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Abstract

The present thesis deals with the design and practical implementation of novel netamaterial planar

antenna structures based on Complementary Split Ring Resonator (CSRR) particles.

As CSRR particles display a very attractive electrical performance when used as unit cell for

metasurfaces, the authors of this thesis have proposed to implement such particles in waveguide

filters. In this case, the possibility to design waveguide filters with lengths equal to the thickness

of a metallic sheet is confirmed. Consequently, the proposed structure constitutes a significant

reduction of the dimensions of the well-known resonant cavity waveguide filters coupled by irises.

The behavior of CSRR particles within compact waveguide filter suggested the authors to

use them as stand alone radiating elements. As expected, due to the reduced electrical volume of

CSRRs, such particles exhibited low radiation efficiency. In order to improve the radiation efficiency,

the idea to implement CSRRs inside a larger structure came to us. Measurement results confirm this

hypothesis and raise the question to design multi-band antennas. In order to implement multi-band

antennas, several CSRRs are inserted at different positions in the patch. It is then observed that the

grouping of CSRRs can provide either multi-band operation or polarization rotation capabilities,

when Electro-Inductive Waves (EIW) are supported.

Finally, thanks to EIW propagation, the idea to use longer CSRR chains as radiating structures

came to us. As an intermediate step, and in order to validate simulated results, a finite array

composed of nine CSRRs is manufactured and partially tested. Though partial, this test results are

very encouraging and motivate a more in deep measurement campaign. This campaign is expected

to result into new publications on this topic. These results support the use of the proposed CSRR

chains for the design of leaky wave antennas.

Keywords
Complementary Split Ring Resonator, Metamaterial Planar antenna, Circular Polarization, Multi-

band Band antenna, Electro-Inductive Wave propagation.
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1. Introduction

Tout ce qui n’est pas donné, est perdu.

Proberbe Indien

This thesis reports the research work I performed within the doctorate program ”‘Programa de

Doctorado en Comunicaciones”’, for the degree of Philosophy Doctor (PhD) in Telecommunications

Engineering of the Universidad Pblica de Navarra (UPNA).

In April 2005 I proposed Professor Mario Sorolla Ayza to perform a thesis under his super-

vision. At that time I had already left UPNA few months ago and had started working full time

as Electrical Engineer, at RYMSA S.L in Madrid. He happily accepted my proposal in spite of

the disadvantages of having a part-time PhD student. He proposed me to do research on antennas

using Complementary Split Ring Resonators (CSRRs) under the guidance and supervision of Pro-

fessor Francisco Falcone Lanas and himself. From that moment I started under their direction the

challenging work which has provided the results presented in this thesis.

This thesis has been developed on my free time, without official financial support from 2005

and its results are not related to the activities I have performed as Antenna Engineer at the

different companies I have worked in Spain and Switzerland over the last ten years [see CV]. The

manufacturing and testing of all the prototypes developed in the frame of this thesis have been

possible thanks to the support of Departamento de Ingeniera Elctrica y Electrnica at UPNA and

the inestimable personal engagement of the Professors Francisco Falcone, Juan Carlos Iriarte and

Gonzalo Crespo.

The aim of this chapter is to center the topic of the thesis within its context, to explain the

objectives and to present the personal contributions that have been achieved under the research

work.

To whom is reading this memory, I wish you enjoy.

1
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1.1 Field of Study and Objectives of the

Thesis

The field of study of this thesis falls within the framework of the synthesis and design of novel

antenna structures based on Metamaterials in the microwave frequency range.

The objective of this thesis is to contribute to the development of Planar Metamaterial antennas.

The structures used for the development of the Metamaterial antennas presented in this work are

the Complementary Split Ring Resonators (CSRRs).

The initial goal of this thesis was to take profit of the intrinsic benefits of CSRR particles

at their sub-lambda operation in order to design miniaturized Metamaterial antennas. However,

the first achievements of this thesis drove the research apart from the miniaturized Metamaterial

antennas towards designs using arrays of CSRR particles within conventional rectangular patch

antennas as well as leaky wave antennas based on CSRR array structures.

The objective of the present memoir is, finally, to provide a reasoned outline of the design of

Metamaterial antennas based on CSRR and its results, with the vocation that also the reader could

derive some benefit from the resulting document.

1.2 Thesis Outline and Original

Contributions

This section summarizes the contents of the chapters of the thesis memoir.

In Fig. 1.1 the logic of the thesis is shown.

Chapter 1 presents the field of study and the objectives of this thesis. This chapter also includes

the context and the historical review of guided structures and planar antennas based on

CSRRs.

Chapter 2 is centered in a discrete waveguide filter design. This type of filter is composed of a

CSRR etched in the center of a metallic sheet. This original layout reduces the dimensions

of the well-known resonant-cavity waveguide filters coupled by irises. The contribution of the

author on this topic is included in Section 2.2.3. In addition, in this chapter from a more

general point of view a sample development by the author of a distributed waveguide filter

is presented. This work has resulted into a patent which is presented and described as a
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counterpart of the discrete filter element that is the CSRR itself. The aforementioned patent

is described in Section 2.1.1.

Chapter 3 focuses in the study of the radiation performances of a CSRR inside a rectangular

patch antenna. Within this novel Metamaterial structure, the radiation efficiency of the

CSRR is improved compared to the radiation efficiency of the CSRR as an stand along

radiating element. Three original contributions are published by the author on the work

presented in this chapter. These contributions are explained in Section 3.2.4, Section 3.2.5

and Section 3.2.6.

Chapter 4 focuses in different CSRR array configurations which allow polarization rotation in

a rectangular patch antenna. The polarization rotation is mastered by Electro Inductive

Wave (EIW) phenomenon originated by the electric coupling among the CSRRs; which are

specifically located inside the rectangular patch. The contribution of the author on this topic

is included in Section 4.2.

Chapter 5 presents the possibility to use CSRR arrays for the design of leaky wave antennas.

Partial measurement results of this work shows promising results in this field. These results

are foreseen to be published in the incoming months.

Chapter 6 summarizes the concluding remarks and outlines the possible future research directions

inspired by the work presented in this memoir.

Every chapter contains an independent list of references.

1.3 Historical Overview

This section is an overview of the main research results based on Complementary Split Ring Res-

onators (CSRRs). The overview starts within a description of the context of this thesis and it

follows with the presentation of the main achievements fulfilled in guided and in planar antennas

structures based on CSRRs including the results presented in this thesis.

1.3.1 Context

The conception of this thesis is placed somewhere between the end of 2004 and the beginning of

2005. At that time the topic of Metamaterials was at its peak and the Microwave and Millimeter

Wave research group of the UPNA, conducted by Professor Mario Sorolla Ayza, has an international

lead together with other two research groups in Spain: the research group conducted by Ricardo

Marqus and the research group conducted by Professor Ferran Martin, at University the Sevilla and
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at University Autonoma de Barcelone; respectively. Those three research groups were focusing their

research activities in the design of microwave planar structures based on Split Ring Resonators.

The invention of the CSRR particle was a result of the cooperation among these three research

groups and it was firstly announced in the work [1]. From that moment the motivation of designing

Metamaterial antennas based on CSRR isolated particles and arrays came up and it consequently

this idea became the main subject of this thesis.

In order to center the discovery of the CSRR particle in time based on the theoretical back-

ground, follows the pioneers theoretical and experimental works on Metamaterials which conducted

to the concept of the CSRR.

1879 - 1944: Professor L. I. Mandel’shtam from Moscow Universitity [2] states in his lecture

notes that, since the phase velocitiy does not have to have the same direction as the power flow

vector, ”negative refraction” is thus possible.

1945: The paper ”Group velocity in a crystal lattice” [3] by L. I. Mandel’shtam proposes the

existence of a frequency range in which EM waves propagate through certain crystal lattices with

negative group velocity (i.e. : the group velocity is directed oppositely to the phase velocity).).

In this work physical examples of structures supporting waves with negative velocity were also

presented.

1951: Malyuzhinets in his work [4] based on the Sommerfeld radiation condition in backward-

wave media, he used as an example of ”negative refraction” one-dimension artificial transmission

line.

1957: D. V. Sivukhin states that media with negative parameters are backward-wave media but

raises the question of the existence of such media [5]. The artificial synthesis of such substances,

now known as Left Handed Materials (LHM), is not yet available.

1959: R.A. Silin discusses the negative refraction phenomenon in periodical media [6].

1967: V. G. Veselago studies the electrodynamics of substances with simultaneously negative

values of dielectric permittivity and magnetic permeability [7]. Althought these substances are not

supposed to be present in nature, interesting properties are theoretically predicted for them, such

as the reversal of the Snell Law, Doppler effect and Cherenkov radiation. These properties are

derived from the fact that negative values of dielectric permittivity and magnetic permeability give

rise to a negative refraction index (NRI) and backward wave propagation. Such substancies, now

termed left handed materials (LHM), were not artificially fabricated by that moment.

1999: J. D. Pendry, presents the Split Ring Resonator (SRR) in his work [8]. The SRR particle

consists on a pair of concentric rings, with slits etched in opposite sides. Those particles exhibit a

negative effective permeability in the vicinity of its resonant frequency.
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2000: Along this year two main achievements are fulfilled.

On the one hand the first experimentally observable LHM operating in the microwave region

is reported by D. Smith et al. in [9]. The structure was fabricated by combining a periodic

array of metal posts with an array of non.magnetics SRRs. The meatallic posts behave like a

two dimensional (2D) plasma with negative permittivity up to the plasma frequency, while the

SRRs exhibit a negative effective permeability in the vicinity of its resonant frequency. This first

prototype exhibits a left-handed behaviour for one direction of propagation (1D LHM) and for

one polarization of the fields. An improved 2D isotropic version of this structure will be proposed

in [10].

On the other hand, J. D. Pendry proposes the term superlens in [11]. He predicts that such

LHM-lenses will enable a perfect image reconstruction thanks to their capability to magnify and

refocus the near-Field evanescent components.

2002: During this year two main contributions were achieved.

In the first half of this year the results of an experiment envisaging the integration of the SRR

within Coplanar Waveguides and Microstrip lines are published in [12]. This experiment consists in

loading a conventional metallic rectangular waveguide with a dielectric sheet hosting a set of SRR

particles. The SRR particles were designed in order to have the quasi-static resonance frequency

below the cut-off frequency of the waveguide.This result was another experimental validation of

LHM phenomena.

In the second half of 2002, the research group leaded by C. Caloz and T. Itoh presents in

[13] a circuit approach to the synthesis of metamaterials. These Metamaterials are obtained by

periodically loading a transmission line with lumped L-C elements.

From 2002 the design of Metamaterial devices in planar technology such as guided devices (i.e.

filters, couplers, etc.) and antennas are boosted. From this year two main research lines are defined.

The first research line is based on Metamaterial structures based on the periodically transmission

lines loaded with lumpled elements, using the Metamaterial solution presented in [13]), while the

second research line is based on Split Ring Resonators printed in different planar technologies, i.e.

Coplanar Waveguide or in Microstrip line technologies.

2004: The Complementary Split Ring Resonator (CSRR) is first presented in [1] as the comple-

mentary particle of the Split Resonator. In this work a new approach, based on the complementary

particle of the Split Ring Resonator for designinig Metamaterial and LHMs is presented.

The contributions reported in this section and the advantages of the electrical performances of

the CSRR, are indeed the starting points of the study of this thesis. Thanks to those contributions

the possibility of designing planar Metamaterial antennas based on CSRRs is envisaged.
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As a synthesis, in Fig. 1.2 the context of the thesis is explained, including the main chronological

milestones listed in this section.

1.3.2 CSRR Based developments for planar guided

structures

In this section a review of the state of the art of CSRR particles based developments for planar

guided structures is presented. As the CSRR is the complementary particle of the SRR particle

see [1], this section starts with the research works based on SRRs until the moment that the CSRR

particle is presented in [1]. From the moment that the CSRR is published, this section follows by

CSRR based developments on planar Metamaterial and LHM medias.

In [14, §5.1.5] the experiment results obtained in [12] and in [15] are summarized. Those

experiments results, which are conducted in 2002, envisage the application of SRR particles in

conventional transmission line technology. From that moment the research activity of applying

SRR particles in Coplanar Waveguides in order to design planar Metamaterial devices; such as

filters in microwave range, is started.

In 2003 and 2004, the first works based on SRR particles applied to Coplanar Waveguides

starts to be published. In order to excite the SRR particles in the Coplanar Waveguides, those

particles are etched in the back-side of the substrate and are aligned with the slots of the Coplanar

Waveguides. Then, a high inductive coupling between lines and rings is achieved, with the result of

a sharp and narrow rejection in the vicinity of the resonant frequency of the rings. This performance

introduces the possibility to design compact Metamaterial stop band filters, as the design that is

presented in [16], [17] and [18].

In November of 2004 the CSRR particle is firstly presented in [1]. Complementary to SRR

particles, CSRR particles can be easily excited in Planar Microstrip Lines. The CSRR particles

are excited by etching them on the ground plane of the Microstrip Line and by aligning them to

its conductive line, with the result of a pass band behavior close of the resonant frequency of the

rings. Thus, within this new configuration it is able to design miniaturized band-pass filters in

Microstrip Technology, see the following works, which are published during 2005: [19], [20] and

[21]. In addition, the analytical equivalent-circuit models is proposed for the isolated and coupled

SRR/CSRR particles in [22]. In that work, the stopband/passband characteristics of the analyzed

SRR/CSRR loaded transmission lines are derived. It is also shown that in the long wavelength

limit, these stopbands/passbands can be interpreted as due to the presence of negative/positive

values for the effective /spl epsiv/ and /spl mu/ of the line.

Between 2004 and 2007 the design of Metamaterial and Left-Handed stop-band, pass-band

filters and couplers based on the implementation of CSRR particles in Coplanar Waveguide and
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Microstrip Line Technology is at its peak [23], [24], [25], [26], [27] and [28]. Specifically, in 2007

wider bandwidth filter responses compared to the ones presented so far are achieved based in

Composite Right/Left-Handed Metamaterial Transmission Lines loaded with CSRRs [29].

On the one hand, from 2007 to the present, more sophisticated Metamaterial and LHM devices

based on CSRRs are developed. For example in 2008 a new type of left handed microstrip lines

implemented by means of CSRRs are firstly proposed in [30]. In these new type left handed

microstrip lines, the CSRRs are etched on the signal strip, which alternating with series gaps.

Additionally, shunt connected stubs are also introduced. Within this new type of left handed

microstrip lines the design flexibility is enhanced. In the work [30] two compact devices, a narrow

band power divider and a band pass filter are implemented in this new type of left handed microstrip

line. The resulting power divider is 50% smaller than the previous power dividers implemented by

means of CSRRs. In addition to these results, this new type of left handed microstrip line approach

is opened to those systems where the ground plane cannot be etched. In the last years, the electrical

performances of dual and single band pass filters based on CSRRs are improved in [31], [32], [33],

[34], [35] and [36], with the result of selectivity and/or bandwidth improvement. In the same way,

low pass filters based on CSRRs are developed exhibiting higher electrical performances in [37], [38]

and [39]. In relation to rejection filters based CSRRs the most relevant research works are presented

in [40], [28] and [41].

On the other hand, from the year 2007 to the present, CSRRs are applied to Substrate Inte-

grated Waveguides (SIW) to design band-pass filters in [42], [43], [44], [45], [46], [47], [48] and [49].

In addition to these designs, based on Substrate Integrated Waveguides more complex devices, such

as miniaturized diplexers and couplers are designed in [50] and [51], respectively.

In Fig. 1.3 a summary of the main developments and their motivation based on CSRR planar

guided structures is presented. The developments on Waveguide structures is left for its presentation

in Chapter 2.

1.3.3 CSRR Based developments for planar antennas

In this section a review of the state of the art of CSRR particles based developments for planar

antennas is presented. Leaky wave antennas are out of the scope of this section, as their state of

the art will be covered in Chapter 5.

In the case of planar antennas based on SRR and CSRR particles, the research results appear

lately in time compared to the guided structures. Indeed, comparatively less attention is directed

towards the application of SRR and CSRR particles to antennas and antenna systems. It is only

after the presentation of the CSRR particle in [1] that the initial works on the radiation phenomena

based on SRRs in planar LHM devices are presented in the thesis [14, §5.3.5] in 2005. Going

further, the complete work related to this phenomena is presented in [52] in February of 2007. The
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initial results presented in [14, §5.3.5] open the possibility to use SRRs as miniaturized and flexible

radiating elements for antennas and arrays in wireless communication applications. Equally, this

possibility can also be extended to CSRRs.

In overall, the application of the CSRR particles in antennas is divided in four categories. The

first category handles with the scope of using the CSRR particle in existing antennas (such as

ultra-wide-band monopole antennas) in order to achieve notched behavior. The second category

deals with the implementation of the CSRR particles in the patch or in the ground plane of existing

patch antennas in order to obtain dual or multiband antennas. The third category is devoted to

the design of miniaturized antennas by using CSRR particles. Finally, in the fourth category the

CSRR particles are inserted in existing antennas in order to improve the antenna performances,

such as efficiency, gain or bandwidth.

In this section the state of the art of Metamaterial and LHM Planar antennas based on CSRRs

is addressed by introducing the main relevant works of each category.

• Category 1: Notched behavior performance using CSRRs.

From 2008 compact printed ultra-wideband (UWB) monopole antennas with dual-band notched

characteristics are presented in the literature, see [53], [54] and [55]. This applicability is to prevent

the interference problem due to existing nearby communication system with the operating frequency

of the UWB antenna. The dual band behavior is achieved by etching the CSRR particle in the

patch of the monopole antenna.

• Category 2: Dual Band or Multiband Antennas using CSRRs.

In 2009 the first works resulting in dual band antennas using CSRRs in conventional antennas

came out, see [56] and [42]. In those first works, the CSRR particle is etched in the patch of a

conventional patch antenna. Specifically in [56] the lowest resonant frequency is driven by the

CSRR particle itself, while the second resonant frequency is originated by the conventional patch

itself. In lately designs the CSRR particle is etched in the ground plane of the conventional

patch antenna, see [57], [58] and [59]. Recently in 2016 a dual-band multiple-input-multiple-output

(MIMO) antenna with pattern diversity is designed in [60], targeting at the 2.4 GHz wireless local

area network and 1.8 GHz global system of mobile communication application bands. The proposed

scheme in the work [60] uses arrays of printed dipoles fed with signals of equal amplitude but

different input-phase values to achieve diverse radiation patterns in the operating frequency bands.

The printed dipoles are loaded with complementary split-ring resonators to obtain one additional

lower-frequency resonance, ensuring simultaneous miniaturisation and dual-band characteristics.

• Category 3: Miniaturized antennas using CSRRs.
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With the rapid growth of the wireless communication, there has been an increasing demand

for the low-profile and efficient electrically small antennas. Metamaterials, including EM bandgap

structures, double negative materials, and left-handed materials, have been well investigated over

the years. These artificial materials are introduced into the current antenna systems to enhance the

performance, especially in the size reduction of the conventional antennas. Consequently, the CSRR

particle is a key structure in order to become real this motivation thanks to the subwavelength

behavior of those particles. In 2007 the initial works start to be published, see [61], which it focuses

on using left-handed materials for size reduction of microstrip antennas, etching the CSRR particle

in the ground plane.

In 2011 more complex structures come out based on miniaturized patch antennas loaded with

complementary split-ring resonators and reactive impedance surface (RIS), see [45] and [50]. In

those structures the CSRR is incorporated on the patch to excite the antenna at a low CSRR

resonance frequency, while the RIS is inserted below the patch to miniaturize the antenna size and

improve the antenna radiation performance. In 2013 an electrically small substrate integrated wa-

veguide (SIW) antenna is proposed in [62]. Its electrical size is reduced by loading a complementary

split-ring resonator on the eighth-mode SIW (EMSIW).

• Category 4: Antennas properties improvement using CSRRs. By inserting a single or vari-

ous CSRR particles in a conventional antenna different properties of such antennas can be

improved.

– Works [42] in 2009 and [50] in 2012 show the capability of modifying the polarization of

a conventional patch by etching a CSRR particle in the antenna patch. In 2013 in [63]

a coplanar waveguide (CPW)-fed dual band antenna operating at linear and circular

polarization is presented. In this design the radiation element is a composite right/left-

handed (CRLH) unit cell. This radiation element exhibits two resonant frequencies.

Thanks to a rectangular complementary split ring resonator a TM01 mode orthogonal

to +1st-Order is excited and a circularly polarized patch-like radiation characteristic

at the upper frequency is achieved. In 2016 in [64] circularly polarized waves based on

Electro Inductive-Wave (EIW) coupling to chains of complementary split ring resonators

is achieved etching a CSRR array in the patch of a rectangular patch antenna.

– Several works show radiation efficiency improvement of planar antennas inserting com-

plementary split ring resonators. In 2010 [65] a dual-band dual-mode patch antenna

based on the resonant-type metamaterial transmission line is proposed. The resonant-

type metamaterial transmission line can provide zeroth-mode resonance at the lower

frequency and positive-mode resonance at the upper frequency. For improvement of ra-

diation efficiency, a complementary single split ring resonator is introduced to realise the

resonant-type metamaterial transmission line. In 2011 in [66] the radiation efficiency of

the resonant driven by the complementary split ring resonator is improved, by optimis-

ing the position of the resonant particle in the patch of a conventional patch antenna.
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In 2015 in [67, Table 3] a state of the art study of dual band patch antennas based on

CSRRs is provided. The design presented in [67] exhibits highest radiation efficiencies

compared to other antennas designs presented in the state of the art of that work.

– In 2011 in [68] thanks to a complementary split ring resonator loaded ground structure,

the capability of beam steering in a compact path antenna is enabled. This result

could reduce the cost of a phased-array system to meet the requirement of the wireless

communications. The double CSRR-loaded antenna presented in this work exhibits a

scan possibility from -51 to 48 by changing the parameters of CSRR structure.

In Fig. 1.4 a summary of the main developments and their motivation based on CSRR planar

antennas is presented. The developments on Leaky Wave antennas will be presented in Chapter 6.
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[27] J. Garćıa-Garćıa, J. Bonache, I. Gil, F. Martin, M. C. Velázquez-Ahumada, and J. Martel, “Miniaturized
microstrip and cpw filters using coupled metamaterial resonators,” IEEE Transactions on Microwave
Theory and Techniques, vol. 54, no. 6, pp. 2628–2635, June 2006.

[28] C. Li, K. y. Liu, and F. Li, “Design of microstrip highpass filters with complementary split ring res-
onators,” Electronics Letters, vol. 43, no. 1, pp. 35–36, Jan 2007.
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F. Mart́ın, J. A. Marcotegui, R. Marqués, and M. Sorolla, “Forward and backward leaky wave radiation
in split-ring-resonator-based metamaterials,” IET Microwaves, Antennas Propagation, vol. 1, no. 1, pp.
65–68, February 2007.

[53] J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, “Compact printed ultra-wideband monopole
antenna with dual band-notched characteristics,” Electronics Letters, vol. 44, no. 12, pp. 710–711, June
2008.

[54] D. Jiang, Y. Xu, R. Xu, and W. Lin, “Compact dual-band-notched uwb planar monopole antenna with
modified csrr,” Electronics Letters, vol. 48, no. 20, pp. 1250–1252, September 2012.

[55] W. T. Li, Y. Q. Hei, W. Feng, and X. W. Shi, “Planar antenna for 3g/bluetooth/wimax and uwb
applications with dual band-notched characteristics,” IEEE Antennas and Wireless Propagation Letters,
vol. 11, pp. 61–64, 2012.

[56] N. Ortiz, F. Falcone, and M. Sorolla, “Dual band patch antenna based on complementary rectangular
split-ring resonators,” in 2009 Asia Pacific Microwave Conference, Dec 2009, pp. 2762–2765.

[57] Y. Xie, L. Li, C. Zhu, and C. Liang, “A novel dual band patch antenna with complementary split ring
resonators embedded in the ground plane,” Progress In Electromagnetics Research Letters, vol. 25, pp.
117–126, 2011.

[58] Y. Sidana, R. K. Chaudhary, and K. V. Srivastava, “A novel dual-band hexagonal patch antenna coupled
with complementary split ring resonator,” in 2012 Asia Pacific Microwave Conference Proceedings, Dec
2012, pp. 1343–1345.

[59] T. Agrawal, S. Srivastava, and M. Dadel, “Dual and triple band rectangular patch antenna using com-
plementary split ring resonator (csrr),” in 2015 IEEE Applied Electromagnetics Conference (AEMC),
Dec 2015, pp. 1–2.

[60] D. Sarkar, K. Saurav, and K. V. Srivastava, “Dual band complementary split-ring resonator-loaded
printed dipole antenna arrays for pattern diversity multiple-input multiple-output applications,” IET
Microwaves, Antennas Propagation, vol. 10, no. 10, pp. 1113–1123, 2016.

[61] A. U. Limaye and J. Venkataraman, “Size reduction in microstrip antennas using left-handed mate-
rials realized by complementary split-ring resonators in ground plane,” in 2007 IEEE Antennas and
Propagation Society International Symposium, June 2007, pp. 1869–1872.

[62] S. Sam and S. Lim, “Electrically small complementary split-ring resonator antenna on eighth-mode
substrate integrated waveguide,” Electronics Letters, vol. 49, no. 8, pp. 519–521, April 2013.

[63] C. Zhou, G. Wang, Y. Wang, B. Zong, and J. Ma, “Cpw-fed dual-band linearly and circularly polarized
antenna employing novel composite right/left-handed transmission-line,” IEEE Antennas and Wireless
Propagation Letters, vol. 12, pp. 1073–1076, 2013.

[64] N. Ortiz, G. Crespo, J. C. Iriarte, and F. Falcone, “Generation of circularly polarized waves based
on electro inductive-wave (eiw) coupling to chains of complementary split ring resonators,” Journal of
Applied Physics, vol. 120, no. 17, p. 174905, 2016.

[65] J. X. Niu, “Dual-band dual-mode patch antenna based on resonant-type metamaterial transmission
line,” Electronics Letters, vol. 46, no. 4, pp. 266–268, February 2010.

[66] N. Ortiz, F. Falcone, and M. Sorolla, “Radiation efficiency improvement of dual band patch antenna
based on a complementary rectangular split ring resonator,” in Proceedings of the 5th European Con-
ference on Antennas and Propagation (EUCAP), April 2011, pp. 830–834.

[67] N. Ortiz, J. C. Iriarte, G. Crespo, and F. Falcone, “Design and implementation of dual-band antennas
based on a complementary split ring resonators,” Waves in Random and Complex Media, vol. 25, no. 3,
pp. 309–322, 2015.

[68] W. Cao, Y. Xiang, B. Zhang, A. Liu, T. Yu, and D. Guo, “A low-cost compact patch antenna with
beam steering based on csrr-loaded ground,” IEEE Antennas and Wireless Propagation Letters, vol. 10,
pp. 1520–1523, 2011.





2. Waveguide Filter Design

Il faut faire de la vie un rêve et faire d’un rêve une réalité.

Pierre Curie

Based on the results made in metasurfaces by using the Complementary Split Ring Resonators

as a unit cell, the idea of using such particle for the design of compact Waveguide filters came up

to our minds at the end of 2004. In 2005, the first author’s contribution on this topic is published.

To the best of the author’s knowledge, the author’s contributions on this topic do precede to other

works.

There is a wide array of different types of waveguide filters. In general, the design of Waveguide

filters can be tackled by using discrete or distributed elements along the waveguide. Examples of

the discrete elements are the chain of coupled resonators that can be modeled as a ladder network

of LC circuits. One of the most common types consists of a number of coupled resonant cavities

based on different means of coupling; such us apertures, irises and posts. On the other hand,

among distributed elements corrugated filters and dielectric resonator filters are considered. Each

canonical solution has advantages and disadvantages. In that sense, waveguide filters based on

distributed elements allow power handling capability over wide bandwidths within the constraint

of resulting in large filter dimensions. On the contrary, waveguide filters based on discrete elements

exhibit compact dimensions within the disadvantages of narrow bandwidths and low power handling

capabilities.

In this thesis both type of waveguide designs have been addressed and in this chapter author’s

contributions in both directions are presented. In relation to the contribution on distributed filters,

the first section of this chapter presents the results of a project between European Space Agency

and Public University of Navarra. Those results are presented in the resulted patent annexed to

this chapter. On the other hand, the Complementary Split Ring Resonator particle is envisaged to

be used in the design of compact Waveguide filters. The outcomes of this research are comprised

in the author’s paper presented in the last section of this chapter.
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2.1 Waveguide Filter based on

Distributed Elements

The waveguide filter based on distributed elements presented in this thesis is designed in the frame

of a research project between European Space Agency and Public University of Navarra. The goal

of the project is to design a Band-Stop filter for output Multiplexers. This filter must consequently

withstand kiloWatt or higher order power levels. In order to fulfill such specification a solution

based on distributed elements is chosen.

The novelty of the Band-Stop filter developed in the frame of this project is that the distributed

sinusoidal perturbations along the waveguide relies on the principle of Bragg rejection. So far, Bragg

structures have been devoted in the field of microwaves for producing converters and filters for low

power applications [1], [2] and [3]. It is remarkable that it is the first time that such perturbations

are used as in this project circumstances for the design of high power and broadband multimode

filters.

2.1.1 Patent: Band-Stop Filter for an Output Multiplexer

The designed filter consists of a classical high-power E-plane corrugated low-pass filter that is

cascaded with a periodically longitudinal sinusoidal perturbation. The period of the longitudinal

sinusoidal variation is the Bragg period for the fundamental guided mode at a center frequency of

the band to be stopped.

In the frame of aforementioned project (Section 2.1) a filter prototype has been designed,

manufactured and tested. The results of the mentioned project resulted into a patent, which is

included below in this section. This patent has been done in collaboration with Javier Gil and

Mario Sorolla Ayza from Public University of Navarra. The contribution of this filter in the field

of satellite communications is summarized as follows:

• The longitudinal perturbation allows the minimum gap of the corrugated filter to be kept wide

which, along with the smoothness and the wide gap of the periodic-structure itself, enables

high-power TE10 mode operation in the whole structure as the spurious pass bands are

suppressed. Thus, the presented filter presents higher power handling capabilities compared

to the one presented by conventional E-plane corrugated filters.

• The resulting prototype presents several kilowatts handling capability and the spurious pass-

bands will be suppressed up to the third harmonic (around 40 GHz). The presented profile

increases the Multipaction phenomenon threshold, which is essential to allow kiloWatt or

higher order power levels power handling capabilities.
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MICROWAVE BANDSTOP FILTER FOR AN 
OUTPUT MULTIPLEXER 

The invention relates to a bandstop ?lter for operating in 
the microwave region of the spectrum, and more particularly 
in bands X to K or Ka, and enabling signals to be transmitted 
at high poWer, of kiloWatt or higher order. 

Such a ?lter is intended particularly, but not exclusively, for 
application to output multiplexers of transmitters in telecom 
munications satellites. 

The invention also relates to a ?lter assembly including 
such a bandstop ?lter, and to an output multiplexer of a 
microWave multichannel transmitter including such a ?lter 
assembly. 

BACKGROUND OF THE INVENTION 

MicroWave transmitters for telecommunications satellites 
use an output multiplexer (OMUX) for combining the various 
transmission channels. In modern systems, it can be neces 
sary to combine as many as 18 or more channels, and since the 
poWer of each channel in the Ku band (12 gigahertZ (GHZ) to 
18 GHZ) generally lies in the range 150 Watts (W) to 250 W, 
the output multiplexer must be capable of accommodating 
total poWer levels of several kilowatts. In general, such a 
multiplexer uses a common manifold structure for combining 
the various channels. At the common output from the mani 
fold, non-linear effects, eg due to connection ?anges, lead to 
the appearance of interference signals due to intermodulation 
and knoWn as parasitic intermodulation products (PIMP) 
Which can occur in the passband of the receiver. The tradi 
tional approach for reducing the magnitude of intermodula 
tion products consists in providing, upstream from the com 
mon manifold, a loWpass ?lter for each channel, so as to 
eliminate the harmonics of the payload signal; in particular, it 
has been found necessary to eliminate interference signals at 
least up to the third harmonic. 

In order to reduce the Weight and siZe of the multiplexer, it 
Would be preferable to use a common loWpass ?lter instead of 
individual ?lters for each channel. HoWever, ?lters knoWn in 
the prior art do not enable satisfactory ?ltering to be obtained 
While simultaneously conveying high poWer. Waveguide ?l 
ters adapted for these applications, such as ?lters of the Waf?e 
iron type or corrugated Waveguide type present interference 
passbands above the nominal cutoff frequency, and in par 
ticular at frequencies that are harmonics thereof. The magni 
tudes of these interfering passbands increase With increasing 
spacing or gap betWeen the Walls of the Waveguide in the 
electric ?eld direction of the Waves being conveyed, Which 
leads to operation of multimode type: consequently, in order 
to be effective in eliminating the undesirable frequencies, it is 
necessary to use ?lters With a small gap, but that is not pos 
sible in high poWer applications (poWer of kiloWatt or greater 
order), in particular When the ?lter is to be used in a vacuum, 
because of the risk of electron avalanche discharges (“multi 
paction”). A discussion of the electron avalanche discharge 
phenomenon can be found in the article by M. Ludovico, G. 
Zarba, L. Accatino, and D. Raboso “Multipaction analysis 
and poWer handling evaluation in Waveguide components for 
satellite antenna applications”, exp, Vol. 1, No. 1, December 
2001. 

OBJECTS AND SUMMARY OF THE 
INVENTION 

An object of the present invention is to make it possible to 
achieve effective ?ltering over a broad band at high frequen 
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2 
cies even in high poWer applications, and to do using a device 
that presents a structure that is particularly simple and easy to 
make. By Way of example, the invention makes it possible to 
obtain attenuation of at least 25 decibels (dB) over a band 
having a Width of several gigahertZ at frequencies greater than 
15 GHZ, While making use solely of a passive structure in the 
form of a Waveguide. 
The invention relies on the principle of Bragg re?ection, 

Which is already used in the ?eld of microWaves for producing 
mode converters and ?lters, but has never been used in high 
poWer and broadband multimode ?lters, as in the present 
circumstances. 

For example, the article “Wave transformation in a multi 
mode Waveguide With corrugated Walls” by N. F. Kovalev, I. 
M. Orlova, and M. I. Petelin, Radiophysics and Quantum 
Electronics, Vol. 11, No. 5, pages 449-450 (1968) discloses 
using a Waveguide With corrugated Walls as a narroWband 
?lter. The corrugations of the Walls have a sinusoidal pro?le 
and a peak-to-peak amplitude that is approximately equal to 
3.8% of the mean cross-section of the Waveguide. 
The use of Waveguides With Walls presenting sinusoidal 

disturbances as mode converters operating in narroW band 
and in overmoded or quasi-optical regime, is also described in 
the Work by B. Z. Katsenelenbaum, L. Mercader del Rio, M. 
Pereyaslavets, M. Sorolla AyZa, and M. Thumm “Theory of 
non-uniform Waveguidesithe cross-section method”, IEEE 
Electromagnetic Waves Series, Vol. 44, London (1998). 

In addition, US. Pat. No. 5,600,740 discloses using a cor 
rugated Waveguide presenting a 1800 phase jump as a narroW 
band bandpass ?lter. 
The invention provides a microWave bandstop ?lter com 

prising a Waveguide segment of cross-section that presents 
longitudinal variation of the sinusoidal type that is modulated 
by an amplitude function that is continuous, the period of said 
longitudinal variation of sinusoidal type being the Bragg 
period for the fundamental guided mode at a center frequency 
of the band to be stopped. 

According to advantageous characteristics of the inven 
tion: 

The Waveguide segment may be a metal Waveguide seg 
ment of rectangular cross-section, the longitudinal variation 
in said cross-section being obtained by symmetrical defor 
mation of tWo opposite faces thereof, and preferably of the 
tWo opposite faces of the greatest length; 

the maximum amplitude of the variation of said cross 
section may be such that the minimum spacing or gap 
betWeen said tWo opposite Walls lies in the range 30% to 
70%, and preferably in the range 40% to 60% of the 
mean gap; 

said Waveguide segment may extend over a length lying in 
the range ten periods to 30 periods of said longitudinal 
variation of sinusoidal type of the cross-section; 

said amplitude function may present a rising front and a 
falling front of slope that is suf?ciently small for the 
coe?icient of re?ection at the input of said Waveguide 
section is less than or equal to —20 dB for frequencies 
loWer than those of said band that is to be stopped; 

said amplitude function may be selected from: a cosine 
squared function, a cosine even-poWer function, a Gaus 
sian function, and a Hamming, Kaiser-Muller, or Black 
WindoW; 

said longitudinal variation of sinusoidal type in the cross 
section of the Waveguide segment may also present con 
tinuous phase modulation (or frequency modulation, 
since that constitutes a special case of phase modula 

tion). 
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In a particular embodiment: 
the mean transverse dimensions of the Waveguide section 

constituting said or each bandstop ?lter and the maxi 
mum amplitude of the longitudinal variation of its cross 
section are such that they enable poWer of at least 0.5 kW 
to be conveyed in the microWave region of the spectrum 
Without any danger of electron avalanche discharges 
occurring in a vacuum; and 

the amplitude and the period of said longitudinal variation, 
and the length over Which it extends, are such that they 
produce attenuation of at least 25 dB by Bragg re?ection 
in a band having a Width of at least 1 GHZ. 

Even more particularly, the mean transverse dimensions of 
the Waveguide segment and the maximum amplitude of said 
longitudinal variation in its cross-section may be such that 
they enable poWer of at least 1 kW to be transmitted in the X 
and Ku bands Without electron avalanche discharges occur 
ring in a vacuum, and the amplitude and the period of said 
longitudinal variation, and the length over Which it extends 
may be such that they produce attenuation of at least 25 dB by 
Bragg re?ection in a band having a Width of at least 1 GHZ in 
bands K and higher. 

The invention also provides a ?lter assembly comprising: 
a microWave loWpass ?lter presenting a cutoff frequency 

and at least one interfering passband at frequencies 
higher than said cutoff frequency; and 

at least one band stop ?lter as de?ned above, connected to 
the output of said loWpass ?lter, in Which the amplitude 
and the period of said longitudinal variation, and the 
length over Which it extends are such that they stop said 
interfering passband of said loWpass ?lter. 

Advantageously: 
the mean transverse dimensions of the Waveguide segment 

constituting said or each bandstop ?lter, and the maxi 
mum amplitude of the longitudinal variation in its cross 
section are such that they enable poWer to be conveyed 
that is not less than the maximum output poWer from 
said loWpass ?lter Without electron avalanche dis 
charges occurring in a vacuum; 

the cutoff frequency of said loWpass ?lter is situated in the 
Ku band, and said interfering band is situated in the K or 
Ka band; and 

said ?lter assembly comprises at least tWo ?lters as de?ned 
above, dimensioned to stop the interference band of said 
loWpass ?lter centered to correspond With the second 
and the third harmonics of its cutoff frequency. 

The invention also provides an output multiplexer for a 
microWave multichannel transmitter including an output ?l 
ter, Wherein said output ?lter comprises such a ?lter assem 
bly. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Other characteristics, details, and advantages of the inven 
tion appear on reading the folloWing description made With 
reference to the accompanying draWings, in Which: 

FIG. 1A is a perspective vieW of a ?rst ?lter of the inven 
tion, constituted by a Waveguide segment of cross-section that 
presents longitudinal variation of sinusoidal type modulated 
in amplitude and in frequency; 

FIGS. 1B, 1C, and ID are graphs shoWing the ?lter prop 
erties of the FIG. 1A device; 

FIG. 2A is a perspective vieW of a ?lter assembly of the 
invention constituted by a cascade connection of a prior art 
loWpass ?lter and tWo Waveguide segments of cross-section 
presenting longitudinal variation of amplitude modulated 
sinusoidal type; 
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4 
FIGS. 2B and 2C are graphs shoWing the ?lter properties of 

the FIG. 2A assembly; 
FIG. 3 is an output multiplexer comprising a ?lter assem 

bly of the type shoWn in FIG. 2A; and 
FIGS. 4A and 4B are diagrams shoWing a method of 

designing a bandstop ?lter of the invention. 

MORE DETAILED DESCRIPTION 

A bandstop ?lter of the invention is essentially constituted 
by a Waveguide segment of cross-section that presents longi 
tudinal variation of sinusoidal type, modulated by a continu 
ous amplitude and/or phase function. If the cross-section of 
the Waveguide segment is Written S(x), Where x is a longitu 
dinal coordinate, it is then possible to Write: 

S0 is the mean section; and 
P(x)~sin[QO~x+(I>(x)] represents the modulated sinusoidal 

variation. 
Advantageously, the ?lter can be obtained from a 

Waveguide of rectangular section such as, for example, a 
WR75 Waveguide having sides of length a:l 9.05 millimeters 
(mm) and b:9.525 mm. Such a Waveguide is generally used 
for propagating TE modes in Which the electric ?eld is per 
pendicular to the longest Walls, Which are consequently said 
to be “E-planes”. It is observed that When such a Waveguide is 
used in a band lying in the range 10 GHZ to 15 GHZ and above, 
it presents a multimode character. 

In the embodiment of the invention shoWn in FIG. 1A, the 
distance b betWeen the E-planes of a segment 10 of a WR75 
type Waveguide, knoWn as the spacing or “gap”, depends on 
the longitudinal coordinate x in application of a relationship 
of the form: 

This disturbance is obtained by deforming the E-planes of 
the Waveguide in symmetrical manner. 

In this embodiment, the phase function @(x) is kept con 
stant in a ?rst region 11 of the segment 10, and then it 
increases linearly in a second region 12. That means that the 
almost sinusoidal disturbance period of the gap presents a 
?rst space period A1:2J'c/QO in the ?rst region 11 and a second 
space period A2:2J'|§/(QO+d(D/(1X) in the second region 12, the 
connection betWeen said regions taking place Without phase 
discontinuity. More precisely, the ?rst period A1:7.l42 mm 
corresponds to the Bragg period for an electromagnetic Wave 
of frequency f1:23 GHZ propagating in the Waveguide in the 
fundamental TE 10 mode, and the second period A2:5 .26 mm 
corresponds to the Bragg period for a Wave of frequency 
f2:30 GHZ also propagation in TE 10 mode. It is recalled that 
the Bragg period A B for an electromagnetic Wave of fre 
quency f propagating With a guided Wave number [3 (f) is 
given by AB:rc/[3(f). When this condition is satis?ed, the 
re?ection coe?icient of the Wave is maximiZed. 
The function of amplitude P(x) is a cosine-squared func 

tion of maximum amplitude equal to about bO/2:4.7625 mm. 
The peak of the function P(x) corresponds to the interface 
betWeen the ?rst and second regions of the segment 10 and its 
?rst Zeros to the level at the ends of said regions, beyond 
Which it is truncated. Each region 11, 12 has fourteen periods 
of the corresponding disturbance. 

Such a structure can accommodate conveying poWer of the 
order of 1 kW at a frequency of 10 GHZ to 15 GHZ Without 
there being any risk of an electron avalanche discharge occur 
ring. 
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FIG. 1B shows the way the scattering parameters S1 1 and 
S21 for the TEl0 fundamental mode of the FIG. 1A device 
depend on frequency. The physical signi?cance of these 
terms is recalled initially: if it is considered that an electro 
magnetic wave is injected at an input end 13 of the waveguide 
segment 10 in the form of a TEl0 mode wave, and that the 
output end 14 of said segment 10 is looped on a matched load, 
then S 1 1 represents the re?ection coe?icient and S21 the trans 
mission coef?cient, for the TE1O component of said wave. 

The curves Sl l_TElO and SZIJE1O show that the disturbance 
to the E-planes of the waveguide segment 10 re?ects the 
spectral components of the input signal that lie in the range 
approximately 16 GHZ to approximately 39 GHZ, inducing 
attenuation that can reach 100 dB around 25 GHZ. However, 
losses in the payload band of 10 GHZ to 15 GHZ remain very 
low (SZIJE1O greater than —0.2 dB, even though this is not 
visible in the ?gure). 

At around 33 GHZ to 35 GHZ, the curve S UJEIO presents 
a local minimum: in this region of the spectrum, conversion to 
higher modes contributes strongly to attenuation of the TE 10 
mode being conveyed. FIGS. 1C and 1D show the parameters 
S11 and S21 for conversion ofTEl0 to TEl2 mode and to TMl2 
mode respectively (curve SUDE12 and S21”12 on FIG. 1C, 
SZITMl2 and SZITMl2 in FIG. 1C). It can be seen that mode 
conversion is negligible in the payload band of 10 GHZ to 15 
GHZ, and up to about 30 GHZ. 
A ?lter of the above-described type can be dimensioned in 

such a manner as to stop a band that extends, for example, 
from 13 GHZ to 39 GHZ, and can be used directly as an output 
lowpass ?lter for a multiplexer for a microwave transmitter. 
However, such a ?lter would be large in siZe: the Bragg period 
becomes longer with reduction in the frequency of the radia 
tion that is to be stopped, and consequently it would be 
necessary to use a waveguide segment that is relatively long, 
which is not desirable, particularly in space applications. 
Consequently, it is preferable to use a conventional ?lter, eg 
of the wa?le-iron or corrugated waveguide type so as to 
eliminate frequencies in the range approximately 13 GHZ to 
approximately 20 GHZ. Unlike ?lters of the invention, which 
are characterized by quasi-sinusoidal corrugations distrib 
uted over a relatively long length, such structures present 
sudden changes of section, making it possible to obtain large 
attenuation over a short length. Nevertheless, and as men 
tioned above, such conventional ?lters inevitably present 
interfering passbands above the nominal cutoff frequency, 
particularly when they are adapted to operate at high powers 
(large gap). The Bragg ?lters of the invention are particularly 
suitable for stopping said interfering passbands: since those 
bands occur at high frequencies, their Bragg period is rela 
tively short, thus leading to structures that are compact. For 
example, for transmission in X band (8 GHZ to 12 GHZ) or in 
KU (12 GHZ to 18 GHZ), ?lters of the invention can be 
dimensioned to operate in the K band (1 8 GHZ to 26 GHZ) and 
in the Ka band (26 GHZ to 40 GHZ). 

FIG. 2A thus shows a ?lter assembly 20 comprising: an 
input waveguide segment 21, a lowpass ?lter having a corru 
gated waveguide 23 provided with two impedance-matching 
sections 22 and 24, ?rst and second bandstop ?lters of the 
invention (respectively 25 and 26), and an output waveguide 
segment 27. 
The lowpass ?lter 22 is known in the prior art and presents 

a cutoff frequency at 13 GHZ; in order to be capable of 
accommodating powers of the order of several kW, the mini 
mum gap between the E-planes is relatively large (4.75 mm), 
thus causing interfering passbands to appear at frequencies 
greater than 20 GHZ. The two ?lters 25 and 26, both consti 
tuted by a segment of WR75 waveguide with gap presenting 
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6 
longitudinal variation in application of equation [2], are 
dimensioned in such a manner as to eliminate said interfering 
passband up to a frequency of 39 GHZ, which corresponds to 
the 3rd harmonic of the “primary” ?lter 22. More precisely, 
the quasi-sinusoidal disturbance of the ?lter 25 presents 17 
periods of length A25:7 mm, corresponding to the Bragg 
period for radiation of 21 GHZ propagating in TE1O mode, 
modulated by a cosine-squared amplitude function having a 
maximum amplitude of 2.1 mm. In similar manner, the quasi 
sinusoidal disturbance of each E-plane of the ?lter 26 consists 
in 22 periods of length A26:5.26 mm (Bragg period for radia 
tion at 30 GHZ), likewise modulated by a cosine-squared 
amplitude function having a maximum amplitude equal to 1 .3 
mm. With a WR75waveguide, this leads to a minimum gap of 
5.325 mm, which is greater than that of the ?lter 22 (4.75 
mm). In both con?gurations, the phase function (I>(x) is con 
stant, which means that the longitudinal disturbance does not 
present any phase modulation. 

FIG. 2B shows how the parameters S 1 1 and S21 for the TE 10 
fundamental mode of the ?lter assembly 20 depend on fre 
quency (curves SILTE1O and S21_TElO). It can be seen that the 
interfering passbands are stopped e?iciently (attenuation 
greater than 25 dB) up to a frequency of 39 GHZ, correspond 
ing to the 3rd harmonic of the cutoff frequency of the ?lter 23 
(13 GHZ) . At the same time, losses in the passband (10 GHZ 
to 13 GHZ) remain limited to less than —20 dB. 

Since the waveguide segments 25 and 26 present a gap that 
is greater than bO/2 at all points, and furthermore they do not 
include any sudden changes of section, these elements of the 
?lter assembly present little tendency to cause electron ava 
lanche discharges. The element which limits the maximum 
power that can be conveyed by the assembly to about 1 kW is 
the lowpass ?lter 22 because of its small minimum gap and its 
corrugations of rectangular pro?le. 

FIG. 2C shows the result of measurements of the param 
eters S 1 1 (curve S 1 MW) and S21 (curve S2l_exp) taken on a 
prototype of the ?lter assembly 20 of FIG. 2A. It can be seen 
that attenuation of more than 40 dB is obtained in a band 
extending from about 13.75 GHZ to about 39 GHZ, which 
frequency corresponds to the third harmonic of the upper 
limit of the payload band (13 GHZ). Attenuation drops to 
below 40 dB only over two very narrow bands around 25 GHZ 
and 37 GHZ, and always remains greater than 20 dB. 
As explained above, a ?lter assembly of the FIG. 2A type 

is particularly well adapted for use in making output multi 
plexers for microwave multichannel transmitters. FIG. 3 is a 
diagram of such a multiplexer 30, which is constituted essen 
tially by a manifold 31 having connected thereto microwave 
signal generators 32a-32h, each corresponding to one trans 
mission channel. In the prior art, between each generator 
32a-32h and the manifold 31, it is necessary to interpose a 
lowpass ?lter for stopping the harmonics of the payload sig 
nal so as to prevent parasitic intermodulation signals appear 
ing; the invention makes it possible to eliminate these ?lters, 
or at least to simplify them considerably. A multiplexer 30 of 
the invention comprises, at the outlet from the manifold 31, a 
?lter assembly 20 of the kind described with reference to FIG. 
2A. Such a ?lter assembly comprises a single lowpass ?lter 23 
replacing the ?lters that used to be provided for each of the 
individual transmitters; compared with those ?lters, the ?lter 
23, which must be capable of conveying much higher power, 
inevitably presents a transfer function that is less good, char 
acteriZed by relatively large interfering passbands. The band 
stop ?lters 25 and 26 make it possible to stop those interfering 
passbands without limiting the maximum power that can be 
conveyed. The use of a single ?lter assembly 20 replacing the 
plurality of ?lters associated with the generators 32a-32h 
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makes it possible signi?cantly to reduce the Weight and the 
size of the multiplexer 30, and that is particularly important 
for space applications. 
When designing a bandstop ?lter of the invention, the type 

of Waveguide that needs to be used is generally imposed by 
the speci?c application under consideration: it Will generally 
be a rectangular Waveguide, hoWever Waveguides of circular 
section or ridged Waveguides may also be used. Under such 
circumstances, dimensioning consists essentially in deter 
mining: 

the spatial frequency Q0 of the quasi-sinusoidal distur 
bance; 

the form of the amplitude function P(x), e. g. a cosine 
squared function or a Gaussian function; 

its longitudinal scale factor, ie the length over Which 
P(x)#0, and consequently the number of periods of the 
disturbance; 

its peak amplitude, Which in turn determines the maximum 
reduction in the cross-section of the Waveguide; and 

the possible presence of any phase modulation @(x) in such 
a manner as to satisfy certain conditions: 
minimum attenuation over a band of determined Width; 
maximum acceptable level of losses in the payload band; 

and 
maximum poWer level that can be conveyed Without risk 

of an electron avalanche discharge. 
Determining the “spatial frequency” (DO generally does not 

pose any particular problem: it is determined so as to satisfy 
the Bragg condition QO:2[3(fCB) for a frequency fCB situated 
approximately in the middle of the band to be stopped. 

The number of periods of the disturbance constitutes a 
compromise betWeen tWo contradictory requirements: a high 
number of periods makes it possible to re?ect effectively the 
radiation at the center frequency fCB even in the presence of 
disturbances of small amplitude, but it also determines ?lter 
ing over a narroW band. In order to stop a band that is of 
suf?cient Width (1 GHZ and more) centered about fCB, it is 
therefore necessary to use a limited number of periods, but 
that reduces the re?ection coe?icient for a disturbance of 
given amplitude. Simultaneously, it is not possible to increase 
said amplitude of the disturbance beyond a certain limit With 
out running the risk of electron avalanche discharges appear 
ing at the maximum operating poWer. Typically, it is therefore 
necessary to use disturbances extending over ten to 30 periods 
With a maximum amplitude lying in the range 30% to 70% 
and preferably in the range 40% to 60% of the mean gap bO of 
the Waveguide. 

The amplitude function P(x) generally cannot be a simple 
rectangular function since that Would induce losses by re?ec 
tion in the passband and lead to excessive conversions to 
higher order modes. It is therefore appropriate to use continu 
ous functions presenting “gentle” transitions and rising and 
falling fronts having slopes that are small enough. It is 
observed that in high poWer applications, re?ection losses in 
the passband are particularly harmful since as Well as attenu 
ating the signals being conveyed, they can damage the trans 
mitters by re?ecting back to them too great a fraction of the 
poWer they transmit. In the embodiments described above, 
the amplitude function P(x) has a cosine-squared form. Other 
suitable forms are cosine even poWers greater than 2, giving 
steeper rising and falling fronts and a central region that is 
almost constant, Gaussian functions, and Hamming, Kaiser 
Miiller, or Black WindoWs. Generally, the particular form 
chosen is not critical. 

Phase modulation @(x) can be used subsequently to 
enlarge the ?lter band. To limit losses in the payload band and 
conversions to higher order modes, this function must also be 
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8 
continuous and present transitions that are “gentle”. Phase 
modulation can impart linear frequency modulation (“chirp”) 
or a continuous connection betWeen tWo sineWaves of differ 
ent periods, as in the example of FIG. 1A. 
A rational method of dimensioning a ?lter of the invention 

canbe described With the help of the ?oW chart of FIG. 4A and 
the table of FIG. 4B. 
The ?rst step E1 consists in determining a “center” fre 

quency fCB of the band to be stopped, and in determining its 
guided Wave number at the fundamental mode of the guide, 
[3(fCB). This makes it possible to calculate the “spatial fre 
quency” Q0 of the disturbance. 
The folloWing step, E2, consists in determining the maxi 

mum amplitude PM“ of the quasi-sinusoidal disturbance of 
the Waveguide that is compatible With the requirements in 
terms of poWer conveyed. 

Step E3 consists in selecting a form, a peak value, and a 
longitudinal scale factor for an amplitude function P(x), said 
peak value being less than the maximum amplitude PM“ as 
determined in the preceding step. This selection can be made 
in relatively random manner, hoWever it is clear that experi 
ence can be a guide toWards determining initial values that 
enable the dimensioning method to converge quickly. The 
exact form of the amplitude function P(x) is rarely critical, at 
least during the initial design stage. optionally, the dimen 
sioning method can be repeated for different forms of P(x) in 
order to optimiZe the response of the ?lter for a determined 
application. 

For reasons of simplicity, it is appropriate to assume ini 
tially that (I>(x):constant. 

Step E4 comprises using numerical simulations to calcu 
late the transfer function of the ?lter as obtained and to com 
pare it With requirements in terms of the ?lter properties that 
are to be achieved. If the result is satisfactory, the method is 
terminated, otherWise it is necessary to modify at least some 
of the parameters in step E5. 

Table 4B shoWs hoW the longitudinal scale factor of P(x), 
its peak value, and phase modulation @(x) can be modi?ed. 
To do this, it is determined Whether the attenuation in the 
center of the band A(fCB) and the Width LB of the stopband 
are substantially greater than, approximately equal to, or less 
than the required minimum values A(fCB)' and LB'. 

If A(fCB)§A(fCB)' and LBZLB', it is not necessary, at least 
initially, to modify the longitudinal scale factor of P(x), or its 
peak value, nor is it necessary to introduce a term in @(x). 

If the attenuation in the center of the band A(fCB) is insuf 
?cient While the Width of the attenuated band is Wider than 
necessary, it is possible to increase the scale factor P(x) and 
thus the number of disturbance periods. It is also possible to 
increase the peak value of P(x), providing the maximum value 
PM“ is not exceeded. 

If the attenuation at the center of the band A(fCB) is insuf 
?cient While the Width of the attenuated band is itself hardly 
suf?cient, it is necessary to increase the peak value of P(x). If 
that is not possible, it is necessary to increase the scale factor 
and to correct the resulting band narroWing by introducing 
phase modulation @(x). This phase modulation can be deter 
mined by selecting additional frequencies Within the band to 
be stopped, by determining the corresponding Bragg periods, 
and by connecting together sinusoidal disturbances present 
ing said periods While guaranteeing phase continuity. Addi 
tional frequencies are added until a band of desired Width is 
obtained. The device of FIG. 1A shoWs phase modulation of 
this type. 

If the Width of the attenuation band is insu?icient and the 
attenuation at the center of the band is greater than required, 
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it is possible to reduce the scale factor of P(x) and thus the 
number of disturbance periods, Without modifying the ampli 
tude. 

In contrast, if the Width of the attenuation band is insu?i 
cient, but the attenuation at the center of the band is hardly 
suf?cient, or even insu?icient, it is necessary to decrease the 
scale factor of P(x) and simultaneously to increase its peak 
value. If that is not possible because of the poWer limitations 
that Would then arise, it is necessary to keep the number of 
disturbance periods constant and to introduce frequency 
modulation in order to broaden the attenuated band. 

If both A(fCB) and LB present values that are satisfactory, 
but the losses in the passband or the conversion coef?cients to 
higher order modes are excessive, it is necessary to change the 
form of the amplitude function P(x), and possibly also of the 
phase function @(x), by selecting a function that presents 
transitions that are “gentler” With rising and falling fronts 
presenting smaller slopes. 

Modi?cations are carried out iteratively, With the transfer 
function of the structure being recalculated on each occasion. 
What is claimed is: 
1. A microWave bandstop ?lter comprising a Waveguide 

segment of cross-section that presents longitudinal variation 
of the sinusoidal type that is modulated by an amplitude 
function that is continuous, a period of said longitudinal 
variation of sinusoidal type being the Bragg period for a 
fundamental guided mode at a center frequency of a band to 
be stopped, Wherein a maximum longitudinal variation in the 
cross-section of the Waveguide lies in the range 30% to 70% 
of the mean gap of the Waveguide segment. 

2. A ?lter according to claim 1, in Which the longitudinal 
variation in the cross-section of the Waveguide lies in the 
range 40% to 60% of the mean gap of the Waveguide segment. 

3. A ?lter according to claim 1, in Which the Waveguide 
segment is a Waveguide segment suitable for conveying a 
plurality of transverse modes in the spectral band to be 
stopped. 

4. A ?lter according to claim 1, in Which the Waveguide 
segment is a metal Waveguide segment of rectangular cross 
section, the longitudinal variation in said cross-section being 
obtained by symmetrical deformation of tWo opposite faces 
thereof. 

5. A ?lter according to claim 4, in Which the longitudinal 
variation of said cross-section is obtained by symmetrical 
deformation of the tWo opposite faces of greatest length. 

6. A ?lter according to claim 1, in Which said Waveguide 
segment extends over a length lying in the range ten periods to 
30 periods of said longitudinal variation of sinusoidal type in 
its cross-section. 

7. A ?lter according to claim 1, in Which said amplitude 
function presents a rising front and a falling front of slope that 
is su?iciently small for the re?ection coe?icient at the input of 
said Waveguide segment to be less than or equal to —20 dB for 
frequencies beloW those of said band to be stopped. 

8. A ?lter according to claim 1, in Which said amplitude 
function is selected from: a cosine-squared function, a cosine 
even-poWer function, a Gaussian function, and a Hamming, 
Kaiser-Muller, or Black WindoW. 

9. A ?lter according to claim 1, in Which said longitudinal 
variation of sinusoidal type in the cross-section of the 
Waveguide segment also presents phase modulation that is 
continuous. 
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10. A ?lter according to claim 1, in Which; 
mean transverse dimensions of the Waveguide segment and 

the maximum amplitude of said longitudinal variation of 
the Waveguide segment cross-section are such as to 
enable the Waveguide segment to convey a poWer of at 
least 0.5 kW in the microWave region of the spectrum 
Without electron avalanche discharges occurring in a 
vacuum; and 

an amplitude and a period of said longitudinal variation, 
and also a length over Which a said longitudinal variation 
extends are such to produce attenuation of at least 25 dB 
by Bragg re?ection in a band having a Width of at least 1 
GHZ. 

11. A ?lter according to claim 10, in Which: 
mean transverse dimensions of the Waveguide segment and 

the maximum amplitude of said longitudinal variation of 
the Waveguide segment cross-section are such to enable 
poWer of at least 1 kW to be conveyed in the X and Ku 
bands Without electron avalanche discharges occurring 
in a vacuum; and 

an amplitude and a period of said longitudinal variation, 
and a length over Which said longitudinal variation 
extends, are such to produce attenuation of at least 25 dB 
by Bragg re?ection in a band having a Width of at least 1 
GHZ in the K and higher bands. 

12. A ?lter assembly, comprising: 
a microWave loWpass ?lter presenting a cutoff frequency 

and at least one interfering passband at frequencies 
higher than said cutoff frequency; and 

at least one band stop ?lter according to claim 1, connected 
to the output of said loWpass ?lter, in Which an amplitude 
and a period of said longitudinal variation, and a length 
over Which said longitudinal variation extends are such 
to stop said interfering passband of said loWpass ?lter. 

13. A ?lter assembly according to claim 12, in Which mean 
transverse dimensions of the Waveguide segment constituting 
said or each of said bandstop ?lter, and a maximum amplitude 
of the longitudinal variation in the Waveguide segment cross 
section are such to enable poWer to be conveyed that is not less 
than a maximum output poWer from said loWpass ?lter With 
out electron avalanche discharges occurring in a vacuum. 

14. A ?lter assembly according to claim 12, in Which the 
cutoff frequency of said loWpass ?lter is situated in the Ku 
band, and said interfering band is situated in the K or Ka band. 

15. A ?lter assembly according to claim 12, comprising at 
least tWo ?lters, each ?lter comprising a Waveguide segment 
of cross-section section that presents longitudinal variation of 
the sinusoidal type that is modulated by an amplitude func 
tion that is continuous, the period of said longitudinal varia 
tion of sinusoidal type being the Bragg period for the funda 
mental guided mode at a center frequency of the band to be 
stopped, Wherein the maximum longitudinal variation in the 
cross-section of the Waveguide lies in the range 30% to 70% 
of the mean gap of the Waveguide and dimensioned to stop the 
interfering bands of said loWpass ?lter centered to correspond 
With the second and third harmonics of loWpass ?lter cutoff 
frequency. 

16. An output multiplexer for a multichannel microWave 
transmitter having an output ?lter, Wherein said output ?lter 
comprises a ?lter assembly according to claim 12. 

* * * * * 
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2.2 Waveguide Filter based on Discrete

Elements

The waveguide filter based on discrete elements presented in this thesis is based on the Comple-

mentary Split Ring Resonator. This section is devoted to the design of very compact waveguide

filters based on CSRR particles. This design is then validated in the paper [4] by the author of this

thesis.

2.2.1 CSRR Particle Discovery. Motivation

The Complementary Split Ring Resonator is firstly presented in [5] as the complementary particle

of the Split Ring Resonator. Based on complementarity, E and H field lines can be interchanged,

as well as metal and air slots, leading to CSRR particles that are similar to media that exhibit in

this case, negative values of dielectric permittivity.

The motivation which leads to the discovery of CSRR particle is related to the constraints that

the excitation of SRR particles present in Microstrip technology, due to the high confinement of the

H-field component. CSRR particles are the good solution to overcome this handicap. Furthermore,

in [5] the CSRR particle is presented as a unit cell for the design of metasurfaces with high frequency

selectivity and planar metamaterials with negative dielectric permittivity. The applications using

SRR and CSRR particles in filters, couplers and antenna designs allow to take advantage of the small

electrical size of these particles at their self-resonance, thus resulting in a significant miniaturization.

2.2.2 CSRR based Waveguide Filters

This sub-section is an overview of the main research results based on standard Waveguide Filters

using Complementary Split Ring Resonators. It is remarkable that research work on standard

waveguides has not been very fruitful over the last decade. In the contrary, most of the research

results have been focused on substrate integrated waveguides.

The first work on standard waveguide filter design based on CSRRs is presented in 2005 by

the author of this thesis in [4]. The content of this paper is presented in Section 2.2.3. To the best

of the author’s knowledge, the author’s contributions on this topic do precede to the other works.

In 2008, [6] refers to the author’s work presented in [4] (see Section 2.2.3). In [6] CSRRs are

used to design a compact Bandpass Waveguide filter in X-Band, where the CSRRs are etched in

metal sheets, as in the authors design presented in [4]. Those metal sheets are combined with

proper admittance inverters. As a result, the presented waveguide filter is compacted by 66%.



Section 2.2: Waveguide Filter based on Discrete Elements. 34

In 2013 the work in [7] presents models of the bandpass waveguide filters using novel Comple-

mentary Split Ring Resonators. The filter response is analyzed in terms of various parameters of

the resonators.

From 2013 to present, no relevant works have been published on this topic.

2.2.3 Paper: CSRR for Compact Waveguide Filter Design

As it is explained in the section above (Section 2.2.1), the results shown in [5] demonstrate the

feasibility of using CSRR particles as unit cells for metasurfaces thanks to the analysis of the

excitation of SRR and consequently CSRR particles. Based on that analysis, the CSRR can be

excited by two different ways; by an electric field normal to the particle plane or by magnetic field

properly applied in the plane of the particle.

The capability of exciting the CSRR particle by magnetic field properly applied in the plane of

the particle, brought the possibility to excite such particle inside of a rectangular waveguide. This

excitation is achieved by etching a CSRR particle in the center of a metallic sheet traversal to the

rectangular waveguide. This original layout reduces the dimensions of the well-known resonant-

cavity waveguide filters coupled by irises. This has been made feasible due to the self-resonance

property of the CSRR. Thus, it is possible to design waveguide filters with lengths equal to the

thickness of a metallic sheet. Consequently, this technique paves the way for the design of minia-

turized waveguide filters, in contrast to conventional waveguide filters. The paper I submitted on

this topic [4]is presented below.

The contribution of this filter in this field is summarized as follows:

• The usefulness of a CSRR for the design of narrow bandpass filter in a rectangular waveguide

has been proved by the design, manufacturing and testing of a prototype.

• The filter design is very simple and it consists in a CSRR particle etches in the center of a

metallic sheet placed in a rectangular waveguide. In Fig. 4. of the paper a picture of the

prototype is depicted.

• The frequency response of the measured prototype exhibits a maximum transmission of -5dB

at its resonance with a rejection of -20dB in the interval of +/-100MHz, within a fractional

bandwidth of 0.73

• The frequency shift between the simulated and measured results can be attributed to the tol-

erances of the fabrication process. The measured transmission level is predicted by simulated

results.

• The presented filter has a very small length and it exhibits a high tenability by changing the

dimensions of the CSRR or by increasing the thickness of the metal sheet.
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• It is believed that the proposed structure can be of practical interest for the fabrication of

very compact waveguide bandpass filters, with a length equal to the thickness of the metallic

sheet.
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3. Single CSRR Application in Simple

Radiating Structures

Dream deep, for every dream proceeds the goal.

Mother Teresa of Calcuta

Complementary Split Ring Resonator particle was originally considered as a unit cell for the

design of metasurfaces and then it was applied to the design of compact waveguide filters, as

presented in Chapter 2. Likewise, the aforementioned particle was also thought to be used as an

stand-alone radiating element. In that sense, simulations of the stand alone resonator particle were

carried out throughout 2005 in order to characterize the radiating properties of such resonator.

These simulations showed that such particle behaves like a dipole and unfortunately due to its

reduced electrical volume, it exhibits a low radiation efficiency. Consequently, in order to overcome

that limitation, at beginning of 2006 together with my thesis directors, we decided to insert the

Complementary Split Ring Resonator in the patch of a rectangular patch antenna. As the electrical

volume of the resulted structure is larger, the radiation efficiency improves.

On the other hand, the Complementary Split Ring Resonator can be considered as a perturba-

tion inside the conventional rectangular patch. However, for the author and directors of this thesis,

the Complementary Split Ring Resonator is considered as a stand-alone radiating element, which

is excited by the currents presented in the conventional patch.

The research results based on the proposed structure are summarized in the author’s four

contributions presented throughout this chapter. The proposed structure is firstly presented by

the author in the Asia-Pacific conference in 2009. To the best of the author’s knowledge, this

contribution precede to other works presented by other authors on this topic. The following two

author’s contributions published in 2011 and 2012; respectively, are centered on the characterization

of radiation efficiency of the CSRR particle inside the rectangular patch antenna, while the last

contribution, published in 2015, shows the equivalent circuit model of the radiating structure.
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3.1 CSRR as Stand alone Radiating

Element

As it is explained in the previous chapters of this thesis, in [1] the Complementary Split Ring

Resonator is proposed as a unit cell for the design of metasurfaces. Following the theoretical

discussion in [1], the considered metallic surface with CSRRs etched on it can be seen - from the

source side- as an electric dipolar sheet on top of a flat metallic screen. This is possible since we

are in the long wavelength limit; as the CSRRs are electrically small resonators, then the distance

between them can be made much smaller than the incident radiation wavelength.

Based on the results obtained in [1], the idea of implementing a CSRR as an stand alone radi-

ating element came naturally to the directors and author of this thesis in 2005. From that moment,

we were focused to design a miniaturized metamaterial antenna. Consequently, throughout 2005 an

stand along Complementary Split Ring Resonator is simulated by the author. Simulation results

showed poor radiation efficiencies. These results are in accordance with the reduced electrical vo-

lume of the radiation element; which is in the order of 0.1 free-space wavelengths at its quasi-static

resonance. Additionally, these results are also in alignment to the theoretical discussions presented

in [2], [3], [4] and more recently in 2012 in [5].

Accordingly, in order to improve the radiation efficiency of the stand alone Complementary

Split Ring Resonator particle, at beginning of 2006 we decided to insert the CSRR particle in

a larger radiating structure; such as a conventional rectangular patch antenna. As that novel

structure exhibit larger electrical dimensions compared to the ones of the stand alone radiating

element, the radiation efficiency is improved. Moreover, the novel structure exhibits a dual band

behavior. Since then, the goal of this thesis is focused in the design of Metamaterial Antennas

based on CSRR particles, laying aside the design of miniaturized antennas. In the section below,

in Section 3.2, the author’s contributions and then the achievements on this topic are presented.

3.2 Novel Metamaterial Structure: CSRR

etched in the patch antenna

3.2.1 Motivation and Context

The novel radiating structure proposed in order to improve the radiation efficiency obtained by the

Complementary Split Ring Resonator as a stand along radiating element, is to etch the aforemen-

tioned particle in the patch of a conventional patch antenna. The resulting structure allows the
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author to design a dual band Metamaterial Antenna, which exhibits higher radiation efficiencies

compared to the ones of the stand alone radiating structure. At beginning of 2006 we started study-

ing and simulating this novel structure. Here-below a chronological order of author’s contributions

and achievements on this novel structure is presented.

Beginning 2006: The novel radiating structure is proposed by the directors and author of this

thesis. The author starts studying and simulating this structure.

End 2006: The first prototypes of the aforementioned structure are manufactured. The

impedance matching at antenna port is measured and characterized. See Fig. 3. in my paper

published in 2009, Figure 2 in my paper published in 2011 and Figure 7 in my paper published in

2012. Those papers are presented in Section 3.2.3, Section 3.2.4 and Section 3.2.5; respectively.

End 2007: Radiation parameters of the first prototypes manufactured in 2006 are measured.

These measurements comprise radiation patterns (co- and cross-polar components) and directivity.

See Fig. 4. and Fig. 5. in my paper published in 2009, Figure 4 in my paper published in 2011 and

Figure 9 in my paper published in 2012. Those papers are presented in Section 3.2.3, Section 3.2.4

and Section 3.2.5; respectively.

2009: The results of the first prototypes manufactured at the end of 2006 are published by first

time in the Asia-Pacific APMC conference. See paper presented in Section 3.2.3.

2010: The equivalent circuit model of the aforementioned novel structure is proposed based on

simulation results. A second batch of prototypes is designed and it is prepared for manufacturing

in order to validate the proposed equivalent circuit model.

2011: Higher radiation efficiency values for the CSRR resonance are computed from simulation

results for reduced CSRR area when the CSRR is etched in the center of the rectangular patch

antenna. The paper that includes these results is published in the magazine ”Microwave and

Optical Technology Letters”. See this paper in Section 3.2.4.

2012: A parametric study shows higher radiation efficiencies based on the position of the CSRR

inside the rectangular patch. The paper that includes these results is published in the magazine

”International Scholarly Research Network ISRN Communications and Networking”. See this paper

in Section 3.2.5.

2014: The second batch of prototypes designed in 2010 is manufactured. Based on the mea-

surement results of those prototypes, the proposed equivalent circuit model is validated. The

impedance matching at antenna port and radiation parameters (co- and cross-polar components)

are measured. See Figure 6, Figure 7 and Figure 8 in the paper presented in Section 3.2.6.

2015: The circuital model of the manufactured prototypes in 2014 is validated. The paper that
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includes this validation is published in the magazine ”Waves in Random and Complex Media”. See

this paper in Section 3.2.6.

It is remarkable that to the best of the author’s knowledge, the author’s first contribution

published in 2009, precede to other works presented by other authors on the topic of Metamaterial

Antennas based on Complementary Split Ring Resonators. In particular, until 2009 the use of

Metamaterial concepts in practical miniaturized antennas is a very challenging research topic which

is in its infancy, see the related works that are published until 2009, [6], [7], [8], [9], [10], [11] and [12].

Among these works, only the works presented in [8], [9], [10], [11] and [12] use single or multiples

Complementary Split Ring Resonators. In particular, in [8], [9] and [10] single and/or multiple

CSRRs are etched in the ground plane of a microstrip antenna. This solution allows a significant

miniaturization of the patch antenna. Secondly, in the work [11] the CSRR is implemented in a

ultra-wideband monopole antenna to generate dual band notched characteristics. On the other

hand, in the work in [12] in accordance with the novel structure presented in this section by the

author of this thesis, the CSRR is etched in the patch of a rectangular antenna. Both works show a

dual band antenna performance. However, the achieved results in [12] exhibit very low efficiencies

driving to low gain antennas designed by metamaterial concepts based on CSRR particle comparing

to the design based on the novel structure presented in the chapter of this thesis.

3.2.2 Radiating Structure Description

As explained in the previous section, see Section 3.2.1, the radiating structure is composed of a

CSRR particle etched in the patch of a rectangular patch antenna. This structure allows a Dual

Band antenna behavior. The first resonance of the dual band Metamaterial antenna is produced

by the excitation of the CSRR in the patch, while the second resonance is originated by the

rectangular patch itself. Going further the presence of the CSRR etched in the patch, also introduces

a miniaturization of both patch antenna resonances, leading to a miniaturized dual band antennas.

Comparing the first resonance produced by a CSRR particle within an iris of its same external

dimensions, the iris does not exhibit a resonance at the same frequency of the CSRR, but at

higher frequencies. The resonance frequency of a rectangular iris on a dielectric is approximately

given by c0/ (a + b)
√
εr; where c0, εr, a, and b are the speed of light in vacuum, dielectric relative

permittivity and the external dimensions of the rectangular iris, respectively. In opposition to the

resonance frequency of a rectangular iris, the resonant frequency of the CSRR is much lower for

the same physical size. Hence, the lowest frequency of the dual band antenna is easily designed by

exciting the CSRR etched in a patch of a conventional patch antenna.

The author’s contributions on the presented radiating structure in this section are presented

in the next sections of this chapter.
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3.2.3 Paper: Dual Band Patch antenna based on

Rectangular CSRR

This paper is key because in this paper the aforementioned metamaterial structure, which is de-

scribed in the previous section (Section 3.2.2), is presented for the first time. The contributions of

this work are summarized as follows:

• The aforementioned Metamaterial antenna exhibits a dual band performance. Moreover, this

antenna is easy to design.

• The dual performance is feasible due to the excitation of the quasi-static resonance of the

Complementary Split Ring Resonator, which represents the first resonance of the dual band

antenna. The second resonance is driven by the resonance of the rectangular patch itself.

• In the design presented in the paper the CSRR particle is etched in the center of the rect-

angular patch. At this position the CSRR is excited by the magnetic field tangent to the

resonator axis. This position of the CSRR allows miniaturization of the rectangular patch

antenna.

• The impedance matching and radiation patterns of the fabricated prototype are measured.

The frequency shift in the impedance response is due to the mechanical manufacturing process

technique. Simulated and measured radiation results show good agreement.

• As expected, simulated and measured radiation efficiency is higher than the radiation the

efficiency obtained in the simulations of the CSRR as stand alone radiating element (see

Section 3.1).

• This work has been cited in 2012 by the authors of the work [13]. This last work presents

different CSRR particle configurations etched in a rectangular patch antenna.
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3.2.4 Paper: Enhanced gain dual Band patch antenna

based on CSRR

The contributions of this work are summarized as follows:

• The antenna structure presented in this paper is the same prototype showed in the previous

section (see Section 3.2.3).

• The novelty of this paper is the radiation efficiency study presented in Figure 5 and Figure 6.

This study shows that by optimizing the design parameters a and b of the CSRR, radiation

efficiencies of approximately 50% are achieved for an area occupied by the CSRR of approxi-

mately 17.mm2. These design parameters are defined in Figure 1. The occupied area by the

fabricated prototype is 19.3mm2.

• As predicted the radiation efficiency of the CSRR is increased when it is implemented in the

proposed antenna structure.

• Moreover, as the CSRR is placed in the center of the rectangular patch a miniaturization of

the rectangular patch antenna is achieved.

Enhanced gain dual band patch antenna based on complementary rectangular split-ring 
resonators

N. Ortiz  F. Falcone  M. Sorolla

First published: 19 January 2011 https://doi.org/10.1002/mop.25797 

Abstract
A simple and successful dual band patch vertical polarized rectangular antenna design is presented. 
The dual band antenna is designed etching a complementary rectangular split ring resonator in the 
patch of a conventional rectangular patch antenna. Furthermore, a miniaturization of the 
conventional rectangular patch antenna and an enhancement of the complementary split ring 
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3.2.5 Paper: Gain Improvement of dual Band Antenna

based on CSRR

The contributions of this work are summarized as follows:

• The antenna structure presented in this paper is the same prototype showed in the previous

two sections (see Section 3.2.3 and Section 3.2.5).

• The novelty of this paper is the parametric study that has been carried out in order to analyze

the mutual interaction between the radiation efficiency of the CSRR and the rectangular

patch. The parametric study shows how the radiation efficiency of both antenna resonances

varies depending on the position of the CSRR in the patch. Design parameters of the CSRR

do not change in the parametric study.

• Figure 4 shows that there are positions in the rectangular patch where the radiation efficiencies

generated by the patch and the CSRR increase up to 50%. In particular, these positions are

where the CSRR is located further from the center of the rectangular patch; i.e. closer to the

non radiating and radiating edges of the rectangular patch.

• For the locations where the CSRR is placed around the center of the rectangular patch,

there is a miniaturization in the dimensions of the CSRR and the rectangular patch. On

the contrary, when the CSRR is located further from the center of the patch, there is no

miniaturization of the antenna dimensions.
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A simple and successful dual band patch linear polarized rectangular antenna design is presented. The dual band antenna is
designed etching a complementary rectangular split-ring resonator in the patch of a conventional rectangular patch antenna.
Furthermore, a parametric study shows the influence of the location of the CSRR particle on the radiation characteristics of the
dual band antenna. Going further, a miniaturization of the conventional rectangular patch antenna and an enhancement of the
complementary split-ring resonator resonance gain versus the location of the CSRR on the patch are achieved. The dual band
antenna design has been made feasible due to the quasistatic resonance property of the complementary split-ring resonators. The
simulated results are compared with measured data and good agreement is reported.

1. Introduction

The possibility of obtaining media with simultaneously nega-
tive permeability and permittivity was hypothesized by Vese-
lago in the late 1960s [1]. In spite of the interesting properties
presented by such media, it was not until 2000 that the
first experimental evidence of a medium with simultaneously
negative permeability and permittivity was demonstrated
[2]. The original medium proposed in [2] consists of a bulky
combination of metal wires and split-ring resonators (SRRs)
[3].

The SRR electromagnetic properties have been already
analyzed in [4, 5]. This analysis shows that the SRR behaves
as an LC resonant tank that can be excited by an external
time-varying magnetic field applied parallel to the particle
axis, thus producing a quasi-static resonant effect [4]. There-
fore, the SRR has subwavelength dimensions at its quasi-
static resonance, allowing very compact device designs. Up to
now, these self-resonant particles have been used in the de-
sign of microwave filters in planar technology [6, 7]. How-
ever, in this paper, we have taken advantage of the comple-
mentary split-ring resonator (CSRR) concept [8] to design
a miniaturized dual band patch antenna with vertical polar-
ization, also studying how to improve radiation efficiency for

the resonance produced by the CSRR in this kind of anten-
nas. The CSRR is inspired on Babinet principle [9], and, as
occurs with the SRR, it also exhibits a quasi-static resonance,
which enables the particle to be electrically small [8, 9].

Up to now, the use of metamaterial concepts in practical
miniaturized antennas is a very challenging research topic
[10–16] and the achieved results based on self-resonance par-
ticles as SRRs or CSRRs [16] exhibit low radiation efficiencies
driving to low-gain antennas comparing to the results of the
parametric study presented in this paper. In this sense, the
excitation of a CSRR etched in the patch of a conventional
patch antenna allows us to design dual band patch antennas.
Going further, the presence of the CSRR etched in some
positions of the path also produces a miniaturization of
both patch antenna resonances, leading to miniaturized dual
band antennas. Replacing the CSRR within a slot of its same
external dimensions, the slot does not exhibit a resonance at
the same frequency of the CSRR, but at higher frequencies
and more than one slot should be placed in the patch de-
pending on their position in order to achieve a dual band
response. The resonance frequency of a rectangular slot on
a dielectric is approximately given by clight/(a + b) ·

√
εr ,

where clight, εr , a, and b are the speed of light in vacuum,
dielectric relative permittivity, and the external dimensions
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of the rectangular iris, respectively. In opposition to the res-
onance frequency of a rectangular slot, the resonant fre-
quency of the CSRR is much lower for the same physical size.
Hence, it can be designed to exhibit a resonance at lower
frequencies comparing to different shapes of slots that can
also be etched in a conventional patch. The design presented
in this paper gives an alternative solution to the existing dual
band antenna designs [17], as the ones carried out by load-
ing a rectangular patch antenna with a pair of bent slots or
embedded step slots close to the patch nonradiating edges,
or the ones done by spur lines or shorted microstrip antenna
with rectangular patch. Overall, as it can be shown in this
paper, the properties of the CSRR allow us to design dual
band miniaturized antennas based on the anisotropic prop-
erties of the CSRR as indicated by the measurements of a
fabricated prototype and the parametric studies of the pre-
sented design in opposition to dual band antennas produced
by the radiation of slots, whose resonances are dependent
on their physical length. The prototype has been designed
to exhibit a dual band behaviour in two frequency bands
in the range from 4 GHz to 5 GHz for wireless applications.
Nowadays, there is a growing trend to integrate different
wireless communication systems in one single user terminal
as long as to reduce the overall size. Since all these systems
work at different frequency bands, dual and multiband
antennas with frequency ratios around 1.2 between different
bands are desirable. For this application, the type of antennas
presented in this paper are a good alternative as introducing
different CSRRs on the patch multiband antennas can be
obtained very easily taking as a starting point the dual band
antennas presented in this paper. The dual band antenna
design presented has been validated, and a parametric study
of the CSRR location and its influence on antenna radiating
characteristics is presented and analyzed.

2. CSRR Excitation in a Rectangular Patch

The excitation of CSRRs has been usually driven by an in-
cident electric field normal to the particle plane. In order to
understand the excitation of these particles, let us consider
the CSRR presented in Figures 1(b) and 1(c). Comparing the
excitation of an SRR with a CSRR, the CSRR particle should
be rotated 90◦ from the position of the SRR particle, as it
is shown in Figure 1(a). Following the theoretical discussion
shown in [4, 5], the operation of the SRR near its first
resonance frequency obeys the effect of resonant polarizabil-
ities, which gives the resonant magnetic and electric dipolar
moments mz, px, and py as a function of the exciting field
components Binc

z , Einc
x , and Einc

y . Complementarily, using
the Babinet principle [9], the CSRR can be excited by the
incident complementary fields Eincc and Bincc, which are
related to Einc and Binc by Eincc = c ·Binc and Bincc = −(1/c) ·
Einc by means of another set of resonant polarizabilities, thus
given an electric dipole pcz and magnetic dipoles mc

x and
mc

y . Then, as seen in Figures 1(b) and 1(c), depending on
the CSRR position inside the patch, it will be excited by
incident electric field normal to the particle plane (Ez) and
by incident magnetic field tangent to the particle plane (Bx).
For the excitation of the CSRR by the magnetic field (Bx), the

CSRR should be rotated 90◦ in the patch as it is shown in
Figure 1(c) comparing to the orientation of the CSRR in
Figure 1(b).

In order to show graphically the excitation of the CSRR
by the existing fields inside a rectangular patch antenna,
Figures 2 and 3 show the electric fields and surface current
distributions at the resonance frequency of the CSRR for
the locations of this particle according to the layouts of
Figures 2(a) and 3(a). In Figure 2, the CSRR particle has
been located for its proper excitation by Ez electric field
component, placed in one position inside the area where
E field distributions are higher. Otherwise, in Figure 3,
the CSRR particle has been located where magnetic field
distributions are more concentrated, for the best suitable
CSRR excitation by Bx magnetic field component. Though,
for this case, the CSRR is also excited by Ez. The simulations
of the structures presented in this paper have been performed
with the commercial finite-integration time-domain CST
Microwave Studio Code.

3. Parametric Study

The parametric study carried out in this work shows how
the position of the CSRR (without changing its dimensions)
has influence on the radiation efficiency of both antenna
resonances for the orientation of the particle as it is in
Figure 1(b). On this way, for some locations of the CSRR in
the patch, radiation efficiencies up to 50% are achieved for
both resonances. These results together with the measure-
ment results of the prototype comparing to the simulated
results show the usefulness of this kind of dual band patch
antennas. The simulated antenna in the parametric study
has the same dimensions as the fabricated one, excluding the
placement of the CSRR inside the patch, which varies from
Pos = −9 mm to Pos = 9 mm in the y-axis direction and
from u = 1 mm to u = 13 mm in the x-axis direction.
In Figure 1(b), the references of both Pos and u parameters
are specified. The substrate employed in the simulated and
fabricated prototype is the commercially available Arlon 250-
LX-0193-43-11 (εr = 2.43 and thickness h = 0.49 mm). The
physical width and length of the rectangular patch antenna
are 18.43 mm and 23.68 mm, respectively [18]. Then, its
resonance has been set around 5 GHz. The width of the
micro strip line is 1.34 mm, corresponding to a characteristic
impedance of 50Ω. This line exhibits an offset from the
centre of the patch antenna in order to match its reflection
coefficient at its working frequency. The offset is (X1 =

−13.37 mm and Y1 = 0 mm) (see Figure 1(b)).
The CSRR particle has been designed to exhibit its quasi-

static resonance frequency below the resonance frequency of
the patch, obtaining more compact devices highlighting the
advantages of the resonance properties of anisotropic par-
ticles comparing to other slots already used for dual band
antenna designs. The radiation produced by conventional
slots does not have the same origin comparing to the radia-
tion produced by a CSRR particle, and their electric length
should be longer comparing to the electric length of the
CSRR. The necessary physical dimensions of the CSRR to
achieve a radiation frequency below the resonant frequency
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Figure 1: (a) SRR and CSRR topologies relevant dimensions. (b) Configuration of dual band CSRR-rectangular patch antenna. CSRR
excitation by incident electric field normal to the particle plane, Ez. (c) Configuration of dual band CSRR-rectangular patch antenna. CSRR
excitation by magnetic field tangent to the particle plane, Bx, and by electric field normal to the particle plane, Ez.

of the designed rectangular patch have been calculated using
the design formulas for SRR reported in [4], resulting in this
case in a = 4.6 mm, b = 4.2 mm, and c = d = 0.2 mm. In
all the results presented in this paper, the first resonance of
the dual band antenna is the one produced by the excitation
of the CSRR, while the second resonance is produced by the
conventional patch itself.

In Figures 4(a) and 4(b) radiation efficiencies as results
from the parametric study are shown for both resonances.
Figure 4(a) shows how the radiation efficiency of the reso-
nance produced by the excitation of the CSRR increases while

the anisotropic particle is placed at the radiating edges of
the rectangular patch (Pos parameter values of −9 mm and
9 mm). However, there are some positions for the CSRR
inside the patch where the radiation due to the CSRR is
cancelled. These positions correspond to values around Pos
parameter of 0 mm and values around this value. This means
that when the CSRR is etched in the centre of the rectangular
patch its resonance is cancelled leading to a single resonance
antenna.

Figure 4(b) shows how the radiation efficiency of the
resonance produced by the patch decreases for some
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Figure 2: (a) Top view of the layout for E field and current distributions analysis in reference with Figure 1(b). (b) Simulated Ez field
distribution in the CSRR at its resonant frequency. (c) Simulated current distributions in the CSRR at its resonant frequency.

u positions when the CSRR is placed at the radiating edges
of the conventional patch antenna. However, there are other
u positions at these edges where both resonances exhibit
radiation efficiencies up to 50%. The position values where
radiation efficiency has been set to zero mean that the res-
onance produced by the CSRR particle or by the patch
has been cancelled as explained before. The results of the
parametric study for radiation efficiencies of both resonances
show that the results are not symmetric, these differences
are due to the asymmetric microstrip line excitation of the
rectangular patch.

In Figures 5(a) and 5(b) gain values for u parameter
values (u = 3, 4, 11, 12, and 13), which drive to the highest
radiation efficiencies for both resonances, are depicted. The
discontinuities with no values in the curves of Figures 5(a),
6(a), and 6(b) are because there is no resonance of the CSRR
for those positions.

For the locations where the CSRR is etched around the
centre of the rectangular patch, u = 6 mm, u = 7 mm, and
u = 8 mm, both resonances, the one produced by the CSRR
and the one produced by the patch, are shifted to lower
frequencies, resulting in a miniaturization of both frequency
bands of dual band patch antenna comparing to a conven-
tional rectangular patch antenna of the same dimensions.

By contrast, as the CSRR moves away from the centre of
the patch towards the nonradiating edges (in u direction for
all its Pos parameter values), the resonance produced by the
rectangular patch shifts to higher frequencies comparing to
the resonant frequency of the conventional rectangular patch
itself. In Figures 6(a) and 6(b) the resonant frequencies for
the first and second resonances versus Pos parameter and
f 2/ f 1 ratio are shown for u = 1, u = 6, and u = 13 param-
eter values, where f 1 and f 2 are the resonance produced by
the CSRR and the one produced by the rectangular patch,
respectively. The miniaturization ratio of this type of anten-
nas based on this design is around 1.2, but it also depends
on the position of the CSRR on the patch, as the resonance
frequencies are shifted. This behaviour is clearly shown in
Figures 6(a) and 6(b).

From Figures 6(a) and 6(b) the miniaturization factor
has been calculated for two different positions of the CSRR
on the patch. In the first case, for particle location parameters
of u = 13 mm and Pos = −9 mm the miniaturization factor
is 1.16, corresponding to a radiation efficiency of 45.37% and
gain of 3.59%. For the second case, the position parameters
values are u = 6 mm and Pos = 0 mm. In this case the
resonance produced by the CSRR has been cancelled and a
single-band antenna is achieved. The miniaturization factor
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Figure 3: (a) Top view of the layout for E field and current distributions analysis in reference with Figure 1(c). (b) Simulated Ez field
distribution in the CSRR at its resonant frequency. (c) Simulated current distributions in the CSRR at its resonant frequency.

is 1.1, corresponding to a radiation efficiency of 84.36% and
gain of 6.56 dB.

4. Experimental Results

In order to demonstrate the usefulness of this dual band
antenna design, a prototype has been fabricated. The fabri-
cated prototype has been chosen from the parametric study
in a case where the radiation efficiency is low comparing to
the highest values obtained of this parameter. This case has
been chosen to validate the usefulness of this design in a
worst case condition. The prototype has been fabricated
using a laser drilling machine. The design parameters of the
CSRR particle are a = 4.6 mm, b = 4.2 mm, and c = d =
0.2 mm (the same ones of those of the CSRR used in the
parametric study). In the fabricated prototype the CSRR
has been placed at A point (see Figure 1(b)) being the
coordinates of this point (X = −9.3 mm, Y = 15.54 mm).

In Figure 7 simulated and measured reflection coefficient
results of the fabricated prototype are shown. For matching
measurements data has been collected by using an HP8510
network analyzer. As it can be seen in Figure 7, there is
a frequency shift of 162 MHz to lower frequencies for the
lower resonance. The upper resonance presents a frequency
shift of 84 MHz, shifted to lower frequencies. Although

there is a frequency shift between simulated and measured
results, the matching values achieved are properly predicted
by simulations. The discrepancies between simulated and
measured results are due to the manufacturing process as
the CSRR manufacturing tolerances are critical, changing
slightly its frequency resonance. In simulations, materials
have been simulated considering their corresponding finite
conductance and substrate has been simulated considering
its dielectric losses. In Figure 8 a picture of the fabricated
prototype is shown.

In Figures 9(a) and 9(b) measured results for normalized
gain radiation patterns for 0◦ and 90◦ phi cut planes for both
resonant frequencies are shown. Besides, simulated results
just for 90◦ phi cut are shown. No more simulated cuts are
introduced to maintain the figures legible. These frequencies
are F1 = 4.19 GHz and F2 = 4.808 GHz, the resonant
frequencies produced by the CSRR particle and conventional
patch, respectively. The radiation pattern measured results
show the feasibility of this type of dual band antenna design.
Both resonances show cross-polar levels around −20 dB for
theta 0◦.

Table 1 shows a comparison between simulated and
measured results of the fabricated prototype from impedance
matching and radiation point of views. This table shows that
both resonances have similar characteristics. From matching
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Figure 4: (a) Simulated radiation efficiency for the resonance produced by the CSRR. (b) Simulated radiation efficiency for the resonance
produced by the rectangular patch antenna.
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Figure 5: (a) Simulated gain values for the resonance produced by the CSRR. (b) Simulated gain values for the resonance produced by the
rectangular patch antenna.

point of view, the parameters shown in Table 1 are reflec-
tion coefficient values for both resonant frequencies. From
radiation point of view, parameters shown in Table 1 are
peak directivity, peak gain, and radiation efficiency. Direc-
tivity values have been calculated [18] from measured gain
radiation patterns for both resonances in order to calculate
efficiency and verify the good agreement between simulated

and measured data. Within the fabricated prototype the
parametric study made in this work has been validated due
to the good agreement between simulations and measured
results. Although gain and radiation efficiency obtained by
the resonance produced by the CSRR is low comparing to the
second resonance in the fabricated prototype, these values
are in accordance with the simulated results. Furthermore,
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Figure 8: Fabricated prototype.

Table 1

Parameters Simulated results Measured results

Matching characteristics

First resonance (F1)

F1, (GHz) 4.352 4.19

Reflection coefficient, (dB) −16.75 −21.25

Effective bandwidth at
−5 dB (%)

1.60 1.52

Second resonance (F2)

F2, (GHz) 4.892 4.808

Reflection coefficient, (dB) −15.15 −13.86

Effective bandwidth at
−5 dB (%)

1.79 1.72

Radiation characteristics

First resonance (F1)

Peak directivity, (dBi) 7.16 7.36

Peak gain, (dB) −0.97 −0.11

Radiation efficiency (%) 15.38 17.92

Second resonance (F2)

Peak directivity, (dBi) 7.243 7.74

Peak gain, (dB) 5.946 5.85

Radiation efficiency, (%) 74.18 64.83

it is remarkable that gain values obtained for the positions
of the CSRR in the patch studied in this work are higher
compared to previous works [16].

Up to this point, in order to compare the performances
of the dual band antenna topology presented in this paper
with those of the same conventional patch antenna without
a CSRR etched in its centre, in Table 2 measured data of the
conventional rectangular patch antenna is shown.
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Figure 9: (a) Measured normalized copolar and cross-polar gain radiation patterns for 0◦ and 90◦ phi cuts. Simulated normalized copular
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Table 2

Parameters Measured results

Patch antenna

Matching characteristics

Frequency, (GHz) 5.16

Reflection coefficient, (dB) −22.3

Effective bandwidth at
−5 dB (%)

1.9

Radiation characteristics

Peak directivity, (dBi) 7.55

Peak gain, (dB) 6.08

Radiation efficiency (%) 71.3

Comparing Tables 1 and 2, the designed prototype pre-
sents similar performances to those of the conventional patch
antenna from matching point of view (effective bandwidth
and reflection coefficient values). On the other side, from
radiation point of view, the designed and fabricated dual
band antenna resonances show lower radiation efficiencies as
it has been mentioned before.

Finally, to understand in an oversimplified way the
radiation mechanism of the proposed antenna, one needs to
consider the pair of electric dipoles that are described in [9]
and the effect of the finite ground plane. In a recent work a
refined equivalent circuit model for the CSRR which explains
more accurately the physical interpretation of the influence
of reactive parameters [19] is presented. This circuit model
will be developed in further works in order to take into
account the radiation resistance and the internal coupling to
the patch and ground plane.

5. Conclusions

In this work a dual band patch antenna based on a CSRR has
been proposed, studied, and successfully tested, demonstrat-
ing the feasibility of this type of dual band antennas, adding
a miniaturization of patch dimensions for some locations
of the CSRR inside the patch. A good agreement between
simulated and measured results is shown. The parametric
study shows the influence of the location of the CSRR on
the patch on the radiation characteristics. The design of the
dual patch antenna is simple as the only design parameters
comparing to a conventional path antenna are the ones of the
CSRR particle design parameters. Also, multiband antennas
can be designed in a similar way by simply adding different
CSRRs on the patch.
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3.2.6 Paper: Design and Implementation of dual Band

Antennas based on CSRR

The contributions of this work are summarized as follows:

• In this paper the equivalent circuit model of dual band-patch antennas based on a Comple-

mentary Split Ring Resonator is presented and validated. This equivalent circuit model is

sound in order to understand the functionality of the radiating structure. In fact, the valida-

tion of the equivalent circuit model proofs that the CSRR particle behaves as a stand-alone

radiating element; which is coupled to the rectangular patch antenna.

• The validation of the equivalent circuit model has been carried out by the manufacture and

testing of three antenna prototypes; which have been printed on substrates with different

permittivity values. Good agreement between simulation, equivalent circuit model and ex-

perimental results is shown and discussed.

• The designed and tested prototypes show radiation efficiencies of 62.5% and 64% for the

radiation driven by the CSRR and rectangular patch; respectively. These values are in ac-

cordance to the parametric study presented in Section 3.2.5 for the case where the CSRR is

located in close to the non radiating edges of the rectangular patch. See Figure 4 of the paper

presented in Section 3.2.5.

• The experimental validation of the equivalent circuit model allows the equivalent circuit model

to become a simple and straightforward tool for the design of this type of multiband antennas,

of low cost and versatile operation for a broad range of wireless communication systems.

• In the Table 3 of the paper presented in this section, a state of the art study of dual band

patch antennas based on CSRRs is provided. This table shows that the design presented

in this paper exhibits highest radiation efficiencies compared to other antennas, see designs

in [13].
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4. Multiple CSRR Application in

Complex Radiating Structures

L’imagination est tout.

C’est un avant-gôut de ce que la vie nous réserve.

Albert Einstein

A novel Metamaterial antenna structure based on a CSRR particle etched in a rectangular

patch antenna is presented in the previous chapter. This novel structure was proposed in 2006

in order to increase the radiation efficiency of the CSRR stand alone radiating element. Results

presented in the previous chapter demonstrate radiation efficiency improvement for the CSRR.

Hence, it came naturally to us to implement multiple CSRRs in the patch of a patch antenna in

order to obtain a multi-band antenna.

When etching different CSRRs in the patch of a rectangular patch antenna, two distinct be-

haviors are observed in terms of impedance matching, radiation characteristics and polarization.

These distinct behaviors have the origin in the coupling mechanism among the CSRRs. On the one

hand a multi-band antenna is obtained when there is low coupling among the CSRRs. In this case,

each CSRR acts as an isolate particle and the radiation properties of each CSRR can be predicted

by the results of the parametric study presented in Chapter 3. Simulation and measurement results

of these multi-band antenna structures are not shown in this memoir because these results are still

under preparation. Preliminary outcomes are very encouraging and will probably be part of future

publications.

On the other hand, when there is a strong electric coupling among the CSRRs part of a chain

of resonators printed in the patch, an Electro-Inductive wave (EIW) propagation is supported by

that chain. Then, the EIW propagation phenomenon is used to master the field distribution within

the rectangular patch, and hence, to change the polarization of the patch antenna, which is shown

to change from linear to circular polarization. Author’s contribution in this direction is presented

in this chapter.
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4.1 Electro-Inductive-Wave Coupling to

chain of CSRRs

Electro-Inductive waves (EIWs) can be interpreted as the dual counterpart of the so called Magneto-

Inductive Waves (MIWs) (see [1], [2], [3]); which are due to the mutual inductance between chains

of resonators.

Generally, EIWs are supported by chains of resonators drilled on a metallic substrate. Previ-

ously, chains of CSRR elements have been studied as supporting structures for EIWs, due to inter

CSRR interaction given mainly by E-field coupling. This phenomenon has been employed in the

implementation of devices such as delay lines (see [4]) or compact filters. The proposed structures

enable power flow following the path of the CSRR elements. If unit CSRR elements are geomet-

rically modified, in terms of their relative dimensions or of their position (e.g., relative resonator

rotation), potential modification of wave polarization can be achieved. This concept has already

been employed in order to implement lowloss waveguiding structures, by supporting so called spoof

plasmon polaritons, which can be viewed as complex surface waves within the microwave and

millimeter wave regime [5], providing alternative paths to device integration.

In the author’s work presented in the section below, Section ??, the EIW phenomenon is

employed to define and characterize new structures based on CSRR configurations for generating

circular polarization in a rectangular patch antenna.

4.2 Paper: Circularly polarized waves

based on EIW coupling to chain of

CSRRs

As it is explained in the previous section (see Section ??), the work presented in this section show

new structures based on CSRR configurations for generating circular polarization in a rectangular

patch. In this work, a different principle to the one used in previous works [6], [7] and [?] for the

generation of circular polarization in a rectangular patch antenna is presented.

In 2009 and 2012, in [6] and [7] respectively, the principle of circularly polarized patch antenna is

to use the CSRR as an asymmetric perturbation in the patch of a linearly polarized fed square patch

antenna. In 2012, in [?] the principle of the circularly polarized rectangular patch antenna is to

overlap the two working frequencies of a dual band dual-linearly polarized rectangular patch antenna

composed of two CSRRs elements side-by-side, reversely placed in the center of a rectangular patch
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antenna and excite these two resonances with a 90◦ phase difference. The first resonance is generated

by the two CSRRs, while the second resonance is the inherent rectangular patch resonance. Since

the probe feed is in the center of the rectangular patch and wave propagation is directed towards

the two diagonal lines oppositely with 45◦ phase delay, the 90◦ phase difference is automatically

introduced.

In the author’s work presented in this section, the circular polarization is generated by the

propagation of an Electro-Inductive wave at the quasi-static resonant-frequency of a CSRR array

printed in the rectangular patch. This work has been published in the journal of Applied Physics

in 2016. The contributions of this work are summarized as follows:

• This work demonstrates a practical application of the EIW propagation phenomenon. Thanks

to EIW propagation along a chain composed of CSRRs printed on the rectangular patch of

a patch antenna, circular polarization is generated. Depending on the configuration of the

Complementary Split Ring Resonator particles printed on the patch, Right or Left handed

circularly polarized antennas are obtained.

• EIW propagation is demonstrated by the existence of electric coupling between CSRRs. In

this paper the electric coupling is shown by the comparison of electric field x, y and z com-

ponents with the ones of the reference conventional rectangular antenna. For futher detailed

information, see computed results shown in FIG. 11.

• The principle of operation is demonstrated with the design, fabrication and measurement of

antenna prototypes. Good agreement between simulation and measurement results is shown,

considering the effect of fabrication tolerances in initial frequency shifts.

• The proposed design provides a simple, low cost alternative in order to provide polarization

modification properties for multiple antenna communication systems.

• The coupling of EIW in order to provide polarization rotation capabilities can be extended

in order to demonstrate the phenomena in different configuration, such as in guided wave

structures, or with enhanced capabilities provided by the inclusion of active elements in

order to achieve certain level of tunability in the frequency selective or phase response of the

implemented devices.
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In this work, Electro-Inductive wave (EIW) propagation phenomenon is employed in order to intro-

duce a polarization rotation capability in a rectangular patch antenna. The EIW propagation phe-

nomenon is used to master the field distribution within the rectangular patch, and hence, to change

the polarization of a patch antenna, which is shown to change from linear to circular polarization.

EIW propagation is supported by a chain of Complementary Split Ring Resonators printed in a

rectangular patch antenna at specific locations. This principle of operation is demonstrated with the

design, fabrication, and measurement of antenna prototypes. Experimental results confirm numeri-

cal analysis, providing a simple antenna configuration with polarization variation capabilities,

extendable to multiple configurations, in radiated waves as well as in guided wave phenomena.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966929]

I. INTRODUCTION

Complementary Split Ring Resonators (CSRRs)1 are the

dual particles of Split Ring Resonators (SRRs),2 by direct

application of Babinet’s principle. SRRs were first intro-

duced by Pendry2 in order to produce artificial media with a

strong magnetic response at microwaves and radio-

frequencies. In his seminal work Pendry predicted that artifi-

cial media with negative permeability could be designed by

using SRRs. In fact, this prediction was soon confirmed by

Smith’s experiments,3 in which the experimental demonstra-

tion of a left handed medium, as a combination of an array

of SRR and wire media for propagating waves in free space

was presented.3

In the last decade, SRRs and CSRRs have become popu-

lar and powerful elements in the design of planar technology

devices due to their versatile frequency response as well as

their sub-wavelength dimensions.4 SRR and CSRR electro-

magnetic properties have been deeply investigated.1,5,6

Firstly, these particles have been solid constituents for planar

microwave filter,7–11 directional coupler,12,13 frequency selec-

tive surfaces,14 and Electromagnetic Band-GAP (EBG) struc-

tures designs.15 Secondly, SRR and CSRR particles have also

been used in conventional planar antennas. In particular,

CSRR particles have been introduced in different types of

conventional planar antennas in order to improve their band-

width,16–18 miniaturize antenna size,19–22 generate multi-

frequency band antennas,20,23–28 enhance dual-band antennas

radiation characteristics,28 and generate circular polarization

from conventional linear polarization patch antennas.20,29–31

Other solutions have also been proposed in order to control

radiation characteristics in multiple frequency ranges and

device configurations, such as Metasurfaces and Metaradomes

(which can be defined as a radome or superstrate, which

exhibits engineered electromagnetic properties owing to

the inclusion of metamaterial-inspired elements within the ini-

tial host material), providing effective mechanisms in a

bi-dimensional single layer fashion or by means of multiple

stacking.32–36 Metasurfaces have been implemented by employ-

ing coupled bi-layer structures, exhibiting enhanced transmitted

field distributions in the optical range.32 Polarization conversion

has also been demonstrated by employing self-complementary

structures, such as strip gratings, SRR-CSRR arrays and hole/

patch structures, enabling the implementation of compact polar-

izers.33 Other works, such as those described in Refs. 34–36

exploit the use of active elements as well as non-linear

behavior of certain materials in order to achieve certain

degree of tunability, which can be observed in the location

of quasi-static resonance frequencies or the corresponding

phase response.

The phenomenon that allows polarization rotation and

circular polarization generation in the present work is differ-

ent from the principles presented and described in previous

works.20,29–31 Previously,20 the principle of the circularly

polarized rectangular patch antenna is to overlap the two

working frequencies of a dual band dual-linearly polarized

rectangular patch antenna composed of two CSRRs elements

side-by-side, reversely placed in the center of a rectangular

patch antenna and excite these two resonances with a 90�

phase difference. The first resonance is generated by the two

CSRRs, while the second resonance is the inherent rectangu-

lar patch resonance. Since the probe feed is in the center of

the rectangular patch and wave propagation is directed

towards the two diagonal lines oppositely with 45� phase

delay, the 90� phase difference is automatically introduced.

The principle of circularly polarized patch antenna is to use

the CSRR as an asymmetric perturbation in the patch of a

linearly polarized fed square patch antenna.29–31 Etching the

CSRR in a specific orientation and position on the square

patch antenna, the surface current paths of the original patch

antenna are modified and for a given size of the CSRR a

good circularly ‘polarized antenna is obtained. In that case,

the non-resonant property of a single CSRR etched in a rect-

angular patch antenna is used. In contrast, in the present
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work, the circularly polarized antenna is achieved by the

propagation of an Electro-Inductive Wave (EIW)32 at the

quasi-static resonant frequency of a CSRR array, which is

etched at a specific location on the rectangular patch antenna

and which can be viewed as a dual element from a Magneto-

Inductive Wave (MIW) propagation achieved with conductor

based resonators, such as SRRs.

Generally, EIWs are supported by chains of resonators

drilled on a metallic substrate. EIWs can be interpreted as

the dual counterpart of the so called Magneto-Inductive

Waves (MIWs),38–45 which are due to the mutual inductance

between chains of resonators. Previously, chains of CSRR

elements have been studied as supporting structures for

EIWs, due to inter CSRR interaction given mainly by E-field

coupling. This phenomenon has been employed in the imple-

mentation of devices such as delay lines or compact filters.

The proposed structures enable power flow following the

path of the CSRR elements. If unit CSRR elements are geo-

metrically modified, in terms of their relative dimensions or

of their position (e.g., relative resonator rotation), potential

modification of wave polarization can be achieved. This con-

cept has already been employed in order to implement low-

loss waveguiding structures, by supporting so called “spoof

plasmon polaritons,” which can be viewed as complex sur-

face waves within the microwave and millimeter wave

regime,36 providing alternative paths to device integration.

In this work, the EIW phenomenon is employed to

define and characterize new and simple structures based on

CSRR configurations for generating circular polarization in a

rectangular patch antenna. Depending on the configuration

of the resonant particles printed on the patch, Right or Left

handed circularly polarized antennas are obtained. The pro-

posed design is applied to a conventional patch antenna con-

figuration. When compared to other routes employed in

order to achieve polarization rotation (such as the use of

metasurfaces coupled to a radiating source), the approach

followed in this work directly embeds chains of CSRR ele-

ments which support EIW propagation, providing a more

compact structure and reducing to certain extent inaccuracies

given by misalignment or by non-uniform air gap spacing

between the radiating elements and other structures.

The outline of this paper is as follows. In Section II,

antenna designs are presented, EIW propagation phenome-

non and polarization rotation is explained and demonstrated.

Section III describes the experimental work carried out in

which simple demonstration structures have been con-

structed and tested. Moreover, CSRRs design parameters

have been tuned in order to compensate reflection coefficient

shift in fabricated prototypes. The paper ends with a discus-

sion and conclusions on the advantages and limitations of

the realization and performance of these structures.

II. DESIGN

As previously stated, CSRR resonators etched within a

conductor layer can support EIWs and can modify polariza-

tion states, as a function of geometrical configuration of the

embedded resonators, which can be successfully applied in

order to implement low-loss wave guiding structures or delay

lines, owing to inherently dispersive frequency response.32,36

In order to induce the propagation of EIW and coupling to

radiation sources, several antenna configurations that generate

circular polarization by EIW propagation phenomenon have

been designed and are schematically depicted in Fig. 1. This

geometry is composed of a chain of three rectangular CSRRs

printed in the patch of a rectangular patch antenna. The differ-

ence between both configurations presented in Fig. 1 is the

sequential rotation of the CSRRs, in order to modify induced

currents within the CSRR elements, and hence, the phase vari-

ation which can be effectively be accomplished by each chain

of CSRRs. Antenna configuration #1 and #2 exhibit Left

handed and Right handed polarizations, respectively. Fig. 2

shows the geometries of antenna configurations #3 and #4.

These configurations present linear polarization and they have

been defined for comparison purposes in order to explain

EIW phenomenon in antenna configurations #1 and #2. In

addition, a rectangular patch antenna of the same patch

dimensions and no CSRRs (antenna configuration #5) has

been used as a reference antenna for comparison purposes.

Antenna configurations #3 and #4 have been defined from

antenna configurations #1 and #2, respectively, displacing the

FIG. 1. Structure configurations with Circular Polarization: Configuration #1

is generated by setting a0¼ 180� and a1¼ 90� (as illustrated in the drawing).

Configuration #2 is generated by setting a0¼ 0� and a1¼ 0� (the rotation

scheme of the CSRR is illustrated in Fig. 3).

FIG. 2. Structure configurations with Linear Polarization: Configuration #3

is generated by setting a0¼ 180� and a1¼ 90� (as illustrated in the drawing).

Configuration #4 is generated by setting a0¼ 0� and a1¼ 0� (the rotation

scheme of the CSRR is illustrated in Fig. 3).

174905-2 Ortiz et al. J. Appl. Phys. 120, 174905 (2016)
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resonant particle chain from the X0 position to the X1 posi-

tion in the antenna patch. Fig. 3 shows the geometry and the

relevant dimensions of the CSRR used as part of the CSRR

chain printed in the rectangular patch. In the designs, rectan-

gular CSRRs have been used instead of the well-known circu-

lar CSRR. In this way, the coupling between adjacent

resonant particles in the CSRR chain is enhanced, boosting

EIW phenomenon.

Table I shows the design parameters values for the dif-

ferent antenna configurations employed. In the design cases,

CSRR particles dimensions in every antenna configuration

are the same. The geometrical differences among antenna

configurations are the X0, X1, and a parameters. Antenna

configurations have been designed using Arlon Cuclad 250

LX with a thickness (h) of 0.49mm and relative dielectric

constant (er) of 2.43, providing a good compromise in terms

of radiation efficiency, loss reduction, and inhibition of prop-

agation of higher order substrate modes within the device.

The width of the microstrip line (Wi) corresponds to a char-

acteristic impedance of 50X, in order to adequately match

the antenna to the source generator.

Simulated reflection coefficient and the axial ratio for

the different antenna configurations have been depicted in

Fig. 4. Circularly polarized antenna configurations (#1 and

#2) resonate at two frequencies, represented in Fig. 4(a) as

R1 and R2, corresponding to the first and second resonant

frequencies, respectively. R1 is the inherent resonant of the

rectangular patch, while R2 is produced by the resonant

chain composed by the complementary split ring resonators.

Circular and linear polarizations are achieved at R2 and R1

resonant frequencies, respectively.

Observed field enhancement can be obtained by optimiz-

ing the initial radiating element design, in order to optimize

device matching. For antenna configuration 1, the input

impedance at R1 is characterised with a real part of 40 X and

an imaginary part of 7 X, while at R2 it is characterised as a

lower real part compared to R1 of 29 X and an imaginary

part of 0 X. For antenna configuration #2, the input imped-

ance at R1 is characterized with a real part of 46 X and an

imaginary part of �15 X, while at R2 it is characterised as a

lower real part compared to R1 of 13 X and an imaginary

part of �12 X. Hence, in antenna configurations #1 and #2 at

R2, at the minimum value of axial ratio (approximately

1.2 dB, see Fig. 4(b)), the real part of input impedance is

much lower than the value of 50 X, which is the designed

value of the characteristic impedance of the microstrip line.

At simulation level for antenna configuration #2, an input

matching network has been implemented in order to improve

FIG. 3. Geometry, design parameters and particle rotation definition (a

angle) of the rectangular CSRR part of the resonant chain.

TABLE I. Antenna configurations and CSRR parameters dimensions.

Parameter Dimensions (mm) Parameter description

Length 17.0 See Figs. 1 and 2

Width 20.8

Wi 1.4

Tl 9.93

Tw 0.34

X0 7.8

X1 2.5

Y0 21.9

Y1 28.0

Y2 34.1

a 4.6 See Fig. 3

b 4.2

c 0.2

d 0.2

s 0.3

a Depending on antenna configuration See Figs. 1 and 2

FIG. 4. (a) Simulated reflection coefficient and axial ratio for circular polar-

ized antenna configurations: #1, #2; (b) Simulated reflection coefficient and

axial ratio for linear polarized antenna configurations: #3, #4, and #5.
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the reflection coefficient at R2 resonance. Simulated results

show that a reflection coefficient lower than �20 dB at R2 for

antenna configuration #2 is obtained with a k/4 transformer

and a short stub in parallel. Simulated results also show com-

parable axial ratio result to the one depicted in Fig. 4(a). In

contrast to the two resonances exhibited in the reflection coef-

ficient in antenna configurations #1 and #2, configurations #3

and #4 present a single resonance. The real part of the input

impedance in these configurations is close to 50 X, while the

imaginary part is nearby 0 X. It is worth noting that the R2

resonant frequency for configuration #1 lies in 5.65GHz and

#2 in 5.68GHz, in close vicinity but exhibiting different reso-

nant frequency values.

Comparing the resonant frequencies of antenna configu-

rations #3 and #4 and R1 in antenna configurations #1 and

#2 to the resonant frequency of a reference antenna (configu-

ration #5), the resonant frequencies have been shifted

towards higher frequencies (see Figs. 4(a) and 4(b)). This

effect is produced by the loading of the rectangular patch

with the CSRRs, as the CSRRs etched in the patch reduce

TABLE II. Designed configurations: Resonant frequency summary.

Antenna

configurations

1st resonance, (GHz)

linear polarization

2nd resonance, (GHz)

circular polarization

#1 5.60 5.65

#2 5.60 5.68

#3 5.73 …

#4 5.66 …

#5 5.50 …

FIG. 5. Power flow (W/m2—Linear scale) in XY plane at z¼ h (0.49mm) for: (a) Configuration #1 at 1st resonance: 5.6GHz, (b) Configuration #1 at 2nd reso-

nance: 5.65GHz, (c) Configuration #2 at 1st resonance: 5.6GHz, (d) Configuration #2 at 2nd resonance: 5.68GHz, (e) Reference coordinate system and com-

mon colour bar scale.
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the electrical length of the rectangular patch. Table II sum-

marizes the resonant frequencies corresponding to the cases

depicted in Fig. 4.

A. Circular polarization demonstration

In order to demonstrate circular polarization generation,

Poynting vector on every antenna configuration has been

simulated with the aid of CST microwave studioTM, provid-

ing a clear physical picture of the power flowing along the

rectangular patch for all configurations under analysis. Figs.

5 and 6 show the simulated results of the directional energy

flux in 2D plane at frequencies specified in Table II. Energy

flux represents the Poynting vector.

Figs. 5(b) and 5(d) show how power flows in y-axis

direction and it is transferred along the resonant chain, and

how it is guided and rotated when the chain is placed close

to one of the non-resonant slots of our reference antenna;

hence, right or left handed circular polarization is generated;

respectively, at the second resonance of antenna configura-

tions #1 and #2. In contrast, in Figs. 5(a) and 5(c) at first res-

onance in antenna configurations #1 and #2, power is not

transferred along the resonant chain in the same direction,

and circular polarization is not generated. This last perfor-

mance is also presented in linear polarized antenna configu-

rations (#3, #4 and #5) shown in Fig. 6.

In order to gain insight on the effect of the inclusion of the

CSRR chains within the radiating elements, Figs. 7(a) and 7(b)

show electric field distribution at first and second resonant fre-

quencies for antenna configuration #1; respectively. Fig. 7(a)

shows a linear electric field distribution polarized in u¼ 135�,

which is along the diagonal line of the rectangular patch origi-

nated by the first CSRR in the resonant chain and the opposite

side edge of the rectangular patch. Hence, in Fig. 7(a) the

CSRRs are not sequentially excited. In contrast, Fig. 7(b)

shows electric field propagation over phase along the CSRR

FIG. 6. Power flow (V�A/m2–Linear scale) in XY plane at z¼ h (0.49mm) for: (a) Configuration #3 at resonance frequency: 5.73GHz, (b) Configuration #4 at

resonance frequency 5.66GHz, (c) Configuration #5 at resonance frequency: 5.5GHz, (d) Reference coordinate system and common colour bar scale.
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resonant chain. So, CSRRs are sequentially excited by an

electro-inductive wave. As seen in Fig. 5, the difference

between configuration #1 and #2 is the circular polarization

orientation. Antenna configuration #1 shows clockwise orien-

tation; while polarization orientation in configuration #2 is

counterclockwise.

Figs. 8(a) and 8(b) show electric field distribution for

antenna configurations #3 and #4. Both antenna configura-

tions exhibit linear electric field distribution polarized in

u¼ 0�. As in Figs. 7(a), 8(a) and 8(b) show no energy trans-

fer between adjacent resonant particles, and no electromag-

netic wave propagation along the CSRR resonant chain.

In this section, polarization rotation has been demon-

strated at the second resonance of antenna configurations #1

and #2. In these cases, power is guided by means of electro-

inductive wave propagation along the CSRR resonant chain,

due to inter-resonator coupling mainly given by E-field exci-

tation (CSRR elements are bi-anisotropic, and hence, can

also by excited by H-field components exhibiting lower fre-

quency selective responses).

B. Circular polarization generation explanation

Circular polarization generation capability is explained

by means of EIW propagation along the CSRR resonant

chain, which can provide phase modifications as a function

of induced current distribution, given by relative CSRR

slot rotation. EIWs supported by chains of planar resona-

tors as CSRRs were first theoretically and experimentally

introduced in Ref. 37, where EIW phenomenon was

employed to design a transducer delay line. In the case of

the circular polarization generation, EIW wave introduces

a phase delay of 90� in one of the polarized modes of the

rectangular patch. EIW phenomenon explanation is mas-

tered by two features. First, every CSRR shall be excited

and second, energy shall be transferred from one CSRR to

the other along the resonant chain. These two features are

analysed here after.

1. CSRR excitation inside the resonant chain

Figs. 5 and 6 show that every CSRR that is part of the

resonant chain is excited in every configuration. This fact is

easily explained identifying the excitation fields that inde-

pendently excite the CSRRs printed in our antenna configu-

rations. It is noted that excitation fields of a single CSRR

printed in a rectangular patch antenna have already been

described.28 In order to identify the excitation fields, let us

review the equivalence between SRR and CSRR topologies

shown in Fig. 9. Comparing the excitation of a SRR with a

CSRR, the CSRR particle should be rotated 90� from the

position of SRR particle, as it is shown in Fig. 9(a). As

explained in Refs. 5 and 6, the operation of the SRR (and

consequently CSRR operation) near its first resonance obeys

to the effect of resonant polarizabilities. Generally, the exci-

tation of CSRRs has been usually driven by an incident elec-

tric field normal to the particle plane, Einc
z , giving an electric

dipole pz. However, due to the bianisotropy property of

SRRs and CSRRs, CSRRs can also be excited by an incident

magnetic field tangent by the particle plane perpendicular to

the slits (s parameter in Fig. 9(a)).5,6 Following the coordi-

nate system definition presented in Fig. 9(a), Bx is the inci-

dent magnetic field that can excite due to the bianisotropy

property the CSRR particle, being able to produce the mag-

netic dipole, mx.

In Fig. 9 the electric and magnetic fields presented in a

conventional rectangular patch antenna and field components

that can excite the CSRR particles located as in antenna con-

figurations #1, #2, #3 and #4 are summarized. So, depending

on the location and orientation of the CSRR particles in the

rectangular patch antenna, each particle will be basically

excited either by the electric field component normal to the

particle plane Ez (for CSRRs with a¼ 0� and a¼ 180�

FIG. 7. Electric field distribution (V/m) in XY plane at z¼ h (0.49mm) for

antenna configuration #1: (a) First resonant frequency (5.60 GHz); (b)

Reference coordinate system and common colour bar scale; (c) Second reso-

nant frequency (5.65 GHz).
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orientations) or by the magnetic field component tangent to

the particle plane Bx (for CSRR with a¼ 90� orientation).

In conclusion, every CSRR printed in our antenna con-

figurations is independently excited, as a direct consequence

of the electric and magnetic fields presented in a rectangular

patch antenna and the CSRR particles position and orienta-

tion in the patch.

2. Energy transfer between CSRRs inside the resonant
chain

Energy transfer between CSRRs inside the resonant

chain is characteristic of EIWs. Energy is transferred due to

the strong electric coupling between adjacent CSRRs in the

resonant chain.

The electric coupling has been already analyzed in pre-

vious work.37 For theoretical explanation purposes of EIW,

the CSRR unit cell equivalent circuit model was updated

including the electric coupling between adjacent resonators

in the chain.37 This electric coupling is given by the capaci-

tance CM. In the same work, dispersion relation of electro-

inductive waves in planar configuration was also computed

including this electric coupling. In addition, several struc-

tures composed of different length of CSRRs were simu-

lated; such as, a linear 1D array with 50 CSRR elements

drilled in an infinite ground plane, where the first CSRR was

excited by an electric monopole, and a transducer composed

of a chain of 5 square complementary split ring resonators.

The simulation results for both structures clearly showed that

the electric energy was trapped in the vicinity of the resonant

particles being negligible out of them. The dispersion rela-

tion of the EIWs in planar configuration without considering

losses can be written as37

x2

x0
2
� 1þ

2CM

Cc

cos kað Þ; (1)

where x is the angular frequency, k is the propagation con-

stant, a is the CSRR centre-to-centre separation between

CSRRs, Cc is the total capacitance (which includes the mutual

coupling between the adjacent resonant particles and the

capacitance between the CSRR and the ground plane), and x2
0

can be written as36 where Lc is CSRR total inductance

x0
2 ¼

1

CcLc
: (2)

As previously described,32 in this paper, energy transfer

is also explained by demonstrating the existence of electric

coupling between adjacent CSRRs. In this paper, the exis-

tence of electric coupling between CSRRs is demonstrated

by computing the electric field x, y, and z components ampli-

tude at different locations in the antenna patch for antenna

configurations #1 and #3 and by comparing the electric field

x, y, and z components amplitude with the ones of the refer-

ence antenna (configuration #5). The computation of the

electric field x, y, and z components in the patch antenna has

been carried out with the aid of CST microwave studioTM,

computing the magnitude and phase of the electric field

probes that have been inserted in the antenna patch of differ-

ent antenna configurations. Fig. 10 shows the position of the

electric field probes that have been inserted in the patch. Fig.

11 shows electric field component magnitude in dB com-

puted from the electric field probes for antenna configura-

tions #1 (at F1 and F2 resonant frequencies), #3 and #5.

Fig. 11 shows magnitude variation of x, y, and z electric

field components in the antenna patch for antenna configura-

tions #1 (F1 and F2 resonant frequencies) and #3 compared

to the reference antenna (configuration #5). Based on the

expressions (4) and (5), the electric field variation shown in

Fig. 11 generates an electric coupling variation in the CSRRs

and between adjacent CSRRs for x, y, and z electric field

components, due to the slots geometry that compose the res-

onant particles printed on the patch.

FIG. 8. Electric field distribution (V/m) in XY plane at z¼ h (0.49mm)

for: (a) Antenna configuration #3 at 5.73GHz; (b) Antenna configuration

#4 at 5.66GHz; (c) Reference coordinate system and common colour bar

scale.

FIG. 9. Electric and magnetic fields in a rectangular patch antenna and

CSRR excitation versus CSRR orientation and position in the antenna patch

for antenna configurations.
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Note of the author: 

Due to space restrictions, a reduced 

version of FIG. 11 is included in the

original article. The article describes 

the full-size version of this figure. 

For the sake of completeness, the full-

size version of FIG. 11 is displayed 

along the two pages that follow.

95 Chapter 4: Multiple CSRR Application in Complex Radiating Structures.



  
(a) 

  
(b) 

 

FIG. 11. Ex, Ey, and Ez field magnitude in dB for: (a) Config. #1 at F1=5.60 GHz; (b) Config.#1 at F2=5.65GHz; (CONTD.) 
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FIG. 11. Ex, Ey, and Ez field magnitude in dB for: (c) Config.#3 at 5.73GHz; (d) Config.#5 at 5.50GHz. 
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the second resonance is higher than that of first resonance.

So, at second resonance the reflection coefficient exhibits

mismatching (measured reflection coefficient at second reso-

nance is around �3 dB). Frequency deviation between simu-

lated and measured data is due to manufacturing tolerances

of the milling machine. These prototypes have been fabri-

cated using a mechanical milling machine with tolerances

around þ/�200microns. In particular, CSRRs are strong res-

onant particles, so that their frequency response is sensitive

to manufacturing tolerances.

In spite of the fact that antenna configurations #1, #2, #3

and #4 resonant frequencies have been shifted towards higher

frequencies, radiation characteristics of the manufactured pro-

totypes still exhibit the predicted simulated performance: circu-

lar polarization at the second resonant frequency in

configurations #1 and #2 and linear polarization in the rest of

resonant frequencies for different configurations. Thus, manu-

factured prototypes demonstrate the aimed polarization rotation

phenomenon. It is remarkable to say, that the objective of this

paper is to validate polarization rotation capability based on

EIW phenomenon, and not to present an optimized antenna.

A. Antenna configurations design parameters tuning

In order to provide a fair comparison between simulated

and measured data for reflection coefficient and radiation

characteristics, the design parameters depicted in Figs. 1 and

2 have been tuned in each antenna configuration in order to

obtain comparable reflection coefficient performance to that

of the measured data. Table IV shows tuned values of design

parameters. Only the parameters related to the position and

dimensions of CSRRs have been tuned. These parameters

are: Length, X0, X1, Y0, Y2, a and b. Tuned values exhibit

good agreement between the simulated and measured data.

Fig. 14 shows the reflection coefficient for antenna configu-

rations #1, #2, #3 and #4 (according to tuned parameters

TABLE III. Resonant frequency/reflection coefficient frequency deviation.

Antenna conf.

1st resonance, (GHz)/(dB) 2nd resonance (GHz)/(dB)

Linear polarization Circular polarization

#1 Simulated: 5.60/�18.5 Simulated: 5.65/�12.6

Measured: 5.82/�23.5 Measured: 5.98/�3.4

Deviation:10.22 Deviation:10.33

#2 Simulated: 5.60/�15.7 Simulated: 5.68/�5

Measured: 5.72/�25.6 Measured: 5.88/�4.3

Deviation:10.12 Deviation:10.20

#3 Simulated: 5.73/�30.2 …

Measured: 5.92/�20.8

Deviation:10.20

#4 Simulated: 5.66/�17.8 …

Measured: 5.79/�29.4

Deviation:10.13

#5 Simulated: 5.50/�28.1 …

Measured: 5.50/�28.4

No deviation

TABLE IV. Tuned designed parameters.

Parameter

Antenna

conf. #1

Antenna

conf. #2

Antenna

conf. #3

Antenna

conf. #4

Length 16.92 16.80 16.92 16.95

Width 20.81

Wi 1.40

Tl 9.93

Tw 0.34

X0 7.9 7.7 … …

X1 … … 2.6 2.4

Y0 22.0 22.1 22.0 22.1

Y1 28.0 28.0 28.0 28.0

Y2 34.0 33.9 34.0 33.9

a 4.0 4.2 4.0 4.2

b 3.8 3.8 3.8 3.8

c 0.2

d 0.2

s 0.3

a See Figs. 1 and 2

FIG. 14. Simulated and Measured Reflection coefficient: (a) Configurations #1 and #2; (b) Configurations #3 and #4.
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depicted in Table IV). For summarizing and simplicity pur-

poses, from now on, antenna configuration #5 measured data

is not shown.

Antenna configurations #1, #2, #3, #4 have been mea-

sured in an anechoic chamber. Measurements have been per-

formed using linear polarized horn antennas as reference

antennas. Hence, E and H planes measurements are shown

for linear and circular polarizations. For simplicity purposes,

measured data of antenna configuration #5 is not shown. Fig.

15 shows simulated (data from Table IV tuned parameters

simulations) and measured realized gain radiation patterns at

measured frequencies depicted in Table IV. Both simulated

and measured realized gain peak values and the radiation

pattern performance show good agreement between the sim-

ulated and measured data. Table V shows an overview of

E-plane simulated and measured realized gain and gain peak

values and radiation efficiency. Gain difference between F1

and F2 in antenna configurations #1 and #2 is around 3 dB.

This difference is due to the fact that circular polarization

has been measured with linear polarized antennas. Hence,

comparable gain performances are obtained for linearly and

circularly and polarized frequency bandwidths.

Fig. 15 show simulated and measured data of axial ratio

over frequency for different antenna configurations. Axial

ratio bandwidth values lower than 3 dB is 0.42% and 0.51%

in simulation and 0.92% and 0.81% in measurements for

antenna configurations #1 and #2; respectively. These results

show that circular polarization radiation performance is

retained in a comparable axial ratio bandwidth to that of state

of the art edge truncated circular polarized microstrip patch

antennas.38

Further improvement could be achieved by providing

frequency tuning mechanisms, similar to those previously

applied in individual resonators or in distributions, such as

metasurfaces, in which tenability can be provided by means

of inclusion of elements such as PIN or varactor diodes or

the use of photoconductive materials embedded within the

initial circuit. In the case of patch antennas loaded with

CSRR chains, tenability could be achieved, for example,

with the inclusion of varactor diodes within the CSRR gaps,

in order to actively modify CSRR capacitance, and hence,

resonant frequency and overall frequency response.

IV. CONCLUSION

This work demonstrates a practical application of the

EIW propagation phenomenon. Thanks to EIW propagation

along a chain composed of CSRRs printed on a rectangular

patch of a patch antenna, circular polarization is generated.

Antenna prototypes have been fabricated by means of con-

ventional milling techniques, showing good agreement

between simulation and measurement results, considering

the effect of fabrication tolerances in initial frequency shifts.

The proposed design, which combines coupled CSRR ele-

ments in a conventional microstrip patch provides a simple,

low cost alternative in order to provide polarization modifi-

cation properties for multiple antenna communication sys-

tems. The coupling of EIW in order to provide polarization

rotation capabilities can be extended in order to demonstrate

the phenomena in different configuration, such as in guided

wave structures, or with enhanced capabilities provided by

the inclusion of active elements in order to achieve certain

level of tunability in the frequency selective or phase

response of the implemented devices.
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5. Leaky Wave Radiation

Phenomenon in CSRRs Arrays

L’imagination est tout.

C’est un avant-gôut de ce que la vie nous réserve.

Albert Einstein

Single Complementary Split Ring Resonator particle and a reduced finite array of such par-

ticles are implemented in the rectangular patch of a patch antenna in Chapter 3 and Chapter 4;

respectively. In both cases, a finite structure based on CSRRs is considered.

In Chapter 4 the EIW phenomenon is demonstrated using a reduced finite array of CSRRs.

This result provided us the motivation to analyze the radiating performance of infinite arrays com-

posed of Complementary Split Ring Resonators. As an intermediate step, and in order to validate

simulated results, a finite array composed of nine Complementary Split Ring Resonators is manu-

factured and partially tested. Though partial, this test results show very encouraging results; which

motivates a more in deep measurement campaign and it is expected to result into new publications

on this topic. Partial results of this work shows the feasibility to use the presented structures as

based radiation structures for the design of leaky wave antennas for wireless communication ap-

plication. Throughout this chapter the current prototyping stages are presented together with the

measurement results available so far.
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5.1 Leaky Wave Radiation: Pioneering

and recent Works

The properties of leaky waves were originally derived in the pioneering work of Oliner and Tamir

in the late 1950s and early 1960s [1], [2] and [3]. This was followed by an extensive development of

leaky-wave theory and applications to antennas. However, interest in the behavior and application

of these antennas at millimiter-wavelengths only began several decades later. Canonical structures

are presented by A. Oliner and D. Jackson in [4].

The basic working principle of LWAs is based on a wave propagating along a guiding structure

and gradually leaking out a small amount of energy in form of coherent radiation. LWAs are

popular in the microwave band and above, because they can achieve a high directivity with a

simple structure, without the need for a complicated and costly feed network as typically used

in a phased array. On the other hand, for applications that can take advantage of frequency

beam scanning, LWAs are often ideally suited, as LWAs offer a frequency scanning over a large

bandwidth [2].

Planar LWAs have recently attracted much attention due to their structural simplicity, easy

fabrication, and integration with other planar components [5] and [6]. The level of interest and the

development in the field of planar LWAs have accelerated significantly in the previous years, mainly

due to the surge of interest in metamaterials and the advent of metamaterial transmission lines.

Over the past years, metamaterial transmission lines have been proposed as backward, forward, or

backward-forward frequency scanning LWAs [6], [7], [8], [9], [10], [?], [11].

So far, Split Ring Resonators (SRRs) and Complementary Split Ring Resonators (CSRRs) have

been used as key particles in the design of planar left-handed metamaterial (LHM) and Composite

Right and Left Handed (CRLH) transmission lines, which allow leaky wave radiation in left and

composite transmission lines [10], [11] and [12].

In this chapter a simple metamaterial structure based on CSRRs etched in the ground plane

of a microstrip line is proposed as a base of a Leaky Wave Structure. In the following section (see

Section 5.2) the manufacturing prototypes and partial measurements are briefly described.
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5.2 Leaky Wave Radiation CSRR: Partial

Results

In this section the partial results of the proposed leaky wave Metamaterial radiation structure

based on CSRRs are presented.

In Fig. 5.1 the picture of the simulated and measured prototypes is presented. As it is seen, in

order to validate the radiation characteristics of the mentioned prototype, the fabricated prototype

consists in an array of nine complementary split Ring Resonators.

Figure 5.1. Simulated and Manufactured Prototype

Simulated and measured results available up to date are summarized in the table below. These

results confirm the agreement between simulated and mesured data for the beam pointing and

operational bandwidth.

At present the measurement campaign for this prototype is on-going. So far, the results avail-

able show good agreement between simulated and measurement data. Then, the performance of this

structure is promising and it is expected to complete a new publication once all the measurement

results are available.
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Figure 5.2. Simulated and partial measurement results
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6. Conclusions

This final section contains the main conclusions obtained from the work presented in this thesis.

The initial assumptions have been validated through simulation as well as measurement results

from fabricated prototypes. The proposed prototypes may find industrial application and several

research lines remain open as future work.
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6.1 Conclusions and Future lines

This work has been devoted to the design of Metamaterial Antennas based on Complementary

Split Ring Resonators. The main results are summarized as follows:

• On the one hand, CSRR as stand alone radiating element exhibits low radiation efficiencies.

We therefore consider that such radiating elements have a limited scope of applications.

• On the other hand, the outcome from our research work shows that CSRR can have accept-

able radiation characteristics when it is integrated within larger radiating structures. Such

radiating structures concern stand-alone antennas (patch antennas with CSRR embedded),

as well as antenna arrays (i.e.: CSRR arrays) and leaky wave antennas. Moreover, we have

shown that CSRR structures can provide polarization agility features to existing stand-alone

antennas.

• With regard to guided structures, CSRR has been confirmed to be a powerful miniaturization

tool for waveguide filters.

The main results of this research work have been presented and well received in several peer

reviewer journals and international conferences.

As already suggested by the promising results delivered from this research work, there are

several research paths that will soon be culminated as well as new research paths to explore in the

field of CSRR applications.
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