (EMVA) proposed the EMVA Standard 1288 [11],
which defined a unified method to measure and compute specification parameters and
characterization data for conventional digital cameras or image sensors. The company Point
Grey compared multiple color single lens camera models with CCD and CMOS sensors, adopting
the EMVA 1288 standard for testing and published the latest results in the Q2 2016 Color Camera
Sensor Review [12]. This document analyzes multiple camera parameters as the quantum
efficiency (capacity to convert incoming light into an electrical signal), dynamic range, saturation

capacity, temporal dark noise and the absolute sensitivity threshold.

According to the EMVA 1288 Standard, the number of photons received by a pixel or sensor
is proportional to its area A, the exposure time tex and the irradiance £ on the sensor surface

area in W/m?, as follows:

exp

v hc/a’

AEt,, AEt,

4, [photons] = (1.2)

using the quantification of the energy of electromagnetic radiation in units of h-v, where
h=6.6260755-103* J-s is the Planck constant and v=c/A the frequency related to the wavelength
A and the speed of light ¢=2.99792458-108 m/s.

Supposing the same irradiance E and exposure time t.x, when comparing different sensors,
the only factor affecting the number of photons captured by a pixel is the area A of the sensor

itself. In the particular case of the human eye, the average size of photoreceptors or cones in
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the fovea—the area over the retina that deals with sharp central vision—is about 1.5 pum
diameter [5], which is quite small in comparison with the pixel sizes of conventional cameras
shown in the review (from 2.2 to 9.9 um). Comparing the area of a cone (assuming a circular
shape 1.77 um?) with the area of the smallest pixel size of a digital camera (4.84 um?) extracted
from [12], the area of a human eye photoreceptor would be 2.74 times smaller, reducing by the

same factor the photon flux captured by each sensor.

This could also limit the dynamic range of the HVS (the ratio of a pixel’s saturation level to its
signal threshold) if we define it as in equation 1.3, since saturation capacity is a magnitude
related to the pixel size:

u
DR =—£=* (1.3)

upmin

where up sqt is the saturation irradiation and u, minrepresents the minimum detectable irradiation
or absolute sensitivity threshold. However, the human eye presents an extraordinary dynamic
range and detects subtle contrast variations [13], being able to perceive information from very
low-light conditions up to the brightness of daylight. Different sources [14], [15], define a
detectable luminance range of cone cells for photopic vision (chromatic or color perception) of

108 or 160 dB when expressed on a logarithmic scale as it is shown in equation 1.4.
DR,, =20log ,,(DR) (1.4)

This value overcomes largely the multiple dynamic ranges observed in the camera review,
presenting values from 53 to 73 dB approximately, even if the sensors in the human eye are
considerably smaller in area. In more specific scientific imaging applications, CMOS sensors with
dynamic ranges up to 120 dB can be found, which are achieved by means of different High
Dynamic Range (HDR) imaging techniques [16]-[18]. Nonetheless, these values are nowhere

near to the ones obtained by the human eye.
= Sensor Resolution

The resolution achieved by a CCD or CMOS image sensor is determined by the size of its
detectors (pixels) and the total size or area of the image sensor itself. However, there are
technological challenges and constraints in relation to reducing the pixel size below some
threshold, such as limits established by diffraction—which is considered further below—and
electronical constraints connected to sensitivity (defined by ISO), understood as the capacity to
distinguish information from noise. Current high-performance digital imaging technologies work
with minimum pixel sizes of 1-2 um. Therefore, actual technology tends to increase the number
of pixels and the image sensor size (full-frame DSLR sensor size is 36x24 mm), enlarging the total
area where the image is captured and reaching image resolutions up to 30, 40 or even 50

megapixels.
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The analysis of the sensor resolution in the human eye seems to be a little more complicated.
While in digital cameras pixels are uniformly distributed in a square matrix-like layout—ensuring
a constant resolution over the entire image sensor—, cones in the retina are not distributed in
a regular manner. As explained in detail above, the human eye contains about 4.6 million cones
(equivalent to 4.6 megapixels), which reach a density peak in the fovea. However, this density
decreases quickly when approaching peripheral retina, where there are practically not cones,
but rods. This irregular distribution of photoreceptors avoids a constant resolution over the
image captured by the HVS: the maximum resolution is obtained in the foveal visual angle, but
outside the center of the gaze, the visual ability and resolution decrease drastically (peripheral
vision) being difficult to focus objects and only large-scale contrast and minimal color is detected

(see Figure 1.14).

Some authors [19], establish a maximum density of 147,000 cones/mm? in the central part
of the fovea. Others [6], estimate peak foveal cone density averages of 199,000 cones/mm?,
which is a highly variable value between individuals (100,000-324,000 cones/mm?). These cone
densities are responsible for color vision and highest visual acuity in the foveal visual angle.
These numbers can be compared against single lens color cameras analyzed in the Q2 2016 Color
Camera Sensor Review [12], calculating sensor densities for cameras with similar pixels
characteristics in terms of size. Table 1.2 shows the results in pixels per square millimeter for
different CCD and CMOS image sensors. From these data, it may be said that the maximum cone
density values in the retina and pixel densities used in conventional CCD or CMOS sensors are

fairly similar.
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Figure 1.14. Representation of visual detail using a single glance of the eyes.

Source: Cambridge in Colour.
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Aptina MT9P006 1/2.5” CMOS 2592 x 1944 2.2 um = 207000
Sony IMX036 1/2.8” CMOS 2080 x 1552 2.5um = 160000
Sony IMX136 1/2.8” CMOS 1920 x 1200 2.8 um = 128000
Sony ICX808 1/1.8” CCb 2016 x 2016 3.1um = 104000

Sharp RI32S3AA0DT 2/3" CCD 2448 x 2048 3.45 pm = 84000

Table 1.2. Pixel densities of single lens color cameras.

Source: 2016 Q2 Color Camera Sensor Review (Point Grey).

1.5.3. Angular Resolution

The concept of resolution in relation to images can be interpreted from different
perspectives: some theories define it as the number of pixels or dots contained in an image,
using the term resolution just for a pixel count in digital imaging. Others, however, link the
resolution to the level of detail in a picture, understanding it as the capability of the sensor to

observe or capture clearly objects (information) as small as possible.

The angular resolution or resolving power is the ability of an imaging device to resolve (see
separately) two different point sources at a small angular distance; i.e., the minimum distance
between objects to be distinguished in an image. Westheimer [20] defined visual acuity as the
limit of the ability to discriminate spatial partitioning in the eye’s object space. Other authors
[21], proclaimed that there are multiple ways to understand the acuity parameter of the human
eye but, in order to avoid confusion, we will define the acuity as the capability to discriminate

two punctual sources placed close to each other, when observing from a certain distance.

This angular resolution or acuity is not just about the total number of pixels of an image, but
also about the degree of detail that an imaging device—or the eye—is capable of distinguishing
and capturing. Therefore, the size and the separation between adjacent pixels must also be
considered. Moreover, since it establishes the minimum distance between objects to be
resolved, it can also be determined by the minimum angle formed with respect to the observer

(imaging device, eye).

This minimum angle can be determined from the perspective of geometrical optics—ray
optics—considering light propagation in terms of rays. If two punctual sources must be resolved,
each of them should be detected at least by a pixel sensor, between which a non-excited pixel
should be placed. In other words, we could easily calculate the angular resolution of an image
sensor translating the separation between two non-contiguous pixel sensors outside the

imaging device at a certain distance.
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‘ 16 mm ! 350 mm |

Figure 1.15. Scheme of the angular resolution of the human eye from the perspective
of geometrical optics.

If we analyze the size and distribution of photoreceptors in the human eye, considering that
the smallest size of a cone cell in the fovea is about 1.5 um diameter—with approximated edge-
to-edge separation of 0.5 um [5]—it is possible to establish a separation between cone centers
close to 2 um. As previously explained, when two external point sources are to be solved, the
retinal image must have at least an unexcited cone between the stimulated ones. Therefore, the
minimum distance between two non-contiguous cones is of approximately 4 um. Assuming a
focal length of 16 mm for the human eye, we could easily calculate the angular resolution of the
retinal image translating the separation of two non-contiguous cones outside the eye up to a
normal reading distance (e.g., 350 mm). By performing simple mathematical calculations, the

obtained resolution step is of 87.5 um (see Figure 1.15).

If this concept of angular resolution is applied to conventional imaging devices, it is apparent
that it is not possible to resolve smaller angular steps than the above defined, determined by
the size and the separation of pixels in the image sensor. Analogously, under these
circumstances, the human eye would not be able to resolve angular steps smaller than 87.5 um.
Nevertheless, we are capable of seeing beyond that limit, even though, a priori, we should not
be able to resolve objects bellow this sampling frequency threshold (e.g., common human hair

is nearly 50-60 um thick and it is clearly visible and even resolved at larger distances).

The angle calculated from the resolution step observed in Figure 1.15 is of 52 seconds of arc,
which is close to 1 minute of arc, the value considered by the scientific community as the acuity
or resolving capacity of the human eye and known as the Minimum Angle of Resolution (MAR).
However, there is ample evidence to indicate that the human eye can see below that resolving
power: some authors [22] reported accuracies of 30-25 seconds of arc; others [23], [24],
published results reaching accuracies of a few seconds of arc by measuring the ability to discern
a misalignment among two line segments or gratings (Vernier acuity). Figure 1.16 shows some

examples of how the eye can perceive details with a precision higher than the MAR.
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(c)

(d)

Figure 1.16. Configuration of lines in which location differences can be detected with a
precision higher than the MAR. (a) orientation deviation from the vertical; (b) Vernier
acuity; (c) bisection of a spatial interval; (d) deviation from straightness [20].

1.5.4. Summary of the Comparison

From this comparative study of the human eye and conventional digital cameras, it is possible

to draw the following specific conclusions and findings:

24

The optical system of the HVS and digital cameras presents strong similarities when
considering the general structure, physical dimensions, the light capturing

mechanism or the properties of the lens.

The photoreceptors in the eye (cones) are specialized in red, green and blue (RGB)
light wavelengths. Digital cameras employ the same strategy by using a CFA mosaic

to split the light into primary colors.

The area of a cone is considerably small in comparison with pixel sensors of digital

cameras and it could be limiting the photon flux captured by each sensor.

The dynamic range of the eye largely outperforms the values obtained from digital

cameras with similar characteristics.

The peak cone density in the foveal retina and pixel densities values used in CCD or

CMOS sensors can be considered comparable.
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6. Interms of angular resolution and capabilities to resolve fine details, the human eye

widely exceeds imaging devices with similar pixel sizes and separations.

In general, it can be said that multiple analogies exist between digital cameras and the HVS.
However, there are some aspects related to dynamic range or angular resolution, for example,

which cannot be explained by assuming the operation principles of conventional cameras.

Even though the human eye has a considerably low number of a reduced size sensors, the
visual system shows an impressive performance with a very robust and simple architecture: a
wide dynamic range, high sensitivity to see objects under low-light conditions or controlling the
incoming light to prevent saturation. But in this regard, the most relevant feature is the high-
resolution images it can obtain. This quality is known as visual hyperacuity and allows the human
vision system to outperform artificial imaging systems with similar optical and sensor

characteristics. This concept is explained in more detail in the following section.

1.6. Human Eye Visual Hyperacuity

The resolving power of the eye has for a long time been a subject of keen interest, since it
has been known that the human eye could obtain spatial discriminations below the commonly
established limit of visual acuity. Hartridge reported that the resolving power of the eye greatly
exceeds 60 seconds of arcin 1922 [25]. However, it was Gerald Westheimer who introduced the
term of hyperacuity in 1975 [20], aiming to define in some way the capacity of the eye to resolve
the localization of points below the regular acuity threshold of 1 minute of arc related to the
MAR. In other words, hyperacuity was defined as an additional class of visual threshold based
on locating relative object position. This concept does not contravene the laws of optics, but
suggests the existence of some sophisticated processing performed by the neural network and
the brain. This extraordinary capacity of the human eye has been reported to achieve angular

resolutions of 1 second of arc and even lower [26].

From the perspective of signal (or image) sensing, we can understand the hyperacuity as the
capability of the human eye to resolve details beyond the understandable acuity defined by the
number, size and distribution of photoreceptors. We could say that hyperacuity goes beyond

Ill

the limits set by the retinal “pixels”, or stated another way, transcends sampling limits set by
these discrete receiving elements. It is important to highlight that the visual hyperacuity does
not imply the idea of image super-resolution. This concept involves techniques that construct
high-resolution images from several observed low-resolution images through increasing high-
frequency spectral components and reducing degradations produced by the low-resolution

image capturing process [27], [28].

Although the existence of hyperacuity has been proven, there are significant differences

when trying to determine how the human eye can achieve so high resolving power since
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different explanations have been proposed. Some theories attribute this skill to the capabilities
of the brain, regarding cognitive resolution of points. Even if this mechanism exists in the HVS,
it seems difficult to understand it from the point of view of information theory: new data points

cannot be reconstructed from information that has not been captured.

There are also theories linking the hyperacuity and the micromovements of the eye, stating
that these movements could be helping to fill empty spaces between cones [29], [30].
Nevertheless, others [31] explained that these micromovements improve the acuity in
peripheral vision, but not in central vision. Following this line, microsaccade movements of the
eyes could enhance spatial detail [32]-[34] and there are also those who assert that the
information can be gathered due to small and quick vibrations of the human eye, thanks to
temporal interpolation by combining slightly different images [35]. However, given the
randomness and the high frequency of these micromovements, it results difficult to believe that
the human eye could determine its spatial position at any time. Moreover, the eye requires of a
certain interval of time to adapt the photoreceptors (cones and rods) to different visual
conditions and there is an excitation-relaxation time that could exclude the idea of using

micromovements to improving the visual acuity by combining images.

There are also interpretations based on the randomness of these eye dynamics, which argue
that it can be modelled by a stochastic process [36]—[38] and authors [39] suggesting that the
problem must be faced globally instead of locally since, from the view of the information theory,

it has been established the relation between each photoreceptor and the points of the scene.

As it can be seen, there are multiple theories about the explanation of visual hyperacuity but

it seems difficult to come to an agreement, even if its existence have been demonstrated.

1.7. Diffraction and Hyperacuity

Diffraction is the combination of various phenomena that take place when a wave
encounters an obstacle or a slit. The effects of diffraction are present in every optical system,

limiting the maximum achievable resolution in conventional imaging devices.

Sommerfeld was who first coined the term diffraction in 1954, defining it as “any deviation
of light rays from rectilinear paths which cannot be interpreted as reflection or refraction” [40].
Later, in 1678, Huygens [41] found a method to predict the propagation of a wavefront through
the free space based on the wave theory of light, stating that every point on the wavefront can
be considered a new point source (Figure 1.17). In 1818, the French engineer and physicist

Agustin-Jean Fresnel calculated with high accuracy diffraction patterns, taking some arbitrary
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plane

Figure 1.17. Application of Huygens’ principle to plane and spherical wavefronts.

Source: Encyclopaedia Britannica, Inc.

assumptions and founded on the Huygens principle and the concept of interference introduced
by Thomas Young. Nonetheless, the most important theory came from James Maxwell in 1860,
who identified light as an electromagnetic wave and developed the well-known equations,

creating a consistent theory about electromagnetism, classical optics and electric circuits.

1.7.1. Mathematical Modeling of Diffraction

The different approaches explained bellow are approximations which consider light as a
scalar phenomenon, neglecting that electromagnetic fields are vectors (as explained in
Maxwell’s equations). However, at microwave frequencies these approximations produce highly

precise results, provided that some conditions are satisfied:

= The dielectric medium is linear, isotropic, homogeneous, nondispersive and

nonmagnetic.
= The diffracting aperture is large enough compared with the wavelength.

= The diffracting fields must not be observed too close from the aperture.
» The Rayleigh-Sommerfeld Formulation of Diffraction **!

Gustav Kirchhoff developed the first mathematical approximation of Huygens-Fresnel
Theories in 1882, but a more accurate approach was subsequently made by Sommerfeld, called

the Rayleigh-Sommerfeld diffraction theory.
A monochromatic scalar field can be written as:
u(P,t)=A(P)cos[2zv—¢(P)] (1.5)

where A(P) and g(P) are the amplitude and phase of the wave at a position P, and u represents

the optical frequency. It can also be expressed as:
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u(P,t)=re {U(P)e”z”"t} (1.6)

being U(P) a complex function of position called phasor,
U(P)=A(P)e" (1.7)

In accordance with Figure 1.18 and assuming a source producing a spherical wave at P, such
as U(P,)=A, the phasor at Py is given by:
A jk(ryy +r51)

U(P,)=— || ———cos(n,T,. )ds 1.8
(P) MJZJ - (A, F,y) (1.8)

This result is the Rayleigh-Sommerfeld diffraction formula, which defines the phasor at a
certain point at one side of an aperture, when a spherical wave source is placed in the other

side.
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Figure 1.18. Point source illumination of a plane screen.

= The Fresnel Approximation “?

In this instance, supposing that the diffraction aperture is located in the plane (§,n) which is
illuminated in the positive z direction as shown in Figure 1.19, the wavefield at the point Py in

the plane (x,y)—parallel to the plane (§,n)—is given by:

e Jjkroyy

cos(0)ds (1.9)

rOl

1
U(P0>=j7LJU(a)

which is the mathematical formulation of the Huygens-Fresnel principle. As long as

cos(@)=2z/r, , equation 1.9 can be expressed using a rectangular coordinate system:

Jkroy

V4 e
U(x,y) =7 jzj U(§,77)?d§d77 (1.10)
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Figure 1.19. Scheme of variables for the Fresnel approximation.

where r,, is given by:

Fo =N 22+ (X =EF +y -7 (1.12)

Using the binomial theorem for algebraic expansion of powers, r,, can be approximated by:

rolz{“l(ﬁj +1(M] } (1.12)
2\ z 2\ z

Performing some mathematical operations, we can express equation 1.10 as follows:

Jkz

e
Ulx,y)=
(x,y) I

'Lx2+2 ® ik 240 —'2—”)(4-
| {U(f,n)e]”({ ” )}e L e (1.13)

which is clearly recognizable to be the Fourier Transform of the product of the phasor U(&,7)

at the aperture and a quadratic phase exponential.

The Fresnel diffraction equation is an approximation, which is applicable in the near-field

region of the aperture.
= The Fraunhofer Approximation *?!

The Fraunhofer diffraction equation is used to model the diffraction of waves when the
diffraction pattern is observed in the far field of the aperture (e.g., the focal plane of an imaging

system).

The approximation is based on the fact that when

k 2 2
5 K& 1 ),

; ) (1.14)
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then,

JLEEI
e 2z ~

~1 (1.15)
and therefore,

jkz .k
J J

K22 * _2r xE+
Ul )= 2" [ [utme =" aedy (1.16)
jz c

which is known as the Fraunhofer approximation and it is the Fourier Transform of the

distribution in the aperture itself.

1.7.2. Diffraction in Optical Systems

The phenomenon of diffraction exists in the optical system of every imaging device and it is
considered to be the main limiting factor to achieve the maximum resolution. Theoretically, a
point source emits a spherical wave close to the source but, as these wavefronts propagate, they
appear more planar and become a plane wave in the far field (see Figure 1.20). When this infinite
plane wavefront goes through an aperture, it is spatially windowed producing diffraction. In this
case, it will be assumed that the aperture of the optical system is uniformly illuminated and the
produced diffraction corresponds to the Fraunhofer diffraction pattern—the focal plane is

placed in the far field of the aperture—.

The main effect of diffraction is transforming point sources into blobs, which depend on the
shape of the aperture, since it corresponds to the intensity profile of the aperture’s Fraunhofer
diffraction pattern. This spatial distribution of energy is defined by the Point Spread Function
(PSF) and describes the response of an imaging system to a point source: the impulse response

of an optical system.

The PSF or intensity pattern produced by a circular aperture is known as the Airy Disk, which

was first studied by George Biddell Airy, who wrote the full theoretical treatment explaining this

o)) - |[|-

Figure 1.20. Transformation of spherical waves into plane waves in the far field.
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phenomenon in 1835 [43]. If we assume a circular aperture of radius g, the intensity pattern

produced at the focal plane located at a distance F from the aperture is given by:

2J. (kasin@) 2
o) =r | ——- 1.17
(@) 0( kasin@ J ( )
P, za’
e (1.18)
k=2% (1.19)
A

where Iy corresponds to the maximum intensity at de center of the disk, J; is the Bessel function
of the first kind and order one, 6 defines the angle formed by the axis perpendicular to the
aperture and the line between the observation point and the center of the aperture, Po is the

incident power, 4 is the wavelength and k the wave number (see Figures 1.21 and 1.22).

1.7.3. Diffraction-Limited Imaging Systems. The Rayleigh Criterion

As explained in previous sections, the pixels on the sensor of imaging devices based on CCD
and CMOS technologies are uniformly distributed in a square matrix-like layout. The resolution

achieved by a particular device depends to a great extent on the size of these light-sensitive

P
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Figure 1.21. Scheme of variables in an Airy Disk.
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Figure 1.22. (a) Intensity distribution of an Airy Disk. (b) Computer-generated Airy
Disk.
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cells, where the smaller the pixels are the higher resolution is obtained. However, the size of
pixels cannot be reduced endlessly due to a practical limit established in connection to
diffraction. As stated above, the diffraction introduced by the optical system transforms point
sources into blobs when light is projected on the sensor (the focal plane). Since the intensity
value captured by each pixel is the result of integrating the incoming power into its area during
the exposure time, the captured image depends directly on the relationship between the
diffraction blob and the pixel size. If a focused and clear (not blurred by diffraction) image must
be captured, the blob must be small and sharp enough to fit most of its energy concentrated in
the main lobe into a single pixel and, in this way, the distortion produced by diffraction will not
affect neighboring pixels (Figure 1.23). Therefore, we can say that diffraction establishes the
upper achievable resolution limit and these devices are said to be diffraction-limited imaging
systems. In case that the diffraction blobs were bigger than the area of a pixel, a single point

source would excite more than one sensory cell, producing a blurred image over the sensor.

The separation between pixel sensors in diffraction-limited system is established by means
of Rayleigh criterion: two points (or lines) are just resolved if the peak center value of the PSF
generated by one point lies exactly on the first zero of the PSF created by the second point
(Figure 1.24).

In terms of angular resolution, the minimum angle that satisfies the Rayleigh criterion is given

in radians by:

(1.20)

where 1 is the wavelength of light and a the diameter of the circular aperture (both in the same

units of length).

Figure 1.23. Diffraction-limited systems: diffraction pattern fits most of the energy into
a single pixel.
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Figure 1.24. The Rayleigh criterion.
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Figure 1.25. Rayleigh criterion representation between two lines: (a) resolved;
(b) unresolved.

If two objects (point sources) are placed at this angular distance or larger, then they will be
resolved. Nevertheless, if the distance between objects is smaller, the perception is that of one

uniform distribution and they will be perceived as just one object (see Figure 1.25).

1.7.4. Diffraction in the Human Eye

In section 1.5.3 it has been calculated the angular resolution for the human eye—from the
perspective of geometrical optics—analyzing the size and distribution of cones on the retina,
and obtaining a resolution step of 87.5 um. Nevertheless, in these calculations no consideration

has been given to the effect of diffraction.

In connection with the resolving power, diffraction is in general considered a limiting factor
because the Rayleigh criterion determines the minimum separation between sensors for a given
diffraction pattern (PSF). Let us say that it could be possible to assume the human eye working
according to the principles of diffraction-limited systems. Supposing that the aperture of the
pupil variates from 2 mm (contracted) to 6 mm (dilated) in diameter, a focal distance of 17 mm
and the wavelength of the visible spectrum of 550 nm, we can calculate the radial distance of

the Airy disc produced in the human eye from de following equation:
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x=1.222F (1.21)
a

where 1 is the wavelength, F the focal distance and a the diameter of the circular aperture (the

pupil).

The values derived from this formula show that the radial distance of the Airy Disk is of 1.92
um when the aperture is 6 mm (low light) and 5.76 um for an aperture of 2 mm (daylight).
Therefore, a point source produces a spot from 3.84 to 11.52 um wide over the retina. If we
consider that the size of a cone cell in the fovea is about 1.5 um diameter with a separation
between cones of 0.5 um (separation between cones centers of 2 um) [44], it seems obvious
that the blobs produced by diffraction in the human eye are considerably bigger than the area
of a single cone: the energy is spread over multiple cells both for minimum and maximum

aperture sizes (see Figure 1.26).

It seems to be clear that the human eye does not even come close to meeting the Rayleigh
criteria: the energy coming from a single point source is spread over a relatively large area,
exciting multiple neighboring pixels and projecting a blurred image over the retina because of
diffraction. In conclusion, we can say that it is difficult to believe that the human eye works as a

diffraction-limited system.

1.7.5. Other Causes Contributing to Blur the Retinal Image

As it has been mentioned above, the retinal image seems not to be clear and sharp, but
strongly blurred because of the effect of diffraction of light produced by the entrance aperture
(the pupil). On top of this, there are other factors that could also be contributing to blur even

more the captured image.

Figure 1.26. Scheme of the semi-hexagonal lattice structure of cones on the retina and
the size of the Airy Disk for an aperture of 2 mm (green) and 6 mm (blue).
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The photoreceptors (cones) on the retina, apart from the frequency response, they also
produce some chemical responses which react to the arrival of photons [45]. These chemical
reactions associated to the photon capturing mechanism create some degree of coupling

between contiguous receptors, and it could be increasing the blurring effect.

On the other hand, during visual fixation different movements exist in the HVS: tremor, drifts
and microsaccades [46]. Tremor seems to be the smallest movement in the eye with amplitudes
about the diameter of a cone and approximated frequencies of 90 Hz. These movements are
difficult to determine accurately, since they are thought to be aperiodic wave-like motions and
independent in the two eyes [47]. Drifts, otherwise, have larger ranges of motion and lower
frequencies and occur simultaneously with tremor [48]. At last, during voluntary fixation occur
microsaccades, that are small and fast movements with amplitudes of hundreds of
photoreceptor widths [49] and durations close to 25 ms [50]. Some theories claim that these
random involuntary eye movements (tremor, drift and microsaccades) could be helping to
achieve visual hyperacuity but, from our point of view, they could just contribute to generate

blurrier images.

The last factor would be related to the temporal integration behavior of the HVS, which
seems to be an important aspect for stereoscopic vision [51]. This integration time of the eye
can be also understood from the perspective of photoreceptors capturing signals in a capacitor-
like behavior. Since it has been reported that the integration time of the detection process can
be larger than the period of microsaccade movements [32], it could also be defocusing the

image.

Summarizing, we could say that even diffraction is the main contributor to blur the image
projected over the retina, there are other additional factors that could be adding an extra

blurring effect before the image is captured by the HVS.

1.7.6. Diffraction Enabling Hyperacuity

As formerly explained, there exist multiple theories that attempt to explain visual
hyperacuity, some of them based on microsaccade movements or the integration behavior of
the HVS and others founded on interpolation techniques combining different images.
Nevertheless, from our perspective, both microsaccades and the integration time along with the
diffraction effect produced by the entrance aperture (the pupil) could be contributing to

produce a strong blurring effect on the image projected onto the sensor (the retina).

Even though diffraction is commonly seen as a problem and a limiting factor with regard to
the maximum resolution achieved by imaging systems, it could have a key role on explaining the

visual hyperacuity.
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This concept may seem contradictory but, nevertheless, there are publications explaining the
chance of going beyond the supposed limit set by diffraction when talking about resolution
improvement [52]-[54]. Following this direction, other approaches raised the idea that the
blurring produced in the human eye on account of diffraction could be enabling hyperacuity:
[55] affirms that spatial smoothing does not hurt the possibility of extracting information and it
could be effectively used under certain conditions, while [56] demonstrates how point-
diffracted data can apparently be super-resolved by making use of certain methods.
Additionally, [21] considers that the introduction of a pre-blurring stage prior to spatial sampling
of an image can improve the ability to localize some image features and increases the capacity

to detect movements, which is known as motion hyperacuity.

As previously said, the introduction of a controlled distortion—understanding it as the
diffraction introduced by the optical system—can be the key issue to achieve visual hyperacuity
or, in other words, exceed the angular resolution or acuity set by the number, size and
separation of photoreceptors. From now on, possible distortions produced by other phenomena
as microsaccade movements or chemical coupling reactions will be omitted, since its effect can
be assumed as an increase of distortion that can be reproduced with the use of stronger

diffraction patterns or PSF.

As a preliminary remark, it can be said that diffraction spreads information over a wider area
and generates a spatial diversity that could be of great advantage. The energy coming from a
single point source is spread over a bigger area, which means that this incoming energy will be
captured by multiple neighboring sensory cells. This concept breaks the established relation that
links each photoreceptor with a unique pointin the observed scene and generates a more robust
system, improving the system sensitivity and increasing the Signal-to-Noise Ratio (SNR) because
multiple sensors receive information from the same point source. Moreover, the spreading of
light could also contribute to capture or sense fine details that would be spatially located
between detectors, that could not be detected in absence of diffraction (Figure 1.27 depicts this

idea in a more visual form). Another possible potential advantage of the introduction of a known

I

(a) (b)

Figure 1.27. A point source that cannot be detected initially (a) is detected thanks to
the spreading of light produced by diffraction (b).
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blur is that it can be understood as an anti-aliasing filter for the effective sampling performed
by the discrete distribution of photoreceptors. Diffraction produces a low-pass filtering (LPF)
and the abrupt transitions of the observed image (high frequencies) are converted into smooth
and slowly-varying functions (lower frequencies), relaxing the signal sampling requirements.
This concept could be related to the reduced number of sensors used in the HVS for the sharp
central vision where hyperacuity is produced. Moreover, the most relevant information of

signals and images is kept in the lower frequencies and no critical data would be lost.

Therefore, starting from the hypothesis that a strongly blurred image is projected over the
retinal photoreceptors, the neural network in the human brain should just solve an inverse
problem or deconvolution, which seems not to be so complicated as simple mathematical
operations are involved. At this point, the capability of the human eye to solve in an effective
way the inverse problem cannot be questioned, understanding it as the ability to recover a clear

and sharp image from a distorted, blurred one.

As a final comment, we can say that the HVS can be considered a diffraction-enhanced
system, on the grounds that it is taking advantage of diffraction to achieve visual hyperacuity far

from conventional imaging devices, widely known to be diffraction-limited.

1.8. Conclusions

This chapter analyzes the human visual system and more precisely the human eye, starting
from anatomical and physiological aspects and, later on, comparing it against conventional
imaging systems. As a result of this analysis, it can be assumed that both systems present some
analogies and similarities. First, both optical systems seem to be comparable in terms of
structure and dimensions (aperture, focal length, etc.). On another note, cone photoreceptors
in the eye are specialized in red, green and blue (RGB) light wavelengths, while digital cameras
make use of Bayer filters and other CFA for splitting the light in RGB channels showing an
equivalent scheme. Additionally, the cone density in the fovea and pixel densities values used in

CCD or CMOS sensors are reasonably comparable.

In contrast, there are some significant dissimilarities too: the average area of a cone is
considerably smaller than the area of pixel sensors used in digital cameras, which could be
limiting the photon flux captured by each sensory cell. Nevertheless, the human eye presents
greater sensitivity in low-light conditions and good mechanisms to avoid saturation, largely
outperforming the dynamic range of digital cameras. But the most remarkable feature is the
capability of the human eye to resolve details in terms of angular resolution widely exceeding
imaging devices with equivalent pixel sizes and separations. This amazing capability of the
human eye to break the limits of resolution defined by the number, size and distribution of the
photoreceptors is known as visual hyperacuity. Even if multiple theories have been developed

trying to find an explanation of hyperacuity, it seems to be difficult to reach an agreement.
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The phenomenon of diffraction exists in the eye like in all optical systems and the energy
coming from a single point source is spread over a wide area, projecting a blurred image over
the sensors and contravening the Rayleigh criteria. Therefore, it is difficult to believe that the
eye works as a diffraction-limited system. From our point of view, this blurring effect produced
by diffraction could be the key issue to achieve visual hyperacuity: the spreading of light over a
wider area generates spatial diversity, creating a more robust system, improving the SNR and
making possible to detect fine details. At the same time, it works as an anti-aliasing filter and

relaxes the sampling requirements: it allows the use of a reduced number of sensors.

Taking this premise into account, it is reasonable to think that the human visual system may
be performing some inverse filtering to remove the blur introduced by diffraction, a process that

could perfectly be carried out by the neural network of the human brain.
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Visual Hyperacuity Simulation Method

2.1. Introduction

As stated in the previous chapter, the main hypothesis of this research work is based on the
following statement: the diffraction produced by the optical system of the human eye plays a
decisive role in achieving visual hyperacuity, which can be defined as the ability of the human
eye to break the limits of resolution established by the number, size and separation of the

photoreceptors.

On this assumption, it has been developed a method that aims to simulate the visual
hyperacuity: the main objective is to improve the final image resolution when the number of
available sensors is limited by means of the introduction of a controlled diffraction at the

entrance of the system.

Figure 2.1 provides a graphic description of the proposed method: observe how a small detail
may not be captured when the number of sensors is reduced (a). The introduction of a controlled
diffraction (blur) spreads the information over a wider area and it makes possible to capture the
information, despite the limited number of detectors (b). Next, we can perform an interpolation
process creating new data points between the existing ones (c). Eventually, an inverse filter is
applied to remove the blur introduced by diffraction, obtaining a sharp image with an enhanced

resolution when comparing with the number of sensors used for image capturing.

This chapter provides a detailed description of the visual hyperacuity simulation method that,
although it may look simple and straightforward at first sight, each stage requires further
attention and analysis. The most critical step corresponds to the last one, due to the fact that
theinverse problem is usually ill-posed and generates problems associated to stability and noise-
amplification. Therefore, this stage requires further in-depth study and multiple methods or
approaches are described. Mention that the use of 1D signals or 2D images has been used

indistinctly, since it is not of great significance.
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Figure 2.1. Graphic representation of the visual hyperacuity simulation method.

41



Application of Visual Hyperacuity to Imaging and Antenna Systems

2.2. Diffraction

The introduction of a controlled diffraction in a first stage produces the spreading of light
coming from a point source in a wider area. The consequence of this expansion of energy is
transforming sharp points into larger size blobs, generating a blurring effect over the whole
image. Figure 2.2 shows the effect of a PSF approximating the diffraction produced by a circular

aperture.

The following sections discuss multiple aspects linked to the introduction of a specific

distortion in signals or images.

Figure 2.2. (a) Original test image. (b) Image blurred because of diffraction.

Original image: Michael Kenna.

2.2.1. Mathematical Model for Image Blurring

Vogel [57] suggests a mathematical method which describes the introduction of a blur in an
image, starting from the general model proposed by [58], a valid equation for modeling the

diffraction of light when it is propagated from the source through a medium:
glx,y)= [ kb xy,y ) f(x',y ) dy* (2.1)

where f is the light source or object (in optics), the kernel function k is the PSF and g can be
defined as the blurred continuous image, which represents an energy density or, analogously,

the number of photons per unit area.

The image is usually captured with sensors that consist of a square matrix of pixels €,

(0<i<n,—1,0<j<n, —1) used for photon counting. The energy captured by an individual array

element (pixel) can be defined by

g; =Hgl_j_g(x,y)dxdy. (2.2)
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If it is assumed that each pixel Q, has an area of AxxAy and (x;,y;) is the midpoint we

obtain a discrete model as follows:

n,-1n,-1

g;jZZzk(Xi,Xﬂ,yj,yu)f(xﬂ,yU)AXXAy- (23)

#=0 v=0

When the blurring process is considered invariant under spatial translation, the PSF can be

represented by means of a function of two variables, instead of four variables:
kix,x',y,y')=k(x—x",y—-y'), (2.4)

and equation 2.1 is reduced to:
1 1 1 1 1 1 1 1
g, y)=[ [ kix=x',y =y )f(x',ydax'dy", (2:5)

considerably simplifying mathematical computations.

By analyzing equation 2.5, it can be observed a convolution form, given the source f = f(x,y)
and the PSF k=k(x,y), and therefore, the blurred continuous image g can be computed using

the convolution theorem:
g=F"*{F{k|F{f}}, (2.6)

where the continuous Fourier Transform of a function f defined on R? (d=2 for 2D imaging) is

defined as:
F{fl@=]_ fe ™ dx, weR’. (2.7)
The inverse continuous function of the Fourier Transform is given by
F{g}(x)= IRd glwe?™ °dw, xeRY. (2.8)

From equation 2.6, it can be derived the Fourier inversion formula:

f=F" {%} (2.9)

However, if F{k} takes values of zero, this formula is not valid (division by zero). Moreover,

if it takes values close to zero, the reconstructed f is unstable in relation to perturbations in the
data g. This is the case when the problem is ill-posed or, in other words, when any of the

conditions for well-posedness explained below is violated:

An operator equation K(f)=g, K:H, =>H,, itis well posed if:
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i. Foreach geH, there exists a solution feH,.
ii. The solution fis unique.

iii. The solution is stable with respect to perturbations in g, which means that if Kf. =g.
and Kf =g, then f—f. if g—g..
2.2.2. The Point Spread Function

As explained in Chapter 1, the intensity pattern (PSF) produced by a circular aperture a at a

focal distance Fis an Airy Disk described by:

16) =1, (wj =1, (211 (X)j (2.10)
kasind X
x =kasing (2.11)

In unidimensional approaches, the diffraction pattern created by a slit aperture can be

approximated by a square sinc function, such as the following one:
sin(x) ?
sincz(x)z(—J . (2.12)
X

This function shows a very similar distribution to the Airy pattern in the time-space axis and
a comparable behavior for signal processing when analyzing the case in 1D, considering that a
slit aperture is equivalent to a circular aperture. However, things are different in 2D, where the

equivalent aperture of a slit can be understood as a square shape aperture. Therefore, the 1D
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Figure 2.3. Square sinc type intensity profile of a slit aperture.
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(a) (b)

Figure 2.4. Intensity pattern of a slit (a) and a square aperture (b).

function sinc?(x) can now be modeled in a 2D spatial domain (x,y) by sinc?(x)-sinc?(y). Figure 2.4

shows both the effect produced by a slit and a rectangular aperture on an image.

However, if we want to consider a circular aperture, x and y can no longer be treated

independently. The Cartesian coordinates must be converted to polar coordinates by means of:

r=yx*+y’ (2.13)

where r determines the radial distance from the central point of the image (x,y)=(0,0). In this
way, the intensity pattern produced by a circular aperture (Figure 2.5) can be approximated by

the function sinc?(r) as depicted in Figure 2.6.

Figure 2.5. Intensity pattern of a circular aperture.
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Figure 2.6. Square sinc type approximation of a circular aperture.
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Figure 2.7. Radial cross-section through the Airy Disk (blue) and the approximation
sinc? function.

Supposing an equal width for the main lobe of both functions (Airy pattern and square sinc),
the most significant difference between these functions can be appreciated in the side lobes:
the Airy pattern presents lower amplitudes than the sinc? function and the position of zeroes
does not match (see Figure 2.7). Nevertheless, we can consider that side lobes stay in general
below the detection threshold when talking about sensitivity and this approximation can be

considered acceptable.

It must be said that the election of the square sinc function used to model the diffraction
introduced by the aperture has been arbitrary. It is worth mentioning that the first approaches
of the method were made in 1D and, in this case, a circular aperture can be modeled as a slit.
Moreover, the sinc? function implies less computational costs and greater simplicity to modify

some parameters related to the PSF, such as the main lobe width or amplitudes.

In any case, the choice of one or other PSF is not of great significance since it only depends
on the shape of the aperture, which is the Fourier Transform of the distribution in the aperture

itself (Fraunhofer approximation). Therefore, it is not a crucial issue in the proposed method.

2.2.3. Image Blurring in the Spatial Domain: Convolution

As stated in the former section 2.2.1, the image blurring can be understood as a discrete
spatial convolution of the original image f[x,y] and the PSF or kernel h[x,y] which acts as a LPF,

resulting in a blurred image g[x,y].

gl yl=Flxylshioyl= > S fli, flglx—i,y— ] (2.14)

i=—00 j=—00
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Even if the equation of the discrete convolution has an infinite range, if we consider an
original image f of MxN pixels and a PSF h of PxQ points, the size of the blurred image g will be
M+P-1xN+Q-1 pixels.

There are some aspects that should be taken into account when blurring images in the spatial
domain. We can understand the discrete convolution as the PSF h (a mask of PxQ pixels),
sweeping the original image f by columns and rows and assigning a new value to each pixel, as
explained in Figure 2.8. The blurring effect produced by the discrete convolution in a delta-like

single pixel can be observed in Figure 2.9.

The blur or distortion introduced in an image can be classified as spatially invariant or variant.
In the case of invariant distortion, the PSF is independent regarding the position in the image,

which means that an object will be visualized in a similar way no matter its position. In other

Source pixel

Convolution kemel
{emboss)

Mew pixel value (destination pixel)

Figure 2.8. Kernel convolution.

Source: modified from Apple Developer.

(a) (b)

Figure 2.9. (a) Delta-like pixel and (b) the effect produced by the discrete convolution
with the PSF.
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Figure 2.10. (a) Original image. (b) Spatially invariant distortion. (c) Spatially variant
distortion.

words, the same kernel can be used to blur the whole image, producing a homogeneous blurring
effect. However, when considering a space-variant distortion, different kernels must be used to
calculate the distortion introduced in different locations, obtaining an irregular distortion
depending on the position of objects on the image (observe Figure 2.10). The blur produced by

diffraction in our method will be considered as a spatially invariant distortion.

Another issue to consider is connected to the boundary conditions of images, which are used
to approximate the image scene outside the field of view due to the problems that pixels near
the edges of a blurred image can generate, such as ringing [59]. This boundary conditions are
usually not included in the PSF but in the original image and there are multiple methods for

handling image edges:

Periodic: the image is repeated itself in all directions.

Zero: the pixels outside the borders of the image are zero (zero-padding).

Replicating: the elements outside the image boundaries repeat the border elements.

Reflective: the pixels outside the boundaries are a mirror of the pixels inside the boundaries.

Periodic Zero Replicating Reflective

Figure 2.11. Image padding to incorporate boundary conditions [59].
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In our case, in order to avoid problems in the pixels close to the edges, zero boundary
conditions are used, performed by means of a zero-padding and enlarging the size of the original

image up to M+P-1xN+Q-1 pixels.

2.2.4. Image Blurring in the Frequency Domain

Considering a discrete image flx,y] of MxN pixels, the corresponding Discrete Fourier

Transform (DFT) is expressed by:

M-1N-1

ﬂmn=2§yuyk“mﬁ%ﬁ (2.15)

x=0 y=0
The inverse DFT is given by:
1 M-1N-1

z Z Flu,v]e S
MN o= . (2.16)

flx,yl=

Note that F[u,v] is a complex matrix with a size of MxN elements, where the variables u and

v are discrete spatial frequencies.

If we apply the convolution theorem to equation 2.14, which states that under suitable
conditions the Fourier Transform of a convolution is the pointwise product of Fourier

Transforms, we obtain:

alx,y]= fx,y1* hix,y] e Glu,v]=Flu,v]- Hlu,v]
oFT (2.17)

where F[u,v], H[u,v] and GJ[u,v] are defined as the DFT of the original image f{x,y], the PSF h[x,y]

and the blurred image g[x,y] respectively.

The fact that the convolution in the frequency domain is an element to element product
means that the two complex matrixes F[u,v] and H[u,v] must have the same size and, thus, also
the original image f[x,y] and the PSF h[x,y]. If this is not the case, a zero-padding must be

performed prior to calculating the DFT.

This method for calculating convolutions becomes of great importance, resulting in a
considerable reduction in the computational power compared to the needed to compute the
convolution directly. Besides, the fact that the convolution is defined as a point to point product
of Fourier Transforms enables the possibility of recovering the original image—eliminate the

introduced blur or distortion—just by means of a simple division:

Glu,v]

Glu,v]=Flu,v]-H[u,v] < Flu,v]= Hluv]

(2.18)
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However, it has to be said that things are not really that simple, since—as explained in section
2.2.1—the problem can be ill-posed and this solution becomes unstable when H[u,v] takes
values close to zero or the blurred image G[u,V] is slightly perturbed. In any event, it must be
emphasized that the blur introduced by diffraction is totally reversible if certain conditions are

met.

Figure 2.12 demonstrates the previously described entire process, where 2 different
diffraction patterns have been used in parallel to blur an image: a sinc? type PSF (left) and an

Airy Disk PSF (right). A pointwise multiplication has been performed using the Fourier

Airy

sinc? Disk

N flxyl .

g hixyl -

f'xyl

Figure 2.12. Image blurring and de-blurring process by multiplying Fourier Transforms,

using sinc? type (left) and Airy Disk (right) Point Spread Functions. Original image f (top

center) and from top to bottom: cross sections of the PSF h through the central plane,
blurred images g and recovered images f’.
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Transforms of the original image f (at the top center) and the PSF, resulting in a distorted, blurred
image. Subsequently, this blurred image has been divided (in the frequency domain) by the
Fourier Transform of the PSF, recovering an estimation of the original image. Observe how the
estimations f’ obtained in the two cases—sinc? and Airy Disk diffraction patterns—are accurate

representations of the original image f.

In conclusion, we can say that the introduction of a controlled diffraction effect in an image
is a totally reversible process, always subject to specific conditions. Therefore, this makes it
possible to take advantage of other benefits produced because of diffraction, such as the spatial
diversity or the lower signal sampling requirements. Additionally, it has been demonstrated that
the election of a determined PSF over the other seems not to be such an important matter, since
the diffraction effect produced on the image is somewhat similar and it can be reversed without

any noticeable problem.

2.3. Image Sampling

In the field of Digital Signal Processing (DSP), the sampling procedure can be understood as
the transition from continuous signals (also known as analog signals) to discrete signals (digital
signals). The image capturing process can be considered as a sampling process: the real scene—
a 2D continuous-space signal—observed by the imaging system is projected through the optical

system onto the sensor and subsequently converted to a 2D discrete signal, a digital image.

The two-dimensional sampling function (a 2D impulse function) is constructed from Dirac

delta functions as follows:

slx,yl= i i olx—mT,,y—nT]. (2.19)

m=—00 N=—00

By applying the sampling property, the sampled image is given by:

glx,yl-slx,yl= D D" glmT,,nT,16[x—mT,,y—nT,] (2.20)

m=—o0 n=—00

where T is the sampling interval and f, :i is the sampling frequency or rate.
T.

s

Figure 2.13. The sampling function.
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In order to capture all the information in the sampling process, it must be satisfied the
Nyquist-Shannon sampling theorem [60], which establishes a minimum sample rate f; for a given

band-limited signal (or image) with a maximum frequency fuax:

£, > 2 i (2.21)

Equivalently, for a particular sample rate f;, the signal will be perfectly sampled for a

maximum frequency f,,,, < f. /2, but not for higher frequencies.

The sampling process of a signal—or an image—generates multiples copies of the spectrum
centered at multiples of f; and combined by addition. Supposing X[f] the spectrum of a band-
limited signal (X[f]=0 for all |f]|=fmax), if the sampling rate meets the Nyquist-Shannon theorem
established in 2.21, the signal will be perfectly captured or reconstructed. However, if this
theorem is not satisfied, the copies of the spectrum will be overlapped, creating an aliasing

effect and corrupting the signal (observe Figure 2.14 for a better understanding).

Even if the Nyquist-Shannon sampling theorem can be applied to frequency band-limited
(discrete) signals, its application is not so clear when considering continuous signals or images.
Notice that the Fourier Transform of a continuous signal is an infinite sum of harmonics with an

infinite bandwidth. Therefore, it is not possible to sample it satisfying the Nyquist theorem, since

A X[
Fonx @) Fuonx f
il
: t >
. T (b) Fuo .
A XA
aliasing aliasing
; < . ; >
£ Fow Fitfun (€) Fifum Fum fs

Figure 2.14. (a) Spectrum X[f] of band-limited 1D signal. (b) Spectrum X;[f] of a
correctly sampled signal (fs>2fmax). (c) Spectrum X;[f] of an incorrectly sampled signal
(fs<2fmax): aliasing.
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it would be required an infinite sampling rate f;. In order to avoid aliasing, a low-pass filter (anti-
aliasing filter) is used prior to the sampling process, which ensures that the signal is band-limited

to a frequency fuax, where fuax<fs/2.

2.3.1. The Sampling Process in Diffraction-Limited Systems

As mentioned in Chapter 1, in diffraction-limited imaging systems the diffraction pattern
(PSF) and the size and separation of the sensors is what determines the maximum achievable
resolution, and therefore, the maximum frequency. The separation between sensors is
established by the Rayleigh criterion, being equivalent to the sampling interval Ts in terms of
DSP.

The Full-Width at Half Maximum (FWHM) points can also be used to determine the minimum
distance to resolve the PSF, which is nothing more than the width of the diffraction pattern
measured between the points that are half the maximum amplitude. Figure 2.15 shows the
FWHM of a Gaussian PSF and the minimum sampling intervals T,=FWHM required to resolve

contiguous points in diffraction-limited systems.

PSF /4%

PSFyu |
2

FWHM

PSF 4%

PSF1x

‘ !
T,.=FWHM

Figure 2.15. FWHM of a Gaussian PSF (top) and minimum sampling intervals T,=FWHM
in a diffraction-limited system.
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Let us consider the 1D discrete signal of Figure 2.16 as the signal to be sampled by a
diffraction-limited system. Observe how the signal envelope corresponds to a pulse train with
a period T of 20 samples, where multiple zero values have been introduced randomly to

generate high-frequency spectral components. The total signal length is of N=200 samples.

When sampling the signal using a diffraction-limited system with a Gaussian PSF of FWHM=5
samples (Figure 2.17 top) the sampling interval Ts must also be of 5 samples, resulting in a signal
with a total length of N;=40 samples (see Figure 2.17 bottom). Observe how the signal envelop
(corresponding to the lower frequencies) is captured, but high frequency components are lost,

since the maximum frequency is limited by the sampling interval Ts.

Normalized Amplitude

02— =

0 20 40 60 80 100 120 140 160 180 200
Samples

Figure 2.16. 1D discrete signal.
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Figure 2.17. Gaussian PSF with FWHM=5 samples (top). Signal sampled by a
diffraction-limited system Ns=40 samples (red markers), compared to the original

signal (grey).
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Figure 2.18. Gaussian PSF with FWHM=1 sample (top). Signal sampled by a diffraction-
limited system Ns=200 samples (red markers), compared to the original signal (grey).

The only way to capture high-frequency components is to reduce the sampling interval and,
thereby, the PSF must be also narrower. Figure 2.18 shows the result of sampling the same signal
but using a PSF with a FWHM of 1 sample and equal scanning steps T. In this case, the signal is
perfectly captured—even if sharp edges are slightly softened—and all the spectral components

are correctly sampled.

It can be concluded from this section that in diffraction-limited systems, what determines
the maximum frequency of the captured signal is the sampling frequency f;, given the Nyquist-
Shannon theorem, which establishes that fuyax<fs/2. This sampling interval set by the FWHM of
the PSF must be fully satisfied if a clear and sharp signal must be captured, because in this way,
most of the energy concentrated in the main lobe of the PSF is captured by a single sensor or
sample. In the case of sampling at smaller intervals, neighboring samples would be affected

creating a blurring effect on the captured signal produced by the diffraction pattern.

2.4. Signal Oversampling

It has become clear that when sampling signals or images, the maximum frequency is
established by the sampling interval T;, the reciprocal of the sampling frequency f.. This
condition based on the Nyquist-Shannon theorem makes it impossible to detect, recover or even
reconstruct any spectral component above this frequency. Starting out from this premise, the
only possible way to overcome this limit is to increase the sampling frequency, or analogously,

to decrease the scanning intervals: oversample the signal. In DSP, oversampling is the process
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of sampling a signal (or an image) using a sampling rate significantly higher than the sampling

frequency established by the Nyquist rate.

In first instance, the signal would be blurred due to the overlapping effect produced by
contiguous PSF, but the total number of samples would be higher because of an increase in the
sampling rate. Nevertheless, as explained in section 2.2, the introduction of a controlled

diffraction in a signal or image is totally reversible if certain conditions are met.

The discrete signal shown in Figure 2.16 has been sampled at intervals of T;=1 sample and
using a Gaussian PSF with FWHM=5 samples by means of a point-to-point product of Fourier
Transforms. The result is a signal with a total length of N;=200 samples (the same length as the
original signal), but with smooth and slow transitions, since high-frequency spectral components
are considerably attenuated due to the LPF introduced by the PSF (Figure 2.19). This distortion

would be appreciated as a blurring effect when applied to 2D images.
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Figure 2.19. 1D discrete signal (grey) sampled at sampling intervals T,=1 sample using a
PSF of FWHM=5 samples (red markers).

2.4.1. Oversampling through Interpolation

In some cases, it is not feasible to reduce the sampling intervals as much as required to obtain
a specific number of samples. This particular situation may occur, for example, when a given
system (e.g., an imaging device) has a limited number of sensors and it is not possible to
configure neither the sampling intervals nor the number of samples acquired by the system. The
way to generate new samples between the captured data points is to perform an interpolation

process.

On this point, it is of great importance to create the new points with high accuracy because
small estimation errors would directly affect the stability of the system if an inverse filter is
required. Nevertheless, the introduction of a controlled diffraction at a previous stage makes
possible a more precise interpolation, as the signal presents slower variations and smooth
transitions when compared with the same signal, but in absence of diffraction. This idea is
depicted in figure 2.20 for better visualization: on the upper part of the image, an original test

signal (sharp, diffraction-free) has been interpolated (red markers) by means of a cubic
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Figure 2.20. Cubic interpolation of a diffraction-free (top) and a diffracted signal
(bottom).

interpolation method; at the bottom part, a controlled diffraction has been introduced to the
original test signal and then it has been interpolated in an identical manner. Observe how the
interpolation is much more accurate in the presence of diffraction, thanks to the slow and

smooth variations of the signal.

Taking advantage of this fact, we could sample the signal in Figure 2.16 at sampling intervals
of T,=2 samples (resulting in a signal length of Ns=100 samples) and then interpolate it in order
to generate new intermediate data points up to 200 samples. As it is shown in Figure 2.21, the
result is very similar to the one achieved by oversampling the signal at intervals of T,=1 sample

and depicted in Figure 2.19.
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Figure 2.21. 1D discrete signal (grey) sampled at sampling intervals T,=2 samples using
a PSF of FWHM=5 samples and subsequently interpolated (red markers).
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In brief, whether by oversampling the signal using small sampling intervals or implementing
an interpolation process to generate new data points, the result is a blurred signal with an
increased number of samples widely exceeding the sampling rate determined by the Nyquist
criterion and, therefore, being possible to recover or reconstruct spectral components at higher
frequencies. However, for this purpose it would be necessary to apply some inverse filtering or

de-blurring process.

2.5. The Inverse Problem

Inverse problems are usually related to the estimation of certain data starting from indirect
measurements—or captures—of information. In short, it involves the use of some
deconvolution or inverse filtering method to estimate a signal as accurately as possible. This

issue is a matter of great importance in multiple scientific and industry applications, such as:

- Medicine (tomography, ultrasonic, nuclear imaging).

- Communication systems.

- Radar systems.

- Antenna measurement and characterization.

- Seismology.

- Astronomical observation systems.

- Security systems.

- Remote sensing.

- Imaging systems.

Even if some authors [61] define the deconvolution process as the operation of removing the

distortion or undesired effects caused by a linear filtering, in our case, the distortion will be
introduced deliberately in order to take advantage of it as illustrated in previous sections. In any

event, the main purpose of inverse problems is to remove a particular type of distortion to

recover or estimate some specific information, usually in the presence of noise.

Let us consider the equation 2.22, where g[n] refers to the measured data, h[n] is the
voluntarily or involuntarily introduced distortion (e.g., the PSF) and n represents some form of
additive noise. In terms of DSP, the deconvolution process is defined as estimating an
approximation of f[n] from the observation g[n] and the knowledge of the degradation
introduced by the kernel h[n], so that n is reduced to a minimum. It is assumed that the

knowledge of the noise n is limited because of its statistical nature.
glnl= fln]*hin]+n (2.22)

The signal discretization required by digital processing often leads to a troublesome ill-

posedness in matrix equation inversions, which means that the operator h[n] does not tolerate
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the inverse operation or is near singular. This condition makes the system to be highly sensitive
to the presence of noise or slight modifications in the observed signal g[n], producing significant
errors in the estimation or even threatening the stability of the whole system. In order to cope
with this challenge, several deconvolution and inverse filtering methods exist in literature, which

can be classified in two main groups: deterministic and statistical approaches.

The application of deterministic methods requires the knowledge of the observation g[n] and
the kernel h[n]. The most simple and direct option is to perform the division by the Fourier
Transform of the kernel in the frequency domain, but zero values of the kernel can lead to
stability problems which must be confronted especially in presence of noise [62]. This group
includes also iterative methods, that present problems related to stability and convergence [63]
or pseudoinverse solutions and approaches based on singular value decomposition [64], where
unstable solutions can be generated due to ill-conditioned formulations. Time or space-domain
methods can work well, but these can be approximate solutions, often presenting stability

problems and excessive computational cost [65], [66].

On the other hand, statistical methods assume certain knowledge about the kernel h[n] in
advance, but their effective functioning is determined by the used statistical model. In this group
are included methods based on the Wiener filter [67]—-[70] and also polynomial solutions with

certain optimality criteria when deconvolving noisy signal observations [71], [72].

As can be observed, there are multiple approaches to solve the inverse problem connected
to 1D signal deconvolution or image restoration techniques in the case of 2D signals. Part of
these methods are focused on solving the inverse problem in the time-space domain, but others
operate in a transformed domain. Some of the most well-known inverse methods are outlined

in detail below for a better understanding of the subsequent chapters.

2.5.1. The Singular Value Decomposition. Regularization Methods

One of the methods to deal with the stability of inverse problems is the Singular Value

Decomposition (SVD) [73]. In general, for any matrix A€ R™" the SVD takes the form
A=UXVT, (2.23)

where the matrices U=(u,,...,u,) and V =(v,,...,v, ) consist of the left and right singular vectors,

and both matrices are orthogonal (U'U=V"V =/).

The central matrix 2 is a diagonal matrix where the diagonal elements o, are defined as

the singular values of A, which are nonnegative and ranked in decreasing order:
0,20,2..20,20. (2.24)

n

The solution to the linear system Ax =y can be expressed by means of SVD:
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;
n U»y
Xy =) —V, Vo,>0. (2.25)

=1 Oj

The system is well-posed if it is satisfied the condition:

<o0o. (2.26)

This condition will fail if c;—>0, since a continuous dependence between the estimation and

the observation cannot be guaranteed. In this case, the problem will be ill-posed.

From the above, it can be deduced that a system with the operator H will be ill-posed, when

the singular values gradually decrease to zero and the ratio between extreme values is large.

cond(H):M; o.>0 (2.27)
min{a,} !

j

The previous ratio represents the condition number of H, and measures how much the
output value of the function will be magnified when small changes in the input signal are
produced. Therefore, if cond(H) presents too large values, the system becomes highly unstable
and very sensitive to small modifications in the observation g[n], producing important errors

when estimating an approximation of f[n].

The solution of equation 2.25 when an additive noise n is introduced in the system is given

by:

T T
n U-y n u‘n
xest:Z’—vj+Z—’ v, Vo,>0. (2.28)
j=1 O-j j=1 O-j

If H=1, it becomes a denoising problem and if n=0, instead, it will be a deblurring problem.
= TSVD Regularization

Regularization algorithms are oriented to stabilize the computed solution, such that the
system becomes less sensitive to different perturbations (e.g., noise). Regularization consists
basically of the introduction of some information for the purpose of stabilizing the inverse

problem.

The most natural way to regularize an inverse problem is based on the elimination of the
most unstable singular values when the noise level is increased. This method is known as
Truncated Singular Value Decomposition (TSVD) and consists in the reconstruction of the
components with higher singular values (the most stable), while the components corresponding

to the smallest singular values (the most unstable) are truncated or removed. This can be done
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by using a filter where a regularization parameter a must be chosen and acts as a threshold level

for singular values. Thus, a filter @, is defined and it only allows the pass of singular values

higher than a:
n uly
X = 20, (07) L=, Vo,>0. (2.29)
j=1 0;

When the regularization parameter a&—0, the most unstable components are included in
the deconvolution process. However, when a—1 oscillations are represented by slow and
smooth functions (sine and cosine functions). In short, the stability of the system depends to a
large extent on the appropriate choice of the parameter a, but this is not a simple issue since it

presents a compromise between the noise suppression and the loss of relevant information.

The TSVD method is possible for small problems, but as the problem size increases, it
becomes prohibitive to compute the SVD and alternative regularization methods should be

employed.
= Tikhonov Regularization

This regularization algorithm was independently formulated by Phillips [74] and Tikhonov
[75], but it is commonly recognized as Tikhonov regularization. The main idea is based on

accepting a nonzero residual Ax—y and in exchange obtain a smaller solution norm. The

formulation of the problem is:
min{"Ax—y"i + A2 ||x||§} (2.30)

where A is the regularization parameter to control the weight given to minimization of the
solution norm ||x|, relative to minimization of the residual norm |Ax-y|,. When 2—0, the
Tikhonov solution x, approaches the ‘naive solution’” Ax =y (or the least squares solution, if A
is rectangular). Instead, if A—00,then x, — 0. However, there is a range of intermediate values

of A between both extremes, where the algorithm obtains approximations to the desired

solution, producing a balance between the residual and solution norms.

Equation 2.30 does not fit numerical calculations and, therefore, normal equations are used

to solve the least squares problem:
(ATA+ A Nx=ATy. (2.31)

The Tikhonov solution can also be expressed in terms of the SVD of A as follows:

n 2 T
O, “jy
v

_ J
XA—Z

—_— 2.32
To +1 o (2.32)

i
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2.5.2. Convolution-Based Methods. Toeplitz Matrices

In linear algebra, a Toeplitz matrix is constant along diagonals [57]. Thus, an nxn Toeplitz

matrix has the following form:

t, t, t,, t.,
t, t, t, .ot

T=| oo (2.33)
n-2 . tl tO t—l
_tn—l tn—Z tl to i

Given a vector f € C", the matrix-vector product T-f has the discrete convolution form

n-1
[TF), =Dt ,f» i=0,..,n-1, (2.34)
j=0
where t=(t, ...t ;,t,,t,,...,t, ;)€ C* ™ This situation is indicated by T=toeplitz(t).

An nyn xn.n matrix T is a Block Toeplitz with Toeplitz Blocks (BTTB) matrix, when it takes the

block form

0 -1 1-n,
T T, T :
= » ° (2.35)
T—l
T\ Lo

where each block T;is an n_xn_Toeplitz matrix.

This type of matrices transform 1D kernels (PSF) into a convolution matrix starting from a

square Toeplitz matrix and symmetrical with respect to the main diagonal, which meets:

Vh eH;  h,=h (2.36)

i Ui, 1

Considering an array ve C™™ , it can be transformed into a vector ve C™™” by stacking the

.. . N, xn, n.n,
columns of v and defining the linear operator vec: veC*™ —>veC*",

;
vec(v)=[v,,..v, Vi ..V, oy, oV, o T (2.37)

ANy, 1y

which corresponds to lexicographical column ordering of the components in the array v. the

symbol array is defined as the inverse of the vec operator,
array(vec(v))=v, vec(array(v))=v, (2.38)

nexn, nn
supposing VEC™" and veC™”
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At this point, the block Toeplitz matrix-vector multiplication can be related to discrete 2D

convolution expressed as:

t* f =array(T vec(f)), (2.39)
defining T as a nyn, xn,n, BTTB matrix.

The matrix-vector representation of a discrete and noisy data model is given by:
g=Tf+n, (2.40)

where T=bttb(t) is considered the blurring matrix (PSF), g=vec(g) is the measured distorted
signal, f=vec(f) is the original signal and n=vec(n) is the predominantly Gaussian error term

(noise). Given T and g, the aim is to estimate f.

The direct use of this algorithm to solve a convolution system generates problems associated
to stability due to ill-posed nature. Therefore, it requires the use of regularization techniques to
produce more stable and adequate results, such as the Tikhonov functional with a quadratic

penalty term:
1
()= o +%f*Lf, (2.41)

considering the symmetric positive definite penalty matrix L and the regularization parameter
a >0 . In order to solve the linear system, T, must be minimized and the system is transformed

into the following formulation:

(T*T+al)f=T=*g (2.42)

2.5.3. Fourier-Based Methods

In general, a blurring system is considered to be linear and spatially invariant, which is
basically a Linear Time-Invariant (LTI) system. In this context, Fast Fourier Transform (FFT) based
schemes become greatly efficient methods for computational image restoration. Nevertheless,
real images have properties that cannot always be handled by linear methods, e.g., images
consist of positive light intensities captured by sensors, and thus nonnegativity constraints
should be imposed when implementing DSP methods. The incorporation of these constraints
and other information have been suggested in multiple applications leading to substantial
improvements in inverse problem approaches. However, these constraints can be excluded
from multiple implementations since they can lead to non-linear problems with demanding

computational cost requirements [76].

The model for a discrete implementation is defined by the convolution:
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alx,yl= flx,yl*hix,yl+nlx,y] (2.43)

where f[x,y] is the original image, h[x,y] the PSF, n[x,y] additive noise and g[x,y] is considered
the measured data. The equivalent model can be represented in the frequency domain applying

the DFT to each term from equation 2.43 as follows:
Glu,v]=Flu,v]-H[u,v]+ N[u,v] (2.44)

An inverse filter is a linear filter h._[x,y] which can be defined as the convolutional inverse

inv

of the blurring function or PSF h[x,y] and meets

h,,[x, y1*hix,y]=0lx,y], (2.45)
where
1, ifx=y=0
olx,yl= (2.46)
0 elsewhere

The inverse filter can also be expressed in the discrete frequency domain by:

Hlu,v]-H._ [u,v]=1. (2.47)

inv

This filters are practically impossible to design when considering the space-variant distortion

[77]. Hence, from now on only the space-invariant case will be taken into consideration.

If the blurred image—the captured data g[x,y]—is filtered with the above described inverse

filter, the output will be an estimation of the original signal flx,y] and the DFT is determined by:

F'lu,vl=H, [u,v] Glu,V]

=H,,[u,v] [Hlu,v] Flu,v]+N[u,v] ] (2.48)
=Fl[u,v]+H._ [u,v] N[u,v].

inv

It can therefore be deduced that the recovered estimation f'[x,y] is thus equal to the

original image to which the inverse filtered noise is added.

Unfortunately, the inverse filtering in the frequency domain is not as straightforward as it
might appear. First of all, the inverse filter may not exist if H[u,v] comes from an ideal LPF or if
it takes null values at selected frequencies. Additionally, problems associated to an excessive
noise amplification may occur, since most of the power spectrum in the blurred image is usually
concentrated at low frequencies and decreases for high ones. Oppositely, the spectrum of the
additive noise N[u,v] typically contains considerably more high frequency spectral components.
Thus, at high frequencies, the estimation F'[u,v] is dominated by the inverse filtered—
amplified—noise, which yields unsatisfactory solutions and results. In some cases, the blurring

function or PSF is not known with the required precision adversely affecting the realization of
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the inverse filter Hi,[u,v] and resulting in an intolerable uncertainty. As a final note, it can be
mentioned that the inverse filter suffers because it makes no use of the properties of the

measured data g[x,y].

2.5.4. Least-Squares Methods. The Wiener Filter

There exist a set of restoration filters called least-squares filters and specially created to
overcome the stability or noise amplification problems connected to the inverse problem. One
of the most widely used is the Wiener filter [64], a linear space-invariant filter which takes
advantage of the power spectrum of both the image and the noise to avoid and control the

excessive noise amplification [77].

The frequency response of the Wiener filter Hy[u,v], is determined to minimize as much as

possible the Mean Squared Error (MSE) in the restoration process given by:

E, =E(|Flu,v]—F'[u,v])

(2.49)
= E(|Flu,v]—Glu,v] H, [u,V][),

considering E(-) as the expectation over a group of images.

The solution to this minimization problem can be described by:

H[u,v]

M, +

Sylu,vl

H,lu,v]= (2.50)

where Sg[u,v] represents the power spectrum of the original image, Sni[u,v] is the power
spectrum of the noise and H'[u,v] corresponds to the complex conjugate of H[u,v]. In absence

of noise, the Wiener filter behaves as the following pseudo-inverse filter:

forH[u,v]=0
Hps[u,v] =< Hlu,v] (2.51)

0 forH[u,v]=0

2.5.5. Iterative Methods

Image restoration algorithms based on iterative methods can be greatly efficient both for
spatially variant and invariant distortions, including a wide variety of regularization techniques
and multiple boundary conditions. Due to the fact that there is no optimal standard procedure
for all image deconvolution problems, the study of iterative methods has long been an active
and important research topic [59], [77], [78].
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One of the main motivations for the use of iterative procedures is the existence of
mechanisms oriented to limit the set of possible solutions for the inverse problem by requiring
a closed convex space where these solutions must be found. The computational load of an
iterative method depends on the amount of operations performed in each iteration, such as the
necessary number of iterations to ensure the quality of the image restoration. While different
techniques exist to speeding up the convergence of the method, e.g., pre-conditioning
strategies, they must be used meticulously, since they may lead to an erroneous convergence
behavior. A critical issue for iterative methods is the development of solid stopping criteria to

produce consistent results.

Generally, iterative methods are structured as follows:

Xo = initial estimation of x
fork=0,1,2...

" X1 = computations involving xx, H, a preconditioner matrix P and
other intermediate parameters.
= Check the if the stopping criteria is satisfied.

end

The computational operations implemented to update x;.; at each iteration depend directly
on the specific iterative scheme used, but the most intensive computations usually involve
matrix-vector products and the solution of linear systems with the kernel H, the transpose

matrix H™ and the preconditioner matrix P.

Preconditioning is used to accelerate the rate of convergence of iterative methods. Although
there is an additional computational cost, the number of iterations needed to compute a good
approximation of the solution can be reduced drastically, resulting in a considerable decrease in
the overall cost of the iterative scheme. The speed of convergence of one iterative method is
normally determined by certain spectral properties of the kernel H. Therefore, preconditioning
consists on modifying these spectral properties to accelerate convergence and is often
presented in the context of solving the linear systems such as the one defined by Ax=y. The
standard approach is to construct a preconditioning matrix P that meets the following

properties:

= The construction of P should be computationally affordable.
= The solution of the linear system Pz =w should be relatively inexpensive.

» The preconditioned system needs to satisfy P"'A~/ in the sense that the singular

—1
values of P"A are clustered around 1.
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The first two properties are connected to the additional computational load produced by
preconditioning and the last requirement determines the speed of convergence: the more

singular values clustered around 1, the faster the convergence.

The construction of effective preconditioners is a well-known field [79], [80]. However, when
the problem is ill-posed, preconditioning can generate an erratic convergence behavior which
results in fast convergence to an inappropriate solution. In this respect, some research work has
been carried out to overcome these difficulties [81], [82]. As in earlier instances, for ill-posed
problems, regularization can be incorporated and therefore the previous formulation may
require some modifications. If Tikhonov regularization is applied, the standard approach

outlined above is defined by the linear system Ax =y, where

A= A 5=’ 2.52
Sl Yol (2:52)

Nevertheless, when regularization is implemented by truncating iterations, the process can
be a bit more delicate. The first iterations tend to reconstruct mostly the good part of the
solution, while noise components are filtered out. These iterations are the ones that must be
accelerated. At a particular point, the system starts to reconstruct noise components and the
following iterations are corrupted, being this part of the iteration which should not be

accelerated.
= Van Cittert Deconvolution

The Van Cittert iterative deconvolution algorithm [83] is one of the most simple methods
and, although it was originally formulated for the space-invariant case, it can also be applied to

the spatially-variant case.

If the contribution of noise is ignored and using the compact matrix-vector notation, it can

be defined the following identity, which must be met for all values of the parameter B:
f=f+Bla—Hf) (2.53)

If the method of successive substitutions is applied:

f,=Pa

fen =1 +ﬂ(g—ka3 (2.54)
=Bg + (- BH)f,
= ﬂg + Rfk

where I is defined as the identity operator.
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An aspect of great importance in any iterative algorithm is the convergence and, if it is

produced, to what limiting solution. By direct enumeration it can be seen that
R k
f=BY.R'g (2.55)
r=0

which can also be written as

f.=PU—RI-RY)g, (2.56)

on the assumption that the matrix (/—R) is revertible, that is to say, the kernel H is invertible.
Finally, if the condition of convergence

limR*'g=0 (2.57)

k—xo

is met, then the limiting solution is given by
f.=limf =pU-R"g=H"g, (2.58)

and this is the inverse filter solution. Therefore, implementing iterations indefinitely will
generate a solution with multiple inadequate properties. However, the iterative application of
the inverse filter has some advantages over the direct implementation: first, it can be finished
prior to convergence, obtaining in a partially deblurred or restored image, but in absence of
noise amplification. Moreover, it is not necessary to implement the inverse operator, since each

iteration requires only the blurring operator itself.
= Richardson-Lucy Algorithm

The Richardson-Lucy deconvolution algorithm was developed from Bayes’ theorem [84], [85]
and it became popular in the fields of astronomy and medical imaging due to its implementation
of maximum likelihood and the ability to reconstruct images of high quality in presence of high

noise levels [86].

This algorithm takes into account statistical fluctuations in the signal and this is why it has
the ability to reconstruct noisy images. The inverse relation of the iterative algorithm in terms

of convolution is given by:

D () P 2.59
fralx) {fj(x)*h(x)} gl X)}f,-(X) (2.59)

where (*) is the convolution operation. As the PSF h(x) is known, the object f(x) has to be found
by iterating equation 2.59 until it converges. First of all, an initial estimation is required for the
object fo(x) to start the algorithm. Then, the form of the algorithm produces the rapid loss of

large deviations in the guess from the true object in initial iterations, whereas small details are
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solved more slowly in subsequent iterations. The Richardson-Lucy method presents multiple
advantages, as the nonnegativity constraint if the initial guess fo(x)20 or the conservation of

energy as iterations proceed.

2.6. General Overview of the Visual Hyperacuity Simulation Method

Once the main characteristics and particularities of each step of the visual hyperacuity
simulation method have been analyzed, it may be worth taking an overview of the whole system,
linking the different stages of the process. As already explained, the human eye uses a low
number of sensors to capture images and, moreover, the retinal image seems to be blurred
because of diffraction. The developed method intends to improve the final image resolution
when the number of available sensors is limited, using a controlled diffraction effect introduced
at the beginning of the process, as the human eye does based on our hypothesis. In short, it can
be understood as an explanation and simulation of the visual hyperacuity, a diffraction-
enhanced system, far from conventional imaging devices, widely known to be diffraction-

limited. The block diagram of the whole system can be observed in Figure 2.22.

For a better comprehension and interpretation, the method will be described step by step

with the aid of images and observing how they are transformed at each stage.

Original Image Recovered Image

Captured Image
(Blurred, Low-resolution)

-
< . -
7 N
aliji
fIx,y] fix,y]
Diffraction Filter Subsampling
. g[x,y{ Oversampling g[X',yZ Inverse
> fs —> (P,Q) < Filter
hix,y]

Figure 2.22. Block diagram of the visual hyperacuity simulation method: original image
(observed real scene), captured image (input image) and recovered image
(estimation).
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Figure 2.23. Original test image used for simulation, reproducing the high-resolution
real scene.

The original test image (Figure 2.23) is used as a model of the real scene observed by the
imaging system and, as such, it is conceived as a high-resolution image at the entrance of the
optical system. Ideally, it should be a continuous image with an infinite resolution (and
bandwidth), but it is not possible if we start from a digital (discrete) image. In view of this fact,
it must be clear that it is unthinkable to go beyond this initial resolution, whatever image

restoration method is used.

The first step of the approach consists in introducing a known diffraction (PSF) at the
entrance of the system. Its main effect is producing a blurring effect in the incoming image
(observe Figure 2.24 a), the one projected over the sensors. Subsequently, the diffracted image
is spatially subsampled (Figure 2.24 b), which aims to simulate the reduced number of sensors
used for image capturing. The result of the subsampling process would be the input image, the

one captured by the imaging device: a blurred and low-resolution image (Figure 24 c).
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Figure 2.24. (a) Blurred image projected over the sensors. (b) Subsampling process.
(c) Input image: blurred and low-resolution.
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On the next stage the image goes through an interpolation process, increasing the total data
points, thus, creating new samples between the existing ones. The interpolated image is still
blurred (see Figure 2.25), but the image size is increased. The LPF (diffraction) introduced in
advance makes possible a more accurate interpolation, because the blurred image presents low-
variation and smooth transitions and a more precise estimation of new image data points is

performed.

- . "

Figure 2.25. Interpolated image.

The last stage of the visual hyperacuity simulation method is the application of an inverse
filter or deconvolution to remove the blur introduced by the diffraction to recover a sharp and
focused image with an enhanced resolution in comparison to the one captured by the sensor
(Figure 2.26). It is worth mentioning that the inverse problem is ill-posed and thus the inverse
filtering becomes highly unstable, presenting noise amplification problems and high sensitivity
against errors produced by interpolation. In this case, the effects of noise have not been
considered and small errors in the recovered image are produced due to inaccuracies produced

in the interpolation process.

Figure 2.26. Recovered image.
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2.7. Conclusions

It has been shown how the introduction of a controlled diffraction at a first stage reduces
considerably the sampling requirements for signal capturing, allowing the use of less sensors,
due to the fact that it acts as an anti-aliasing filter. Nevertheless, it must be clear that, based on
the Nyquist theorem, when capturing both signals or images the maximum frequency is
established by the sampling interval or equivalently the sampling frequency, and it is not

possible to detect or even recover any spectral component above this cutoff frequency.

In the case of diffraction-limited systems, the sampling interval is set by the PSF and a
minimum sampling distance must be met in order to prevent from affecting neighboring
samples and producing a blurring effect, if a clear and sharp image has to be captured. The only
way to improve the image resolution or capture higher frequencies involves the generation of a

narrower PSF and increasing the sampling rate.

The proposed method takes advantage of diffraction to improve the final image or signal
resolution, far from being a diffraction-limited system. On the one hand, we can oversample the
signal with sampling intervals smaller than those established by the Rayleigh criteria, creating
an overlapping effect. On the other hand, when the number of sensors is limited and it is not
possible to configure neither the sampling intervals nor the number of captured samples, the
introduction of a controlled diffraction prior to sampling makes possible an accurate
interpolation to generate new samples. In both cases, the captured signal is blurred due to the
diffraction produced by the PSF. However, the increased number of samples widely exceeds the
sampling rate determined by the Nyquist criterion and, therefore, it is possible to recover or
reconstruct spectral components at higher frequencies even if some inverse filtering or

deconvolution needs to be applied.

On the negative side, it must be noted that the inverse problem is often ill-posed and the
system becomes highly sensitive to the presence of noise or slight modifications in the blurred
signal, producing significant errors or even threatening the stability of the whole system. Several
deconvolution and inverse filtering methods exist in literature to deal with this challenge and

the election of the most robust one for each case is an issue of great importance.

To conclude, the proposed method aims to be an explanation and simulation of the visual
hyperacuity, a system which makes use of diffraction to enhance the final image resolution, not
like conventional imaging devices, where it can be considered a limiting factor. The application
of this method can generate new opportunities and novel approaches in more than one

technological field as will be described in the following chapters.
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3.1. Introduction

The resolution is an issue of great importance for most of the imaging purposes, no matter
the application area. In this case, we will refer to spatial resolution as the capability to observe

or define objects as small as possible or, put another way, the level of detail of an image.

The most common imaging technologies used in conventional digital cameras, such as CCD
or CMOS sensors, tend to enhance the spatial resolution by means of the reduction of the pixel
size—usually arranged in 2D arrays—and increasing the number of pixels per unit area. Other
solutions are focused on increasing the focal length or the size of the sensor chip. Even if current
digital cameras drive resolutions up to 50 megapixels or even more, these resolution
improvement procedures have technological limitations as well. Taking into account the
challenges imposed by hardware techniques, signal processing approaches become of great

interest as a trade-off between computational load and hardware cost.

One of the most innovative techniques in this field is the super-resolution imaging. The
operating principle of this method is based on the reconstruction of high-resolution images from
multiple low-resolution captures. In this way, high-frequency components are reconstructed
and image details are improved overcoming the limitations imposed by low-resolution imaging

devices.

Despite the fact that it cannot be considered a resolution improvement method, it is worth
mentioning at this point a technique used in imaging and photography to reproduce a greater
dynamic range of luminosity: High Dynamic Range Imaging. The image resolution is not affected,
but this method greatly improves visual perception by combining images with different

exposure parameters.

In connection with leading edge technology THz imaging cannot be forgotten, considering
that it has great prospects in the field of nondestructive and contact-free testing for many
applications (medicine, industry, security, material evaluation, agriculture, etc.). Nevertheless,
due to technological constraints, the implementation of devices with many detectors at these
frequencies is highly complicated and the resolution of the whole system is compromised. In
consequence, while CCD or CMOS technologies can reach resolutions of multiple megapixels,
THz imaging cameras are limited to no more than a few thousands of sensors, normally requiring
the use of progressive scanning techniques. The visual hyperacuity simulation method proposed
in previous chapters could prove to be of great help to overcome this technology barrier by
means of software-based signal processing techniques, given that this initial limitation matches

with the reduced number of sensors employed by the human eye.

This chapter provides the implementation of the visual hyperacuity simulation method for

imaging systems from two different approaches: a kernel-based local implementation and
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another one based on the Fourier Transform, operating in the whole image or at a global level.
The proposed scheme and its performance have been tested by simulations with the software
MATLAB. The parameters used for analyzing the obtained results are as varied as the visual
inspection, image quality metrics or the spectral analysis, compared with the results that would
be obtained in absence of diffraction. The tests have been implemented using multiple images

for better evaluation and assessment of its performance.

3.2. Super-Resolution Imaging

The generation of high-resolution images is a relevant issue for most digital imaging
applications. The image resolution defines the level of detail contained in an image, but this
concept can be understood in multiple different ways, such as spectral resolution, temporal
resolution, pixel resolution, spatial resolution or radiometric resolution. In this instance, we will
focus on the spatial resolution, which can be understood as the pixel density in an image,
measured in pixels per unit area [27]. But in short, image spatial resolution refers to the
capability of the sensor to measure or observe objects as small as possible and depends mostly
upon the pixel size [28]. A standard resolution test chart used to determine the spatial resolution

of an imaging systems is shown in Figure 3.1.

Overall, the spatial resolution of an image is limited by the sensor of the acquisition device.
Current image sensors are based on CCD and CMOS technologies, commonly arranged in a two-
dimensional array of pixels to capture 2D image signals. As the spatial resolution is governed by
the optical lens and the sensor array, the most straightforward way for a spatial resolution
enhancement is to reduce the size of each pixel, increasing the number of pixels per unit area.
However, this solution reduces considerably the amount of available light and produces shot
noise that degrades the image quality, since the SNR of the system is lowered [87]. Current
image sensor technology has almost reached this existing limitation to reduce the pixel size.
Other approaches for spatial resolution improvements are oriented towards increasing the focal

length or the size of the sensor chip. In return, a longer focal length will result in greater size
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Figure 3.1. The 1951 USAF resolution test chart, set by US Air Force in 1951.
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imaging devices, while a larger chip size will produce an increase in capacitance. This latter
option slows down the charge transfer rate, which makes this approach deficient. On top of that,
the optical system of any imaging device also limits the image details (high frequency spectral
components) due to blur and aberration effects produced by the lens, aperture diffraction or

optical blurring because of motion.

In brief, the construction of imaging sensors and optical components to capture high-
resolution images involves a high economic cost and it is not practical in multiple real
applications. Considering the difficulties of resolution enhancement via hardware techniques,
signal processing methods become of great importance when high-resolution images are
required, to trade-off computational load with the hardware cost. These methods are known as
image super-resolution (SR) techniques and reconstruct high-resolution (HR) images from a
number of low-resolution (LR) images, improving image details (high frequency components)
and overcoming the limitations or degradations introduced by low-resolution imaging devices.
The underlying concept is to combine, in an intelligent manner, the non-redundant information
of multiple LR frames to generate a HR image (multi-frame SR). However, there are cases where
it is not possible to capture multiple LR images, and thus the reconstruction of the HR image

must be implemented using the limited LR information of a single image (single-frame SR).

The acquisition of different LR images can be realized by means of sub-pixel displacements,
which produce various “observations” of the real scene. These sub-pixel shifts can be generated
both due to ungoverned motions between the imaging system and the observed scene or due
to controlled and programed movements. Each LR frame is a decimated observation of the real
scene, very similar, but containing non-redundant information (see Figure 3.2). At first glance,
this SR technique seems to be closely related with the image interpolation approach, that can

also be applied to increase the total image size. Nevertheless, when implementing an

1
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Figure 3.2. The concept of multi-frame SR: reconstruction of HR image from multiple
LR observations by means of sub-pixel shifts [27].
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interpolation process, no new or additional information is generated and the quality of the
reconstructed image is significantly limited, as the frequency components lost in the image

capturing (sampling) process cannot be recovered.
SR methods are widely used in a variety of areas and applications:

= Video standard conversion and information enhancement [88].

= Surveillance video applications: traffic surveillance, security monitoring [89].
= Earth-observation and remote sensing [90].

= Astronomical observation [91].

= Radar systems [92], [93].

= Medical imaging and diagnosis [94].

= Biometric information identification [95], [96].

3.2.1. The Observation Model

The digital system used for image acquisition presents hardware limitations which produce
different degradations. Just to mention some of them, the entrance aperture causes optical blur
or diffraction modeled by the PSF, the exposure time generates motion blur, the finite sensor
size leads to sensor blur, the sampling produces aliasing effects which limits the spatial
resolution of the captured image, the presence of noise, etc. These degradations are intended
to be incorporated or modeled in different SR techniques. In general, it is usually supposed that
degradations affecting the image acquisition process are warping, blurring, down-sampling and
noise [27], [28], [87].

The observation model defines the relation of the HR image with LR frames (see Figure 3.3).
The input of the system is the real scene, a continuous signal, which is sampled beyond the
Nyquist rate to avoid aliasing?, generating the desired HR digital image. The motion between the

camera and the captured scene is modeled as a warping (translation, rotation), generating

Desired HR Image x kth Warped HR Image xy

Sampling Warping Blur Down Sampling kth Observed
Continuous LR
Scene Continuous to . — Optical Blur . mage Yk
» Discrete Without — Translation _ Motion Blur Undersampling ( ) >

= _ i Ly, L.
e Rotation, Etc. _ Sensor PSF. Etc. (L4, Lo) T

Noise (ng)

Figure 3.3. Diagram of the observation model relating HR image with LR frames [87].

1 |n fact, the continuous real scene has an infinite bandwidth and, therefore, it is not possible to avoid aliasing when
sampling it.
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multiple LR frames of the scene. The imaging device introduces different blurring effects (optical,
motion, PSF) prior to down-sampling at the image sensor (pixels). Additionally, the down-
sampled images are affected by the sensor noise and color filtering noise. The result is a

determined number of LR frames: blurred, decimated and noisy versions of the real scene.
The observation model is mathematically expresed by:

Y.=DHMx+n, k=12,.,K (3.1)
where x is the reconstructed HR image (i.e., the digital image sampled from the continuous
scene) and yi is the k-th LR observation from the camera. D¢ represents the down-sampling
matrix, Hk is the blurring operator, My is defined as the warp matrix simulating the motion
information (rotation, translation) and ny indicates additive noise. The whole observation model

represented by means of images is shown in Figure 3.4.

The observation model for single-frame SR is obtained when K=1. If D, and My are omitted,
it becomes in a model for image restoration, just dealing with problems related to noise, blurring

or the absence of information, as shown in the following equation:
Ve =Hkx+nk_ (3.2)

The model described in this section does not cover all the possible situations, since other
complex factors could be included to better approximate real cases, such as different types of

noise, dimensional complexity or domain transformation, for example.

Yk

S
s el

Inverse Problem (ill-possed)

Figure 3.4. The SR imaging model.
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3.2.2. SR Image Reconstruction Methods

Based on the observation model described in the previous section, the main objective is to
reconstruct the HR image from a set of warped, blurred, noisy and down-sampled captured LR
frames. Nevertheless, the SR image reconstruction becomes an ill-posed problem because of an
insufficient number of LR frames and ill-conditioned blur operators. Therefore, the model in
equation 3.1 is ill-conditioned, and the SR approach can be considered an ill-posed inverse
problem. In this section, just a few conventional SR reconstruction methods will be described,

even though numerous approaches exist in literature.
= Nonuniform Interpolation Method

The nonuniform interpolation approach is one of the most intuitive SR techniques and it

consists of three main stages:

1. Estimation of the relative motion (registration).
2. Nonuniform interpolation.

3. Deblurring and noise removal (inverse problem).

Y1 [
Y2 . ——— Nonuniform Deblurring
. Motion e :
. el - | Interpolation | & —x
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Figure 3.5. The main stages of the SR nonuniform interpolation method.

Figure 3.6 shows the process graphically: using the estimation of the relative motion
information between LR images, the HR image is formed, but on nonuniformly spaced sampling
points. The next step consists of producing uniformly spaced sampling points by means of a
direct or iterative reconstruction process. Finally, a restoration problem is addressed to remove
both blurring and noise. The inverse problem can be faced by applying any deconvolution

method existing in literature, provided that noise is considered.
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Figure 3.6. Graphical representation of the SR nonuniform interpolation method [87].
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One of the great assets of this method is that it takes relatively low computational cost,
making it suitable for real time applications. Nevertheless, it also presents drawbacks: the
method can only be applied when the blur and the noise characteristics are constant for all LR
frames. Additionally, the reconstruction algorithm is not assured, since errors produced in the

interpolation stage are ignored.
= SRin the Frequency Domain

The frequency domain method takes advantage of the aliasing existing in each LR frames to
reconstruct the HR image [87]. The HR image is related with the LR images by a frequency
domain formulation based on the shift an aliasing properties of the continuous and discrete

Fourier Transforms [27], following these properties:

1. The shifting property of the Fourier Transform.

2. The aliasing relationship between the continuous FT (CFT) of the original HR image

and the discrete FT (DFT) of observed LR images.

3. ltis assumed that the original HR image is bandlimited.

These principles allow the formulation of the system equation relating the aliased DFT
coefficients of the observed LR images to a sample of the CFT of an unknown image. Figure 3.7
shows the example of two 1D LR signals sampled below the Nyquist sampling rate (aliased)

decomposed into a HR signal in absence of aliasing.

This approach is computationally efficient and theoretically simple, since the relationship
between LR frames and the HR image is clear in the frequency domain. However, the method is
limited in the abilities to handle complicated image degradation models and the application of

the spatial domain a priori knowledge for regularization is difficult.

Aliasing

/N j/\ /N

)
Aliased LR Signal (CFT
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Dealiased HR Signal (DFT)

Decompose Aliased Signal into Dealiased Signal

Figure 3.7. Aliasing relationship betwen LR images and HR image [87].

81



Application of Visual Hyperacuity to Imaging and Antenna Systems

= Regularized SR Reconstruction Method

Regularization methods are aimed at stabilizing the inversion or deconvolution of ill-posed
problems. The deterministic regularized SR approach makes use of prior information of the
solution to solve the observation model shown in equation 3.2, turning it into a well-posed
problem. This method can be implemented by the constrained least squares method [87],

formulated by choosing an x to minimize the Lagrangian defined by:

K
Swaff +alof | o
k=1

where the operator C represents a high-pass filter and HH is a I -norm. The prior knowledge is

represented by a smoothness constraint, accepting that most images have limited high
frequency information and, therefore, minimizing the high-pass energy in the reconstructed SR
image. The regularization parameter a is a Lagrange multiplier which controls the tradeoff

between fidelity of data and the smoothness of the reconstruction.

When few LR images are available (the problem is undetermined) or the observed data is not
accurate due to registration errors and noise, a tends to adopt large values, generating smooth
solutions. Nevertheless, when the amount of noise is reduced or many LR images are available,
small values of a will obtain good solutions. It seems clear that the application of a method to
find the optimum value of the regularization parameter a plays a key role in the deterministic

approach.

3.2.3. Challenges for Image SR

Even if SR reconstruction methods obtain high quality results in many cases, there are some
challenges that must be addressed in relation with complex motion conditions, the number of

used LR images or the required computational load.

In complex movement conditions, a precise motion estimation is a challenging task and an
inaccurate motion registration affects considerably the performance of the SR algorithm. There
exist multiple solutions to face this problem, such as the incorporation of advanced registration
strategies, robust fidelity models, joint parameter estimation or methods without explicit

motion estimation.

The main objective of SR is to reconstruct HR details combining the information obtained
from multiple LR images. Nevertheless, in some real cases, the acquisition of a sufficient number
of LR frames is difficult, being complicated to recover fine details. The performance of the
reconstruction-based algorithms is deteriorated quickly when the magnification factor is large.
At this point, the study of single-frame SR methods is gaining relevance in the scientific field.

However, SR methods using a single image must not be confused with image interpolation and
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reconstruction techniques, which use little extra information and they do not reconstruct high

frequency information.

Lastly, the use of SR approaches on large datasets, such as big data, generates considerable
computational load. Therefore, it is crucial to develop effective and efficient methods to
accelerate strategies for big data processing and satisfy the demands of the latest industrial
applications. Although multiple optimizations have been already proposed in this direction, their

efficiency is still far away from satisfying the exigencies of real-time applications.

The visual hyperacuity simulation method proposed in the previous chapter could deal with
most of these challenges: multiple LR images are not required (a single LR frame would be
enough), the blur introduced by motion or other effects is used as a benefit for super-
resolution—far from being a limiting factor—and the simplicity and robustness of the whole

system would suppose a considerable reduction in the computational load.

3.3. High Dynamic Range Imaging

A current method in imaging technologies and applications is the High Dynamic Range
Imaging (HDRI), which aims to offer a new approach of representing colors in digital images and
video. The visible range of colors of the HVS is much larger than the one obtained by
conventional digital cameras and displays. HDRI technologies face this problem capturing and
manipulating all colors and luminance levels visible to the human eye [97]. Some authors [98],
define the HDRI as the capture, storage, manipulation, transmission and display of images that
more accurately represent the wide range of real-world lighting levels. This method greatly
improves the overall quality of visual content in digital images, obtaining much more realistic

and attractive results.

Even if HDR images can be acquired using special image sensors (e.g., oversampled binary
image sensors), the simplest way of capturing HDR images is based on merging multiple low
dynamic range (LDR) images. This method involves taking multiple images, but using different
exposure parameters: a different luminance range is captured in each image and, later on, these
images are combined into a single HDR image by weighted averaging of pixel values across the
exposures. The resulting HDR image merged from these LDR images spans the full range of

luminance in the scene (see Figure 3.8).

In theory, multi exposure methods permit the capture of scenes with arbitrary dynamic
ranges, provided that an adequate number of exposures per frame are merged. HDRI cannot be
considered as a super-resolution method because no resolution enhancement is generated as
such. However, it can be said that this technique exploits the full resolution and capture
possibilities of a digital camera, producing a marked improvement in the image quality perceived

by a human observer and being possible to distinguish small details that cannot be discriminated
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in absence of HDRI methods (see Figure 3.9). This technique is available in many consumer
products (mobile phones, digital cameras), but it is also being used for scientific purposes, such
as scientific imaging applications [16], electrochemical sensors [17] or even astronomical

applications [99].

Althoug HDRI cannot be considered an image resolution enhancenment technique, the use
of this method in combination with both SR techniques or the proposed visual hyperacuity
simulation method could provide positive and interesting results, considering that the color

perception is clearly improved.

exposure t; exposure t, exposure t3 HDR frame
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Figure 3.8. Consecutive exposures captured at subsequent time steps (t;, t; and t3) and
the resultant HDR image [97].

Figure 3.9. LDR image exposure sequence (left) and HDR image (right), showing small
details.

Source: Open Source Computer Vision.
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3.4. Terahertz Imaging

In physics, the term terahertz radiation—also known as submillimeter radiation—is applied
to electromagnetic radiation with frequencies between the lower edge of the microwave band
(300 GHz or 0.3 THz) and the high frequency upper edge of near-infrared light (3 THz). When
talking in terms of wavelength, this frequency band ranges from 0.1 mm (infrared) to 1 mm

(microwave).

It is likewise well known that there has been a lack of technology—mostly sources and
detectors of THz electromagnetic radiation—between 0.3 and 30 THz, called the terahertz gap,
produced due to different technological difficulties. On one side, transistor based electronic
technologies are limited to about 300 GHz, even if they result extremely inefficient above the
practical limit of 50 GHz. On the other hand, optical frequency semiconductor lasers can hardly
generate wavelengths down to 10 um (about 30 THz) [100]. The existence of this gap lies on the
fact that no current semiconductor technology can efficiently convert electrical power into

electromagnetic radiation in the THz range and inversely.

R EEEEEEEE—E———— Terahertz gap
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Radiowaves

Figure 3.10. The therahertz gap lying between 300 GHz and 30 THz [100].

3.4.1. Applications of Terahertz Systems

The scientific research work over the latest years and the advances in the development of
THz systems combined with the appearance of the first related commercial products (efficient
emitters and detectors), has been conductive to the emergence of multiple industries and
applications. THz spectroscopy, and more concretely THz imaging, holds large potential in the

field of nondestructive, contact-free testing [101], [102].
= Pharmaceutical Industry

THz imaging and spectroscopy technology is used to control the quality and production
process of pharmaceutical products: determine the heterogeneity and integrity of
pharmaceutical cores and coatings, tablet coating thickness in-line control or the analysis of the

crystalline structure of drugs are just a few examples.
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= Medical Diagnosis

Terahertz photons are not energetic enough to break chemical bonds and ionize molecules
or atoms, so they are harmless for living organisms (not as UV or X-rays). THz imaging has created
multiple opportunities for medicine, thanks to the penetrating capability of THz waves, making
possible to visualize internal information about physical objects. The strong water absorptions
in the THz region of the electromagnetic spectrum allows the investigation of soft tissues. This

technology presents many medical applications:

= Non invasive techniques for early detection of pathological conditions (cancers).

= Ex-vivo and in-vivo examination of tissues.

Dental care.
= Preventive healthcare and blood testing.

= Diagnostics of osteoarthritis and arthritis.

Figure 3.11. Terahertz image of a human tooth where caries are detected.

Source: TeraView Ltd.

= Homeland Security and Hidden Objects Identification

THz radiation seems to be safe for screening humans and penetrates different type of
clothing and other concealment and confusion materials. Therefore, this technology can be used
in border and port security generating images safely, non-invasively and quickly. The application
areas can be related to personnel, luggage and mail screening or detection of explosives and

noxious gases among others.

Figure 3.12. Sample sub-THz transmission images of a knife hidden in a book (left) and
a gun replica hidden in a textile cover (right).

Source: TeraSense Terahertz Group.
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= Nondestructive Evaluation of Materials

The use of terahertz nondestructive evaluation allows the inspection of layers in multiple
materials that are challenging for other technologies or characterization methods. There are
many industrial applications for a wide range of materials (paper, ceramics, clothes, plastics,

woods, fiber composites, etc.) that are transparent for THz waves:

= Paints and coatings defect identification in automobile structures.
= Non-contact stereoscopic imaging for physical art analysis.

= Structure analysis of ceramics and composites.
= Material Characterization

THz systems play a major role as instruments for contact-free inspection of plastic
components, improvement of the performance and quality of solid-state properties of
metamaterials and the characterization of electron carriers, understanding physical processes
such as carrier transport and dynamics of semiconductors in order to further develop

applications of high-speed devices.
= Beam Profiling Systems

Terahertz cameras enable obtaining real time 2D cross-section intensity maps of antenna
beams, being a useful technology for characterizing THz radiation sources (measure the beam

intensity profile and the far-field radiation pattern) and aligning quasi-optical THz systems.
= Terahertz Inspection of Agricultural Products

Terahertz imaging technology for nondestructive testing and noninvasive inspection appear
to take the lead in popularity in the agricultural sector and the industry of product processing.
With the aid of THz imaging devices, it is possible to detect under the shell the presence of
harmful fungus and infections affecting peanuts, corn, nuts, other grain-crops and oil-plants

(observe Figure 3.13). In a similar way, THz cameras can also be used to detect the seed

Tera/Ense
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Figure 3.13. Picture of four hazelnuts (right) and THz image of the same hazelnuts at
100 GHz (right). The upper nut is infected with fungus.

Source: TeraSense Terahertz Group.
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availability and determine the seed structure inside a plant or for acidity estimation of sunflower
seeds. Another problem linked to agricultural processing is the separation of stones, sticks, mud
clots and other contaminants from the crops, where visual inspection equipment fails due to the
inherently low color contrast. The different absorption that contaminants have in the THz

frequency range makes them clearly discernible when capturing THz images.

Another possible application of THz imaging for agriculture relates to monitoring the
presence of water in plants and leaves. A constant control of water status in plants or any type
of crops is a matter of great importance to improve aspects related to irrigation scheduling,
alleviate extreme climate effects and, consequently, enhance as much as possible the quality of

final products [103], [104].

freshly cut leaf after 48 hours

Water Concentration

Figure 3.14. THz image of a fresh leaf (left) and the same leaf after 48 h (right), where
it can be observed that water has clearly evaporated, except from the stems of the
leaf [101].

3.4.2. THz Imaging Technological Difficulties

Even if THz imaging provides cutting-edge in multiple applications, this technology also
presents some difficulties that must be faced. There exists a technical challenge in connection
with signal generation, since THz frequencies are so high that conventional oscillators cannot
work effectively and too low for the optical photon emitters to work in. In order to close this
gap, THz waves are usually generated by either one of these methods and frequency multipliers

or dividers [105].

One of central issues in the THz science and technology research is the resolution of imaging
systems. Due to the long wavelength (A; 74,=300 um) used in THz applications, the spatial
resolution is constrained by the limited spot size and the resolution is generally in the scale of

millimeter when working as a diffraction-limited system [106], [107].
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Additionally, there exists difficulties to fabricate and implement devices with many detectors
at terahertz frequencies and this technological constraint limits the resolution possibilities of
the whole system. As previously explained, neither optical nor microwave technology provide
effective tools for developing practical solutions at the low THz frequency band. Common
devices working in these frequencies require the use of complex detectors equipped with
heterodyne receivers to perform conversions to work in an intermediate frequency that current
technology can handle [108]. Such drawbacks considerably limit the number of detectors that
can be implemented in an array. Therefore, while optical imaging devices based on CCD or CMOS
technologies use sensor arrays of multiple megapixels, THz imaging cameras are limited to some

hundreds or a few thousand detectors (see Figure 3.15).

The manner in which THz technology has overcome these challenges is through progressive
scanning techniques, such as scanning mirror systems [109] or progressive mechanical scanning
techniques where both the analyzed objects or the imaging devices can be moved [110], as can

be observed in Figure 3.16.

Tera/Ense

Figure 3.15. Terahertz imaging camera of 4096 pixels (64x64 array) and linear camera
of 1024 pixels (256x4 array).

Source: TeraSense Terahertz Group.

3m

Figure 3.16. Layout for linear THz imaging system installation on a conveyor (left) and
THz security body scanner (right).

Source: TeraSense Terahertz Group.
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3.4.3. Visual Hyperacuity for Terahertz Imaging

As already stated, one of the main constraints in THz imaging systems is the low number of
available detectors to capture images. This initial limitation coincides with the reduced number
of sensors that the human eye employs for central sharp vision. Therefore, the visual
hyperacuity simulation method presented in Chapter 2 could be very useful in overcoming this
hardware resolution constraint by means of software-based signal processing techniques. The
low-resolution images generated by current THz imaging devices usually allows to detect the
presence of foreign objects but, in many cases, it is difficult to determine what they really are.
The resolution improvement achieved with the proposed method could better define the shape

of visualized objects, being an important advance for many THz applications.

Moreover, the spatial diversity generated by means of the introduction of a controlled
diffraction improves the SNR of the imaging device, obtaining a higher sensitivity. This feature
offers multiple advantages: first of all, the working distance can be increased significantly.
Besides, it would be possible to reduce the radiation power or even dispense with the use of
THz sources. The radiations produced by THz body scanners systems are supposed to be non-

invasive and non-ionizing, but this subject matter is always controversial.

Finally, replacing the mechanical scanning systems (conveyor belts, mirrors, etc.) with
software-based resolution enhancement techniques, such as the proposed visual hyperacuity
simulation method, would lead to a significant reduction in the time required for analyzing each
object or person. This technological advance would avoid placing objects in conveyor belts or
could allow people to get through security checkpoints in airports and borders without the need

to stop while the security body scanner performs the scanning process.

3.5. Kernel-Based Hyperacuity Simulation Method. A Local Approach

As mentioned earlier, human eye could be profiting from the spatial diversity obtained
thanks to different sources of distortion, mainly diffraction. Therefore, the introduction of a
known diffraction blur at the entrance of the system (understanding it as a low pass filtering)
has a key role in the proposed method. This first step relaxes signal sampling frequency
constraints, enabling the use of a reduced number of sensors for a subsequent image data
capture. Afterwards, the low-resolution blurry image is interpolated increasing the total number
of data points. The softening process performed in advance makes possible a more accurate
interpolation, due to slow signal variations. Eventually, an inverse filtering or deconvolution
process is applied to remove the blur introduced in the first stage, and thus recovering a sharp
image with considerably increased resolution in relation to the captured one at the entrance of
the system. Due to the ill-posedness of the inverse problem, stability of the system at this final

step comes to be critical. The whole system is shown in Figure 3.17.
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Original Image Recovered Image

Captured Image
(Blurred, Low-resolution)
Diffraction Filter Sensor Sampling
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Figure 3.17. Block diagram of the hyperacuity simulation system.

3.5.1. Pre-Processing: Diffraction and Image Sensing

The distortion introduced by the optical system can be simulated in 1D by a discrete FIR filter:
N

9, =bof,+bf  +.tbyf = b S (3.4)
k=0

where f, is the input signal, g, the output (distorted) signal, N the filter order and by are the
coefficients of the direct form FIR filter. Thus, equation 3.5 shows the Z-transform of the transfer

function and the corresponding diagram is displayed in Figure 3.18.

_Gl2) _by+bz " +.. 4"

H(2) o) 1 (3.5)

It is possible to perform 2D processing, just following the elements in two dimensions (rows

and columns) and the general expression for the discrete 2D FIR filter is defined by

M N
G =Zzb,-,k mjnk - (3.6)

j=0 k=0

I

Figure 3.18. Direct form 1D discrete FIR filter diagram.

91



Application of Visual Hyperacuity to Imaging and Antenna Systems

0.8

0.6

0.4

0.2

w o

Figure 3.19. System input 2D Point Spread Function (45x45 pixels).

When observing equation 3.6, it is possible to notice that the 2D FIR filter approximates a
2D discrete convolution of the incoming image and the kernel which simulates the diffraction

introduced by the optical system:
glx,yl= flx,yl*hix,yl (3.7)

where h represents the PSF, f the original image and g the filtered output image. The PSF is
essentially a sinc? type radial function of 45x45 pixels (observe Figure 3.19), to which some
modifications have been applied. Firstly, side lobes have been removed remaining only the
central one, to avoid null coefficients. Furthermore, the maximum has been slightly shifted (less
than one sample) breaking the symmetry of the PSF. These settings are quite relevant to the

stability of the system.

To simulate the real scene observed by the imaging system—ideally an infinite resolution
continuous image—, it has been used a high-resolution test image of 567x755 pixels (see Figure
3.20). Itis worth pointing out that it is not possible to go beyond this initial resolution, whichever
image restoration method is used. This original test image has been filtered using the PSF shown

in Figure 3.19 by means of a 2D discrete convolution as the one described in equation 3.7.

Once the diffraction introduced by the optical system is simulated with the low-pass filtering
process, the outcoming image is subsampled by means of a decimation process (a factor of 2 in
each dimension), reducing the image size to 284x378 pixels. This subsampling intends to
reproduce the reduced number of sensors used to capture a real image, supposed to be
continuous or a high-resolution image (as the one used initially). At this point finishes pre-
processing, obtaining an image considered to be the system input: a low-resolution image with

slow variations, due to the controlled distortion introduced by the PSF (see Figure 3.21).
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Figure 3.20. High-resolution original test image (567x755 pixels).

Figure 3.21. Low-resolution blurred captured image (284x378 pixels).

3.5.2. Post-Processing: Interpolation and Inverse Filtering

The previously blurred and sensed image is interpolated by a factor of 2 in each dimension
(vertical and horizontal), by means of a 2D cubic spline interpolation method. The output image
is still blurred, but the image size has been increased to 567x755 pixels. It is worth to mention
that the LPF introduced in advance makes possible a more precise interpolation, since low
variation transitions reduce sampling frequency constraints and enable more accurate

estimation of new data points.

The last step consists in implementing an inverse filtering process, to obtain a resolution-
enhanced and sharp image, recovering high frequency spectral components. The inverse
problem comes to be ill-posed and thus the system becomes highly unstable and sensitive to
small errors generated on account of interpolation. The above-mentioned modifications made
to the PSF are focused to minimize the effects produced by this instability, obtaining better

results when the inverse filtering is performed.
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Figure 3.22. Inverse form 1D discrete IIR filter diagram.

The inverse process would mean that H(z) should be inverted, i.e. denominator and
numerator swapped: ax and by coefficients of the direct FIR filter must be exchanged. We may
as well see how this inversion makes the former expression (equation 3.8) become an all poles
lIR filter, which corresponding diagram can be seen in Figure 3.22. Note that now the entrance

gn would refer to the blurred and interpolated image and f’, to the recovered estimation.

1
F(2) 1 b
Hp (2)=——= - = ° (3.8)
Glz) by+bz +.+bz" | b oa by
0 0
Now, the 1D inverse IIR filter difference equations can be written as follows:
1 N
fln Zb_[gn _Zbkf'nkJ
0 k=L . (3.9)

2D processing can be performed by following the elements in two dimensions by rows and
columns and the discrete 2D IIR filter’s difference equations are expressed by:
N

1 M
f’m,n :b_£gm,n _Zzbj,kflmmj,nk] . (310)

0,0 j=1 k=1

Since the 2D IIR filter comes to be recursive, each system output f'm »depends on the previous
output samples defined by an MxN mask formed by filter b;« coefficients (see Figure 3.23). An
important observation would be that with this technique just the filter coefficients and an equal
MxN number of data elements are needed to compute each output sample f'm» keeping the
problem localized (in this case, a 45x45 coefficient matrix), rather than using a large amount of
elements. This is why this method can be defined as a local approach.

The outcome of applying the inverse filter to the blurred and interpolated image is displayed
in Figure 3.24. Edges appear now significantly sharper, being possible to define and distinguish
shapes that could not be appreciated beforehand. In addition, high frequency information has
been recovered mainly at the central part of the output image: abrupt transitions could not be

noticed in the incoming image (Figure 3.21). Finally, the image has now a resolution of 567x755
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Figure 3.23. 2D IIR filter performing by rows and columns, positioned to calculate the
output sample f'm n.

Figure 3.24. High-resolution recovered output image (567x755 pixels).

pixels, which means that it has been increased by a factor of 4 when compared to the initial

image or equivalent sensor size (284x378 pixels).

3.5.3. Analysis of the Results

The outcomes obtained by means of this method are worth analyzing carefully if the
resolution improvement is to be observed. One way to evaluate this enhancement is to compare
the recovered image with an image that would supposedly be a distortion-free image or the one
captured by a diffraction-limited system with the same sensor size of 284x378 pixels (see Figure
3.25). At first glance, it is difficult to appreciate a real improvement, just some high frequencies
at the central part of the image seem to be better displayed. Figure 3.26 shows a digital zoom
for better comparison: considering the high-resolution original test image (a) as a reference, it

can be appreciated how the image recovered using the method (b) reconstructs shapes and
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edges accurately, while the diffraction-free image (c) hardly defines edges due to a pixelating
effect. Note that initially both images had the same size of 284x378 pixels before applying post-

processing techniques of the visual hyperacuity simulation method.

The whole method has been applied to different images, generating more results to provide
better observation and analysis (Figure 3.27). Observe how in the case of the cameraman facial
features and small details of the camera are accurately reconstructed. However, in the image

captured simulating a diffraction-limited system they are hardly recognizable. Similarly, when

Figure 3.25. Distortion-free image (284x378 pixels), captured by a diffraction-limited
system.

Figure 3.26. Image detail of: (a) original test image of 567x755 pixels; (b) high-
resolution recovered image of 567x755 pixels; (c) distortion-free image of 284x378
pixels.
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analyzing the image of the airplane, numbers, letters and the shape of the star are barely

recognized when the hyperacuity simulation method is not implemented.

(c)

Figure 3.27. Original test images and details of: (a) original test image of 511x511
pixels; (b) high-resolution recovered image of 511x511 pixels; (c) distortion-free image
of 256x256 pixels.
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Image or resolution enhancement in digital images can be subjective and it is interesting to
establish empirical measures to determine the effect of the visual hyperacuity simulation
method on image quality. Therefore, with the aim of obtaining a more objective, accurate and
guantifiable quality metric working at pixel level, it has been computed Peak Signal-to-Noise
Ratio (PSNR). This parameter calculates the ratio between the maximum possible value (power)
of a signal (or image) and the power of distorting noise that affects the quality of its
representation. In other words, it compares the “true” pixel values of the original test image to

the pixels of the degraded image.

The PSNR is commonly expressed in terms of the logarithmic decibel scale by the following

mathematical equation:

MAX
PSNR =20log,, [—fj (3.11)

VMSE

where the Mean Squared Error (MSE) for an image size of MixN is given by:

MSE =ifi||f[x,y]—g[x,y]II2 . (3.12)
MN ==

Taking the original test images (pattern, cameraman and airplane) as reference, it has been
computed the PSNR for the images recovered using the proposed method and the diffraction-
free ones, in which case a nearest-neighbor interpolation has been made to match the image
size (the dimensions of reference and degraded images must be identical). Results are shown in
Table 3.1, obtaining improvements around 4.5 dB when applying the visual hyperacuity

simulation method.

Pattern 16.85 12.32 4.53
Cameraman 29.17 24.43 4.74
Airplane 26.91 22.59 4.32

Table 3.1. PSNR of images with the hyperacuity simulation method, diffraction-limited
simulation method and the obtained improvement.

3.5.4. Comments on the Method

In view of the results, it has been demonstrated how diffraction can be helpful to improve
the final image resolution, far from being a limiting factor like in most imaging devices. In this

regard, the method can be understood as an explanation and simulation of visual hyperacuity.
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Mention that the inverse problem is a critical process that could be solved through the use
of diverse methods and here just one has been implemented. There are different factors that
should be taken into account when choosing the most appropriate method to solve the inverse
filtering as the nature of the diffraction effect, the presence of noise in the system, the resolution
enhancement required, the type of images or the specific application. Nevertheless, keeping the
problem localized as in this case reduces the stability problems since less elements are involved
in the calculation of each output value. In return, the recursive approach generates a cumulative

error that could be avoided using other methods.

Additionally, it can be said that the proposed system breaks the established relationship
between the number of pixel sensors needed to capture an image and its final resolution,

leading us to consider the opportunities and possibilities this method provides.

3.6. Fourier-Based Hyperacuity Simulation Method. A Global Approach

The main stages of the Fourier-based hyperacuity simulation method are virtually identical
to the ones of the above described method. The first step of the approach consists in introducing
a known diffraction blur using a PSF (low-pass filter) at the entrance of the system. The resulting
blurry image is then captured with a low number of sensors, i.e., spatially subsampled: this
would be the input image, the one projected over the sensors and captured by the imaging
device. On the next stage the image goes through an interpolation process, increasing the total
data points, thus, creating new samples. At the final stage, an inverse filter is applied to remove
the blur introduced by the diffraction, which recovers a sharp and focused image, with an

enhanced resolution in comparison to the one captured by the sensor.

The main difference lies in the method used both for introducing a controlled diffraction and
for solving the inverse problem: in this case, the scheme is based on Fourier Transforms. The
fact that the convolution in the frequency domain is an element to element product means that
the original test image and the PSF must have the same size (in pixels). Therefore, the output
depends on all the elements involved in the process, so it may be regarded as a global—non-
localized—approach. When the size of the original image and the PSF does not match, it must

be performed a zero-padding prior to calculating the DFT.

Another important variation is that the method has been applied to color images. The system
does not undergo significant changes, unless the original test image is splitted into RGB
components and each channel must be processed independently, before combining them at the
end of the method. For better understanding, the block diagram of the complete system is

depicted in Figure 3.28.
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Figure 3.28. Block diagram of the visual hyperacuity simulation method for RGB
images: original test image (observed real scene), captured RGB images (input images,
blurred and low-resolution) and recovered image (enhanced resolution).

3.6.1. Image Capture: Diffraction and Sensing

The selected original test image is 1600x1100 pixels in size (see Figure 3.29). This image is
used as a model of the real scene observed by the imaging system, and as such, it is conceived

as a high-resolution image at the entrance of the optical system.

The image projected over a sensor can be modeled by a simple convolution of the real scene

and the diffraction pattern or PSF produced by the optical system,
glx,yl=flx,yl*hlx,y] (3.13)

where f represents the original test image, h is the PSF and g is considered as the blurry image
captured by the sensor. Applying the Fourier Transform, the image acquisition process can be

expressed as a simple matrix multiplication as follows:
Glu,v]=Flu,v]-Glu,v]. (3.14)

The diffraction pattern (PSF) created by a uniformly-illuminated circular aperture is an Airy
Disk, which can be approximated by a sinc? type radial function of 1600x1600 pixels such as the
one displayed in Figure 3.30, and its main effect is the introduction of blur in the incoming image

transforming point sources into blobs. Since the size of fand the PSF does not match, the original
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Figure 3.29. Original test image used for simulation, reproducing the high-resolution
observed real scene (1600x1100 pixels).
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Figure 3.30. (a) MATLAB 3D plot of the sinc? type PSF of 1600x1600 pixels. (b) Cross
section of the PSF through the central plane.

test image has been zero-padded reaching a size of 1600x1600 pixels (the black edge will be
removed when showing the images). This diffraction introduced by the optical system acts as a

low-pass filter (LPF) when analyzing in the frequency domain.

To simulate the image capturing using a reduced number of sensors, the previously diffracted
image is spatially subsampled, performing a decimation by a factor of 10 in each dimension
(vertical and horizontal) and reducing data points to 160x110 pixels. It is important to note, that
the LPF introduced by the PSF enables to lower the sampling frequency (i.e., use less sensors),
since the signal is now limited in a narrower frequency-band. In this sense, we can understand
the introduction of diffraction as an anti-aliasing filter prior to the sampling process, which
attenuates considerably the high frequencies of the image. In addition, the subsampling
produces spectral truncation, permanently removing some high-frequency spectral
components. At this point, we obtain the image considered to be the system input, the one

captured by the sensors: a low-resolution image (simulating a low number of sensors) and
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blurred due to the diffraction introduced by the optical system (see Figure 3.31), which renders
difficult to appreciate sharp edges and shapes because of the loss of information at high

frequencies.

Figure 3.31. Image captured by the sensor: blurred and low-resolution (160x110
pixels).

3.6.2. Post-Processing: Interpolation and Inverse Filter

To achieve a resolution enhancement, the first step is to increase the image size, and by doing
so, new data points are created between the existing samples. For this purpose, it has been
implemented a 2D interpolation by a factor of 10 using the FFT method. The interpolated image
is still blurred (there is no acuity or detail improvement), but the image size is increased from
160x110 to 1600x1100 pixels (observe Figure 3.32). The LPF (diffraction) introduced in advance
makes possible a more accurate interpolation, since the blurred image presents low-variation
and smooth transitions, and enables a more precise estimation of new image data points. As
may be seen, the use of this interpolation factor returns the image to its original size. Even if the

choice may appear arbitrary, the reason is that this is the maximum resolution that can be

Figure 3.32. Interpolated image: blurred and increased data points (1600x1100 pixels).
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recovered due to the size and resolution of the original test image. Additionally, it provides the

chance of taking it as a reference to evaluate the achieved resolution improvement.

The last stage of the visual hyperacuity simulation method is the application of an inverse
filter to remove the blur introduced by the diffraction, obtaining a resolution-enhanced and
sharp image. It is worth mentioning that the inverse-problem is ill-posed and thus the inverse
filtering process becomes highly unstable, presenting high sensitivity against errors produced by
interpolation and noise-amplification problems. However, the LPF effect of the PSF and the
subsampling performed in advance, considerably attenuate or even remove some high-
frequency components (the most critical in relation to stability and noise-amplification
problems), making possible the use of an inverse filter in a straightforward manner. The inverse
filtering is also carried out in the frequency domain, by applying the inverse filter H[u,v], to the

diffracted, subsampled and subsequently interpolated image:

F'luvl=Gluv]-H ' [uv]=Glu,v]- (3.15)

Hlu,v]

The output image obtained from implementing the inverse filter is shown in Figure 3.33. As
can be appreciated, even if some high frequency information has been lost, edges appear
considerably sharper being possible to recognize and resolve shapes, details, lines and abrupt
color transitions that were not detectable in presence of diffraction. This resolution
improvement is produced thanks to the new data points created by interpolation between
sensed samples and the reconstruction of the spectral components attenuated in advance by
diffraction, but it is not possible to recover the components previously truncated due to the
subsampling process. Nevertheless, the most important spectral information of the image is

kept in low-frequencies and this loss may not be critical when reconstructing the original image.

\/-"-\
N "\" =4

Figure 3.33. High-resolution recovered image (1600x1100 pixels), using the Fourier-
based visual hyperacuity simulation method.
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In addition, the image has now a size of 1600x1100 pixels, meaning that the resolution is
increased by a factor of 10 in each dimension (vertical and horizontal) in comparison to the initial
low-resolution image of 160x110 pixels captured by sensors, due to the creation of new data
points between samples. However, it should be noticed that a slight grid effect is created in the

image background because of the FFT interpolation process.

3.6.3. Analysis of the Results

Once again, the results must be analyzed rigorously to discern the resolution improvement.
On this occasion as well, the resolution enhancement of the outcome is evaluated comparing
the Fourier-based visual hyperacuity simulation method with an identical but diffraction-limited
system, without introducing neither diffraction and therefore nor inverse filter: the image is
captured with the same sensor size of 160x110 pixels and an FFT interpolation method is
implemented, increasing the data points by a factor of 10 in each dimension. For a better
understanding the block diagram of this scheme is depicted in Figure 3.34. The result of

reproducing the method without diffraction and inverse filtering can be observed in Figure 3.35.

Figure 3.36 shows side by side the original test image (a) and the images obtained using the
proposed method with diffraction (b) and without diffraction (c), for a better visual comparison.
A simple visual inspection reveals that thanks to diffraction many fine details can be recovered
(grid lines, reconstruction of patterns and continuous circumference lines, sharp definition of
objects keeping their size) and information can as well be detected which is not feasible when
diffraction is not introduced in the system. In short, the image shown in Figure 3.36 (b) captured
in presence of diffraction represents in a more accurate way the original test image represented
in Figure 3.36 (a) and almost no data is lost. The spreading of light over the sensor produced by

diffraction creates spatial diversity and the information of a single point source is also expanded
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Figure 3.34. Block diagram of a diffraction-limited system simulation method: original
test image (observed real scene), captured image (input image, low-resolution but
diffraction-free) and recovered image (interpolated).
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over a wider area, being possible to sense information using a reduced number of sensors, which
would be lost in absence of diffraction. Therefore, we can recover information spatially located

between sensors and represent it creating new samples: increasing the image resolution.
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Figure 3.35. Recovered image (1600x1100 pixels) simulating a diffraction-limited
system and interpolation.
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Figure 3.36. Visual comparison of (a) original test image, (b) visual hyperacuity
simulation method (diffraction) and (c) diffraction-limited method.
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The Fourier-based scheme has been implemented for multiple images of real scenes, in order
to obtain extra results and better monitor the performance of the method (Figures 3.37, 3.38,
3.39 and 3.40). In all cases, original test images (a) are compared to the results obtained by
means of the visual hyperacuity simulation method (b) and the simulation of a diffraction limited
system with the same initial sensor size (c). The results speak for themselves: the proposed
method capture high-resolution fine details that are not noticed in absence of diffraction, that

is, a significant resolution improvement is achieved.

Table 3.2 shows the PSNR for the images obtained with both methods (taking original test
images as a reference) and the improvement obtained thanks to diffraction. Notice how in this
case the improvement seems to be smaller. This is because in this case FFT interpolation has
been applied in the case of diffraction-limited simulation method, instead of nearest-neighbor

interpolation as above, and it obtains better results.

Pattern 14.62 13.46 1.16
London Eye 16.76 14.81 1.95
City 20.17 17.89 2.28
Bike 20.20 18.17 2.03
Bridge 23.74 22.24 1.5

Table 3.2. PSNR of images with the hyperacuity simulation method, diffraction-limited
simulation method and the improvement obtained using the proposed system.

3.6.4. Comments on the Method

Once again, it has been demonstrated how the introduction of a controlled diffraction
pattern could play a key role on surpassing the resolution defined by the number and size of
sensors of a given system, breaking the paradigm of the number of pixel sensors needed to

capture an image and its final resolution.

From the standpoint of sensors, diffraction creates spatial diversity due to the spreading of
light over the surface where sensors are located, improving the system sensitivity and increasing
the SNR, for the reason that multiple sensors receive information from the same point source.
In addition, it makes possible to capture or sense fine details that would be spatially located
between detectors and could not be detected in absence of diffraction, when using a reduced
number of sensors. Moreover, diffraction can be understood as an anti-aliasing filter which
relaxes significantly signal sampling requirements, allowing the use of a reduced number of
sensors for capturing the image. Spectral components truncated because of the subsampling
cannot be recovered, but they seem not to be critical, due to the fact that the most important

components are kept in low frequencies and most of the fine details in the image are resolved.
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Figure 3.38. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.
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(b) (c)

Figure 3.39. (a) Original test image. (b) Visual hyperacuity. (c) Diffraction-limited.
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Yet, it is worth to mention that the inverse problem comes to be ill-posed and the system
could show stability problems and be quite sensitive to small errors generated on account to
interpolation. This instability can also be a serious issue in presence of noise, and it could involve
the use of inverse functions or methods to minimize problems associated to noise amplification.
Nevertheless, the attenuation and truncation of some high-frequency spectral components
produced thanks to the diffraction and subsampling, reduces considerably problems related to
stability and noise-amplification, allowing the use of a direct inverse filter. An important aspect
to consider when facing the inverse problem as a global approach is that all the pixel values
contained in the image as well as the same number of filter coefficients are involved all at once,
what means that any displacement or mismatch may generate significant errors that make it

difficult to obtain satisfactory results.

An additional important remark is that, since it is possible to obtain improved resolution
images starting from a low number of sensors, the size of each pixel sensor might be increased
(without the need to increase the image sensor size), resulting in higher dynamic range and
improving the total SNR of the system. This would mean that our method could be taken into
consideration when vision under poor lighting conditions is required, due to real improvement
of the sensor’s sensitivity and unlike digital ISO works in digital cameras, amplifying both signal

and noise.

3.7. Spectral Benefits of Diffraction for Imaging

This section analyzes the advantages and benefits produced by diffraction, once again
through the comparison of the proposed method and the equivalent diffraction-free system,

but based on spectral analysis.

The original test image in this case is a checkerboard with a black edge of 540x540 pixels such
as the one displayed in Figure 3.41, where each square of the pattern has 11 pixels per side. This
image has been intentionally chosen because it presents very specific spectral components,
which come to be appropriate for the purpose of this section. It has been subsampled with a
decimation factor of 5, both when introducing a controlled diffraction and without it, resulting
in images of 108x108 pixels, aiming to simulate the use of few sensors for image capturing (see
Figure 3.42).

Eventually, the image sizes have been increased up to 540x540 pixels via FFT interpolation
and the one with diffraction inversely filtered. When observing the outcomes depicted in Figure
3.43, it is possible to appreciate how when applying the hyperacuity simulation method (with
diffraction) the checkerboard pattern is perfectly reproduced. However, this does not occur in
absence of diffraction, where a periodic pattern is obtained but it does not correspond to the

original test image.
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Figure 3.41. Original test image: checkerboard with a black edge (540x540 pixels).

(a) (b)

Figure 3.42. Images captured by sensors (108x108 pixels): diffracted (a) and
diffraction-free (b).

Figure 3.43. Recovered images (540x540 pixels): with diffraction (a) and diffraction-
free (b).
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Figure 3.44 shows the original test image (a), the image recovered with diffraction and the
one obtained in absence of diffraction (c) together with their corresponding periodograms, in
order to represent the spectral density of each image. As can be seen, the process of
subsampling has truncated the high-frequency spectral components of both images and they
are not recovered even after applying interpolation or inverse filtering. Nevertheless, when
focusing on the lower frequencies—where the most critical information is kept—the
hyperacuity simulation method manages to reconstruct spectral components accurately when
compared with the spectrum of the original test signal, but this is not the case in absence of
diffraction. The introduction of diffraction can be understood as an anti-aliasing filter and allows
images to be captured with a reduced number of sensors. Spectral components attenuated are
subsequently recovered when the inverse filter is applied. However, when diffraction is not
introduced in the system, the subsampling process generates aliasing corrupting frequency
information and generating other spectral components which does not represent the ones in

the original image and degrading the final outcome.

\
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Figure 3.44. Checkerboard paterns and corresponding periodograms of: original test
image (a), image recovered with diffraction (b) and image recovered difraction-free.
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3.8. Conclusions

The design and implementation of imaging sensors and optical components to generate high-
resolution images involves, in many cases, high economic and technological cost and it may not
be practical depending on the nature of the application. These hardware-related complications
could be faced using signal processing methods in order to obtain high-resolution images

compensating this hardware charge with computational load.

SR imaging can be an interesting approach in many applications, but it also presents some
difficulties that may not be solved in many cases. The visual hyperacuity simulation method
could deal with some of these challenges, as long as multiple LR images are not required, the
blur introduced by motion or other effects is used as a benefit for super-resolution and the

simplicity of the system would suppose a considerable reduction in the computational cost.

In relation to THz imaging, the hyperacuity scheme could be of great help to exceed the
resolution limits imposed by the low number of detectors available in imaging devices operating
in this frequency band and it would suppose an important step forward for many applications.
Additionally, the spatial diversity obtained thanks to diffraction would improve the sensitivity of
the system offering advantages such as the increase of the working distance or the reduction of
the radiation power, which is always a contentious and polarizing topic. Finally, the replacement
of mechanical scanning systems with software-based resolution enhancement techniques

would lead to a significant reduction in the in the time required for analyzing objects.

In view of the results obtained from simulations, it has been demonstrated how the
introduction of a controlled diffraction pattern could play a key role on surpassing the resolution
defined by the sensors of a given system, breaking the paradigm of the number of pixel sensors
needed to capture an image and its final resolution. In this context, the method can be conceived

as an explanation and simulation of visual hyperacuity.

The spatial diversity created by diffraction makes possible to capture fine details that would
be lost in absence of diffraction when using a reduced number of sensors, because multiple
sensors receive information from a single point source. In addition, diffraction acts as an anti-
aliasing filter which relaxes signal sampling requirements, allowing the use of a reduced number

of sensors for capturing the image.

On the negative side, inverse problems are ill-posed and the stability of the system may be
compromised along due to the high sensitivity to small errors generated by interpolation and
the presence of noise. It is therefore necessary the use of inverse functions or methods to
minimize and control these aspects. Nevertheless, the attenuation and elimination of high-
frequency spectral components produced by diffraction and subsampling reduces considerably
stability and noise-amplification problems allowing, in some cases, the use of a direct inverse

filter.
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As a final remark, the opportunity to obtain high-resolution images from a low number of
sensors could enable to increase the area of each pixel sensor, resulting in higher dynamic range
and improving the SNR of the system, a matter of great importance for vision under poor lighting

conditions, for example.
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Applications of Visual Hyperacuity in Antenna Systems

4.1. Introduction

This chapter is mainly focused on the application of the basic concepts of visual hyperacuity
to antenna systems, that could benefit from the proposed method in many ways, such as
improving the angular resolution of the system, decreasing the overall size of a given antenna,
increasing the scanning intervals or reducing the necessary number of data points for high-
resolution signal reconstruction. Indeed, any antenna system, regardless of the operation
frequency band (visible, infrared, terahertz, millimeter waves, etc.), can achieve angular
resolutions significantly higher by taking advantage of the introduction of a known distortion
which may later be removed. When it comes to antenna systems, the radiation pattern can be
considered as the element which introduces the distortion or the PSF, due to the beam

divergence.

The proposed method has been implemented by using MATLAB software simulations to
show and prove the previously explained ideas. For this purpose, multiple tests have been
carried out comparing antennas with different angular resolutions or beamwidths, varying the
noise power (SNR) in the data acquisition process or modifying the sampling rates used to
simulate the signal capturing. On this occasion, instead of using 2D images, the tests have been
performed with 1D signals with a view to facilitating the development and analysis of the results.
Once again, the outcomes have been analyzed from multiple perspectives, including visual
observation, numerical quality metrics (e.g., Mean Squared Error) and the evaluation of spectral

properties in some instances too.

The aim of this chapter is to generate a discussion and bring out a novel point of view on the
angular resolution achieved by antenna systems, the related aperture size and the required

sampling rate, among other factors.

4.2. Angular Resolution of Antenna Systems

When it comes to antenna systems, angular resolution is usually a parameter of critical
importance in many applications. This spatial resolution is mainly determined by the Rayleigh
resolution limit [111], which depends on the effective wavelength and the physic size of the
antenna aperture, leading to large aperture antenna solutions when high resolutions are

required.

The angular resolution of an antenna can be defined as the minimum angular separation
where two equal point sources or targets must be located when at the same range (i.e. the
minimum distance between objects to be resolved). This resolution is normally confined by the
antenna beamwidth and more precisely by the full width half-maximum points (FWHM) or,
equivalently, the 3 dB beamwidth (BW.s45). This parameter is defined in each of the principal

planes as the angle between the points in the main lobe that are down from the maximum gain
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90°

270°

180°

Figure 4.1. 3 dB beamwidth of an antenna radiation pattern in polar-coordinates.

by 3 dB (see Figure 4.1). Therefore, many efforts are oriented to create narrow high directivity
beams by means of complex technological solutions and designs, often leading to large size
devices. Another aspect to consider is that the acquisition of high-resolution signals requires
sampling multiple data points at small scanning intervals and it usually takes too long time at

antenna sweeps.

The close link between the antenna beamwidth and the angular resolution is fixed due to the
fact that the received signal can be defined as the convolution of the antenna beam and the
reflectivity of the observed scene and, thus, the wider the antenna beam is the lower angular
resolution will be achieved [112]. The 1D signal g[n] captured by the antenna can be modeled

by a convolution:
gln]= hin]* f[n] (4.1)

where h[n] corresponds to the antenna beam and f[n] represents the real scene where the
targets are located. As a consequence of the convolution, the captured signal is blurred because
of the low-pas filtering effect of the antenna beam. The way to avoid the blurring effect
produced by overlapped beams is to perform the antenna sweep matching the scanning steps
with the BW.34s. Therefore, under this approach, the only alternative to improve the angular
resolution involves using antennas with narrower beamwidths (more directive) and decreasing

scanning steps.

Let us analyze the mathematical relationship between the directivity, the beamwidth and the
aperture (or effective area) of any antenna. The connection existing between the directivity and

the antenna beamwidth can be obtained from the following equation:
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p_Ar . _ 47 (4.2)
QA 0—3dB¢—3dB

where Q4 represents the beam solid angle (approximated by the horizontal and vertical 3 dB
beamwidth plane angles 8 and ¢). It follows therefore that directivity is inversely proportional
to the antenna beamwidth, making necessary the use of high-directivity systems when high
angular resolution is demanded and this condition impacts on the antenna effective area

(equation 4.3), demanding large size antennas.

=—D (4.3)

4.2.1. High Directivity Antennas

Given that high angular resolution antenna systems must generate high directivity beams,
current antenna technologies are orientated towards two possible solutions or approaches:
high-performance antenna arrays composed by multiple radiating elements and parabolic

antennas with large size reflectors.

Many antenna array technologies can be cited where multiple individual radiating elements
are devoted to creating a single spot beam, such as airborne and spaceborne Synthetic Aperture
Radar (SAR) imaging systems [113], [114] or phased array antennas used by many
communication satellites to create coverage spot maps over the earth surface [115].
Astronomical observation systems could also be included in this category, since a high directivity
beam is created to obtain an image of the sky. This is the case of ESA’s Planck mission, devised
to provide a map of the Cosmic Microwave Background by means of LFI (Low Frequency
Instrument) and HFI (High Frequency Instrument) which are equipped with receiver and
detector arrays [115]. All these systems are equipped with high gain antenna arrays. The

generation of a high-directivity beams is accomplished by means of the cooperation of multiple

Figure 4.2. C-band SAR of Sentinel-1 satellite (left) and LFI/HFI instruments of the
Planck spacecraft (right).

Credlits: ESA.
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individual antennas: the more radiating elements operating together, the more directive
antennas. In consequence, these solutions are usually comprised of large aperture antenna

systems.

On the other hand, we find technological approaches where sophisticated large size reflector
systems are used to generate high directivity beams. The radio telescopes used for astronomical
observation are a good example of that: the Arecibo Observatory in Puerto Rico outfitted with
a spherical reflector of 305 m in diameter [116], Haystack Radio Telescope (¢37 m) in
Massachusetts [117] or the Sardinia Radio Telescope [118], a fully steerable radio telescope with
a diameter of 64 m, just to mention a few (see Figure 4.3). In other cases, higher angular
resolutions are obtained by means of astronomical interferometers, consisting of radio
telescope arrays working in conjunction to increase the resolution by means of interferometry
techniques, e.g., the Atacama Large Millimeter Array (ALMA) in Chile [119] or the Very Large
Array (VLA) in New Mexico [120], as can be observed in Figure 4.4.

In any event, the use of so large aperture antenna systems entails several challenges that
need to be addressed at the design, implementation and construction stages, even during their
operation lifetime. These demanding tasks can be related to diverse factors, such as the
equipment’s weight, physical dimensions, power supply, mechanical scanning difficulties or the

specific constraints imposed by applications in each case, among others.

Figure 4.3. Arecibo Observatory (left), Haystack Observatory (center) and Sardinia
Radio Telescope (right).

Sources: NAIC, MIT Haystack Observatory, INAF.

Figure 4.4. ALMA astronomical interferometer (left) and VLA observatory (right).
Sources: ALMA, NRAO.
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4.3. Hyperacuity in Antenna Systems

As discussed earlier, the signal received by an antenna can be modeled as the convolution of
the antenna beam and the reflectivity of the observed real scene, where the wider the antenna
beam is, the more blurred the received signal will be. In other words, it acts as a low-pass filtering
process where the highest frequencies are attenuated capturing a distorted signal. Hence, it is
possible to apply the visual hyperacuity simulation method described in previous chapters to
improve the angular resolution by using deconvolution methods, considering the ill-posed

nature of the inverse process and its associated noise-amplification and stability problems.

Multiple approaches have been carried out to confront this topic, mainly in connection with
the area of radar super-resolution—where the angular resolution becomes a matter of great
importance—by proposing different deconvolution methods or algorithms [93], [121], [122]. All
these methods are dedicated to improving the angular resolution of a given sophisticated

antenna system, trying to achieve super-resolution with post-processing techniques.

Looked at from another perspective, the opportunity to increase the angular resolution using
deconvolution methods enables the use of lower angular resolution antennas that achieve
comparable results to those obtained with high performance devices. This approach is
interesting given the fact that it would allow the use of much simpler antenna systems which
may also lead to smaller effective area requirements and, consequently, smaller antenna sizes.
Initially, this strategy would reduce considerably the angular resolution of the system, since a
beam-overlapping effect is produced in the data acquisition process—Rayleigh criterion is not
met—and high frequencies are attenuated. Therefore, it may require the use of some inverse

filtering method, which could suppose problems linked to stability in presence of noise.

Additionally, taking advantage of the spectral band-limited nature of the captured data [123]
and thanks to the blur introduced by the antenna beam, it is possible to perform a subsampling
process increasing the sampling intervals (i.e., decrease the sampling frequency), reducing the
total number of data points used for reconstructing the captured signal. This approach would
considerably shorten the time used for sweeping the field of view (FOV) or making
measurements of any type. What is more, in some cases the subsampling can virtually eliminate
the high frequencies—the most critical spectral components related to noise-amplification and
the stability of inverse problems—being substantially easier to implement an inverse filtering

process.

4.4. A4x Reduction in Antenna Size. Angular Resolution & SNR Variations

Suppose a circular scanning radar antenna rotating 360° in azimuth, with a constant angular

velocity. The signal captured by the antenna g[n] can be modeled by the convolution:

glnl=hIn]* fln]+n (4.4)
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where h[n] is the antenna beam, f[n] the original test signal simulating a real scene and n additive
white Gaussian noise. Assuming uniform angular steps A8 of 0.5° for scanning the FOV, both f[n]

and g[n] would have the same length of N=720 samples.
The Fourier transform of the data acquisition process is shown by:
G(ow)=H(w)-Flo)+7 . (4.5)

Due to the fact that H(w) acts as a low-pass filter, the captured data g[n] has lost high
frequency information and an inverse filtering or deconvolution process is required in order to
recover an estimation of the original scene f[n]. The ill-posedness of the problem converts the
system very sensitive to noise and this is why the restoration problem cannot be solved by
simply applying an inverse filter H(w). Therefore, it is necessary to rely on an inverse function
that minimizes the noise amplification. Marmolin et al. [69] proposed a simple restoring filter
based on the Wiener filter which operates well when the scene and noise properties are

unknown and it is approximated by the following equation:

Rla)=—" ()

_ v 4.6
(@) +T (4.6)

Note that the noise-to-signal power density ratio is approximated by a constant T, reflecting
just some information about the relative magnitude of signal and noise. It should be observed
how as T—0, the restoring filter is exactly an inverse filter. In general, high values of T implies
a noise-free but a low performance filter, while low values of T allows better results but also an
excessive noise magnification. The optimization of the restoring filter shown in equation 4.6 is
achieved by means of the value of T that obtains an optimal balance between noise and

resolution improvement.

4.4.1. Simulation Method

The two antenna patterns used in the simulation process can be seen in Figure 4.5. Both are
Gaussian beam functions, but with different angular resolutions defined by the 3 dB beamwidth
of 1° and 4°. Antenna beams are sampled each 0.5 degrees that matches with scanning angular
steps AB. If we compare antenna directivities based on equation 4.2, it can be deduced that the
low angular resolution antenna beam is four times less directive than the high-resolution one.
Therefore, from equation 4.3 we can conclude that the antenna effective area—and therefore

the antenna size—is also reduced at the same rate.

The original test signal simulating a real scene over the FOV of 360° considered for simulation
is shown in Figure 4.6, where different size targets have been placed at multiple ranges and
angular distances. The scanning of the FOV using the previously characterized antenna beams is

performed by signal spectrum multiplication as explained in equation 5.4, adding white Gaussian
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BW-348
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Angle (Degrees)

Figure 4.5. Gaussian antenna patterns used for simulation.
BW . 345=1° (red) and BW._345=4° (blue).
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Figure 4.6. Original test signal: target distribution over the scanned FOV of 360° in
polar coordinates.

noise in order to reproduce realistic conditions, as a noisy environment (see Figure 4.7). By
looking at Figure 4.7 (a) it is hard to appreciate a loss of resolution, due to the angular resolution
of the beam (BW.345=1°). When observing Figure 4.7 (b) instead, as a result of the less directive
beam (BW.345=4°) and small angular steps AB=0.5° used for scanning, each section of the FOV is
iluminated by multiple beams, creating a significant overlapping effect. As a consequence,
angular resolution is lost, being difficult to distinguish adjacent targets and also range
information has been corrupted. It is clear that a loss of high-frequency information has

occurred during the data acquisition process.

Using the inverse function described in equation 4.6, it is possible to reverse this effect,
obtaining similar results to those obtained by means of the BW.34»=1° antenna, always taking

into account the limits imposed by the ill-posedness of the system and the consequent noise
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Figure 4.7. Simulation of data acquisition by scanning the FOV with antennas of
BW.345=1" (a) and BW.345=4" (b), SNR=35 dB.

amplification. The objective is to calculate an estimation F’(w) of the real scene from the signal
captured by the antenna G(w) using the inverse function R(w). Operating in frequency domain

it works as follows:

H (@)

F'(®)=G(w)-R(w) = G(w)- 2 :
|Hw) +T

(4.7)

This process requires determining the value of the constant T, needing to find a compromise
between resolution improvement and noise amplification. In this case, the optimum value of T
has been obtained according to the calculation of the Mean Squared Error (MSE) as in equation
4.8, between the real scene f[n] and the estimation of the real scene f[n] for a signal length of
N=720 samples, trying to minimize it as much as possible. Due to the randomness of the additive
white Gaussian noise, the outcome varies smoothly and also the corresponding MSE. Therefore,

the calculation has been made 1000 times, obtaining the average value afterwards.

MSE :%Z(f'[n]—f[n])z (4.8)

n=1

4.4.2. Results

The whole process described above has been carried out for different signal-to-noise ratio
(SNR) values, adjusting the constant T to minimize the MSE in each case. Table 4.1 contains the
MSE results obtained from the simulation of data acquisition by scanning the FOV with antenna
beamwidths of BW.345=1° (first column) and BW.345=4° (second column) for different SNR values.
Notice how the results are significantly worse in the second case, due to the low angular

resolution of the antenna beam. The third column represents the MSE for the estimation of the

124



Applications of Visual Hyperacuity in Antenna Systems

real scene f[n] after performing the inverse filtering process to the data captured with the
antenna of BW.345=4°. Even if the MSE values are not as good as the ones obtained with the
antenna of BW.345=1°, it is possible to appreciate a sharp improvement, being rather close to the

values achieved with the antenna of high angular resolution.

For a better visualization, Figure 4.8 shows simulation results of data acquisition by scanning
the FOV with the antenna of BW.345=1° compared to the estimation of the real scene when
capturing with BW.345=4° and performing the inverse filtering, for different SNR values. Observe
how results are highly satisfactory with respect to angular resolution. Nevertheless, the
amplitude or range of the estimated signal is slightly affected by the noise amplification due to

stability and noise-amplification problems of the system, mostly for low SNR values.

These results show how might be possible to obtain high angular resolution for an antenna
system using a less directive beam, and therefore, a smaller effective area. In this case antennas
with 3 dB beamwidths of 1 and 4 degrees have been compared, achieving quite successful and

similar results when it comes to angular resolution, by applying post-processing techniques.

The proposed approach could have a direct impact on the antenna design process, since it is
possible to reduce considerably the effective area or aperture, and consequently the antenna
size used in many applications. This idea could relax significantly the limitations related to the
antenna size and, therefore, the problems associated with the equipment weight, physical

dimensions, mechanical scanning difficulties or remote power supply, just to mention a few.

0.0044 0.0433 0.0121
0.0032 0.0405 0.0101
0.0029 0.0396 0.0086
0.0027 0.0393 0.0074
0.0027 0.0392 0.0064
0.0027 0.0392 0.0055

Table 4.1. Average Mean Squared Error for different SNR and T values (1000 iterations).

4.5. Antenna Beamwidth vs. Angular Resolution from a Spectral Perspective

On this occasion, as in the previous section, the data acquisition process of a circular scanning
radar antenna rotating 360° in azimuth with a constant angular velocity is modeled by means of

a convolution, as suggested in equation 4.4.

Considering that the antenna beams act as a low-pass filter, it becomes interesting the use
of some deconvolution or inverse filtering process to recover an estimation of the original scene

fIn] with an improved angular resolution. Due to the fact that the problem is ill-posed, this
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Figure 4.8. Simulation of data acquisition with the antenna beam of BW.345=1° (black)
and estimation when capturing with the antenna beam of BW.345=4° and inverse
filtering (blue) for: (a) SNR=15 dB, (b) SNR=25 dB, (c) SNR=35 dB and (d) SNR=45 dB.
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matter must be solved with the aid of an inverse function that controls the stability issue and
minimizes noise amplification such as the one shown in equation 4.6, where the constant T

approximates the noise-to-signal power density ratio.

Once again, the objective is to calculate an estimation f'[n] of the real scene from de signal
captured by the antenna g[n], operating in the frequency domain as explained in equation 4.7.
The optimum value of the constant T is found by minimizing the MSE as much as possible when

comparing the original test signal f[n] and the estimation f’[n] (see equation 4.8).

In this case, in addition to observing the MSE and visualizing graphically the results when
using antennas with different angular resolutions, the outcomes will be analyzed in the
frequency domain. The fact that the value of T represents a compromise between noise
amplification and resolution improvement (high values of T entail a noise-free but a low
performance filter, while a better filtering performance but an excessive noise magnification is
obtained with low values of T), suggests that in some way emulates the concept of
regularization. The introduction of additional information by means of the parameter T
somehow produces a truncation of the most unstable spectral components corresponding to
high frequencies, stabilizing the inverse problem. Therefore, the analysis in the frequency
domain becomes interesting, in order to observe the consequences of this spectral truncation

on the outcomes.

4.5.1. Simulation Method

Figure 4.9 shows two different original test signals, simulating target distributions over the
FOV of 360°. Both signals have an angular resolution of 0.5°, resulting in a signal length of N=720

samples. In Figure 4.9 (a) multiple size targets have been located at different ranges and angular

60

90

120

180 180

(a) (b)

Figure 4.9. Target distribution over the FOV of 360°: (a) multiple size targets at
different ranges and angular distances; (b) sum of different frequency square waves.
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distances trying to emulate realistic objects, and it will be useful to evaluate the improvement
of angular resolution of the method. Besides, Figure 4.9 (b) is a sum of different frequency

square waves, that is more helpful to evaluate the recovery of spectral components.

The process of data acquisition has been simulated using different angular resolution
Gaussian beam antenna patterns with 3 dB beamwidths of 1°, 2° and 4° (see Figure 4.10).
Analyzing antenna directivities based on equation 4.2 and associating with the effective area
using equation 4.3, it can be deduced that the effective area of the antenna with a BW.345=4°
would be reduced by a factor of 2 compared to the antenna of BW.345=2° and by a factor of 4 in
relation with the antenna of BW._345=1°. Taking into account the angular resolution of 0.5° of the
original signal, is important to note that the resolution of the antenna with a BW 345=4° is 8 times

lower (4 and 2 times lower for the antennas of BW.345=2° and BW.345=1° respectively).

The simulated scanning of the FOV is performed by signal spectrum multiplication as
explained inequation 4.5 for the different angular resolution antenna beams and adding white
Gaussian noise, assuming a SNR of 25 dB, to reproduce more realistic conditions when
performing the data acquisition process. Figure 4.11 represents the captured signal g[n] as a
result of scanning the multiple target distribution over the FOV shown in Figure 4.9 (a) with
antenna beams of BW.345=1°, BW.345=2° and BW.345=4° consecutively (red), together with the
original test signal f[n] (grey) to enable better visual comparison and their corresponding spectra
inthe range [—7, 7] . Figure 4.12 displays the analogous results when scanning the signal shown
in Figure 4.9 (b), the sum of different frequency square waves. It is possible to appreciate the
loss angular resolution and the attenuation of high-frequency spectral components when
comparing captured data to the original test signal and its corresponding spectra. This effect
becomes more significant the lower the antenna angular resolution is—the wider the 3 dB
beamwidth—, being difficult to distinguish contiguous targets in many cases and observing also

inaccurate range information, due to the effect of beam overlapping.

BW.3d8

Amplitude

Angle (Degrees)

Figure 4.10. Gaussian beam antenna patterns used for simulation. BW.345=1° (blue),
BW._345=2° (red) and BW.345=4° (green).
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The next step consists of applying the inverse function as previously described in equation
4.7 to achieve an estimation of the real scene f'[n] and reverse the negative effect produced by
the antenna beam during the data acquisition simulation, always considering the limits imposed

by the ill-posed system and its related stability and noise amplification problems.

BW 345=1°

Figure 4.11. Simulation of data acquisition with antenna beams of BW._345=1°,
BW.345=2° and BW.345=4° and corresponding spectra (original test signal: multiple size
targets at different ranges and angular distances). SNR=25 dB.
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Figure 4.12. Simulation of data acquisition with antenna beams of BW._345=1°,
BW.345=2° and BW.345=4° and corresponding spectra (original test signal: sum of
different frequency square waves). SNR=25 dB.
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4.5.2. Results

The outcomes of implementing the inverse filtering to recover the estimation of the original
test signal are displayed in Figure 4.13 (multiple size targets at different ranges and angular
distances) and Figure 4.14 (sum of different frequency square waves). Observe how the results
are highly satisfactory locating and identifying different targets when related to angular
resolution in all cases. Nevertheless, the range information (amplitude) is slightly affected due
to the noise amplification associated to the system instability, mostly for signals captured with
lower angular resolution antenna beams. It is also possible to observe how the previously
attenuated high-frequency components have been recovered, being directly linked with the
improvement of angular resolution. Spectral components truncated as a result of the constant
T to approximate the noise-to-signal power density ration when applying the inverse filter (the
highest frequencies) can no longer be recovered. However, the most important spectral
components are in the lower frequencies and the angular resolution does not appear to be

influenced too much by this condition, since a good signal reconstruction is achieved.

The MSE values obtained for different signals and antenna beamwidths are shown in Table
4.2. Observe how the error is considerably reduced when comparing the captured data g[n] with
the recovered estimation f’[n] after applying the inverse function, demonstrating that noise

amplification problem has been controlled in a significant way.

On this occasion as well, it has been demonstrated how it could be possible to get high
angular resolution for antenna systems by means of devices with less directive antenna beams,
and thus, smaller effective areas or apertures. Antennas with 3 dB beamwidths of 1°, 2° and 4°

have been used to capture signals with an angular resolution of 0.5°, achieving successful

outcomes.

1° 0.034 15.70 0.82
2° 0.031 19.60 4.00
4° 0.020 44.00 9.80
1° 0.050 29.10 2.20
2° 0.090 31.10 8.90
4° 0.060 63.10 12.80

Table 4.2. MSE for different BW.s45 and T values, comparing the captured signal g[n] and
the estimation of the original test signal f'[n].
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Figure 4.13. Estimation of the real scene after performing the inverse filtering for
signals captured with antenna beams of BW.345=1°, BW._345=2° and BW_345=4° and
corresponding spectra (original test signal: multiple size target at different ranges and
angular distances).




Applications of Visual Hyperacuity in Antenna Systems

Figure 4.14. Estimation of the real scene after performing the inverse filtering for
signals captured with antenna beams of BW.345=1°, BW.345=2° and BW_345=4° and
corresponding spectra (original test signal: sum of different frequency square waves).
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4.6. Antenna Size Reduction and Subsampling

The previous approaches have shown the possibility of improving the angular resolution of a
given antenna system using deconvolution methods, which in turn enables the use of lower
angular resolution—and smaller—antennas to achieve outcomes close to the ones obtained
with higher performance systems. The beam-overlapping effect produced by the antenna beam
in the first instance (Rayleigh criterion is contravened), reduces considerably the angular
resolution of the system but, at the same time, taking advantage of the spectral band-limited
nature of the captured data [123], it is possible to perform a subsampling process reducing the
total data points of the captured signal g[n]. In simulation, it would be equivalent to decrease

the sampling rate or, in other words, increase the sampling intervals.

The use of a reduced number of samples to reconstruct a high angular resolution signal brings
multiples benefits. First of all, the antenna sweep time for scanning the FOV can be greatly
shortened, since fewer measurements must be carried out. Analogously, the reduction of the
data points required for signal reconstruction allows the system to expend more time in each
measurement, thereby improving the SNR and aspects that could be profiting from time
integration, such as the range resolution of a radar system, for example. Furthermore, with
respect to the method proposed in this section, the process of subsampling practically truncates
the most critical spectral components (high frequencies) connected to noise-amplification and
stability problems associated to the inverse problem, thus facilitating the implementation of an

inverse filtering.

4.6.1. Simulation Method

Target distribution over the FOV of 360° considered for simulation (original test signal fln] in
Cartesian coordinates) is shown in Figure 4.15, aiming to simulate realistic objects located at
multiple positions. The test signal used for simulation has an angular resolution of 0.5°, yielding

a signal length of N=720 samples.

Two antenna beam patterns h[n] have been used at the data acquisition simulation process.

Both are Gaussian functions, but with different angular resolutions defined by the 3 dB

Normalized Amplitude

0.4 il
0 I | I | 1
600

0 100 200 300 400 500 700

Samples

Figure 4.15. Target distribution over FOV of 360° (original test signal). N=720 samples.
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Figure 4.16. Gaussian antenna beam patterns of BW.345=2° (red) and BW.343=0.5"
(blue) used for simulation.

beamwidth of 0.5° and 2° (see Figure 4.16). Antenna beams are sampled each at 0.5 degrees,
which implies that the BW._345 are of 1 and 4 samples respectively. The low angular resolution
antenna with a BW.345=2" is four times less directive than the high-resolution one (BW.345=1").
Accordingly, the antenna effective area is also reduced by the same proportion, as the supposed

antenna size.

The scanning of the FOV using the previously characterized antenna beams is performed by
multiplication of Fourier Transforms, adding white Gaussian noise and assuming a SNR of 25 dB
(see Figure 4.17). When capturing the signal with the antenna beam of BW.345=0.5" and sampling
intervals of 1 sample (blue), almost no information is lost due to the high angular resolution of
the antenna (Rayleigh is met) and most of the errors are produced by the presence of noise.
However, when using the less directive antenna beam of BW.345=2" and equal sampling intervals
of 1 sample (red), each section of the FOV is illuminated by multiple beams (Rayleigh criterion is
contravened), creating a significant overlapping effect that corrupts the information on range.
Additionally, angular resolution is lost, which renders difficult distinguishing adjacent targets.

Both signals have a signal length of N=720 samples.

When analyzing these signals in the frequency domain (observe Figure 4.18), the signal
captured using the high-resolution antenna of BW345=0.5" (blue) captures almost all spectral
components of the original test signal (grey). On the contrary, observe the low-pass filter effect
produced by the antenna beam of BW.345=2" (red), attenuating high frequency components and
producing a loss of angular resolution: the spectrum drops to very low values from a given
spectral index (below -40 dB). Nevertheless, this signal seems to be oversampled (4 samples per
antenna beamwidth) and we could subsample it (while still meeting the Nyquist sampling
theorem), truncating the high frequency spectral components, the most critical ones when

performing an inverse filtering process.
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Figure 4.17. Signal acquisition with antennas of BW.345=0.5" (blue) and BW.345=2"
(red), compared to the original test signal (grey). N=720 samples, SNR=25 dB.
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Figure 4.18. Spectra of acquired signals for BW.345=0.5" (blue) and BW._345=2" (red),
compared to the spectrum of the original test signal (grey).

Figure 4.19 shows the result of applying a decimation factor 2 to the low angular resolution
signal, while its spectrum is depicted in Figure 4.20. This subsampling process is equivalent to
increasing scanning intervals up to 1° (or 2 samples), thereby reducing the signal length down to
N=360 samples when the data capturing process is performed. Notice how the signal has not
suffered relevant modifications and the most significant spectral components in the passband
are kept. The captured signal can now be interpolated by means of the FFT interpolation
method, consisting in a simple spectrum zero-padding, to increase the signal data points. In this

case, a factor 2 FFT interpolation has been used, obtaining a signal length of N=720 samples.

The last step involves processing through an inverse filter that recovers the signal consisting
in a high-resolution estimation of the original test signal fln]. The subsampling process
performed in advance greatly reduces instability and noise-amplification issues associated with
inverse problems, since high frequency spectral components have been removed. Therefore,
specific inverse functions or regularization methods are needless, and the use of an inverse filter
is straightforward as outlined below:

1

(w)= H N w)= — 4.9
F'(®)=G(w)-H™ (0) = G(w) (o) (4.9)
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Figure 4.19. Low-resolution subsampled signal of N=360 samples (red) and original
test signal (grey).
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Figure 4.20. Spectrum of the low-resolution subsampled signal (red) compared to
original test signal spectrum (grey).

4.6.2. Results

The outcome of implementing the inverse filter is shown in Figure 4.21 (red), together with
the signal captured with the high angular resolution antenna (blue) and the original test signal
(grey). Even if the information on range (amplitude) is slightly corrupted due to problems
associated to the deconvolution process, results are greatly satisfactory regarding target
localization and identification or angular resolution. It must be remarked that the results
obtained by means of the low angular resolution antenna (BW.345=2") and scanning intervals of
2 samples (N=360 samples) differs very little from the outcome achieved with the high angular

resolution antenna (BW.345=0.5") and scanning intervals of 1 sample (N=720 samples).

With respect to the spectral components (see Figure 4.22), most of the passband frequencies
are successfully recovered, although some high frequencies are slightly overamplified. The
spectral components captured by the low angular resolution antenna appear to be enough for
a good quality signal reconstruction when applying the post-processing techniques described in
the method.

137



Application of Visual Hyperacuity to Imaging and Antenna Systems

N

2 08
°
2
206
<
:
504
E
o
z

0.2

0 »MAAAAA At A\ Anrlly A, o aall Anaand
0 100 200 300 400

Samples

Figure 4.21. Recovered estimation of the original signal (red), signal acquired with
BW.345=0.5" (blue) and original test signal (grey). N=720 samples.
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Figure 4.22. Spectra of the recovered signal (red) and the signal acquired with
BW 345=0.5" (blue), compared to the original test signal spectrum (grey).

This section shows once more how significantly the aperture or size of an antenna system
can be reduced without any meaningful loss of angular resolution. More specifically, a data
capturing process has been simulated using antenna beams of 3 dB beamwidths of up to 0.5 and
2 degrees, achieving quite similar results, even if using a 4 times less directive and smaller

aperture size antenna.

In addition, it has been demonstrated how the low-pass filtering effect of the low angular
resolution antenna beam makes possible to reduce the sampling rate, i.e., increase the scanning
intervals, for subsequent interpolation and inverse filtering, with almost no degradation of the
signal quality since the most important information is kept in low frequencies. This reduction of
the necessary data points that enable the reconstruction of the signal yields a considerable
decrease in the time required to sweep the FOV and could also improve the SNR of the system
profiting from time integration techniques. Moreover, the subsampling process helps to avoid
stability and noise-amplification problems related to inverse problems, because high-frequency

spectral components are truncated.
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4.7. Conclusions

The outcomes show that it might be possible to achieve high angular resolution systems using
less directive beams, and therefore, smaller effective areas or antenna sizes. Fairly comparable
results have been obtained when using antennas up to four times less directive beams, which
means that the antenna size (aperture) could also be reduced by a factor of 4 thanks to post-
processing techniques. The results are highly satisfactory spatially locating and identifying
different size targets in connection with angular resolution. However, in some instances, the
range information (amplitude) can be affected as a result of noise amplification problems of
inverse problems, mainly when implementing simulations with lower angular resolution

antennas.

The low-pass filtering effect produced by antenna beams enables the use of lower sampling
rates or, equivalently, larger scanning intervals, while still meeting the Nyquist sampling
theorem. This subsampling reduces considerably the data points used to reconstruct high
angular resolution signals, since a subsequent interpolation and inverse filtering can be
performed with almost no degradation of the signal quality. Consequently, the antenna sweep
time can be shortened or, in other cases, the system could take more time in each measurement
and improve the SNR of the system or take advantage of time-integration methods, for example.
Additionally, subsampling helps to avoid stability and noise-amplification problems related to
inverse problems, since high-frequency spectral components are truncated, thus facilitating the

implementation of an inverse filtering.

In terms of spectral analysis, high-frequency components attenuated in the data capturing
process are mostly recovered, being directly linked with the improvement of angular resolution.
Spectral components truncated as a result of the applied inverse functions or due to
subsampling are no longer recovered, but most of the frequencies in the passband are
successfully recovered. The spectral components kept in the lower frequencies captured by low
angular resolution antennas appear to be enough for a highly satisfactory signal reconstruction
when applying the post-processing techniques described in the visual hyperacuity simulation

method.

It can be said that the proposed approach may have a direct impact on the antenna design
process, making it possible to reduce considerably the effective area or aperture, and
consequently the antenna size used in many applications, where it is a matter of great
importance. This idea could also relax significantly the limitations related to the antenna size
and reduces problems associated with the equipment weight, physical dimensions, mechanical

scanning difficulties or remote power supply, among others.
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5.1. Conclusions

This final section aims to provide a general overview of the research work carried out over

the previous chapters and summarize the most relevant findings and conclusions.

It seems clear that the human eye shows many parallels and similarities with the
conventional digital imaging systems: the structure and dimensions of the optical system, light-
sensitive sensors based on the RGB color model, cone densities used for sharp central vision,
etc. Conversely, they also have some substantial differences: the area of a cone cell is
considerably smaller than the pixel sensors used in imaging devices, which could be a limiting
factor when considering the captured photon flux. Nevertheless, the human eye obtains higher
dynamic ranges: it is able to see in low-light conditions without the need of long exposure times
and it has the ability to avoid saturation in bright environments. But the most striking
characteristic is the high-resolution images it can generate thanks to visual hyperacuity: the
capability to exceed the limits of resolution established by the number, size and distribution of
the photoreceptors. In other words, it largely outperforms the resolution obtained with imaging

devices with equivalent characteristics and dimensions.

From this perspective, it is difficult to believe that the eye works under the principles of
diffraction-limited systems like most imaging devices. Additionally, the analysis carried out
shows that the diffraction produced by the entrance aperture (the pupil) and other contributing
factors generates a strongly blurred image over the retina, clearly breaking the Rayleigh criteria.
The main hypothesis of this research is based on the fact that the blurring effect produced by
diffraction plays a key role in achieving visual hyperacuity: it generates spatial diversity,
improves the SNR of the system, makes possible the detection of fine details and relaxes the

sampling requirements for data capturing.

The proposed method aims to be an explanation and simulation of the visual hyperacuity,
which takes advantage of the introduction of a controlled diffraction to improve the final
resolution of signals or images, far from being a limiting factor. The simulation results show that
diffraction makes possible the capture of fine details that are lost in absence of diffraction,
surpassing the resolution defined by the sensors. This breaks the paradigm of the number of
pixel sensors of a given system and the obtained final resolution. The negative note is that the
need to implement an inverse filtering process is a complicated matter in many cases: the
system can become highly sensitive to the presence of noise or slight modifications in the

captured signal, threatening the stability of the whole scheme.

The visual hyperacuity simulation method can deal with many technological challenges of
current imaging systems. First of all, some of the hardware-related complications can be faced
using signal processing methods and this approach would compensate these limitations with

computational load. This is the case of THz imaging, where it is complicated to fabricate devices
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with a high number of detectors. Therefore, the scheme put forward could be of great help to
obtain higher resolution images when the number of available sensors is limited, improve the
sensitivity of the system thanks to spatial diversity and replace complex mechanical scanning
mechanisms with software-based resolution enhancement techniques. The chance to generate
high-resolution images using a low number of sensors makes also possible to increase the size
(or area) of each sensor, improving the SNR and the dynamic range of the system. This point can
be considered a matter of great importance for vision under poor lighting conditions, the
reduction of radiation power in some applications that might be controversial or the increase of

the working distance for some specific purposes.

In connection with antenna applications, the results related to angular resolution (spatial
location and identification of targets) are highly satisfactory, even if using low directivity antenna
beams. However, the range or amplitude information can be slightly affected due to noise
amplification and stability problems associated to inverse problems. The low-pass filtering effect
produced by the antenna beam can be used as an anti-aliasing filter that allow the reduction of
the sampling rate or, equivalently, the captured data points. In any event, the implementation
of the proposed method makes possible to obtain high resolution signals, with almost no
degradation of the signal quality. Moreover, this subsampling can avoid problems related to
inverse problems, since high-frequency spectral components are truncated. The spectral
components attenuated in the process of data capturing are mostly recovered, which seem to

be enough for improving the final angular resolution.

It has been demonstrated how might be possible to achieve high angular resolution systems
using antennas with low directivity beams benefiting, at the same time, from the advantages of
smaller effective areas or antenna sizes. The visual hyperacuity simulation method could have a
direct repercussion on antenna design and implementations: the reduction of the antenna size
could relax significantly the limitations and problems associated with many issues, such as the

weight, the general dimensions of the system or the power supply.

5.2. Future Research Lines

Even if a long and hard work has already been done in order to establish the basis of the
visual hyperacuity simulation method and its possible applications, it is clear that much remains

to be done in this direction.

The multiple tests performed to date are based on software simulations. Therefore, the
design, construction and testing of real systems and applications is clearly one of the next steps
that should be carried out, both for imaging and antenna systems. Dealing with more realistic
approaches would generate new challenges and issues that have not been faced during the

simulation phase: the presence of real noise problems and other perturbations in the process of
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data capturing, the generation of a controlled diffraction, the precise determination of the PSF

for an efficient inverse filtering and many other aspects that would arise along the way.

One of the most critical aspect when implementing the method for real applications would
be the election of the most appropriate method for solving the inverse problem, since there are
many existing approaches in literature. Multiple factors could be considered, such as the nature
and power of the diffraction effect, the presence of noise in the system, the resolution
enhancement required, the type of images or even the specific application. What is clear is that
the algorithm of the method must be computationally efficient, due to the demands of current

technological applications, such as real time imaging applications, among many others.
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Appendix: Testing some Aspects of the Method

This section includes some of the tests carried out from the general method proposed above.
These tests are based on the modification of multiple parameters and the application of
different deconvolution methods, for the purpose of observing and analyzing the results
obtained in each case. Some of the tests have been implemented in 2D using a test pattern
image, while others have been performed with 1D signals in order to simplify operations. Notice,
that these tests could also be applied to 2D signal or images, operating by rows and columns (or

vice versa).

a) The Effect of Variations in the PSF

Deterministic methods require a precise knowledge of both the observation g[x,y] and the
kernel or PSF h[x,y]. This test consists of introducing a sinc? type varying-radius diffraction filter
(h1) while the deconvolution is performed by means of a similar filter (h2), but with a fixed radius.

The implementation in the Fourier Transform domain is described as follows:

FI[U,V]ZF[U,V]'Hl[U,V]‘ (A.l)

,luv]

In the example below, the test pattern image shown in Figure A.1 has been filtered using
similar sinc? type diffraction filters (h;), but with different widths (main lobe radius r of 40, 48,
50, 52 and 60 pixels). The inverse filtering has been carried out in all cases using a filter (h;) with

a fixed radius (main lobe of r=50 pixels).

The results can be observed in Figure A.2. As can be seen, when h;=h; (r=50 pixels), the
deconvolution is performed successfully. However, when h;# h;, no matter how slightly h; it is
modified, the result of the deconvolution is not satisfactory. The obtained result shows the

importance of determining with high accuracy the diffraction introduced by the PSF when an

L

—
—

Figure A.1. Original test pattern image.
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inverse filtering is needed. In multiple applications, it is not a trivial task and the inverse problem

becomes an even more complicated issue.

r=40 pixels r=48 pixels

||
||
r=50 pixels
r=52 pixels r=60 pixels

Figure A.2. Results of introducing a sinc? type varying-radius diffraction filter h; with
main lobes of 40, 48, 50, 52 and 60 pixels and inversely filtered with a fixed radius
filter h, of r=50 pixels.
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b) TSVD for 1D Signal Deconvolution

In this case, the TSVD will be tested by means of convolution-based methods. Accordingly,
the PSFin 1D is transformed into a 2D Toeplitz matrix, necessary to compute the 1D convolution

(see Figure A.3).

25
Samples

PSF Toeplitz(PSF)

Figure A.3. 1D PSF and the corresponding Toeplitz matrix.

By a simple matrix-vector multiplication between the original test signal and the Toeplitz
matrix of the PSF, the 1D convolution is implemented (Figure A.4). Additionally, some noise has

been introduced.
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Figure A.4. Original test signal (left) and the blurred and noisy signal (right).

If the Toeplitz matrix is a square matrix, then the inverse can be directly calculated.

Nevertheless, when this is not the situation, the inverse function is computed using the formula:

H,, =H"-H)™-H' (A.2)

where H is the Toeplitz matrix of the PSF and H" its transposed matrix. Once again, the
deconvolution will be implemented by matrix-vector multiplication. However, the inverse filter
cannot be directly applied, since the presence of noise generates important stability problems.
Therefore, it is necessary to implement a TSVD regularization, to control the noise amplification
matter and stabilize the solution.
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The first step is the SVD of the PSF,

H=U-S-V’ (A.3)

where H is the Toeplitz matrix of the PSF, U and V are the left and right singular vectors and S is

the diagonal matrix containing the singular values (observe Figure A.5).

Toeplitz(PSF) i Sipgular Valyes

20

10

o

50 100 150 200 250

Left Singular Vectors Right Singular Vectors

Figure A.5. Singular Value Decomposition of the PSF.

Later, the most unstable singular values are truncated (the smaller ones, corresponding to
the high frequencies), while the components related to the most stable singular values (low-
frequencies) are reconstructed. Figure A.6 shows the matrices S, U and V when the 50 largest

singular values are kept.

Singular Values Left Singular Vectors Right Singular Vectors

Z WTTTTW

0 10 20 30 40 50

Figure A.6. Truncated singular values and vectors.

The results obtained reconstructing the components corresponding to the 15, 30, 50 and 70
largest singular values are depicted in Figure A.7. Notice how when too many singular values are
truncated, the reconstructed signal presents slow and smooth variations, presenting stability

against noise but being unable to remove the blur introduced by the PSF. On the contrary, when
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more singular values are reconstructed, the most unstable components are included in the

deconvolution process, producing noise amplification (stability) problems.

It is clear that the choice of the regularization parameter a is critical, considering that it
determines which singular values are truncated and, therefore, which components are
reconstructed. But this is not a simple issue, since it presents a compromise between the noise

suppression and the loss of relevant information.

Samples, Samples.

(c) (d)

Figure A.7. Signal reconstruction by TSVD, including 15 (a), 30 (b), 50 (c) and 70 (d)
singular values.

c) Tikhonov Regularization for 1D Signal Deconvolution

Tikhonov regularization aims to find a TSVD solution to Hf=d, where the regularized

approximation is expressed by:
f,=HH+al)'H'g (A.4)

The regularization parameter a determines the cut-off—or threshold—level of the TSVD
filter: when a is too small, the noise is not filtered and f, is highly oscillatory; by contrast, when
o is too large, noise components are filtered out but f, is excessively smooth. Therefore, it is

important to find a compromise solution.
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Let us consider the original test signal f and the blurred and noisy signal g (Figure A.8). The
value of a can be determined by minimizing the solution error norm given by ||fa —f|| [57],

achieving the best possible regularized solution. Figure A.9 shows how the TSVD solution f,
varies with the regularization parameter a. In this case, the optimal solution is obtained for

=0.0389, while oscillating results are obtained when -0 and the smooth functions when a->1.

0
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Figure A.8. Original test signal f (left) and the blurred and noisy signal g (right).
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Figure A.9. (a) Norm of the solution error, versus the regularization parameter a.  (b)
fo for ¢=0.0389. (c) f, for =0.00001. (d) f, for a=0.7444.
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d) Tikhonov Regularization for Image Deconvolution

The Tikhonov regularization method can also be applied to 2D signals or images, using the
regularized approximation defined in equation A.4. On this occasion, the original test pattern
image has been filtered using a sinc? type PSF operating in the Fourier Transform domain and
some Gaussian noise has been added to it (Figure A.10).

The blurred and noisy image has been subsampled by means of a factor 2 decimation process
and subsequently interpolated (factor 2), creating new data points. The results of reconstructing
the image by means of a Tikhonov regularization method can be found below in Figure A.11,

when using different values of the regularization parameter a.

Once again, low values of a introduce noisy components in the solution, being difficult to
recognize the image. However, larger values of a reduce the effect of noise, but high-frequency

components are truncated, obtaining poor results when talking about deblurring.

(b)

Figure A.10. (a) Original test pattern image. (b) PSF. (c) Burred and noisy image.

a=1.5-107

a=4-10° a=4-10"

Figure A.11. Results for different values of the regularization parameter a, when
applying Tikhonov regularization for image deconvolution.
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