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1. Introduction

In recent years, both formal concepts analysis and mathematical morphology have

attracted the interest of many researchers1;2;3;4;5;6;7;8;9. These theories have their

origin at problems which are very different to each other: deriving a concept hierar-

chy or formal ontology from a collection of objects and their properties, in the case

of the former6 and image processing in the case of the latter1. However, when both

theories are considered in the general framework of bounded lattices, it comes out

that it exists a mathematical relation between them.

In this sense, in10, the authors consider a bounded lattice L and use a residuated

pair to define L-fuzzy erosion and L-fuzzy dilation. Using a structuring element11;12

R ∈ LX×X , in13 the authors understand an image as a relation and use their

theoretical developments for representing different effects over an initial fuzzy image.

As a consequence, in that paper authors provide conditions which allow to identify

erosion and dilation morphological operations defined in terms of a given structuring

element and a residuated pair, on the one hand, and derivations over an appropriate

L-fuzzy context, on the other hand. However, in this case the set of objects and

the set of attributes were the same. Namely, we only consider relations defined over

X ×X.

Our main goal in this paper is to go one step further in the study of the link be-

tween both theories. In particular, our main objective is to link fuzzy mathematical

morphology and L-fuzzy context theory without imposing that the set of objects

and the set of attributes of the latter are the same. In particular, we want to show

that erosion and dilation morphological operators can be understood as derivations

in an appropriate L-fuzzy context and conversely.

It is worth to notice that the study of the equivalence between morphological

operators and other constructions which are, in principle, far from image processing,

is not new. For instance, the equivalence between some morphological operators and

rough sets defined from a relation has been considered by Bloch in14. Furthermore,

the equivalence between mathematical morphology and formal concepts theory in a

crisp setting have also been considered15. And, in16, the relationship between both

theories is also analyzed, but from a different perspective, since the authors relate

algebraic mathematical morphology and fuzzy property-oriented concept lattices.

To achieve this objective, we start defining in an appropriate way the notion of

residuated pair which is going to be the basis for building the different operators.

After that, and for X and Y and an L-fuzzy relation R ∈ LX×Y , we introduce

the basic morphological operators17;18: erosion, dilation, opening and closing. In

particular, the opening and closing operators will allow us to characterize some

relevant sets: the R-open sets and the R-closed sets. Finally, all this developments

lead us to our main result: the equivalence between erosion and dilation operator,

on the one hand, and derivation operators, on the other hand.

Note that, since the corresponding crisp theories are just particular cases of the

fuzzy ones, we get in a straightforward way a link between (crisp) mathematical
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morphology and (crisp) formal concept analysis6.

This work is organized as follows: in Section 2, we show some preliminary notions

about L-fuzzy concept analysis and L-fuzzy mathematical morphology. In Section 3,

we carry out a study on L-fuzzy implication functions in order to define appropriate

residuated pairs. Then, in Section 4, we use such residuated pairs to analyze the

relation between L-fuzzy mathematical morphology and L-fuzzy concept analysis.

In Section 5 we propose a practical case to illustrate the results. Finally we present

some conclusions and comments on future lines of work.

2. Preliminaries

2.1. Basic concepts

In the following, we provide some basic definitions which are necessary for under-

standing the present paper. (L,≤) is a complete lattice with top element given by

1L and bottom element given by 0L. Given two sets A,B we denote by AB the set

of mappings from B to A.

Definition 1. Let L be a complete lattice. A strong negation on L is a decreasing

and involutive function ′ : L→ L.

For all strong negation, 0′L = 1L and 1′L = 0L. Moreover if ′ is a strong negation

in the complete lattice L, X is a set and A ∈ LX , we denote by A′ ∈ LX the

mapping defined by A′(x) = (A(x))′ for every x ∈ X.

We recall now the notion of implication operator over a complete lattice L or

L-fuzzy implication function19;20;21.

Definition 2. Let L be a complete lattice. An L-fuzzy implication function is a

mapping I : L× L→ L such that

(i) I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L;

(ii) I(1L, 0L) = 0L;

(iii) I is decreasing (with respect to ≤L) in its first component;

(iv) I is increasing (with respect to ≤L) in its second component.

Given an L-fuzzy implication funcion I, it can be used to defined a conjunctive

operator C (i.e., a commutative, associative and increasing operator) as follows.

Definition 3. Let L be a complete lattice and I : L × L → L be an L-fuzzy

implication function right-continuous in its second component (i.e. it preserves

infima in the second component). The conjunction operator C : L×L→ L associated

with I by adjointness is given by:

C(x, y) = inf{z ∈ L | y ≤L I(x, z)}

for every x, y ∈ L. We say that the pair (I, C) is a residuated pair.
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Remark 1. As a consecuence of the right continuity of I, Definition 3 is equivalent

to:

I(α, β) = sup{ω ∈ L | C(α, ω) ≤ β}, ∀α, β ∈ L (1)

Definition 4. Let X,Y be two sets and L a complete lattice. An L-fuzzy relation

over X × Y is a mapping in LX×Y ; that is, a mapping R : X × Y → L.

Note that the usual notion of fuzzy relation22 is just a particular case of L-fuzzy

relation with L = [0, 1].

¿From this point on, in order to simplify the notation, we use the following

convention. Let L be a complete lattice and I be an L-fuzzy implication function

right-continuous in its second argument. Let N ⊆ L. The set {I(x, y) | y ∈ N} will

be denoted by I(x,N). If N = ∅, then I(x,∅) = ∅. In the same way, for M ⊆ L,

we denote by I(M,y) the set {I(x, y) | x ∈M}, and I(∅, y) = ∅.

2.2. Formal concept analysis

The theory of formal concept analysis of R. Wille6;7 extracts information from

a binary table that represents a formal context (X,Y,R), with X and Y finite sets

of objects and attributes, respectively, and R ⊆ X × Y . The hidden information

is obtained by means of the formal concepts, which are pairs (A,B) ⊆ X × Y and

such that A and B are related by means of the so-called derivation operator that

associates an object set A with the attributes related to the elements of A (and,

respectively, an attribute set B with the objects related to the elements of B),

(see6). In this way, formal concepts can be interpreted as a group of objects A that

shares the attributes of B.

In8;23;24, the notion of an L-fuzzy context was introduced as follows.

Definition 5. An L-fuzzy context is an algebraic system (L,X, Y,R), where

(i) L a complete lattice;

(ii) X and Y are two (non-empty) sets, called set of objects and set of attributes,

respectively;

(iii) R is an L-fuzzy relation between the set of objects and the set of attributes,

which is called the incidence relation.

Remark 2. Definition 5 provides an extension of Wille’s formal contexts when we

want to study the relationship between the objects and the attributes with values in

a complete lattice L, instead of binary ones. Other generalizations of formal concepts

analysis using residuated implication operators are due to R. Belohlavek25;26;27 and

S. Pollandt9.

In order to define L-fuzzy concepts, we also need to introduce the notion of a

derivation operator which is going to connect objects and attributes. This can be

done as follows.
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Definition 6. Let X,Y be two sets, L a complete lattice, R ∈ LX×Y an L-fuzzy

relation and I : L× L→ L an L-fuzzy implication function.

(i) The first derivation operator DR
1 : LX → LY is defined by

DR
1 (A)(y) = inf

x∈X
{I(A(x), R(x, y))}

for every A ∈ LX .

(ii) The second derivation operator DR
2 : LY → LX is defined by

DR
2 (B)(x) = inf

y∈Y
{I(B(y), R(x, y))}

for every B ∈ LY .

(iii) The operator DR
12 is defined by the composition DR

2 ◦DR
1

In order to avoid notational complexity, if A ∈ LX and B ∈ LY , we denote

A1 = DR
1 (A) and B2 = DR

2 (B).

Remark 3.

(i) In Definition 6, A1 can be understood as a representation of the attributes

related to the objects of A. Analogously, B2 can be understood as a repre-

sentation of the objects related to all the attributes of B.

(ii) Although Definition 6 is provided in terms of a general L-fuzzy implication

function, in the following we assume that, unless otherwise stated, I is a

residuated L-fuzzy implication function.

Finally, in order to define the L-fuzzy concept lattice, we recall that for a given

mapping f : X → X, the set of fixed points of f is

fix(f) = {x ∈ X | f(x) = x}.

Then the following result holds.

Proposition 1.8;23 Let L be a complete lattice, R ∈ LX×Y be an L-fuzzy relation

and I : L×L→ L be an L-fuzzy implication function. Then, the set L = {(A,A1) |
A ∈ fix(DR

12)} with the order relation ≤ defined as:

(A,A1) ≤ (C,C1) if A ≤ C ( or, equivalently, A1 ≥ C1) (2)

is a complete lattice, where ≤ denotes the usual (pointwise) ordering between map-

pings.

Definition 7.8;23 Let L be a complete lattice, R ∈ LX×Y be an L-fuzzy relation

and I : L × L → L be an L-fuzzy implication function. Then L constructed as in

Proposition 1 is called the L-fuzzy concept lattice.

The information stored in the context is shown by means of the L-fuzzy concepts,

which are the pairs (A,A1) ∈ LX×LY with A ∈ fix(φ), where φ(A) = (A1)2. These
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pairs, whose first and second components are said to be the fuzzy extension and

intension respectively, represent a set of objects that shares a set of attributes.

Other extensions of formal concept analysis to the interval-valued case are

in28;29;30 and to the fuzzy property-oriented concept lattice framework in31;32;33.

Also we can see a study of L-fuzzy contexts using two relations in34.

Example 1. A very interesting particular case of L-fuzzy contexts appears trying

to analyze situations where the object and the attribute sets are the same35, that

is, L-fuzzy contexts (L,X,X,R) with R ∈ LX×X (this relation can be reflexive,

symmetrical . . . ). In these situations, the L-fuzzy concepts are pairs (A,B) such

that A,B ∈ LX .

These are the L-fuzzy contexts that were used in10 to obtain the main results of

the work. Moreover, in the case of the use of the L-fuzzy contexts (L,Rn,Rn, R) or

(L,Zn,Zn, R), the L-fuzzy concepts (A,B) are interpreted as signal or image pairs

or digital versions of these signals or images, respectively.

2.3. Mathematical morphology

Mathematical morphology is a theory concerned with the processing and analysis of

images or signals using filters and operators that modify them. The fundamentals

of this theory (initiated by G. Matheron36;37 and J. Serra1), are in affine space

theory, integral geometry and lattice algebra. Nowadays, this methodology is used

in general contexts related to activities as information extraction in digital images,

noise elimination or pattern recognition38;39.

Mathematical morphology was originally conceived for the processing of binary

images and later extended to gray-scale images40;1. This theory defines some tools

(morphological filters) for image processing and computer vision. These morpho-

logical filters are obtained by means of two basic operators called erosion and dila-

tion, that are defined in the case of binary images with the sum and difference of

Minkowski1, respectively.

The previous approach for binary images was extended into a more general

framework, the Fuzzy mathematical morphology41;17;18;42;2;43;44;5;45 with some links

with the gray-scale mathematical morphology. There are also extensions of fuzzy

mathematical morphology based on discrete t-norms in46, and to bipolar or interval-

valued fuzzy sets in47;48.

One of the main papers about this extension of mathematical morphology is due

to P. Sussner et al.49. These authors investigate a number of theoretical aspects of

L-fuzzy mathematical morphology. The paper studies interval-valued and intuition-

istic fuzzy mathematical morphology as special cases of these L-fuzzy mathematical

morphology.

Furthermore, we can take (L1,≤1) and (L2,≤2) complete lattices and define

the filters as operators F : L1 → L2 with properties related to the order in these

lattices1;50;44. Then, an erosion is defined as an operator ε : L1 −→ L2 that com-

mutes with the infimum operator and a dilation δ : L1 −→ L2 as an operator that
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commutes with the supremum:

ε(
∧
Y ) =

∧
y∈Y

ε(y), δ(
∨
Y ) =

∨
y∈Y

δ(y),∀Y ⊆ L1

In the literature (see42;17;51), fuzzy erosion and fuzzy dilation operators are

introduced associated with the residuated pair (I, C). Although this paper uses the

extensions to L-fuzzy sets of the definitions given by Bloch and Mâıtre17, there is

another extension due to DeBaets42. The general framework proposed by De Baets

(see52 for a nice compilation) considers a general fuzzy conjunction and a general

fuzzy implication function in the fuzzy dilation and erosion, respectively. Indeed, in

some applications, a residuated pair is not the best choice (see53).

In the lattice morphological setting, an image is just a mapping A : X → L from

a set X to a complete lattice L. The set X is always taken to be either R2 or Z2.

Let us start with some notions of this theory.

Definition 8. Let L be a complete lattice and X be a set. A structuring element

(over X) is an element S ∈ LX .

The structuring elements are the building blocks for constructing L- fuzzy ero-

sion and L-fuzzy dilation operators, as follows.

Definition 9. Let S be a structuring element (over a set X), let L be a complete

lattice and let (I, C) be a residuated pair in L.

(i) The L-fuzzy erosion operator associated with S is the mapping εS : LX →
LX , where, for each A ∈ LX , εS(A) ∈ LX is defined as:

εS(A)(x) = inf{I(S(y − x), A(y)) | y ∈ X} ∀x ∈ X

(ii) The L-fuzzy dilation operator associated with S is the mapping δS : LX →
LX , where, for each A ∈ LX , δS(A) ∈ LX is defined as:

δS(A)(x) = sup{C(S(x− y), A(y)) | y ∈ X} ∀x ∈ X

Note that we have the following relation between erosion and dilation.

Proposition 2. Let X be a set. Let L be a totally ordered lattice. Let’s denote by ≤
the order obtained in LX by extending the order ≤L. Then the pair (εS , δS) satisfies

that

δS(A) ≤ B ⇐⇒ A ≤ εS(B),∀A,B ∈ LX (3)

Remark 4. Pairs of operators which verify Eq. 3 in a given complete lattice are

said to be an adjunction in that lattice.
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2.4. The relation between L-fuzzy mathematical morphology and

L-fuzzy contexts

In this subsection we make a short review of some already existing results which

link L-fuzzy mathematical morphology and L-fuzzy contexts theory.

In10, the authors define L-fuzzy erosion and L-fuzzy dilation of images associated

with a residuated pair (I, C) in ([0, 1], X,X,RS), with the set X equal to Rn or to

the digitalized space Zn. In particular, in that paper RS ∈ [0, 1]X×X is a fuzzy

relation associated with a structuring image S ∈ [0, 1]X and it is defined as

RS(x, y) = S(x− y),∀(x, y) ∈ X ×X (4)

In13, the authors make use of structuring elements R ∈ LX×X for representing

different effects over an initial fuzzy image A ∈ LX with appropriate residuated

pairs. In this framework, fuzzy erosion and dilation operators associated with the

pair (I, C) were defined as follows:

εR(A)(x) = inf{I(R(y, x), A(y)) | y ∈ X}
= inf{I(Rop(x, y), A(y)) | y ∈ X}, ∀x ∈ X

δR(A)(x) = sup{C(R(x, y), A(y)) | y ∈ X}, ∀x ∈ X

One of the main results presented there, which sets up the relation between

L-fuzzy mathematical morphology and L-fuzzy concept analysis, is the following.

Theorem 1. Let (L,X,R) be the triple associated with the structuring element

R ∈ LX×X . Let ′ be a strong negation in L and I a fuzzy implication operator

verifying the contrapositive symmetry. Let (L,X,X,R′) be the L-fuzzy context whose

incidence relation R′ ∈ LX×X is such that for all (x, y) ∈ X × X, R′(x, y) =

(R(x, y))′. Then, L-fuzzy erosion εR and L-fuzzy dilation δR operators in (L,X,R)

are related to derivation operators DR′

1 and DR′

2 in the L-fuzzy context (L,X,X,R′)

by:

εR(A) = DR′

1 (A′) ∀A ∈ LX

δR(A) = (DR′op

2 (A))
′

∀A ∈ LX

As we have already stated in the introduction, our goal in this paper is to extend

this result to cover the case of structuring elements defined in LX×Y with X ̸= Y .

3. Construction of a Residuated Pair in a Complete Lattice

In order to relate the operators used in mathematical morphology and those used in

formal concept analysis, a crucial step is the definition of an appropriate residuated

pair. In this section, and starting from an operator which does not need to be a

fuzzy implication function but which satisfies suitable properties, we show how we

can arrive at the desired residuated pair. Our starting point is the following results

where, for the moment, we do not require to deal with an implication.
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Proposition 3. Let (L,≤) be a complete lattice and let I : L × L −→ L be an

internal operation in L such that:

I(α, I(β, ν)) ≤ I(β, I(α, ν)), ∀α, β, ν ∈ L (5)

∃e ∈ L : e ≤ I(α, β) iff α ≤ β, ∀α, β ∈ L (6)

Then operation I verifies the following properties.

(I1) The exchange principle:

I(α, I(β, ν)) = I(β, I(α, ν)), ∀α, β, ν ∈ L (7)

(I2) α ≤ I(β, ν) ⇐⇒ β ≤ I(α, ν).

(I3) I(0L, β) = 1L,∀β ∈ L. Specifically, I(0L, 0L) = I(0L, 1L) = 1L.

(I4) α ≤ I(I(α, β), β), ∀α, β ∈ L.

(I5) The element e of (6) is a left neutral element for I and it is unique.

(I6) The element e is equal to 0L, if and only if, |L| = 1.

(I7) The operation I is decreasing in the first argument:

α1 ≤ α2 =⇒ I(α1, β) ≥ I(α2, β),∀β ∈ L (8)

and I(supM,β) = inf I(M,β),∀M ⊆ L,∀β ∈ L holds.

(I8) e = min{I(α, α) | α ∈ L} = min{I(α, β) | α, β ∈ L and α ≤ β}.
(I9) I(1L, α) ≤ α, ∀α ∈ L. Specifically, I(1L, 0L) = 0L.

(I10) I(α, 0L) = 0L,∀α ≥ e.

(I11) I(α, β) = I(I(I(α, β), β), β), ∀α, β ∈ L.

Proof:

(I1) Interchanging α and β in (5) we obtain the opposite inequality, so the

following equality holds:

I(α, I(β, ν)) = I(β, I(α, ν)), ∀α, β, ν ∈ L.

(I2) Suppose that α ≤ I(β, ν) is verified, then applying property (6), we know

that e ≤ I(α, I(β, ν)) and, as a result, e ≤ I(β, I(α, ν)). So β ≤ I(α, ν).

(I3) From the inequality 0L ≤ I(1L, β),∀β ∈ L, and from (I2) we can deduce

1L ≤ I(0L, β),∀β ∈ L and therefore, 1L = I(0L, β),∀β ∈ L. As a result, as

particular cases, if we take β = 0L and β = 1L we obtain that I(0L, 0L) =

I(0L, 1L) = 1L.

(I4) From I(α, β) ≤ I(α, β) we deduce e ≤ I(I(α, β), I(α, β)), that is, e ≤
I(α, I(I(α, β), β)) and therefore α ≤ I(I(α, β), β).

(I5) From α ≤ α we prove e ≤ I(α, α), then α ≤ I(e, α),∀α ∈ L. On the other

hand, by the previous paragraph, e ≤ I(I(e, α), α),∀α ∈ L, which proves

that I(e, α) ≤ α. We can conclude that I(e, α) = α, ∀α ∈ L and so, e is a

left neutral element for I.

For the uniqueness of an identity element, suppose that there is another e1
with the same property, then it also would be a left neutral element. Then,
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we have e1 = I(e, e1), e = I(e1, e); so, e ≤ e1 and e1 ≤ e which proves

the equality e = e1.

(I6) Suppose that e = 0L. Let be α, β ∈ L, then, from 0L ≤ I(α, β) and

0L ≤ I(β, α), we deduce that α ≤ β and β ≤ α, that is, α = β. So, L has

an only element, that is, |L| = 1.

On the other hand, if |L| = 1, then the property (6) is trivially verified.

(I7) In the first place, we see that I is decreasing in the first argument. Suppose

that α1 ≤ α2. From α2 ≤ I(I(α2, β), β),∀β ∈ L, it is proved that α1 ≤
I(I(α2, β), β),∀β ∈ L, and, as a result, e ≤ I(α1, I(I(α2, β), β)),∀β ∈ L,

that is, e ≤ I(I(α2, β), I(α1, β)). Therefore I(α2, β) ≤ I(α1, β).

Consider M ⊆ L, we can see that I(supM,β) = inf I(M,β),∀M ⊆ L. If

M = ∅, then the property is trivial since the set I(∅, β) is just ∅ and

sup∅ = 0L, inf ∅ = 1L, then:

I(sup∅, β) = I(0L, β) = 1L = inf ∅ = inf I(∅, β).

If M ̸= ∅: From m ≤ supM, ∀m ∈M, we can deduce that

I(supM,β) ≤ I(m,β),∀m ∈M, ∀β ∈ L

then I(supM,β) is a lower bound of I(M,β). Let λ ∈ L be another

lower bound of I(m,β), i.e., λ ≤ I(m,β),∀m ∈ M. It is verified that

m ≤ I(λ, β),∀m ∈ M and, as a result, supM ≤ I(λ, β) that is equivalent

to λ ≤ I(supM,β). This expression proves that I(supM,β) is the greatest

lower bound, that is,

I(supM,β) = inf I(M,β).

(I8) We have that e ≤ inf{I(α, α) | α ∈ L} and e ≤ inf{I(α, β) | α, β ∈
L and α ≤ β}. Moreover, as e = I(e, e), e is minimum

e = min{I(α, α) | α ∈ L} = min{I(α, β) | α, β ∈ L and α ≤ β}

(I9) From e ≤ 1L we deduce that I(1L, α) ≤ I(e, α) = α, ∀α ∈ L. In particular,

I(1L, 0L) ≤ 0L, and so I(1L, 0L) = 0L.

(I10) If e ≤ α, then I(α, 0L) ≤ I(e, 0L) = 0L. So, I(α, 0L) = 0L.

(I11) As we prove in I4, it is verified that I(α, β) ≤ I(I(I(α, β), β), β).

We now prove the other inequality. From α ≤ I(I(α, β), β) and (I7) we

deduce that I(α, β) ≥ I(I(I(α, β), β), β), then the equality holds.

�

Remark 5. The advantage of the previous proposition is that it allows us to con-

sider, in principle, more general applications than L-fuzzy implication functions.

Note that, in fuzzy logic, for the complete lattice L it is always assumed that

|L| > 1 so, in particular, 2 = {0L, 1L} is included in L.

In this work, we assume that the elements 0L and e can be different. We use the

chain F = {0L, e} ⊆ L to represent the so-called “flat-sets” of a referential set X.
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These flat sets can be considered as maps ψ : X −→ F and they are very useful in

mathematical morphology. In the case of e = 1L, that is, if F = 2, the “flat-sets”

are the “crisp sets”.

Now, the key point is the assumption that the so-called contrapositive symmetry

with respect to a strong negation ′ holds, i.e.,

I(α, β) = I(β′, α′), ∀α, β ∈ L (9)

We prove next that if we use a strong negation and Equation 9 is verified, then

I is an L-fuzzy implication function.

Proposition 4. Let L be a complete lattice and ′ : L −→ L be a strong negation

in L. Consider a mapping I : L × L → L such that (5), (6)and (9) properties are

verified. Then:

(i) I is an L-fuzzy implication function which is right continuous in the second

argument.

(ii) I(α, e
′
) = α

′
, I(α, 0L) ≤ α

′
, ∀α ∈ L.

Proof:

(i) By the results of Proposition 3, to prove that I is an implication operator, we

have to see that it is increasing in the second argument. Suppose that β1 ≤ β2,

then β′
2 ≤ β′

1, and so

I(α, β1) = I(β′
1, α

′) ≤ I(β′
2, α

′) = I(α, β2)

which proves that it is increasing in the second argument and, as a result, an

L-fuzzy implication function.

Let be now α ∈ L, I(α, 1L) = I(0L, α
′) by (9) and then I(α, 1L) = I(0L, α

′) =

1L by Proposition 3 (I3). As a particular case, I(1L, 1L) = 1L.

Take now N ⊆ L. If N = ∅, then inf ∅ = 1L and I(α,∅) = ∅, so

I(α, inf ∅) = I(α, 1L) = 1L = inf ∅ = inf I(α,∅)

If N ̸= ∅, as (inf N)′ = supN ′ since
′
is a strong negation, then

I(α, inf N) =I((inf N)′, α′) = I(supN ′, α′) = inf I(N ′, α′) =

= inf I(α,N)

(ii) ∀α ∈ L, it is verified that I(α, e
′
) = I(e, α

′
) = α

′
. Moreover, I(α, 0L) ≤

I(α, e
′
) = α

′
.

�

Now we can define the operation C given in Definition 3 and we have the following

result:

Proposition 5. In the setting of Proposition 4, the pair (I, C) verifies:

C(α, β) ≤ σ ⇐⇒ β ≤ I(α, σ) (10)
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Proof:

=⇒)Suppose that C(α, β) ≤ σ, then ω ≤ σ for some ω such that β ≤ I(α, ω).

From the monotonicity in the second argument, I(α, ω) ≤ I(α, σ). Therefore,

β ≤ I(α, ω) ≤ I(α, σ), as we wanted to see.

⇐=) Consider β ≤ I(α, σ), then σ ∈ {ω ∈ L | β ≤ I(α, ω)} and so,

C(α, β) = inf{ω ∈ L | β ≤ I(α, ω)} ≤ σ

�

We are going to see now that, in fact, C provides us with a residuated pair.

Proposition 6. Let C be defined in Definition 3. Then C : L× L → L verifies the

following properties:

(i) It is commutative.

(ii) It is associative.

(iii) e is the neutral element: C(α, e) = C(e, α) = α, ∀α ∈ L.

(iv) C(α, 0L) = 0L, ∀α ∈ L.

(v) It is increasing in both arguments.

(vi) It is left-continuous in both arguments.

Proof:

(i) C(α, β) = inf{ω | β ≤ I(α, ω)} = inf{ω | α ≤ I(β, ω)} = C(β, α), ∀α, β ∈ L.

(ii) It is verified that ∀α, β, γ ∈ L:

C(α, C(β, γ)) = C(α, C(γ, β)) = inf{ω | C(γ, β) ≤ I(α, ω)} =

inf{ω | β ≤ I(γ, I(α, ω))} = inf{ω | β ≤ I(α, I(γ, ω))} =

inf{ω | C(α, β) ≤ I(γ, ω)} = C(γ, C(α, β)) = C(C(α, β), γ)

(iii) C(α, e) = C(e, α) = inf{ω | α ≤ I(e, ω)} = inf{ω | α ≤ ω} = α, ∀α ∈ L.

(iv) C(α, 0L) = inf{ω | 0L ≤ I(α, ω)} = inf L = 0L, ∀α ∈ L.

(v) Immediate by proposition 5.

(vi) Immediate by proposition 5.

�

L-fuzzy implication functions and conjunctions have been also studied by other

authors in49. Moreover, the operation C can also be also expressed in terms of I

and a strong negation ′:

Proposition 7. If (I,′ ) verifies (5), (6) and (9), then:

C(α, β) = (I(α, β
′
))

′
, ∀α, β ∈ L (11)
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Proof: Let be α, β ∈ L,

C(α, β) = inf{ω | β ≤ I(α, ω)} = inf{ω | β ≤ I(ω′, α′)} =

inf{ω | ω′ ≤ I(β, α′)} = inf{ω | ω′ ≤ I(α, β′)} =

inf{s′ | s ≤ I(α, β′)} = (sup{s | s ≤ I(α, β′)})
′
= (I(α, β′))

′

�

Remark 6. In the literature, if L = [0, 1], then an operation C : [0, 1] × [0, 1] −→
[0, 1] that is associative, commutative, has a neutral element, and is increasing in

both arguments, is said to be a uninorm 54. If also C(1, 0) = 0, then it is said

to be a conjunctive uninorm. We use this definition in the more general case of

complete lattices. As a result, the operator C : L × L −→ L associated with the

pair (I,′ ) verifying (5), (6) and (9) properties is a conjunctive uninorm in L with

neutral element e. Moreover, it is left-continuous. It plays the role of a conjunction

in L. Note that if e = 1, the uninorm is a t-norm. One can find some papers

that characterize the uninorms in L = [0, 1]54;55, in finite chains56 and in complete

lattices57;58.

Next, we see some examples of these operators (I, C).

Example 2. Let be L = [0, 1] or a finite chain L = {0, 1
n ,

2
n , ...,

n−1
n , 1}. Consider

the Lukasiewicz implication I(α, β) = min(1, 1−α+β), ∀α, β ∈ L, with the Zadeh

negation α′ = 1 − α, ∀α ∈ L, if L = [0, 1], or the only strong negation if L is a

finite chain. We obtain the operator C such that C(α, β) = max(0, α + β − 1) that

is a t-norm. The neutral element is e = 1. These implication and t-norm are well

known in the literature22. In this case, flat sets are the same as crisp sets since

F = {0, 1} = 2.

Example 3. Let L = [0, 1], with the negation of Zadeh. Let I be:

I(α, β) =

{
1 if (α, β) ∈ {(0, 0), (1, 1)}

(1−α)β
(1−α)β+α(1−β) otherwise

The operation C is the triple Π operator 59

C(α, β) =

{
0 if (α, β) ∈ {(0, 1), (1, 0)}
αβ

αβ+(1−α)(1−β) otherwise,

which is a conjunctive uninorm with neutral element e = 1/2. In this case,

F = {0, 1/2} ̸= {0, 1}. So, a nonvoid flat set ψ : X −→ F is not a crisp set. This

example appears in60.

Example 4. If (L,≤) is a complete Boolean Algebra with the negation α′ = αc,

then:

I(α, β) = αc ∨ β, ∀α, β ∈ L
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The operation C is C(α, β) = α ∧ β. The conjunction is a t-norm in L with

neutral element e = 1 (22). So the flat sets ψ : X −→ F are crisp sets.

Example 5. Consider a pair (I,
′
) defined in [0, 1] verifying (5), (6) and (9). Con-

sider also J ([0, 1]), the set of intervals on [0, 1], with the strong negation
′
defined for

intervals [α] = [α, α] as [α]
′
= [α

′
, α

′
], and the operation Î : J ([0, 1])× J ([0, 1]) →

J ([0, 1]), which extends I to J ([0, 1]):

Î([α], [β]) = [I(α, β) ∧ I(α, β), I(α, β)]

Here we are considering the order [α, α] ≤L [β, β] iff α ≤ β and α ≤ β. Then, the

pair (Î ,
′
) also verifies (5), (6) and (9). The associated operation Ĉ is an extension

of C given by:

Ĉ([α], [β]) = [C(α, β), C(α, β) ∨ C(α, β)]

These operators are known in the literature as the optimistic implication and the

pessimistic conjunction (See61).

4. L-fuzzy Mathematical Morphology and L-fuzzy Concept

Analysis

Let L be a complete lattice. Once we have the residuated pair (I, C), consisting of

an L-fuzzy implication function I and a strong negation satisfying the conditions

of Proposition 4, and the operation C defined by Definition 3, we can define L-fuzzy

erosion and L-fuzzy dilation as follows:

Definition 10. Let X,Y be two sets and R ∈ LX×Y a structuring element.

(i) The L-fuzzy erosion operator associated with R is a mapping ε1R : LX → LY ,

such that, for each A ∈ LX , ε1R(A) is given by:

ε1R(A)(y) = inf{I(R(x, y), A(x)) | x ∈ X} ∀y ∈ Y (12)

(ii) The L-fuzzy dilation operator associated with R is a mapping δ1R : LX → LY

such that, for each A ∈ LX , δ1R(A) ∈ LY is given by:

δ1R(A)(y) = sup{C(R(x, y), A(x)) | x ∈ X} ∀y ∈ Y (13)

In the same way, we can define L-fuzzy erosion and L-fuzzy dilation operators with

domain LY and range LX by

ε2R(B)(x) = inf{I(R(x, y), B(y)) | y ∈ Y } ∀x ∈ X (14)

δ2R(B)(x) = sup{C(R(x, y), B(y)) | y ∈ Y } ∀x ∈ X (15)

for every B ∈ LY .

These definitions are a reinterpretation of the operators used in31.
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Remark 7. If the structuring element R is a flat set, that is, R(x, y) ∈ {0L, e}
∀(x, y) ∈ X × Y , then the expressions for L-fuzzy erosion and L-fuzzy dilation are

simplified:

ε1R(A)(y) = inf{A(x) | x ∈ X and R(x, y) = e} ∀y ∈ Y

δ1R(A)(y) = sup{A(x) | x ∈ X and R(x, y) = e} ∀y ∈ Y

And, analogously,

ε2R(B)(x) = inf{B(y) | y ∈ Y and R(x, y) = e} ∀x ∈ X

δ2R(B)(x) = sup{B(y) | y ∈ Y and R(x, y) = e} ∀x ∈ X

The previous operators are related by adjunction, as can be seen in the following

proposition:

Proposition 8. The pair (ε1R, δ2R) (and, analogously, the pair (ε2R, δ1R)) is an

adjunction between complete lattices, that is:

δ2R(B) ≤ A⇐⇒ B ≤ ε1R(A),∀A ∈ LX ,∀B ∈ LY (16)

(In the same way, δ1R(A) ≤ B ⇐⇒ A ≤ ε2R(B),∀A ∈ LX ,∀B ∈ LY .)

Proof: Suppose that δ2R(B) ≤ A. Then δ2R(B)(x) ≤ A(x) ∀x ∈ X. That is,

C(R(x, y), B(y)) ≤ A(x) ∀(x, y) ∈ X × Y

From these inequalities and from the equivalence C(α, β) ≤ γ ⇔ β ≤ I(α, γ)

we have

B(y) ≤ I(R(x, y), A(x)),∀(x, y) ∈ X × Y

and we have:

B(y) ≤ inf{I(R(x, y), A(x)) | x ∈ X},∀y ∈ Y

That is, B(y) ≤ ε1R(A)(y),∀y ∈ Y , which shows that B ≤ ε1R(A).

The other implication can be proved in a similar way.

�

As a corollary of this proposition, we can see that Definition 10 is coherent

with the usual definition of erosion and dilation in mathematical morphology for

complete lattices1;50;44:

Corollary 1. In the setting of Definition 10:
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(i) The operators ε1R and ε2R preserve infima; i.e.,

ε1R(
∧
j∈J

Aj) =
∧
j∈J

ε1R(Aj) ∀{Aj}j∈J ⊆ LX (17)

ε2R(
∧
k∈K

Bk) =
∧

k∈K

ε2R(Bk) ∀{Bk}k∈K ⊆ LY . (18)

and ε1R(X) = Y and ε2R(Y ) = X.

(ii) The operators δ1R and δ2R preserve suprema, i.e.,

δ1R(
∨
j∈J

Aj) =
∨
j∈J

δ1R(Aj) ∀{Aj}j∈J ⊆ LX ; (19)

δ2R(
∨
k∈K

Bk) =
∨

k∈K

δ2R(Bk) ∀{Bk}k∈K ⊆ LY . (20)

and δ1R(O) = O, δ2R(O) = O, where O represents the mapping O : X → L

(or, respectively, O : Y → L) which is identically constant and equal to 0L.

Remark 8. It is trivial to prove that in the particular case where X = Y ∈
{Rn,Zn} and R(x, y) = S(x − y), the operators ε1R and δ2R coincide with the

erosion and dilation operators εR and δR defined in section 2.4.

Also the following corollary is obtained:

Corollary 2. The L-fuzzy erosions ε1R and ε2R, and L-fuzzy dilations δ1R and

δ2R are increasing operators, that is, ∀A,C ∈ LX , ∀B,D ∈ LY :

A ≤ C =⇒ (ε1R(A) ≤ ε1R(C)) and (δ1R(A) ≤ δ1R(C)) (21)

B ≤ D =⇒ (ε2R(B) ≤ ε2R(D)) and (δ2R(B) ≤ δ2R(D)) (22)

L-fuzzy erosion and L-fuzzy dilation operators are dual with respect to the

negation ′:

Proposition 9. If A
′ ∈ LX and B

′ ∈ LY are the strong negation of the subsets A

and B respectively, and R ∈ LX×Y , then,

ε1R(A
′
) = (δ1R(A))

′
(23)

ε2R(B
′
) = (δ2R(B))

′
(24)

Proof: For every y ∈ Y it is verified that

ε1R(A
′
)(y) = inf{I(R(x, y), A

′
(x)) | x ∈ X} =

= inf{(C(R(x, y), A(x)))
′
| x ∈ X} =

= (sup{C(R(x, y), A(x)) | x ∈ X})
′
=

= (δ1R(A)(y))
′
= (δ1R(A))

′(y)

The second equality is proved analogously.

�
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Using erosion and dilation operators we can construct the initial morphological

filters: opening and closing operators.

Definition 11. Let L be a complete lattice and R ∈ LX×Y a structuring element.

Assume that erosion and dilation have been defined as in Definition 10.

An L-fuzzy opening (in X) is an operator γ1R : LX → LX defined by the

composition δ2R ◦ ε1R; that is, for every A ∈ LX :

γ1R(A) = δ2R(ε1R(A)) (25)

Analogously, an L-fuzzy opening (in Y ) is an operator γ2R : LY → LY defined

by the composition δ1R ◦ ε2R; that is, for every B ∈ LY :

γ2R(B) = δ1R(ε2R(B)) (26)

Definition 12. Let L be a complete lattice and R ∈ LX×Y a structuring element.

Assume that erosion and dilation have been defined as in Definition 10. An L-fuzzy

closing (in X) is an operator ϕ1R : LX → LX defined by the composition ε2R ◦ δ1R;
that is, for every A ∈ LX :

ϕ1R(A) = ε2R(δ1R(A)) (27)

Analogously, an L-fuzzy closing (in Y ) is an operator ϕ2R : LY → LY defined by

the composition ε1R ◦ δ2R; that is, for every B ∈ LY :

ϕ2R(B) = ε1R(δ2R(B)) (28)

Proposition 10. For any R ∈ LX×Y , the opening and closing operators γ1R and

ϕ1R (and, analogously, the operators γ2R and ϕ2R) are morphological filters, that

is, they are increasing and idempotent. That is, for every A,C ∈ LX ,

(i) A ≤ C =⇒ (γ1R(A) ≤ γ1R(C)) and (ϕ1R(A) ≤ ϕ1R(C));

(ii) γ1R(γ1R(A)) = γ1R(A);

(iii) ϕ1R(ϕ1R(A)) = ϕ1R(A).

Moreover, these filters verify that:

(i) γ1R(A) ≤ A ≤ ϕ1R(A) ∀A ∈ LX ;

(ii) γ2R(B) ≤ A ≤ ϕ2R(B) ∀B ∈ LY .

Proof: It is a consequence of Proposition 8.

�

An analogous result holds for erosion and dilation operators, as we show in the

next proposition.

Proposition 11. Let ′ be a strong negation. For any R ∈ LX×Y ,

γ1R(A
′) = (ϕ1R(A))

′ (29)

γ2R(B
′) = (ϕ2R(B))′ (30)
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Proof:

γ1R(A
′) = δ2R(ε1R(A

′)) = δ2R((δ1R(A))
′) =

= (ε2R(δ1R(A))
′ = (ϕ1R(A))

′.

The other equality is proved in the same way.

�

By Tarski’s fixed point theorem62, as the opening and closing operators are

increasing in L, their fixed points sets have a complete lattice structure. Moreover,

the fixed points of these operators exist. This leads us to introduce the following

definition.

Definition 13. An L-fuzzy set A ∈ LX (or, analogously, B ∈ LY ) is said to be

R-open if it coincides with its L-fuzzy opening by the relation R ∈ LX×Y , and it is

said to be R-closed if it coincides with its L-fuzzy closing by the relation R.

R-open and R-closed sets provide the link between L-fuzzy mathematical mor-

phology and L-fuzzy concept analysis. Thus, given the complete lattice L and the

sets X and Y , an L-fuzzy context (L,X, Y,R′) is defined such that the extension

and intension of the L-fuzzy concepts are related to the R-open and the R-closed

sets, as we show in the next theorem.

Proposition 12. Let ′ be a strong negation. Consider the L-fuzzy context

(L,X, Y,R′) where R′ ∈ LX×Y is such that for all (x, y) ∈ X × Y R′(x, y) =

(R(x, y))′. Then, the L-fuzzy erosion and L-fuzzy dilation operators are related to

the derivation operators DR
1 and DR

2 in the L-fuzzy context (L,X, Y,R′) by the

following expressions:

ε1R(A) = (A′)1 ∀A ∈ LX (31)

δ2R(B) = (B2)
′ ∀B ∈ LY (32)

ε2R(B) = (B′)2 ∀B ∈ LY (33)

δ1R(A) = (A1)
′ ∀A ∈ LX (34)

Proof: Consider A ∈ LX . For any y ∈ Y it is verified that,

ε1R(A)(y) = inf{I(R(x, y), A(x)) | x ∈ X} =

= inf{I(A′(x), R′(x, y)) | x ∈ X} = (A′)1(y).

Analogously, ∀x ∈ X,

δ2R(B)(x) = sup{C(R(x, y), B(y)) | y ∈ Y } =

=sup{(I(R(x, y), B′(y)))′ | y ∈ Y } =

=(inf{I(R(x, y), B′(y)) | y ∈ Y })′ =
=(inf{I(B(y), R′(x, y)) | y ∈ Y })′ =
=(B2(x))

′ = (B2)
′(x).
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The other two equalities can be proved in the same way.

�

As a consequence, a relation between some morphological elements and L-fuzzy

concepts is found:

Theorem 2. Let R ∈ LX×Y . The following propositions are equivalent:

(t1) The pair (A,B) ∈ LX × LY is an L-fuzzy concept of the L-fuzzy context

(L,X, Y,R′).

(t2) The pair (A,B) ∈ LX × LY is such that the strong negation A′ of A is R-open

(γ1R(A
′) = A′) and B is the L-fuzzy erosion of A′ (that is, B = ε1R(A

′)).

(t3) The pair (A,B) ∈ LX ×LY is such that B is R-closed (ϕ2R(B) = B) and A is

the strong negation of the L-fuzzy dilation of B, that is, A = (δ2R(B))′.

Proof:

(t1)=⇒ (t2) Let R ∈ LX×Y be the structuring element. Let us consider an

L-fuzzy concept (A,B) of the L-fuzzy context (L,X, Y,R′). By the definition

of L-fuzzy concept, it is verified that B = A1 and A = B2, and, applying the

previous proposition, ε1R(A
′) = A1 = B.

Moreover, it is fulfilled that

γ1R(A
′) = δ2R(ε1R(A

′)) = δ2R(B) = (B2)
′ = A′

which proves that A′ is R-open.

(t2) =⇒ (t3) Let us suppose that the pair (A,B) ∈ LX × LY is such that

γ1R(A
′) = A′ and B = ε1R(A

′). Then,

ϕ2R(B) =ε1R(δ2R(B)) = ε1R(δ2R(ε1R(A
′))) =

=ε1R(γ1R(A
′)) = ε1R(A

′) = B

which proves that B is R-closed.

On the other hand, from the hypothesis B = ε1R(A
′). It can be deduced that

δ2R(B) = δ2R(ε1R(A
′)) = γ1R(A

′)

and, taking into account that A′ is R-open, that δ2R(B) = A′. Finally,

A = (δ2R(B))′.

(t3) =⇒ (t1) Let (A,B) be a pair fulfilling that ϕ2R(B) = B and A = (δ2R(B))′.

Let us consider the L-fuzzy context (L,X, Y,R′). Then, by the previous theorem

we can deduce that B2 = (δ2R(B))′ = A.

On the other hand, applying Proposition 12 and the hypothesis,

A1 = ε1R(A
′) = ε1R(δ2R(B)) = ϕ2R(B) = B
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therefore, as B is the derived set of A, the pair (A,B) is an L-fuzzy concept of

the L-fuzzy context (L,X, Y,R′).

�

This existing relation between L-fuzzy mathematical morphology and L-fuzzy

concept analysis allows working with examples that are not very common in L-fuzzy

mathematical morphology, such as data tables.

5. Practical Case

A big company is evaluating the work of the teams in the different departments

trying to set up comparisons among them. To do this, the person in charge eval-

uates its team by means of a test. Our theory can be useful in order to study the

strengths and weaknesses of the different departments.

We are going to take the set X formed by the different people in charge, the set

Y that is the set of the questions of the test and a relation R with the answers of the

managers to the questions. In this case, these answers will be intervals formed by the

worst and the best opinion of the leaders about people in their teams, varying from

[0, 0] (totally disagree) to [1, 1] (totally agree). Therefore, the relation R ∈ LX×Y ,

where L = J ([0, 1]) is the set of closed intervals in [0, 1] endowed with the usual

order relation:

[a, b] ≤ [c, d] ⇐⇒ a ≤ c and b ≤ d.

The questions of the test are:

y1 : How skilled at their jobs are the members of your team

y2 : How professional are the members of your team

y3 : How honest with each other are the members of your team

y4 : How well do members of your team share responsibility for tasks

y5 : How well do members of your team communicate with each other

y6 : How often does your team meet its deadlines

y7 : How professionally do members of your team deal with each other’s mistakes

y8 : How quickly does your team adjust to changing priorities

y9 : How quickly does your team act on its decisions

The relation R that appears in Table 1 is obtained by asking the opinion of the

different leaders of the work teams using the previous questions.

This example shows the relationship between interval-valued fuzzy mathemati-

cal morphology49 and interval-valued L-fuzzy concept analysis28.

In this practical case, the structuring element is R and that can be interpreted as

the strengths of the different work teams. This relation represents the effect that we

want to produce on a starting set formed by a group of people in charge (A ∈ LX)
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Table 1. Opinion of the leaders about their teams

R y1 y2 y3 y4 y5 y6 y7 y8 y9

x1 [0.7, 1] [0.4, 0.8] [0, 0.3] [0, 0.2] [0. 8, 1] [0. 9, 0.9] [0. 7, 1] [0, 0.2] [1, 1]

x2 [0.5, 1] [0.8, 0.8] [0.6, 0.8] [0.8, 1] [0.3,0.3] [0.7, 0.8] [0.6, 0.6] [1,1] [0.0.2]

x3 [0.5, 0.7] [0.9, 1] [1, 1] [0.2, 0.2] [0, 0] [0.8, 1] [0.9, 1] [0.6, 0.8] [0.2, 0.2]

x4 [0, 0] [0.1, 0.3] [0, 0.2] [0, 0] [0, 0.2] [0, 0] [0, 0.3] [0.2, 0.4] [0, 0.3]

x5 [0.7, 0.7] [0, 0] [0.8, 1] [0.3, 0.5] [0, 0.1] [0, 0] [0.8, 0.9] [1, 1] [0, 0.1]

x6 [0, 0] [0, 0] [0, 0] [0, 0.2] [0, 0.2] [0, 0.2] [0, 0] [0, 0.2] [0, 0]

x7 [0.6, 0.8] [1, 1] [1, 1] [0.8, 1] [0, 0.1] [1, 1] [1, 1] [0.7, 1] [0, 0]

x8 [0, 0.3] [0, 0] [0, 0] [0, 0] [0, 0.1] [0, 0.4] [0.2, 0.2] [0, 0] [0.2, 0.5]

x9 [0.5, 0.7] [0, 0] [0.3, 0.3] [0.3, 0.5] [0, 0] [1, 1] [0.5, 0.8] [0, 0.2] [0.8, 1]

x10 [0.3, 0.5] [0, 0] [0.8, 1] [0, 0] [0.3, 0.5] [1, 1] [1, 1] [0.7, 1] [0, 0.1]

or by a set of questions of the test (B ∈ LY ). Then, we can extend the basic notions

of mathematical morphology (erosion, dilation, opening, closing) using a non-usual

structuring element (relation R). The operators (I, C) that we have used to obtain

these morphological elements are those of Example 5 which extend the implication

and t-norm of Lukasiewicz to the interval-valued case. The used strong negation

is the usual one defined in L = J ([0, 1]), that is [a, b]′ = [1 − b, 1 − a] for all

[a, b] ∈ J ([0, 1]).

At the same time, we work with the L-fuzzy context (L,X, Y,R′), where R′

could be interpreted as the answer of the managers about the weaknesses of the

work teams. The information of this L-fuzzy context is obtained by means of the

L-fuzzy concepts (A,B) that are groups of managers A which teams have as weak

points B.

Before explaining the results obtained from Theorem 2 in this practical case, we

show some preliminary results:

In Proposition 12 the existing relationship between L-fuzzy erosion and L-fuzzy

dilation and the derivation operators in (L,X, Y,R′) has been established. This

relation allows to give an interpretation of the erosion and dilation as follows:

• Starting from a set of managers A ∈ LX , the calculation of its L-fuzzy erosion

ε1R(A) using (12) lies in obtaining the weaknesses of those managers that are

in the complement of A.

So, let us take the set of managers {x1, x4, x9} which can be represented by the

L-fuzzy subset

A = {(x1, [1, 1]), (x2, [0, 0]), (x3, [0, 0]), (x4, [1, 1]), (x5, [0, 0]),
(x6, [0, 0]), (x7, [0, 0]), (x8, [0, 0]), (x9, [1, 1]), (x10, [0, 0])}

the obtained L-fuzzy erosion is:

ε1R(A) = {(y1, [0, 0.3]), (y2, [0, 0]), (y3, [0, 0]), (y4, [0, 0.2]), (y5, [0.5, 0.7]),
(y6, [0, 0]), (y7, [0, 0]), (y8, [0, 0]), (y9, [0.5, 0.8])}
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and it can be deduced that y5 and y9 are the weaknesses of the teams led by

the managers x2, x3, x5, x6, x7, x8 and x10.

• The L-fuzzy dilation of the set A ∈ LX , δ1R(A), consists in selecting the set of

skills in at least one manager in A, using (13).

For example, starting from the previous L-fuzzy set A, its dilation is:

δ1R(A) = {(y1, [0.7, 1]), (y2, [0.4, 0.8]), (y3, [0.3, 0.3]), (y4, [0.3, 0.5]),
(y5, [0.8, 1]), (y6, [1, 1]), (y7, [0.7, 1]), (y8, [0.2, 0.4]), (y9, [1, 1])}

what can be interpreted by saying that the features y1, y5, y6, y7 and y9, and to

a lesser extend y3 are the skills in at least one manager in A.

• The L-fuzzy erosion ε2R(B) of an L-fuzzy subset B ∈ LY using (14) represents

the set of managers which skills are among the elements in B.

If we consider the questions represented by the set:

B = {(y1, [1, 1]), (y2, [1, 1]), (y3, [0, 0]), (y4, [0, 0]), (y5, [0, 0]),
(y6, [0, 0]), (y7, [1, 1]), (y8, [0, 0]), (y9, [1, 1])}

its L-fuzzy erosion is the set:

ε2R(B) = {(x1, [0, 0.1]), (x2, [0, 0]), (x3, [0, 0]), (x4, [0.6, 0.8]), (x5, [0, 0]),
(x6, [0.8, 1]), (x7, [0, 0]), (x8, [0.6, 1]), (x9, [0, 0]), (x10, [0, 0])}

and it can be deduced that x4, x6 and x8 are the managers who have answered

with a low score to the questions y3, y4, y5, y6, y8 and y9.

• Starting from the set B ∈ LY , its dilation δ2R(B), using (15), lies in selecting

those managers with high skills in at least one feature in B.

For the previous set B the obtained L-fuzzy dilation is:

δ2R(B) = {(x1, [1, 1]), (x2, [0.8, 1]), (x3, [0.9, 1]), (x4, [0.1, 0.3]), (x5, [0.8, 0.9]),
(x6, [0, 0]), (x7, [1, 1]), (x8, [0.2, 0.5]), (x9, [0.8, 1]), (x10, [1, 1])}

Hence, we can deduce that the teams lead by the managers x1, x2, x3, x5, x7, x9
and x10 have some skills among the features of set B.

We could also obtain the L-fuzzy opening and L-fuzzy closing of a starting set

(A ∈ LX) or (B ∈ LY )

• The effect produced by the L-fuzzy opening lies in lowering the membership

values of outstanding elements or even eliminating some of them. The opening

keeps only the managers that are strong at least in one of the weak properties

of the complementary of the managers.

Taking the previous set A,

A = {(x1, [1, 1]), (x2, [0, 0]), (x3, [0, 0]), (x4, [1, 1]), (x5, [0, 0]),
(x6, [0, 0]), (x7, [0, 0]), (x8, [0, 0]), (x9, [1, 1]), (x10, [0, 0])}
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the obtained L-fuzzy opening using (25) is:

γ1R(A) = {(x1, [0.8, 0.8]), (x2, [0, 0]), (x3, [0, 0]), (x4, [0, 0]), (x5, [0, 0]),
(x6, [0, 0]), (x7, [0, 0]), (x8, [0, 0]), (x9, [0.6, 0.6]), (x10, [0, 0])}

• Regarding the L-fuzzy closing, the obtained result is higher than the original

set.

Closing adds B the weakness of the managers that only have properties of the

complementary of B, i.e. the weakness of the managers that are weak in every

element of B.

Starting from the previous set B and using (28)

B = {(y1, [1, 1]), (y2, [1, 1]), (y3, [0, 0]), (y4, [0, 0]), (y5, [0, 0]),
(y6, [0, 0]), (y7, [1, 1]), (y8, [0, 0]), (y9, [1, 1])}

we obtain:

ϕ2R(B) = {(y1, [1, 1]), (y2, [1, 1]), (y3, [0.9, 1]), (y4, [0.8, 1]), (y5, [0.8, 1]),
(y6, [0.8, 1]), (y7, [1, 1]), (y8, [0.8, 0.9]), (y9, [1, 1])}

At this point, we are in a position to interpret Theorem 2:

We take the L-fuzzy context (L,X, Y,R′) where R′ is the strong negation of the

structuring element R and the L-fuzzy sets A ∈ LX and B ∈ LY :

A = {(x1, [0.2, 0.2]), (x2, [0.2, 0.4]), (x3, [1, 1]), (x4, [1, 1]), (x5, [0.6, 0.6]),
(x6, [1, 1]), (x7, [0.2, 0.4]), (x8, [0.8, 1]), (x9, [0.3, 0.4]), (x10, [0.7, 0.7])}

B = {(y1, [0.3, 0.5]), (y2, [0, 0.1]), (y3, [0, 0]), (y4, [0.8, 0.8]), (y5, [0.8, 1]),
(y6, [0, 0.2]), (y7, [0, 0.1]), (y8, [0.2, 0.4]), (y9, [0.7, 0.8])}

Then the three statements of Theorem 2 hold:

(t1) The pair (A,B) ∈ LX × LY is an L-fuzzy concept of the L-fuzzy context

(L,X, Y,R′). We can say that managers x3, x4, x6 and x8 make a negative eval-

uation of their teams in questions y4 and y5.

(t2) A′ is an R-open set since γ1R(A
′) = A′. Moreover, B = ε1R(A

′).

(t3) B is R-closed (ϕ2R(B) = B) and A = (δ2R(B))′.

In some way, we can say that the sets A′ and B are robust with respect to

the structuring element R (they are not modified by the opening or closing using

relation R).
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6. Conclusions and Future Work

In this work we have shown how to link the theories of L-fuzzy concept analysis

and L-fuzzy mathematical morphology. This fact allows us to apply the algorithms

of L-fuzzy concept analysis in L-fuzzy mathematical morphology and vice versa.

Of course, some deeper analysis on the possible implications of this link would

be needed. We leave this for future works. Nevertheless, it is worth to remark that

it would be interesting to study the morphological gradient and top-hat and hit-

or-miss transformations when we work with structuring elements R ∈ LX×Y , and

their interpretation in the field of the L-fuzzy concept analysis.

Finally, in future works the definitions of L-fuzzy erosion and L-fuzzy dilation

operators will also be extended to the case of working with L-fuzzy relations. In

particular, we expect that this extension will allow for applications in databases.

Acknowledgements

This work has been partially supported by the Research Group “Intelligent Systems

and Energy (SI+E)” of the UPV/EHU, under Grant GIU 16/54, and by project

TIN2016-77356-P(AEI/FEDER, UE) .

References

1. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, I

(fourth printing 1990) and II (second printing 1992).

2. T.Q. Deng and H. Heijmans. Grey-scale morphology based on fuzzy logic.

Journal of Mathematical Imaging and Vision, 16:155–171, 2002.

3. H. Heijmans and C. Ronse. The algebraic basis of mathematical morphology

I. Dilations and erosions. Computer Vision, Graphics, and Image Processing,

50:245–295, 1990.

4. C. Ronse and H. Heijmans. The algebraic basis of mathematical morphology

II. openings and closings. Computer Vision, Graphics, and Image Processing,

54:74–97, 1991.

5. P. Sussner and M.E. Valle. Classification of fuzzy mathematical morphologies

based on concepts of inclusion measure and duality. Journal of Mathematical

Imaging and Vision, 32(3):139–159, 2008.

6. Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies

of concepts. In Ivan Rival, editor, Ordered Sets, volume 83 of NATO Advanced

Study Institutes Series, pages 445–470. Springer Netherlands, 1982.

7. B. Ganter and R. Wille. Formal concept analysis: Mathematical foundations.

Springer, Berlin - New York, 1999.
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36. G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris,

1967.

37. G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

38. M Sonka, V Hlavac, and R Boyle. Image processing, analysis, and machine

vision. Cengage Engineering, 2014.

39. L Najman and H Talbot. Mathematical Morphology. Wiley, 2010.

40. Stanley R. Sternberg. Grayscale morphology. Computer Vision, Graphics, and

Image Processing, 35(3):333 – 355, 1986.

41. D. Sinha and E.R. Dougherty. Fuzzy mathematical morphology. Journal of

Visual Communication and Image Representation, 3(3):286–302, 1992.

42. B. De Baets. Fuzzy morphology: a logical approach. In B. Ayyub and M. Gupta,

editors, Uncertainty Analysis, Engineering and Science: Fuzzy Logic, Statistics

and neural network Approach, pages 53–67. Kluwer Academic Publishers, 1997.

43. M. Nachtegael and E.E. Kerre. Connections between binary, gray-scale and

fuzzy mathematical morphologies. Fuzzy Sets and Systems, 24(1):73–85, 2001.

44. P. Maragos. Lattice image processing: A unification of morphological and fuzzy

algebraic systems. Journal of Mathematical Imaging and Vision, 22:333–353,

2005.

45. Y.Y. Htun and K.K. Aye. Fuzzy mathematical morphology approach in image

processing. World Academy of Science, Engineering and Technology, 42:659–

665, 2008.

46. M. González Hidalgo and S. Massanet. A mathematica morphology based on

discrete t-norms: fundamentals and applications to image processing. Soft Com-

puting, 18(11):2297–2311, 2014.



September 19, 2017 17:43 WSPC/INSTRUCTION FILE
IJUFKS19092017Rev

REFERENCES 27

47. I. Bloch. Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical mor-

phology. Information Sciences, 181(10):2002–2015, 2011.

48. M. Nachtegael, P. Sussner, T. Melange, and E.E. Kerre. On the role of com-

plete lattices in mathematical morphology: From tool to uncertainty model.

Information Sciences, 181(10):1971–1988, 2011.

49. Peter Sussner, Mike Nachtegael, Tom Mélange, Glad Deschrijver, Estevão Esmi,

and Etienne Kerre. Interval-valued and intuitionistic fuzzy mathematical mor-

phologies as special cases of L-fuzzy mathematical morphology. Journal of

Mathematical Imaging and Vision, 43(1):50–71, 2012.

50. H. Heijmans. Morphological Image Operators. Academic Press Inc, 1994.

51. J. Goutsias and H. Heijmans. Fundamenta morphologicae mathematicae. Fun-

damenta Informaticae, 41:1–31, 2000.

52. M. Nachtegael and E.E. Kerre. Fuzzy techniques in image processing. In Studies

in fuzziness and soft computing, 52, pages 3–57. Springer-Verlag, 2000.
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