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ABSTRACT  

Hydrological catchment models are useful tools that provide relevant information for the 

understanding of the water cycle at different time and spatial scales. Models are widely used for 

flood prediction and awareness, evaluation of environmental impacts or water resources 

management purposes. They usually incorporate some type of soil moisture modeling and differently 

defined soil layers, since soil moisture is a key component defining the partition of rainfall into 

infiltration and runoff. In order to improve the accuracy of soil moisture simulations, Earth 

observation satellites have emerged as valuable information sources. Some sensors provide surface 

soil moisture products that can be useful for improving streamflow simulation through its integration 

into hydrological models. Observed surface soil moisture data can be integrated into models using 

different types of data assimilation techniques, which include variants of the Kalman Filter, being the 

Ensemble Kalman Filter (EnKF) the most commonly used for hydrological applications.  

This PhD thesis has as its main objective to evaluate whether the assimilation of remotely sensed 

surface soil moisture data into hydrological models can improve their streamflow prediction. This 

general objective includes the evaluation of data assimilation with models of different spatial 

configuration (i.e. lumped, semi-distributed or fully distributed), the use of L-band and C-band 

microwave remote sensing observations (i.e., ASCAT and SMOS) as assimilation data sources, the 

use of SSM downscaled products, the application of different re-scaling techniques used for matching 

observations to simulated surface soil moisture, or the valuation of different observation error 

estimations. This PhD thesis also aims to evaluate TOPMODEL-based Land Surface-Atmosphere 

Transfer Scheme (TOPLATS) as a streamflow simulation tool in Mediterranean catchments. This 

includes performing a sensitivity analysis of the model, with two different methods, and performing 

model calibration by means of an optimization algorithm. 

To achieve these objectives the thesis was structured in three separate studies. On the first study, 

the statistical mode (semi-distributed) of TOPLATS model was applied on three mediterranean 

catchments of different size, topography, land use and climate. A sensitivity analysis with two different 

methods was then performed. The model was afterwards calibrated with an optimization algorithm 

and a multi-start approach. Hourly and daily time-step simulation results were obtained by applying 

conventional and random calibration and validation period selection approaches. On the second 

study, a lumped simple conceptual model (MISDc) and the statistical mode of TOPLATS were used 

for ASCAT surface soil moisture assimilation in order to evaluate its impact on streamflow simulation. 

This study was performed in two catchments of similar size, one located in Italy and the other one in 

Spain. This study also evaluated the influence of the re-scaling technique applied to the observed 
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data, and also evaluated the influence of the error attributed to the observations on the assimilation 

results. The EnKF was the assimilation method applied, and discrete ASCAT observations were 

filtered, transforming them into a Soil Water Index (SWI), prior to their re-scaling. Finally, on the third 

study, the benefits of assimilating a downscaled product, obtained from SMOS and MODIS and with 

1 km spatial resolution, into the fully distributed mode of TOPLATS were evaluated. This study also 

evaluated the influence of assimilating only over specific areas (i.e. excluding from the assimilation 

forested areas or areas with steep relief, where SMOS data quality is expected to be lower). This 

study was performed in a semi-arid catchment located in northern Spain. 

This thesis determined that TOPLATS is a suitable model to simulate streamflow in complex climate 

conditions such as Mediterranean climate catchments. Positive results, in terms of efficiency on 

simulated total volume were achieved in both hourly and daily time-step simulations. These 

significant results were obtained after a detailed sensitivity analysis to identify the most influential 

parameters, and after the application of an intense calibration method based on an optimization 

algorithm search. Some difficulties were found due to different weather variability contained on 

calibration and validation periods in one of the catchments. To overcome this issue, calibration data 

was randomly selected, in such a way that enough wet periods would be contained on it. This 

notoriously improved streamflow simulated volume results. Furthermore, the assimilation of ASCAT 

SSM data into a lumped and into a semi-distributed model improved the streamflow simulation 

accuracy in most of the studied cases. Only on a very well calibrated catchment/model combination 

no improvement was achieved. The best combination of satellite error estimation and re-scaling 

method combinations offered efficiency increases in the remaining cases. Assimilation of a 

downscaled SSM product, derived from SMOS and MODIS also improved distributed modeling of 

streamflow, when the assimilation was performed over cultivated or flat areas. 

Successful application of hydrological catchment models rely on the proper identification of 

influential parameters, the adequate calibration strategy and the adequate calibration data selection. 

Afterwards, SSM remotely sensed observations are a valuable source that can improve streamflow 

simulations in models of different spatial representation of the catchment. This is not a direct and 

simple task, as it depends on the satellite error estimation, on the selected re-scaling technique or 

on the area were assimilation is performed when distributed models are used. Assimilation of 

downscaled products is a promising source to improve models’ soil moisture simulation, which may 

propagate into improved streamflow predictions.  
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RESUMEN  

Los modelos hidrológicos son herramientas de gran utilidad, capaces de aportar información 

para un mejor entendimiento del ciclo hidrológico en sus diferentes escalas, tanto temporales como 

espaciales. Estos modelos son ampliamente utilizados en la predicción de inundaciones, en la 

evaluación de impactos medioambientales o para la adecuada gestión de los recursos hídricos. 

Generalmente incorporan el cálculo de la humedad del suelo en las diferentes capas en las que se 

estructuran, ya que dicha variable es un factor determinante y que condiciona, entre otros aspectos, 

el que el agua procedente de la lluvia se trasforme  en escorrentía o quede retenida en las capas 

del suelo. Los diferentes satélites que actualmente se encargan de observar la superficie terrestre se 

han mostrado como fuentes de información muy valiosa para mejorar la simulación de la humedad 

del suelo ofrecida por los diferentes modelos. En efecto, la observación que de la humedad de la 

capa superficial del suelo llevan a cabo algunos de estos satélites hacen puede ser de gran ayuda 

para la mejora de la predicción de la caudales de los ríos ofrecida por los modelos. La información 

obtenida por los satélites puede ser integrada en los modelos a través de técnicas de asimilación 

de datos, entre las que se incluyen diferentes variantes del Filtro de Kalman, siendo en hidrología 

la más usada la versión ensemble (conjunto) de dicho filtro. 

El objetivo principal de esta tesis es evaluar si la asimilación de datos de humedad superficial 

del suelo obtenidos mediante técnicas de teledetección, en modelos hidrológicos es capaz de 

mejorar la predicción de caudales en los ríos a la salida de las cuencas. Este objetivo general se 

concreta en los siguientes objetivos específicos: 1) evaluar la respuesta de modelos de diferente 

configuración espacial (agregados, semi-distribuidos, distribuidos), a la asimilación de datos, con 

el fin de conseguir una mejora en la simulación de caudales; 2) evaluar la influencia de las 

características de cada cuenca (como tamaño, topografía, clima o usos del suelo) en los resultados 

de la asimilación de datos; 3) evaluar la posible mejora obtenida en la simulación de escorrentía 

mediante la asimilación de datos de sensores como ASCAT o SMOS, que observan diferentes 

frecuencias (banda C y banda L); 4) evaluar la mejora en la predicción de escorrentía al asimilar 

en un modelo distribuido el producto de alta resolución (1-km) desarrollado en el Barcelona Expert 

Center y obtenido a partir de los datos de los satélites SMOS y MODIS; 5) evaluar la influencia que 

las diferentes técnicas de re-escalado de la información observada tienen sobre los resultados de la 

asimilación, y por último; 6) evaluar la influencia que tiene sobre los resultados de la asimilación el 

valor de error de observación atribuido a cada satélite. 
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Un segundo objetivo de esta tesis es la evaluación del modelo TOPLATS como herramienta de 

simulación de caudales en cuencas Mediterráneas, y se concretó en los siguientes objetivos 

específicos: 1) llevar a cabo una revisión bibliográfica en profundidad de los diferentes trabajos 

desarrollados con TOPLATS anteriormente, con especial atención a aquellos en los que se trabajó 

en la calibración del modelo y en el análisis de sus diferentes parámetros; 2) desarrollar un análisis 

de sensibilidad muy completo del modelo, en el que se analice la sensibilidad de la escorrentía 

superficial, el flujo base, la evapotranspiración, la humedad del suelo y de la eficiencia enfocada a 

los diferentes rangos de caudal, a diferentes parámetros; 3) comparar dos métodos de análisis de 

sensibilidad de diferente complejidad y costo computacional; 4) evaluar la efectividad de un 

algoritmo de optimización como herramienta de calibración del modelo aplicado a diferentes 

escalas temporales; 5) comparar la influencia que tiene sobre la calibración de un modelo la 

selección de periodos de calibración continuos o discontinuos seleccionados en función  de la 

variabilidad climática que contienen; y 6) evaluar la eficiencia del modelo para predecir 

correctamente los caudales simulados en cuencas mediterráneas de diferente tamaño y diferentes 

condiciones climáticas, tanto cuando el modelo es aplicado en paso horario como diario. 

Esta tesis se estructura en tres estudios separados mediante los que se pretendía alcanzar los 

objetivos señalados. En el primer estudio se aplicó el modo estadístico, que es una configuración 

semi-distribuida, del modelo TOPLATS. Este modelo está basado en el modelo TOPMODEL, al que 

se le añadió un balance de agua y energía entre el suelo, la vegetación y la atmosfera. TOPLATS 

se aplicó en tres cuencas navarras de diferente tamaño, topografía y climatología, llevando a cabo 

previamente un análisis de sensibilidad del mismo mediante dos técnicas ampliamente utilizadas en 

hidrología. Una vez seleccionados los parámetros del modelo con mayor impacto sobre los 

resultados, el modelo fue calibrado mediante un algoritmo de optimización, iniciando  la búsqueda 

del algoritmo desde diferentes valores iniciales de los parámetros a calibrar. Se obtuvieron 

resultados óptimos tanto al calibrar el modelo en paso horario, como diario, y se utilizaron periodos 

de calibración continuos y discontinuos para ello. 

El segundo estudio consistió en la asimilación de datos del satélite ASCAT en el modelo 

agregado y conceptual MISDc, y en el modo semi-distribuido de TOPLATS. El objetivo de este 

estudio era explorar el efecto de esta asimilación en la predicción de la escorrentía. Los modelos se 

aplicaron en dos cuencas de similar tamaño, una en Italia y la otra en Navarra (España). En este 

estudio se analizó también el impacto sobre los resultados de la asimilación del uso de diferentes 

técnicas de re-escalado de los datos observados por el satélite. Finalmente se analizó la influencia 

sobre los resultaos del error en la observación atribuido al satélite. En este estudio se utilizó como 

técnica de asimilación el Filtro de Kalman, en su modo ensemble. 
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Por último, en el tercer trabajo, se estudiaron los efectos sobre la simulación de escorrentía de  

la asimilación de un producto de humedad superficial del suelo de alta resolución (1-km), obtenido 

a partir de los satélites SMOS y MODIS. La asimilación se efectuó sobre la simulación del modelo 

TOPLATS, configurado en modos distribuido con celdas de 1 km. En este estudio también se exploró 

el efecto de considerar la asimilación de datos únicamente en aquellas celdas ocupadas por suelos 

agrícolas (es decir, excluyendo zonas boscosas), o situadas sobre áreas de baja pendiente. De esta 

forma quedaban excluidas de la asimilación zonas de altas pendientes o cubiertas por grandes 

masas de vegetación, donde la observación del satélite es de peor calidad. Este estudio se desarrolló 

en la cuenca del rio Cidacos, en la zona media de Navarra (zona norte de España). 

En general, los resultados obtenidos nos permiten concluir que hay un importante potencial para 

la mejora de la simulación de caudales mediante modelos agregados, semi-distribuidos o 

distribuidos, a través de la asimilación de diferentes productos de humedad del suelo obtenidos 

mediante teledetección. En cualquier caso, no se trata de un proceso que pueda ser aplicado de 

forma sencilla y directa en cualquier cuenca, modelo o con cualquier producto de humedad. Este 

trabajo ha comprobado que la utilización de una u otra técnica para re-escalar los datos 

observados, o la consideración de diferentes errores atribuidos al satélite, tienen una gran 

importancia sobre los resultados obtenidos. Del mismo modo, las características de cada cuenca 

tienen una gran influencia sobre la magnitud de la posible mejora en le predicción de escorrentía. 

Por otro lado, esta tesis ha conseguido aplicar con éxito el modelo TOPLATS en cuencas 

mediterráneas de diferente tamaño, topografía y pluviometría. Se han obtenido resultados notables 

en la mayoría de las cuencas evaluadas, tanto en modelado de paso horario como diario. También 

ha sido capaz de identificar los parámetros con mayor influencia en los diferentes procesos 

hidrológicos modelados por TOPLATS. Por último, se ha constatado la necesidad de desarrollar la 

calibración de modelos hidrológicos en periodos que incluyan una suficiente variabilidad 

climatológica, en especial referido a la necesidad de contener periodos húmedos. 
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CHAPTER 1.  INTRODUCTION  

1.1. STATE OF THE ART 

1.1.1. Hydrological modeling 

Hydrological catchment models are powerful tools that are currently applied on a wide range of 

research and decision-making areas, including environmental protection and resource management 

(Singh and Woolhiser, 2002). These models provide streamflow estimations, useful to different 

stakeholders including, among others, those working on: water resources management, civil 

engineering operations, climate change analysis, or bio-diversity conservation requirements 

(Christensen et al., 2004; Hayashi et al., 2008; Richter and Richter, 2000; Rogger et al., 2012). 

The intense development in the field of hydrological simulation over the last decades offers today 

researchers worldwide dozens of models capable of simulating not only streamflow level but also 

other related processes, at different time and spatial scales (e.g., Burnash et al. 1973; Chiew and 

McMahon 2002; Brocca et al. 2011a).  

Catchment models are usually divided into conceptual and physically–based depending on their 

underlying structure and the level of simplification of reality they assume. On the latter type, models 

are more complex, with parameters that are measurable (in principle), have specific units, and are 

applied on equations representing different hydrological processes (Beven, 1989). Physically based 

models are intended to minimize the need for calibration by building on parameters, which in 

principle are measurable. However, the parameters are often difficult to determine at the desired 

scale and in consequence the physical basis of the models can be debated and some even argue 

that distributed and physically based models are in reality just complex conceptual models (Stisen et 

al., 2008). Indeed, it is common to find models that combine both physical and conceptual 

approaches and parameterization. 

Models can also be classified as lumped or fully distributed (Elsanabary and Gan, 2015). Lumped 

models simplify the description of a spatially distributed system by representing the catchment as a 
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discrete entity characterized by bulk parameters representing mean catchment response (Li et al., 

2015). On the other hand, spatially distributed approaches subdivide the catchment into single 

elements (grids of cells or subcatchments), considering the spatial variability within the catchment. 

Distributed hydrological models are commonly physically based and require large amounts of high 

resolution data (Chaney et al., 2015). These different strategies (i.e., conceptual-physically based, 

lumped-distributed) can result in models with substantial differences in terms of the complexity of 

their structure, their level of parameterization, or their input requirements (Demaria et al., 2007).  

The principle of parsimony recommends that simple models that require a lower number of 

parameters and input variables are preferable than more complex ones (Jakeman and Hornberger, 

1993; Nash and Sutcliffe, 1970), because the former can be more easily generalized, are 

computationally more efficient, more robust and less prone to overfitting (Kirchner, 2009; Perrin et 

al., 2001). This principle needs to be taken into account, along with model goodness-of-fit statistics 

(Moriasi et al., 2007; Ritter and Muñoz-Carpena, 2013), when selecting a model for a particular 

application. It is also important to bear in mind that some models might be more suitable for certain 

specific catchment characteristics than others, for instance depending on the climatology or 

dominant runoff types in the catchment of interest (Alvarez-Garreton et al., 2013). 

Among the many different hydrological models that exist, there has been a significant 

development of catchment models based on the TOPMODEL concept (Beven and Kirkby, 1979). 

From this initial conceptualization, Famiglietti and Wood (1994), started the development of a full 

hydrological catchment model that incorporated a separate computation of water and energy 

balances. This model was called TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS). 

TOPLATS can be run at any user-specified time step, from daily (Bormann et al., 2007) to hourly 

(Loaiza-Usuga and Pauwels, 2008), or even on less than a minute time-step (Seuffert et al., 2002). 

While this permits the model to be applied for an extensive range of purposes, it can also affect 

model performance, especially in terms of runoff and soil moisture processes simulation. TOPLATS 

has been applied on a wide range of locations worldwide, but its use on Mediterranean catchments 
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was only reported in Loaiza-Usuga and Pauwels (2008) and in Loaiza-Usuga and Poch (2009). 

Hydrological processes in the Mediterranean environment are largely variable, both in time and 

space, due to the high variability of rainfall regime, topography, soil and land use. In this context, 

distributed hydrological models may provide a valid support in water management, as they account 

for the spatial variability of the catchment characteristics (Milella et al., 2012). 

So, even if models can easily be applied on different conditions (in terms of climate, catchment 

size or time-step), achieving the best simulation results depends largely on the users’ knowledge of 

model structure and suitability, but also on the available tools to maximize the accuracy of the results 

(Khakbaz et al., 2012). Thus, achieving optimal modelled streamflow values requires, first, detailed 

sensitivity analyses to provide the modeler with objective criteria to identify the parameters to include 

on the calibration procedure and next, calibration and validation strategies to find the parameter 

values that optimize model results (Ritter and Muñoz-Carpena, 2013; Saltelli et al., 2006; Van 

Werkhoven et al., 2009). Normally, simple models can be more easily evaluated using sensitivity 

analysis or uncertainty assessment tools (Moradkhani et al., 2005a), and also more easily optimized 

through calibration and validation approaches (Vrugt et al., 2003), since their number of parameters 

is lower and are thus less affected by issues such as parameter interdependency and equifinality 

(Beven, 2006). Ultimately, model performance and optimal parameter values will largely depend 

on: catchment size, rainfall pattern and climate conditions, modeling time-scale, and the suitability 

of model structure to all of them (Demaria et al., 2007). 

 

1.1.1.1. Sensitivity analysis 

Identifying optimal parameter values on complex hydrological models is not an easy task. 

Different sources of uncertainty limit users’ capability to reach this objective. Those include: 

observation errors, model formulations and the complexity added by over-parameterization and 

nonlinearity on parameter interactions. Even on physically based models, where some parameters 

can be, in principle, measured, they require further investigation to adapt optimal values to 
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catchment scale performance. As a result of these difficulties, Sensitivity Analysis techniques emerged 

as complementary tools to hydrological models. 

Sensitivity Analysis (SA) techniques can identify influential parameters, i.e. those whose uncertainty 

reduction will have the most significant impact on improving model performance (Gan et al., 2014) 

and provide model users with useful information to reduce calibration dimensionality (Garambois et 

al., 2013). If some insensitive parameters are identified through SA, they can be fixed reasonably at 

given values over their variation range. Thus, reducing calibration computational cost without 

decreasing model performance (Ritter and Muñoz-Carpena, 2013). SA methods usually require a 

large number of model runs in order to cover the whole parameter space and all parameter value 

combinations. In order to minimize the computational effort on this task, statistical parameter 

distributions have been developed and tested (Wagener and Kollat, 2007). 

 Sun et al. (2012) classified SA methods into three types: (1) local, (2) screening and (3) global, 

depending on the way parameters were perturbed. Local methods quantify the percentage change 

of outputs due to the change of model inputs relative to their baseline (nominal) values (Tang et al., 

2007). These methods, also referred to as One-at-A-Time (OAT), evaluate the response of output 

variables to fractional changes in one single input parameter and are therefore less efficient on 

complex models. Even on models where parameters are independent, the combination of single-

parameter influences can make local methods to fail on capturing model behavior due to non-

linearity of model response (Norton, 2009). Screening methods also analyze the model response to 

a change in the inputs by varying one parameter at a time, but they provide a global sensitivity 

measure, since different elementary effects (EE) for each parameter are calculated and averaged 

(Campolongo et al., 2011). They are commonly applied to cases where a large number of 

parameters needs to be analyzed, or to computationally expensive models where more demanding 

quantitative techniques might lead to extended simulation times, because they require a smaller 

number of model runs. They also offer a suitable option to analyze a larger number of parameters 

in complex models, as a preliminary test, to select a reduced number of them to be studied with 
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more complex global SA techniques. Finally, global methods, vary simultaneously all studied 

parameters within their defined parameter space, thus providing information on both individual 

sensitivity and parameter interaction degrees (Saltelli et al., 2000). Global methods look at the entire 

input parameters distribution, using specifically designed Monte Carlo sampling techniques of 

various levels of sophistication, but their application to computationally demanding models might 

be constrained due to the large number of model runs required (Song et al., 2015). Global methods 

are recognized as appropriate for hydrological modeling, as they have to evaluate nonlinear 

processes and  high parameter and data uncertainty due to spatial heterogeneity (Spear et al., 1994). 

Global methods include the following groups (Tang et al., 2007): (1) Regional SA (Young, 1978), 

(2) Bayesian SA (Oakley and O’Hagan, 2004), (3) regression based approaches (Spear et al., 

1994), and (4) variance decomposition methods (Saltelli et al., 2000). Screening and global SA 

methods include two steps:  first, a strategy is used to sample the parameter space (i.e. Design of 

experiment, DoE) and next a numerical measure is used to quantify the impacts of sampled 

parameters on model output (Wagener and Kollat, 2007). Some of the most commonly used SA 

techniques include (to name a few) Morris method (MoM) (Morris, 1991), the Generalized Likelihood 

Uncertainty Estimation (GLUE) method (Beven and Binley, 1992) and Sobol method (SoM) (Sobol, 

1993). Different variants of these already classical techniques have been proposed more recently 

(e.g., Saltelli et al. (2010) or Gan et al. (2014)). 

 

1.1.1.2. Model calibration and optimization algorithms 

Once the most sensitive parameters of a model have been identified through SA procedures, they 

need to be calibrated, i.e. estimated through an inverse method so that observed and predicted 

output values are in agreement (Zhang et al., 2009). Therefore, successful application of any 

hydrological model depends on how accurately the model is calibrated (Duan et al., 1992). Although 

model calibration used to be a labor intense task that depended largely on modeler knowledge and 

experience, nowadays computers allow automatic calibration techniques. These are commonly 

optimization algorithms that search for a set of parameters values that minimize the model prediction 
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error relative to available measured data for the system being modeled (Tolson and Shoemaker, 

2007).  

Gupta et al. (1998) pointed out that automatic calibration success depends largely on three 

aspects: 1) adequate calibration data (mainly in terms of data length and climate variability 

contained), 2) the objective function (maximum likelihood functions for measuring the "closeness" of 

the model and the data), and 3) the selected optimization algorithm. However, some studies reported 

difficulties in finding unique (global) optimum parameter values due to parameter non-uniqueness 

or equifinality, parameter correlation, or other limitations (Duan et al., 1992). Other challenges of 

parameter optimization are (Vrugt et al., 2003): the existence of multiple local optima with both 

small and large domains of attraction (a sub-region of the parameter space surrounding a local 

minimum), discontinuous first derivatives and curving multidimensional ridges. Recently, optimization 

algorithms started to shift from simple to multiple objective optimizations (Yapo et al., 1998; Ye et 

al., 2014). 

Calibration of hydrological models for areas with irregular rainfall patterns, such as 

Mediterranean ones, implies an extra effort in terms of model adaptability and data availability 

(Loaiza-Usuga and Pauwels, 2008). Several authors (Gan and Biftu, 1996; Li et al., 2010; Perrin et 

al., 2007) noted that arid catchments were generally more difficult to model than humid ones due 

to the complexity and variability of hydrological processes there. This can be related to model’s 

response to intense rainfall events and to large inter-annual rainfall variability.  

Conventional continuous calibration and validation period selection (i.e., selection of a 

calibration period of n years, followed by a validation period of m years) may be a limitation when 

large differences on climate variables are found among both periods. Thus, alternative (random and 

discontinuous) period selection methods that lead to a similar calibration and validation 

climatological conditions and  to a minimum of high flows included on the calibration period are 

worth being explored (Kim and Kaluarachchi, 2009). As stated by Sorooshian and Gupta, (1983) it 

is not the length of the data series used but the information contained in it and the efficiency with 
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which that information is extracted that are important. Random sampling approaches are expected 

to overcome different difficulties, which could include: 1) data availability discontinuity (i.e. Kim and 

Kaluarachchi, 2009), 2) lack of data series long enough to achieve proper calibration and validation 

results, or 3) large climate variability between calibration and validation periods. 

Optimization algorithms used on hydrological model calibration are divided into local (Tolson 

and Shoemaker, 2007) and global search methods (Duan et al., 1993). One of the first optimization 

algorithms was proposed by Powell (1964), and was applied for the first time to hydrological 

modeling by Kobayashi and Maruyama (1976). This algorithm is a local, derivative-free method 

where one parameter value is changed at-a-time. Chen et al. (2005) applied a modified multi-start 

version of the Powell method for model calibration, which is also implemented on this thesis.  

 

1.1.2. Soil moisture remote sensing  

A key issue affecting the efficiency of model predictions, regardless of the particular model type, 

is that they rely strongly on the optimal simulation of soil moisture conditions within the modeled 

catchment (Crow and Ryu, 2009). Surface soil moisture (SSM) is an important variable in the 

hydrological cycle that determines the partitioning of incoming water into infiltration and runoff, thus 

controlling runoff and baseflow generation from the soil profile and determining river flows and 

flooding (Han et al., 2012). SSM also influences the energy balance at the land-atmosphere 

interface, and thus controls the partition between sensible and latent heat flux. As such, SSM may 

also impact atmospheric processes, such as temperature, cloud cover and precipitation (Tuttle and 

Salvucci, 2016), with consequences in weather dynamics and climate processes across several 

scales, from local to global (Seneviratne et al., 2010). SSM has been recognized as a key variable 

for making operational weather forecasts both at the short (Cassardo et al., 2002) and long term 

(Berg and Mulroy, 2006), in particular over mid latitudes in the Northern Hemisphere and during 

spring and summer (Koster et al., 2010, 2004). SSM also impacts biogeochemical processes, such 

as C and N mineralization, with consequences in the C and N cycle (Borken and Matzner, 2009). 
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Finally, SSM also influences the water available for plants on the soil profile, and consequently is a 

key factor for the growth and development of crops, and thus for an accurate forecast of agricultural 

drought and food security (Heim Jr., 2002).  

Currently, quantitative information on SSM can be obtained through in situ measurements 

(Dobriyal et al., 2012) and remotely sensed observations (Jeu et al., 2008; Li et al., 2016). In situ 

measurements can be carried out using either direct or indirect methods. The direct, or thermo-

gravimetric, method consists of collecting soil samples and evaluating its moisture content in the 

laboratory through weighting and drying (Hillel, 1998). Normally, moisture needs to be quantified 

in volumetric units, and this requires a known soil volume to be collected, what is not always easy to 

do. Furthermore, the definition of dry soil (duration of drying and temperature) and eventual 

experimental errors add uncertainty to this technique, not to mention the inconvenience of being 

destructive and very time consuming. Nevertheless, the thermo-gravimetric method is still considered 

the most accurate approach for in situ SSM measurement, and it is commonly used as a reference 

to calibrate other methods against. 

Indirect methods measure soil properties that can be related back to soil moisture, namely 

dielectric constant, capacitance, neutron thermalization or soil suction (Dobriyal et al., 2012; 

Muñoz-Carpena et al., 2004). These properties are normally sensed using probes that are inserted 

in the soil and provide undisturbed and repeatable measurements of a small soil volume around the 

probe. Some of these methods have been already used for a long time (e.g., Time Domain 

Reflectometry and Capacitance sensors) (Topp et al., 1980), and proven to be sufficiently accurate 

and reliable for most applications once correctly calibrated (Bogena et al., 2017). Besides, their 

costs have substantially decreased in the last years and therefore they are of widespread use. 

However, along with calibration issues (Evett et al., 2012), the main drawback of this technology is 

that point measurements only reflect the wetness status of a very small soil volume, and given the 

large spatial variability of SSM it is difficult to upscale these measurements to larger areas. Recent 

advances in telemetry and data transmission technologies have enabled the integration of many in 
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situ probes into sensor networks, providing more reliable areal estimates (Dorigo et al., 2011). Some 

of these networks, e.g., Soil Climate Analysis Network (SCAN) (Schaefer et al., 2007) or Red de 

Medidas de Humedad del Suelo (REMEDHUS) (Martínez-Fernández and Ceballos, 2003), have 

already been operational for a considerable period of time (~20 years), providing extremely valuable 

information on spatial and temporal SSM trends and their response to long term processes, such as 

climate change. A global map of ground-based soil moisture testbeds and field campaigns was 

recently presented by Mohanty et al. (2017). 

Advances in sensor technologies have enabled the development of indirect approaches that sense 

the SSM state of larger areas. For instance, Global Navigation Satellite Signal reflectometry (GNSS-

R) (Rodriguez-Alvarez et al., 2009), Cosmic-ray neutron reflection (Zreda et al., 2012) and fiber-

optics (Sayde et al., 2010) are very promising techniques that provide areal measurements of 

different sizes. Although very recent, some of these technologies are already being used in 

operational research networks (Shuttleworth et al., 2010), and will surely play an important role in 

the future. 

At present, the main limitation of in situ SSM measurement is the difficult generalization of point 

based measurements to larger areas, mainly due to the high spatial variability of meteorological 

forcings, soil hydraulic properties and other land features (e.g., topography, vegetation) that 

influence SSM distribution and dynamics (Ochsner et al., 2013). Some interesting research has been 

done on the understanding of spatial patterns and temporal stability of SSM and their relation with 

precipitation and land features (Grayson et al., 1997). Vachaud et al. (1985) prosed the temporal 

stability analysis, where SSM time series acquired at different sampling locations on a catchment 

were compared with the catchment average over time in order to detect sites that were normally 

wetter or dryer than the average (using the mean relative difference indicator), and also to evaluate 

whether wetness states were stable across time or instable and strongly fluctuating due to fast wetting 

and drying cycles (using the standard deviation of the relative difference). This approach has been 

widely used afterwards identifying complex patterns and dynamics in response to multiple factors, 

including seasonality, wetting or drying cycles, topographical position and morphology of the 
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catchment, soil properties and vegetation (e.g. Brocca et al., 2009c; Jacobs et al., 2004; Mohanty 

and Skaggs, 2001; Rosenbaum et al., 2012).  

The development of satellite remote sensing over the past decades enables the estimation of 

different land surface variables over spatial areas at a range of scales (from regional to global) and 

with a given periodicity (Fang and Lakshmi, 2014), some of which can be of large interest for 

hydrology (McCabe et al., 2017). Currently, quantitative information on SSM can be best obtained 

from passive and active microwave instruments (Mohanty et al., 2017; Petropoulos et al., 2015), 

since microwave emission and scattering depend on the dielectric constant of the soil surface, and 

besides these instruments are not affected by cloud cover nor atmospheric conditions and do not 

required solar illumination to operate. Existing sensors differ in their design, sensing mode (active or 

passive), frequency, polarization and the retrieval algorithm implemented (Rötzer et al., 2014). But 

all of them operate in the low frequency microwave region from 1 to 10 GHz (Albergel et al., 2012). 

The actual frequency they use impacts the depth of the sensed SSM layer, with L-band sensors 

reaching the top 5 cm of the soil column and C- and X-bands even less than that (~2 cm) (Rötzer et 

al., 2014). On the other hand, C- and X- bands can normally provide higher spatial resolution data 

and are less affected by radiofrequency interferences.  

Passive sensors (radiometers) measure the microwave emission of soils (brightness temperature) 

and are less sensitive to the effects of surface roughness and vegetation structure than active ones 

(Rötzer et al., 2014). Different passive microwave sensors have been observing the Earth for the last 

decades, providing a quasi-continuous global dataset since 1978 (Liu et al., 2012). Although initially 

designed for ocean wind estimations, scatterometers are the active microwave sensors mostly used 

for SSM retrieval. Scatterometers transmit a microwave pulse towards the Earth surface and measure 

the echo that returns back (i.e., backscatter). Microwave backscatter is also dependent on the 

dielectric properties of the soil surface (and hence, SSM) but is more strongly influenced by disturbing 

factors, such as vegetation, surface roughness or topography than brightness temperature. Yet, 
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retrieval algorithms exist that provide operational SSM estimates globally, except for areas of dense 

vegetation.  

Radiometers and scatterometers provide observations with very similar spatial and temporal 

resolutions, with coarse spatial detail (~20 km) but short revisit times (~daily). At present four 

operational SSM products exist (Table 1.1). But earlier sensors provided continuous global datasets 

since 1978 (radiometers) and 1991 (scatterometers). Among these, the Advanced Scatterometer 

(ASCAT) was the first to provide an operational, near real-time (NRT) Level 2 SSM product (Albergel 

et al., 2012). It is also important to mention the recent initiative by the European Space Agency 

Climate Change Initiative (ESA-CCI) SSM product, which is a reanalyzed SSM product based on 

merging six microwave products that provides global data since 1978 (Liu et al., 2011). 

 

Table 1.1. Main remote sensing surface soil moisture observing missions 

Sensor Type Band 
Available 

since 

Spatial 
resolution 

(km) 

Revisit time 
(d) 

Reference 

ASCAT Scatterometer C 2007/01 25 1 
(Wagner et 
al., 2013) 

SMOS Radiometer L 2010/01 36 2 
(Kerr et al., 

2012) 

AMSR2 Radiometer C, X 2012/07 50 1 
(Kim et al., 

2015) 

SMAP Radiometer L 2015/04 36 2 
(Entekhabi 

et al., 2010) 

 

 The coarse spatial resolution of these SSM products remains a challenge for certain applications 

that require higher spatial detail. Advances in sensor technology will probably improve this in the 

future, but meanwhile significant progress is being made on the development of downscaling 

algorithms that enhance the spatial resolution of these products by using complementary higher 

resolution datasets. Optical multispectral sensors can provide complementary information related to 

soil moisture patterns at higher spatial resolutions. Observations in the visible and near-infrared (NIR) 

bands allow for the computation of vegetation indices (VI) that are indirectly related to soil moisture 

through vegetation condition status (Lobell and Asner, 2002). On the other hand, thermal infrared 
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(TIR) observations measure the surface radiant temperature (TS) which is partly dependent on SSM  

(Quattrochi and Luvall, 1999). When TS is plotted against VI a scatterplot of triangular or trapezoidal 

shape emerges. This triangle has been the base for the derivation of different indices related to SSM 

and vegetation condition (e.g., Sandholt et al., 2002), and also for developing methods to estimate 

SSM and ET (Carlson, 2007; Petropoulos et al., 2009). From this concept, different TS/VI based SSM 

retrieval methods have been proposed ranging from simple empirical relations to more physically 

based algorithms (Petropoulos et al., 2009).  

Following this complementarity between microwave and optical sensors, Piles et al. (2011) 

proposed a downscaling strategy to improve the spatial resolution of SMOS observations from 40 

km to 1 km by using MODIS derived NDVI and TS values. Their approach was based on a second 

order polynomial equation to estimate SSM from SMOS normalized brightness temperature and 

MODIS normalized surface temperature and fractional vegetation cover (obtained from NDVI as in 

Gutman and Ignatov, 1998). The empirical coefficients of this equation were empirically fitted at 40 

km resolution using aggregated MODIS data, and then the equation was applied at the original 

MODIS resolution to obtain SSM at 1 km resolution. Their results showed that the SSM variability 

was effectively captured in the downscaled product without a significant degradation of the root 

mean square error. This 1 km SMOS/MODIS SSM product was later validated in separate studies 

(Piles et al., 2014; Sánchez et al., 2012) with successful results. Furthermore, this algorithm was 

implemented to provide an operational fine-scale level 4 SSM product at the SMOS Barcelona Expert 

Center (BEC) for the Iberian Peninsula, South Africa and Ghana (SMOS-BEC Team, 2016). The 

topic of coarse scale SSM downscaling is a very active one, with new algorithms and improvements 

being proposed very recently (Wu et al., 2017). Therefore, it is expected that in the near future more 

and more downscaled level 4 products will be operationally released by the major space agencies. 

Another approach to circumvent the coarse spatial resolution of radiometer or scatterometer 

based operational SSM products is to resort to high resolution Synthetic Aperture Radar (SAR) 

observations, with spatial resolutions of 10-100 m. So far, the main drawback of SSM estimation 
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from SAR data has been related to their poor revisit time (typically ~30 days) and the stronger 

influence at this scale of disturbing factors, such as soil roughness and vegetation, that limited the 

development of robust retrieval algorithms ready to use operationally (Kornelsen and Coulibaly, 

2013; Verhoest et al., 2008). Today, with the advent of the satellite constellation concept (e.g., 

Sentinel-1, Radarsat Constellation Mission) a new era has recently started with improved revisit times 

of only several days (3-6 days for Sentinel-1 over European mainland) at spatial resolutions of 10-

20 m. This temporal resolution is now much more attractive for hydrological applications, and what 

is more, enables the development of simplified SSM retrieval algorithms based on change detection 

techniques or time series analysis (Balenzano et al., 2011; Paloscia et al., 2013), based on the 

assumption that disturbing factors (mainly surface roughness and vegetation) change slower than 

SSM does, so short-term backscatter variations can be attributed to SSM dynamics. These methods 

have still to be tested and validated, so that high resolution SSM products are operationally available. 

 

1.1.3. Data assimilation 

1.1.3.1. General description of methods and their application 

As explained in the previous section remote sensing can be considered more and more to be a 

viable source of SSM information. However, any remotely sensed SSM product has some limitations 

that need to be recognized. First, remote sensing systems provide observations at a given sampling 

interval (i.e., revisit time), and although this interval can be as short as 1 or few days, some 

hydrological applications require temporally continuous information (e.g., flash floods). More 

importantly, microwave sensors provide at best information of the top 5 cm of the soil profile, where 

most hydrological and agricultural applications require root zone information (RZSM). Not to 

mention the limitations of some of the retrieval algorithms used, with their various issues regarding 

simplifications, assumptions, parameters and validity conditions. Therefore, the usefulness of 

remotely sensed SSM products alone is limited, but this limitations can be largely overcome if 
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combined adequately with hydrological or land surface models. If the potentialities of both 

techniques are exploited, soil moisture and its variations in time and with depth can be estimated. 

SSM Data assimilation (SSM-DA) techniques merge observations (obtained either through remote 

sensing or in situ sensors) with continuous information provided by models to generate an improved 

product of soil moisture (Houser et al., 1998). SSM-DA techniques correct SSM model predictions 

towards the observations, by taking into account the uncertainty of both sources of information. Thus, 

SSM-DA is expected to provide a more realistic catchment simulation, with better state variable 

modelization and leading to enhanced model output predictions (e.g., streamflow, ET, etc.). 

SSM-DA studies have shown to effectively update moisture states at deeper soil layers and improve 

RZSM estimates when compared to ground observations used as reference (e.g., Crow et al. (2008); 

Draper et al. (2012); Renzullo et al. (2014); Sabater et al. (2007)). These enhancements are 

normally translated into more accurate streamflow forecasts, mostly due an improved 

characterization of antecedent moisture conditions before rainfall events (Alvarez-Garreton et al., 

2015, 2014, 2013, Brocca et al., 2012, 2010b; Chen et al., 2014; Crow and Reichle, 2008; 

Francois et al., 2003; Lievens et al., 2015; Wanders et al., 2014b). However, some studies reported 

none or minor improvements in streamflow estimations after SSM-DA (Han et al., 2012; Lievens et 

al., 2016), as explained in the next paragraphs, different options regarding the data preprocessing 

and SSM-DA set up might partly explain these differences. A further detailed review of SSM-DA 

studies for improved flood forecasting was reported in Li et al. (2016). 

Data assimilation algorithms can be classified into hard updating (direct insertion or initialization), 

statistical correction, nudging, sequential assimilation, and variational assimilation (Li et al., 2016). 

DA comprises different techniques applied to hydrology and other fields of science over a period of 

decades (Rafieeinasab et al., 2014), such as variational assimilation (VAR) (Jazwinski, 1970), particle 

filtering (PF) (Gordon et al., 1993), or Kalman filtering (KF) (Kalman, 1960). Among them, the 

sequential type KF (Zhang et al., 2015) and its variants are the DA methods most commonly used 

in SSM−DA. Here model states are corrected towards observations by weighting the strength of the 
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correction based on the relative uncertainty of model and observations, using a factor known as the 

Kalman Gain (Trudel et al., 2014). Several variants were developed from the original KF method to 

adapt it to different systems. For instance, the extended Kalman filter (EKF) (Maybeck and Siouris, 

1980), which involved linearizing the model dynamics using the first-order Taylor series 

approximation, was proposed for nonlinear systems. Furthermore, the ensemble Kalman filter (EnKF) 

(Evensen, 1994) was developed to address nonlinear model dynamics without linearizing model 

equations (Moradkhani et al., 2005b). The EnKF has been frequently used to assimilate observations 

into hydrological models because it is extremely flexible in treating model and parameter errors, it is 

well-suited to highly dimensional nonlinear systems (Wanders et al., 2014b) and is computationally 

affordable and easy to implement (Weerts and El Serafy, 2006).  

The EnKF propagates an ensemble of model realizations generated by perturbing model input 

values (meteorological forcing and input parameters) through time. The error background 

covariance matrix is then estimated from the ensemble statistics (Trudel et al., 2014),  where the 

probability density of the model states is represented by an ensemble where the mean is the best 

estimate (Gaussian assumption), and the ensemble spread defines the error variance (Xu et al., 

2015). The estimation and propagation of the often large covariance matrices is the most 

computationally demanding process of EnKF, and makes this DA technique less computationally 

efficient than variational methods (Reichle et al., 2001).  

The added value of EnKF DA strongly depends on the adequate representation of model and 

observation uncertainties (Reichle et al., 2008). In particular, an incorrect estimation of model error 

is expected to translate into inaccuracies in the DA outputs (Crow and Van Loon, 2006). Normally, 

input parameter values are perturbed by adding a simple additive noise (Massari et al., 2015), while 

precipitation forcing is perturbed using multiplicative error models (Chen et al., 2011; Reichle et al., 

2007). However, an adequate perturbation of precipitation forcing is particularly difficult to achieve, 

since precipitation error characterization depends on factors such as temporal and spatial error 

correlations, missed rain events, etc. that often show strong scale effects (Hossain and Anagnostou, 

2006; Maggioni et al., 2011). Nevertheless, soil moisture was found not to be very sensitive to the 
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complexity of the rainfall error model implemented and only slights improvements were obtained 

when more complex rainfall error models were implemented (Maggioni et al., 2012). This could be 

due to the dissipative and nonlinear nature of soil moisture dynamics (Maggioni and Houser, 2017). 

The perturbations added to the meteorological forcing and model parameters need to be tuned, so 

that the obtained ensemble adequately represents model uncertainty, i.e. the ensemble is meaningful 

(Matgen et al., 2012a). For this, the ensemble mean has to differ substantially from the observed 

time series, while maintaining the latter statistically undistinguishable from a member of the ensemble 

(De Lannoy et al., 2006). That is, for an ensemble to be meaningful, its bounds need to capture the 

observed trend, but also this observed trend needs to be significantly different than the ensemble 

mean. To verify this, the ensemble spread, its skill and its mean square error need to be evaluated 

(De Lannoy et al., 2006). 

The observation error assumed for SSM products also has a strong influence on SSM−DA results, 

and its magnitude needs to be adjusted to each specific catchment and model condition (Massari et 

al., 2015). Although operational SSM products have a nominal observation error, this value may 

vary largely depending on the area and daily conditions of observation (Albergel et al., 2009; 

Bhimala and Goswami, 2015; Brocca et al., 2010a; Hahn et al., 2012; Leroux et al., 2014; Paulik 

et al., 2014). For instance, the ASCAT−SSM product has already been validated over several 

extensively instrumented test sites located in different climatic regions with different land cover 

(Wagner et al., 2013). Validation studies found root mean square error (RMSE) values below 0.04 

m3 m-3 (Matgen et al., 2012b; Wagner et al., 2013), which correspond with the accuracy goal of 

both the SMOS and SMAP missions. Using this error estimation as a reference, unless a detailed 

error characterization is available for a particular site, the observation error rate should be best 

optimized (Massari et al., 2015). 

One of the main challenges faced by SSM−DA is that model simulations and satellite retrievals 

often exhibit differences in SSM patterns, mainly in terms of different time series mean values and 

variation ranges (Chen et al., 2011). These have mostly been attributed to the coarse spatial 
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resolution and  shallow penetration depth of the microwave observations (Lievens et al., 2015). Thus, 

prior to DA, any biases or systematic differences between model simulations and SSM observations 

need to be mitigated through re-scaling techniques (RTs), so that these representativeness issues are 

solved (Lievens et al., 2016). Thus, the usual approach is to re-scale the observations to the model 

response and only take advantage of the resulting SSM time-series in terms of variability (not absolute 

values) (Kumar et al., 2012). Re-scaling strongly affects the outcome of SSM−DA, and a number of 

techniques have been proposed in the last few years, constituting a very active field of research 

(Alvarez-Garreton et al., 2014; Paulik et al., 2014; Ryu et al., 2009; Wanders et al., 2012; Xu et 

al., 2015).  

 In the few last years, SSM−DA techniques have been applied to catchments of contrasting rainfall 

regimens, ranging from semi-arid (<400 mm/year) (Alvarez-Garreton et al., 2015, 2014; Lievens 

et al., 2015) to intermediate (Brocca et al., 2012) or humid (> 1000 mm/year) (Brocca et al., 

2010a). In addition, different model types have been used for SSM−DA, ranging from simple 

lumped conceptual models (Aubert et al., 2003; Francois et al., 2003; Brocca et al., 2012) to 

complex, physically based models (Chen et al., 2011; Pauwels et al., 2002) and fully distributed 

models of different levels of complexity (Lievens et al., 2015; Wanders et al., 2014b). However, the 

degree of improvement in streamflow predictions varied significantly, from no improvement (Han et 

al., 2012), to limited improvement (Lievens et al., 2015; Matgen et al., 2012a), and up to 10-30 

% improvement (Brocca et al., 2012; Francois et al., 2003; Massari et al., 2015). ASCAT SSM−DA 

in Mediterranean catchments was also successfully shown in Cenci et al. (2016). All of these studies 

are difficult to compare, interpret and generalize because their results depend largely on model 

structure and catchment characteristics, mainly rainfall regime, and thus on the dominant runoff 

mechanisms (Lievens et al., 2015). It would be therefore interesting to replicate SSM-DA techniques 

in exactly the same way on models of different types or catchments of different conditions to ascertain 

the added-value of SSM-DA for each case. Similar efforts have been carried out on a streamflow DA 

study (Randrianasolo et al., 2014), where two models of different conceptualization (distributed and 

physically based vs lumped) has been tested using the same catchments. 
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1.1.3.2. Data assimilation with distributed models 

So far most SSM-DA studies oriented to streamflow prediction have been based on lumped 

hydrological models (Aubert et al., 2003; Pauwels and De Lannoy, 2009), but an increasing number 

of researchers are paying attention to the capabilities of data assimilation to improve semi-distributed 

and fully distributed hydrological and Land Surface Models (LSM) at different spatial scales (Brocca 

et al., 2017). Fully distributed models employed for SSM-DA include: Variable Infiltration Capacity 

model (VIC) (Lievens et al., 2016, 2015), LISFLOOD (Wanders et al., 2014a, 2014b), Noah (Lin et 

al., 2017), World Wide Water (W3) (Tian et al., 2017), Sacramento Soil Moisture Accounting (SAC-

SMA) model (Yan and Moradkhani, 2016), CATHY (CATchment HYdrology) model (Trudel et al., 

2014) and Continuum model (Cenci et al., 2016; Laiolo et al., 2016). Different spatial scales have 

been applied on those works, but most of them focused on large-scale applications (Lin et al., 2017; 

Tian et al., 2017).  

Assimilation techniques applied into distributed catchment modelization varied from Nudging-

based techniques (Cenci et al., 2016; Laiolo et al., 2016), to the one-dimensional variational data 

assimilation (1D-Var) scheme (Lin et al., 2017) or to the recently developed particle-filter Markov 

chain Monte Carlo (PF-MCMC) method (Yan and Moradkhani, 2016). But in most cases, Ensemble 

Kalman Filter emerged as the most applied method for improved hydrological simulation (Abaza et 

al., 2015; Lievens et al., 2016; Trudel et al., 2014; Wanders et al., 2014a, 2014b; Xu et al., 2015). 

Other studies have also employed similar techniques, such as Ensemble Kalman Smoother (Tian et 

al., 2017).  

Assimilation research into distributed models have taken advantage of different SSM remote 

sensing sources, including ASCAT (Cenci et al., 2016; Yan and Moradkhani, 2016), or SMOS 

(Kornelsen et al., 2016; Lievens et al., 2015; Lin et al., 2017; Tian et al., 2017; Xu et al., 2015), 

while some other studies have compared the performance of different satellites observations, i.e. 

Wanders et al. (2014b) tested ASCAT, AMSR-E and SMOS products assimilation.  Also, a soil 

moisture fine-scale product data assimilation study was developed by Lievens et al. (2016), who used 
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the level 4 fine-scale soil moisture data produced through the DisPATCh (Disaggregation based on 

Physical And Theoretical scale Change) downscaling algorithm specifically developed for SMOS 

(Merlin et al., 2012). In any case, that product was up-scaled to a larger scale prior to assimilation. 

This down-scaled product was also validated for northern Spain location, where it was found the 

product offered lower correlation values with simulated values for forested and step relief areas 

(Escorihuela and Quintana-Seguí, 2016). Other authors also pointed out the limitations of L-band 

observing missions, including SMOS, to provide accurate SSM observations of forested areas (Grant 

et al., 2007; Kurum et al., 2012; Rahmoune et al., 2013). Topography, specifically areas with steep 

relief also seem to deteriorate the ability of SMOS to observed SSM adequately (Pellarin et al., 2015; 

Utku and Le Vine, 2011). 

Assimilation studies were proposed with different objectives, including the estimation of terrestrial 

water storage (TWS) components (Tian et al., 2017), model calibration (Wanders et al., 2014a), 

improving flood prediction systems (Cenci et al., 2016; Wanders et al., 2014b), improving soil 

moisture simulation (Lin et al., 2017), or to improve both soil moisture and streamflow simulation 

(Lievens et al., 2015; Yan and Moradkhani, 2016). Although some studies have proved the ability 

of SMOS to improve soil moisture predictions obtained with distributed models (Blankenship et al., 

2016), also performing SSM assimilation into high spatial resolution land surface models with down-

scaled products (Dumedah et al., 2015), there is still a need for further research on the analysis of 

down-scaled SSM assimilation impact into streamflow simulations (Wanders et al., 2014a).  

SSM-DA on distributed models can be more challenging due to the mismatch between the spatial 

resolution of the model and observations (Lievens et al., 2015). In most cases observations are of 

coarser resolution, and this mismatch needs to be accounted for in the assimilation algorithm itself 

(Reichle et al., 2014) or earlier in the preprocessing of the remotely sensed SSM observations 

(Verhoest et al., 2015). The arising concept of hyperresolution in the hydrological modeling 

community (Wood et al., 2011) is certainly going to determine the progress of SSM-DA investigations 

in the near future. In effect, improvements in computing capacities make nowadays possible to 

simulate global hydrological processes with resolutions of 1 km or less, so the ways to couple remote 
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sensing datasets to a model grid of such resolution and to effectively assimilate observations need 

to be intensely investigated. Ultimately this will lead to a better understanding of the water cycle, with 

consequences on important hydrological applications such as flood and drought predictions, 

assessing water resources and ensuring a sustainable food production in the context of climate 

change. 

 

1.2. OBJECTIVES 

The main objective of this PhD thesis was to evaluate whether the assimilation of remotely sensed 

surface soil moisture data into hydrological catchment models was able to improve streamflow 

simulation. 

This general objective expanded into the following specific objectives: 

Firstly, before data assimilation can be performed, the model needs to be properly calibrated, for 

that the following specific objectives were defined: 

• To evaluate TOPLATS model streamflow simulation performance on Mediterranean 

catchments of varying size and climate conditions (at daily and hourly time-step). 

• To develop a sensitivity analysis of TOPLATS selected parameters on: surface runoff, 

baseflow, evapotranspiration, soil moisture patterns and streamflow simulation 

(discriminating between peaks, average and low flows). 

• To compare two SA methods of different complexity and computational requirements. 

• To evaluate the performance of an optimization algorithm for model calibration at different 

time-scale simulations (daily and hourly). 

• To appraise the influence of continuous or random period selection for calibration and 

validation purposes. 

 

Once the models were calibrated, the following data assimilation-related specific objectives were 

tackled: 



 47 

     

• Perform data assimilation with hydrological catchment models of different spatial 

representation complexity i.e. lumped, semi-distributed or fully distributed with the objective 

of improving streamflow simulation. 

• Perform surface soil moisture data assimilation with different remote sensing sensors, 

specifically L-band and C-band observing systems that estimate soil moisture at different soil 

depths. 

• Take advantage, trough data assimilation, of surface soil moisture down-scaled products for 

improved streamflow simulation. 

• Perform data assimilation in catchments of different size, topography and climate conditions.  

• Evaluate the Ensemble Kalman Filter as useful technique for data assimilation. 

• Study the influence of the different techniques to re-scale remotely observed soil moisture 

data on assimilation results. 

• Study the influence of observation error estimation on assimilation results. 

 

 

1.3. STRUCTURE OF THE THESIS 

This thesis is divided on three separate studies, which are expected to be in three different scientific 

journals. This section details briefly the objectives, materials, methods and publication status of each 

study. 

1. Sensitivity analysis and calibration of TOPLATS on three catchments 

− Objective: The main objectives of this study were to perform a detailed sensitivity analysis 

of TOPLATS model with two SA method of different computational requirements, and to 

use an optimization algorithm to calibrate the model. 

− Catchments: La Tejeria, Cidacos and Arga (Navarre, Spain) 

− Model: TOPLATS (Statistical mode) 
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− Journal of publication: Article title: Evaluation of TOPLATS on three mediterranean 

catchments. Published on Journal of Hydrology (JoH) in 2016. 

− Results shown in this document: in sections 4.1 and 4.2. 

 

2. Assimilation of ASCAT data with lumped and semi-distributed models 

− Objective: main objective of this part of the thesis was to evaluate the possible 

improvement on hourly streamflow prediction that could be achieved by the assimilation 

of ASCAT data into two models of different spatial representation and parameterization 

complexity. Different configurations to apply the Ensemble Kalman filter were also tested 

on both semi-distributed models. 

− Catchments: Arga (Spain) and Nestore (Italy) 

− Models: TOPLATS (statistical mode) and MISDc (lumped) 

− Remote sensing source: Advanced SCATterometer (ASCAT) surface soil moisture data 

− Data assimilation technique: Ensemble Kalman Filter (with Soil Water Index calculation). 

Three re-scaling techniques were evaluated. Different satellite observation error values 

were analyzed.  

− Journal of publication: Submitted to Advances in Water Resources (AWR) on December 

15th, 2016. Title: On the assimilation set-up of ASCAT soil moisture data for improving 

streamflow catchment simulation. Received a major review on March 2017. Expected to 

be accepted on the coming months. Review to be submitted due to the 28th of June, 2017. 

− Results shown in this document: in sections 4.3. 

 

3. Assimilation of SMOS/MODIS data with a fully distributed model 

− Objective: The objective of this last study was to evaluate the impact on streamflow 

prediction generated by the assimilation of a 1-km down-scaled SMOS product into a 

fully distributed hydrological catchment model. 
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− Catchments: Cidacos (Spain) 

− Model: TOPLATS (distributed mode) 

− Remote sensing data sources: Soil Moisture Ocean Salinity (SMOS) Earth Explorer  

surface soil moisture data (1-km resolution product) 

− Data assimilation technique: Ensemble Kalman Filter (without Soil Water Index 

calculation). Three re-scaling techniques were evaluated. Satellite observation error was 

considered as a fixed value.  

− Journal of publication: Will be submitted to Water Resources Research. Expected 

submission date, July 2017. 

− Results shown in this document: in sections 4.4. 
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CHAPTER 2.  DESCRIPTION OF STUDY SITES, HYDROLOGICAL 

MODELS AND SOIL MOISTURE REMOTE SENSING SOURCES  

This chapter of the thesis includes the description of the four catchments where the hydrological 

models have been applied, of the different models used, and lastly of the technical properties of the 

soil moisture remote sensing sources considered. 

 

2.1. STUDY SITES 

In this thesis four different catchments, ranging from a very small experimental catchment (1.59 

km2) to medium size catchments (≈ 750 km2) have been selected for our analysis. Three of them are 

located in northern Spain, while the remaining one is located in central Italy.  

The three Spanish catchments are located in the province of Navarre. These catchments are: La 

Tejeria, Cidacos and Arga (Fig. 2.1). They all are located within the Ebro river basin (86,000 km2), 

one of the major Spanish rivers, which flows into the Mediterranean Sea. They were selected with the 

objective of covering a range of catchment sizes, climate conditions, and contrasting topography. 

Navarre is divided into Atlantic (10% of the area) and Mediterranean basins (90%). In the latter, 

where the predominant climate is sub-humid Mediterranean, rainfall decreases notably as one heads 

south. Spanish study sites and the location of their meteo and gauging stations are shown in Fig. 

2.1. 
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Fig 2.1. Location, topography, hydrological features and instrumentation of the three Spanish studied 

catchments: A) La Tejeria, B) Cidacos, and C) Arga. 

 

2.1.1. La Tejeria catchment  

La Tejeria is a micro-catchment, part of the Agricultural Experimental Catchment Network 

developed and maintained by the Government of Navarre 

(http://cuencasagrarias.navarra.es/index.cfm). It has a total extension of 1.59 km2, with a gauging 

station and an automatic meteorological station (10 minutes basis) installed at the outlet. Elevation 

ranges from 496 to 649 m. The main flow channel has a length of 1.9 km, and the average slope 

within the catchment is 12%. Climate conditions in this catchment are intermediate between the other 

two catchments. In La Tejeria, average rainfall during the 2000 – 2012 period was 744 mm/year, 

although the annual rainfall can vary significantly from year to year. During the study period, mean 
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daily temperature was 12.5 ºC and relative humidity 73%. The watershed is underlined by marls and 

sandstones of continental facies. The prevailing soil class is Typic Calcixerepts (NRCS-USDA, 2014), 

covering 41% of the watershed and located on eroded hillslopes. These soils are relatively shallow 

(0.5–1.0 m deep) and their upper horizon has a clayey-silty texture (Casalí et al., 2008). Catchment’s 

major land uses are: winter cereals, sunflower, and fallow land (total 92%), riparian vegetation (7%) 

and urban areas (1%). Further details on the catchment’s instrumentation, soil type, land use and 

hydrological behavior can be found in (Casalí et al., 2008). Previous research works on this 

catchment focused on soil moisture retrievals (Alvarez-Mozos et al., 2006) and soil erosion 

evaluation (Casalí et al., 2008). 

 

2.1.2. Cidacos catchment  

Cidacos river flows into the Aragón river, one of the main tributaries of Ebro river. At the main 

hydro station, located in the municipality of Olite, Cidacos has a catchment area of 258 km2. 

Elevation ranges from 380 m to 1,156 m. Main river’s length is approximately 25 km, and 

catchment’s mean slope is 18%. 35% of the catchment presents flat-gentle slope areas (< 10%) and 

19% of the catchment is characterized by steep slopes (> 30%). Climate in the area is defined as 

mild-Mediterranean, with high rainfall variability that caused dramatic oscillations in the annual 

water yield between 0.4 and 39 hm3, with an average value of 19.65 hm3 in the historic observed 

series (since 1989). The annual mean precipitation was 639 mm. The catchment is equipped with 8 

weather stations: 4 automatic stations (10 min basis) and 4 manual (daily). Highest rainfall rates 

occur on the North-Eastern mountainous area (809 mm/year), which contrasts with the low 453 

mm/year measured in the South. Daily mean temperature is higher than in the adjacent Arga 

catchment (12.6 ºC), while relative humidity is lower (69%). Predominant soil type is Typic 

Calcixerepts, but Typic Xerorthents are also found in the North-Eastern mountainous area, and Typic 

Xerofluvents are predominant on the river network paths (NRCS-USDA, 2014). Predominant textures 

are clay-loam on accumulation hillslopes and silty-clay and loam on eroded hillslopes. 



 

 54 

     

Approximately half of the catchment is used for cereal cultivation (47%, including some minor 

irrigated areas), while the other half is divided into forest (27%) and dispersed bushes (22%) land 

covers. Urban areas account for the remaining 4%. Further description of the catchment for its 

distributed hydrological modelization is given in section 3.5.3. 

 

2.1.3. Arga catchment  

Arga river is also one of the main tributaries of Ebro river. Only its upper part has been used on 

this studies, specifically the 810 km2 defined by the gauging station at the municipality of Arazuri, 

being the main river channel 53 km long. Elevation descends from 1,400 m to 400 m at the outlet, 

with a mean slope of 24%. Flat and gentle-slope areas (< 10% slope) represent 29% of the 

catchment, and steep slopes (> 30%) are found on 37% of the area. These slope values represent 

the steepest relief of the four studied sites. In this study, a 69 km2 subcatchment feeding a reservoir 

(Eugi) in the Northern boundary of the catchment has been subtracted and both rainfall and 

streamflow measured at the reservoir’s outlet were removed from the analysis. Thus an effective 

catchment area of 741 km2 was finally used. Historical streamflow records indicate an average 

annual contribution of 423 hm3 at Arazuri station. Arga catchment is heavily instrumented with 20 

measuring stations, but somehow limited in temporal resolution since most of them (12) are manual 

stations working on daily basis. The catchment’s average annual rainfall measured for the 2000-

2012 period was 956 mm. Average daily temperature and relative humidity were 11.7 ºC and 76% 

respectively. In the southern half of the catchment predominant soils belong to Aquic and Typic 

Xerorthent groups of USDA’s Soil Taxonomy (NRCS-USDA, 2014), and are silty-clay-loam in texture. 

Geologically this southern part is underlined by clay marls and Pamplona grey marls. In the Northern 

area of the catchment the prevailing soil classes are distributed according to the landscape’s 

position. While steeper areas are mainly occupied by Typic Xerorthents, Typic Haploxerepts prevail 

on the valley plains. Soils are fine and more than 1 m deep except for those in the eroded hillslope 

that are shallow. The predominant land covers in the catchment are forest (46%, mostly in the 
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Northern part), rainfed cereal crops (33%), bushes (12%) and urban areas (10%, including the city 

of Pamplona). 

 

2.1.4. Nestore catchment 

 

Fig 2.2. Location, topography, hydrological features and instrumentation of the Italian studied catchment of 

Nestore river, measured at Marsciano. 

 

The Nestore catchment (725 km2) is located in the Upper Tiber River catchment (Fig. 2.2), an 

area with a complex topography that can significantly affect the widespread frontal rainfall that 

causes major flood events. The main land uses are grasslands (54 %) and woods (38 %), whereas 

urban areas cover only a small part (5 %) of the territory. The geology is characterized by terrigenous 

facies and flysch deposits. The soil, overlying practically impervious rocks, contains clay and sandy 

silt. Further information on the soil hydrological properties can be found in Massari et al. (2015).  

The climate is Mediterranean, with mean annual rainfall of 740 mm. The mean slope of the 
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catchment is 17 %. The highest monthly rainfall values generally occur during the autumn-winter 

period, when floods, caused by widespread rainfall, normally occur. A dense, real-time 

hydrometeorological network (1 station every 150 km2) has been operating in the area for more 

than 20 years, and the data are recorded with a time interval of 30 min. Discharges are measured 

at the hydrometric site of Marsciano (Fig. 2.2), which is characterized by a stage-discharge 

relationship that is frequently updated to provide reliable discharge estimates. 

 

 

2.2. HYDROLOGICAL MODELS 

2.2.1. TOPLATS 

TOPLATS was developed as a water and energy balance model to be used at local and catchment 

scales. For that, a simple soil-vegetation-atmosphere transfer scheme (SVAT)  was implemented onto 

a TOPMODEL framework (Famiglietti and Wood, 1994). This was afterwards improved by Peters-

Lidard et al. (1997) to correct deficiencies in the representation of energy fluxes (i.e. soil evaporation 

and ground heat flux). Also, some additional modifications were carried out by Pauwels and Wood 

(1999), who adapted it to high latitude areas, and by Crow et al. (2005b) who tested an expansion 

of the model to a soil water balance of four layers, and separated soil and canopy contributions to 

evapotranspiration. The basic concept underlying the model is that shallow groundwater gradients, 

estimated from the local topography through a Topographic Index (TI) (Sivapalan et al., 1987), set 

up spatial patterns of soil moisture. Those patterns are considered key factors of simulation control 

on: 1) storm events, influencing infiltration and runoff generation and 2) inter-storm events, being 

responsible for evaporation and drainage patterns. TOPLATS incorporates a soil vegetation 

atmosphere transfer scheme (SVAT) to represent local scale vertical water fluxes within the catchment 

scale TOPMODEL approach.  
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2.1.1.1. TOPLATS statistical and distributed modes  

TOPLATS can be run in either a fully distributed mode or in a statistical mode (Seuffert et al., 

2002). In the fully distributed mode the catchment is subdivided into a grid of regular size cells, 

where each of those model units (cells) has its own specific soil-vegetation parameterization, soil-

topographic index value (TI) and meteorological input data (Pauwels et al., 2002). The land-

atmosphere scheme is then applied to each cell. The second mode, named statistical mode, works 

as a semi-distributed model. Both modes have been applied in this research. The statistical mode in 

was applied in La Tejeria, Cidacos, Arga and Nestore, while the fully distributed mode was used for 

Cidacos. In the statistical mode, TI is represented through its statistical probability distribution given 

a fixed bin-size (Fig. 2.3), thus reducing the computational demand. This mode was developed under 

the similarity concept, that is, locations with the same TI and soil type, are assumed to respond 

similarly (Pauwels et al., 2002), performing a semi-distributed catchment representation.  
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Fig 2.3. TOPLATS model schematic representation: statistical and distributed Topographic Index 

representation, and SVAT balances (Water and Energy) of vegetated soil (vg), wet canopy (wc) and bare soils 

(bs). Water balance budgets: precipitation (Pr), net precipitation (Pn), evaporation (E), infiltration excess runoff 

(qie), saturation excess runoff (qs) baseflow (qbf), infiltration (I), drainage (g) and capillary rise (w). Energy 

balance budgets: net radiation (Rn), latent heat flux (H) and soil heat flux (G). 

 

In both modes, water and energy balances are applied similarly. In TOPLATS, the soil column is 

divided into two layers (Fig. 2.3): a thin surface zone (SZ) and the deeper transmission zone (TZ). 

Furthermore, the land surface is partitioned into bare and vegetated areas. Separate water balances 

(Fig. 2.3) are formulated for the different water reservoirs: the surface zone, the transmission zone, 

the water table and the canopy. Infiltration is calculated as the minimum of the soil infiltration 

capacity (Milly, 1986) and net precipitation. The exchange of soil water between the upper and lower 
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layers is calculated assuming diffusive flux (Peters-Lidard et al., 1997), where diffusivity is given as a 

function of Brooks and Corey (1964) parameters. Evaporation is calculated with a soil resistance 

formulation (Passerat De Silans et al., 1986) as the minimum of a soil controlled and an 

atmospherically controlled evaporation rate. Similarly, canopy transpiration is calculated as the 

minimum of a plant and an atmospherically controlled transpiration rate, where the canopy 

resistance to transpiration (Jarvis, 1976) is a function of a minimum: 1) stomatal resistance, 2) LAI, 

and 3) stress factors (i.e. solar radiation, vapor pressure deficit, air temperature and soil moisture) 

(Jacquemin and Noilhan, 1990). Plant growth is not directly simulated by TOPLATS, but the seasonal 

development of plant properties is described by user defined time-step updates of plant parameters, 

i.e., leaf area index, plant height and stomatal resistance (Bormann, 2006a). A runoff-routing routine 

based on the unit hydrograph method proposed by the (SCS - Soil Conservation Service, 1972) was 

written in FORTRAN and added to TOPLATS. 

TOPLATS has been applied with different objectives, on a broad range of time and space-scale 

conditions (Table 2.1). Some researchers used the model to analyze the effects of land use changes 

and soil classification uncertainty at the catchment scale (Bormann et al., 2007; Breuer et al., 2005; 

Crow and Wood, 2002; Loaiza-Usuga and Poch, 2009; Loosvelt et al., 2015, 2014a). The spatial 

resolution of input data, and its influence on different model outputs, such as water balances and 

flow components, were also investigated (Wood et al. 1988; Endreny et al. 2000; Bormann 2006a, 

Bormann 2006b). TOPLATS has also been used for discrete observations up-scaling (Crow et al., 

2005b), local weather prediction (Seuffert et al., 2002) or crop growth analysis (Pauwels et al., 

2007). Different types of remotely sensed information have been integrated with TOPLATS trough 

data assimilation (DA) procedures for improving streamflow simulation (Pauwels et al., 2002, 2001), 

soil moisture simulation (Crow et al., 2001; Houser et al., 1998; Lucau-Danila et al., 2005) or latent 

heat fluxes estimation (Crow and Wood, 2003).  
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2.1.1.2. Previous sensitivity analysis and calibration studies 

The model’s behavior and performance has also been explored, for instance, to evaluate its 

sensitivity to soil parameters (Loosvelt et al., 2014b, 2011) or to analyze different calibration 

strategies (Goegebeur and Pauwels, 2007; Loaiza-Usuga and Pauwels, 2008; Pauwels et al., 2009). 

Table 2.1 presents a compilation of the most relevant works carried out with TOPLATS where 

parameter values were investigated with different objectives and degrees of complexity. On this 

thesis, parameters selected for TOPLATS sensitivity analysis and calibration were chosen principally 

according to information extracted from these works.  

Calibration related researches (Table 2.1) focused in some cases on obtaining optimal streamflow 

values at catchment outlet (Crow and Wood, 2002), while some others aimed to obtain accurate 

soil moisture simulations (Goegebeur and Pauwels, 2007). Pauwels et al. (2009) pointed out that 

the three most important soil parameters in the determination of the soil moisture content were the 

saturated hydraulic conductivity (Ks), the pore size distribution index (B), and the bubbling pressure 

(ψc).  

 

 

 

 

 

 

 

 

Table 2.1. Most relevant TOPLATS parameter calibration (C), Evaluation (E) and Uncertainty (U) analyses 

published in the past. The type of study, observed variables of interest, catchment or area size and parameters 

studied are given. Parameter abbreviations are as follows: Leaf Area Index (LAI), stomatal resistance (STr), crop 

height (h), Brooks-Corey pore size distribution index (B), bubbling pressure (ψc), saturated soil moisture (θs), 

residual soil moisture (θr), surface saturated hydraulic conductivity (Ks), first soil resistance parameter (rmin), 

subsurface flow at complete saturation (Q0), hydraulic conductivity decay (f), and initial water table (WTi). 

 



 61 

     

 

 

 



 

 62 

     

Bormann et al. (2007) proposed a calibration procedure based on first, reproducing the long-

term water balance tuning vegetation parameters (stomatal resistances) and secondly, on optimizing 

the model efficiency by fitting the baseflow recession: adjusting baseflow at complete saturation (Q0) 

and the hydraulic conductivity decay (f) parameters. Seuffert et al. (2002) and Bormann (2006b) 

also worked on the manual calibration of Q0, f and stomatal resistance (STr ), while Goegebeur and 

Pauwels (2007) evaluated PEST and Extended Kalman Filter methods performance in Ks and B 

calibration. In Loosvelt et al. (2015) automatic calibration was performed based on a weight-

adaptive recursive parameter estimation method, which is in concept a multi-start calibration 

approach. 

 

2.2.2. MISDC 

MISDc is a conceptual and semi-distributed model that consists of two main components, a soil 

water balance model (SWB) (Brocca et al., 2008) to simulate the soil moisture temporal pattern and 

a routing module (Melone et al., 2001) for transferring the rainfall excess to the catchment outlet 

(Fig 2.4). The two models are linked through an experimentally derived linear relationship (Brocca 

et al., 2009b) between the potential maximum soil moisture retention S of the Soil Conservation 

Service-Curve Number (SCS-CN) and the relative soil moisture at the beginning of the event. The 

SWB model is a simple water balance model that simulates the main processes in a single soil layer 

(i.e., infiltration, percolation and evapotranspiration). In particular, infiltration is modeled through 

the Green–Ampt equation, drainage is modeled using a gravity-driven non-linear relationship, and 

actual evapotranspiration is modeled using a linear relationship with potential evapotranspiration, 

calculated using a modified Blaney and Criddle method.  

Once the S parameter is estimated, the routing to the catchment outlet is obtained from the 

convolution of the rainfall excess and the geomorphological instantaneous unit hydrograph (GIUH), 

proposed by Gupta et al. (1980). The model was initially developed as a single layer soil simulation 

structure but was later implemented with a second layer to improve the soil water balance simulation, 
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with the objective of making it a suitable tool to adequately assimilate satellite SSM observations. 

However, the 2 layers configuration did not improve DA performance (Brocca et al., 2012). 

Therefore, the initial MISDc configuration where the soil is modelled as a single layer (deposit) has 

been used on this study (Fig. 2.4). 

 

 

Fig 2.4. MISDc model conceptual scheme (Model developed by the Hydrology Group of the Research Institute 

for Geo-Hydrological protection. CNR. http://hydrology.irpi.cnr.it/) 

 

The MISDc model requires meteorological variables that are routinely measured (rainfall and air 

temperature) as input data, and it provides the soil saturation degree and the discharge as output 

data. To run the continuous rainfall-runoff (RR) model, 9 physical and empirical parameters have to 

be estimated. The physical parameters include the saturated hydraulic conductivity (Ks), pore size 

distribution index (β), and maximum water capacity of the soil layer (Wmax). The main empirical 

parameters are the parameter controlling the fraction of drainage that transforms into subsurface 

runoff (ν), the correction coefficient for potential evapotranspiration (Kc), the lag-area relationship 

parameter (η), the initial abstraction coefficient (λ) and the parameter of the relationship between 

modeled SM and the S of the SCS-CN method (α). While the model was developed following a 

semi-distributed approach, in this study a lumped modified version of the model was used.  
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MISDc has been successfully applied to many catchments worldwide (Brocca et al., 2011b) and 

also to the Tiber River in central Italy (Brocca et al., 2011a) for flood prediction and operational 

purposes. Further description of the model and its performance under Mediterranean conditions can 

be found in Brocca et al. (2013), Camici et al. (2011), and in Massari et al. (2015). Specific DA 

studies using the MISDc model include Brocca et al. (2012, 2010b). In this research, MISDc 

calibration was performed using a standard gradient-based automatic optimization search function 

(Brocca et al., 2011a), tuning four parameters (Wmax, Ks, Ke and η). 

 

 

2.3. SOIL MOISTURE REMOTE SENSING  

Among the wide range of active and passive microwave devices onboard different satellites used 

for SSM estimation, two currently operational sensors and probably the most important at present 

were selected for this research work (i.e., ASCAT and SMOS), as they were deemed suitable for the 

objectives of the thesis. These two sensors were also selected to compare the suitability of both L-

band and C-band observing systems, so the study gives a glimpse on the applicability of different 

remote sensing data sources for DA tasks. The sensor selected at C-band was ASCAT, while SMOS 

was the one selected at L-band. Both are described in this chapter, including their spatial and 

temporal resolutions, as well as other technical details on the instruments themselves and the 

algorithms used to retrieve SSM from their observations.  

 

2.3.1. ASCAT  

The Advanced SCATterometer (ASCAT) is an active microwave sensor that operates in C-band 

(5.255 GHz) at VV polarization, which measures the backscatter of the Earth surface, a magnitude 

that is sensitive to the dielectric properties of the soil surface, and hence SSM. ASCAT was first 

launched in October 2006 onboard the Meteorological Operation-A (MetOp-A) satellite, the first 
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of the MetOp series that consists of three satellites: MetOp-A, MetOp-B (available since 2012), and 

MetOp-C (scheduled for launch in 2018), which are expected to provide an uninterrupted stream of 

ASCAT observations well into the 2020s (Wagner et al., 2013). The MetOp-A satellite follows a 

near-polar sun-synchronous orbit at an altitude of approximately 817 km with a repeat cycle of 29 

days, completing 14 orbits per day and providing a daily global coverage of approximately 82 % of 

the Earth due to its 550-km wide observation swath. The satellite follows a near-polar orbit, scanning 

the Earth’s surface in both descending and ascending overpasses, corresponding in Western Europe 

with one acquisition in the morning (descending pass) and once in the evening (ascending pass), 

between 08-11 and 17-21 UTC, respectively (Brocca et al., 2010b).  

The ASCAT-SSM product has a spatial resolution of 50 km and 25 km (resampled to 25-km and 

12.5-km grids in the swath geometry), and represents the degree of saturation of the topmost soil 

layer, ranging from 0 % (dry) to 100 % (wet) (Albergel et al., 2012). To retrieve SSM, the 

backscattering coefficients are first normalized to a reference incidence angle of 40º and then scaled 

between the lowest and highest values measured over a long period (Parrens et al., 2012). The soil 

moisture retrieval scheme uses a change detection approach that is very similar in functionality to 

the Water Cloud Model (Attema and Ulaby, 1978) but less complex from a mathematical point of 

view (Bartalis et al., 2007). Two ASCAT−SSM products are available: the first is a NRT product, 

generated by the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) (Wagner et al., 2013), and the second is an enhanced product reprocessed and 

updated by TU Wien, where the most recent algorithmic updates are included (Naeimi et al., 2009). 

The latter was used in this study and consists of a 6-year (2007-2012) time series at a 12.5-km 

resolution. The RMSE of this ASCAT−SSM product is estimated to range between 0.014 and 0.06 

m3 m-3  (Albergel et al., 2009; Brocca et al., 2010a; Matgen et al., 2012b), with an expected mean 

value of 0.04 m3 m-3 (Matgen et al., 2012b).  
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2.3.2. SMOS 

The ESA’s Soil Moisture and Ocean Salinity (SMOS) mission is in orbit since 2009, providing 

estimates of salinity over the oceans and of SSM over continental surfaces (Polcher et al., 2016).  

SMOS is a sun-synchronous orbiting satellite operating at an altitude of 755 km (Rötzer et al., 2014). 

It is the first dedicated soil moisture mission and its measuring principle is based on the relationship 

between soil emissivity at microwave frequencies (i.e., brightness temperature) and its dielectric 

properties, and hence soil moisture (Kerr et al., 2001). SMOS operates at L-band (1.4 GHz) with 

varying incidence angles, its observation depth then is estimated to be ~5 cm with a spatial 

resolution of 35-50 km depending on the incident angle and the deviation from the satellite ground 

track (Wanders et al., 2014b). SMOS mission is equipped with a Microwave Imaging Radiometer 

using Aperture Synthesis (MIRAS), a 2D interferometric sensor with 69 antenna receivers distributed 

on a Y-shaped deployable array and a central hub. Due to its operating frequency, SMOS data are 

potentially affected by radio frequency interference issues (RFI), although the level of affection varies 

significantly depending on the region of the World (Asia is the most affected continent). Nowadays 

these RFI are systematically detected and flagged from the data (Oliva et al., 2016). Altogether, the 

nominal revisit time of SMOS is of 1-3 days depending on the latitude, for both ascending (06:00 

LST) and descending (6:00 pm LST) passes (Xu et al., 2015).  

The SMOS soil moisture retrieval algorithm consists in iteratively minimizing the differences 

between measured and modelled brightness temperatures for a variety of incidence angles (Array 

Systems Computing Inc, 2014). The forward modelled values are a function of polarization, 

incidence angle, soil moisture (through the soil dielectric constant) and other physical parameters 

influencing land emissivity at L-band, namely land surface temperature, soil roughness, vegetation 

optical depth and volume scattering albedo. Ancillary information on land-cover and soil properties 

(e.g. clay fraction, bulk density, field capacity and wilting point) is also used in the forward modelling. 

The inversion (retrieval of geophysical variables) is performed by minimizing a cost function that 
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accounts for the weighted squared differences between modelled and measured data (Kerr et al., 

2012). 

In this study, a SMOS-based high resolution SSM product (1-km) was used for data assimilation 

into a distributed model. The so called SMOS-BEC L4 product, developed by Piles et al. (2011), has 

been applied over a northern Spanish catchment of  258 km2. This product was obtained at 10 and 

1 km resolutions resulting from the application of a downscaling approach to improve spatial 

resolution of original SMOS data with the use of higher resolution visible/infrared (VIS/IR) satellite 

data. The algorithm is based on the so-called “universal triangle” concept that relates VIS/IR 

parameters, such as the Normalized Difference vegetation Index (NDVI), and Land Surface 

Temperature (Ts), to the soil moisture content. This downscaled product was thus achieved in practice 

by combining SMOS and MODIS VIS/IR data from both the Terra and Aqua spacecrafts. 

In short, this downscaling approach combines highly–accurate, but low resolution SMOS 

radiometric information with high resolution, but low sensitivity, VIS/IR imagery to provide SSM data 

across spatial scales (Piles et al., 2011). The methodology was first tested with a set of SMOS and 

MODIS data over the Oznet network, in South-East Australia. Later (Piles et al., 2014), the fine-scale 

product quality was improved by the inclusion of SMOS polarimetric and multi-angular information 

(Piles et al., 2015). The latest L4 product (the one used in this research) is the version 3.0 or “all 

weather”. In this version, high resolution soil moisture is estimated under all-weather conditions, 

greatly enhancing the potential applicability of the data. The downscaling approach is also based 

on the methodology presented in (Piles et al., 2014), and on the further studies by (Sanchez-Ruiz et 

al., 2014) who tested the impact of using different vegetation indices from MODIS with higher spatial 

and temporal resolution (Piles et al., 2015). The novelty of the “all-weather” product is the 

introduction of ERA-Interim Land Surface Temperature (LST) data in the MODIS LST/NDVI space 

(Piles et al., 2015).  

The data, produced for both ascending and descending passes, is available since December 

2016 for the Iberian Peninsula, South Africa and Ghana, and can be freely accessed at the 
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Barcelona Expert Center data distribution and visualization service (http://cp34-

bec.cmima.csic.es/data/data-access/).  
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CHAPTER 3. METHODS 

3.1. SENSITIVITY ANALYSIS 

A general description of SA methods is given in the Introduction chapter of this thesis, thus, this 

section covers only two relevant aspects: Design of Experiment sampling techniques (DoE), and the 

specific SA methods used in this study: Morris (1991) and Sobol (1993). Both Morris Method (MoM) 

and Sobol Method (SoM) follow approaches based on DoE techniques, which have a large influence 

on SA efficiency (Song et al., 2015).  

Some SA methods require specific DoE sampling techniques designed ad hoc. This is the case of 

MOAT sampling for MoM (Morris, 1991) and the sampling technique proposed by Saltelli (2002) 

(denoted as SOBOL) for SoM (Gan et al., 2014). These sampling techniques are both based on 

simple random sampling, but different conditions need to be satisfied for their sample sizes (Song et 

al., 2015). A detailed description on both sampling methodologies can be found in Gan et al. 

(2014). Substantial differences in the number of required model runs (NR) are found between both 

MOAT and SOBOL sampling methods. In the first case (Morris, 1991): 

�� = �� + 1� ∗ 
                                                                                                                         (3.1) 

where k is the number of parameters whose sensitivity is evaluated and n is the number of samples. 

On the other hand, Saltelli (2002) proposed two efficient approaches to reduce the 

computational cost of SoM. The one applied on this study requires a larger number of model runs, 

but provides more consistent results: 

�� = ��2 ∗ �� + 2
 ∗ 
                                                      (3.2)                                                                                                                        

    

3.1.1. Morris method 

The screening-type Morris Method (Morris, 1991) takes advantage of elementary effects (EE) 

computed at evenly spaced values of each parameter over its entire range. The final effect is then 

calculated as the average of a set of partial effects. Therefore, it provides a global sensitivity measure 
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with lower computational cost compared to most global methods. In this way, local sensitivities are 

integrated to a global sensitivity measure and the presence or absence of nonlinearities or correlation 

interactions with other parameters can also be identified (Van Griensven et al., 2006). Screening 

methods, such as MoM, aim to identify the subset of non-influent factors in a model using a small 

number of model runs (Campolongo et al., 2011).  

MoM has a low computational cost, is simple to implement and its results are easy to interpret 

(Saltelli et al., 2000), but individual interaction between parameters cannot be detected, since MoM 

only calculates the overall interaction of a parameter with the rest (Saltelli et al., 2000). It measures 

qualitatively relative sensitivity by ranking input parameters in order of sensitivity but cannot quantify 

in absolute terms how much one parameter is more important than another (Campolongo and 

Saltelli, 1997). 

Considering that y(X) is the objective function (goodness-of-fit of the model or model output of 

interest) and X = (X1,…, Xk) is the parameter set, then 

���� = ����, … , ���                                                     (3.3) 

In MoM, y(X) is calculated for each parameter set, where parameter values (X) are changed OAT. 

The difference resulting of both y(X) values is divided by the variation of perturbed parameter values 

(Δ) to obtain the elementary effect of each parameter di(X). Elementary effects are calculated as 

follows:          

 ����� = 	 �����,��,…,����,����,	�� �,…,�!	�"����
�                                                              (3.4)  

This calculation process is repeated until the defined number of samples (n) are completed for 

each parameter. Finally, the mean (µ) and standard deviation (σ) values of di for the n samples are 

used as sensitivity indices, where µ and σ indicate the influence of each parameter on the objective 

function (Shin et al., 2013). A high µ value indicates an important overall influence of the parameters 

and a high value of σ (hereafter referred to as Morris interaction) means strong interactions with 

other parameters or the effect of nonlinearities (Shin et al., 2013). Instead of using µ, this study 

considers the mean of the absolute values of the n samples of di, denoted as µ* (hereafter referred 
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to as Morris sensitivity) to overcome the problem of the effects of opposite signs due to a models’ 

non-monotonic characteristics (Campolongo et al., 2011). Further description of Morris method and 

its implementation for specific purposes can be found in Francos et al. (2003), van Griensven et al. 

(2006), Shin et al. (2013), and Wainwright et al. (2014).  

 

3.1.2. Sobol method 

SoM is a variance decomposition global SA method where all parameters are varied 

simultaneously. One of its main advantages is that it is a model-free method, i.e., it can compute 

sensitivity indices regardless of the linearity, monotonicity (or other generic assumptions) on the 

underlying model (Baroni and Tarantola, 2014). In SoM the variance of the model output is 

decomposed into fractions that result from either individual parameters or parameter interactions. 

The sensitivity of each parameter or parameter interaction is then assessed based on its contribution 

(measured as a percentage) to the total variance computed using a distribution of model responses 

(Zhang et al., 2013). Sobol sensitivity indices have been shown to be more effective than other 

approaches in capturing the interactions between a large number of variables for highly nonlinear 

models (Tang et al., 2007).  

As in Eq.3.3, considering that y(X) is the objective function (goodness-of-fit of the model or model 

output of interest) and X = (X1,…, Xk) is the parameter set, the total variance of function y(X), D(y), 

is decomposed into component variances from individual parameters (Di) and their interactions (Dij, 

Dijk ,…): 

#��� = 	∑ #�� + ∑ #�%�&' + ∑ #�%' +⋯+ #�)…��&%&'                  (3.5) 

where Di represents the average reduction in variance achieved if the parameter i was known (Ratto 

et al., 2001) and Dij is the amount of variance due to the interaction between parameter Xi and Xj. 

The single parameter sensitivity (First-Order Sobol index), Si, and parameter interaction (Second-

Order index), Sij, are then assessed based on their relative contribution to the total variance (D): 

*� =	+�+                                                        (3.6) 
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 *�% =	+�,+                                          (3.7) 

Also, a third index (Total-Order index), STi , that measures the main effect of Xi and its interactions 

with all the other parameters (Zhang et al., 2013) can be calculated as: 

*-� = 	1 − +~�
+                                                                 (3.8) 

where D~i is the bottom marginal variance, that accounts for the amount of variance due to all of 

the parameters except for Xi (Massmann and Holzmann, 2012). Hereafter in this article, Si is referred 

to as Sobol sensitivity and STi as Sobol interaction. SM main characteristic is the use of two different 

sets of samples, generated by the same scheme and with the same number of elements. SM uses the 

first set to calculate the overall output mean and variance (i.e., the combined effects of all 

parameters) while the second sample is then used to resample each parameter, rather than setting 

each to a fixed value, for the calculation of total and individual variance contributions (van 

Werkhoven et al., 2008). Di and D~i can be calculated as described in Massmann and Holzmann 

(2012) and in Zhang et al. (2013). In the last years SM has been frequently used in different types 

of hydrological models (Gan et al., 2014; Massmann and Holzmann, 2012; Shin et al., 2013; van 

Werkhoven et al., 2008; Wainwright et al., 2014).  

 

 

3.2. CALIBRATION AND VALIDATION PROCEDURE OF TOPLATS MODEL 

3.2.1. Optimization algorithm  

In this work, a Multi-Start approach of the Powell Method (MSPM) was used to calibrate the 

TOPLATS model. Powell Method (PM) (Powell, 1964) belongs to the category of local and derivative-

free algorithms. PM is a conjugate directions method, which are capable of minimizing quadratic 

functions in a finite number of steps. Since a general nonlinear function can be approximated 

reasonably well by a quadratic function near its minimum, this type of conjugate directions method 

is expected to speed up the convergence of even general nonlinear objective functions (RAO, 2009). 
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PM can find a global optimum when specifically tuned to a certain objective function, but in cases 

of sophisticated algorithm optimization (such as complex hydrological models), the selection of 

appropriate parameter starting points may affect algorithm performance substantially. Inadequate 

selection of initial parameter values may lead to convergence to inferior local optima or even to 

numerical dispersion (Paik et al., 2005). All in all, PM has been frequently applied on different 

hydrological calibration procedures and models (Chen et al., 2005; Geem and Roper, 2010; Yang 

et al., 2011; Zhang and Lindström, 1997).  

In our study, to avoid the algorithm ending at local minima constraint, within each parameter’s 

search range different values were selected as initialization values for the search. Dispersed values 

covering the full feasible parameter range were selected. The algorithm was free-available and 

programmed in FORTRAN (Press et al., 1988), the same programming language that was used to 

develop TOPLATS which facilitated the integration of both tools.  

 

3.2.2. CAL/VAL implementation for TOPLATS 

Different studies have previously discussed the advantages of different random period selection 

techniques (RND) for model calibration and validation (Brath et al., 2004; Kim and Kaluarachchi, 

2009; Senarath et al., 2000). Some of them evaluated data length requirements when RND 

approach is applied, compared to the conventional (CON) approach. For example, Kim and 

Kaluarachchi (2009) concluded that randomly sampled data required a shorter calibration length 

(36 months) than continuous data (120 months) to reach good model performance. Similarly, Perrin 

et al. (2007) tested the random approach with two daily rainfall-runoff models showing that, in 

general, even just 350 calibration days sampled out of a longer data set including dry and wet 

conditions could be sufficient to obtain robust estimates of model parameters. On the conventional 

calibration approach, Yapo et al. (1996) estimated a minimum of 96 months for adequate model 

calibration and also noted that parameter uncertainty was reduced when wettest data records were 

used. 
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In the first of the three studies of this thesis, following referenced studies recommendations on 

CON and RND period selection, we considered a 12 years period, and included two calibration 

and validation (CAL/VAL) period selection strategies in order to evaluate the influence of climatic 

particularities on the CAL/VAL results. First, a “conventional” strategy (CON) was followed, where 

the first hydrological year was used for warming-up (2000-2001), the next six years for calibration 

(2001-2007), and the remaining five years for validation (2007-2012). Secondly, a “random” 

strategy (RND) was proposed and evaluated. On this second approach, each month’s data was 

randomly assigned to either CAL or VAL period according to two conditions: 1) the mean streamflow 

of CAL and VAL series could not differ more than 10% and, 2) their standard deviations could not 

differ more than 15%. This second strategy was adopted to circumvent the imbalance between CAL 

and VAL periods resulting from irregular climatic conditions typical of Mediterranean areas. On this 

first study, in total, 72 months were randomly assigned to CAL and 60 months to VAL, maintaining 

the same proportion as in the conventional strategy.  

 

 



 75 

     

 

Fig. 3.1. Four Step calibration procedure scheme 

 

A four steps calibration (Fig. 3.1) was then performed exactly in the same way for both approaches 

(CON and RND): 1) manual calibration of the global water balance by adjusting Leaf Area Index 

(LAI) and Initial water table depth (WTi), and 2) MSPM of six parameters (Table 3.1) on 8 different 

start points. On the latter, the algorithm was setup to maximize NSE1. Optimization of NSE1 was 

assumed to improve model efficiency while maintaining water balance on optimal performance. In 

a final step, out of the 8 sets of optimal parameter (OP) values obtained, the one offering best results 

(lower Pbias and higher NSE) was taken and used as a new initial set. Then, a new pair of refinement 

optimizations (steps 3 and 4) were carried out: run number 9 was set up again with NSE1 as objective 
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function (with the objective of finding possible better results with parameter values close to selected 

OP) and run number 10 using NSE as objective to prioritize high flows simulation improvement. 

These refinement optimization runs (run 9 and 10) allowed obtaining the Best Performing parameter 

set (BP). 

 

Table 3.1. TOPLATS parameters included on the calibration and sensitivity analysis with Morris and Sobol 

methods. Type, symbol, units and parameter value ranges are shown 

 Type Parameter Symbol Units Min limit Max limit 

1. Soil properties 
Brooks-Corey Pore Size 
distribution Index 

B -- 0.1 1.0 

2. Soil properties Bubbling pressure ψc m 0.1 1.0 

3. Soil properties Saturated soil moisture θs 
cm3  / 
cm3 

0.4 0.6 

4. Soil properties 
Surface saturated hydraulic 
conductivity 

Ks m / s1 1e-07 1e-03 

5. Soil properties First soil resistance parameter rmin s / m1 4,000 80,000 

6. TOPMODEL 
Subsurface flow at complete 
saturation 

Q0 
mm / 
day1 

5 175 

7. TOPMODEL Hydraulic conductivity decay f m-1 1 14 

 

 

3.3. DATA ASSIMILATION 

3.3.1. Observed SSM preprocessing: soil water index (SWI) and re-scaling methods  

Two data assimilation experiments were performed on this thesis. In the first one, ASCAT data 

was used for data assimilation into Arga and Nestore catchments, with both MISDc and TOPLATS 

(statistical mode) models. On this first experiment, ASCAT data was processed through 2 steps: first 

observed discrete data was transformed into a continuous Soil Water Index (SWI), and secondly, that 

SWI was re-scaled. On the second DA experiment of this thesis, the SMOS data was treated 

differently, due to its deeper observation depth (described in section 2.3). In this case, SMOS data 

was not transformed into a SWI, and was directly re-scaled to be assimilated into a 5 cm depth 
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model layer. In both cases, satellite observed data were afterwards re-scaled with the three same 

methods, described later on this section. 

Thus, in the first DA experiment, to solve the mismatch between ASCAT observation depth and 

that of the surface layer considered by models, ASCAT−SSM values were transformed (filtered) in 

two steps: the soil water index calculation (SWI), followed by an SWI re-scaling procedure (Alvarez-

Garreton et al., 2015, 2014; Brocca et al., 2009a; Cho et al., 2015; Matgen et al., 2012a; Paulik 

et al., 2014). For the SWI calculation, a recursive filter was used (Wagner et al. 1999), which 

depends on a single parameter, T, characterizing the temporal variation of soil moisture within the 

root-zone profile (Brocca et al., 2012). It functions as a low-pass filter that smoothes the SSM series 

(Matgen et al., 2012b) and assumes a linear relationship between the SM in the first centimeters of 

the soil and the SM content in the deeper root zone (Alvarez-Garreton et al., 2014). The recursive 

filter (Eq. 3.9) at each time step (k) is calculated as follows (Albergel et al., 2008): 

*01� =	*01�"� 	+ 	2� 	�3� 	− 	*01�"�
	                                                                             (3.9) 

where Ok is an available ASCAT observation and Uk is a gain updating term (Eq. 3.10), varying 

between 0 and 1, calculated as: 

2� =	 4!��
4!��	�	5�

!	�	�!���
6 �                                                                                                       (3.10) 

Parameter T for ASCAT data was calibrated (considering a variation range between 1 and 200 

days) by optimizing the correlation coefficient R between SWI and model-simulated SSM time series. 

This was performed for a 2-year calibration period: Jan 2007 - Jan 2009. Regarding SSM product 

error, Brocca et al. (2010a) based on in-situ observations, estimated a 10 % error in SWI values 

obtained from ASCAT data. 

In a second step, ASCAT-derived SWI values were re-scaled, comparing different re-scaling 

techniques (RTs). Three different RTs were selected, and their influence on the DA results was 

evaluated. On the second DA experiment, those three re-scaling methods were also applied to 

SMOS data. These RTs were selected to cover a wide range of order-moments rescaling (as in Lievens 

et al. (2015)): 
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� 1. Cumulative distribution function matching (CDF). This method was first proposed by Reichle 

(2004) and has been applied in different assimilation and SSM product evaluation experiments 

(Alvarez-Garreton et al., 2014; Drusch, 2005; Liu et al., 2012; Massari et al., 2015; Matgen 

et al., 2012b; Scipal et al., 2008). CDF matching ensures that the statistical distribution of 

both the satellite data and model time series is the same, so that assimilation only adjusts the 

model for random variations (Renzullo et al., 2014). 

� 2.  Linear regression (LR). In this approach, minimization of the mean square difference (msd) 

between modeled and rescaled data is performed (Yilmaz and Crow, 2013) through a least 

squares linear regression technique (Alvarez-Garreton et al., 2014; Crow et al., 2005a). 

Details of the numerical solution performed to apply this method are described in Yilmaz and 

Crow (2013). 

� 3. Variance matching (VM). This method involves re-scaling the observed SSM values to match 

only the first two moments (mean and variance) of the probability distribution of the simulated 

time series (Lievens et al., 2015; Massari et al., 2015; Sahoo et al., 2013). 

Regarding the ASCAT data experiment, the three RTs were first fitted using a 3-year (Jan 2007-

Jan 2010) calibration period and then validated using a 2-year and 9-month period (Jan 2010 to 

Oct 2012). This setup guarantees that re-scaling is always based on previous data; consequently, 

DA can be performed in real time, similarly to Alvarez-Garreton et al. (2014). On the other hand, 

re-scaling of SMOS data was only performed for the validation and assimilation period (Oct/2013-

Oct/2015). It must be noted that all the three methods guarantee that the rescaling time-series of 

observed data will have the same mean value of the model-simulated soil moisture. In both ASCAT 

and SMOS applications for data assimilation, these three RT were tested. They differ on the moments-

matching that they offer: 1) LR fits only the first order moment (mean), 2) the second, VM, fits the first 

and second order moments (mean and variance), while CDF method adjusts all order moments 

(mean, variance and skewness) of observed data to the simulation, similarly to the research in Lievens 

et al. (2015). 
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3.3.2. Ensemble Kalman filter (EnKF)  

The EnKF Monte Carlo-based approach (Evensen, 2003) allows model uncertainties to be 

calculated from the ensemble spread. On this method, to reduce calculation time, it is assumed that 

the ensemble spread is large enough to represent the true uncertainty of the simulation (Wanders et 

al., 2014a). The EnKF takes advantage of a statistical approach to evaluate the covariance error 

matrices of the Kalman filter equations.  

In the EnKF, the background state vector becomes an n (state variables) x N (ensemble members) 

matrix needed to derive the model error matrix (Thiboult and Anctil, 2015) where: �7 	= 	 8��7 , … , �97: 
with ��7 	= 	 8;�7 , ;)7 , … , ;<7:�

-
. As the real true state is unknown, it is approximated by the ensemble 

mean �;̅7�, where i refers to the i-th member: 

	;̅7 	= 	 �9 	∑ ��79�>�                                                                                                                              (3.11) 

From the ensemble perturbation matrix, defined as �′7 	= 	��7 − �@7, the ensemble background error 

covariance matrix (P) is obtained as in Eq. 3.12: 

A	 = 	 �
9	"	� 	;′7;′7-                                                                                                                            (3.12) 

On the observation side, uncertainty is considered and evaluated through perturbed observations. 

An m x N matrix, where m is the number of observations, needs to be calculated to represent 

perturbed observations (�� 	= 	�	 +	B�C�. The perturbations ensemble (E	 = 	 �B�C, B)C, … , B9C 
� is 

generated with an ensemble mean equal to zero (Trudel et al., 2014), and the ensemble 

representation of the observation error covariance matrix (Z) is then defined as: 

E	 = 	 �
9	"	� 	FF-                                                                                                                                (3.13) 

The Kalman gain (Gk) (Eq. 3.14) at each time step k (hourly basis in this study) represents the 

relative importance of the observation error with respect to the prior estimate (i.e., model simulation) 

and acts as a weighting coefficient. Zk denotes the covariance of the observational noise (Thiboult 

and Anctil, 2015) at time step k, Pk accounts for model uncertainty, and Hk is the observation operator 

(SWI vector on the ASCAT DA study). Gk is thus calculated as: 
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G� 	= 	A�H�-8E� +	H�A�H�-:"�                                                                                                          (3.14) 

Different values of ASCAT observation errors were used for the Kalman gain calculation. Thus, 

the influence of observation error on EnKF DA was evaluated using ten different observation errors 

(0.01, 0.1, 1, 2, 4, 6, 8, 10, 15 and 20 %). On the SMOS experiment, the observation error was 

considered fixed at 0.04 cm3/cm3, which correspond to the technical reference error of the product. 

In the last assimilation step, the new model state matrix (;�I) is updated (Eq. 3.15) based on an a 

priori (forecasted) model state matrix (;�7), the Kalman gain (G�), and the deviation between 

measured and predicted observations (Abaza et al., 2015): 

;�I 	= 	 ;�7 	+ G�8�� 	− 	H�J;�7K:                                                                                                           (3.15) 

The EnKF has been successfully used in different hydrological applications, including streamflow 

prediction, through assimilation of soil moisture and streamflow data (Abaza et al., 2015; Li et al., 

2014; Trudel et al., 2014; Wanders et al., 2014b; Xie and Zhang, 2010).  

 

3.3.3. Ensemble verification criteria 

The EnKF requires the generated ensemble to comply with certain spread characteristics, i.e., to 

generate a meaningful ensemble that represents the uncertainty of each hydrological model’s 

forecasts (Matgen et al., 2012a). The standard deviation must be gradually increased until the 

ensemble mean differs from the observation by a value that is equal to the time average of the 

ensemble spread, and the observed trend is statistically indistinguishable from a member of the 

ensemble (Matgen et al., 2012a; Pauwels and De Lannoy, 2009). For that, in this thesis, the 

ensemble of model simulations was obtained by perturbing two input variables (rainfall and 

temperature) and the three most sensitive parameters for each model, previously identified through 

sensitivity analyses. The parameters perturbed in MISDc were (1) the storage coefficient, (2) hydraulic 

conductivity (Ks) and (3) the coefficient of potential evapotranspiration (Kc), while in TOPLATS, for 

both ASCAT and SMOS DA trials, they were (1) the Brooks-Corey pore size distribution index (B), (2) 

the bubbling pressure (ψc) and (3) hydraulic conductivity decay (f).  
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An ensemble of 50 members was considered sufficiently consistent. Temperature was perturbed 

with a zero-mean additive Gaussian noise, whereas a log-normal multiplicative noise was added to 

rainfall in MISDc (Chen et al., 2011), and a Gamma multiplicative noise was added to rainfall in 

TOPLATS. Both multiplicative functions provide a very similar type of perturbation. On the other 

hand, model parameters were perturbed by adding a multiplicative random Gaussian noise (Alvarez-

Garreton et al., 2015; Brocca et al., 2010b), which was set as a fraction of their values.  

To ensure that the created ensemble was meaningful, that is, it adequately represented modeling 

uncertainty, three ensemble characteristics (Eq. 3.16, 3.17 and 3.18) were calculated: (1) the 

ensemble spread (L
MN�), (2) the ensemble mean square error (OML�), and (3) the ensemble skill 

(L
M��):  
L
MN� 	= 	 �9P∑ �*� 	−	*�̅�)9P�>�                                                                                   (3.16) 

OML� 	= 	 �9P∑ �*� 	− 	3��)9P�>�                                                      (3.17) 

L
M�� 	= 	 8*� 	− 	3�:)                                                                                                                    (3.18) 

where k indicates the specific time-step, Nr is the number of model runs performed (ensemble size), 

and an overbar indicates the mean of an ensemble. These features were first computed at each time 

step (k) and then averaged over the evaluated period. Two conditions must be met by the ensemble 

(De Lannoy et al., 2006 Alvarez-Garreton et al., 2014; Brocca et al., 2012; Matgen et al., 2012a; 

Plaza et al., 2012). Firstly, to ensure that the ensemble spread is large enough, the temporal average 

of the ensemble skill should be similar to the temporal average of the ensemble spread (Alvarez-

Garreton et al., 2014) (Eq. 3.19): 

〈5<R�〉
〈5<RT〉 	≈ 	1                                                           (3.19) 

where ‹ › indicates the average over the simulation period. Values larger than 1 indicate spreads that 

are too small if the model is not biased (De Lannoy et al., 2006). Secondly, Eq. 3.20 must be 

validated to check that the truth (observed streamflow) is statistically indistinguishable from a member 

of the ensemble (Matgen et al., 2012a). 
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〈√5<R�〉
〈√WR5〉 	≈ 	X

9Y�	�
)9Y                                                  (3.20) 

 

 

3.4. PERFORMANCE INDICES 

Throughout this work, model performance was evaluated through four different measures of 

agreement, including two efficiency measures, the percentage of volumetric error, and the 

normalized RMSE. 

The first efficiency criteria used was the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), 

which measures the fraction of the observed streamflow variance explained by the model, calculated 

as the magnitude of the residual variance (noise) relative to the observed variance (information). Its 

optimal value is 1.0, and values should be larger than 0.0 to indicate a “minimally acceptable” 

performance. NSE was calculated following Eq. 3.21, being k=2. 

�*F = 1 −	∑ 8Z[\]���"Z^_���:!�̀a�
∑ �Z[\]���"Z[\]@@@@@@@�!�̀a�

                                                       (3.21) 

where n is the length of the discharge time series, Qobs is the observed discharge, QDA is the discharge 

simulated after SSM−DA, and 	bC7R@@@@@@  is the mean value of the observed discharge. NSE focuses on 

the simulation performance of high flows. 

Two additional efficiency criteria, which are simple modifications of NSE were also used on the 

calibration and sensitivity analysis of TOPLATS. These two measures used (NSE1 and NSE0.5) are 

simple modifications of the original NSE equation, designed for the analysis of specific streamflow 

ranges. In NSE1, k = 1 and in NSE0.5, k = 0.5 (Eq. 3.21). In NSE, peak flows simulation accuracy is 

prioritized, whereas NSE1 focuses on average flows and NSE0.5 on low flows. 

The second index used was the relative volumetric error (Pbias), which represents the percent 

volume difference between simulated and observed streamflow fluxes. In this index, negative biases 
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correspond to model under-estimation and positive biases correspond to over-estimation. The index 

was calculated using Eq. 3.22. 

AcdeM�%� = 1 −	∑ �Z^_���"Z[\]�����̀a�
∑ Z[\]����̀a�

∗ 100                                                            (3.22) 

The benefit that can be achieved in streamflow simulation through DA was measured in this study 

through two specific efficiency measures: EffVal and EffOL, based on the efficiency criteria defined for 

DA evaluation in Aubert et al. (2003). EffVal  quantifies the improvement (or worsening) obtained for 

QDA compared to the model validation run (QVal) (Aubert et al., 2003; Brocca et al., 2010b) and is 

calculated as in Eq. 3.23. 

F��hI' =	i1 −	 ∑ �Z^_"Z[\]��jk!a�
∑ �Zlkm"Z[\]��jk!a�

n ∗ 100                                                                    (3.23) 

Similarly, EffOL (Eq. 3.24) measures the positive or negative effect of DA with respect to the open-

loop ensemble run (QOL) (Cenci et al., 2016; Lievens et al., 2015). QOL is calculated as the mean 

value of the 50 members of the ensemble at each time step. 

F��op =	i1 −	∑ �Z^_"Z[\]��jk!a�
∑ �Zqr"Z[\]��jk!a�

n ∗ 100                                                                      (3.24) 

In both EffVal and EffOL, positive values denote improvements, while negative values indicate 

worsening (Brocca et al., 2010b). The analysis of these two efficiency criteria allows one to separately 

account for the added value of the ensemble simulation and SSM information assimilation. 

Finally, the normalized RMSE (NRMSE) was calculated for a more detailed evaluation of the influence 

of DA on streamflow simulation. Similar to EffOL, this index compares efficiency after DA with that of 

open-loop simulations, and it is calculated as in Eq. 3.25, where Pa is the period of analysis. 

�st*F	 = 		
�
u∑ X �

jk∑ 8Z^_� "Z[\]:jk!a�
�u�a�

�
u∑ X �

jk∑ 8Zqr� "Z[\]:jk!a�
�u�a�
                                                                        (3.25) 

Alvarez-Garreton et al. (2015) recommended NRMSE for DA evaluation as it provides information 

about both the spread of the ensemble and the performance the ensemble mean, which is considered 

as the best estimate of the ensemble prediction. Moreover, as it is calculated in linear streamflow 

space, it gives more weight to high flows. NRMSE values below 1 indicate improvements due to DA. 
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3.5. EXPERIMENTAL SET-UP 

This section details the specific experimental set-ups performed on each of the three experimental 

studies that form this thesis: 1) TOPLATS sensitivity analysis and calibration for the three studied 

Spanish catchments, 2) the Data assimilation study with ASCAT SSM product and the statistical 

TOPLATS mode and MISDc model, on Arga and Nestore catchments, and 3) the data assimilation 

of the SMOS 1 km resolution product with TOPLATS fully distributed mode for Cidacos catchment. 

 

3.5.1. TOPLATS sensitivity analysis, calibration and validation. 

3.5.1.1. Model set-up 

TOPLATS requires the following seven climate variables as input: temperature (ºC), relative 

humidity (%), atmospheric pressure (mm), wind speed (m/s), rainfall rate (m/s), longwave downward 

radiation (W/m2) and shortwave downward radiation (W/m2). All of them, except for longwave 

radiation (LWR), were obtained from direct measurements at catchments’ meteo stations; whereas 

LR was estimated from relative humidity (RH) and temperature (T) (Prata, 1996). Each station data 

was assigned to its corresponding percentage of catchment area, based on Thisessen polygons 

distribution. TOPLATS statistical mode was run on both daily and hourly time-scale. For hourly 

simulations, daily-measuring stations data were hourly distributed according to nearby hourly 

measurements. On the TOPLATS statistical mode, different land uses can be specified, but soil is 

considered homogenous. In La Tejeria catchment, five land uses were considered (winter cereals, 

sunflower, fallow land, riparian vegetation and urban areas). Land use input data for Cidacos and 

Arga included nine land use types in order to differentiate irrigated from non-irrigated crops, and to 

distinguish different forest types and their degree of soil coverage. For each type, the 

parameterization required included root depth, leaf area index, albedo, emissivity, stomatal 

resistance, etc. Most of those values were adapted from Crow et al. (2005b), Crow and Wood 

(2002), Houser et al. (1998), Pauwels and Wood (1999), and Peters-Lidard et al. (1997). 
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Specifically, LAI values for the different forest-types and crops, were obtained from Loaiza-Usuga 

and Pauwels (2008), Loosvelt et al. (2014a), Lucau-Danila et al. (2005). Vegetation parameters 

were updated monthly, completing an annual cycle that applied for the whole simulation period (12 

years). In La Tejeria, soil parameter information was obtained from available field observations 

(Casalí et al., 2008). Arga and Cidacos soil parameters were determined based on the soil texture 

class following (Rawls et al., 1982).  

 

3.5.1.2. Sensitivity analysis implementation 

The sensitivity analysis was carried out using SimLab software (EC-JRC, 2008). The SA analysis 

included three steps: 1) sample generation (DoE), 2) model execution and 3) model’s results analysis 

(referred to as Statistical post processor in SimLab). Seven parameters (i.e. k = 7) (Table 3.1) were 

selected for the SA based on previous studies (Table 2.1) and manual testing. MM required 80 runs, 

since n = 10 samples were considered. In contrast, SM required 4096 runs since n = 256 samples 

were used. As this study aimed to evaluate TOPLATS in all its complexity, model sensitivity was 

evaluated in terms of nine variables and efficiency measures, grouped in: 1) main hydrological 

processes (surface runoff, baseflow and evapotranspiration), 2) soil moisture behavior (mean and 

standard deviation of surface zone) and 3) goodness-of-fit (efficiency) measures. 

 

3.5.2. Data assimilation with lumped and semi-distributed models (TOPLATS statistical mode and 

MISDc) 

This section details the specific location, and the spatial (12.5 km) and temporal coverage of the 

ASCAT observation points used for the DA study on the Italian Nestore Basin and Spanish Arga river.  

For this study, specifically the mean SSM values of four pixels were used (2223595, 2218893, 

2218897 and 2214191) for the Nestore catchment, whereas six pixels (2218622, 2218618, 

2213916, 2213912, 2209202, and 2209198) were considered for Arga (Fig. 3.2).  
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In this research, a total study period of 11 years (Oct 2001 - Oct 2012) was considered for both 

catchments, of which 99 months were used for model calibration (Oct 2001 - Jan 2010), and 33 

months were used for validation of and data assimilation (Jan 2010 - Oct 2012) for the two models 

evaluated. Additionally, regarding SSM observations, ASCAT data were used as follows: 1) Jan 2007 

– Jan 2010 data were used for the calibration of re-scaling techniques, and Jan 2010 – Oct 2012 

data were used to validate the re-scaling techniques and for the data assimilation. 

 

 

Fig. 3.2. ASCAT grid overlaid on a) the Nestore catchment and b) the Arga catchment. 

 

3.5.3. Data assimilation with TOPLATS fully distributed mode 

This section describes the steps to prepare and transform the existing spatial information of 

Cidacos catchment, into the required distributed data to be used as model input at 1-km resolution.  

As mentioned on the introduction and objectives sections of this thesis, the Cidacos catchment, 

located in the central area of Navarre province, in northern Spain, was the selected study site for a 

fully distributed mode experimental simulation. Firstly, a simple simulation of Cidacos with the 

distributed mode of TOPLATS was performed (Validation run). And secondly, SMOS soil moisture 

information was assimilated into the model through the Ensemble Kalman Filter DA technique. Thus, 
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in this section all the steps required to transform the existing spatial information into a 1-km resolution 

input data for TOPLATS model are detailed. Figure 3.3 shows a detailed description of the 

topography of the catchment. The flat cultivated areas on the western and southern part of the 

catchment contrast with the mountainous (up to 1,200 m) north-eastern part. The catchment is 

heavily instrumented with 8 weather stations (4 manual, recording in a daily bases, and 4 automatic 

recording in a 10-minutes basis). Only 3 automatic stations are shown in this figure, but fully detailed 

location of all the weather stations is provided in figure 3.7. Location of the main gauging station at 

Olite is also shown, as well as other intermediate gauging stations. Central observation coordinates 

of ASCAT and SMOS satellites are also shown, despite only SMOS data was applied for this 

catchment. Topography of the figure is based on a detailed 25 x 25 m DEM. 

 

 

Fig. 3.3. Topography of Cidacos catchment with a 25 m resolution Digital Elevation Model. Main river 

network, urban areas and gauging stations are also shown. 
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Detailed Land use and Soil type maps of the catchments were freely obtained from the 

Government of Navarre (https://idena.navarra.es/portal/Descargar). Original information showed 

that there were nine soil types within the catchment, being Typic Calcixerepts, Typic Xerorthents and 

Typic Xerofluvents the predominant ones (Fig 3.4). Regarding Land use, the original data from the 

Government of Navarre showed the existence of up to 17 land uses in Cidacos catchment, which 

were reclassified for the sake of simplicity into 9. This number was still sufficient to adequately 

describe the complexity of the catchment, and to discriminate different irrigated/non irrigated cereal 

and woody crops. Also, three different forest types remained differentiated (Fig 3.4). 

 

 

Fig. 3.4. Land use and soil type maps of Cidacos catchment. Main river network is also shown. 

 

As it has been thoughtfully depicted in the TOPLATS description section (2.2.1), the Topographic 

Index plays a key role on the runoff generation and on the soil moisture distribution within the soil 

profile. The topographic Index value, calculated from the original 25 x 25 m resolution Digital 

Elevation Model is shown in figure 3.5. Cells with higher TI values concentrate on the western and 

southern part of the catchment, as well as in the river network that descend through the steepest 

north-eastern areas. High TI locations are characterized by low slopes and large upstream areas, 
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and indicate zones with higher susceptibility to be saturated and thus prone to generate surface 

runoff.  

 

 

Fig. 3.5. Topographic Index, calculated from a 25 m resolution DEM 

 

Figure 3.6a shows the location (pixel’s center and grid) of a 30 x 30 SMOS L4 product covering 

the Cidacos catchment area (ETRS89 projection). On figure 3.6b the Topographic index calculated 

for the 1-km resolution grid used as input for TOPLATS distributed mode can be seen. This map can 

be visually compared to the one obtained from the 25 m resolution. In figure 3.6b brown colors 

indicate areas with TI below 10, while green areas identify pixels with TI over 10. Cells with TI over 

12 locate in flat areas close to the outlet of the catchment. To assign Land use and Soil type to the 

new 1-km cells, based on the original 25 m cells, the majority method was used, which identifies the 

land use and soil type that has the largest number of 25 m cells within the new 1 km cell. This was 

done for land use (Fig. 3.6c) and soil type (Fig. 3.6d). This scale resolution change resulted in a 

reduction of the soil types and land uses presented in the new grid, as some of them were not majority 
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in any 1 km-pixel. Thus, only 7 out of nine land used were assigned for distributed modeling. 

Similarly, only 5 soil types were finally used for the distributed modelling of the catchment. Crops in 

figure 3.6c are shown in yellow and orange colors. These maps aim to illustrate catchment areas 

with TI over 10 and to locate cultivated areas, as part of the DA experiment focused on them. 

 

 

Fig. 3.6. a) Location of SMOS 1-km resolution grid over Cidacos catchment. A cell grid of 30 x 30 km covering 

the area is shown. b) Topographic Index calculated for the 1 km cells. c) Assignment of Land Use (majority 

method) to the cells (cultivated cells shown in orange and yellow). d) Assignment of Soil type (majority method 

to the cells. Maps are shown in ETRS89 coordinate system. Legends not shown in the figure for clarity issues, 

but more detailed information can be found in figure 3.4. 

 

On this data assimilation study, the weather data was also given as fully distributed input. As 

shown in figure 3.7a, rainfall data was assigned to each specific cell following the Thiessen method 

that assigns to each cell, the rainfall from its closest station. For that, 8 weather recording stations, 
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four manual (orange) and four automatic (red dots) were used. Daily rainfall data measured in the 

manual stations were distributed to hourly time-steps according to close-by automatic (10 minutes 

basis) observations. The remaining variables, already described in section 3.5.1.1 were also 

assigned following Thisessen method (Fig 3.7b). In this case, variable values were obtained from the 

four automatic weather stations. 

 

 

Fig. 3.7.  Distributed input of weather data from manual (orange dots) and automatic weather stations (red 

dots). a) Assignation to the cells of 8 rainfall recording stations. b) The remaining variables were obtained and 

assigned to the cells also following Thiessen criteria.  
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CHAPTER 4. RESULTS AND DISCUSSION 

This results chapter is divided into 4 sections. The contents of the first and the second section were 

partly published in Loizu et al., (2016). The first (section 4.1) presents the results of the TOPLATS 

sensitivity analysis, while the second (section 4.2) includes the model calibration and the evaluation 

of its performance on three catchments of different size. On the other hand, sections 4.3 and 4.4 

show the results of the two data assimilation studies carried out along this PhD thesis. Section 4.3 

presents the results of ASCAT assimilation into TOPLATS and MISDc, research under review in (Loizu 

et al., 2017), and section 4.4 displays the results of a downscaled SMOS assimilation into TOPLATS 

in distributed mode, research to be submitted (Loizu et al., 2017b).  

 

4.1. SENSITIVITY ANALYSIS 

Plots presented in this section (Figs. 4.1 - 4.3) show results from MoM (left) and SoM (right) 

analysis of daily TOPLATS simulations. Output variables are shown in the y-axis for the three 

catchments and the evaluated TOPLATS parameters in the x-axis. Circle size represents individual 

parameter sensitivity (µ* in MoM and Si in SoM) while blue color intensity refers to total-order 

sensitivity (σ in MoM and STi in SoM), which includes parameter interaction.  

 

4.1.1. Hydrological processes  

SA results indicated that parameter f had the overall largest influence on hydrological processes 

sensitivity. It was the main parameter responsible of hydrological processes in La Tejeria, and shared 

responsibility with B in Cidacos and with ψc in Arga.  

Both methods, MoM and SoM, identified parameter f as the one having the largest influence on 

surface runoff (SR in Fig.4.1) generation in La Tejeria. Parameter f was also the most influential in 

Cidacos, where the second most sensitive was ψc. MoM and SoM also agreed in Arga, identifying f 
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and ψc as the most influential parameters, but here also Q0 seemed to have some relevance too 

according to MoM. Some differences were found among catchments in terms of baseflow sensitivity 

(BF in Fig.4.1), as different parameters appeared as the most influential ones: f in La Tejeria, B in 

Cidacos and ψc in Arga. Strictly speaking ψc shared its relevance with B on Arga according to SoM. 

All in all, these 3 parameters were the most significant ones in all catchments. Results obtained with 

SoM depicted stronger differences between parameters in terms of baseflow sensitivity, whereas MoM 

did not show significant differences among most parameters. Evapotranspiration outputs (ET in 

Fig.4.1) were clearly sensitive to f in La Tejeria and Arga, while in Cidacos up to four parameters 

shared a similar influence degree: B, ψc, f and Ks. In terms of parameter interaction for the three 

processes, ψc and f had larger interaction levels. This was particularly notorious for ψc in Arga, 

according to MoM, and for f in all catchments according to SoM.  

 

 

Fig. 4.1. Sensitivity analysis results of main hydrological processes: surface runoff (SR), baseflow (BF) and 

evapotranspiration (ET) using MoM (left) and SoM (right) methods. Parameter sensitivity (µ* and Si) and 

interaction (σ and STi) are shown. MoM results expressed in mm/day and SoM results expressed as a decimal 

of the total variance.  

 

When comparing the results obtained with MoM and SoM, in most cases both methods came up 

with the same set of most influential parameters, but some results showed different patterns. Although 

MoM gave four (out of 7) parameters a similar degree of sensitivity in many cases, SoM was able to 
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identify more clearly the most influential pair of parameters. This discrepancy on secondary level 

parameters identification was clearly observed when comparing parameters B and ψc with 

parameters θs and Ks. Despite having similar individual sensitivities in MoM, there were relevant 

differences among them on SoM. Thus, SoM was able to differentiate more clearly secondary 

parameters, especially in BF and ET sensitivity analysis. 

 

4.1.2. Soil Moisture  

 

Fig. 4.2. Sensitivity analysis results of Surface Zone (SZ, 5 cm) mean soil moisture (θm), and its standard 

deviation (θSD) using MoM (left) and SoM (right) methods. Parameter sensitivity (µ* and Si) and interaction (σ 

and STi) are shown. MoM results expressed in mm3 mm-3 and SoM results expressed as a decimal of the total 

variance. 

 

Soil moisture sensitivity analysis results did not show relevant differences between MoM and SoM 

despite their different computational requirements (Fig. 4.2). Both were capable of clearly identifying 

B as the main parameter affecting surface zone soil moisture mean value (θm) outputs. Regardless of 

some minor disparities on secondary parameters estimation, both agreed on the estimation of θs and 

Ks as the second and third parameters in terms of individual sensitivity. Despite differences in 

catchment size, θm sensitivity patterns for the three studied catchments were found to be very similar. 

Pauwels et al. (2009) concluded that Ks, B and ψc were the three most important soil parameters on 

the determination of soil moisture content. These results were similar to the ones obtained here, but 
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differed on the role attributed to ψc and θs. On a SA following a completely different approach, 

Loosvelt et al., (2014b) found that TOPLATS soil moisture output was mostly influenced by the 

residual soil moisture content (θr), θs, ψc, B and Ks. In their study, Loosvelt et al., (2014b) were able 

to identify areas within the parameter range with different level of sensitivity, related to the shape of 

the soil moisture retention curve. They found the highest sensitivity for low values of B, ψc, θs, and for 

high θr values. 

Regarding soil moisture dynamics (i.e. surface zone soil moisture standard deviation (θSD), Fig. 

4.2) f was identified as the most influential parameter, followed by Ks and θs. These results were 

clearer with SoM, which seemed to take advantage of its more detailed setup, so primary, secondary 

and tertiary parameters could be more plainly distinguished from non-influential ones. No significant 

differences were found among catchments in terms of θSD sensitivity. As shown in Fig. 4.2, B and Ks 

presented the highest level of interaction with other parameters on model θm output, and f in soil 

moisture dynamics. 

 

4.1.3. Model efficiency  

 

Fig. 4.3. Sensitivity analysis results of model efficiency (NSE1, NSE, NSE0.5 and Pbias) using MoM (left) and 

SoM (right) methods. Parameter sensitivity (µ* and Si) and interaction (σ and STi) are shown. MoM results 

expressed in NSE coefficient value and SoM results expressed as a decimal of the total variance. 
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In this section, sensitivity results of four efficiency measures are described. These results offered 

notable differences between catchments, where diverse climate regimes seemed to affect strongly 

the efficiency results obtained (Fig. 4.3). Furthermore, differences between MoM and SoM were 

larger than in the previous analyses. 

As a general inference of the SA of efficiency measurements, it can be stated that 3 parameters 

appeared to be responsible for the largest fraction of model sensitivity to medium, high and low flow 

simulation (Fig. 4.3): Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and 

Hydraulic conductivity decay (f). An important remark extracted from this analysis was the similarity 

of the wettest catchments (i.e. Arga and La Tejeria), where ψc was globally more influential than in 

the dryer Cidacos, where B gained importance. Few discrepancies were found among methods, but 

for instance although ψc was the second most influential parameter in NSE in Cidacos according to 

MoM, that place was taken by B according to SoM.   

NSE1, (i.e. efficiency for average flows) was mainly controlled by ψc and f in La Tejeria and Arga 

(Fig. 4.3). In Cidacos, in addition to those two parameters, MoM and SoM identified B as an 

important parameter as well. As in previous analyses, SoM detected more clearly non-influential 

parameters (e.g. θs or rmin). Regarding the efficiency of high flows simulation (i.e. NSE, Fig. 4.3) results 

could be summarized as follows: f was the key factor affecting NSE in La Tejeria, whereas B, ψc and 

f shared similar individual effects in Cidacos and ψc and f accounted for most of the sensitivity in 

Arga. Sensitivity to low flow simulation (i.e. NSE0.5, Fig. 4.3) was mostly similar to NSE1.  Lastly, Pbias 

was primarily affected by f in La Tejeria and by B and f in Cidacos and Arga.   

Regarding parameter interactions on the four efficiency measures, f was the parameter that 

showed the largest interaction with the rest. In general, it could be observed (Fig. 4.3) that B, ψc, 

and f shared the highest levels of interaction. In La Tejeria and Arga those interactions affected 

mainly ψc and f. On the other hand, those interactions were found to be especially intense between 

B and f in Cidacos.  
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4.1.4. SA global remarks 

Previous studies commented on weakness and advantages of MoM and SoM for hydrological 

models analysis (Shin et al., 2013). According to Campolongo and Saltelli (1997) there could be a 

discrepancy between the identification of parameters with both algorithms. However, in this study 

both methods generally agreed, and identified the same set of most influential parameters on surface 

runoff (f and ψc), baseflow (f, B and ψc) and evapotranspiration processes (f and four other secondary 

parameters, B, ψc, θs, Ks). They also showed agreement on finding the most sensitive parameter 

responsible of mean soil moisture (B) and its variations (f). However, some qualitative differences 

were found on the SA of efficiency.  

Parameters identified here as the most influential ones have a clear physical meaning, but some 

of them, particularly soil parameters, participate on the calculations of several water fluxes, which 

complicates the understanding of their particular influence on each model output. In any case, 

parameters Q0 and f seem to be, together with the varying WTD, the controlling factors of the 

generated baseflow amount. As observed from the specific formulation detailed in Famiglietti and 

Wood, (1994), while Q0 is responsible of the magnitude of the generated baseflow, parameter f 

defines the shape of the evacuation flow, leading to faster (low f values) or slower (higher f) 

evacuation of subsurface flow from saturated areas in the catchment. Parameter f controls this way 

the availability of water in the soil for other processes, such as evapotranspiration, being thus the 

main responsible of soil moisture patterns in the catchments (including θSD).  

As mentioned above, the interaction of parameters gets more complex when soil parameters are 

evaluated. In TOPLATS, the soil is modelled through the equations of Brooks and Corey (1964), that 

numerically calculate the soil moisture content θm depending on B, ψc, θr, θs and the matric head (ψ) 

(Famiglietti and Wood, 1994; Loosvelt et al., 2014b). As it was observed from the SA results, B was 

the most influential parameter on θm. This parameter is the exponent value regulating the θm equation 

in TOPLATS. Higher B values will thus lead to higher mean soil moisture conditions. Also, larger θs 

and ψc values will increase soil moisture mean content. 
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Parameter ψc plays an important role on the partitioning between infiltration and runoff 

generation. This parameter’s value defines a discontinuity in TOPLATS when ψ reaches ψc. When 

this point is reached (usually during the wettest winter days), saturation excess runoff is activated and 

soil moisture and conductivity values are modified accordingly. In any case parameter interactions 

in TOPLATS are complex, as diffusive flux from SZ to TZ is also controlled by Ks, θs, θr, and B (Peters-

Lidard et al., 1997) and the same parameters take part on the drainage calculations as well 

(Famiglietti and Wood, 1994). 

Globally, differences among methods can be numerically summarized as follows: 1) in most of 

the cases evaluated in this study (81%) MoM and SoM identified the same parameter as the most 

influential, being this agreement particularly strong on soil moisture SA, but also on other main 

hydrological processes and on efficiency and Pbias; 2) in 67% of the cases tested both methods 

agreed at identifying the same pair of most influential parameters; and 3) in the identification of the 

three most influential parameters the agreement of both SA techniques was higher on soil moisture 

(83%), and hydrological processes (78%), but lower on efficiencies and Pbias (50%). This results are 

in agreement with Wainwright et al. (2014), who presented another comparison of MoM and SoM 

and concluded that both methods provided consistent parameter importance rankings when used 

on a reservoir-aquitard-aquifer model. However, as also investigated by Gan et al. (2014), clearer 

qualitative differences between secondary parameters were provided by SoM.  
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4.2. CALIBRATION AND PERFORMANCE OF TOPLATS 

4.2.1. TOPLATS calibration 

4.2.1.1.  Multi-Start Powell Method performance 

TOPLATS calibration dimensionality was reduced to just 6 parameters thanks to the SA analysis 

that identified parameter rmin as uninfluential to most efficiency and hydrological model outputs, so 

it was not included on the MSPM calibration. The results of the calibration obtained with the MSPM 

technique on the different catchments are reported in Table 4.1, showing NSE1, NSE and Pbias 

median values (of the 10 optimization runs) at initial (IP) and final optimal points (OP).  

 

Table 4.1. Improvement of efficiencies and Pbias reduction achieved by MSPM on La Tejeria, Cidacos and 

Arga catchments. Values presented on the table are median values of the 10 (8 MSPM and 2 refinement) 

optimization runs obtained with the Initial Parameter (IP) values and Optimal Parameter (OP) values.  

Catchment  NSE1 NSE Pbias (%) 

  IP OP IP OP IP OP 

1. La Tejeria 0.40 0.68 0.27 0.82 15 3 

2. Cidacos -0.41 0.50 -1.51 0.57 112 4 

3. Arga 0.37 0.49 0.38 0.57 5 3 

 

The results obtained clearly identified Cidacos as the catchment where MSPM improved TOPLATS 

performance the most. IP efficiency values were very low in this catchment, indicating that parameter 

combinations far from the optimal values had a stronger influence on efficiency results than in the 

other two catchments. In La Tejeria and Arga, most IP value sets, even the farthest from the final OP 

values, offered positive NSE values. For Cidacos, extremely large Pbias (112%) values were obtained 

at IP points. This value dropped to 4% after optimization, showing that using NSE1 as the optimization 

criteria also resulted in a well-balanced volume simulation. These strong Pbias reductions in Cidacos 

contrasted with the more modest Pbias improvements in the other two catchments (12% and 2% in 

La Tejeria and Arga, respectively), where IP Pbias values were already moderate or even low. 
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Optimization results showed that TOPLATS offered a more stable behavior on wetter catchments (i.e. 

Arga), where even before calibration, results were not far from optimal ranges. On the other hand, 

efficiency results before optimization (IP) showed a large variability in La Tejeria, and extremely large 

in Cidacos (not shown).  

 

4.2.1.2. Optimal parameter values 

Optimal (OP) and Best performing parameter values (BP) found by MSPM are shown in Fig. 4.4. 

As shown in figure 3.1, BP were the parameter values offering the highest NSE after refinement 

optimization runs 9 and 10. For simplification and to allow catchment behavior comparison, only 

CON approach values are shown in this section. Parameter value ranges to be explored by the 

algorithm were defined according to the literature on TOPLATS calibration (Goegebeur and Pauwels, 

2007; Loaiza-Usuga and Pauwels, 2008; Peters-Lidard et al., 1997). 

The first parameter evaluated was B, whose BP values for La Tejeria and Arga were found at 

values close to one, while in Cidacos it was substantially lower (0.41). Regarding ψc, despite MSPM 

ended on some local minima in some of the optimization runs, in all cases the BP ψc value was within 

the 0.1 – 0.4 m range. In general, in the three catchments, highest efficiencies were found as a 

combination of high B and low ψc values (despite some optimizations ending at the opposite 

combination, low B and high ψc). Saturated soil moisture (θs) yielded different BP values in La Tejeria, 

with a low optimal θs, and Cidacos and Arga, where optimal θs was over 0.55 m3/m3.  

Ks, had its BP within 1e-4 and 1e-5 m/s for La Tejeria and Arga, but in Cidacos these values were 

higher (between 1e-3 and 1e-4 m/s) (Fig. 4.4). Differently from some other parameters (i.e. ψc or f), 

optimal Ks values were always located on a small range of the defined parameter search space. 

Subsurface flow at complete saturation (Q0) optimal values increased as catchment area increased. 

Similarly to Ks, optimal Q0 values (OP) were clearly identified on specific areas (value range). Finally, 

for the decay parameter (f), which is key for event recession flow adjustment, a strong parameter 

interaction was  found, resulting in similar efficiencies with varied f values, but BP values were close 
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to 8.0 in La Tejeria and Arga. In Cidacos lower f values were found, which is related to a more rapid 

decrease of baseflow in this catchment.  

 

 

Fig. 4.4. TOPLATS Optimal (OP) and Best Performing (BP) parameter values obtained through MSPM model 

calibration of daily streamflow simulation with the conventional (CON) approach. Red lines indicate the 

allowed optimization parameter search range. Results for La Tejeria (TEJ), Cidacos (CID) and Arga (ARG) 

catchments. 

 

BP values obtained in this study are in general in accordance with parameter values reported in 

other studies, but significant differences were found on Ks values. Other TOPLATS studies, where 

parameter values were detailed include Loaiza-Usuga and Pauwels (2008), who calibrated three 

parameters obtaining the following optimum values: B=0.72; and ψc =0.7 m, and Ks=3.8e-6 m/s. 
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They also found an optimal range for other two calibrated parameters at different locations:  f (0.01-

1.2 m-1) and Q0 (2.4 – 61 mm/day). Loosvelt et al., (2015)  used, after calibration, f = 2.5 m-1, on 

a 91 km2 catchment.  

On a separate study, Pauwels et al. (2009) reported the following parameter value ranges for 

different soil types: B (0.47 - 0.65), ψc (0.35 - 0.45 m) and Ks (2.8e-6 - 3.5e-6 m/s). Parameter values 

presented in Loosvelt et al. (2011), for different soil types were in the following ranges: B (0.15 - 

0.69), ψc (0.2 - 0.94 m) and Ks (5.8e-7 – 1.1e-5 m/s). Altogether, it seems that substantially different 

parameter values combinations can lead to similar optimal efficiencies, probably due to a significant 

parameter interaction as depicted on the sensitivity analysis (section 4.1). 

 

4.2.1.3. Comparison of conventional (CON) and random (RND) calibration approach on CAL/VAL 
results 

TOPLATS daily efficiencies and Pbias results after CAL and VAL for both CON and RND strategies 

are presented in Table 4.2. Simulations of La Tejeria offered similar NSE results when CON and 

RND strategies were applied, although best efficiency in calibration was obtained with CON (0.82). 

Similarly, validation NSE results were over 0.7 in this catchment for both strategies and Pbias results 

were low, below 5% in all cases. Results for Arga were similar, with little differences between CON 

and RND strategies. In Arga, the conventional approach provided more stable NSE results in CAL 

(0.63) and VAL (0.60), whereas variation was larger in RND approach (0.71/0.54). Total simulated 

volumes were close to the observed, with Pbias lower than 5% on calibration and 10% on validation. 
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Table 4.2. Daily streamflow simulation efficiencies (NSE1 and NSE) and bias results achieved after optimization 

Catchment  Calibration type NSE1 NSE Pbias 

   CAL VAL CAL VAL CAL VAL 

   -- -- -- -- % % 

1.  La Tejeria 
CON 0.71 0.65 0.82 0.72 2 2 

RND 0.64 0.69 0.77 0.73 -5 -4 

2.  Cidacos 
CON 0.53 0.35 0.61 0.09 2 -77 

RND 0.54 0.39 0.91 0.25 8 -3 

3.  Arga 
CON 0.50 0.49 0.63 0.60 -3 -9 

RND 0.53 0.46 0.71 0.54 2 -5 

 

 

In Cidacos, due to the irregularity of its rainfall, extreme events seemed to have a large influence 

on the NSE. CON calibration achieved a NSE1 of 0.53 and a corresponding NSE of 0.61 with a 

low Pbias (2%). But, in this case, validation results were poor, due to an abnormal decrease in 

simulated water table depth (WTD) that caused a strong streamflow underestimation (77%). The 

validation period was notably drier than the calibration one, and this affected the results strongly. 

The RND approach overcame this issue and improved results substantially in Cidacos reaching a 

NSE1 of 0.54 and a NSE of 0.91 for the calibration period. Validation yielded then (RND) efficiency 

values of 0.39 and 0.25 (for NSE1 and NSE, respectively) and a remarkable reduction in Pbias from 

77 to 3%. BP parameter values identified by this second approach helped TOPLATS to perform in a 

more consistent way. The deficiency of this method was that it was not able to properly simulate 

extreme flows during validation, but this was principally caused by just 3 single events (later shown 

in fig. 4.8), where TOPLATS underestimated streamflow notably. 

TOPLATS streamflow simulation efficiency values obtained here are similar to those reported by 

Bormann et al. (2007), on a 693 km2 wet catchment, with a daily NSE results of 0.66 and 0.61 for 

CAL and VAL respectively. Two parameters were manually calibrated on that study, reaching a 
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simulation Pbias below 3%. Bormann et al. (2007) also noted the influence that hydroclimatic 

conditions had on model’s CAL/VAL results. This author signaled that large differences on 

evapotranspiration, precipitation and discharge among CAL/VAL periods limited the possibility to 

achieve proper CAL/VAL results. The RND strategy applied here guarantees that enough wet weather 

data is included on the calibration period, leading to a better and more balanced model 

performance. This conclusion was also noted by Anctil et al. (2004). Also in accordance with our 

results in Mediterranean catchments, Kim and Kaluarachchi (2009) found that the number of high-

flow months included on the calibration data had a great influence on model efficiency.  

One of the points of interests of this study was to evaluate the performance of the model on 

different climate conditions. Difficulties faced in Cidacos calibration and validation  also relate with 

Perrin et al. (2007) and Li et al. (2010), who concluded that stable parameter values proved more 

difficult to reach in dry catchments (in Cidacos unstable parameter values were obtained on CON 

calibration). Also Li et al. (2010) used random selection of CAL/VAL periods of different lengths, and 

concluded that humid catchments required shorter CAL/VAL periods than dry ones to obtain stable 

parameter values, in line with our enhanced results with RND approach in dry catchments.  
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4.2.2. Analysis of model outputs 

4.2.2.1. Soil Moisture 

 

Fig. 4.5. Simulated soil moisture content (θ) (cm3/cm3) in the Surface Zone (SZ) and in the Transmission Zone 

(TZ) for a) La Tejeria, b) Cidacos and c) Arga catchments.  

 

Figure 4.5 presents daily simulated soil moisture (θ) behavior in relation with recorded rainfall. 

Following the best results detailed in previous 4.2.1.3 section, for La Tejeria and Arga the results 

shown in Fig.4.5 and Fig.4.6 are those obtained with CON calibration approach, while Cidacos’s 

ones correspond to RND strategy. The plot represents the whole period studied (i.e. including 

CAL/VAL and warming-up periods). It can be observed that within each catchment, the deeper TZ 



 

 108 

     

kept higher soil moisture contents than the SZ for most part of the year. This difference was higher 

during winter periods and lower during summer when θ dropped in both layers.   

Simulated mean soil moisture (θm) values in the SZ were 0.13 cm3 cm-3 in La Tejeria, 0.13 cm3 

cm-3 in Cidacos and 0.24 cm3 cm-3 in Arga. La Tejeria presented the smallest mean value difference 

between layers (5%), whereas that difference reached 9% in Cidacos and Arga. For the TZ θm values 

were 0.18 cm3 cm-3 in La Tejeria, 0.22 cm3 cm-3 in Cidacos and 0.33 cm3 cm-3 in Arga. During 

summer periods, larger differences among layers were found in Cidacos. Differences between Arga 

(with the highest θm in both layers) and the other two catchments were especially remarkable on the 

SZ. In our study, obtained soil moisture values were, globally, low in comparison with other studies 

(Goegebeur and Pauwels, 2007; Loosvelt et al., 2011). Soil moisture fluctuation (θSD) was in all the 

catchments larger in TZ than in SZ. In both layers, largest fluctuations were found in Arga catchment. 

θSD values in La Tejeria were 0.03 cm3 cm-3 (SZ) and 0.06 cm3 cm-3 (TZ); in Cidacos 0.03 cm3 cm-3 

and 0.04 cm3 cm-3; and in Arga 0.06 cm3 cm-3 and 0.07 cm3 cm-3. 

Regarding the proportion of saturated catchment area (Fig. 4.6), it can be observed that intense 

and persistent rainfall events resulted in similar maximum percentages of saturated catchment in La 

Tejeria (43.9%), Cidacos (37.3%) and Arga (37.4%). However, mean and percentile analysis of 

saturation degrees showed large variation among catchments (not shown). In Arga, up to 24% of 

the simulation days presented more than 10% of its area as fully saturated. In La Tejeria, that 

saturation level (10%) was reached only during 6% of the days and in Cidacos in 3%. Mean value 

of saturated area (%) in La Tejeria, Cidacos and Arga were 1.5 %, 1.7 % and 6.7 % respectively. 

The largest proportion of saturated areas was found in Arga, about four times the values obtained 

for the other 2 catchments. Highest saturation variability rates were also found in Arga, with a 

standard deviation of 6%, while variation was 4.3 % in La Tejeria and 3.3 % in Cidacos. 
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Fig. 4.6. TOPLATS daily simulated plot: 1) water table depth (m), and 2) Percentage of catchment area with 

fully saturated soil profile (%) for a) La Tejeria, b) Cidacos and c) Arga catchments.  

 

Figure 4.6 also depicts the water table depth, whose principal statistical measures (mean, WTDm, 

and standard deviation, WTDSD) are detailed as follows: WTDm in La Tejeria was 0.71 m, in Cidacos 

1.14 m and in Arga 0.63 m. Regarding water table variation, WTDSD in La Tejeria was 0.27 m, in 

Cidacos 0.31 m and in Arga 0.19 m. As in Fig.4.5, in Fig.4.6 La Tejeria and Arga results are those 

obtained with CON calibration approach, while Cidacos’s ones correspond to RND strategy. As it 

was commented for Table 4.2, and can be observed in Fig.4.6, RND approach was able to maintain 

a stable behavior of WTD in Cidacos. Water table depth, especially its minimum values (i.e. closer 

to surface, mainly during persistent winter events) is a key factor in TOPLATS runoff generation. When 
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WTD reaches the value of ψc (m), simulated runoff increases non-linearly, affecting remarkably 

simulation efficiency results and model performance. Cidacos, the driest catchment had the deepest 

WTDm (1.14 m) and also the highest WTDSD. Arga had the most stable WTD with a standard deviation 

of just 0.19 m.  

 

4.2.2.2. Daily streamflow  

Results presented hereafter (Figs 4.7, 4.8 and 4.9) for La Tejeria and Arga also correspond to 

the conventional CAL/VAL strategy, while Cidacos results are the ones obtained with RND. 

Streamflow results are presented in three types of plots:  time series (Fig. 4.7), simulated vs observed 

scatter plots (Fig. 4.8) and streamflow duration curves (Fig. 4.9) to allow for a detailed TOPLATS 

performance analysis. On the time-series plot (Fig.4.7) it can be observed that almost no runoff was 

simulated during the warming-up one-year period in all three catchments. This was due to the initial 

value defined for the water table depth (2 m). Shallower initial WTD values resulted in a more rapid 

model response but worse overall results for the remaining period. Large inter-annual variability 

(Fig.4.7) was observed in terms of streamflow in la Tejeria and Cidacos. Despite this large variability, 

TOPLATS was able to respond adequately, particularly in La Tejeria. Streamflow behavior was much 

more stable in Arga, allowing better model response, but TOPLATS faced difficulties on Cidacos 

extreme storm events simulation. 
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Fig. 4.7. Daily rainfall, observed streamflow and simulated streamflow in: a) La Tejeria, b) Cidacos and c) 

Arga.  

 

 

Fig. 4.8. Scatter plot of daily observed and simulated streamflow (mm/day) in: a) La Tejeria, b) Cidacos and 

c) Arga.  
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Scatter plots (Fig.4.8) illustrate very clearly how few streamflow peaks affected NSE results. In 

Cidacos, two high peak flows were very accurately simulated during the calibration period, and 

account large responsibility for the NSE = 0.91 efficiency obtained (Table 4.2). But on the other 

hand, main peak events during validation were poorly simulated (Cidacos validation: NSE = 0.25). 

NSE validation efficiency results were extremely affected by just 7 days data with large simulation 

miscalculations (out of a 4,383 days simulation), while validation Pbias remained very low (3%). In 

La Tejeria and Arga there were no such differences in CAL and VAL events and NSE results were 

more balanced (Table 4.2). 

 

 

Fig. 4.9. Daily streamflow duration curves (observed vs simulated) in a) La Tejeria, b) Cidacos, c) Arga and d) 

catchments comparison.  
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Daily simulated streamflow was also evaluated according to detailed specific flow ranges (high 

flows, mid-range flows and low flows) in flow duration curves comparing simulated and observed 

flows (Fig. 4.9). Main divergences were found in low rate flows in La Tejeria, where TOPLATS clearly 

over-estimated observed streamflows. This was apparent, since up to 14% of the studied days (mostly 

summer periods) no streamflow was recorded at all, but TOPLATS kept simulating small streamflow 

amounts. In any case, this overestimation of low flows, has a very limited impact on the total volume 

and efficiency results. In La Tejeria, also a slight underestimation of modeled flows was found during 

catchment's moist conditions (10 to 50%). In Cidacos, largest discrepancies (underestimation) 

between simulated and observed values were found on the 40% of lower-flow days. The same pattern 

applied for most of the days, where TOPLATS underestimated most of the flow ranges, yet the 

difference decreased towards high flows. During the driest 1.5% of the days, no streamflow was 

observed in Cidacos, so the model showed overestimation on that range (right tale of the curve, 

97%-100%). Arga presented the best agreement between simulated and observed flows in all 

streamflow level ranges but TOPLATS tended to underestimate mid-range flows. When all catchment 

results are plotted together, it is observed that Arga (wettest catchment) patterns clearly differentiate 

from the other two due to its highest rainfall conditions. On the highest streamflow data range, it 

could be observed that Arga had the most intense (mm/day) runoff events and Cidacos the least. 

High flow rate range, as presented in the catchments’ comparative plot of Fig. 4.9, include the 10% 

of the days with the highest streamflow values (438 days). 

 

4.2.2.3. Monthly streamflow  

Daily observed and simulated streamflow values were aggregated on a monthly basis to enable 

a seasonal analysis. These monthly results are useful to understand and evaluate model performance 

at a seasonal time-scale, but also for different modeling purposes (e.g. for hydrological resource 

management). Three types of monthly streamflow simulation results are shown in Figure 4.10: 1) 

monthly NSE, 2) monthly Pbias (%) and 3) Volume bias (mm/month).  
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Fig. 4.10. Comparison of monthly observed and simulated streamflow results: 1) NSE (dots), 2) Pbias (%) (bar 

plot), and 3) volume bias (mm) (line plot) results in La Tejeria, Cidacos and Arga. 

 

Results obtained in La Tejeria showed a high 0.94 overall NSE value. In nine out of twelve months, 

results were over 0.9 in terms of NSE. The lowest efficiency was found in October (0.6), at the 

beginning of the hydrological year. The largest Pbias was found during the simulation of summer 

and autumn months, when intense rainfall events occurred while TOPLATS simulated water table was 

at its deeper values, and saturated catchment area values were low. Since Pbias is expressed as 

percentage, its largest values were obtained in august, when streamflow was largely overestimated 
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(77%). However, this high Pbias value corresponded with very minor errors in volume units 

(mm/month), as commented for daily results (Fig. 4.9). Largest Volume bias in La Tejeria were 

obtained in the March-April (spring) period, where TOPLATS underestimated monthly streamflow. 

That streamflow underestimation in March months caused a lower (0.80) NSE.  

NSE monthly median was 0.74 in Cidacos. In this catchment, two different periods could be 

distinguished in terms of monthly efficiency results. First, from December to April, TOPLATS offered 

a very accurate performance, reaching NSE values over 0.9 for each month of that winter-spring five 

months period. On the contrary, the model was unable to properly simulate low flows typical in 

August, September and October. In Cidacos, the model clearly tended to overestimate streamflow 

for dry periods. Mean monthly overestimation from June to October was 57%. In terms of streamflow 

volumetric error, largest discrepancies, but still rather low, were found in March and April, when the 

model underestimated flow volumes. That systematic underestimation was similarly observed for the 

whole winter-spring period. 

Out of the three evaluated catchments, TOPLATS performed worst in Arga, in terms of monthly 

efficiency results. Monthly median NSE in Arga was 0.60. This catchment showed the largest NSE 

variability between months, offering its best NSE results in February (0.85) and March (0.9). Results 

indicated a clear pattern of modeled overestimation during winter months (December – January - 

February) and underestimation in autumn (October-November) and spring (March-April-May).  

When daily and monthly NSE were compared, it was observed that best results in both cases were 

obtained in La Tejeria. In Cidacos, monthly results outperformed clearly daily NSE, while the opposite 

occurred in Arga, where very low efficiencies, mainly in November and December caused low 

monthly NSE. Bormann (2006b) also performed TOPLATS applications in several catchments in 

Germany, ranging from 63 to 134 km2. Daily NSE results presented, varied from 0.59 to 0.73 on 

the calibration period and from 0.52 to 0.69 on validation years. Efficiency results were found to 

increase on that study, reaching 0.76-0.85 on weekly analysis and 0.82-0.90 on monthly 

evaluation. 
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4.2.2.4. Hourly streamflow simulation  

Hourly simulation of the catchments was also similarly performed for the same 12 years (2000-

2012) period, with a total of 96,432 hours simulation. At this time-scale, only the CON calibration 

period method was applied, as no abnormal behavior of the model was found in any of the 

catchments. Similarly to the daily analysis, the first year was considered as warming-up. Hourly 

streamflow simulated values (mm/h) versus observed data (mm/h) are first presented (Fig. 4.11) in 

a scatter plot. While in La Tejeria no clear pattern of over or under-estimation could be identified, in 

Cidacos and Arga extreme events were significantly underestimated (Fig. 4.11). As observed in figure 

4.11, for most of the time-series, Cidacos had the lowest streamflow values (most points below 0.5 

mm/h), but also the highest intensity events were observed in that catchment.  

 

Table 4.3. Hourly streamflow simulation efficiency (NSE1 and NSE) and bias results achieved after optimization 

with the conventional (CON) calibration approach 

Catchment  NSE1 NSE Pbias 

  CAL VAL CAL VAL CAL VAL 

  -- -- -- -- % % 

1.  La Tejeria 0.56 0.58 0.55 0.66 8 5 

2.  Cidacos 0.48 0.51 0.41 0.77 -6 8 

3.  Arga 0.51 0.52 0.64 0.66 1 4 

 

 

Best NSE1 results obtained for hourly calibration period (Table 4.3) were similar to their 

corresponding daily results (Table 4.2) in Cidacos (0.48 vs 0.53) and Arga (0.51 vs 0.50). On the 

contrary, in La Tejeria, NSE1 was significantly lower for hourly calibration (0.56 vs 0.71). For the 

validation period, NSE1 hourly results were notably better in Cidacos (0.51 vs 0.35) and slightly 

better Arga (0.52 vs 0.49), but hourly results performed worse in La Tejeria (0.58 vs 0.65).  
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Fig. 4.11. Scatter plot of hourly observed and simulated streamflow (mm/h) in: a) La Tejeria, b) Cidacos and 

c) Arga.  

 

Analysis of NSE performance concluded that in La Tejeria daily simulations outperformed 

substantially hourly simulations. This results can be explained by the small size of La Tejeria, with very 

short runoff evacuation times (hours), which may not be properly captured by the model when run 

at hourly time step, even though the model was added a specific routing capability. In Cidacos, the 

NSE value of 0.77 obtained in validation when run hourly contrasted with the poor value obtained 

with daily time-step (0.09). NSE results in Arga were quite stable from calibration to validation 

periods at both running time-scales: the difference in daily simulation was -0.03 (calibration NSE 

was 0.63 and validation 0.60) and +0.02 in hourly results (Table 4.3). Total simulation NSE (CAL 

+ VAL) in Arga was 0.62 for daily data and 0.65 for hourly. Hourly simulation with TOPLATS was 

also performed by Loosvelt et al., (2015) on a 91 km2 catchment in Belgium, reporting NSE = 0.33 

for CAL and 0.44 for VAL. 

Application of MSPM in combination with NSE1 as objective function proved to achieve excellent 

Pbias reduction (all volume errors lower than 8%, Table 4.3) allowing TOPLATS to be used as a 

consistent water resources management tool for continuous simulation both at the daily and hourly 

scale.  

 

 



 

 118 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 119 

     

4.3. ASSIMILATION OF ASCAT DATA WITH LUMPED AND SEMI-DISTRIBUTED MODELS 

4.3.1. Model calibration and validation  

On a first evaluation of TOPLATS and MISDc performance (Fig. 4.12), it was observed that 

although both models adequately predicted the highest streamflow peaks recorded in Nestore, a 

systematic underestimation was found for Arga. Streamflow variability in both calibration and 

validation periods in Nestore was similar, whereas in Arga, variability was significantly higher in the 

calibration than in the validation period (Fig. 4.12b), with most streamflow peaks below 100 m3 s-1 

in the validation and up to 600 m3 s-1 in the calibration period. Almost no large flood events occurred 

in Arga during the validation period, except for one recorded at the very beginning of this period 

(Jan 2010). 

 

 

Fig. 4.12. Model calibration and validation results: a) Nestore catchment and b) Arga catchment. Time series 

and scatter plots of calibration and validation periods (separated with a dotted vertical line in the upper plots). 

 

Overall, MISDc outperformed TOPLATS in both catchments (Table 4.4), both in terms of NSE and 

Pbias. Additionally, better results were obtained in Nestore than in Arga for both models, in terms of 

NSE. On the contrary, Pbias errors were very low in Arga compared with Nestore (Table 4.4). The 
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overall NSE obtained for the whole period studied (including both calibration and validation) was 

0.88 and 0.70 for Nestore and 0.75 and 0.64 for Arga using MISDc and TOPLATS, respectively.  

 

Table 4.4. The NSE and Pbias results for the calibration and validation periods obtained using the MISDc and 

TOPLATS models in the Nestore and Arga catchments. 

Model 

Nestore Arga 

CAL VAL CAL VAL 

NSE Pbias NSE Pbias NSE Pbias NSE Pbias 

MISDc 0.87 -27% 0.90 -6% 0.76 -2% 0.72 0% 

TOPLATS 0.70 5% 0.71 38% 0.64 6% 0.58 4% 

 

 

4.3.2. ASCAT−SSM preprocessing   

� Soil water index (SWI) 

The optimal T values obtained varied from case to case and were higher for Nestore than for 

Arga, as well as for MISDc than for TOPLATS. For Nestore catchment, calibrated values were T = 

114 using MISDc and T = 45 when TOPLATS was used (Fig. 4.13). For Arga catchment, an optimal 

value of T = 64 days was obtained using MISDc and a lower one, T = 24 days, when TOPLATS was 

applied (Fig. 4.13). Optimal T values were obtained by searching on a range of T=1 to T=200 for 

the optimum value. Thus, T values providing the higher correlation of simulated and observed values 

were selected. 
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Fig. 4.13. Parameter T calibration. A range from 0 to 200 days was explored. The selected optimal T values 

are shown on the plots. 

 

Fig. 4.14. Soil Water Index (SWI) obtained from ASCAT SSM data using the optimal T values in Nestore (a) 

and Arga (b) 
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SWI calculated for TOPLATS exhibited a larger variability in both Nestore and Arga (Fig 4.14). 

This is related to the shallower soil surface layer considered in this model, which was set to 5 cm. In 

MISDc the root layer was deeper in both catchments (larger capacity as deposit for SWB), which 

resulted in a lower temporal variability of SWI. 

 

� SWI re-scaling  

Fig. 4.15 shows the transformation of the SWI series after applying the three different re-scaling 

techniques to the MISDc model in the two catchments. Fig. 4.16 shows the same information for 

TOPLATS model. 

Note that MISDc and TOPLATS use different units to model soil water content, i.e., relative units 

[0-1] and volumetric units (m3 m-3) for MISDc and TOPLATS, respectively. Different re-scaling 

techniques (CDF, LR and VM) lead to different amounts of variability in the resulting time series (Fig. 

4.15 and 4.16). While the LR and VM methods showed a close behavior, CDF reached higher peak 

values, especially when fitted to TOPLATS (mainly during the calibration period) (Fig. 4.16). 

Minimum variability between dry and wet periods was obtained using the LR method. Again, 

TOPLATS simulations had a higher short-term variability than those of MISDc because of its shallower 

surface zone soil layer (SZ) (Fig.4.16). 
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Fig. 4.15. Results of SWI re-scaling for the different techniques evaluated (CDF, LR and VM) for MISDc. Plot 

(a) shows the calibration period for Nestore, while plot (b) shows validation in Nestore. Plot (c) shows calibration 

in Arga and (d) validation in the same catchment.  

 

 

Fig. 4.16. Results of SWI re-scaling for the different techniques evaluated (CDF, LR and VM) for TOPLATS. Plot 

(a) shows the calibration period for Nestore, while plot (b) shows validation in Nestore. Plot (c) shows calibration 

in Arga and (d) validation in the same catchment. The TOPLATS simulated values shown are daily mean values. 

. 



 

 124 

     

4.3.3. Ensemble validation  

Fig. 4.17 shows the streamflow and SSM ensembles generated using MISDc model, while Fig. 

4.18 shows the ensembles generated with TOPLATS. It is observed that the SSM ensemble has a 

larger spread (Fig. 4.17) in Nestore than in Arga for the MISDc simulations. On the contrary, the 

ensemble spread appears to be mostly controlled by rainfall perturbation in the TOPLATS ensembles 

(Fig. 4.18). 

The streamflow ensembles obtained successfully met the two criteria presented in Eq. 3.19 and 

3.20. Specifically, the ensemble results obtained using MISDc were 1.15 for Nestore and 1.1 for 

Arga (using Eq. 3.19) and 0.73 for Nestore and 0.72 for Arga (using Eq. 3.20); these latter values 

were sufficiently close to the criteria reference value (≈ 0.714). TOPLATS also met the required 

values for the first criteria (Eq. 3.19): 0.98 for Nestore and 1.01 for Arga. For the second criteria 

(Eq. 3.20), the TOPLATS ensemble was also good for Nestore (0.71), but a lower value was obtained 

for Arga (0.61), which could be explained by the larger simulation error for this catchment (Table 

4.4). To generate the ensemble in Nestore, parameters were perturbed in MISDc with a multiplicative 

noise with a STD = 0.3-0.8 and 0.15 in TOPLATS. For that catchment the rainfall noise was 

perturbed with also a multiplicative noise of STD = 0.25 in MISDc and 0.9 in TOPLATS. For Arga 

catchment the added noise was of STD = 0.1-0.8 for MISDc parameters and 0.25 for parameters 

in TOPLATS. Rainfall added noise was STD = 1.2 in MISDc and 2.8 in TOPLATS. Temperature was 

modified through an additive noise of STD = 3.0 in MISDc and 2.0 in TOPLATS. 
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Fig. 4.17. MISDc model streamflow and surface soil moisture (SSM) ensembles: a) Nestore catchment, and b) 

Arga catchment. The ensembles are represented by their 5-95 percentile range. Soil moisture in MISDc is 

expressed as saturation degree [0-1]. 
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Fig. 4.18. TOPLATS model streamflow and surface soil moisture (SSM) ensembles: a) Nestore catchment, and 

b) Arga catchment. The ensembles are represented by their 5-95 percentile range. Soil moisture in TOPLATS 

is expressed in volumetric units (cm3 cm-3). 
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4.3.4. DA with MISDc  

In Nestore, the NSE achieved using MISDc in the open-loop run (0.91) (Table 4.5) was slightly 

higher than in the validation run (0.90) (Fig. 4.19a). Similarly, in Arga, NSE increased from 0.72 in 

the validation run to 0.73 in the OL run (Fig. 4.19b). These results indicate that using an ensemble 

generated by including random noise in model parameterization and input forcings only marginally 

improved NSE in MISDc. The NSE value of 0.91, achieved in the OL run in Nestore, was not further 

improved after DA (Fig. 4.19a), regardless of the different observation error values assumed for the 

ASCAT data. Furthermore, when low observation errors were considered, NSE decreased sharply, 

and the other criteria also worsened (Fig. 4.19c, e and g), especially with observation errors below 

2 %. Regarding re-scaling methods, CDF produced the worst results, while LR and VM yielded very 

similar results.  

On the other hand, in Arga, DA provided a slightly larger improvement (Fig. 4.19b) compared 

with the NSE value (0.73) (Table 4.5) obtained in the OL run. In this catchment, the best NSE 

improvement was always reached when a 4 % observation error was considered (Table 4.5), 

regardless of the applied RT. In this case (catchment and model combination) the influence of the 

RTs was only marginal. An increase of 10 % in EffOL was obtained for Arga after DA (Fig. 4.19f). It 

must be noted that assuming satellite observation errors below 1 % leads to a significant deterioration 

in streamflow simulations, as shown by the NRMSE criteria in Fig. 4.19h. 
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Fig. 4.19. Streamflow simulation efficiency after DA using MISDc for the Nestore (a, c, e, and g plots) and 

Arga (b, d, f, and h plots) catchments. Four efficiency evaluation criteria results are shown: NSE (plots a and 

b), Pbias (c, and d), EffOL (e, and f) and NRMSE (g, and h). Horizontal axes correspond to the assumed ASCAT 

observation error values. Colors correspond to different SWI re-scaling techniques. In NSE and Pbias plots (a, 

b, c, and d) the solid horizontal line indicates the Val results, and the dashed line indicates the OL results 

(Table 4.5). 
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Fig. 4.20 shows the MISDc-DA results obtained with the best combination of re-scaling technique 

and ASCAT observation error for Nestore (Fig. 4.20a) and Arga (Fig. 4.20b), as detailed in Table 

4.5. Although no improvement was achieved through DA for Nestore, the best combination was 

considered to be a 4 % observation error and LR re-scaling (Fig. 4.20a) (Table 4.5). In Arga (Fig. 

4.20b), the best combination was also obtained by using LR re-scaling and a 4 % observation error. 

DA offered an increase in NSE from 0.72 to 0.76 in this case (Fig 4.19b). It can be observed that 

the largest and more systematic improvements were obtained during the spring months of 2010 and 

2012 (Fig. 4.20b, error reduction plot (iii)). On the contrary, DA could not reduce sufficiently the 

large simulation error (>100 m3 s-1) (Fig 4.20b, plot ii) that MISDc offered on a large event that 

occurred at the beginning of the validation period (Jan 2010). 
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Fig. 4.20. MISDc data assimilation results for the Nestore (a) and Arga (b) catchments. Three plots are 

presented per catchment: (i) observed, validation and DA time series, (ii) error between observed and validation 

series and (iii) error reduction achieved after DA, where positive values indicate error reduction. Results shown 

in this figure are those obtained with the best DA set-up, as detailed in Table 4.5 for each model and catchment 

combination. 
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4.3.5. DA with TOPLATS   

A high NSE result (0.71) was already obtained in the validation time series for Nestore using 

TOPLATS, but after generating the ensemble, a significant improvement was obtained in the OL run, 

increasing NSE to 0.77 (Fig. 4.21a) (Table 4.5). This value further increased after SSM−DA to a 

value of 0.85 (Fig. 4.21a). DA also reduced the large Pbias value obtained for Nestore during 

validation to a value of approximately 20 % when LR re-scaling was used (Fig. 4.21c) and led to 

improved EffOL values of 34 % (Fig. 4.21e).  

The improvements for Arga were not that remarkable, with a total NSE increase from 0.58 during 

validation (and 0.60 for OL) to 0.62 after SSM−DA when a 6 % observation error was considered 

(Fig. 4.21b) (Table 4.5). Using this error value, there was a slight reduction in the Pbias value to 9 

% (Fig. 4.21d), and the efficiency increase (EffOL) was 6 % (Fig. 4.21f).  

Clear differences in terms of NSE variation were found depending on the re-scaling technique 

applied (Fig. 4.21a and 4.21b), with LR providing the best results, followed by VM for Nestore and 

CDF for Arga. For Nestore, any combination of re-scaling technique and observation error increased 

EffOL by at least 8 % (Fig. 4.21e). In fact, this was the case where DA provided the highest 

improvements out of the four combinations of models and catchments evaluated. On the other hand, 

the DA results for Arga depended strongly on the observation error considered. When observation 

errors below 4 % were used and CDF or VM re-scaling was applied, efficiency was lower than in the 

open-loop run (Fig. 4.21b).  The highest efficiencies, regardless of the re-scaling technique applied, 

were obtained for Arga with observation errors within the 4-8 % range, while the best improvements 

for Nestore were obtained by considering low (<2 %) observation errors. 
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Fig. 4.21. Streamflow simulation efficiency after DA using TOPLATS for the Nestore (a, c, e, and g plots) and 

Arga (b, d, f, and h plots) catchments. Four efficiency evaluation criteria results are shown: NSE (plots a and 

b), Pbias (c, and d), EffOL (e, and f) and NRMSE (g, and h). Horizontal axes correspond to the assumed ASCAT 

observation error values. Colors correspond to different SWI re-scaling techniques. In NSE and Pbias plots (a, 

b, c, and d) the solid horizontal line indicates the Val results, and the dashed line indicates the OL results 

(Table 4.5). 
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In Nestore, the largest simulation errors occurred during two important events (within a 200-400 

m3/s observed streamflow peak), one in Jan 2010 and the other (the highest) in Nov 2010 (Fig. 

4.22a, plot i); these were not accurately simulated, with errors over 100 m3/s (Fig. 4.22a, plot ii). 

These large errors were substantially reduced after DA (using LR-RT and a 0.01 % observation error 

(Table 4.5)), with a correction of up to 100 m3/s for the first event and over 50 m3/s for the second 

(Fig. 4.22a, plot iii). In Arga (Fig. 4.22b), the largest error was also found for a storm event that 

occurred at the beginning of the validation period (Jan 2010). However, DA performed poorly in 

reducing this error (it was even increased during certain times of the event). The more continuous 

improvements were obtained in 2011 and 2012 spring months (Fig 4.22b, plot iii).  

 

Table 4.5. Summary of results and efficiency variations after best set-up DA application. Optimal rescaling 

method (Opt. RT) and ASCAT observation error (Opt. ASCAT) are also shown. Nestore results using MISDc 

model are not shown as no improvement was obtained through DA. 

Model 
Catch- 
ment 

Cal/val Cal/Val OL Opt.  
ASCAT  

observation  
Error 

Opt. 
RT 

DA 

Cal Val Val Val 

NSE NSE NSE NSE EffVal EffOL NRMSE 

MISDc 
Nestore 0.87 0.90 0.91 -- -- -- -- -- -- 

Arga 0.76 0.72 0.73 4% LR 0.76 10 % 10 % 0.95 

TOPLATS 
Nestore 0.70 0.71 0.77 <1% LR 0.85 48 % 34 % 0.81 

Arga 0.64 0.58 0.60 6% LR 0.62 10 % 6% 0.97 
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Fig. 4.22. TOPLATS model assimilation results for the Nestore (a) and Arga (b) catchments. Three plots are 

presented per catchment: (i) observed, validation and DA time series, (ii) error between observed and validation 

series and (iii) error reduction achieved after DA, where positive values indicate error reduction. Results shown 

in this figure are those obtained with the best DA set-up, as detailed in Table 4.5 for each model and catchment 

combination. 
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4.3.6. Comparison of DA results for the MISDc and TOPLATS models 

As a summary of results and to provide a numerical and visual comparison of DA performance 

for both models, the EffVal index was used. Best EffVal results and DA set-up for obtaining them are 

also shown in Table 4.5. 

In the first case, i.e., using MISDc for Nestore, SSM−DA did not provide any streamflow 

simulation improvement, regardless of the RT used and the SSM observation error assumed (Fig. 

4.23a). On the contrary, large EffVal improvements (>30 %) were obtained for this catchment using 

TOPLATS (Fig. 4.23c), irrespective of the observation error or the RT. Both models yielded the best 

results when LR re-scaling was used.  With respect to Arga, the DA improvements were similar for 

both models (Fig. 4.23b and d). DA improved EffVal by a 10 %, especially when observation errors 

between 4 % and 8 % were considered. Lower observation errors resulted in a worsening of model 

forecasts. Differences among re-scaling techniques were smaller for Arga than for Nestore, but in all 

cases, LR was the best method. 

 

 

Fig. 4.23.  Efficiency variation (EffVal) compared to validation time series for the Nestore (a and c) and Arga 

catchments (b and d). The MISDc model results are shown in plots a and b, while the TOPLATS results are 

presented in plots c and d. 
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4.3.7. Monthly evaluation  

With respect to Nestore, DA generally decreased MISDc model accuracy in terms of monthly 

simulation (Fig. 4.24a). On the contrary, the error reduction thanks to DA was high for this catchment 

when TOPLATS was used (Fig. 4.24c), especially in the winter months (from November until March). 

This seasonal trend contrasted with that obtained for Arga using TOPLATS (Fig. 4.24d), where the 

largest corrections were observed in November and later in spring (April and May). On the contrary, 

no clear seasonal pattern was found for the MISDc DA results for Arga (Fig. 4.24b), but most of the 

improvement occurred in May and June. Therefore, for Arga, highest correction rates after DA were 

achieved in May for both models. 

 

Fig. 4.24. Monthly variation (expressed as monthly m3/s) in simulation accuracy after DA in the validation 

period for a) Nestore using MISDc, b) Arga using MISDc, c) Nestore using TOPLATS and d) Arga using 

TOPLATS. Positive values indicate that simulation after DA increased the accuracy of the total monthly 

simulated streamflow volume. Negative values indicate a reduction in the simulation accuracy. Monthly results 

also correspond to best set-up conditions, as detailed in Table 4.5 (For Nestore using MISDc, LR and 4% 

observation errors were used). 
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4.3.8. Discussion  

Despite significant efforts in DA research, there is still no consensus in the community regarding 

the improvement in streamflow prediction skill based on the assimilation of satellite soil moisture 

observations because many factors affect the DA performance. These factors include: the DA 

algorithm, the particular model structure, the choice of bias correction technique, the appropriate 

quantification of observation and model forecast errors, the spatial mismatching between modelled 

and satellite soil moisture, and the watershed topography and climatology (Yan and Moradkhani, 

2016). Through the use of different models, RTs, observation errors and catchments, this research 

aimed to develop a study that could provide valuable results regarding some of these main factors. 

The results are discussed based on the following research questions: 

 

4.3.8.1. Did EnKF data assimilation of ASCAT data improve hourly streamflow prediction?  

This study demonstrated that ASCAT-derived SWI can improve hourly streamflow simulation of 

medium-sized (750 km2) Mediterranean catchments using physically based and conceptual models. 

Moreover, a significant specific merit of this study is that the improvements were achieved in a fully 

independent validation period, different of the periods used for model calibration and SWI RTs 

calibration. As shown in Figures. 4.23 and 4.24, one of the models (TOPLATS) improved streamflow 

prediction for Nestore, while both models improved the Arga simulations. The results obtained for 

the Arga catchment using MISDc are of similar magnitude as those reported in the literature, such 

as Brocca et al. (2010b), who reported increases in NSE from 0.75 to 0.84 and from 0.62 to 0.76 

in catchments in central Italy after ASCAT−SSM assimilation. With respect to MISDc model 

application, similar results were obtained by Brocca et al. (2012), where ASCAT−SSM assimilation 

was also found to improve NSE from 0.76 to 0.79 and to increase EffVal ≈ 10 %, but in smaller 

Mediterranean catchments. Regarding TOPLATS DA results, efficiency improvements obtained here 

after ASCAT−SSM assimilation outperform those of previous TOPLATS-DA studies (Pauwels et al., 

2002, 2001), which in any case already indicated that this model was suitable for improvements in 
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simulation capability through DA. Similarly, different SSM-DA methods were tested using TOPLATS 

by Houser et al. (1998) whose final recommendations included the use of DA methods of moderate 

complexity that are sound and computationally efficient, and also the use of long data series, as it 

has been done on this study. Although the DA method used might have a significant effect on the 

assimilation results (Yan and Moradkhani, 2016), this was not the focus of this research. 

The variability of the results in our study is not exceptional in the SSM−DA literature. Studies of 

this type have reported a variety of results, ranging from successful improvements (Francois et al., 

2003; Lievens et al., 2015; López López et al., 2016), to slight improvements (Pauwels et al., 2002), 

no significant differences (Lü et al., 2016) or even significant decreases in model performance (Chen 

et al., 2011; Matgen et al., 2012a). Studies on the topic cover a wide range of catchment sizes, 

climate conditions, remote sensing sources, model conceptualizations and assimilation methods. 

Among the studies where SSM−DA proved ineffective in improving streamflow forecasts (e.g., Chen 

et al. (2011), Draper et al. (2011), Han et al. (2012)), some authors noted that the limited efficiency 

of DA might be due to the low accuracy of precipitation forcing data and the inaccuracy of the 

rainfall-runoff simulation mechanism in the model (Han et al., 2012). Other studies reported that 

while dual assimilation of streamflow and ASCAT−SSM improved streamflow simulation, SSM 

assimilation alone did not result in any improvements (Yan and Moradkhani, 2016).  

On the other hand, other studies obtained more positive results and confirmed the possibility of 

enhancing model streamflow prediction through remotely sensed SSM−DA (Alvarez-Garreton et al., 

2014; Massari et al., 2015). Improvements were reported using different metrics; however, efficiency 

increases between ~15 % (Francois et al., 2003) and ~30 % (Massari et al., 2015) and NRMSE 

reductions of ~25 % (Alvarez-Garreton et al., 2014) were obtained. In a study conducted by Laiolo 

et al. (2015), where ASCAT−SSM assimilation based on the EnKF was applied over two catchments 

with a similar size to those studied here, EffOL values ranging from 26 to 33 % were obtained. 

ASCAT−SSM assimilation based on the EnKF also improved streamflow forecasts for larger 
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catchments (Wanders et al., 2014b), although limitations on high peaks accurate simulation were 

also found.  

4.3.8.2. Was monthly simulation improved through EnKF data assimilation?  

As shown in Fig. 4.24, the DA results differed depending on the season and the particular month 

of the year. This seasonal trend also varied depending on the particular model and catchment 

combination, with no clear or consistent patterns. With respect to Arga (Fig. 4.24b and 4.24d), 

ASCAT−SSM assimilation improved both models, especially in the autumn and spring months 

(mainly in Nov and May). These results are in line with those of Cenci et al. (2016) and Matgen et 

al. (2012a), who showed that ASCAT−SSM assimilation was more efficient during hydro-

meteorological transition periods (e.g., from dry to wet seasons or vice versa). In these periods, the 

temporal variability of SSM is expected to be higher, and its correction might have a stronger impact 

on model performance (Massari et al., 2015). On the contrary, the largest positive results were 

obtained during winter months in Nestore, for the TOPLATS model (Fig. 4.24c). This result might be 

in line with other study performed in a Mediterranean area by Laiolo et al. (2015). On that study, 

different ASCAT-derived products were assimilated to a distributed, physically based model (similar 

to TOPLATS conceptualization) in three Italian catchments (two of which were ≈ 800 km2), and their 

efficiency was evaluated in seasonal terms. The results showed that improvements in the one 

catchment occurred mainly in winter and summer.  

 

4.3.8.3. Did re-scaling techniques have a significant influence on the DA results? 

The results obtained here do not fully agree with those reported by Massari et al. (2015), who 

observed a small effect of re-scaling on assimilation results. Although all three RTs behaved similarly 

in some cases (MISDc used in Arga) (Fig. 4.19f), large differences were found in other cases (e.g., 

TOPLATS used in Nestore (Fig. 4.21e). In any case, LR consistently produced the best results and 

CDF the poorest. LR is probably the most popular RT used in DA studies (Alvarez-Garreton et al., 

2015; Chen et al., 2011; Crow et al., 2005a; Crow and Zhan, 2007; López López et al., 2016; 
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Wanders et al., 2014a, 2014b). CDF has also been frequently used (Alvarez-Garreton et al., 2014; 

Lievens et al., 2016; Renzullo et al., 2014), while VM and triple collocation (TC) have been applied 

less frequently (Yilmaz and Crow, 2013). Lievens et al. (2015) found that a first-order matching 

(similar to the LR-RT applied here) provided better results than higher-order CDF matching 

techniques. Yilmaz and Crow (2013) also discussed the risks associated with applications of RT 

methods that match the total variance of observations with the model (VM and CDF), as they may 

partly neglect the noise contributions of the datasets. 

Some authors have noted the limitations of the RTs used in this study (Alvarez-Garreton et al., 

2014). For instance, since a data assimilation scheme explicitly updates the model prediction based 

on the relative weights of the model and the observation errors, assuming a constant observation 

error may lead to overcorrection of the model state if the actual error is higher, and vice versa. Thus, 

application of TC techniques should be considered in further research (Alvarez-Garreton et al., 

2014; Yilmaz and Crow, 2013). Moreover, selecting an inadequate RT can compromise the DA 

results, as shown in Lievens et al. (2016), where limited improvements in SMOS DA results were 

attributed to the RT used (CDF). That study also concluded recommending further research on this 

topic. 

 

4.3.8.4. Did the SSM observation error assumed have a significant influence on the DA results? 

The estimation of an appropriate observation error for DA techniques is a key question that 

remains open and requires further research (Massari et al., 2015; Trudel et al., 2014). Different 

studies have attempted to characterize the satellite SSM error either by comparing satellite SSM data 

with ground observations (Albergel et al., 2009; Brocca et al., 2010a; Matgen et al., 2012b) or by 

providing an independent error estimate. Furthermore, data providers may also supply a retrieval 

error value as ancillary data (Massari et al., 2015). However, these gross error estimates can be 

highly variable depending on different factors, and given its influence on the outcome of DA 
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techniques, optimization of the observation error for each particular site and dataset is an appealing 

alternative. 

Ten different observation error values, ranging from 0.01 % to 20 %, were tested here. The best 

NSE results using TOPLATS in the Arga catchment corresponded to an observation error of ~6 % 

(Fig. 4.21f), while in Nestore, even lower observation errors (0.01 %) yielded the best NSE results 

(Fig. 4.21a). These values contrast with the 10 % error value reported in the literature for ASCAT 

(Albergel et al., 2009; Brocca et al., 2010a; Matgen et al., 2012b) and can be interpreted as ASCAT 

providing more useful information than initially expected. On the other hand, using MISDc similar 

optimum efficiency values were obtained for Arga when error was within a 2 to 6 % range (also lower 

than the 10 % referred to in the literature) (Fig. 4.19b), but no improvement was obtained for Nestore 

despite the error value assumed (Fig. 4.19a). This reveals that the characteristics of the site appear 

to influence the optimum error value to be used for EnKF DA, but in any case, it was always found 

on the range below 6 %. 

 

4.3.8.5. Did the model choice influence the results? 

The added value of SSM–DA varied strongly in the four different model-catchment settings 

evaluated here. For Arga catchment, regardless of the model applied (MISDc or TOPLATS), similar 

simulation improvements of ~10 % were obtained (Fig 4.23b and 4.23d). On the other hand, the 

results obtained for Nestore varied dramatically depending on the model used, with improvements 

of ~50 % using TOPLATS but a worsening effect of >50 % for Nestore (Fig 4.23a and 4.23c). 

Therefore, it cannot be concluded that model type and complexity influences DA results in a specific 

improving or worsening direction. Also different models did not condition the magnitude of DA 

influence. This study found that assimilation of SSM data into a thin surface layer of a model 

(TOPLATS) does not limit the capabilities of DA to substantially vary streamflow results. This finding 

contrasts with results in  (Brocca et al., 2012) where assimilation on the surface layer had a very 
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limited impact. Moreover, differences on the results might not be explained by the type of model but 

rather by the accuracy of model predictions before SSM-DA (i.e., after calibration). 

Several studies demonstrated the ability of SSM–DA to improve streamflow prediction using 

models with different types of conceptualizations, ranging from conceptual RR models (Alvarez-

Garreton et al., 2015; Brocca et al., 2012; Lü et al., 2016) to complex, physically based models 

(Houser et al., 1998; Lievens et al., 2015; Pauwels et al., 2002). The enhancements obtained in 

these studies varied from case to case, but the type of model could not be identified as the main 

factor influencing them. However, different studies related the performance of SSM–DA to the quality 

of simulation achieved after model calibration (Alvarez-Garreton et al., 2015, Matgen et al., 

2012a); this effect is clearly visible in the results obtained using MISDc in Nestore, where an NSE of 

0.90 after calibration offered few possibilities for further improvements after SSM–DA. The 

improvements in streamflow simulation accuracy achieved after a successful calibration of the model 

might be even larger than those achieved after SSM (or even streamflow) assimilation (López López 

et al., 2016; Wanders et al., 2014a). Thus, some studies have used SSM–DA as a tool for improving 

model parameter calibration instead of directly enhancing streamflow simulation (Bach and Mauser, 

2003; Moradkhani et al., 2005b; Wanders et al., 2014a). 

 

4.3.8.6. Was DA performance influenced by catchment characteristics, i.e., climate and 
topography? 

 Soil type and catchment characteristics, unlike catchment area, might play a role in the 

performance of SSM-DA (Massari et al., 2015). The significant improvement in NSE obtained for 

Nestore using TOPLATS can be explained by the climate conditions of the area. Since central Italy is 

not characterized by a proper rainy season, soil hardly remains constantly saturated. Under such 

conditions, when a significant meteorological event occurs, SM conditions change rapidly. Therefore, 

SSM−DA might be useful for correcting the antecedent wetness conditions, thus contributing to an 

enhanced prediction of high flows (Cenci et al., 2016). SSM−DA might be more efficient when SSM 

temporal variability is higher (Cenci et al., 2016) and direct runoff processes are predominant 
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(instead of baseflow contribution) (López López et al., 2016)). In any case, as pointed out on the 

monthly results analysis section, it must be noted that most of the improvement concentrated on 

winter months events. Longer and more stable dry and wet climatic patterns, characteristic of the 

Arga catchment, somehow limited the effectivity of DA in this catchment to certain particular transition 

periods (e.g., November and May) where model inertia did not enable a rapid response. Rainfall 

large spatial variability characteristic of the area may have also limited the potential for improvements 

trough DA in Arga. 

 

4.3.8.7. Which topics within SSM-DA require further research and better understanding for improved 
streamflow prediction? 

Three different issues that require further research can be identified. (1) A thorough evaluation of 

the added value of SSM−DA compared to the enhancements achieved when other variables (e.g., 

streamflow or LAI) are assimilated. (2) The identification of the causes of model bias as a means of 

enhancing simulations depending on the particular cause (i.e., poor model calibration, errors in 

forcing data, model structure, etc.), rather than relying on DA as a tool for fixing everything. (3) The 

development of models that better reflect the vertical coupling between surface and subsurface soil 

moisture states. As shown in this work, there is potential to improve catchment model streamflow 

simulations through data assimilation of remotely sensed soil moisture products. However, systematic 

model bias should first be reduced to a minimum, through calibration, so the model performance is 

close to its optimal behavior before data assimilation. 
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4.4. ASSIMILATION OF SMOS DOWNSCALED L4 PRODUCT WITH A DISTRIBUTED MODEL 

This section shows the results obtained on the third, and last research work included on this thesis 

(Loizu, 2017). Results are organized in 5 parts, which are: 1) Streamflow simulation efficiency results 

obtained with TOPLATS distributed (TOPLATS-dis) mode during the validation period (Oct/2013-

Oct/2015). 2) Details and validation of the ensemble generated. 3) Description, through their mean 

and standard deviation values, of the distributed SSM time-series observed by SMOS (BEC L4 

product) and simulated by TOPLATS. 4) Re-scaling SMOS/MODIS data through different re-scaling 

techniques. 5) Data assimilation results, including three different experiments: in a first one, data 

assimilation was performed over each of the 266 1-km cells within the catchment (Cidacos river), in 

a second one EnKF was applied only on cells with agricultural use (Figs. 3.4 and 3.6c), and in the 

third, DA was performed only in flat areas (cells with TI>10) (Fig 3.6b). 

 

4.4.1. Calibration and validation  

For this study, it was assumed that optimal parameter values obtained after calibration in the 

statistical mode of TOPLATS (section 4.2.2.4) corresponded with the average optimal parameter 

values for the distributed mode. Specifically, as detailed in section 4.2.2.4, optimal parameter values 

were obtained for the 2001-2007 period and were used for validation during the 2007-2012 

period. In that case NSE achieved in Cidacos for the calibration period was 0.41, with a Pbias of 

6%, while results for the validation period were 0.77 and Pbias 8%. Soil parameters were then 

adapted to the different soils present in the catchment (Fig. 3.4), always maintaining a catchment 

average value equal to the optimal value found in the statistical mode. 
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Table 4.6. TOPLATS calibrated parameters for Cidacos catchment. Type, symbol, units and mean parameter 

values of the catchment are given 

 Symbol Parameter Type 
Calibrated   

optimal value 
Units 

1. B 
Brooks-Corey Pore Size 
distribution Index 

Soil properties 0.32 -- 

2. ψc Bubbling pressure Soil properties 0.83 m 

3. θs Saturated soil moisture Soil properties 0.50 cm3  / cm3 

4. Ks 
Surface saturated hydraulic 
conductivity 

Soil properties 2e-07 m / s1 

5. rmin First soil resistance parameter Soil properties 40,013 s / m1 

6. Q0 
Subsurface flow at complete 
saturation 

TOPMODEL 399 mm / day1 

7. f Hydraulic conductivity decay TOPMODEL 5.00 m-1 

 

Using these parameter values a NSE of 0.68 was obtained with TOPLATS distributed mode for 

the 2 years studied period (Oct/2013-Oct/2015). The statistical mode of TOPLATS was also run for 

the same period and parameter values, obtaining a 0.71 efficiency. Distributed mode simulation 

obtained a remarkable low Pbias value (2%), significantly lower than in statistical model (13%). 

Figure 4.25 shows different plots to visually compare TOPLATS distributed mode simulated and 

observed streamflow in Cidacos for the two years study period. As observed in plot 4.25a, catchment 

streamflow remained below 100 m3/s during the evaluated period, with most of the streamflow 

concentrating during winter and spring, mainly of the second year.  Also, some large storm events 

occurred in summer (July 2015) and autumn (October 2013), this is typical on Mediterranean areas. 

As observed on the scatterplot (Fig 4.25b) and Flow duration curves plot (4.25c) the model 

performed better on the 20% of largest streamflow values, but clearly tended to underestimate during 

the low 60% streamflow values (Fig. 4.25c). In any case, it must be noted that those 60% of simulated 

hours correspond to streamflow values below 0.5 m3/s (Fig. 4.25b and c). Simulation performance 

improved as we move to the left (high flows) on the flow duration curves. Some overestimation was 

found during the highest event (spring 2015) of the period, but simulated and observed peak values 
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remain quite close to each other (Fig4.25b). This overestimation effect appeared as the timing of the 

simulation was not correctly captured by the model. 

 

 

Fig. 4.25. Validation streamflow results. Comparison of simulated and observed time series. Three plots are 

shown: a) time series, b) logarithmic scatterplot of simulated versus observed streamflow and c) flow duration 

curves. 

 

The mean value of the SSM for this validation run simulation is shown in figure 4.26 (red line). 

Also in this figure, the grey lines indicate the behavior SSM in each of the 266 simulated cells within 

Cidacos. This plot shows the large variability that can be found among the different cells in the same 

time-step, which is especially large in summer, where a number of cells appeared very dry and close 

to the minimum (residual) moisture value. It can also be observed that during winter and spring 

periods a number of cells remained constantly saturated. Altogether, SSM variability was larger in 
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summer than in winter (the latter showing values over 0.3 cm3/cm3 for the whole catchment during 

several months). Summer rainfall events caused substantial increases on SSM (e.g., summer 2014), 

but these were characterized by a quick return to an equilibrium value, and the water transfer to the 

transmission zone of the soil. 

 

 

Fig. 4.26. Surface soil moisture (SSM) simulations for each of the 266 catchment cells. Mean catchment SSM 

value is also shown (in red). 

 

4.4.2. Ensemble generation and validation 

Similarly to the procedure used in section 4.3, this study performed SSM data assimilation with 

the Ensemble Kalman Filter (EnKF), which has been already described in section 3.3.2. This method 

requires the estimation of the uncertainty of the model. For this, a 50-member ensemble was 

generated by adding random noise to three TOPLATS parameters and to two climatic forcings. 

Similarly to section 4.3, three TOPLATS parameter were perturbed by adding a zero mean 

multiplicative noise. Selected parameters were chosen from the sensitivity analysis performed in 

section 4.1. The three most sensitive parameters were thus selected: (1) the Brooks-Corey pore size 

distribution index (B), (2) the bubbling pressure (ψc) and (3) hydraulic conductivity decay (f) (already 

mentioned in section 3.3.3). Perturbed climatic forcings were rainfall and temperature. The first was 
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perturbed with a zero mean Gamma distribution multiplicative error, and the latter was added an 

additive noise. Ten different combinations of noise amplitude (standard deviation) were tested for 

the multiplicative and additive noises, in order to find the best combination to comply with the two 

validation criteria introduced in section 3.3.3, specifically in equations 3.19 and 3.20. In this 

experiment, the selected noise achieved a value of 1.24 (≈1.0) for the first validation criteria and 

0.68 (≈0.71) for the second. Despite these values are not as good as the ones obtained on section 

4.3, they were considered acceptable. The difficulty of achieving better ensemble validation criteria 

values relies on the NSE of the validation run. Validations with low NSE values result in ensembles 

with first validation criteria values higher than 1. 

Figure 4.27 shows the streamflow and SSM ensembles of 50 members generated by adding the 

described random noise. As it can be observed in both cases, variability due to the added noise 

increases during winter months, indicating higher uncertainty on model’s prediction during those 

seasons. To generate the ensemble, TOPLATS parameters were added a multiplicative noise of STD 

= 0.2 and the rainfall was perturbed with a noise of STD = 2.0. Temperature was modified through 

an additive noise of STD = 2.0. 

Figure 4.28 shows the Kalman Gain (Gk) calculated for each cell of the catchment assuming an 

uncertainty of 0.04 cm3 cm-3 for the SMOS L4 product (Piles et al., 2010). As it can be observed, 

the mean Gk value for the 2013-2015 data assimilation period ranges between 0.7 and 0.3, 

indicating that the uncertainty of the model and the observation are similar (i.e., Gk = 0.5). The 

model was run 50 times, and the specific uncertainty of each cell, at each time step was calculated, 

and afterward used for EnKF data assimilation. This means that for each cell, and time step, one Gk 

value was calculated and used to weight the reliance attributed to the model and the satellite 

observation. Gk values close to 1 indicate that the model will be updated to the observed satellite 

value, while values close to zero indicate that the model has no uncertainty and should not be 

corrected at all. 
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Fig. 4.27. Streamflow and surface zone soil moisture ensembles with TOPLATS distributed mode. The red line 

in the streamflow ensemble plot indicates the observed streamflow values, while the red line in the soil moisture 

ensemble plot shows the soil moisture mean content in the catchment for the validation run. 

 

Figure 4.27 shows that SSM simulation uncertainty increased during winter and spring seasons, 

thus increasing the Gk values (Fig 4.28) and giving more trust to the observation values during those 

time-steps. On the other hand, mean catchment Gk, and specially some of the cells show very low 

Gk values during the dry summer in 2015 (Fig 4.28). 

 



 151 

     

 

Fig. 4.28. Kalman Gain used for Ensemble Kalman Filter data assimilation. Specific time series of Kalman 

Gain were calculated for each cell. The red line indicates the mean value of the Kalman Gain for Cidacos 

catchment. 

 

4.4.3. Observed and simulated SSM 

This section aims to give some general insight of the observed and simulated SSM content at 1-

km resolution. Figure 4.29 illustrate two relevant statistical measures of the Oct 2013-Oct 2015 

period. Plots in the upper part show the mean values (for the whole period) of the SMOS L4 product 

(left), the TOPLATS simulation (center) and the difference between simulated and observed (right). 

Plots in the lower part show standard deviation values of observed (left), simulated (center) and the 

difference between them (right).  These two statistical measures are representative of the mean soil 

moisture content and its fluctuation during the studied period. 
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Fig. 4.29. Mean and Standard deviation value of SMOS L4 (left) and TOPLATS simulated SSM (center) for the 

whole study period (2013-2015) and their difference (right).  

 

It can be clearly observed that different patterns appeared, in terms of mean value, between the 

simulated and observed SSM. Observation plots show the results within a 30 x 30 matrix of 1-km 

cells (900 cells), while simulated values are only shown for the cells within the catchment (266 cells). 

It must also be noted that the SSM observations ranged only between 0.12 and 0.132 (0.012 range) 

while simulated values ranged between 0.2 and 0.32 cm3/cm3 (0.12 range, 10 times larger). SMOS 

observations appeared to be clearly related to the topography, identifying the north face of the 

mountainous areas as the most humid ones. That effect is clearly observed in the northern boundary 

of the catchment (mountain range of Alaitz, as observed in Fig. 3.3). Also, the north face of several 

valleys within the catchment, in the eastern part, appeared wetter on the SMOS L4 observations. On 

the other hand, the driest cells, in terms of observed mean values were found outside the limits of 

the catchment, in the flat and cultivated areas to the north (Elorz river valley). Within the catchment 

the driest cells were all close to the outlet, in the south-most part of the catchment.  
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A quite different spatial pattern was obtained in TOPLATS simulations. In this case, the 

mountainous eastern part appeared the driest, and wetter areas were located in the flatter 

agricultural areas in the west (Fig 4.29). TOPLATS updates the soil moisture content of the layers 

depending on the Topographic Index (TI), therefore cells with higher slopes dry out more quickly than 

valley bottoms and flat areas. On the other hand, these lower slope areas tend to keep the soil 

moisture content after a rainfall event for longer time in TOPLATS simulations. This effect was 

especially remarkable in some cells situated close to the outlet of the catchment, with very low slope. 

There is thus a clear relation between the TI (Fig. 3.6b) and the simulated SSM values, clearly 

apparent in the drier areas simulated on some steep relief locations of the catchments eastern 

boundary. Finally, the upper-right plot in Fig. 4.29 shows the difference between simulated and 

observed mean values, depicting larger differences for the flat cultivated western part of the 

catchment (differences up to 0.18 cm3 cm-3) while in the mountainous areas differences were 

significantly lower (0.07 cm3 cm-3). 

In terms of standard deviation (STD), also quite some different patterns were found between the 

observation and simulation (Fig. 4.29 lower panel). Although SMOS L4 data identified the western 

part of the catchment as the area with higher SSM oscillation, a different behavior was obtained from 

TOPLATS simulation. The latter showed a higher SSM variability on cells located in the mountainous 

north-eastern part of the catchment. In any case, it must be noted that also some cells with low STD 

values were found on this area. Variability was also large in some cells close to the outlet. The 

difference between simulated and observed STD values (Fig. 4.29 lower right) showed a different 

pattern to the mean difference (Fig. 4.29 upper right). In particular, it was found that only in some 

few areas (yellow ones) the STD of the simulated time series were higher than the observed ones. In 

general, the variability during the 2013-2015 period was higher in the observed records than in the 

simulations (green areas).  
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4.4.4. Observed SSM re-scaling  

SMOS L4 product was re-scaled to fit the TOPLATS simulated time-series. Three different re-

scaling methods, of different intensity, described in section 3.3.1 were applied. Those were: 1) Linear 

regression (LR), 2) Variance matching (VM) and Cumulative Distribution Function matching (CDF). 

Similarly to previous figure 4.29, in figure 4.30 upper plots indicate mean values and lower plots 

present standard deviation values. Plots in the left were obtained with LR, plots in the center with VM 

and plots in the right with CDF. The re-scaling techniques were separately applied to each pixel, so 

the different methods (LR, VM and CDF) fitted the observed SMOS L4 data of each cell to the 

simulated SSM values of the same cell. 

As explained in section 3.3.1, all the three methods fitted at least the mean value of the simulated 

time series. This can be corroborated by the three figures on the upper pane (Fig. 4.30), which 

showed the same mean values after applying the three different re-scaling techniques, also equal to 

the mean simulated values presented in figure 4.29 (upper central plot). Thus, all the three methods 

guaranteed that the first moment (mean) was corrected to fit the simulated mean. On the other hand, 

only VM and CDF matching methods fit the second order moment (standard deviation), as it was 

observed in the lower plots in figure 4.30. In this case, standard deviation was clearly modified 

differently with the LR method, when compared to VM and CDF techniques, which performed very 

similar affection in terms of STD. VM and CDF techniques modified the observed time-series to fit 

the new data to the STD of the simulated data (shown in figure 4.29, lower central plot). As observed 

in figure 4.30 data assimilation of LR re-scaled SMOS L4 data will be perform with a lower STD 

correction.  
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Fig. 4.30. Mean and standard deviation distributed values after LR, VM and CDF re-scaling of the SMOS 

observed data. Mean values in the upper row and standard deviation in the lower one. From left to right, re-

scaling methods as follows: LR, VM and CDF. 

 

4.4.5. Data assimilation  

This third study consists of three data assimilation experiments. First, re-scaled SMOS L4 data was 

assimilated over each of the 266 cells of the catchment. On the second trial, DA assimilation was 

performed only on cultivated areas (indicated in Figure 3.6c). On the third experiment, DA was 

performed only on flat areas with a topographic index > 10 (Figure 3.6b). As detailed in section 

4.4.1, the model calibrated parameters were obtained from the 2000-2007 period, and the 

validation and data assimilation period used in this third study were the two years period covering 

from Oct 2013 to Oct 2015. NSE performance of TOPLATS model without assimilation was 0.68 

and Pbias 2% in 2013-2015 validation (Table 4.7). 
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Table 4.7. Distributed data assimilation results. Validation, data assimilation over the whole catchment, data 

assimilation results over cultivated areas and data assimilation results over high TI cells. 

 VAL 
DA – 

Whole catchment 
DA – 

cultivated land 
DA - 

flat areas 

Re-scaling 
Method 

-- LR VM CDF LR VM CDF LR VM CDF 

NSE 0.68 0.65 0.64 0.65 0.76 0.72 0.72 0.77 0.72 0.72 

Pbias 2% -48% -31% -31% -26% -15% -15% -23% -12% -12% 

 

Table 4.7 shows the impact, in terms of NSE and Pbias, caused by the three data assimilation 

experiments performed. Assimilation of SMOS-BEC L4 product into all the cells of the catchment, 

resulted, despite the re-scaling method applied, in a reduction of NSE. LR, VM and CDF matching 

offered very similar results in this sense, decreasing NSE from 0.68 to ≈0.65. Assimilation over the 

whole catchment resulted also on a deterioration of the total simulated streamflow volume, expressed 

as Pbias, resulting in a large underestimation of volumes (≈30-50%).  In this case, LR offered 

substantially worse Pbias results as compared with the other two methods. 

In contrast with this first experiment results, performing EnKF data assimilation only over cultivated 

areas, or over flat, resulted in a clear improvement in terms of NSE, while Pbias slightly deteriorated 

but still remained at acceptable values. In both trials (cultivated and flat areas), results obtained with 

VM and CDF matching methods offered very similar results, being LR the one that provided the 

higher efficiency increases (from 0.68 to 0.76 and 0.77), but at the expense of generating the largest 

Pbias error (23 -26%). 

As it can be clearly observed in figure 3.6c and 3.6b, cultivated areas corresponded to a great 

extent with flat areas, which explains why in both experiments results were quite similar. In any case, 

it has to be pointed out that lowest errors in terms of Pbias were achieved on DA over flat areas 

(≈3% lower than DA in cultivated areas). A detailed description of the spatial behavior of distributed 

data assimilation on each experiment is given in the following sections. Also, the effect of DA on soil 
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moisture content in both surface and transmission zone layers is shown. DA impact on streamflow 

simulation is also shown graphically. 

 

4.4.5.1. Data assimilation experiment 1: Over the whole catchment  

As it can be observed in figure 4.31, data assimilation of SMOS L4 product over the whole 

catchment resulted in a decrease in terms of mean SSM values on the western part of the catchment, 

while mean SSM content was increased after DA in most of the cells located in the more mountainous 

eastern part of Cidacos. This impact pattern seems to be similar regardless the RT employed, but the 

effect was more intense when LR was used, compared to the other two methods. Variations in the 

mean simulated value are shown in the upper panel (LR in the left, VM in the center and CDF in the 

right). Soil moisture variability was differently affected depending on the RT when standard deviation 

correction after DA was evaluated. As shown in the lower figures, LR caused a larger reduction of 

SSM standard deviation. This effect spread systematically all over the catchment (low figures, left 

plot). All the three methods caused a general reduction of the STD all over the catchment, but when 

VM and CDF were applied, that reductive effect had a smaller impact over the cells in the north-

eastern part. 

Impact of DA when DA was performed over the whole catchment is shown in Table 4.7. As 

mentioned above, this experimental set-up caused NSE worsening with all the RTs. As LR also caused 

a significant worsening of the Pbias values, we discarded this option and results in figure 4.32 are 

those obtained with CDF re-scaling method (VM results are not shown, as the plots would look like 

very similar to the CDF ones). Results shown in figure 4.32 illustrate the impact of DA on the soil 

moisture content of the surface layer (Fig. 32a), on the transmission zone layer (Fig 32b) and on the 

simulated streamflow (Fig 32c and d). In the soil moisture plots, the red line indicates the soil moisture 

content of the layers prior to assimilation (validation run), while the blue line presents the SM content, 

once the data assimilation correction was performed through the EnKF. Correction caused on SM 

by DA is indicated by the green line. In this example with CDF method, satellite data caused quick 
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both positive and negative modifications on the SM content of the upper layer, which shows no clear 

patter during some periods of the studied years. But there are 3 periods were systematic modifications 

of the SM can be identified: 1) decreasing SM in spring 2014, 2) increasing SM in autumn 2014 

and the highest impacted period which was again spring, in 2015, where the largest decrease of 

SM occurred due to DA. These periods when the assimilation worked constantly in the same direction 

(increasing or reducing SM), also updated the SM in the Transmission Zone (Fig 32.b). 

 

 

Fig. 4.31. Corrections on the mean (upper row maps) and standard deviation (lower row) SSM after data 

assimilation over the whole catchment. Plots a) and d) correspond to DA after LR. Plots b) and e) correspond 

to DA after VM. Plots c) and f) correspond to DA after CDF. 

 

Figure 32.d shows that data assimilation impacted substantially the streamflow generation, which 

was particularly affected through a reduction of streamflow in February and March, 2015. Reduction 

in streamflow generation in this period was proportionally much larger than the increases generated 

in spring 2014 or the decreases in autumn 2014. Despite the magnitude of SM correction were not 

that different on those three periods, it affected differently the streamflow generation. Assimilation 
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over all the catchment with CDF re-scaling method resulted on a reduction in NSE (-3%) and on an 

increase in Pbias error (+29%) (Table 4.7). 

 

Fig. 4.32. Impact of DA over the whole catchment on catchment average TOPLATS outputs: a) Surface soil 

moisture content, b) Transmission zone soil moisture content, c) streamflow and d) streamflow correction. These 

results correspond to CDF re-scaling. 
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4.4.5.2. Data assimilation experiment 2: Only over agricultural areas  

As satellites observing SM are expected to provide lower quality data over forested areas 

(Escorihuela and Quintana-Seguí, 2016; Grant et al., 2007; Kurum et al., 2012; Rahmoune et al., 

2013), we decided to test the impact of DA when performed only over cultivated areas. Specifically, 

Cidacos catchment is manly covered by rainfed cereals (Fig 3.4), except for the north-eastern part 

where shrubs and forests exist. Unlike it happened when assimilation was performed in the whole 

catchment (Fig 4.31), assimilating only over cultivated areas caused the mean SSM value to increase 

on the cells located in the western part of the catchment (Fig 4.33, upper plots). The particular cells 

where DA was performed in this test can be clearly identified on the LR STD correction plot (Fig 4.33 

lower left plot). While some isolated cells correspond to cultivated areas on the eastern part, most 

of them concentrated on the western half. The mean value correction effect was similar with all RT, 

but somehow more intense with LR. In terms of STD correction, LR clearly performed more intensely 

than the other two methods.   

 

 

Fig. 4.33. Corrections on the mean (upper row maps) and standard deviation (lower row) after data 

assimilation only over agricultural cultivated areas. Plots a) and d) correspond to DA after LR. Plots b) and e) 

correspond to DA after VM. Plots c) and f) correspond to DA after CDF. 
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Fig. 4.34. Impact of DA over cultivated areas on catchment average TOPLATS outputs: a) Surface soil moisture 

content, b) Transmission zone soil moisture content, c) streamflow and d) streamflow correction. These results 

correspond to CDF re-scaling. 
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As illustrated in figure 4.34a and 4.34b, the effect of DA over cultivated areas on SM, when CDF 

method was used, offered similar corrections to the whole catchment assimilation. But in this case, 

the Pbias did not worsen up to 30% as in the previous trials and remained in a more moderate 15% 

error. Assimilating SMOS L4 data only over cultivated lands enhanced TOPLATS distributed 

streamflow prediction 4%, in terms of NSE, when VM and CDF methods were used. Efficiency 

increased 8% when LR was applied (Table 4.7), but substantial worsening in Pbias was generated in 

that case (+24%). Assimilating over cultivated areas also caused an important reduction (≈20 m3/s) 

on the highest event peak flow (February 2015) of the assimilation period (Fig 4.34d). Despite the 

peak flow of that large event was reduced due to assimilation, and thus difference to the observed 

value increased, data assimilation helped improving the simulation in terms of timing, better 

adjusting the time (simulation was performed with hourly time-step) at which the runoff peak 

occurred. This resulted on an efficiency rising (Table 4.7). 

 
 
4.4.5.3. Data assimilation experiment 3: Only over flat areas 

This section presents the results obtained by assimilating re-scaled SMOS L4 data only on cells 

with TI higher than 10 (Fig 3.6b). Similarly to the previous experiment, this one was based on the 

limitations referred to SMOS observation over complex topographic areas (Pellarin et al., 2015; 

Utku and Le Vine, 2011). The hypothesis here is that SMOS observations over steep areas are 

affected by errors, so excluding those areas from the observations might improve the assimilation 

results. As already shown in Table 4.7, this experiment had a very similar impact on model efficiency 

to the previous one. LR was again the method offering the largest improvements in terms of NSE 

(+9%), whereas the other two methods offered a more modest 4% NSE improvement. The main 

difference between the previous analysis and this one was found in terms of Pbias, as assimilating 

flat areas only offered lower Pbias values compared to assimilating only agricultural areas. This 

difference of 3% was observed consistently, regardless of the RTs method applied (Table 4.7). Cells 

affected by this experiment can be also clearly identified on the STD correction plots of figure 4.35 
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(lower panels). Similarly to the previous testing, DA increased the mean SSM on the affected cells 

(western area), and caused a moderate SSM decrease on the other parts of the catchment (Fig 4.35, 

upper plots). Similarly to the other two tests, the obtained SSM correction was stronger when LR was 

used, with the other two methods affecting SSM more weakly and in a very similar way. LR caused a 

decrease in STD all over the catchment, while on the contrary VM and CDF methods caused some 

minor STD increments on some particular cells on mountainous areas (Fig. 4.35, lower panel, green 

cells in the eastern part). 

 

 

Fig. 4.35. Corrections on the mean SSM (upper panel) and its standard deviation (lower panel) after data 

assimilation on flat areas. Plots a) and d) correspond to LR re-scaling. Plots b) and e) correspond to VM. Plots 

c) and f) correspond to CDF. 

 

The effect of DA was here also similar to the test over cultivated areas, but in this case Pbias 

worsening was slightly lower (Table 4.7). Compared to the 2% Pbias value obtained in the validation 

run, after this experiment Pbias raised to 12% with both VM and CDF methods, which can still be 

considered acceptable. Thus, despite LR achieved the highest efficiency improvements with a 

remarkable 0.77 NSE, this RT should not be recommended when DA is applied for water resources 

management purposes, as the Pbias obtained by this method was much larger than the rest (23%). 
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In any case, on DA assimilation studies focused on flood prediction this RT should be explored as 

has been demonstrated here, it was capable of enhancing high flow simulation up to 9%. 

Some differences can be found between impact on streamflow in figures 4.34d and 4.36d. On 

the latter, the reduction on the peak flow of the largest event of the period, appears to be lower than 

on the previous experiments, which probably explains to some extent the slightly lower Pbias results 

(12% compared to 15%) obtained here. 
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Fig. 4.36. Impact of DA over flat areas on catchment average TOPLATS outputs: a) Surface soil moisture 

content, b) Transmission zone soil moisture content, c) streamflow and d) streamflow correction. These results 

correspond to CDF re-scaling. 
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4.5.6. Discussion  

In recent years, different approaches have been followed to propose SSM downscaling or 

disaggregation methods, which vary with respect to the input ancillary data required (e.g., optical 

data, topography, soil depth, field capacity), the nature of the scale linking model (physical, 

semiempirical, empirical), and the underlying physical assumptions (i.e., how SSM is related to the 

available fine-scale modeled or observational information) (Piles and Sánchez, 2016). In order to 

account for the input ancillary data, this study considered different experiments, applying assimilation 

differently depending on land use and topography of the Cidacos catchment. 

A wide effort has been put into the development and validation of different down-scaled SMOS 

products, leading to a number of different techniques. As an example, the Disaggregation based on 

Physical And Theoretical scale Change (DisPATCh) 1-km resolution product proposed by Merlin et 

al. (2015) and Molero et al. (2015), which has also been recently improved by (Djamai et al., 2016). 

Down-scaled products with this resolution can bring SSM-DA to applications requiring higher spatial 

detail, e.g. the quantification of drought impacts on cultivated areas (Chakrabarti et al., 2014), or 

improved streamflow prediction (Lievens et al., 2016). Some of these products have already been 

validated in specific areas, i.e. SMOScat product (Escorihuela et al., 2012). Additionally, other 

investigations are recently focusing on the development of new down-scaled products based on the 

synergistic use of C-band SAR and L-band radiometer data (SMAP, SMOS) (Rudiger et al., 2016). 

In this study, a first visual comparison of the mean observed and simulated surface soil moisture 

values, already showed very different spatial patterns. This suggested that assimilation would affect 

very differently the different areas of the catchment. In both cases, soil moisture seemed to be 

controlled by topography, but different patterns were found. In the observed time-series, wetter areas 

were located in the northern faces of the mountainous areas of the catchment, whereas those were 

mainly found on the flat cultivated areas in the model results. 

Some studies, similar to the one presented here, that focused on the improvement of streamflow 

prediction after SSM assimilation into distributed models have already achieved positive results. 
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Cenci et al. (2016) assimilated ASCAT data and achieved very positive results in terms of high peak 

flows simulation on Mediterranean catchments. Moreover, Laiolo et al. (2016) reported an increase 

of NSE from 0.6 to 0.7 after ASCAT assimilation in northern Italian catchments. They also achieved 

a Pbias reduction of 10% after data assimilation. That study also assimilated SMOS, but no 

improvements were achieved in this case, probably due to the few observations available over the 

catchment (Laiolo et al., 2016).  

Despite some studies reported positive impacts on streamflow simulation thanks to SMOS 

assimilation into distributed models (Lievens et al., 2015; Wanders et al., 2014b), in some others 

no significant improvements were achieved. For instance, Lievens et al. (2016) reported remarkable 

improvements in SM simulation due to SMOS DA, but also found that only minor impacts were 

observed for the streamflow simulation analysis. Similarly, Tian et al. (2017) reported only 

slight/moderate improvements. 

Different aspects have been identified as potential limitations for a successful improvement of 

streamflow prediction by means of SMOS data assimilation. Those possible limitations include: the 

selected re-scaling technique (Lievens et al., 2016), the catchment size (Wanders et al., 2014a) or 

the prevalent type of runoff, especially in arid areas (Alvarez-Garreton et al., 2014). Lievens et al. 

(2016) attributed the limited effect of DA on streamflow simulation found on their study to the selected 

RT, which was CDF. They pointed out that this RT method adequately restricts the impact of the 

assimilation to the correction of random errors in the soil moisture simulations, but the impacts of 

these random corrections on the simulated streamflow volume may be very limited, particularly when 

the threshold soil moisture level to start runoff generation is either not reached or sufficiently 

exceeded. Therefore, the streamflow simulations may generally show a larger sensitivity to 

precipitation than to antecedent soil moisture conditions (Lievens et al., 2016). Wanders et al. 

(2014a) proposed the existence of an inverse relation between catchment size and DA impact, and 

considered that DA influence might be limited for large catchments. 

Our study was able to improve NSE by a 9%, obtaining a NSE up to 0.77 (0.68 on the validation 

run) (Table 4.7). This best-efficiency result was obtained when the SMOS 1-km resolution product 
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was assimilated only over flat areas. Similarly, an 8% improvement was achieved when assimilation 

was performed only over cultivated areas. Although our study was able to improve the efficiency of 

high flows simulation over a period of 2 years, some error was added to the total simulated volume 

(Pbias in Table 4.7). This contrasts with the results reported in Wanders et al. (2014b) who obtained 

a reduction of 10% in terms of Mean Absolute Error (MAE) of total simulated discharge, and 

attributed this to SSM-DA. In that study, Wanders et al. (2014b) concluded that SSM-DA improved 

the quality of the flood alerts, both in terms of timing and in the exact height of the flood peak, which 

is something that we also partially observed in our study, as data simulation was capable of 

improving the timing-prediction of the highest event of the simulation period (see figure 4.36, in 

section 4.4.5.3). As a finding from our study, we observed that despite worsening the simulated peak 

flow, data assimilation can improve the timing of an event, increasing the simulation efficiency. 

Lievens et al. (2015) obtained improvements in both SM (compared to observed values) and 

streamflow simulation, showing that improvements in antecedent SM conditions (due to SMOS 

assimilation) can propagate to improvements in streamflow prediction. This study (Lievens et al., 

2015), similarly to ours, evaluated three RT, i.e., fitting first, first and second, and all order moments. 

They found out that the better performance was offered by a first moment fitting method (named DA-

MEAN in their study, LR in our study) for improved streamflow simulation. They discussed that this 

finding might be explained by the fact that rescaling second and higher order moments reduced the 

variability and extremes of the soil moisture retrievals, and consequently confined runoff peaks. This 

study reported a 4% efficiency improvement with a LR method, and 2% efficiency improvements with 

VM and CDF methods for a two years period. Our results improved NSE by 8-9% with LR, and 4% 

with the other two re-scaling methods (VM and CDF). Lievens et al. (2015) also found that efficiency 

enhancements were mainly achieved during the 10 % of highest peak flows. Results in Lievens et al. 

(2015) are thus in line with our results in terms of RT efficiency, with first-moment fitting method as 

the one providing highest efficiency improvements.  
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To our knowledge, few assimilation studies have been performed with 1-km resolution 

downscaled SMOS products. Ridler et al. (2014) performed SM-DA over a 1,000 km2 catchment in 

Denmark and used a land cover classification for SMOS disaggregation to correct observation bias. 

They were able to improve peak flows simulation with a coupling approach of a hydrological model 

and a SVAT model. Despite peak flows were better simulated after DA, some over-correction was 

found as well. Lievens et al. (2016) compared the performance of different SMOS-derived products 

of different spatial resolution, including the DisPATCh 1-km product. The assimilation of this down-

scaled product did not provide any efficiency increase on streamflow simulation, probably not 

attributable to the quality of the product, but to the sparser observations available during cloudy 

conditions (Lievens et al., 2016). They also concluded that  there was no clear spatial clustering of 

the results, indicating that assimilation impacts were not clearly related to regional conditions, such 

as land cover or basin characteristics (Lievens et al., 2016). 

Regarding the different experiments performed in our study, obtaining better results when 

assimilating SMOS data over flat areas, there is some agreement with Wanders et al., (2014a) who 

found out that assimilation of SMOS data provided its best results on SM estimation when 

observation of flat areas was applied (Wanders et al., 2014a).  
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CHAPTER 5.  CONCLUSIONS  

5.1. Conclusions on the Sensitivity analysis of TOPLATS model 

The evaluation of TOPLATS performed in this research provides model users with useful guidelines 

to: 1) identify the model parameters having the largest influence on main hydrological processes 

and on streamflow simulation efficiency; 2) perform an efficient calibration of the model through an 

automatic calibration algorithm applied with a multi-start approach; 3) gain insight on the 

performance, advantages and limitations of the model when applied at daily and hourly time-scales 

and 4) be aware of the importance of climatological variability to be contained on the calibration 

period in Mediterranean catchments. 

Sensitivity analyses performed with Morris and Sobol methods yielded very similar results and 

concluded that 3 parameters: Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) 

and Hydraulic conductivity decay (f) had the overall largest influence on the hydrological processes 

(surface runoff, baseflow, evapotranspiration and surface zone soil moisture dynamics) and 

streamflow simulation efficiency. Thus, their inclusion in any TOPLATS calibration is recommended. 

Morris method gave similar results to Sobol, with lower computational requirements, which makes it 

a reliable and suitable method to be applied on complex and largely parameterized physically based 

models similar to TOPLATS.  

Regardless of catchment size or climate influence, mean surface soil moisture was found to be 

controlled by B, and its dynamics by f. Streamflow generation on wet catchments (Arga and La 

Tejeria) seemed to be mainly influenced by ψc, whereas the drier catchment (Cidacos) was largely 

affected by B. 
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5.2. Conclusions on TOPLATS model calibration 

Model calibration achieved a substantial efficiency improvement in the three evaluated 

catchments, and reduced Pbias to values below 10% (in most cases below 5%). Calibration improved 

both average flows simulation accuracy and high peaks simulation results, in both calibration and 

validation periods. 

Climatic variations between calibration and validation periods compromise model performance 

and parameter stability, particularly in arid zones. A random and discontinuous period selection 

strategy was applied in this study to overcome this issue, which outperformed model calibration with 

the conventional calibration and validation period selection strategy. This random approach is thus 

recommended when large climate variability is found between calibration and validation periods, 

and particularly when run on daily basis. 

In terms of streamflow simulation efficiency, when TOPLATS was run in hourly and daily basis, 

catchment size had an influence on the results. Mean NSE of calibration and validation periods on 

the experimental micro-catchment studied (La Tejeria) was higher in hourly basis (NSE 0.77) than in 

daily basis (NSE 0.60). The opposite occurred on the largest catchment (Arga) where hourly efficiency 

(0.65) outperformed daily results (NSE 0.62). On the intermediate size catchment (Cidacos), 

efficiency results were very similar (NSE 0.58 and 0.59). Surface soil moisture behavior (characterized 

by rapid variations) seemed not to be properly simulated at longer time scales, affecting model 

behavior. 

Monthly efficiency results showed that TOPLATS performed optimally in the two smallest 

catchments, but some systematic deviation was found on the largest, uncovering a clear 

overestimation pattern during winter and underestimation in autumn and spring. This seasonal 

deviations could be compensated by implementing data assimilation techniques and using observed 

streamflow, remote sensing or in-situ soil moisture data, to update model variables (i.e. soil moisture, 

water balances) in order to correct that systematic deviated pattern).   
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5.3. Conclusions on Data assimilation with statistical and semi-distributed models and ASCAT SSM 

data 

This study has demonstrated that ASCAT SSM assimilation into models with different 

conceptualization approaches can improve hourly streamflow simulation in medium-size catchments 

located in Mediterranean climate areas when an adequate DA configuration, in terms of SSM 

observation re-scaling and observation error, is set-up. The main findings are summarized in the 

following paragraphs. 

After model calibration, streamflow forecasts for the Mediterranean catchments investigated were 

more accurate using a conceptual and less parameterized model (i.e., MISDc) than with a physically 

based complex model (TOPLATS). In any case, both models offered overall NSE > 0.65 for the 11 

years studied period. 

ASCAT data assimilation increased the NSE in three out of the four catchment/hydrological model 

combinations evaluated. For the remaining case, DA could not increase model performance due to 

the already high NSE efficiency obtained through an extremely accurate calibration. 

The open-loop ensemble streamflow simulation (QOL) outperformed the deterministic simple 

model validation (VAL) run. This indicates that improvements in streamflow simulation efficiencies 

could be achieved by considering forcing and parameter uncertainties in modelization. 

The re-scaling technique used strongly conditioned the results obtained in one of the catchments 

(Nestore), but showed a much more limited impact on the other one (Arga). This effect was similar 

with both models. In general, linear re-scaling (LR) offered better results than variance matching (VM) 

and cumulative distribution function matching (CDF).  

The ASCAT surface soil moisture observation error largely influenced the assimilation results 

obtained. The best DA performance was achieved when low observation error values (4-6 %, or even 

<1 %) were considered. 



 

 174 

     

The magnitude of the DA impact seemed to be closely related to the specific catchment conditions 

rather than to a specific model characteristic (i.e. conceptualization and parameterization complexity 

or soil layer configuration). In addition, the success achieved in model calibration for a specific 

catchment had a great influence on the ability of DA to improve its predictions. 

EnKF based SSM-DA provided efficiency increases that reached 45 %, but the variation obtained 

depended largely on the catchment, model and DA set-up combination. 

 

 

5.4. Conclusions on data assimilation with a fully distributed model and a SMOS/MODIS 1-km 

resolution SSM product 

The TOPLATS model in distributed mode, provided a very valuable result in both efficiency (NSE 

= 0.68) and total simulated volume (Pbias = 2%) after validation. TOPLATS was thus validated as 

useful tool to simulate streamflow in Mediterranean catchments of medium size. 

This study tested the assimilation of a SMOS downscaled product only over cultivated or flat 

areas, and it was found out that these experiments outperformed the results obtained on the 

experiment when assimilation was performed over all the catchment. This suggests that SMOS 

downscaled observations over forested areas or observations of steep relief areas might not be as 

accurate as the observation of flat cultivated areas. Thus, results from this study recommend the 

assimilation of observations over flat and cultivated areas to achieve improved streamflow 

simulations. Assimilation over the whole catchment resulted in a slight deterioration of the efficiency, 

and in a large underestimation of total simulated streamflow. The other two experiments, assimilation 

only over cultivated or flat areas offered increments on the efficiency, up to 9% and NSE = 0.77 in 

some cases. Underestimation was found in these cases as well, but more limited (12%).  

There is still the need for further research, to fully understand the modeling processes that 

generated those large errors in terms of total simulated volumes, especially when it is taken into 

account that all the three re-scaling methods applied guarantee that the integrated data has the 
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same mean value of the simulated time-series. This effect might be related to the uncertainty of the 

model varying with time. Models uncertainty was larger during winter, which might be a period when 

the observations were below simulated values, thus reducing a significant portion of the water in the 

soil, and hence causing the commented error. Different transmission rates between the two soil layers 

(upwards and downwards) also seem to influence this balance. 

The downscaled product used in this study seems to be a very valuable information source to 

improve streamflow prediction in dry catchments, and it allows to easily exclude assimilation of areas 

where dense vegetation or high slopes may limit satellite observation accuracy.  

Linear Re-scaling method offered the best results in terms of improving efficiency, but at the 

expense of large volume errors. Variance Matching and Cumulative Distribution Function offered 

very similar results. Both were able to provide efficiency increments, while maintaining lower errors 

in terms of total simulated volumes.  

It was observed that distributed assimilation of SSM only over certain areas of the catchment, also 

affected the remaining zones, due to the soil moisture content redistribution performed by the 

TOPLATS model. When the assimilation was performed over the whole catchment or over specific 

areas, the model reacted differently in terms of the spatial redistribution of moisture across the 

catchment. In TOPLATS, this redistribution of SM content is done based on catchment’s mean water 

table depth and on each cell’s specific Topographic Index (TI). This type of singular effects needs to 

be taken into account when data assimilation is performed with different models, as each model has 

its specificities that can influence assimilation performance. 

Data assimilation of SSM observations was able to improve simulation efficiency, and it was found 

that simulation improved not only in terms of magnitude, but also in terms of better simulation timing 

of some of the highest events. 

Results in this study, clearly showed that correcting SSM of the upper 5 cm layer, through data 

assimilation of remotely sensed observations, also has a significant impact on the deeper 

transmission layer. Furthermore, it was observed that similar corrections of soil moisture content, in 

terms of magnitude, have very different impacts in terms of streamflow correction. This seemed to be 
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related to the continuity of the type of correction, specifically on its direction, whether it is upwards 

or downwards. When the assimilation modifies the simulated value, over a large period of time in 

the same direction, it finally turns out in larger streamflow modifications. In any case, some type of 

discontinuities seem to affect streamflow correction magnitude, and need to be further investigated. 

 

 

5.5. General conclusions 

This study showed that applying widely validated Sensitivity Analysis techniques can substantially 

reduce the calibration effort to be done on complex models such as TOPLATS, and that they can 

provide relevant information on the parameters principally responsible of controlling the simulated 

hydrological processes. Moreover, nowadays, optimization algorithms can be very useful tools to 

perform efficient hydrological model calibration. These two tools are especially convenient in largely 

parameterized models, and when models are applied in complex catchments, such as the ones 

located in Mediterranean climate areas that are affected by large inter-event and inter-annual rainfall 

variability. 

In this thesis, two widely applied sensitivity methods, Morris and Sobol were used to analyze 

TOPLATS model. It was found, that Morris, despite having a much lower computational cost, was 

able to identify correctly most of the sensitive parameters to the main hydrological processes and the 

goodness of fit measures evaluated. It was also capable of identifying non-influential parameters. 

Thus, it can be considered a very valuable option to develop sensitivity analysis of a large number 

of parameters, or in models with high computational requirements. 

This thesis evaluated the performance of TOPLATS as a suitable model to simulate streamflow in 

Mediterranean catchments, at both hourly and daily time-step. It was found that the model can 

provide optimal results, both in terms of high flows simulation, and in terms of total simulated 

volumes. But, it must be noted that significant efforts have to be done to achieve these positive results. 
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These efforts must include the application of a thorough calibration strategy capable of avoiding 

local minima issues, as the one proposed in this work. 

In order to identify stable calibrated parameter values, this study found out that it is important to 

select calibration periods that contain enough weather variability, especially in terms of containing 

enough wet periods. More stable parameter values will be obtained when there is an equilibrium of 

weather states in the calibration and validation periods. For that, when the available calibration 

periods do not contain enough weather variability, or when only short time-series are only available 

for calibration, a random selection of data is recommended for calibration. This random selection 

should be conditionally performed, so that enough wet periods are included. This will help finding 

parameter values that will also offer optimal results on validation periods. 

The assimilation of ASCAT data into models of different complexity in terms of spatial 

representation and level of parameterization, was able to provide in most cases, an improvement on 

the streamflow simulation accuracy, but the adequate combination of re-scaling technique and 

observation error estimation needs to be found. Thus, there is no simple and general rule to follow 

that could be made extensive to any combination of catchments and models. Altogether, this study 

provides significant information on the observation error range that may provide the best assimilation 

results in similar catchments. Moreover, this study also provides information regarding the 

performance of the different re-scaling techniques. Additionally, in very well calibrated models, it can 

be found that further improvements are no longer possible to achieve, as the model already 

represents accurately most of the hydrological processes. It was also found that assimilation 

performance may be related to specific catchments characteristics, mainly rainfall regime, size and 

topography. 

This PhD thesis also found out that there is a potential to improve fully-distributed hydrological 

models with down-scaled surface soil moisture remotely sensed products, such as the L4 product 

based on SMOS and MODIS, and produced at the Barcelona Expert Center. Three different re-

scaling techniques were tested to fit observed SSM values to simulated SSM. These techniques 

provided different results that impacted peak flow and total volume simulation in different ways. It 
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was found that the assimilation of this product, through the Ensemble Kalman Filter over a catchment, 

produced a slight reduction of the efficiency, and even worst, generated large errors in the simulated 

volume. Nevertheless, this analysis also found that those errors might come from specific areas of 

the catchment. Specifically, densely vegetated areas and areas with rough topography were the ones 

where satellite observation may perform worst. When these areas were exclude, significant efficiency 

improvements were achieved through data assimilation. This finding suggests that new research 

efforts are needed within the distributed modeling and data assimilation community on removing or 

filtering out areas where large observation errors might turn out into streamflow simulation 

worsening.  

The overall view of this PhD thesis shows that TOPLATS can be used to simulate streamflow in 

complex catchments, such as Mediterranean ones. For that, proper analysis of the sensitivity to 

different parameters is required. Once the most sensitive parameters are identified, optimization 

algorithms can reduce substantially the efforts to calibrate the model, and are helpful to obtain stable 

parameter values that also offer optimal simulations during validation periods. Selecting calibration 

periods with enough weather variability will assure obtaining such stable values. Furthermore, this 

study tested different combinations of satellite estimated error value (of ASCAT) and re-scaling 

methods to improve a lumped and a semi-distributed catchment model streamflow simulation. 

Improvements on streamflow simulation were achieved for most of the model/catchment 

combinations. Lastly, this work also improved the streamflow simulation of a distributed model 

through the assimilation a downscaled SSM product, derived from SMOS and MODIS satellites. 

While this improvement was not achieved on a first attempt, assimilating SSM data over the whole 

catchment, assimilating SSM only over cultivated or flat areas resulted in substantial efficiency 

improvements.  
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