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SUMMARY 

After cereals, legumes are crops of great economic importance. However, legume plants 

are very sensitive to abiotic stresses, being drought one of the most harmful stress in terms 

of crop production. The general aim of the present work is to gain further insights into two 

legume species (Medicago truncatula and Glycine max) drought responses at the shoot and 

root level by using a combination of physiological, morphological, transcriptomic and 

metabolomic approaches. 

Ascorbic acid (AsA) is one of the most abundant water-soluble antioxidant compound 

present in plant tissues involved in plant enzymatic and non-enzymatic detoxification 

mechanisms. Nevertheless, little is known on the regulation of this antioxidant biosynthesis 

pathway under drought stress. In chapter 1, through a combination of molecular and 

physiological approaches, we observed that AsA biosynthesis was severely affected by 

drought in soybean plants. These analyses showed that drought triggered multiple control 

points regulating AsA biosynthesis at the GDP-D-mannose pyrophosphorylase and GDP-

D-mannose 3´, 5´-epimerase level of soybean plants. In parallel, these responses were also 

observed in the model legume M. truncatula.  

In chapter 2, work presented here showed the tight link between above- and below-

ground organs in M. truncatula plants and the fact that, under drought stress conditions, 

adult plants prioritized root growth over leaf development. Actually, different analyses 

showed responses which suggest a passive survival strategy for leaves coexisting with an 

active engagement of the root in drought-stressed plants.  

New non-destructive and non-toxic protocols are needed to simulate drought conditions 

to better characterize plant responses under controlled conditions. To that end, in chapter 

3, a new simple, efficient and reproducible method is presented to simulate in vitro drought 

stress conditions in M. truncatula seedlings grown on plates containing different agar 

concentrations. After validating of this method, it was observed that roots, rather than 

shoots, play a key role in plant adaptation to stress conditions. The relative simplicity of 

the method allows for its large-scale application in studies such as population screening for 

drought resistance traits in a variety of plants. Additionally, in chapter 4 we applied this 

method in combination with physiological, transcriptomic and metabolomic analyses in 

one of the most important parts of the root, the absorption zone, responsible for absorbing 

water and nutrients thus allowing the plant growth. Results led us to conclude that plants 

exhibited fast molecular responses under drought conditions; the metabolism of lipids, 

hormones, cell wall and secondary metabolism were some of the pathways most severely 

affected.  

To sum up, work presented here provides new insights into the understanding of legume 

responses to water-limiting conditions and contributes towards elucidating water stress 

signals and gene networks controlling the response of legume plants to drought. 





RESUMEN 

Las leguminosas, después de los cereales, son el cultivo de mayor importancia económica a 

nivel mundial. Sin embargo, estas plantas son muy sensibles a los estreses abióticos, siendo la 

sequía el que más afecta a su producción. El objetivo general del presente trabajo es ampliar 

los conocimientos sobre las respuestas a sequía de la parte aérea y la raíz de dos especies de 

leguminosas (Medicago truncatula y Glycine max) mediante la combinación de enfoques 

fisiológicos, morfológicos, transcriptómicos y metabolómicos. 

El ácido ascórbico (AsA) es uno de los antioxidantes más abundantes en los tejidos vegetales 

que está involucrado en mecanismos enzimáticos y no enzimáticos de desintoxicación celular. 

Sin embargo, poco se sabe sobre la regulación de su biosíntesis bajo situaciones de estrés por 

sequía. En el capítulo 1 de este estudio, a través de una combinación de enfoques moleculares 

y fisiológicos, se observó que la biosíntesis del AsA está gravemente afectada por la sequía. 

Estos análisis mostraron que en plantas de soja sometidas a condiciones de estrés hídrico existen 

múltiples puntos de control que regulan la biosíntesis de AsA a nivel de la GDP-D-manosa 

pirofosforilasa y de la GDP-D-manosa 3 ', 5'-epimerasa. Estas respuestas también se observaron 

en la leguminosa modelo M. truncatula. 

En el segundo capítulo de este trabajo se muestra el estrecho vínculo existente entre la parte 

aérea y la raíz de plantas de M. truncatula. Así, bajo condiciones de sequía, las plantas adultas 

priorizaron el crecimiento de las raíces frente al desarrollo foliar. Los diferentes análisis 

mostraron respuestas que sugieren una estrategia de supervivencia pasiva para las hojas 

coexistentes con un compromiso activo de la raíz en las plantas afectadas por la sequía. 

Existe la necesidad de desarrollar nuevos protocolos no destructivos y no tóxicos que 

simulen condiciones de sequía para caracterizar mejor las respuestas de las plantas bajo 

condiciones controladas. En el capítulo 3 se presenta un nuevo método simple, eficiente y 

reproducible para simular condiciones in vitro de estrés por sequía en plántulas de M. truncatula 

crecidas en diferentes concentraciones de agar. Después de validar el uso de este método, se 

observó que las raíces desempeñan un papel clave en la adaptación de la planta a estas 

condiciones de estrés. La simplicidad de este método permite el análisis de poblaciones a gran 

escala para identificar rasgos de resistencia a la sequía en una variedad de plantas. Por último, 

en el capítulo 4, el método descrito en el capítulo anterior fue aplicado en combinación con 

análisis fisiológicos, transcriptómicos y metabolómicos al análisis de la zona de absorción de 

la raíz responsable de la absorción de agua y nutrientes para el crecimiento de la planta. Los 

resultados indicaron que las plantas mostraron rápidas respuestas moleculares bajo condiciones 

de sequía; el metabolismo de lípidos, hormonas, la composición de la pared celular y el 

metabolismo secundario se vieron muy afectados permitiendo a las plantas hacer frente a 

situaciones de estrés por sequía. 

En resumen, este trabajo proporciona nuevas perspectivas en la comprensión de las 

respuestas de las leguminosas a las condiciones de limitación de agua y contribuye a aclarar las 

señales de estrés hídrico y las redes de genes que controlan la respuesta de las plantas 

leguminosas a la sequía. 
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 GENERAL INTRODUCTION 

A. LEGUMES 

The legume family (Fabaceaea or Leguminosae) contains over 700 genera and 

20,000 species, making it the third largest family of flowering plant, after orchids 

and sunflowers (Doyle and Luckow, 2003) and the second most important food 

crop after cereals (Liew et al., 2014). This family differs from most other plants in 

that they have the ability to fix atmospheric nitrogen in symbiosis with rhizobial 

bacteria and thus do not require nitrogen fertilizer for their growth and development 

allowing them to colonize soils with different nitrogen availability. In addition, the 

greatest benefit derived from this crop rotation is the role of legumes as a natural 

nitrogen fertilizer for the soil due to the process of biological nitrogen fixation and 

its high nitrogen content (Peoples et al., 2001). Hence, legumes contribute with 

many benefits to the soil being usually utilized as cover crop, intercropped with 

cereals and other staple crops. In rotation systems, legumes provide a source of 

nitrogen that contributes to sustainable cropping systems. Also, legumes improve 

soil quality by increasing soil organic matter and thus reducing soil erosion. The 

improvement in the production of these crops will therefore contribute substantially 

to better human nutrition and soil health (Popelka et al., 2004).  

The economical relevance of legume crops is related to both their importance as 

a protein source for animal feed and human nutrition and their use as raw material 

in the industry (Edgerton et al., 2008). Depending on the use and destination of 

production of legumes, they can be divided into two groups: forage legumes of 

which the leaves and stems are used for animal feed, and grain legumes, whose 

main economic interest is in their dry seeds, which can be aimed at both animal and 

human feed. Forage legumes play an important role in dairy and meat production 

being sources of protein, fibre and energy. They are usually richer in protein, 

calcium and phosphorus than other non-legume forages, such as grasses, and they 

include clover (Trifolium spp.), alfalfa (Medicago sativa) and barrel medic 

(Medicago truncatula) as important livestock fodder plants. Grain legumes 

represent a major source of proteins in many developing countries and are rich in 

essential amino acids, thus supplementing the nutritional value of cereal and tuber 

diets (Graham and Vance, 2003) and including soybean (Glycine max), garden peas 

(Pisum sativum), peanuts (Arachis hypogaea), and broad beans (Vicia faba). Grain 

and forage legumes are grown on around 15% of the cultivated land area of the 

Earth and assumed the 27% of the world crop production and about 33% of the 

protein needed to meet human nutritional needs (Graham and Vance, 2003). 
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Among legumes, we can find two types: tropical and temperate legumes. A 

legume specie belonging to the first group is G. max (soybean) while Medicago 

truncatula is cultivated in warmer areas. Due to their agricultural and economic 

importance, scientists have carried out basic and applied research on legumes to 

better understand responses to abiotic stresses. Nevertheless, most legume species 

are poor models for experimental research because of their large genomes, 

difficulties to transformation and long generation times, among others (Cook, 

1999). Of particular significance are the recently completed and annotated genomes 

of three legume species: G. max (soybean), M. truncatula, and Lotus japonicus 

(Young and Bharti, 2012) emphasizing comparisons among legume genomes. In 

this work, due to their agronomical and economical importance, we will focus on 

G. max and M. truncatula. 

A.1 Glycine max 

The grain legume soybean (Glycine max (L.) Merr.) is considered to be a very 

important crop world-wide. Due to its characteristics, soybean is used and 

appreciated in the world by consumers, the farming communities and commercial 

seed companies being its importance as a crop increased steadily during the last 

century (Qiu and Chang, 2010). This cultivated annual plant specie native of Asia 

(Pratap and Kumar, 2011) is one of the main crops cultivated for oil extraction apart 

from its uses in human and animal nutrition and industrial applications. Thereby, 

soybean is one of the most studied legumes from the agronomic perspective to 

improve cultivars for higher yield and resistance to biotic and abiotic stresses. 

Soybean economic importance and its large research community have contributed 

to develop molecular, genetic and genomic tools for this specie (Stacey et al., 2004) 

being its genome sequenced some years ago (Schmutz et al., 2010). 

A.2 Medicago truncatula 

The genus Medicago contains more than 54 characterized species, including 

both diploid annuals and tetraploid perennials (Lesins and Lesins, 1979). M. 

truncatula, also known by the common name “barrel medic”, is native to the 

Mediterranean basin and has long been cultivated as winter forage in Australia 

(Davidson and Davidson, 1993). From 1999, researchers have adopted M. 

truncatula as a model system to study legume genomics (Cook, 1999) due to it has 

a potential as a short-season annual crop to supply forage when traditional supplies 

are inadequate. The natural attributes of M. truncatula that make it desirable as an 

experimental system include its annual habit, diploid and self-fertile nature, short 

lifecycle, relatively small genome (~500Mb), abundant natural variation, and close 

phylogenetic relationships to the major crop legumes such as alfalfa (Cook, 1999). 
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Also, researchers have developed the tools and infrastructures for basic research in 

this specie including efficient transformation systems and a research network 

(http://www.medicago.org); (Benedito et al., 2008; Young et al., 2011). 

Consequently, knowledge of the genome organization and structure of both legume 

species will be useful to explore gene information of the other crop legume genomes 

to better understand plant responses under abiotic stress conditions. 

B. WATER MOVEMENT IN PLANTS

In order to understand plant responses to abiotic stresses, we need first to analyze 

how water is transported in plants. Water transport in the soil-plant-atmosphere 

system is usually considered as a steady state flow driven by a water potential 

gradient and by the transpiration rate being essential the fact that there are no 

limitations on water absorption by the root system. Water from the soil enters plants 

via the roots and then it is transported to the roots xylem, passing through various 

morphological structures, such as the epidermis, the endodermis, the cortical cells 

and the walls of xylem vessels (Steudle and Peterson, 1998) to finally arrive to the 

shoot. With the water reaching the roots, the absorption process is directly 

dependent on the water potential gradient between the rhizosphere and the root 

xylem; when roots absorb water, there is a reduction in the water potential in the 

soil that is in contact with the roots (rhizosphere). This process establishes a water 

potential gradient between plants and soil which coordinates the water movement 

towards the roots of a transpiring plant. Therefore, water flows from soil to root at 

a rate depending on the water potential gradient between soil and plant which is 

affected by plant water need, hydraulic conductivity of the soil, soil type and soil 

water content (Chavarria and Pessoa dos Santos, 2012). There are two ways to 

establish this gradient, characterized by two absorption processes: 1) osmotically 

driven absorption, common in plants with low or restricted transpiration activity 

(for example, plants without leaves or with a limited vapour pressure deficit) where 

there is an accumulation of solutes in xylem thus reducing its water potential in 

relation to the soil water potential, and 2) passive absorption, which dominates in 

plants with high transpiration activity where the tension in the xylem vessels 

increases, stablishing a water potential gradient between the root xylem and the 

rhizosphere (Chavarria and Pessoa dos Santos, 2012).  

Essentially, all water used by plants is absorbed by roots from the soil being this 

absorption related to roots surface directly in contact with soil. Thus, longer and 

younger roots with more root hairs are essential for increasing the contact surface 

thus improving the water absorption capacity of the roots. Moreover, the 

distribution and proportion of the roots is very important for meeting the water 

demand of a plant (Chavarria and Pessoa dos Santos, 2012); in humid regions, 

http://www.medicago.org/
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plants usually do not require very extensive root systems but in dry regions, the 

plants invest more in their roots, decreasing the shoot:root ratio such that the roots 

can represent upper to 90% of a plant biomass in some species of a desert climate.  

Water flows more efficiently through some parts of the plant than others. Upon 

absorption by the root, water first crosses the epidermis making its way toward the 

center of the root crossing the cortex and endodermis before arriving at the xylem. 

During absorption, water can flow by three ways into the root tissue in relation to 

the route of the epidermis to the endoderm of the root; apoplastic, symplastic and 

transmembrane pathways: 1) apoplastic, when water moves through the 

intercellular spaces and does not pass through any membranes, exclusively 

occupying the continuous network of the cell walls; 2) symplastic, where the water 

moves exclusively from one cell to another through plasmodesmata connections 

and remaining outside the vacuoles; and 3) transmembrane, when water crosses 

membranes to go from one cell to the next one. With regard to water absorption 

control in the roots, plants also present a family of membrane water transporter 

proteins (water-channel proteins) called aquaporins which have a critical role in 

water absorption and which are controlled by many endogenous and exogenous 

factors, such as environment factors that interfere in hydraulic conductance along 

the water flow by the plant (Chaumont et al., 2005; Maurel et al., 2008).  

After travelling from roots to stems through the xylem, water enters leaves 

moving across the cells mainly via apoplastic (Sack et al., 2005). Once delivered to 

the leaves, water evaporates from the surface of the mesophyll cells into the air-

filled substomatal cavity of the leaf. From there, water vapour diffuses via the 

stomata to the atmosphere surrounding the leaf, a process driven by the water 

vapour pressure difference between the interior air space of the leaf and the adjacent 

atmosphere. As a consequence, a decrease in the water potential of these cells 

results in a driving force for the movement of water from the xylem network of the 

leaf (Buckley, 2005). So stomata play a key role in the rapid regulation of water 

loss. However, abiotic factors can be equally disruptive to flow at various points 

along the water transport pathway. 

C. DROUGHT 

Climate change is multi-faceted, and includes changing concentrations of 

greenhouse gases in the atmosphere (like CO2), rising temperatures, changes in 

precipitation patterns, and increasing frequency of extreme weather events, 

interacting all these processes on plant development and affecting these climate 

change factors plants at the level of molecular function, developmental processes, 

morphological traits, and physiology (Gray and Brady, 2016). Thus, Earth´s climate 
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is drastically changing leading to more intense and extended drought situations. 

Plants growing in many regions of the world will experience increasing water stress 

as a result of climate change. Already, the area affected by drought has increased 

substantially since the middle 20th century (Dai, 2011), and the frequency of 

droughts is predicted to increase in regions that are already dry by the end of the 

21st century. Actually, drought observatories have estimated that around 40% of the 

land area is affected by drought and having an expectative in expansion due to the 

global climate change (Trenberth et al., 2013).  

Despite the fact that water is a renewable resource, the world´s supply of fresh 

water is steadily decreasing due to the population growth, economic development 

and improved living standards. As a result, water resources for agricultural 

production are limited and diminishing. Among other consequences, drought is the 

most serious problem for global agriculture having an expectative in expansion due 

to the global climate change. A decrease in water availability affects primary 

productivity in the ecosystem and, more specifically, the growth of plants. Water 

does not only become limiting for plant communities as a result of inadequate 

rainfall, but also due to other environmental conditions like excessive salinity in the 

soil solution or as a consequence of freezing temperatures. To this end, predictions 

on an increasing world food demand and the rise in temperature at the global level 

led to investigate plant responses to drought to develop new varieties with improved 

water use efficiency and drought tolerance.  

C.1 Plant responses to drought stress 

Plants are exposed to a numerous environmental stresses under natural 

conditions, notably to drought, cold, heat, flooding or salt stress. Among them, 

drought is the most serious problem for global agriculture and a decrease in water 

availability affects primary productivity in the ecosystem (Boyer, 1982; Chaves and 

Oliveira, 2004), and more specifically, the growth of plants because water is the 

main plant compound comprising 80–95% of the biomass of leaves and roots in 

non-woody plants (Hirt and Shinozaki, 2004). Plant water management is a 

combination of increasing water uptake and reducing water loss during drought 

stress. While water uptake can only be increased by the development of specialized 

root structures, water loss can be avoided by various physiological mechanisms 

such as stomatal closure, reduction of leaf growth or production of specialized leaf 

surfaces to avoid transpiration (e.g. waxes, hairs or embedded stomata). Therefore, 

a constant water availability has crucial importance for plant survival.  

Plants develop many complex responses to water deficit, involving adaptive 

changes and/or deleterious effects (Chaves et al., 2002). The strategies adopted by 

plants to cope with water scarcity under natural conditions can be generally 
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classified into drought escape, avoidance and tolerance. Particularly, drought 

tolerance is considered as the ability of plants to survive internal water deficits in 

dry environments. Therefore, the breeding of drought-tolerant and water use 

efficient crop varieties should be a global concern. Consequently, an understanding 

of the mechanisms by which plants can adapt to suboptimal watering conditions has 

become imperative for all plant researchers. Most research efforts have been 

devoted on the analyses of plant performance under drought stress focusing mainly 

on the aboveground organs whereas little attention has been given to root 

performance. In particular, in the area of legumes, the field remains largely 

unexplored and little is known about the role of roots in crop responsiveness despite 

these organs are responsible of nutrients and water acquisition and transport in 

plants. Then the drought responses will be generally described at the cellular level, 

then attending to the first stages of growth of the plant and finally to the shoot and 

root separately.  

C.1.1 General plant drought responses at the cellular level 

Several changes are found at cellular level in plants subjected to drought stress. 

The most relevant ones include the modification of the lipid membrane 

composition, some stress-signalling processes or the synthesis and accumulation of 

compatible osmoprotectants solutes such as sugars, polyamines, organic acids or 

amino acids (Fig. 1; (Hsiao, 1973; Bray, 1997)). It has been shown that these 

compounds accumulate in different plant tissues under drought stress conditions in 

order to maintain cell turgor by osmotic adjustment against the loss of water 

(Bartels and Sunkar, 2005; Krasensky and Jonak, 2012).  

 

Figure 1. Effects of drought stress on some plant mechanisms. Adapted from Taiz and Zeiger, 

(2006). 
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These osmoprotectant solutes also act in the reduction of ROS production under 

conditions of stress in plants trying to maintain a steady homeostatic condition. 

ROS production increase can provoke oxidative stress by damaging membrane 

lipids, proteins, photosynthetic pigments and nucleic acids through oxidation 

process, and these are considerably amplified under drought stress. The singlet 

oxygen (1O2), the superoxide radical (O2
-), hydrogen peroxide (H2O2) and the 

hydroxyl radical (OH-) are produced from oxygen metabolism and play an 

important role as indicators in the stress process of water deficit. To cope with 

drought stress, plants acquire well-organized enzymatic and non-enzymatic 

antioxidants systems (Fig. 2). Among important antioxidants enzymes in plants we 

can find catalase, ascorbate peroxidase, glutathione peroxidase and so on. On the 

other hand, there are non-enzymatic antioxidant components such as ascorbic acid 

(AsA), glutathione (GSH), phenolic compounds or alkaloids. Thus, the enhanced 

activities of components of the antioxidant system decrease oxidative damage, and 

develop and improve the drought tolerance and resistance of plants.  

 

 

Figure 2. Distribution of the main enzymatic and non-enzymatic antioxidant resources in plant cells. 

Adapted from Racchi, (2013). 

Particularly, AsA is one of the most abundant water-soluble reducing compound 

present in plant tissues, serving also as an electron donor in numerous reactions 

(Foyer and Noctor, 2011). AsA, also known as vitamin C, is an essential nutrient 

for some animals, including humans. Working as a ROS scavenger and as an 
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electron donor, AsA is oxidized to monodehydroascorbate and then to 

dehydroascorbate (DHA), which can be recycled by the AsA-GSH cycle, also 

known as “Foyer-Halliwell-Asada” pathway (Foyer and Halliwell, 1976; Asada, 

1999). Although it is synthesized in mitochondria, AsA is present in all cellular 

compartments and it can represent more than 10% of the soluble carbohydrate 

fraction in plants (Noctor and Foyer, 1998; Fig. 3). Although alternative pathways 

have been described, the most studied biosynthetic route of AsA in plants is the 

Smirnoff-Wheeler (SW) pathway (Smirnoff and Wheeler, 2000). The last step in 

this pathway involves the conversion of L-galactono-1,4-lactone (GalL) to AsA in 

a reaction catalysed by the enzyme L-galactono-1,4-lactone dehydrogenase 

(GalLDH; EC 1.3.2.3). The enzyme, localized in inner mitochondrial membrane 

(Bartoli et al., 2000), has been characterized in several plant species although it has 

been barely studied in legumes. 

C.1.2 Drought effects during the initial development stages of plants  

Regarding the importance of limited water resources effects on crop yield, 

drought stress effects analysis in different plant growth stages is required. Plant 

communities are first shaped by seed dispersal and by the effect of environmental 

factors on seed survival, germination, seedling establishment and growth (Schupp 

and Fuentes, 1995). The first step of germination process is water absorption, where 

seeds swell and growth. If the water level is lower than desirable, water absorption 

is not completed and germination declines or stops. Taiz and Zeiger, (2010) 

observed a reduction in germination rates and stand stablishment under early 

drought conditions mainly due to reduced water uptake during the imbibition phase 

of germination. In previous studies, it was also reported that drought stress reduces 

germination and seedling stand of sunflower (Kaya et al., 2006), pea (Okçu et al., 

2005) or alfalfa (Zeid and Shedeed, 2006) sedes. So seedling establishment might 

be one of the most decisive phases in the plant life-cycle. Once seeds germinate, 

survival and growth at early stages of plant development are major bottlenecks to 

successfully complete the reproductive cycle. So seed survival depends on the 

ability to cope with numerous environmental factors such as water availability, 

temperature, radiation… However, drought is the main reason for seedling 

mortality (Moles and Westoby, 2004). Two aspects are fundamental in order to 

ensure rapid seedlings establishment: prompt anchoring of juvenile seedlings to the 

substrate and immediate water absorption (Young and Martens, 1991). Given that 

high seedling survival is linked to larger biomass allocation to roots, a better water 

and nutrient uptake allows to explore larger volumes and deeper layers of soils 

(Padilla and Pugnaire, 2007). 
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Figure 3. Representation of the biosynthesis, localization and antioxidant function of AsA. The 

biosynthesis of AsA takes place in the cytosol, except the last step occurs in the mitochondrion. AsA 

plays a role in the antioxidant defense scavenging ROS via the AsA-GSH cycle or by regenerating 

antioxidants such as α-tocopherol and zeaxanthin. Adapted from Bielen et al., (2013). 

Also, the development of specialized tissues such as hypocotyls hairs during 

seedling emergence has positive effects involving facilitation of water uptake and 

providing seedling establishment (Aronne and De Micco, 2004). Thus, 

phenotypical evaluation at the seedling stage is regarded as an attractive approach 

because it is a high-throughput and low cost method that saves space and time 

(Meeks et al., 2013). Another advantage of using seedling drought screens is that 

phenotypical variation caused by experimental errors can be controlled better 

because the plants are much more uniform at an early seeding stage, compared to 
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other periods of plant development (Li et al., 2015; Wang et al., 2015). For this 

reason, studies carried out on seedlings in the early stages of growth are of great 

interest for further analysis in adult plants. 

C.1.3 Drought responses at shoot level 

Photosynthesis is the key process which contributes substantially to the plant 

growth and development by the conversion of light energy into a usable chemical 

form of energy. However, drought stress adversely affects the process of 

photosynthesis in plants (Hsiao, 1973) by altering the functionality of both PSII and 

PSI, the ultrastructure of the organelles (deterioration of thylakoid membranes; 

(Anjum et al., 2011)) thus reducing the carbon assimilation rate (Ashraf and Harris, 

2013). To face water deficit stress, plants have developed adaptive responses to 

reduce drought induced damage to photosynthesis including thermal dissipation of 

light energy, the xanthophyll cycle, the water-water cycle, and dissociation of the 

light-harvesting complexes from photosynthetic reaction centers (Basu et al., 2016). 

Furthermore, the immediate response of plants on being exposed to drought stress 

is stomatal closure. The regulation of leaf stomatal conductance is crucial in plants 

as it is vital for both a prevention of desiccation (transpiration rates decrease) and 

CO2 acquisition (Dodd et al., 2003). Stomata closure in response to drought 

generally occurs due to decreased leaf turgor and atmospheric vapor pressure along 

with root-generated chemical signals (Chaves et al., 2009). The stomata closure is 

generally considered to be the major factor of the photosynthetic rate decrease under 

stressful conditions attributed to the stomatal limitations for diffusion of gases, 

which ultimately alters photosynthesis and the mesophyll metabolism (Flexas et al., 

2007; Chaves et al., 2009). Thus, all these adaptations in plants reduce the negative 

impacts of drought stress on photosynthesis and thereby have a positive effect on 

water use efficiency, which in turn will result in high yield potential and high yield 

(Basu et al., 2016).  

Furthermore, the leaf cell expansion rate decrease observed under drought 

conditions provokes a reduction in the leaf area parameter and, on the other hand, 

the increase in the abscisic acid content promotes that the process of senescence is 

stimulated earlier causing leaf abscission (Fig. 4). Also, under pronounced water 

deficit situations, the tension of water in xylem becomes so high that dissolved air 

within water expands blocking xylem vessels thus activating embolism and 

impeding water and nutrient transport through the plant. 
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Figure 4. Effects of water stress on photosynthesis and leaf expansion in sunflower plants. Adapted 

from Taiz and Zeiger, (2010). 

C.1.4 Drought responses at the root level 

As mentioned earlier, most research efforts have been focused on studying how 

aerial parts contribute to plant drought tolerance being only a few studies focused 

on roots. As roots are the first organs sensing water deficit in soils directly 

interacting with water under the soil surface, drought responses of this organ are 

very important. Root systems have many functions in plants survival; anchorage 

and support to the soil, water and nutrients absorption or the establishment of biotic 

interactions at the rhizosphere storage (López-Bucio et al., 2003). For this reason, 

the anatomy of roots is complex with variable structures both between and within 

plant species, habitats and conditions. In the group of angiosperms, root growth is 

different between monocots and dicots plants; in contrast to monocots, dicots 

develop root systems with a main single root axis from which lateral roots develop 

to form an extensively branched root system. Internally, the apical region of the 

root is divided in three zones of activity: the meristematic, elongation and 

maturation zones, being this last also known as differentiation or absorption zone 

(AZ); (Fig. 5). The meristematic zone is the responsible for cell division and 

differentiation into the tissues of functional root and in the direction of the root apex 

(Clowes, 1975). Behind it is the zone of elongation, in which cells increase in size 

and in length through nutrient and water absorption and uptake into the vacuoles. 

Cells from this root zone undergo changes being differentiated in specific tissues. 

The vascular tissues of the root are surrounded by the pericycle; the phloem is 

characterized for transporting metabolites from the shoot to the root while xylem 

transports water and solutes to the shoot (Esau, 1977). In the third major root part  
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(maturation/differentiation/absorption zone) root hairs, which are themselves 

specialized projections from modified epidermal cells known as trichoblasts 

(Bibikova and Gilroy, 2002), are located to extend root absorbing surface thus 

increasing water and nutrient absorption. The whole root is surrounded by the 

outermost layer, the epidermis, being cortex cells involved in the movement of 

water from the epidermis.  

 

 

Figure 5. Longitudinal schematic root cellular organization. Adapted from Taiz and Zeiger, (2010). 

Root development is strongly influenced by growing conditions such drought 

stress. However, root growth is usually less affected by drought stress than shoot 

growth (Sharp et al., 2004). Roots can always adjust their growth and biomass 

allocation to adapt water stress during plant growth and development stage and 

when they notice the lack of water in the soil, root morphological and physiological 

parameters are adjusted. Thus, a decrease in shoot:root ratio is a common 

observation under drought stress, which results either from an increase in root 

growth or from a relatively larger decrease in shoot growth than in root growth. 

Several factors have been described to affect root drought tolerance; root structure, 

diameter, density or length and their number (Comas et al., 2013), the presence of 

young roots for water uptaking (Peterson et al., 1993) and sufficient density and 

length  of  root  hairs to ensure the  maximal absorption  surface between soils and  
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roots (Wasson et al., 2012) are parameters which can affect the ability of plants to 

adapt to limited soil moisture. Particularly, plants with longer roots may access 

moisture by growing deep into soil during periods of moisture stress. In this regard, 

root diameter and root density control the length and surface area of root systems 

(Fitter et al., 2002). Actually, a decrease in root diameter has been proposed as a 

trait for increasing plant acquisition of water and productivity under drought stress 

(Wasson et al., 2012). Few studies have been conducted on root architecture and 

scientists are constantly searching for mechanisms to model typical root growth 

outside of the field; genetic variation underlying root traits in response to moisture 

deficiency has been observed in many crops (Sharp et al., 2004). Gregory (2006) 

discusses the theory that thick roots can penetrate hardened soil more easily and 

reach soil moisture reserves deep in the soil profile. In addition to root diameter, 

xylem diameter also affects root hydraulic conductivity and can affect plant 

productivity under drought. Root depths of native vegetation in arid climates are 

consistently deeper than those in humid regions (Schenk and Jackson, 2002). So, 

root traits play a critical role for increasing crop yield under moisture stress 

(Tuberosa et al., 2002). Among these traits, root pulling force, the vertical force 

required to pull out the root system from the ground, could be an important trait in 

a drought-associated study being associated with drought tolerance and higher yield 

under moisture and nutrient stress in rice and maize. Root pulling force has been 

used as a tool for selection for drought adaptation in rice (Ekanayake et al., 1985). 

In this regard, several previous studies have focused on studying root system 

architecture modifications under drought stress in different plant species; soybean 

(Matsuo et al., 2013), Arabidopsis thaliana (van der Weele et al., 2000), rice (Uga 

et al., 2013) and Medicago (Fresnillo Fedorenko et al., 1995). Blum (2011) 

described several factors related to increased root growth under drought conditions: 

1) root growth is less sensitive than leaf to drought stress due to its greater capacity 

to osmotic adjustment comparing with leaves (Ober and Sharp, 2007) by diverting 

proline and carbohydrates content to this organ, thus supporting osmotic adjustment 

and root growth. 2) The hormone abscisic acid (ABA) promotes root growth while 

it inhibits shoot growth. The role of ABA accumulation in roots in enhancing root 

growth in a drying soil has been clearly proven (Sharp et al., 2004; Ober and Sharp, 

2007). 3) Cell wall expansion is an important factor in enhancing root growth in a 

drying soil. The importance of expansin proteins and the expression of expansin 

genes are crucial in root responses to drought situations 

However, many are the physiological and molecular root mechanisms 

underlying adaptation to drought stress which remain largely unknown. So the 

understanding of regulatory molecular networks, and stress signaling mechanisms 

provide numerous advantages to improve drought stress responses in plants. To fill 
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this gap, several studies have been carried out in roots of a broad range of plants to 

characterize stress-related genes observing the change in their expression under low 

water availability situations and providing the opportunity to dissect the molecular 

response of roots to a drought stress (Micheletto et al., 2007; Zhang et al., 2014). 

Indeed, there are some studies focused on the analysis of differentially expressed 

genes in different root zones under drought stress (Ranjan et al., 2012; Opitz et al., 

2015). In general, genes belonging to diverse functional groups such as 

transcription factors, protein kinases and phosphatases or secondary cell wall 

biosynthesis-related gene are differentially regulated in roots contributing to the 

signal transduction that occurs in plants in response to drought stress conditions. 

These studies allowed to obtain information that could be used to explore new 

strategies for developing drought tolerant plants through breeding.  

C.2 Approaches to study drought stress 

Compared to drought stress, salinity simulation under laboratory conditions is 

very simple to apply (by adding NaCl to the plant growth medium), easily to 

standardize and highly reproducible. However, the simulation of drought is more 

challenging. Under field conditions, drought effect studies are variable due to 

factors such as soil mixture, climate, temperature variations, precipitations or biotic 

stresses thus limiting the conclusions that can be obtained in this type of studies. 

Experiments with adult plants under controlled conditions are usually carried out 

using pot systems where drought stress is imposed by removing irrigation allowing 

a gradual depletion of water. Also, drought is simulated by extreme assays of 

detaching leaves (Qin and Zeevaart, 2002) or leaving plants in air to impose 

dehydration stress (Belamkar et al., 2014). In molecular biology studies, artificial 

growing system are usually employed as plant culture dishes, which usually apply 

several osmotic agents such as the artificial polymer polyethylene glycol (PEG); 

(Kang et al., 2015), sorbitol or natural osmolites such as mannitol to mimic a 

programmed level of drought stress conditions. Plants grown in these conditions 

show uniformity and reproducibility in typical drought responses. However, it has 

been shown that mannitol and PEG are absorbed by the plant, this latter causing a 

toxic effect (Emmert, 1974; Mexal et al., 1975; Munns et al., 1979). Therefore, the 

development of new non-destructive and non-toxic protocols are needed to study 

plant drought responses, allowing a better plant characterization. 

Breeding strategies for drought tolerance have often focused on above ground 

aspects of plants such as reduced leaf area, stomatal conductance and transpiration 

rates or shorter flowering stages to limit time exposed to drought stress. However, 

due to the high importance of underground tissue in water absorption for plant 
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survival, different methodologies for root studies under drought conditions have 

been developed (Paez-Garcia et al., 2015). These authors described root 

architectural traits relevant to crop productivity, survey root phenotyping strategies 

and described their advantages, limitations and practical value for crop and forage 

breeding programs: 

The analysis of root system in the field for phenotyping can be arduous and time 

consuming and in some cases can also involve use of expensive machinery. This 

strategy is referred to shovelomics characterized as a technique to visually 

phenotype roots (Trachsel et al., 2011). The goal was to identify root architectural 

traits important to plant productivity under edaphic stress. However, studies 

conducted in the laboratory, growth chambers or greenhouses have more controlled 

settings and attempt to study the relationship between roots and drought in greater 

detail. Many systems exist to study roots under controlled environmental conditions 

such as hydroponics, growth pouches (McMichael et al., 1985), minirhizotron 

system (Rellán-Álvarez et al., 2015), agar plates, slant tubes, aeroponic systems 

(Barker et al., 2006), mesocosm system (Chimungu et al., 2014) and various other 

containers to study young seedling plants. More methods for imaging, processing 

and data collection of roots have been developed like WinRHIZO, ROOTEDGE 

and SmartRoot softwares (Himmelbauer et al., 2004; Lobet et al., 2011). These 

programs assess parameters like root length, surface area, diameter, tips and 

branching (Himmelbauer et al., 2004). 

D. “OMIC” APPROACHES TO UNDERSTAND PLANT DROUGHT RESPONSES 

One of the goals in plant systems biology is to monitor and control cellular 

responses to genetic perturbation or environmental changes (Fukushima et al., 

2009). Omic technologies offer the possibility to study these effects in plants. To 

understand the organization principle of cellular functions and to provide us with a 

detailed knowledge about the dynamic function of a plant molecular system, an 

integrative approach combining different tools including the detection of genes 

(genomics), mRNA (transcriptomics), proteins (proteomics) and metabolites 

(metabolomics) in a specific biological samples is needed (Horgan and Kenny, 

2011; Fig. 6). Nowadays, plant researchers have been widely using these high-

throughput omic technologies in the study of abiotic stress effects at different 

functional levels (Debnath et al., 2011). These multidisciplinary approaches have 

been applied in the field of drought stress responses in plants (Larrainzar et al., 

2007; Gil-Quintana et al., 2015; Watson et al., 2015; Song et al., 2016). Proteomics 

is becoming a powerful tool to analyze biochemical pathways and to give insights 

into the complex molecular mechanisms underlying plant response to stress 
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(Timperio et al., 2008). Moreover, recent advances in genomics related techniques 

such as Quantitave Trait Locus (QTL) and Genome Wide Association (GWA) have 

greatly facilitated the understanding of plant responses against drought stress (Kang 

et al., 2015).  

In the case of transcriptomics, a tool that provides a comprehensive analysis of 

the transcript levels in cells, one of the limitations is the highly dynamic nature of 

mRNA populations being these changes dependent on the developmental stage and 

environmental conditions. Latest advances in transcriptomic approaches show new 

techniques where gene expression is indirectly assessed in microarrays or chips 

using the principle of nucleic acid hybridization of mRNA or cDNA fragments 

(Tuteja et al., 2012). Among them, two are the main methods which are currently 

used; microarrays and RNA sequencing (RNA-Seq). Microarrays are considered 

one of the most powerful and widespread high throughput methods which has 

become an essential tool for studying the expression of all genes in the 

transcriptome simultaneously (Malone and Oliver, 2011). In the RNA-Seq method, 

complementary DNAs (cDNAs) generated from the RNA of interest are directly 

sequenced using next-generation sequencing technologies and several reads 

obtained from this can then be aligned to a reference genome in order to construct 

a whole-genome transcriptome map (Nagalakshmi et al., 2010). Comparing both 

transcriptomics methods, RNA-Seq is a most sensible technique which enables the 

detection of polymorphisms, splicing processes and that does not require a previous 

knowledge of the plant genome. However, both microarrays and RNA-Seq have 

disadvantages such as economical limitations (being higher in RNA-Seq technique) 

and the capacity to process a large amount of data.  

Finally, since metabolites are the ultimate gene products, the associated field 

“metabolomics” provides an overview of the developmental and physiological state 

of an organism under defined conditions. The plant metabolome is defined as the 

full complement of low molecular weight molecules or metabolites and it is highly 

dynamic because metabolites represent the catabolic and anabolic activities inside 

the plant cells at a given time (Subudhi, 2011). Metabolites are classified in two 

groups: primary (those essential in carbon and nitrogen metabolisms) and 

secondary metabolites (several compounds involved in plant adaptation responses 

to environmental factors). In the plant kingdom, among 100,000-200,000 secondary 

metabolites are synthesized which are chemically diverse, often species specific 

and many are unknown for its physical details. When a comprehensive analysis of 

metabolites in terms of identification and quantification is needed, metabolomics is 

chosen to determine and quantify all possible identified or unknown compounds 

using a range of techniques such as Liquid Chromatography-Mass Spectrometry 
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(LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS) or Nuclear Magnetic 

Resonance. The currently used analytical techniques in plant metabolic profiling is 

Mass Spectrometry often combined with chromatography; GC-MS is frequently 

used for detection of primary metabolites but LC-MS allows detection of wide 

range of diverse secondary metabolites such as phenols, flavonoids or 

phenylpropanoids. Thus, metabolomics is emerging as a useful tool in functional 

annotation analysis in plants response to environmental alterations being the 

relationship between metabolite contents and stress tolerance investigated on a 

large scale.  

 

 

Figure 6. General schematic diagram showing the relationships among omics techniques. Adapted 

from Euceda et al. (2015). 

Overall, challenges in integrating omics approaches such as transcriptomics and 

metabolomics could result in generating useful information about the genetic 

control of metabolite production under stress conditions (Gupta et al., 2013). In this 

context, the integrated approaches with multiple omics data should greatly 

contribute to the identification of key regulatory steps and to characterize the 

pathway interaction in various processes (Fukushima et al., 2009). Although diverse 

transcriptomic and metabolomic studies have been conducted in M. truncatula and 

soybean drought-stressed plants (Larrainzar et al., 2007; Zhang et al., 2014; Kang 

et al., 2015; Watson et al., 2015; Song et al., 2016), few have been analyzed these 

responses in different plant tissues in these stressed plants. 
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GENERAL AIM 

Although numerous studies have been focused on the analysis of plant drought 

responses, some important mechanisms responding to this stress require further 

investigation. So a better understanding of drought tolerant mechanisms by which 

plants cope with water deficit stress is necessary. In this work we focused on two 

legume species of great economic and agronomic importance all over the world. 

Previous research studies have mainly described defense mechanisms against 

drought stress in the aerial part of the plant while root responses have been barely 

studied. Thus, the overall goal of this work was to gain further insights into the 

response to drought of two legume species (Medicago truncatula and Glycine 

max) at the shoot and root levels by using a combination of physiological, 

morphological, transcriptomic and metabolomic approaches. 

The general aim can be defined as summarized in the following four chapters: 

1) To investigate the role of one of the main water soluble antioxidant in plant 

responses to drought stress by analyzing AsA metabolism in soybean (G. 

max L. Merr) plants. 

2) To analyze the response of M. truncatula plants to drought stress in terms 

of the leaf-root partitioning carbon and nitrogen metabolism. 

3) To describe a method for the standardized and reproducible simulation of 

drought conditions with different agar concentrations and to characterize 

drought stress responses of M. truncatula seedlings grown under these 

conditions.  

4) To analyze the responses of the part of the root which contains root hairs 

(absorption zone) under low water availability in early developmental stages 

of M. truncatula plants at the transcriptomic and metabolomic level. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

» CHAPTER 1  
 

Multiple regulation points control ascorbic acid biosynthesis in 

drought-stressed soybean plants 
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1.1 INTRODUCTION 

Drought stress is one of the main factors limiting plant productivity in 

agriculture. At the molecular level, drought provokes an increase in the formation 

of reactive oxygen species (ROS) in plants, leading to oxidative stress and cell 

damage (Hsiao, 1973). In order to cope with this increased ROS production, plant 

cells display a complex array of both enzymatic and non-enzymatic detoxification 

mechanisms. The latter group includes the production of low-molecular weight 

compounds such as ascorbic acid (AsA, vitamin C), glutathione (GSH), carotenoids 

or flavonoids (Mittler, 2002; Mittler et al., 2004; Szarka et al., 2012). AsA is one 

of the most abundant water-soluble reducing compound present in plant tissues, 

serving also as an electron donor in numerous reactions (Foyer and Noctor, 2011). 

Synthesised in mitochondria, AsA is present in all cellular compartments at 

concentrations up to 21 mM (Szarka et al., 2013) and it can represent more than 

10% of the soluble carbohydrate fraction in plants (Noctor and Foyer, 1998). AsA 

is oxidised to monodehydroascorbate and then to dehydroascorbate (DHA), which 

can be recycled back to AsA by the AsA-GSH cycle, also known as the “Foyer-

Halliwell-Asada” pathway (Foyer and Halliwell, 1976; Asada, 1999).  

Although alternative pathways have been described, molecular genetic evidence 

from Arabidopsis indicates that the Smirnoff-Wheeler (SW) or D-mannose/L-

galactose pathway is the primary route of AsA biosynthesis in plants (Wheeler et 

al., 1998; Conklin et al., 1999; Dowdle et al., 2007). Despite the importance of AsA 

in plants, knowledge on the mechanisms regulating its biosynthesis and metabolism 

is still limited. The steady state level of transcripts encoding several of the SW 

biosynthetic enzymes have been shown to correlate with exposure to light and AsA 

content (Gatzek et al., 2002; Tamaoki et al., 2003; Bartoli et al., 2006; Dowdle et 

al., 2007; Maruta et al., 2008; Yabuta et al., 2008; Bartoli et al., 2009; Fukunaga et 

al., 2010). Besides this light-dependent regulation, two genes have been identified 

as regulators of the pathway in A. thaliana: AMR1, a predicted F-box protein 

(Zhang et al., 2009) and VTC3, a protein kinase::protein phosphatase (Conklin et 

al., 2013). 

Abiotic stresses are known to activate ROS-scavenging mechanisms such as 

superoxide dismutase, ascorbate peroxidase and catalase enzymes (Mittler, 2002). 

It could be expected that drought stress would trigger an increase in the biosynthesis 

of a major antioxidant compound like AsA. Consequently, plants with increased 

AsA levels might present improved tolerance to such stresses. This is particularly 

relevant in the case of legume crops, main source of protein for humans and cattle 

feed, which are highly sensitive to environmental constrains (Tuteja et al., 2012). 

Nevertheless, it remains unclear whether drought stress leads to an increased 
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production of AsA. For instance, AsA levels decreased in spinach but not in 

soybean leaves as water potential values dropped (Robinson and Bunce, 2000). 

Similarly, drought stress has been shown to cause increased AsA content in 

chloroplasts but a general reduction of AsA levels at the whole leaf level in several 

plant species (Munné-Bosch and Alegre, 2003). At the enzymatic level, AsA 

biosynthesis is found stimulated in mitochondria isolated from plants treated with 

gibberellic acid (Millar et al., 2003), a hormone inhibited during drought stress. 

Additionally, Bartoli and collaborators (2005) did not find a correlation between 

drought stress and AsA biosynthesis, being GalLDH activity and AsA content in 

wheat leaves independent on the stress tolerance of the cultivar.  

 

1.2 OBJECTIVE 

The aim of this work is to better understand drought effects on AsA biosynthesis 

pathway in one of the most economically relevant legume crops, soybean. For this 

purpose, we analyzed in vivo AsA biosynthesis and AsA levels in different plant 

tissues and queried RNA-seq databases to investigate the regulation of the 

biosynthesis pathway at various levels of stress. 
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1.3 MATERIALS AND METHODS 

1.3.1 Plant growth conditions, drought treatments and water status 

characterization 

Glycine max (L.) Merr. cv Oxumi seeds were sterilized as previously described 

(Labhilili et al., 1995); seeds were placed in 1% NaClO (v/v) and 0.01% SDS (w/v) 

for 40 minutes and after washing them with deionized water, they were placed in 

0.01N HCL for 10 minutes. Seeds were germinated on trays with a mixture of 

perlite:vermiculite (1:1, v/v) for three days in the darkness at 26ºC. Seedlings were 

subsequently grown in 1-L pots containing 2:1 (v/v) vermiculite:perlite as rooting 

substrate in a controlled-environmental chamber (24ºC/18ºC day/night temperature, 

60/70% day/night relative e humidity, and 16-h photoperiod). Plants were watered 

three times a week with a nutrient solution containing (values in g L-1) K2HPO4 

(0.2), MgSO4×7H2O (0.2), KCl (0.2), EDTA-Na2Fe (0.025), CaSO4×2H2O (0.12); 

(values in mg L-1) NaMoO4×2H2O (4), FeCl3×2H2O (1), ZnSO4×7H2O (1), H3BO3 

(1), MnSO4×H2O (0.08), CuSO4×5H2O (0.03), AlCl3×6H2O (0.05), NiCl2 (0.03), 

KI (0.01); Rigaud and Puppo, 1975) supplemented with 5 mM KNO3. Four-week-

old plants were separated into two sets: control and drought. Control plants were 

supplied daily with the nutrient solution to field capacity, whereas drought was 

achieved by withholding water/nutrients. Two hours after the start of the 

photoperiod, leaf and root water potential (Ψw) were measured. Leaf Ψw was 

measured in the first fully expanded leaf using a pressure chamber (Soil Moisture 

Equipment, Santa Barbara, CA, USA; Scholander et al., 1966). Root Ψw was 

measured using C52 sample chambers coupled to a Wescor HR-33T Dew Point 

microvoltimeter (Wescor) and measurements were taken after at least 1 h. Soybean 

leaf water potential was daily monitored to classify plants into control (C; leaf Ψw 

= -0.23 ± 0.04 MPa), very mild stress (VMS; leaf Ψw = -0.54 ± 0.02 MPa) and mild 

stress (MS; leaf Ψw =-1.13 ± 0.1 MPa). Plant tissue fresh weight (FW) was 

measured and aliquots were collected, immediately frozen in liquid nitrogen and 

stored at 80ºC for analytical determinations. The remaining tissue was employed 

for dry weight (DW) determinations after drying for 48 h at 70ºC. Water content 

(WC) was calculated as follows: WC = (FW-DW)/(FW x 100).  

1.3.2 Determination of total and reduced AsA content 

AsA content was measured by high-performance capillary electrophoresis as 

previously described (Davey et al., 1996). Briefly, frozen leaf, stem and root 

samples (∼0.2 g FW) were homogenised using a mortar and pestle under liquid 

nitrogen and mixed with 1.5 mL 2% (v/v) metaphosporic acid containing 1 mM 

ethylenediaminetetraacetate. Samples were centrifuged (12 min, 13000 g, 4ºC) and 

the filtered supernatant was used to determine antioxidants by capillary 



Chapter 1 

28 

 

electrophoresis (Herrero-Martı́nez et al., 1998) using a buffer containing 60 mM 

NAH2PO4, 60 mM NaCl (pH 7), and 0.0001% hexadimethrine bromide under the 

following conditions: −15 kV potential, 50 μm-internal diameter and 30/40.2 cm-

long capillary tube with indirect UV detection at 256 nm. To obtain total AsA pools, 

samples were treated with dithiothreitol (DTT). Dehydroascorbic acid (DHA) 

levels were calculated as the difference between the total AsA pool and the reduced 

form. 

1.3.3 In vivo AsA synthesis assay 

In vivo biosynthesis of AsA was assayed as previously reported (Bartoli et al., 

2000). Briefly, leaf and root samples (~0.1 g FW) were sliced and incubated for 3 

h at 25ºC in a buffer containing 50 mM Tris-HCl (pH 8.0) either with or without 50 

mM L-galactono-1,4-lactone (GalL) as a control. In vivo AsA synthesis capacity 

was estimated as the difference in AsA content between time 3 h vs. time 0 in 

untreated samples and samples supplemented with GalL. 

1.3.4 Soybean and M. truncatula gene identification and expression analysis  

To analyze the regulation of the AsA biosynthesis under drought conditions, the 

expression of genes encoding enzymes involved in the SW pathway route in 

soybean and M. truncatula was studied. Based on the pathway described in 

Arabidopsis plants by Linster and Clarke, (2008) and after Conklin et al., (2013) 

stablished the specific enzymatic reactions for AsA synthesis (from D-mannose-1-

P to AsA as final product), in this study we focused on the analysis of those genes 

implied in this part of the pathway; VTC1 (catalysed by GDP-D-mannose 

pyrophosphorylase), GME (GDP-D-mannose 3´,5´-epimerase), VTC2/VTC5 (GDP-

L-galactose phosphorylase), VTC4 (L-galactose-1-P phosphatase), L-GalDH (L-

galactose dehydrogenase) and L-GalLDH (L-galactono-1,4-lactone 

dehydrogenase). The putative orthologous genes implicated in SW pathway were 

identified by BLASTP using the Wm82.a1.v1.1 Soybean Knowledge Base genome 

version [http://soybase.org/GlycineBlastPages /blast_descriptions.php; (Joshi et al., 

2014)] and the M. truncatula 4.0 genome version 

(http://www.medicagohapmap.org/tools/blastform). Only proteins with E-values 

<1E-10 were further selected. 

Soybean gene expression values were obtained using RNA-seq as previously 

described (Song et al., 2016). The expression profile of the orthologs was retrieved 

from the Medicago Gene Expression Atlas [http://mtgea.noble.org; (Benedito et al., 

2008)], extended with data on drought stress responses (Zhang et al., 2014). The 

average from three biology replicates was used to calculate the fold change in gene  
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expression. Relative expression results were calculated as ratios taking expression 

values at day 0 as a reference. For soybean, genes with more or less than a 2-fold 

change compared to control and a P-value less than 5*10−5 were considered as 

significant differentially expressed genes. For M. truncatula, the criteria of genes 

changing more or less than a 2-fold compared to control was used with a 

significance of 95%. 
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1.4 RESULTS 

1.4.1 Physiological characterization of soybean plants under drought stress 

Soybean plants were subjected to progressive drought stress by withholding 

water/nutrients and leaf water potential (Ψw) was monitored to determine the level 

of stress. Plants were assigned to the following groups: well-watered plants were 

used as controls (C; leaf Ψw = -0.23 ± 0.04 MPa); three days after the onset of 

drought plants were classified as very mild stress (VMS; leaf Ψw = -0.54 ± 0.02 

MPa) and seven days after the onset of drought plants were under mild stress 

conditions (MS; leaf Ψw =-1.13 ± 0.1 MPa; Fig. 1.1A). To better characterize the 

plant water status, we also measured root Ψw (Fig. 1.1A) and the relative water 

content (WC; Fig. 1.1B). A significant decline in Ψw was observed both in leaves 

and roots of plants subjected to progressive drought. In leaves, MS caused an almost 

five-fold decline in Ψw compared to C plants. In roots, Ψw values declined four-

fold in VMS and six-fold in MS conditions, reaching more negative values 

compared to the aerial part. Leaf and root WC in C plants showed values around 

80-90% throughout the study period (Fig. 1.1B). Water deprivation caused a 

gradual decrease in WC in both organs, which was more accused in roots (-63% vs. 

-26%; Fig. 1.1B). This response is consistent with the observed decline in Ψw 

values in the different drought treatments and provides a physiological context to 

the progressive drought stress imposed. 

1.4.2 AsA content and in vivo AsA synthesis decline in leaves of drought-stressed 

soybean plants 

To investigate whether the levels of AsA were affected by drought, the content 

of AsA and DHA were monitored in leaf, root and stem samples using high-

performance capillary electrophoresis. Although spectrometry-based approaches 

are traditionally applied to the detection of AsA in plant extracts, capillary 

electrophoresis-based methods offer numerous advantages for a rapid and sensitive 

analysis of the levels of AsA in plants (Davey et al., 2000), and this technique has 

been successfully applied to measure AsA in various plant tissues (Davey et al., 

1996; Fotsing et al., 1997; Herrero-Martı́nez et al., 1998; Zabalza et al., 2007). 

Leaves showed a higher content of both AsA and DHA compared to stems under 

control conditions (4-fold and 2-fold higher, respectively; Fig. 1.2A-D), presenting 

also a higher reduced/total AsA ratio (0.76 vs. 0.54, respectively; Fig. 1.2E and 

1.2F). Drought stress caused a progressive reduction of the levels of AsA in both 

aerial tissues (Fig. 1.2A and -B), while the content of DHA was only significantly 

reduced in stem samples (Fig. 1.2D). This suggests that the decline in AsA levels 

during drought is not explained by a conversion to DHA. Interestingly, the content 



Results 

 31 

of AsA and DHA in soybean root samples was found under the detection limit of 

the technique (0.75 mol g-1 DW). 

 

Figure 1.1 Effects of progressive drought stress on leaf and root water potentials (A) and water 

content (B) in soybean plants under well-watered control conditions (C), very mild stress (VMS) 

and mild stress (MS). Values represent the average ± SE (n=4 biological replicates). An asterisk (*) 

denotes significant differences (p ≤ 0.05) with respect to C plants. 

 

To test whether the observed decline in the levels of AsA could be explained by 

a reduction of AsA biosynthesis, AsA synthesis was investigated under in vivo 

conditions (Fig. 1.3). Again, activity was only detected in leaves and stems, but not 

in root tissue. Since activity in leaves and stems showed a similar pattern, only leaf 

AsA synthesis is shown. AsA biosynthesis was negatively affected by drought, 

showing a progressive decline as water potential values dropped (Fig. 1.3A). 

 

 



Chapter 1 

32 

 

 

Figure 1.2. Variation on the levels of AsA, DHA and AsA/AsA+DHA on leaf (A, C, E) and stem 

(B, D, F) samples of soybean plants under control (C), very mild stress (VMS) and mild stress (MS) 

conditions. Values represent the average ± SE (n=3 biological replicates). An asterisk (*) denotes 

significant differences (p ≤ 0.05) with respect to C plants. 

 

To check whether there was a substrate limitation for GalLDH enzyme, activity 

was also measured adding the substrate of the reaction, GalL. In the presence of 

GalL, AsA biosynthesis increased in C plants around 78%, while drought stress led 

to a similar, progressive decline as the water deficit increased (Fig. 1.3B). These 

results show that the observed reduction in AsA biosynthesis under water deficit is 

not related to a substrate limitation, suggesting a possible regulation at the 

transcriptional or post-transcriptional level.  



Results 

 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. In vivo AsA biosynthesis rates in leaves of soybean plants under control (C), very mild 

(VMS) and mild (MS) stress conditions. Activity estimated as the difference in AsA content between 

at time 3 h vs. time 0 in untreated samples (A) and samples supplemented with GalL (B). Values 

represent the average ± SE (n=3 biological replicates). An asterisk (*) denotes significant differences 

(p ≤ 0.05) with respect to C plants. 

 

1.4.3 Transcriptional regulation of AsA biosynthesis under drought stress  

To gain further insights into the regulation of the biosynthesis of AsA at the 

transcriptional level, we analyzed the expression patterns of the genes involved in 

the pathway in soybean plants subjected to a progressive drought stress followed 

by a rewatering treatment (Song et al., 2016). Based on the SW pathway described 

for A. thaliana, we first searched for the putative orthologous genes in the soybean 

genome using a BLAST (Basic Local Alignment Search Tool; 

http://blast.ncbi.nlm.nih.gov) approach. Since the first steps in the pathway 

generate compounds also involved in other metabolic pathways, we focused our 

A 

B 
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analysis on the following enzymes: VTC1 (GDP-D-mannose pyrophosphorylase), 

GME (GDP-D-mannose 3´,5´-epimerase), VTC2/VTC5 (GDP-L-galactose 

phosphorylase), VTC4 (L-galactose-1-P phosphatase), GalDH (L-galactose 

dehydrogenase) and GalLDH (L-galactono-1,4-lactone dehydrogenase). Unlike the 

situation in Arabidopsis, the soybean genome contains multiple gene copies for 

each enzymatic step in the pathway (Fig. 1.4): four genes were found to code for 

VTC1 (Glyma02g41820, Glyma11g34550, Glyma14g07150 and 

Glyma18g03840), five genes for GME (Glyma01g09540, Glyma03g40720, 

Glyma10g30400, Glyma19g43410 and Glyma20g36740), the same set of four were 

retrieved when VTC2 and VTC5 were queried (Glyma02g46230, Glyma08g43200, 

Glyma14g02500 and Glyma18g10430), three for VTC4 (Glyma07g39620, 

Glyma09g01380 and Glyma15g12230), two for GalDH (Glyma07g30395 and 

Glyma08g06840) and two for GalLDH (Glyma02g27260 and Glyma10g17370). 

We also included in the analysis a known regulator of the pathway in A. thaliana, 

VTC3, for which only one candidate ortholog was found in the soybean genome, 

Glyma02g21970. Interestingly, the complete set of genes was found expressed both 

in shoot and in root tissue (Fig. 1.5).  

In terms of drought responses, the mildest stress treatment showed one of the 

strongest responses in leaf tissue, with the down-regulation of most of the genes in 

the pathway. Three out of the five GME genes and two VTC4 genes, however, were 

found up-regulated at later drought stages, a situation that was reverted upon 

rewatering of the plants. In contrast, the GalLDH genes, coding for the last enzyme 

in the pathway and supposedly one of the key regulators of the pathway, did not 

show a differential expression during drought (Fig. 1.5). In root tissue, however, 

drought stress caused a general up-regulation of the pathway, with the exception of 

the GME gene Glyma03g40720 and the GalDH gene Glyma08g06840, which were 

found significantly down-regulated. Interestingly, the VTC4 gene Glyma09g01380 

showed an induction under severe drought conditions, a similar expression pattern 

to this observed in leaf tissue (Fig. 1.5). Regarding VTC3, only in root tissue there 

was a drought-related response of this putative regulator, showing a mild down-

regulation under water deficit, which was reverted by rewatering the plants.  

To investigate whether this regulation at the transcriptional level was also found 

in other legume species, we performed a similar analysis in the pasture legume M. 

truncatula. After identification of the closest orthologs in the SW pathway, we 

queried their expression of genes in the Medicago Gene Atlas database 

[http://mtgea.noble.org; (Benedito et al., 2008)], which has been now extended with 

expression data corresponding to a progressive drought stress followed by a 

recovery treatment (Zhang et al., 2014). The list of genes in the pathway in M. 
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truncatula included two genes coding for VTC1 (Medtr3g069070 and 

Medtr5g080770), GME (Medtr1g080950 and Medtr7g115080), and VTC2/VTC5 

(Medtr3g053020 and Medtr5g093390), and single copy genes for VTC4 

(Medtr2g026060), GalDH (Medtr4g092750) and GalLDH (Medtr1g050360); (Fig. 

1.4). Similarly to the case in soybean, the full pathway was found expressed in 

shoots and roots of the model legume (Fig. 1.6). However, there was a differential 

response to water deficit compared to this observed in soybean. For instance, in 

leaves progressive drought caused a gradual up-regulation of the expression of one 

of the GME gene, Medtr7g115080, while the VTC1 gene Medtr5g080770 and the 

regulatory gene VTC3 (Medtr1g050520) were down-regulated (Fig. 1.6). 

Interestingly, in roots drought induced the up-regulation of the expression of the 

same GME gene observed in leaves, along with the VTC2 gene Medtr5g093390, 

being the two VTC1 genes strongly down-regulated compared to controls (Fig. 1.6). 

It is worth noting that the two genes putatively coding for GME show an opposite 

pattern of expression both in roots and in leaves, suggesting a functional 

specialization of the genes.  

 

 

Figure 1.4. Identification of genes in the SW pathway in G. max and in M. truncatula.  
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Figure 1.5. Expression of genes in the SW pathway in Glycine max leaves and roots. Hierarchical 

cluster representing the RNA-seq expression patterns of genes in the AsA biosynthetic pathway in 

leaf and root tissue under very mild (VMS), mild (MS), severe (SS) drought stress, and a subsequent 

recovery treatment (RW). An asterisk (*) denotes significant differences between treatments and 

control plants (p <5*10-5).  
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Figure 1.6. Expression of genes in SW pathway in M. truncatula leaves and roots. Hierarchical 

cluster representing the expression patterns of AsA biosynthetic pathway related genes in M. 

truncatula shoots and roots respectively under drought-stress at day 2 (D2), 3 (D3), 4 (D4), 7 (D7), 

10 (D10), 14 (D14) and a rewatering treatment (RW) compared to well-watered control plants. An 

asterisk (*) denotes significant differences between treatments and control plants (p <0.05). 
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1.5 DISCUSSION 

In the current work, we analyzed the effects of drought stress in the biosynthesis 

of AsA in a crop of great economic relevance like soybean. The steady-state levels 

of AsA in a certain tissue are regulated via biosynthesis, degradation, recycling and 

transport of this antioxidant. Here we have measured the effects of drought stress 

in the regulation of biosynthesis both at the activity and transcriptional level, 

analyzing not only shoots, generally considered the main site of AsA biosynthesis 

in plants, but also root tissue. Knowledge on the AsA biosynthetic capacity of this 

underground organ is currently limited, despite being a key organ in terms of 

sensing a water deficit situation and triggering a response to drought stress. Through 

imposing a gradual water deficit, accompanied with a detailed plant physiological 

characterization (Fig. 1.1), we observed a reduction of the levels of AsA both in 

leaves (Fig. 1.2A) and stems (Fig. 1.2B) of soybean plants. Such drought-induced 

decline in the levels of AsA has been also observed in the leaves of wheat (Bartoli 

et al., 1999) and several Labiatae species (Munné-Bosch and Alegre, 2003), as well 

as in symbiotic root nodules (Marino et al., 2007; Naya et al., 2007; Zabalza et al., 

2008), but not in pea leaves (Moran et al., 1994). This lower content of AsA, 

however, was not correlated to increased levels of DHA, suggesting that it may be 

related to a reduced biosynthesis or increased transport of AsA. Indeed, results on 

in vivo GalLDH activity showed a significant and progressive reduction in the rates 

of AsA biosynthesis as lower water potential values were reached (Fig. 1.3). Thus, 

although alternative routes cannot be ruled out, we found a correlation between the 

levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean 

plants.  

To check whether there was a regulation of the pathway at the transcriptional 

level, we analyzed the expression patterns of enzymes in the SW pathway, 

including putative orthologs described as regulators in other plant species, in 

soybean plants exposed to drought stress. Since the pathway has not been 

specifically described in legumes, we used the protein sequences of enzymes 

described for A. thaliana to identify the closest orthologous genes. Interestingly, we 

identified several genes encoding for each of the enzymes in the pathway in soybean 

(Fig. 1.4). This genetic redundancy can be explained by the fact that the soybean 

genome has undergone at least two polyploidy events, estimated to occur ~13 and 

~59 million years ago, which has led to 75% of the genes in the soybean genome 

being present in multiple copies (Roulin et al., 2013). It is interesting to note, 

however, how these multiple gene copies show differential patterns of expression, 

as observed for the soybean GME and VTC4 orthologs (Fig. 1.5), suggesting certain 

level of specialization at the functional level. These contrasting expression patterns 
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may be also explained by a differential localization of the gene expression at the 

tissue level, a dimension that is lost when harvesting the complete tissue.  

Interestingly, the expression of genes coding for the full AsA biosynthetic 

pathway was detected not only in leaves but also in roots of both legume species. 

This suggests that although the vast majority of works in the literature have focused 

on AsA biosynthesis in leaves, roots have the potential of synthesizing this 

antioxidant compounds as well (Hancock et al., 2003; Liso et al., 2004), as shown 

in pea roots (Zabalza et al., 2007), Lotus japonicus root nodules (Matamoros et al., 

2006), and a number of non-legume species.  

GalLDH is considered one of the regulation points of AsA biosynthesis in plants 

(Yabuta et al., 2007). However, we did not observe significant changes on the 

expression levels of GalLDH genes in either soybean or M. truncatula plants under 

drought stress (Fig. 1.5 and Fig. 1.6, respectively). If GalLDH is not regulated at 

the transcriptional level under water deficit conditions, it could be hypothesized that 

the observed decline in GalLDH activity may be due to post-translational regulatory 

mechanisms. This is further supported by the fact that in silico prediction of 

phosphorylation sites [http://musite.net; (Gao et al., 2010)] identify two conserved 

Ser residues (Ser472 and 476, and Ser469 and 473 in Glyma.02G166300 and 

Glyma.10G104100, respectively; >99% specificity) as potential targets for 

phosphorylation in the predicted soybean proteins. Furthermore, several potential 

ubiquitylation sites are also found [support vector machine probability >0.83; 

http://bioinfo.ncu.edu.cn/ubiprober.aspx; (Chen et al., 2013)].  

In contrast, drought induced the down-regulation of VTC1 genes both in soybean 

and M. truncatula, while most VTC2/VTC5 and VTC4 genes showed an induction 

(Fig. 1.5 and Fig. 1.6). A. thaliana mutants in VTC1, which is encoded by a single 

gene, are deficient in AsA (Conklin et al., 1997; Conklin et al., 1999; Veljovic-

Jovanovic et al., 2001) and the levels of expression of this gene have been correlated 

with the content of AsA in several other plant species (Badejo et al., 2007; Badejo 

et al., 2008; Wang et al., 2013). This correlation is also observed in the current 

work, which suggests that VTC1 may also play a role in the regulation of AsA 

biosynthesis in legumes. On the other hand, it has been hypothesized that GME in 

association with VTC2/VTC5 constitute a control point for the regulation of the 

AsA pathway in plants (Dowdle et al., 2007; Wolucka and Van Montagu, 2007; 

Linster and Clarke, 2008; Bulley et al., 2009). In legumes, the analysis of drought 

responses in the gene GME was complex, with several genes putatively coding for 

this enzyme in the pathway and each gene showing a differential response under 

drought conditions. For instance, in M. truncatula there was a clear induction of the 

GME gene Medtr7g115080 both in leaves and roots, while Medtr1g080950 was 
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strongly down-regulated in roots (Fig. 1.6). Further points of regulation in the 

pathway include AMR1 (Zhang et al., 2009), for which there was not a good match 

in either the soybean or the M. truncatula genome, and VTC3 (Conklin et al., 2013), 

which was found down-regulated only at early drought stages in soybean roots and 

M. truncatula leaves (Fig. 1.5 and Fig. 1.6).  

In summary, the transcriptional regulation of the SW pathway in legumes under 

drought stress is complex, with multiple gene copies for each step in the pathway 

and a possible functional specialization of the paralogs. This complexity limits the 

applicability of the transfer of knowledge from other species and highlights the need 

of further research in legume species. Future lines may provide answers to questions 

such as the role of post-transcriptional regulatory mechanisms using targeted 

proteomic approaches (Wienkoop et al., 2008) or the tissue/functional 

specialization of the various paralog genes in the pathway, including their role in 

AsA biosynthesis and, ultimately, abiotic stress tolerance. 
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1.6 CONCLUSIONS 

This study concludes that a progressive drought caused a decline in both in vivo 

AsA biosynthesis and AsA content in leaves of soybean plants. Furthermore, a 

complete gene set involved in the Smirnoff-Wheeler pathway is expressed in roots 

and leaves of both legume species, G. max and M. truncatula. Finally, drought stress 

responses highlighted multiple control points in the legume species analyzed; genes 

encoding GDP-D-mannose pyrophosphorylase (VTC1) emerge as strong 

candidates for the regulation of AsA biosynthesis in drought-stressed legume 

plants, while GDP-D-mannose 3´, 5´-epimerase (GME) genes appear to have 

undergone functional specialization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

» CHAPTER 2  
 

Medicago truncatula plants priotitize water for leaves and carbon and 

nitrogen for roots to face drought 
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2.1 INTRODUCTION 

Grain and forage legumes are grown on around 15% of the arable surface of the 

Earth, being the second most important crop after cereals attending to world 

primary crop production (Graham and Vance, 2003). The economical relevance of 

legume crops is related to both their importance as a protein source for animal feed 

and human nutrition and their use as raw material in the industry (Edgerton et al., 

2008). Furthermore, the ability of legume plants to carry out nitrogen fixation in 

symbiosis with soil rhizobium bacteria provides an environmental-friendly source 

of reduced nitrogen in the biosphere, being an essential element in sustainable 

agriculture worldwide. Despite the numerous advantages of the cultivation of 

legumes, their yield is limited by the abiotic stress conditions, particularly drought.  

Water stress is identified as a major environmental factor that constrains crop 

productivity (Araus et al., 2002). According to the different scenarios predicted by 

the Intergovernmental Panel on Climate Change (Alley, 2007), it is expected that 

there will be a reduction in precipitation and rising evapotranspiration rates. The 

perceived need to gain further understanding of photosynthesis, so as to alleviate 

practical problems such as crop yield under drought conditions, has increased 

interest in ‘water stress physiology’ (Lawlor and Tezara, 2009). The photosynthetic 

rates of plants exposed to drought decrease due to stomatal closure and non-

stomatal processes (Lawlor and Cornic, 2002; Aranjuelo et al., 2007; Chaves et al., 

2009; Lawlor and Tezara, 2009). While stomatal closure has been identified as a 

target factor conditioning photosynthetic performance under moderate water-

limiting conditions (Chaves et al., 2002; Chaves et al., 2003), when water stress is 

more severe, metabolic impairment takes place (Medrano et al., 2002) associated 

with photooxidative damage (Lawlor and Tezara, 2009).  

Most research efforts focused on the analyses of plant performance under 

drought stress have been traditionally focused on the aerial part of the plant, 

whereas, traditionally, little attention has been given to root performance. In 

particular, in the area of legumes, the field remains largely unexplored. Studies 

integrating the response of the above- and under-ground tissues under drought are 

scarce. In this regard, a further understanding of root responsiveness to water stress 

is essentially matter of great concern because roots play a target role in nutrient and 

water acquisition and transport. Increased nutrient and water uptake capacity may 

be achieved through better nitrogen and water transporters, more effective 

regulation of the transport system or better storage and assimilation of nutrients. 

Increasing the uptake capacity of roots is not simple because little is known about  



Chapter 2 

46 

 

its regulation. However, during the last decade, several root phenotyping studies 

highlight the relevance of root functioning in crop responsiveness to stressful 

growth conditions (Paez-Garcia et al., 2015). Roots are the first organ sensing the 

water deficit and signaling the variation of soil water status. However, few studies 

have specifically focused on legumes responses to water shortage at the root scale. 

For instance, Beebe et al. (2014) have revised some useful root traits for drought 

resistance in common bean while Zhang et al. (2014) have compared the 

transcriptomic and metabolomic responses of barrel medic shoots and roots under 

low water availability conditions. Recently, the strategies used to cope with 

environmental challenges in different legumes have been examined (Araújo et al., 

2015), and the importance of the root system for the improvement of productivity 

has been studied in chickpea (Kashiwagi et al., 2015). In terms of quantitative loci 

traits (QTL), Quero et al. (2014) have identified a QTL for root growth under ionic–

osmotic stress along with other related to shoot growth or shoot/root ratio in Lotus.  

 

2.2 OBJECTIVE 

This study aims to determine the response of M. truncatula plants to two 

progressive drought levels attending to the leaf-root partitioning target carbon and 

nitrogen metabolites involved in plant growth.  
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2.3 MATERIAL AND METHODS 

2.3.1 Plant material, growth conditions and drought characterization 

M. truncatula Gaertn cv. Jemalong A17 seeds were scarified and then sterilized 

using sulphuric acid 96% for 7 minutes. Then the acid was removed and seeds were 

washed using distilled water. Subsequently, 3.5% (v/v) NaClO was added for 5 

minutes to sterilize the seeds. After washing, seeds were placed on 0.7% (w/v) agar 

plates and maintained one day at 4ºC for uniform germination. Plates were then 

incubated at 25ºC for two days to enable seed germination. After germinate, seeds 

were sown in 1-L pots containing a mixture of perlite:vermiculite (2:5, v/v) under 

controlled environmental conditions (14 h photoperiod; 400 µmol m-2 s-1 light 

intensity; 22ºC/16ºC day/night temperature; 60 to 70% relative humidity). Plants 

were watered to field capacity 3 times a week with Evans nutrient solution 

containing (values in mg L-1): MgSO4·7H2O (493), K2SO4 (279), K2HPO4 (145), 

CaCl2 (56), KH2PO4 (23), EDTA-Fe (17), H3BO3 (1.43), CaSO4·2H2O (1.03), 

MnSO4·7H2O (0.77), ZnSO4·7H2O (0.22), CoCl2·6H2O (0.12), CuSO4·5H2O 

(0.08), NaMoO4·2H2O (0.05); (Evans, 1981). This nutrient solution was 

supplemented with 5 mM NH4NO3.  

Eight-week-old plants were randomly separated into two sets containing 6 

biological replicates each. Controls (C) were supplied daily with a nutrient solution 

to field capacity and drought treatment was achieved by withholding 

water/nutrients. Water-stressed plants and their corresponding controls were 

harvested during the onset of drought in a 6-day-time period. During this period, 

leaf water potential values were measured in the first fully expanded leaf 2 h after 

the beginning of the photoperiod using a pressure chamber (Soil Moisture 

Equipment, Santa Barbara, CA, USA) as earlier described (Scholander et al., 1966) 

to classify plants according to their water status; these values declined gradually 

from control values, reaching progressively a stage of moderate drought (MD; Ψw 

-1.75 MPa) and severe drought (SD; Ψw -2.93 MPa). After that, leaf and root water 

potentials were measured in C52 sample chambers coupled to a Wescor HR-33T 

Dew Point Microvoltmeter (Wescor, Logan, UT, USA). Tissue aliquots (50 mg) 

were confined in a C52 chamber for 1h until temperature and vapour equilibration 

was reached. Leaf and root samples were harvested, immediately frozen in liquid 

nitrogen and stored at -80ºC for analytical determinations. Leaf and root water 

content (WC) was calculated as described in the section 1.3.1 of the Chapter 1, 

where FW corresponds to the fresh weight and DW, the dry weight of tissue 

samples after at least 48 h at 80ºC. 
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2.3.2 Gas exchange measurements 

Transpiration rate was gravimetrically determined on a daily basis during the 

experimental period. Gas exchange measurements were carried out with a Li-COR 

6400 portable gas exchange system (LI-COR, Lincoln, Nebraska, USA) in fully 

expanded leaves. Determinations were conducted between 2 h and 6 h after the 

onset of the photoperiod. The net photosynthetic rates were measured at 1000 µmol 

m-2 s-1 Photosynthetic Photon Flux Density (PPFD) with 400 μmol s−1air flow rate, 

25oC and 60% relative humidity (Jauregui et al., 2016). The rate of electron 

transport through the photosystem II (ETR), electron flux for photosynthetic carbon 

reduction (ETRc) and the electron flux for photorespiratory carbon oxidation 

(ETRo) were measured as described by Epron et al. (1995). 

2.3.3 Sucrose, starch and organic acids measurements 

Frozen aliquots of root and leaf tissue (200 mg FW) were homogenized with 1.5 

mL 80% (v/v) ethanol, being samples ultrasonicated for 30 minutes at 30ºC in an 

ultrasonic bath and after centrifuged at 7,500 g for 5 min at 4ºC (Fernández-

Fernández et al., 2010). The same protocol was repeated twice and supernatants of 

the same sample were collected together. All the collected supernatant from 

ethanolic extracts was dried in a Turbovap® LV Evaporator (Zymark, Hopkinton, 

MA, USA) at 40ºC and 1.2 bar. When all the ethanol was evaporated, the dried 

sample was suspended in 1 mL of deionized water, mixed and centrifuged at 6,000 

g for 10 min at 4ºC. After being filtered, the supernatant was collected in a new tube 

and stored at -20ºC until its utilization. 

Ethanol non-soluble residues were extracted for starch content analysis as 

previously described (Gonzalez et al., 1998). The pellet obtained after the extraction 

of ethanol soluble sugars was dried at 70ºC for 24 h and after, it was suspended in 

1 mL of deionized water. After the samples were boiled at 100ºC for 1 h in a water 

bath, 250 μL of 0.082% (w/v) amyloglucosidase dissolved in 8.55 mM acetate (pH 

4.5) were added. This reaction was incubated at 50ºC overnight in darkness 

continuously shaking. Then, the mixture was centrifuged at 7,500 g for 15 min at 

4ºC and the supernatant was collected and stored at -20ºC until it was used. Sucrose 

and starch-derived glucose were analyzed by high-performance capillary 

electrophoresis in a P/ACETM MDQ (Beckman Coulter Inc., Brea, CA, USA) 

according to Warren and Adams (2000). The background buffer consisted of 10 

mM benzoate (pH 12.0) and 0.5 mM myristyltrimethylammonium bromide 

(MTAB). The applied potential was -15 kV, and the capillary tubing was 50 μm 

internal diameter and 31.4/38.4 cm long. The indirect UV detection wavelength was 

set at 225 nm. 
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The organic acid content, in this case malate and -ketoglutarate, was 

determined according to the method of Wilson and Harris (1966). Frozen shoots 

and roots (0.1 g FW) were homogenized in a mortar with 1.5 mL 5% (w/v) 

trichloroacetic acid (TCA) and then centrifuged at 1750 g at 4ºC for 10 minutes. 

Supernatants were collected and washed thrice with ether-saturated water. The 

aqueous phase was bubbled for two minutes with helium and later filtered through 

0.45 µm PVDF syringe membrane filters and stored at -20ºC until their use (Gálvez 

et al., 2005). Organic acids levels were determined by ion chromatography in a DX-

500 system (Dionex Corporation, Sunnyvale, CS, USA) through gradient 

separation (from 0.2 mM NaOH to 35 mM NaOH and from 10% of methanol to 

20% of methanol, in 27 min, at a flux of 2 mL min−1) with a Dionex IonPack 

AG11+AS11 columns. 

2.3.4 Protein and amino acid determination  

Frozen leaves and roots (200 mg FW) were homogenized in a mortar and pestle 

with 3 volumes of extraction buffer (50 mM MOPS, 5 mM MgCl2, 20 mM KCl, 1 

mM Na2EDTA, pH 7) and 1.5 mg mL-1 of DTT and 0.7 µL mL-1 of β-

mercaptoethanol were freshly added. Homogenates were centrifuged at 20,500 g 

and 4ºC for 20 min. Protein was quantified using a Bradford-based dye-binding 

assay (Bio-Rad, Hercules, CA, USA) employing bovine serum albumin as standard 

(Bradford, 1976). Supernatants were then collected and diluted with deionized 

water and mixed with 200 μL BioRad Protein Assay Dye Reagent (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) to quantify soluble protein. The samples 

were incubated at room temperature for 5 min and the absorbance was measured at 

595 nm in a SinergyTM HT Multi-Detection Microplate Reader (BioTek 

Instruments Inc., Winooski, VT, USA).  

For amino acid determination, frozen leaves and roots (200 mg FW) were ground 

to powder under liquid N2 and subsequently homogenized in a mortar and pestle 

with 3 mL of 1 M HCl. Homogenates were transferred to glass tubes and incubated 

on ice for 10 min. Subsequently, extracts were centrifuged at 20,000 g and 4ºC for 

10 min. Supernatants were neutralized to 7.0 - 8.0 pH with NaOH. For the free 

amino acids determination, known concentrations of internal standards norvaline 

and homoglutamic acid were added to the mixture. 

Samples were then derivatized with 1 mM fluorescein isothiocyanate (FITC) 

dissolved in acetone and the homogenates were 5-fold diluted in 20 mM borate 

buffer (pH 10.0) and incubated at room temperature in the dark for 15 h. The content 

of free amino acids was determined using a Beckman Coulter capillary 



Chapter 2 

50 

 

electrophoresis PA-800 (Beckman Coulter Inc., USA) coupled to laser-induced 

fluorescence detection (argon laser at 488 nm), as described in Arlt et al. (2001) and 

Takizawa and Nakamura (1998) with minor modifications. A fused-silica capillary 

with 43/53.2 cm long and 50 µm internal diameter (Beckman Coulter Inc., USA) 

was employed. For amino acids separation, 45 mM α-cyclodextrin in 80 mM borax 

buffer (pH 9.2) was used. Analyses were performed at 20ºC and at a voltage of 20 

kV. Total amino acid content is presented as the summation of single amino acids 

for each sample and expressed on a DW basis.  

2.3.5 Statistical analysis 

For all the variables determined in this study, we calculated the average as a 

central statistic and standard error as statistical of dispersion. Significant differences 

among control and treatments were determined with Student’s t-test (p ≤ 0.05).  
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2.4 RESULTS 

2.4.1 Physiological characterization of M. truncatula plants under drought stress 

Water content was determined in leaves and roots of M. truncatula plants 

exposed to drought stress (Fig. 2.1A). The water content of aerial parts was 

significantly affected only under severe drought (SD) decreasing 8% compared to 

control. However, root water content decreased around 33% and 39% in MD and 

SD, respectively. Besides determining leaf Ψw, plant water status was monitored by 

measuring water potential of leaf and root sections using a dew-point thermocouple 

psychrometer (Fig. 2.1B). Ψw showed a gradual decrease in MD and SD, in both 

leaves and roots, compared to C plants (Fig. 2.1B). Biomass of the whole plant was 

apparently not affected by the 6-day drought stress treatment applied in this study 

(Fig. 2.1C). However, photoassimilate partitioning between leaves and roots was 

significantly altered by drought, leading to a progressive and significant reduction 

of shoot biomass while root biomass exhibited an upward trend, only significant at 

moderate drought stress level (Fig. 2.1C). Consequently, the shoot:root ratio 

showed marked differences between control and drought treatments, being reduced 

to one-half when drought was applied (Fig. 2.1C).  

2.4.2 Gas exchange parameters affected by low water availability conditions 

Transpiration rates on a plant basis were reduced 50-55% under drought 

conditions compared to control values (Table 2.1). This decline was mainly due to 

stomatal closure as indicated by the stomatal conductance, which declined 

progressively to values around 26 and 6% of that exhibited by well-watered plants 

(Table 2.1). Photosynthesis was adversely affected in plants subjected to drought, 

decreasing progressively when increasing drought severity. Thus, photosynthesis 

of MD and SD plants was reduced a 46.29% and 79.60%, respectively (Table 2.1). 

This gradual decrease correlated with the reduction of the stomatal conductance and 

transpiration values. This suggests that the MD treatment applied in the current 

study represents an intermediate drought stress level at which parameters such as 

CO2 level of the chloroplast, the flow of electrons crossing the photosystem II 

(ETR) or the values of maximum carboxylation of rubisco are still not affected 

(Table 2.1). Conversely, ETR was significantly reduced in SD treatment (Table 

2.1). Although the ETR rate of oxygenation (ETRo) was unaffected, a significant 

decrease of electron flux for photosynthetic carbon reduction (ETRc) was observed 

supporting the slowdown of the Calvin cycle.  
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Figure 2.1. Effect of drought on leaf and root water content (A), water potential (B) and biomass 

(C) of M. truncatula plants under well-watered (C), Moderate Drought (MD) and Severe Drought 

(SD) conditions. Values represent mean ± SE (n=4 biological replicates). An asterisk (*) denotes 

significant differences (p ≤ 0.05) with respect to C plants.  

 

2.4.3 Metabolic changes in M. truncatula plants induced by drought stress 

Leaf and root sucrose concentrations were not significantly affected by MD 

treatment but they showed a significant increase in both organs under SD stress, 

occurring to a higher extent in roots (Fig. 2.2A). Starch content under well-watered 

conditions was 19-fold higher in leaves (478 µmol g-1 DW) than in roots (25 µmol 

g-1 DW). Starch reserves values decreased 90% compared to control plants by the 

C MD SD 
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imposition of drought (Fig. 2.2B). Under control conditions, the level of malate was 

4 times higher in leaves than in roots (Fig. 2.2C). Drought stress induced the 

accumulation of this organic acid in both organs, being this effect only significant 

in SD roots (Fig. 2.2C). α-ketoglutarate content was significantly reduced in roots 

of MD and SD treatments, being unaffected in leaves which exhibited 5-fold higher 

values than roots (Fig. 2.2D).  

 

Table 2.1. Gas exchange. Transpiration and photosynthesis rates, stomatal conductance, 

chloroplastic CO2, ETR, ETRc, ETRo and maximum rate of carboxylation values of Control (C), 

Moderate Drought (MD) and Severe Drought (SD) plants. Values represent mean ± SE (n=3). For 

each parameter, an asterisk (*) denotes significant differences (p ≤ 0.05) with respect to C plants 

and a hash (#) significant differences between MD and SD treatments. 

 

 

2.4.4 Amino acid metabolism changes in M. truncatula plants under drought stress 

Regarding nitrogen metabolism, leaf protein content was progressively reduced 

at the different drought stress levels although this decrease was only significant in 

SD plants (Fig. 2.3A). Conversely, this parameter was maintained constant in the 

root system regardless of the water regime (Fig. 2.3A). The total amino acid content 

tended to increase significantly in leaves and roots under water stress, exhibiting a 

concomitant accumulation following the increase in drought severity in both organs 

(Fig. 2.3B).  

Figure 2.4 presents the response of the 20 proteogenic amino acids and the non-

protein γ-aminobutyric acid (GABA). Cysteine (Cys) showed a significant decline 

in MD leaves, reducing its content around 60% compared to controls, relieving this 

response under SD  conditions. Meanwhile, Cys accumulated  not significantly in  

roots. At the same time, glycine (Gly) co-eluting with serine (Ser) in the amino acid 

analysis increased around 25% in drought-stressed leaves being invariable in roots. 
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Phenylalanine (Phe) and tryptophan (Trp) showed a similar pattern, accumulating 

significantly in leaves of drought-stressed plants, increasing progressively from 4 

to 10-20 fold with the severity of the stress. Both amino acids were significantly 

accumulated in roots, although the content in drought-stressed plants only 

duplicated the one of control plants. Tyrosine (Tyr) was only significantly 

accumulated in drought-stressed roots. Alanine (Ala) was slightly affected under 

SD, decreasing it content in leaves when significantly increasing in roots. The 

branched-chain amino acids, valine (Val), leucine (Leu) and isoleucine (Ile), 

together with methionine (Met), lysine (Lys), threonine (Thr), arginine (Arg) and 

histidine (His), were all notably accumulated in leaves and roots of drought-stressed 

plants. Proline (Pro), a known drought marker, showed the largest increase in 

drought treatments. 

 

 

Figure 2.2. Effect of drought on starch (A), sucrose (B) and organic acids (C, D) content of M. 

truncatula plants under well-watered (C), Moderate Drought (MD) and Severe Drought (SD) 

conditions. Values represent mean ± SE (n=3 biological replicates). An asterisk (*) denotes 

significant differences (p ≤ 0.05) with respect to C plants.  
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Figure 2.3. Effect of drought on protein (A) and total amino acids (B) content of M.truncatula plants 

under well-watered (C), Moderate Drought (MD) and Severe Drought (SD) conditions. Values 

represent mean ± SE (n=3 biological replicates). An asterisk (*) denotes significant differences (p ≤ 

0.05) with respect to C plants.  

 

Interestingly, Pro accumulation was more pronounced in leaves as water content 

was more dramatically affected in roots (Fig. 2.1A). Conversely, the levels of 

GABA were unchanged under drought stress conditions in both organs. Glutamic 

(Glu) and aspartic acid (Asp) concentrations were not significantly affected by 

drought either in leaves or in roots. However, glutamine (Gln), the first form of 

organic nitrogen synthesized from ammonium and a-ketoglutarate, was 

significantly accumulated in leaves of MD and SD plants. Conversely, in roots, Gln 

content was significantly reduced under MD recovering control values in SD plants. 

Asparagine (Asn), the most abundant amino acid, synthesized from oxaloacetate 

and employing Gln as ammonium donor, showed an upward trend in leaves and 

roots, although differences were only significant in roots of SD plants, which 

doubled the Asn content of control plants. Summarizing, most of the amino acid  

A 

B 

C MD SD 
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Figure 2.4. Effect of drought on individual amino acids content of M. truncatula plants under well-

watered (C), Moderate Drought (MD) and Severe Drought (SD) conditions. Values in µmol g-1 DW 

represent mean ± SE (n=3 biological replicates). An asterisk (*) denotes significant differences (p ≤ 

0.05) with respect to C plants.  

LEAF      ROOT LEAF        ROOT

C MD SD 
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Figure 2.4 (continued). Effect of drought on individual amino acids content of M. truncatula plants 

under well-watered (C), Moderate Drought (MD) and Severe Drought (SD) conditions. Values in 

µmol g-1 DW represent mean ± SE (n=3 biological replicates). An asterisk (*) denotes significant 

differences (p ≤ 0.05) with respect to C plants.  

C MD SD 
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analyzed accumulated in leaves and roots of drought-stressed M. truncatula plants, 

only Cys declined significantly in leaves together with Gln in roots under MD 

conditions, recovering control values under SD conditions in both cases.  

 

Figure 2.5 presents the change of the leaf to root ratio for each individual carbon 

and nitrogen compound analyzed occurring in both drought treatments compared to 

control plants. This change is expressed on a logarithmic basis to have an easy view 

of those compounds accumulating preferentially in leaves or in roots. The positive 

values [Log2 (Drought/Control) >1] indicate a preferential accumulation in leaves 

explaining that leaf to root ratio was higher in drought than in control plants. On 

the contrary, the negative values [Log2 (Drought/Control) <1] indicate a preferential 

accumulation in the root and, therefore, the leaf to root ratio of drought was lower 

than that of control. By analyzing this parameter, it can be observed that the main 

carbon compounds sucrose, starch and malate accumulated preferentially in the root 

of drought-stressed plants, exhibiting the aerial part a carbon deficit. Regarding the 

amino acids, the more abundant amino acid, Asn, accumulated to a similar extent 

in leaves and roots and therefore, its distribution between tissues did not vary in 

drought-stressed plants (Fig. 2.4). Similarly, Glu, which is mainly located in leaves, 

or Pro, whose concentration increased dramatically in both leaves and root, strictly 

maintained its distribution among aerial and underground organ under drought 

stress conditions (Fig. 2.4). However, the distribution pattern of some amino acid 

changed significantly under drought conditions: Cys and Tyr were preferentially 

accumulated in roots whilst Phe, Trp, Arg, His and Gln were accumulated in leaves 

(Fig. 2.5).  
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Figure 2.5. Schematic representation of significantly altered (p ≤ 0.05) leaf to root ratios expressed 

on a logarithmic basis for different carbon and nitrogen compounds under both drought treatments 

(MD and SD) compared to control (C). Values represent mean ± SE (n=3 biological replicates). An 

asterisk (*) denotes significant differences (p ≤ 0.05) with respect to C plants.  
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2.5 DISCUSSION 

2.5.1 Plant growth: modifications in shoot/root ratio as a strategy to cope with 

water stress 

Water availability has been identified as a strong inhibitor of plant growth 

(Aguirreolea and Sánchez-Díaz, 1989; Antolin and Sanchez-Diaz, 1992). Although 

at the plant level no significant differences were detected in terms of plant biomass, 

our study showed that drought stress had a significant impact on biomass 

production. Plants subjected to drought had a smaller shoot/root ratio, resulting 

mainly from a larger root biomass. Several authors have hypothesized that this 

response may be an adaptation to the Mediterranean dry summer season (Hilbert 

and Canadell, 1995; Lloret et al., 1999). Our results indicate that roots were able to 

maintain growth activity while shoot reduced its growth, leading to a reduction of 

the shoot/root ratio (Fig. 2.1C). This differential response seems to be a strategy to 

prevent excessive dehydration and it has been shown to be regulated by hormones 

(Sharp and Davies, 1989; Sharp, 2002; Wilkinson and Davies, 2010). The root to 

shoot Ψw gradient involved in regulation of water movement at the plant level was 

observed under control conditions but it seem not to be operative under drought 

stress. Nevertheless shoot WC was maintained much higher than that of roots (Fig. 

2.1A). These results highlight the plant prioritization of shoot water content in 

detriment of the root under drought stress conditions. 

2.5.2 Photosynthetic limitation is counteracted by starch degradation under 

drought stress 

Root growth depends on an optimal supply of photoassimilates and, therefore, 

on an adequate rate of photosynthesis. Physiological characterization parameters 

revealed that diminishment of photosynthetic rates was strongly mediated by 

limitations in stomatal opening and the severe depletion in CO2 diffusion through 

the mesophyll, especially in severely droughted plants. Similarly, data of the 

physiological characterization suggest that the Rubisco carboxylation rate (Vcmax) 

was also involved in the photosynthetic down-regulation of drought-stressed plants 

(Nunes et al., 2008). Interestingly, our study suggests the fact that despite the strong 

photosynthetic inhibition, sucrose content was not limiting in plants subjected to 

severe water stress. Moreover, leaves and roots have similar sucrose content in 

control conditions showing an accumulative trend under drought (Fig. 2.2A). Also, 

malate, the most abundant organic acid, accumulated up to 8-fold in roots of severe 

droughted plants compared to control (Fig. 2.2C), pointing out the importance of 

carbon compounds in the underground tissue to face drought. In agreement with 

previous findings, our study revealed that, under drought stress, a rapid starch 
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degradation occurred in both organs (Fig. 2.2B). Starch has been defined as a major 

integrator metabolite for plant growth (Sulpice et al., 2009) and its degradation in 

response to drought has been previously observed (Lee et al., 2008). Cuellar-Ortiz 

et al., (2008) showed that sucrose translocation occurs under drought stress from 

leaves to other parts of common bean plants, even when this does not occur under 

control conditions. In this regard, Durand et al. (2016) observed an enhance in C 

allocation to roots of Arabidopsis drought-stressed plants attending root C demand 

to maintain an efficient root system. An up-regulation of sucrose transporters 

involved in phloem loading at leaves was observed at the time the transcript levels 

of AtSUC2 and AtSWEET11 to AtSWEET15 increased in stressed roots. 

Kryvoruchko et al. (2016) also showed that MtSWEET13, a sugar efflux transporter 

up-regulated in leaves and roots in drought conditions, and those sucrose 

transporters genes described by Durand et al., 2016, cluster together in the same 

clade suggesting its role in drought stress responses. In this regard, Gargallo-

Garriga et al. (2014) provided clear evidence of the high capacity of plants to vary 

the allocation of nutrients and metabolites. These authors observed in two common 

grass species that primary metabolites concentrations are higher in leaves than in 

roots under control conditions but a shift of these towards the roots in detriment of 

the leaves was observed under drought conditions. 

In conclusion, leaf starch metabolization supplied carbon skeletons avoiding any 

carbon limitation in leaves and roots when photosynthetic activity dropped in water-

stressed plants. Previous studies have shown that under drought growth is 

constrained by tissue level processes and active stress signaling rather than by 

provision of photoassimilates (Muller et al., 2011; Körner, 2015). 

2.5.3 Above- and below-ground tissues activate different stress signaling and 

tolerance responses linked to amino acid metabolism 

As mentioned above, the accumulation of stress metabolites such as specific 

amino acids has been described in leaves and roots of plants exposed to water stress 

(Aranjuelo et al. 2011; Gil-Quintana et al., 2013). Under unfavorable conditions, 

the mobilization of N from leaf proteins has been described to contribute by 

increasing the availability of amino acids (Feller et al., 2008). In M. truncatula, 

leaves seem to be the main soluble protein reservoir and this was significantly 

reduced in SD plants (Fig. 2.3A). This could be related to the decline of Rubisco 

protein concentration in accordance with that observed in Arabidopsis plants grown 

under elevated CO2 conditions (Jauregui et al., 2016) linked to the decrease of 

photosynthesis (Table 2.1). Proteolytic activities have been described to be 

enhanced by drought stress (Mosolov and Valueva, 2011). The main biological 
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function related to proteases has been observed to be focused on the degradation of 

nonfunctional proteins releasing free amino acids (van der Hoorn, 2008). Kohli et 

al. (2012) suggested a role of proteases on the nitrogen status by mobilizing internal 

and external nitrogen sources under drought stress conditions, although a 

correlation has not been observed in other experimental systems (Gil-Quintana et 

al., 2013) suggesting that this may not be the main mechanism behind the amino 

acid accumulation. Recently, Lyon et al. (2016) examined in deep the proteome 

response to severe drought in shoot and roots of M. truncatula, concluding that 

functional groups related to protein turnover (synthesis and degradation) play a key 

role in drought stress response with a different pattern in shoot and root. This study 

reveals the complexity of drought response regarding protein metabolism, 

highlighting the differential processes associated to drought stress responses versus 

recovery in shoots and roots.  

Considering the different roles of the individual amino acids (Häusler et al., 

2014), special attention should be paid to their pool size, which depends not only 

on a particular amino acid biosynthesis and degradation but also on synthesis, and 

breakdown of cell proteins. In the present study we analyzed the drought induced 

changes in the leaf:root ratio of different amino acids as a tool to identify organ 

specific patterns. For the most abundant amino acids, the distribution did not vary 

in response to drought stress and therefore, the leaf:root ratio of the most abundant 

amino acids such as Asn and Pro were not altered by drought stress. We first discuss 

the amino acids preferentially accumulated in the aerial part in detriment of the root 

part (Fig. 2.5). The modulation of Arg biosynthesis has been shown to determine 

the water stress tolerance in Arabidopsis throughout an effect on reactive oxygen 

species production (Shi et al., 2013). In the present study the preferential 

accumulation of Arg in the leaves may respond to the large ETR/An ratio detected 

in plants exposed to drought conditions (Table 2.1) which imply an increase in the 

proton gradient, with the consequent susceptibility to generate ROS. Besides, Arg 

is the natural precursor of polyamines in plants, compounds playing a key role on 

abiotic stress responses (reviewed by (Liu et al., 2015a)). Although polyamines are 

widely distributed in plants, its biosynthesis has been described as organ specific 

and thus putrescine is mostly synthetized in roots whilst spermine and spermidine 

biosynthesis occurs in the shoot in Nicotiana tabacum (Moschou et al., 2008). 

On the other hand, Phe and Trp, are closely interlinked with the shikimate 

pathway and participate in the biosynthesis of innumerable aromatic secondary 

metabolites with important roles in plant defense against abiotic stresses (Maeda 

and Dudareva, 2012). Corea et al. (2012) described that carbon flux throughout 

shikimate pathway increased from 20 to 50% under stress conditions. In contrast, 
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shikimate pathway seems to be preferentially deviated towards Tyr in the roots 

being this amino acid preferentially accumulated in this tissue when exposed to 

drought (Fig. 2.4 and 2.5). These three amino acids serve as precursors of a wide 

variety of products that play crucial roles in abiotic stress responses and thus, Phe 

is the ̀ precursor of numerous phenolic compounds as lignin and Trp is the precursor 

of alkaloids as well as the plant hormone auxin whereas Tyr is mainly derive to 

quinones (Kutchan, 1995).  

His biosynthesis has been reviewed by Stepansky and Leustek (2006) remarking 

the interaction with other metabolic pathways as purine biosynthesis and its role as 

chelators and transporters of metal ions. Although an important His accumulation 

has been observed in different plants systems (Larrainzar et al., 2009) as it is 

observed in the present study, its metabolism has not yet been investigated at all in 

plants (Hildebrandt et al., 2015). 

Summarizing, the differential partitioning of Arg and aromatic amino acids 

between shoot and root support the activation of specific cell protection pathways 

in above- and below-ground organs in response to drought.  

2.5.4 Leaf:root partitioning of glutamine and cysteine is modulated under water 

stress 

Gln is the primary product of nitrogen assimilation from inorganic nitrogen 

sources and a central metabolite in nitrogen metabolism in plants. This is the major 

amino donor for synthesis of other amino acids and nitrogen compounds and play 

a key role in protein and nucleotide biosynthesis (Forde and Lea, 2007). In control 

plants, the concentration of Gln in leaf and root was very similar around 1.6 µmol 

g-1 DW, whilst in drought-stressed plants it accumulated significantly in leaves, 

triplicating its concentration compared to roots (Fig. 2.4). Besides, Gln is the unique 

amino acid decreasing transiently its concentration in roots exposed to moderate 

drought suggesting a decline in primary nitrogen assimilation (Fig. 2.4). Despite its 

major role on protein synthesis, no correlation with the soluble protein 

concentration is observed, presenting the root tissue a reduced concentration of 

soluble protein compared to leaf (Fig. 2.3) when both organs exhibited the same 

Gln content (Fig. 2.4). This lack of correlation is also observed in response to 

drought stress when protein content decreased significantly despite the Gln 

accumulation (Fig. 2.4). Most studies on glutamine in plants have focused on its 

role as the primary amino acid derived from the assimilation of inorganic nitrogen 

(Miller et al., 2007), although the bulk content of this amino acid seem to be more 

related to the drought effect on differential protein turnover regulation of shoot and 
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root under drought (Lyon et al., 2016). Besides, increasing evidence about Gln role 

on sensing and signaling pathways in plants is coming out (Chellamuthu et al., 

2014). A large battery of transcription factors, kinases and stress related genes are 

shown to be induced by Gln in rice roots (Kan et al., 2015) suggesting a signaling 

role for this amino acid in plants as it has been widely shown in human metabolism 

(Curi et al., 2007). The differential pattern of Gln accumulation in leaf and root 

suggest this amino acid play a role in drought response at the whole plant, although 

further research need to be carried out.  

Cys was preferentially located in the root of drought-stressed plants (Fig. 2.5). 

Leaves showed a decrease of Cys concentration in MD conditions whilst a slight 

increase was observed in roots (Fig. 2.4), suggesting a limitation of sulfur transport 

from root to leaves. In accordance with our data, Larrainzar et al. (2014) showed 

that sulfate accumulates in roots of drought -stressed M. truncatula plants. Lee et 

al. (2016) found that PEG induced drought limits the translocation of absorbed 

sulfate from roots to leaves, thus causing a reduction of flux through the pathway. 

Although scarce studies have been focused on the study of the regulation of sulfur 

assimilation under this abiotic stress, this nutrient has been suggested to be a key 

component in helping plants to cope with drought (Chan et al., 2013). Sulfur 

assimilation pathway appears to be connected with drought stress response, not only 

for the production of the antioxidant molecule glutathione but, for instance, it has 

been shown that some abscisic acid functions are sulfate-dependent (Ernst et al., 

2010). Besides, Cys acts as a precursor or donor of reduced S for a range of S-

compounds such as methionine, which control key stress-metabolites such as 

ethylene through its first derivative S-adenosylmethionine. In this context, down-

regulation of methionine biosynthesis pathway have been found associated with 

drought stress (Irar et al., 2014), natural senescence (Matamoros et al., 2013) and 

in ROS induced-senescence (Marino et al., 2009). 

 

 

 

 

 

 

 



Conclusions 

 65 

 

2.6 CONCLUSIONS 

Under water stress, roots of M. truncatula plants reduce notably their water 

content to values around 60%, prioritizing the maintenance of leaf water status. At 

the same time, plants prioritize carbon exportation, coming mainly from starch 

degradation, toward this organ in order to promote root growth. Regarding nitrogen, 

although root nitrogen primary assimilation seems to be affected at Gln level under 

moderate drought conditions, leaf protein degradation is partly allocated to the root 

contributing to maintain the leaf-root ratio for most of the amino acids. On the 

contrary, the low Cys levels observed at the leaf level suggest a drought effect on 

sulfur transport at the whole plant level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

» CHAPTER 3  
 

In vitro simulation of drought stress in Medicago truncatula seedlings 
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3.1 INTRODUCTION 

Drought is considered one of the most serious problems in agriculture worldwide 

affecting around 40% of the land area and with a significant potential of expansion 

as a consequence of climate change (Trenberth et al., 2013). Salinity is the second 

largest limiting the productivity of crops, affecting 7% of the world arable zones 

(Rozema and Flowers, 2008). Although salt and drought stress trigger some 

common reactions in plants, especially at early stages, salinity implies an important 

ionic stress due to high intracellular sodium and chloride concentrations, which are 

absent in drought-stressed plants (Bartels and Sunkar, 2005).  

Although under field conditions crop plants are exposed to multifactorial abiotic 

stresses and eventually results need to be validated in the field (Ribaut, 2008), 

growing plants under controlled growth conditions facilitates the identification of 

the molecular processes underpinning plant stress responses. Under laboratory 

conditions, salinity stress is usually simulated by adding NaCl to the growth 

medium at different concentrations depending on the plant species involved (Munns 

and Tester, 2008). The simulation of drought stress under in vitro conditions is more 

challenging, though different strategies can be found in the literature. For instance, 

drought responses have been analyzed by exposing plants to direct air flux 

(Belamkar et al., 2014; de Ollas et al., 2015), which causes a rapid reduction in the 

water content of the plant tissues that is unlikely to occur under physiological 

conditions. Alternatively, water deficit has been simulated by applying different 

osmotic compounds including PEG (van der Weele et al., 2000; Kang et al., 2015), 

sorbitol (Antoni et al., 2013) or mannitol (Luo et al., 2009; Sassi et al., 2010; Liu et 

al., 2015b), among others. However, these osmotic agents are absorbed by plants 

causing undesirable secondary effects such as cell toxicity (Lawlor, 1970; Emmert, 

1974; Mexal et al., 1975; Munns et al., 1979; Ranjan et al., 2012), oxygen diffusion 

limitation in roots (Verslues et al., 1998) and transport inhibition in roots (Plaut and 

Federman, 1985).  

Drought responses have been thoroughly studied in adult plants being scarcely 

analyzed in the early stages of development. In this regard, new not destructive and 

not toxic protocols are needed to simulate drought conditions to better characterize 

plant responses under controlled conditions. In this regard, in the current work we 

describe a method for the standardized and reproducible simulation of drought 

stress conditions in Petri dishes using growth media containing different agar 

concentrations. To validate the protocol, we characterized the growth, water status 

and drought stress responses of M. truncatula, a model legume cultivated as an 

annual forage in several regions worldwide (Michaud et al., 1988) and 
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phylogenetically related to some of the most important European legume crops 

(Aubert et al., 2006; Phan et al., 2007). Three different agar concentrations were 

used simulating control (C), mild drought (D1) and moderate drought (D2) 

conditions. Additionally, the protocol was applied for the identification of 

metabolic plant responses to water deficit at the root and shoot level. The method 

described here represents a useful alternative to the use of polyols to simulate 

drought stress under in vitro conditions with potential applications to a wide range 

of plant species and up scalability. 

 

3.2 OBJECTIVES 

The aims of this work were to describe a new simple and efficient method for 

the standardized and reproducible simulation of drought conditions with different 

agar concentrations and to characterize drought stress responses of M. truncatula 

seedlings grown under these conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

71 

 

3.3 MATERIALS AND METHODS 

3.3.1 Plant materials and growth conditions  

M. truncatula Gaertn. cv Jemalong ecotype A17 plants growth conditions are the 

same as detailed in the section 2.3.1 of the Chapter 2 of the present thesis. However, 

the only difference with the previously method described is that 0.7% (w/v) agar 

plates were incubated at room temperature for 36 hours instead of for two days. In 

this way, we obtained seedlings having rootlets of around 0.5 cm. Plates containing 

seedlings were placed in a growth chamber growing during 4 days at 25ºC, 16 h 

photoperiod, 150 μmol m–2 s–1 light intensity and 60–70% relative humidity. 

3.3.2 Experimental design and drought stress treatment  

Different agar (Becton-Dickinson Bacto-Agar 214010) amounts were dissolved 

in the same volume of modified Fahräeus culture medium: 0.5 mM MgSO4, 0.7 

mM KH2PO4, 0.8 mM Na2HPO4, 50 µM FeEDTA, 1 mM CaCl2, including 0.1 mg 

L-1 of the following microelements: MnSO4, CuSO4, ZnSO4, H3BO3, and Na2MoO4 

at pH 6.5 (Vincent, 1970). Culture medium was poured in square Petri dishes (12 x 

12 cm) under aseptic conditions. 

After germination, seedlings having rootlets of around 0.5 cm were transferred 

to Petri dishes containing agar of the different concentrations. Following Sauviac 

et al. method (Sauviac et al., 2005), a filter paper was laid onto solid agar surface, 

in order to avoid direct root contact with the medium but allowing water and 

nutrient uptake by the seedlings and being cotyledons in contact with the agar. 

Around eight seedlings were laid per plate and a drop of water was applied to the 

root tip to promote seed adhesion to the medium. Petri dishes were sealed using a 

surgical tape belt (3M Micropore) allowing gas exchange, maintaining sterile 

conditions and limiting drying out of the agar. The zone supporting root system of 

the Petri dishes was covered with aluminum foil to keep roots in darkness 

simulating natural growing conditions, thus allowing better illumination of the 

leaves within a stack of plates. Petri plates were placed partially (30º) inclined from 

the vertical. After growing stage, plant tissue aliquots from each treatment were 

collected and immediately frozen in liquid nitrogen, being stored at -80ºC for 

analytical determinations. Root and shoot fresh weight (FW) aliquots were dried 

for 48 hours at 80ºC to determinate dry weight (DW). 

3.3.3 Water status and biomass determination 

To estimate the water availability for the plants in the different agar plates, the 

amount of water absorbed by the filter paper in direct contact with the root was 
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determined gravimetrically, monitoring the maximum weight gained by paper disks 

exposed to the plates containing different agar concentrations. Similarly, the Ψw of 

these paper disks were measured using C52 sample chambers coupled to a Wescor 

HR-33T Dew Point Microvoltmeter (Wescor, Logan, UT, USA) as described in the 

section 2.3.1 of the Chapter 2. Also, shoot (Ψw shoot) and root (Ψw root) water 

potentials were measured with the above-mentioned microvoltimeter two hours 

after the beginning of the photoperiod. The osmotic potential was determined using 

the Wescor 5500 Vapor Pressure Osmometer (Logan, Utah, USA) as described 

González et al. (2002); the tissue sap was collected by centrifugation (2300 g) of 

fresh leaf and root material which was previously heated at 100ºC for 5 min. Root 

and shoot FW and DW were used to calculate biomass and water content (WC) as 

was described in the section 1.3.1 of the Chapter 1. 

3.3.4 Determination of proline, free amino acid content and lipid peroxidation  

These leaf and root ethanol extractions were similar to that described in section 

2.3.3 of the Chapter 2 with slight modifications which will be detailed as follows. 

Frozen root and shoot tissues (0.1 g FW) were ground to powder under liquid N2 

and then homogenized with 1.5 mL of 80% (v/v) ethanol, boiled for 30 seconds and 

centrifuged at 5000 g, 4ºC for five minutes to collect the supernatant. This process 

was repeated three times in order to perform an exhaustive extraction of soluble 

osmolites. A final wash was carried out with cold ethanol. The whole volume was 

dried in a Turbovap LV evaporator (Zymark Corp, Hopkinton, MA, USA) at 40ºC 

and 1.2 bar. Dry residues were resuspended in 1 mL of deionized water, sonicated 

for 10 minutes and centrifuged at 2300 g, 4ºC for 10 minutes. The supernatants 

were stored at -80ºC for further analysis. 

Free proline content was measured spectrophotometrically employing a 

ninhydrin-base assay as described Bates et al. (1973). A total of 0.3 mL 6M 

phosphoric acid, 0.6 mL ninhydrin solution (12.5 mL glacial acetic acid and 0.5 g 

ninhydrin acid) and 0.2 mL of ethanolic extract were mixed and boiled for 60 min. 

When the reaction mixtures reached room temperature, 3 mL of toluene were added. 

The samples were centrifuged at 5000 g for 1 minute to separate the phase with the 

chromophore and its absorbance was measured at 515 nm using a standard curve of 

L-proline.  

Total free amino acid pool was measured spectrophotometrically in leaves and 

roots of M. truncatula plants according to the method proposed by Yemm and 

Cocking (1955). The same extracts obtained for ethanol extraction were used here. 

A total of 500 μL of citrate buffer (0.88 M citric acid + 1.6 M NaOH) and 430 μL 

of ninhydrin reactive (1.25 g ninhydrin in 125 mL 2-methoxyethanol + 50 mg AsA 
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in 5 mL H2O) were mixed with 20 μL of the ethanolic extracts. The mixture was 

boiled at 100ºC for 20 min and after cooling, 1 mL of ethanol 60% was added to 

the tubes and stirred vigorously. The absorbance of the mixture was measured at 

570 nm in a SinergyTM HT Multi-Detection Microplate Reader (BioTek 

Instruments Inc., Winooski, VT, USA) using a glycine (Gly) standard being the 

results expressed as μmol Gly per g-1 DW. 

Lipid peroxidation level was measured by the thiobarbituric acid (TBA) test as 

described Hodges et al. (Hodges et al., 1999) with minor modifications, determining 

the amount of MDA as the end product of lipid peroxidation process. Shoot and 

root samples (0.05 g) were homogenized with 1 mL pre-chilled 0.1% (w/v) TCA. 

The homogenates were centrifuged at 20,000 g for 5 min at 4ºC. After, 750 μL of 

supernatant were mixed with 750 μL of reagent solution (20% (w/v) TCA + 0.01% 

butylhydroxytoluene + 0.65% TBA) and mixed vigorously. After heating at 95ºC 

for 25 min in a water bath, the reaction was stopped on ice before being centrifuged 

at 13200 g 4ºC for five minutes. The absorbance of supernatants was determined 

with a SinergyTM HT Multi-Detection Microplate Reader (BioTek Instruments 

Inc., Winooski, VT, USA) at 440 (sugar absorbance), 532 (maximum absorbance 

of pinkish-red chromagen, product of the reaction of MDA with TBA) and 600 nm 

(turbidity) using 0.1% (w/v) TCA as blank.  

The MDA contents were estimated by the following formula: 

MDA equivalents (nmol mL-1) = [(A–B)/157 000] x 106  

where A = [(Abs 532RSII – Abs 600RSII)] and B = [(Abs 440 RSII – Abs 600 

RSII) x 0.0571]. 

MDA equivalents (nmol g-1 FW) = MDA equivalents (nmol mL-1) x total volume 

of the extracts (mL) / g FW. 

3.3.5 Measurements of root morphology  

Root morphology was examined after four days exposure to the different agar 

concentrations. Total root length together with the position of each root section 

(upper root (UR), root hair zone (RH) and root tip (considering elongation zone and 

tip; RT), were determined 

Root morphological parameters (volume and diameter) were determined by 

using the SmartRoot software. This is a semi-automated image analysis software, 

which analyzes digital images and streamlines the quantification of root growth and 

architecture for complex root systems (Lobet et al., 2011). SmartRoot is an 
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operating system independent freeware, based on ImageJ, which uses cross-

platform standards for communication with data analysis software. 

3.3.6 Determination of total root respiration rates 

Root respiration oxygen consumption was measured using a Clark-type O2 

electrode (Hansatech Oxygraph, H. Sabur Laborbedarf, Reutlingen, Deutschland) 

connected to constant temperature circulating water baths (25ºC). Seedling roots 

(0.015 g) of each treatment were cut into small pieces and placed into Oxygraph 

chambers containing 1 mL of buffer (25 mM Imidazole-HCl, pH 6.5). The decrease 

of the oxygen in the chambers was measured under continuous stirring to promote 

oxygen diffusion within the chamber. The total root respiration rate was calculated 

by using the slope of the oxygen consumption rates.  

3.3.7 Measurement of soluble carbohydrates  

Fructose, glucose, and sucrose amounts were determined by capillary 

electrophoresis as it was previously described in the section 2.3.3 of the Chapter 2.  

3.3.8 Organic acid determination 

The organic acids content, in this case the malate, citrate, α-ketoglutarate and 

succinate, was measured according to the previously described method in the 

section 2.3.3 of the Chapter 2.  

3.3.9 Statistical analysis  

For all the variables determined in this study, we calculated the average as a 

central statistic and standard error as statistical of dispersion. For measurements of 

soluble carbohydrates, organic acids and drought stress markers a pool of roots was 

used due to the material shortage and three technical replicates were measured for 

each parameter. Significant differences among treatments were determined with 

Student’s t-test (p ≤ 0.05).  
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3.4 RESULTS 

3.4.1 Plants grown under increased agar concentrations present reduced water 

potential values and levels of water status associated to drought stress  

The growth of plantlets on agar plates is a common technique in molecular 

biology studies when tightly controlled growth conditions are required or large 

plant populations need to be screened (Sauviac et al., 2005; Barker et al., 2006; 

Pacheco-Villalobos and Hardtke, 2012; Petti et al., 2013; Xu et al., 2013). A 

common protocol for growing M. truncatula seedlings on plates suggests using agar 

concentrations in the 0.7-1.5% (w/v) range in Fahräeus medium (Barker et al., 

2006). The quality of the agar is an important factor in this type of experiments 

since alterations in root growth has been shown to occur due to the presence of 

inhibitory compounds in certain commercial agars (Barker et al., 2006). Taking this 

into account and to define the optimal agar concentrations simulating drought 

conditions, we initially tested a range of concentrations from 1.5 to 12.5% of 

Becton-Dickinson bacto-agar, one of the recommended brands. Since growth of M. 

truncatula in direct contact with the agar surface is not recommended either, a piece 

of filter paper was laid onto each plate. To monitor whether increased agar 

concentrations induced drought stress responses, we measured the water potential 

(Ψw) of plants, the universally accepted and most common method of expression of 

water status in plant physiology (Siddique et al., 2000; Zhang et al., 2014). 

Preliminary tests using agar concentrations >7% were found to inhibit seedling 

development and were therefore excluded. In contrast, concentrations in the 3-5% 

range allowed seedling growth while reducing root Ψw. Based on the Ψw 

measurements, three treatments were established: plates containing 1.5% agar were 

defined as control (C) conditions, plates containing 3% agar were considered as the 

first level of drought stress (mild drought, D1) and plates containing 5% agar plates 

were defined as the second level of drought stress (moderate drought, D2; Fig. 3.1).  

 Once the agar concentrations were established, we carried out a detailed 

characterization of the water status of the plants under the three treatments. Given 

that a layer of filter paper is direct contact with the plant root system, we quantified 

the water availability in the media by measuring the levels of Ψw and the amount of 

water absorbed by the papers of plates at the three agar concentrations (Fig. 3.2A). 

There was a negative correlation between the concentration of agar and the values 

of water potential and water absorbed by the filter papers; Ψw values declined from 

-0.15 ± 0.01 MPa at 1.5% agar to -0.60 ± 0.04 MPa at 5% agar, whereas the amount 

of water absorbed was reduced from 19.26 ± 0.28 mg/cm2 to 3.34 ± 0.24 mg/cm2, 

respectively (Fig. 3.2A). Therefore, these results show that minimal variations in 
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the concentration of agar in plated medium lead to a decrease in the amount of water 

available for the plants through a reduction of the water absorbed by the paper in 

direct contact with the root system.  

 Regarding the levels of Ψw in shoots and roots and in agreement with our 

initial measurements, an increase in the agar concentration of the medium led to a 

decline in Ψw values in both organs, being only significant in plants grown under 

5% agar (i.e., D2 plants; Fig. 3.2B).  

 Another key indicator of the plant water status closely related to Ψw is water 

content (Nunes et al., 2008). Again, both D1 and D2 plants showed a progressive 

reduction of water content compared to C plants both shoots and roots (Fig. 3.2C). 

To investigate the contribution of solutes in the decline of in Ψw values, we also 

measured osmotic potential (Ψs) of shoots and roots. Ψs was significantly reduced 

in the two levels of stress, being more pronounced in roots (-34%) than in the aerial 

tissue (-22%; Fig. 3.2D). 

 Taken together, the physiological parameters analyzed show that the plant 

water status is altered as a consequence of increased agar concentrations, presenting 

water status values characteristic of plants under water-limiting conditions both at 

the level of shoots and roots. 

3.4.2 Analysis of drought stress markers 

Proline accumulation is a widely known marker of drought stress in plants. This 

amino acid has been shown to play an osmoprotective role under osmotic stress 

conditions, acting also as a reactive oxygen species (ROS) scavenger and redox 

regulator (reviewed in (Szabados and Savouré, 2010)). Besides proline 

accumulation, another general response of plant exposed to abiotic stresses is an 

overall increase in the levels of free amino acids (Handa et al., 1983; Rhodes et al., 

1986; Usadel et al., 2008; Gil-Quintana et al., 2009; Larrainzar et al., 2009; Widodo 

et al., 2009; Gil-Quintana et al., 2013). Thus, to check whether the experimental set 

up described here also led to these stress responses, the levels of proline and free 

amino acids were measured in roots and shoots of M. truncatula plants grown under 

different agar concentrations. Limited water availability led to a significant increase 

in the content of proline under D1 and D2 conditions in both organs, with contents 

between 1.5- and 2-fold those of C plants (Fig. 3.3A). Total amino acids were also 

found to accumulate in both drought treatments, with a more gradual and 

pronounced accumulation in root tissue (Fig. 3.3B). 
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Figure 3.1. Different stages of M. truncatula seedlings development. A) Seeds of M. truncatula 

separated from mature pods. (B) Germinated seeds in 0.7% (w/v) agar plates after being incubated 

at 4ºC for 24 hours and 36 hours at room temperature. (C) Germinated seeds transferred to 

corresponding agar plate to be cultured for 4 days in a controlled conditions growth room. (D) Front 

view of seedlings growth after 4 days of treatment showing fully expanded cotyledons and root 

elongation. (E) Plant growth after four-day exposure to different water availability treatments C: 

Control, D1: Drought 1 and D2: Drought 2. UR: Upper Root, RH: Root Hair zone, RT: Root Tip 

zone. 
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Drought stress is usually associated with oxidative damage in plant tissues. To 

determine whether M. truncatula plants grown under this method were also exposed 

to oxidative stress, the levels of malondialdehyde (MDA), a product of membrane 

lipid peroxidation, were quantified (Fig. 3.4). Increased agar concentration caused 

a gradual accumulation of MDA in shoot tissue (+50% and +100% in D1 and D2 

plants, respectively), although only D2 induced lipid peroxidation in roots, a tissue 

that showed a lower content of MDA compared to shoots.  

 

 

Figure 3.2. Physiological determination of water status. Measurement of the amount of water 

absorbed (n=25) and water potential values (n=7) of the filter paper in direct contact with roots in 

plates containing 1.5 (control plants, C), 3 (drought 1, D1) and 5% (drought 2, D2) (w/v) agar in 

Fahräeus medium (A). Shoot and root water potential (B), water content (C) and osmotic potential 

(D) on control (C), Drought 1 (D1) and Drought 2 (D2) plants. Values represent mean ± SE (n=3, 

unless otherwise stated). An asterisk (*) denotes significant differences (P ≤ 0.05) with respect to C 

plants; a hash (#) indicates significant differences between D1 and D2 treatments.  
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Figure 3.3. Drought stress markers. Effects of drought on proline (A) and total amino acids (B) 

contents in shoots and roots of control (C), Drought 1 (D1) and Drought 2 (D2) plants. Values 

represent mean ± SE (n=3). An asterisk (*) denotes significant differences (P ≤ 0.05) with respect 

to C plants; a hash (#) indicates significant differences between D1 and D2 treatments.  

 

 

 

 

 

 

 

 

Figure 3.4. Lipid peroxidation. Effects of drought in malondialdehyde (MDA) content in shoots and 

roots of control (C), Drought 1 (D1) and Drought 2 (D2) plants. Values represent mean ± SE (n=3). 

An asterisk (*) denotes significant differences (P ≤ 0.05) with respect to C plants; a hash (#) indicates 

significant differences between D1 and D2 treatments. 



Chapter 3 

80 

 

Table 3.1. Root morphology. Total length and length of the different sections, average diameter, 

volume, biomass and density of control (C), Drought 1 (D1) and Drought 2 (D2) plants. Values 

represent mean ± SE (n=6). An asterisk (*) indicates significant differences (p ≤ 0.05) between 

control and drought treatments; hash (#) indicates significant differences between D1 and D2 plants.  

 

 

3.4.3 Morphological and metabolic changes in roots of M. truncatula induced by 

water deficit 

To further characterize the physiological effects of growing plants under reduced 

water availability, several root growth parameters were measured (Table 3.1). 

Although plant biomass did not show significant differences at the various 

treatments, changes in root growth and morphology were observed. To measure 

root length, roots were divided into upper root, AZ containing root hairs and 

elongation/root tip zone. Mild water limitation (D1) induced total root growth, 

particularly in the upper root and zone of absorption. In contrast, the most severe 

treatment, D2, provoked a slight reduction in root length, most noticeable in the 

zone of root hair growth. Interestingly, both treatments produced a decrease in the 

diameter of roots (22% and 35%, in D1 and D2, respectively), leading to a 

significant increase in single root density (mg cm-3) in D2. 

Plant carbon status is dependent on the balance between photosynthesis and 

respiration (Flexas et al., 2006), being the amount of carbon lost through respiration 

up to 50% of the daily carbon gain by photosynthesis (Morgan and Austin, 1983). 

To analyze how total oxygen consumption was affected by limited water 

availability in the medium, root respiration rates were determined. Compared to 

control plants, total respiration rates remained relatively constant in roots of D1 

plants but significantly decreased in D2 roots (Fig. 3.5A).  

  C D1 D2 

Total root length (mm) 51.9 ± 2.2     61.3 ± 2.1    *        50.7 ± 1.7         # 

Upper root (mm) 20.7 ± 1.2  23.6 ± 0.8    *         23.5 ± 1.0 

Root hair (mm) 23.3 ± 1.9  28.4 ± 1.5    *                         19.3 ± 1.2         # 

Root tip (mm)   7.9 ± 1.1                                9.3 ± 0.8             7.9 ± 0.7   

Root average diameter (mm)   0.90 ± 0.03       0.70 ± 0.01  *               0.58 ± 0.02     *# 

Root volume (mm3) 39.1 ± 2.7       26.8 ± 1.5     *           14.7 ± 1.3           *# 

Root biomass (mg DW plant-1)   2.7 ± 0.1             2.0 ± 0.1           2.2 ± 0.2 

Root density (mg cm-3) 74.80 ± 4.05   82.38 ± 1.66     170.01 ± 14.12  *# 

 1 
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Plant carbon partitioning is highly altered by drought stress due to changes in 

the source–sink relations (Lemoine et al., 2013; Osorio et al., 2014; Xu et al., 2015). 

To better understand the mobilization of carbon reserves under the different 

treatments, the content of the main carbon compounds was measured in root and 

shoot tissue (Fig. 3.5 and 3.6, respectively). In general, we observed a higher 

content of carbon compounds in roots compared to shoots, which suggests that the 

underground organ represents a significant source of carbon reserves at this growth 

stage. The content of sucrose, the main carbon compound transported through the 

plant, declined both in D1 and D2 roots (Fig. 3.5B). In contrast, only fructose levels 

increased significantly in D1 roots (Fig. 3.5C) Furthermore, the levels of the organic 

acids malate, citrate, α-ketoglutarate and succinate were also measured. The content 

of malate -the most abundant organic acid in roots-, citrate and α-ketoglutarate 

showed a significant reduction in roots of D1 and D2 plants compared to controls 

(Fig. 3.5E-G), while succinate did not show significant variations in roots (Fig. 

3.5H). Unlike roots, shoots did not show significant changes in the levels of sucrose 

(Fig. 3.6A), which suggests that the drought stress imposed did not limit carbon 

availability in the aerial part. However, the levels of malate significantly decreased 

(Fig. 3.6D), while citrate was progressively accumulated (Fig. 3.6E) as water deficit 

became more intense. The content of fructose, glucose, succinate and α-

ketoglutarate significantly increased in shoots of D1 plants but went back to control 

values under D2 conditions (Fig. 3.6B-C, F-G). 
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Figure 3.5. Root carbon metabolism. Effects of drought on total root respiration rate (A) and on 

carbon compounds levels [sucrose (B), fructose (C), glucose (D), malate (E), citrate (F), α-

ketoglutarate (G) and succinate (H)] in roots of control (C), Drought 1 (D1) and Drought 2 (D2) 

plants. Values represent mean ± SE (n=3). An asterisk (*) indicates significant differences (p ≤ 0.05) 

between control and drought treatments; hash (#) indicates significant differences between D1 and 

D2 plants.  
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Figure 3.6. Shoot carbon metabolism. Effects of drought on carbon compounds levels sucrose (A), 

fructose (B), glucose (C), malate (D), citrate (E), α-ketoglutarate (F) and succinate (G)] in shoots 

of control (C), Drought 1 (D1) and Drought 2 (D2) plants. Values represent mean ± SE (n=3). An 

asterisk (*) indicates significant differences (p ≤ 0.05) between control and drought treatments; hash 

(#) indicates significant differences between D1 and D2 plants.  
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3.5 DISCUSSION 

3.5.1 Variations in the concentration of agar in plates is a useful method to simulate 

drought stress conditions in vitro 

The current work presents a simple method for the analysis of plant drought 

stress responses under in vitro conditions based on the use of different 

concentrations of agar, a widely used polymer for plant tissue culture. Agar is the 

generic term used to designate a pool of molecules derived from agarobiose, which 

has been employed as a solidifying agent for microorganism and tissue culture 

during more than a century. The method described in the current work is based on 

the fact that applying agar at concentrations above the usual 0.7-1.5% range 

increases the number of water molecules withheld within the polymer network, 

reducing the water absorbed by the filter paper in direct contact with the roots and, 

accordingly, the filter water potential values (Fig. 3.2A). This leads to a limitation 

of water available for the plant, creating drought stress conditions, as confirmed by 

multiple measurements of the plant water status (Fig. 3.2B-2D). M. truncatula 

seedlings grown under this method present physiological parameters and water 

status markers comparable to previous drought stress studies where adult plants 

were grown in perlite:vermiculite pots and subjected to a gradual water deficit 

(Larrainzar et al., 2007; Gil-Quintana et al., 2009; Larrainzar et al., 2009; Yousfi et 

al., 2010; Aranjuelo et al., 2011; Planchet et al., 2014; Larrainzar et al., 2014; Zhang 

et al., 2014). Addition of a paper interface between the agar and the roots seems to 

be a key element to simulate water-deficit conditions, since previous studies did not 

observe significant changes in the matric potential of the agar gels when using 

concentrations of agar in the range employed here (Spomer and Smith, 1996).   

Osmotic adjustment is one of the main physiological strategies used by plants to 

respond to water deficit situations (Greenway and Munns, 1980; Morgan, 2003). 

Small osmolytes such as polyol sugars or amino acids typically accumulate in 

tissues to limit cell damage and act as signaling compounds, among other roles 

(Hare et al., 1998; Szabados and Savouré, 2010). Drought stress has been shown to 

cause an increase in the content of amino acids in several plants (Voetberg and 

Sharp, 1991; Mohammadkhani and Heidari, 2008; Larrainzar et al., 2009; Widodo 

et al., 2009; Lugan et al., 2010; Gil-Quintana et al., 2013; Zhang et al., 2014). 

Similarly, we observed an accumulation of proline and free amino acids in seedlings 

exposed to increased agar concentrations (Fig. 3.3). This amino acid accumulation 

may be attributed to either the activation of protein degradation mechanisms or de 

novo amino acid biosynthesis under stress conditions. Interestingly, the increase in 

amino acid content observed in root tissue was more pronounced than this of shoots, 

in agreement with previous developmental studies (Glevarec et al., 2004). This 
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response suggests that it is the underground organ the one showing a stronger 

drought stress response at these early stages of seedling development.  

In terms of lipid peroxidation, most studies have focused on leaves or aerial parts 

of plants and there is little information about the variations of MDA content at the 

root level. Stresses such as herbicide treatment have been reported to increase MDA 

levels in roots of another legume plant, pea (Zabalza et al., 2007). However, 

exposure to cadmium had the opposite effect in M. truncatula radicles (Rahoui et 

al., 2014). In this work, we observed that MDA content strongly increased in shoots 

of D1 and D2 plants, similarly to observed in M. sativa nodules (Naya et al., 2007), 

but showed a differential response in roots, decreasing in D1 and increasing in D2 

(Fig. 3.4).  

 

3.5.2 Root elongation is prioritized over enlargement under mild drought 

conditions: the role of respiration and carbon reserve mobilization. 

Besides validating the experimental method, we analyzed the response of M. 

truncatula roots to different levels of drought stress. Roots are the first organs 

detecting water limitation in soils and their response is essential to counteract 

stressful conditions. Therefore, detailed analysis of root parameters provides insight 

into the role of this tissue under water deficit conditions. 

During seedling development there is a significant reactivation of metabolism, 

cell division, elongation and differentiation processes. However, cell growth is one 

the processes most affected by drought stress (Hsiao, 1973). Interestingly, under 

water limiting conditions roots challenge this general theory by increasing growth 

rate, which can be interpreted as an attempt to reach deeper soil layers where water 

availability is higher (Sharp et al., 1988). When grown on plates, intermediate agar 

concentrations (D1) provoked an increase in root length, which was more moderate 

in D2 plants (Fig. 3.1E, Table 3.1). This response may be partly due to modulation 

of the root system architecture by changes in the proportion of root cell division and 

differentiation in the root tip (Silva-Navas et al., 2015) or by changes in the local 

hexose concentration in the growing zone of roots (Freixes et al., 2002), indicating 

the importance of carbon supply in this tissue. van der Weele et al, 2000 (van der 

Weele et al., 2000) also observed an increase in the length of Arabidosis thaliana 

seedling roots under water deficit conditions caused by a stimulation of root 

elongation along with a high rate of cell production. Root elongation was also 

observed in rootlets of M. truncatula under low temperature and water deficit stress 

conditions (Youssef et al., 2016) and in water-stressed M. sativa (Zeid and Shedeed, 

2006). In the present study, a clear decrease in root thickness was observed in plants 
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grown on increased agar concentrations (Table 3.1). Previous studies showed this 

effect in maize plants roots (Sharp et al., 1988), which become thinner as water 

potential decrease. Also, Wasson et al. (2012) found a decrease in root diameter as 

a strategy to improve wheat root systems for water uptake under water deficit 

conditions. This response has been interpreted as a strategy of the root system to 

explore efficiently the soil water reserves at a minimum cost (Sharp et al., 1988), 

modifying its architecture and morphology (Comas et al., 2013). Li et al. (2015) 

observed changes in root architecture of maize seedlings under drought conditions 

affecting root length, area, diameter, and volume. In D2 plants, a significant 

increase of the root tissue density was observed (Table 3.1), which may increase 

the strength of roots to face soil impedance. In this regard, it has been reported an 

increase in the root thickness in Nerium oleander plants under drought stress 

conditions (Bañon et al., 2006), what could be related to the mechanical impedance 

to root penetration in compact substrates described in different plant species 

(Materechera et al., 1991). Root elongation in soils is a complex process affected 

not only by soil mechanical strength or water reserves location but also by shoot-

root signaling and plant metabolic responses (Jin et al., 2013). Our experimental 

system provides an experimental set up in which water is homogenously available, 

thus avoiding gradients and facilitating studies without the interference of other 

factors such as soil impedance. Under these conditions, primary root elongation 

seems to be a constitutive response of plants under mild drought stress, being this 

effect reverted under more severe drought stress. 

Cuellar-Ortiz et al. (2008) showed that drought resistance is linked to 

modifications in the plant carbon metabolism in legumes, as it is the case in cereals. 

In the seedling system employed in current study, it is highlighted the key role of 

roots at this first stage of plant development, concentrating most of the 

carbohydrates and organic acid reserves (Fig. 3.5 and 3.6). Unlike adult M. 

truncatula plants where leaves are the main starch reservoir (86.29 µmol glucose g-

1 DW in leaves versus 4.3 µmol glucose g-1 DW in roots; Seminario et al., 

unpublished observations, seedlings have reduced starch reserves (7.6 µmol 

glucose g-1 DW). Indeed, starch content showed similar basal levels between 

seedling shoots and roots displaying no significant differences in any of both organs 

with no regard to water availability (data not shown). However, the sucrose content 

decreased significantly in roots under D1 conditions together with the content of 

the main organic acids (Fig. 3.5). Pinheiro et al. (2004) observed a similar response 

in drought-stressed Lupinus albus plants. This decrease could be related to the 

increased energy requirements to maintain respiration rates (Fig 3.5A) and to fuel 

root elongation processes (Table 3.1; Sharp et al., 1988; Muller et al., 1998; Muller 
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et al., 2011). Under water stress conditions, photosynthesis is reduced but 

respiration is the process that provides energy and intermediates for cell growth and 

maintenance, and so cell respiration is directly involved on plant productivity 

(Flexas et al., 2005). The critical question remains: how do drought-stressed plants 

regulate root respiration rates to survive under water deficit situations? Indeed, 

under mild stress conditions, root elongation was activated while respiration was 

maintained. Similar drops in respiration under drought stress have been also 

observed in wheat (Liu and Li, 2005). One possibility is that under water limiting 

conditions respiration rates are lowered due to ROS damage in mitochondria or a 

decrease in the rates of ion uptake and associated energy demand (Atkin and 

Macherel, 2009). 

Taken together, these results show that aerial tissues and roots respond 

differently to water deficit. The analysis of root metabolism indicates that during 

the first stages of plant development roots have a crucial role in plant establishment 

and growth. The observations and metabolic analysis performed on M. truncatula 

seedlings suggest that roots alter their functionality and morphology to cope with 

the imposed water deficit.  
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3.6 CONCLUSIONS  

The current simple method presented here for simulation of drought stress under 

in vitro conditions mimics water deficit conditions. Furthermore, this method 

facilitates the standardization of drought studies across laboratories by increasing 

the reproducibility and the fine-tuning of the level of stress applied. Besides being 

validated this protocol, we conclude that M. truncatula seedlings were affected at 

the morphological, physiological and metabolic level when they were grown under 

these conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

» CHAPTER 4  
 

Root lipid, cell wall and secondary metabolism play a key role in the 

response to drought of Medicago truncatula seedlings  
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4.1 INTRODUCTION 

Legumes are the second most consumed crop across the world after cereals, 

being a valuable source of protein for human nutrition and for animal feed. The 

temperate legume M. truncatula has been selected as a model legume for molecular 

and genetic studies because of its small diploid genome size, the fact that it is self-

fertile and relatively easy to transform (Cook, 1999; Barker et al., 2006). This specie 

is phylogenetically related to some of the most important European legume crops 

such as pea or alfalfa (Aubert et al., 2006; Phan et al., 2007). Despite the advantage 

given by their capacity to establish symbiosis with N2-fixing soil bacteria, legume 

production is adversely affected by environmental stresses, being drought one of 

the main constraints limiting plant growth and crop yield (Boyer, 1982; Chaves and 

Oliveira, 2004; Daryanto et al., 2015).  

Tolerance to abiotic stresses is associated with modifications of morphological 

and physiological traits; these include changes in plant architecture, variation in leaf 

cuticle thickness, stomatal regulation, germination, antioxidant capacity, hormonal 

regulation, membrane and protein stability, maintenance of photosynthesis and root 

morphology (Edmeades et al., 2000). In some situations like inadequate rainfall, 

excessive salinity in the soil or as a consequence of freezing temperatures, water 

becomes limited for plant communities. This limitation can negatively impact plant 

growth causing adaptive changes and/or deleterious effects (Chaves et al., 2002), 

forcing plants to develop different strategies for better growth under adverse water 

conditions (Li et al., 2015). It is well known that the process mainly affected by 

water deficit is plant cell growth; the more severe the water deficit, the larger the 

number of cellular processes affected (Hsiao, 1973). Plants have mechanisms for 

osmotic adjustment by synthesizing compatible solutes and accumulating them in 

response to drought stress (Chen and Jiang, 2010); sugars, amino acids or amines 

are described to accumulate in different plant tissues under drought stress or 

desiccation conditions (Voetberg and Sharp, 1991). Involvement of other pathways 

and protection mechanisms, including a battery of cellular proteins such as late 

embryogenesis abundant, heat shock proteins and aquaporins, have been reported 

to play important roles in the plant response to drought stress (Bartels and Sunkar, 

2005).  

Roots are the first plant organs detecting soil water shortage, being their 

architecture the result of continuous dynamic developmental processes (Hodge et 

al., 2009). Under water availability limited conditions, the architecture of the root 

system undergoes modifications such as changes in lateral roots, which developing 

deeper and more highly branched root systems to improve water absorption 
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efficiency (Malamy, 2005). This parameter is, therefore, important for the study of 

plant growth responses under environmental stress conditions. The roots of 

dicotyledonous plants consist of a main taproot from which secondary roots emerge 

(Waisel et al., 2002). According to their structure, different sections can be 

distinguished in the primary root; namely, the root cap, the apical meristematic 

section, the elongation section and the maturation section, known as absorption 

zone (AZ), where cells start to differentiate and root hairs are more abundant for 

water and nutrient uptake (Ishikawa and Evans, 1995). Root hairs are single tubular 

cell projections emerging from root epidermal cells (Grierson et al., 2014), which 

allow the study of a single cell plant system being one of the best characterized cell 

types in plant biology (Hossain et al., 2015). Root hairs increase the ground contact 

of the root and presumably increase root absorptive surface area, providing a 

mechanism for adaptation under water shortage situations. With a few exceptions 

(Ramos and Bisseling, 2003), there number of studies focused on root hairs is 

limited, most likely due to the difficulties of obtaining samples, which is limiting 

for most of applications.  

Seed germination is the first interface of material exchange between the plant 

development cycle and the environment. Thus, a better understanding of seedling 

responses against stressful environments is one of the first steps towards the 

discovery of new genes and identification of functional pathways underlying those 

responses (Cordeiro et al., 2014). In addition, seedling phenotyping methods are 

useful and successful when it comes to saving costs, space and time. Wang et al. 

(2015) also indicated that plants are much more uniform at early seeding stages, 

with less phenotypic variation caused by experimental errors. In this context, 

Galvan-Ampudia and Testerink (2011) reviewed salt stress signals shaping plant 

root and concluded that seedling root development is crucial for plant survival by 

determining water absorption capacity. Similar studies with seedlings under water 

deficit conditions have been carried out with other species like maize (Li et al., 

2015) and A. thaliana (van der Weele et al., 2000) indicating the importance of 

these early developmental stages plant studies in determining the structure and 

dynamics of plant populations. Several studies of seed germination under 

desiccation have been carried out in Medicago sativa (Wu et al., 2013; Castroluna 

Ruiz et al., 2014). However, to our knowledge, there are only few studies in M. 

truncatula plants focused on the study of seedlings under low water availability 

(Boudet et al., 2006; Planchet et al., 2011; Planchet et al., 2014; Watson et al., 

2015). In the case of Boudet et al. (2006), they compared M. truncatula radicles 

with desiccation tolerance at proteomic level and Watson et al. (2015) analyzed M. 
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truncatula root tip border cells by metabolomics and transcriptomics in young 

seedlings.  

 

4.2 OBJECTIVE 

In this context, the present work is focused on analyzing drought responses at 

the transcriptomic and metabolomic level in the AZ of the root under low water 

availability conditions in early developmental stages of M. truncatula in order to 

identify the key metabolic pathways in seedlings grown in a medium with different 

agar concentrations (as described in Chapter 3) which simulates water deficit 

conditions. 
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4.3 MATERIALS AND METHODS 

4.3.1 Plant materials, growth conditions and drought stress treatment. 

M. truncatula Gaertn. cv Jemalong ecotype A17 plants were grown as detailed 

in the section 3.3.1 of the Chapter 3 of the present thesis with minor modifications. 

Seeds were treated with concentrated sulfuric acid for eight minutes, and rinsed 

several times with cold sterile distilled water. Then seeds were sterilized with 3.5% 

sodium hypochlorite (v/v) and 0.1% Tween-20 for 10 minutes, incubated at room 

temperature in distilled water and kept in the dark overnight. After imbibition, seeds 

were placed on wet filter paper in a petri dish and vernalized at 4ºC for 2 days to 

synchronize germination. Afterwards, seeds were placed at room temperature for 

24 hours.  

As it was shown in Chapter 3, ranges from 1.5 to 5% agar in Fahräeus medium 

allowed to mimic stress responses associated with limited water availability. Thus, 

two treatments were established: seeds grown in plates containing 1.5% agar were 

defined as control (C) and plants grown on 5% agar plates were considered as 

drought (D). Therefore, upon germination, seedlings presenting rootlets of around 

0.5 cm were transferred to Petri dishes containing at the above mentioned 

concentrations of agar (Becton-Dickinson Bacto-Agar, ref. 214010) dissolved in 

Fahräeus nutrient solution [0.5 mM MgSO4, 0.7 mM KH2PO4, 0.8 mM Na2HPO4, 

1 mM ferric citrate, 1 mM CaCl2, including 0.1 mg L-1 of the following 

microelements: MnSO4, CuSO4, ZnSO4, H3BO3, and Na2MoO4 at pH 6.5, (Vincent, 

1970)]. Forty-two mL of agar medium were poured into square Petri dishes (12x12 

cm) and a layer of sterile filter paper was placed on top of it under aseptic conditions 

(Sauviac et al., 2005). Plates were sealed with a surgical tape belt (3M Micropore), 

covered with aluminum foil to keep roots in the dark and placed in a growth 

chamber growing during 4 days as previously described in the section 3.3.2 of the 

Chapter 3. Plates containing the seedlings were placed partially (30º) inclined to 

direct root straight growth. Four days after transplanting, root and shoot tissue was 

collected for seedling growth and water status determination. The root absorption 

zone (AZ) containing the bulk of root hairs was collected separately, immediately 

frozen in liquid nitrogen and stored at -80ºC for further transcriptomic and 

metabolomic analysis.  

4.3.2 Plant physiological characterization; biomass, water content, root length and 

leaf area determination. 

Root and shoot tissue fresh weight (FW) was measured and dry weight (DW) 

was determined after drying for 48 h at 70ºC. Water Content (WC) was calculated 

as described in section 1.3.1 of the Chapter 1. For seedling morphology analysis, 
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total root length was manually measured using a ruler and leaf area was determined 

by using the Li-3000A (LI-COR) portable area meter. 

4.3.3 RNA isolation and microarray analysis.  

Root AZ total RNA was extracted using TRIZOL reagent [Life Technologies; 

(Chomczynski and Mackey, 1995)]. Isolated RNA was digested with RNase-free 

DNase1 (Ambion) following manufacturer’s recommendations, and further column 

purified with an RNeasyMinElute CleanUp kit (Qiagen). Ribonucleic acid was 

quantified using a NanoDrop Spectrophotometer ND-100 (NanoDrop 

Technologies) and the purity assessed with a Bioanalyzer 2100 (Agilent 

Technologies). Three independent biological replicates were included and 

hybridized to the Medicago Genome Array-Affymetrix GeneChip. Array 

hybridization was done according to the manufacturer’s recommendations 

(Affymetrix), and scanning of arrays was performed as described previously 

(Benedito et al., 2008). Microarray data were submitted to MIAMExpress with 

accession number E-MEXP-3723. Raw data were normalized by robust multichip 

averaging, as described earlier (Irizarry et al., 2003). Presence and absence calls for 

probe sets were obtained using the dCHIP algorithm (Li and Wong, 2001). The 

ranking method employed was based on fold change (FC) cut-off for expression 

using a cut-off value of 2-fold up- or 0.5-fold down-regulated. Transcript 

expression values were loaded to Mapman software (Thimm et al., 2004; Usadel et 

al., 2005) to visualize the expression pattern of genes onto metabolic pathways. For 

an overview of the main transcript changes, a heatmap was generated using 

normalized expression values to the average control values with R statistical 

software analysis. 

4.3.4 Primer design and qRT-PCR conditions.  

Reverse transcription was performed with 1 μg of total RNA using SuperScript 

III Reverse Transcriptase (Invitrogen) and oligo-dT20 (Invitrogen GmbH, 

Karlsruhe, Germany). PCR reactions were carried out in an ABI PRISM® 7900 HT 

Sequence Detection System (Applied Biosystems, Foster City, CA, USA). SYBR® 

Green was used to quantify dsDNA synthesis. Five-μl reactions were performed in 

an optical 384-well plate containing 2.5 μL 2 × SYBR® Green Power Master Mix 

reagent (Applied Biosystems), 10 ng cDNA and 200 nM of each gene-specific 

primer. Amplified templates followed the standard PCR protocol: 50ºC for 2 min; 

95ºC for 10 min; 40 cycles of 95ºC for 15 sec and 60ºC for 1 min, and SYBR® 

Green fluorescence was measured continuously. Melting curves were generated 

after 40 cycles by heating the sample up to 95ºC for 15 sec followed by cooling 
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down to 60ºC for 15 s and heating the samples to 95ºC for 15 sec and primer PCR 

efficiencies were assessed using the LinReg software. Transcript levels were 

normalized using the geometric mean of three plant housekeeping genes, PTB 

(TC111751), UBC9 (TC106312) and Mt-EXON (Livak and Schmittgen, 2001). All 

the primers which were designed previously with “Primer express 3.0” software 

(Thermofisher, MA, USA) are listed in Table 4.1.  

 

Table 4.1. List of primer sequences used for qRT-PCR validation of microarray data. 

 

 

4.3.5 Metabolomic analysis. 

Root AZ tissue was lyophilized and then homogenized into fine powder. 

Extraction and metabolite analysis was performed as described before (Broeckling 

et al., 2005) with slight modifications. Briefly, three biological replicates of 10 mg 

were used for extraction with 1 mL 80% methanol containing umbelliferone as 

internal standard. After sonication, agitation and centrifugation, 0.5 mL of 

supernatant extract was separated and kept at -20ºC until further Ultra-High-

Performance Liquid Chromatography-quadrupole Time of Flight-Mass 

Spectrometry (UHPLC–qTOF-MS) use. The remaining extract was mixed with 1.5 

mL of chloroform containing docosanol as internal standard and incubated for 45 

minutes at 50ºC followed by another incubation with 1mL of water containing 

ribitol. Next samples centrifugation allowed for the phase separation: upper phase 

(polar metabolites extracted) was dried with speed vac and lower phase (non-polar 

metabolites fraction) was dried using nitrogen. Dried and methoxyamine 

hydrochlorides in pyridine resuspended polar extracts were firstly vigorously stirred 

and then sonicated, repeating this process thrice. Finally, 50 µL of 

methyltrimethylsilyltrifluoroacetamide (MSTFA) and 1% N-methyl-N-

trimethylsilyltrifluoroacetamide (TMSC) were added to polar metabolites extracts, 

incubating them for 1 hour at 50ºC. 0.8 mL of chloroform were added to resuspend 

Annotation (Gene ID) Forward Primer sequence Reverse Primer sequence

Glutathione S-transferase GST 19 (TC102103) AATAGGAGGACTGAGTGTGTGTTTGT AGCGACTCGCCGTGATTC

Dehydration-induced protein RD22-like 

protein 2 (TC95843)
GAGTGTGAAGACGCAGCCATT CCATGGATTCAAGCGAGGTT

Nonspecific lipid-transfer protein precursor 

(LTP) (TC94138)
CGTCAGGCTGCATGCAACT GCAGCGGTATTCAAACCTGAA

Anthocyanidin synthase (BM812824) GCCCAAGACACCTGCTGATT TGCTAGCTAGGACTCTTAATTCCTTTG

WRKY44 transcription factor (TC97762) AGACTGGGTTATTTACTTTCTGTTGCA CAAACCAACACCAAATTCCAAGA

AP2 domain transcription factor-like 

(TC110781)
CGGCGATGTTTTGCTTACG TTGGTGGATCATTAGGGAGGTT

MT.ubi-exon (Mt-EXON) GCAGATAGACACGCTGGGA AACTCTTGGGCAGGCAATAA

MT.PTB (-393, -496) (TC111751) CGCCTTGTCAGCATTGATGTC TGAACCAGTGCCTGGAATCCT

MT.UBC9 (-547, -622) (TC106312) GGTTGATTGCTCTTCTCTCCCC TTTTGGCATTGCTGCAAGC

DOWN-REGULATED

UP-REGULATED

HOUSEKEEPING 

GENES
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non-polar dried metabolites and later 0.5 mL of 1.25 M HCL in methanol was added 

for metabolites hydrolysis at 50ºC for 4 hours. After samples were completely 

evaporated with nitrogen, 70 µL of pyridine and 30 µL of MSTFA + 1% TMSC 

were added to resuspend and to derivatize respectively the samples, being these 

incubated during 1 hour at 50ºC. 

Polar and non-polar extracts were analyzed onto a Hewlett Packard Agilent 6890 

Gas Chromatograph System (HP 6890 GC, Agilent Technologies, Santa Clara, CA, 

USA) equipped with a 60 M DB-5-MS column (J&W Scientific, Folsom, CA, 

USA) coupled to a HP 5973 MS as previously described (Broeckling et al., 2005; 

Zhang et al., 2014). Compound derivative identification and quantification were 

conducted using the MET-IDEA software (Broeckling et al., 2005). The relative 

abundance of each compound was normalized to the internal standards and then 

used in statistical analyses. Finally, identified metabolites were classified according 

to their functional category with KEGG database (Kanehisa and Goto, 2000; 

Kanehisa et al., 2015).  

 

4.3.6 Supplemental data 

All the results obtained in transcriptomic and metabolomics analyses are 

included in the following files presented at the end of this work.  

Table S4.1. List of all induced genes in root absorption zone of M. truncatula seedlings under 

drought treatment (≥2-fold, p ≤ 0.05).  

Table S4.2. List of all repressed genes in root absorption zone of M. truncatula seedlings under 

drought treatment (≤0.5-fold, p ≤ 0.05).  

Table S4.3. List of all GC-MS identified polar metabolites significantly regulated in root absorption 

zone of M. truncatula seedlings under drought treatment (p ≤ 0.05).  

Table S4.4. List of all GC-MS identified nonpolar metabolites significantly regulated in root 

absorption zone of M. truncatula seedlings under drought treatment (p ≤ 0.05).  

Table S4.5. List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root 

absorption zone of M. truncatula seedlings under drought treatment (p ≤ 0.05).  
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4.4 RESULTS 

4.4.1 Physiological responses of M. truncatula seedlings grown under water deficit 

conditions 

For the characterization of seedling drought responses, water content and 

biomass were determined. Attending to seedling DW, shoot and root biomass did 

not show significant differences between control and drought treatments (Fig. 

4.1A). In addition, water content decreased significantly in shoots and roots; the 

decline was more pronounced in shoots, while in roots this parameter decreased 

from almost 92% to 90% (Fig. 4.1B). Furthermore, changes in root morphology 

were observed; water limitation induced root elongation in seedlings subjected to 

this treatment. Interestingly, drought treatment produced a significant increase 

(40%) in root length compared to control plants (Fig. 4.1C). This root growth is 

also obvious in figure 4.1E, where drought-stressed plantlets grew thinner and 

longer than controls. However, leaf area showed a significant reduction as water 

restriction became higher; from 0.85 cm2 in control plants to 0.65 cm2 in drought 

plants (Fig. 4.1D).  

 

4.4.2 Gene expression analysis in the root absorption zone of M. truncatula 

seedlings 

To identify genes induced or repressed when seedlings are subjected to water 

deficit, we carried out a transcriptomic analysis using the Medicago Genome Array-

Affymetrix GeneChip. A comparison of control and drought-stressed root samples 

showed a total of 314 genes differentially regulated, 168 induced (≥2-fold, p ≤ 0.05; 

Table S4.1 and 146 repressed (≤0.5-fold, p ≤ 0.05; Table S4.2) when compared to 

control seedling roots. Additionally, to visualize the effects of the water deficit 

treatment in the significantly regulated genes, a heatmap was generated (Fig. 4.2).  

To have a broader perspective about which genes were involved in response to 

the treatments, a comparison of functional gene categories have been carried out 

(Fig. 4.3). Firstly, 101 out of the 314 probesets were unknown sequences. Attending 

to the number of genes involved, the functional group containing the largest number 

of genes was secondary metabolism, followed by functional groups such as 

hormones, lipid, and cell wall metabolism (Fig. 4.3). Special attention deserves the 

hormone metabolism category, which contained 17 genes differentially regulated 

by water deficit in root AZ of M. truncatula seedlings (Fig. 4.3). Furthermore, 

almost twice as many of these hormone metabolism-related genes were found up-

regulated compared to down-regulated genes. A special mention should be also 
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given to those functional groups which are represented by less genes but that are 

important in the analysis of drought effects, including transcription factors, stress 

regulation, signaling or transport related genes (67 genes). 

 

Figure 4.1. Effects of different water availability conditions on shoot and root biomass (A), water 

content (B), root length (C) and leaf area (D) of 4-day old seedlings of M. truncatula. Values 

represent the average ± SE (n=3 biological replicates for biomass and water content, n= 18 for root 

length and leaf area). An asterisk (*) denotes significant differences (p ≤ 0.05; Student’s t-test) with 

respect to control plants. (C) and (D) represent 4-days old M. truncatula seedlings growth under 

control and drought conditions respectively.  
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Figure 4.2. Heat map for the mRNA profiles of 314 genes differentially expressed between two 

treatments. Red color represents high expression while blue color represents low expression.  

 

To summarize and functionally analyze the gene expression changes observed, 

the bioinformatics tool Mapmap was used (Fig. 4.4). Although differentially 

expressed genes were found in basically all the functional groups, three Mapman 

sections contain >75% of the genes: cell wall, lipids and secondary metabolism. In 

the cell wall section, most of the genes (around 80%) were up-regulated under water 

deficit stress treatment, while the other two sections contained both up- and down-

regulated genes (Fig. 4.4). Genes involved in lipid breakdown and in fatty acid 

synthesis were significantly induced under low water availability conditions, being 

most of them lipases and fatty acid condensing enzymes (Fig. 4.4, Table 4.2). In 

terms of secondary metabolism, genes related to terpene, flavonoid and 
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phenylpropanoid metabolism were also found significantly expressed, with similar 

number of genes up- and down-regulated. Although to a lesser extent, other 

metabolic sections also were affected by the water deficit, such as amino acid, 

nucleotide and carbohydrate metabolism. 

 

 

Figure 4.3. Comparison of the transcriptional up and down regulation of gene families in root 

absortion zone of M. truncatula seedlings (≥2-fold up- or ≤0.5-fold down-regulated, p ≤ 0.05). 

To identify which genes show the largest relative expression changes, the ratio 

between expression values under water deficit and control samples (D/C) was 

calculated. Tables 4.2 and 4.3 show the top-ten up- and down-regulated genes 

respectively based on the D/C ratio representing fold change. Interestingly, lipid 

and secondary metabolism related genes predominate in these lists of top-ten up 

and down regulated genes. Genes related to cell wall metabolism are not so well 

represented in tables 4.2 and 4.3 since their expression was altered to a lower ratio 

than lipid and secondary metabolism genes (Tables S4.1 and S4.2). The relative 

expression of genes such as a probable glutathione S-transferase (heat shock protein 

(TC105598) and an extracellular lipase EXL3 (TC95982) was increased more than 

6-fold when the plants were grown under water deficit conditions. Also, an 

anthocyanin-related gene and one transcription factor were significantly 

upregulated (4-fold) in water deficit treatment (Table 4.2). Conversely, histidine 

decarboxylase decreased its expression more than 7-fold in drought conditions 

compared to controls as well as two terpene-related genes, which reduced five- and 
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three-fold respectively their expressions as plants were subjected to low water 

availability conditions (Table 4.3).  

 

Figure 4.4. Mapman overview of changes of transcript levels in the root AZ of 4-day old seedlings 

of M. truncatula under different water availability stress. Every functional category is represented 

and red and green represent an increase and decrease of gene expression respectively relative to 

control values. A color scale was used corresponding an intense color with a high degree of 

expression difference and viceversa.  
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Table 4.2. List of top 10 most up-regulated genes in the root AZ of M. truncatula seedlings under drought conditions (≥2-fold, p ≤ 0.05). 

 

 

Table 4.3. List of top 10 most down-regulated genes in the root AZ of M. truncatula seedlings under drought conditions (<0.5-fold, p ≤ 0.05).   

Probesets ID EST ID Target Description
Control                              
AV ± SE 

Drought                              
AV ± SE 

Ratio 
(D/C) Functional category

Mtr.39734.1.S1_at TC105598 Probable glutathione S-transferase  (Heat shock protein 26A) 375.8 ± 40.1 2441.0 ± 217.2 6.5 Gluthatione S-transferase

Mtr.12797.1.S1_at TC95982 Family II extracellular lipase EXL3 38.6 ± 3.9 245.8 ± 53.7 6.4 GDSL motif-lipase

Mtr.12258.1.S1_at TC94140 Nonspecific lipid-transfer protein precursor (LTP) 590.6 ± 55.4 3544.0 ± 703.1 6.0 Lipid metabolism

Msa.1549.1.S1_at iMsa.1549 Family II lipase EXL3 55.9 ± 6.6 280.5 ± 51.5 5.0 GDSL motif-lipase

Mtr.42933.1.S1_x_at TC94143 Nonspecific lipid-transfer protein precursor (LTP) 670.1 ± 76.9 3296.9 ± 723.0 4.9 Lipid metabolism

Mtr.28774.1.S1_at BM812824 Anthocyanidin synthase 34.9 ± 1.6 164.0 ± 30.2 4.7 Secondary metabolism

Mtr.39293.1.S1_at TC104602 Unkown 32.5 ± 1.4 146.6 ± 29.6 4.5 Not assigned

Mtr.8427.1.S1_at TC100141 Lipoxygenase 1 707.4 ± 47.6 3177.9 ± 442.8 4.5 Hormones metabolism

Mtr.28742.1.S1_at BI312233 Very-long-chain fatty acid condensing enzyme cuticular 1 (CUT1) 62.0 ± 7.2 277.5 ± 61.4 4.5 Lipid metabolism

Mtr.44034.1.S1_at TC96563 Pathogenesis-related and ethylene-responsive transcriptional factor 11.7 ± 1.7 51.3 ± 10.5 4.4 Transcription factor

Probesets ID EST ID Target Description
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AV ± SE 
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Ratio 
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Mtr.39293.1.S1_at TC104602 Unkown 32.5 ± 1.4 146.6 ± 29.6 4.5 Not assigned

Mtr.8427.1.S1_at TC100141 Lipoxygenase 1 707.4 ± 47.6 3177.9 ± 442.8 4.5 Hormones metabolism

Mtr.28742.1.S1_at BI312233 Very-long-chain fatty acid condensing enzyme cuticular 1 (CUT1) 62.0 ± 7.2 277.5 ± 61.4 4.5 Lipid metabolism

Mtr.44034.1.S1_at TC96563 Pathogenesis-related and ethylene-responsive transcriptional factor 11.7 ± 1.7 51.3 ± 10.5 4.4 Transcription factor
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The microarray expression results were then validated by performing 

quantitative real-time PCR (qRT-PCR) on a set of 6 genes up- or down-regulated 

by drought stress (Fig. 4.5). In all cases, the trends observed in the microarray 

analysis were confirmed by qRT-PCR. Among these selected genes transcription 

factors belonging to the AP2/ERF (Fig. 4.5A) and WRKY family (WRKY44, Fig. 

4.5B), which were both markedly up-regulated. According to the importance of the 

secondary and lipid metabolism functional groups in the drought response, a 

nonspecific lipid-transfer protein precursor (Fig. 4.5C) and the anthocyanidin 

synthase (Fig. 4.5D) relative expression levels are presented to illustrate the up-

regulation of these pathways by water deficit. The opposite trend was observed for 

the glutathione S-transferase GST 19 and the dehydration-induced protein RD22-

like protein, which were down-regulated under limited water situations (Figs. 4.5E-

F).  

 

4.4.3 Metabolomic overview of water deficit effects in M. truncatula seedlings  

In order to identify which metabolites are involved in the response of M. 

truncatula seedlings to water deficit, two types of metabolomic analysis were 

carried out. First, both polar and nonpolar compounds were analyzed by gas 

chromatography coupled to mass spectrometry (GC-MS; Table S4.3 and S4.4, 

respectively). Second, secondary metabolites were examined by ultra-high 

performance liquid chromatography coupled to quadrupole time-of-flight mass 

spectrometry (UHPLC; Table S4.5).  

 

Table 4.4. Total number (and corresponding percentage) of known and unknown significantly 

regulated metabolites identified in the AZ of M. truncatula 4-days old seedlings under drought 

treatment conditions (p ≤ 0.05).  
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Figure 4.5. qRT-PCR analysis of M. truncatula genes in root AZ of 4-day old seedlings. X-axis 

represents the different treatments of water availability stress while Y-axis represents average values 

of relative mRNA levels of genes. Error bars show the standard error between values from three 

each biological and technical replicates. An asterisk (*) denotes significant differences (p ≤ 0.05; 

Student’s t-test) with respect to control plants. 

 

In the GC-MS analysis, the levels of 200 polar and 95 nonpolar compounds were 

found to change differentially (p ≤ 0.05) under stress conditions, with a fraction of 

them unknown (33% and 53%, respectively; Table 4.4). In order to further select 

which metabolites had a higher impact in the metabolic profile changes, only those 

showing a ≥2 D/C ratio ≤0.5 were analyzed in detail and functionally classified 

(Fig. 4.6). This led to 36 metabolites showing a significant change in relative 
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content, corresponding mostly to polar compounds. The only nonpolar metabolite 

regulated by drought was arachinyl alcohol, a compound related to lipid metabolism 

(Fig. 4.6). The group of polar metabolites includes compounds mostly related to 

amino acid (38%) and carbohydrate metabolism (18%). Some of the main plant 

proteinogenic amino acids were accumulated under the water deficit treatment 

including alanine, asparagine, histidine, leucine, valine and phenylalanine, along 

with some compounds with an osmotic role such as pinitol and ononitol (Fig. 4.7). 

In contrast, the relative levels of the organic acid citrate decreased together with the 

non-proteinogenic amino acid canavanine.  

 

 

Figure 4.6. Distribution of polar and nonpolar GC-MS identified metabolites in the AZ of M. 

truncatula seedlings into functional categories (≥2-fold or ≤0.5-fold, p ≤ 0.05). 

 

Regarding the UHPLC analysis, it led to the identification of 778 metabolites 

mostly involved in secondary metabolism, with few unknown compounds (0.3%). 

Among them, 146 metabolites were significantly affected by drought (p ≤ 0.05; 

Table S4.5). Similarly to the GC-MS analysis, we further selected those showing a 

≥2 D/C ratio ≤0.5 and a p value ≤ 0.01, narrowing down the list to a total of 19 and 

21 metabolites whose levels increased and decreased, respectively, upon the 

treatment (Table 4.5). In terms of compounds accumulating under water deficit, one 

of the largest group included metabolites related to saponin metabolism such as 
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soyasapogenol E. On the other side, luteolin or kaempferol-related metabolites, 

both belonging to flavonoid group, were down-regulated in drought-stressed plants. 

 

 

Figure 4.7. Changes in relative levels of polar metabolites of the AZ of M. truncatula seedlings in 

drought stress (black bars) as compared to control levels (white bars) (≥2-fold or ≤0.5-fold, p ≤ 

0.05). Red arrows show those metabolites which decreased their relative levels. Values represent 

the average ± SE (n=3 biological replicates).  
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Table 4.5. List of dysregulated UPLC metabolites significantly affected by drought treatment in the 

root AZ of M. truncatula plants (≥2-fold or ≤0.5-fold, p ≤ 0.01).  

 

 

Control Drought 

(AV ± SE) (*10
-4

) (AV ± SE) (*10
-4

)

 Gypsogenic acid     29 ± 11 140 ± 10 0.002 4.9

 Sinapic acid    3 ± 1 11 ± 1 0.001 3.9

 Glycyrrhetinic acid, 18 alpha-    2 ± 1   6 ± 0 0.006 3.2

 Glycyrrhetinic acid, 18 beta-   2 ±1   6 ± 0 0.006 3.2

 Glycyrrhetinic acid    2 ± 1   6 ± 0 0.006 3.1

 Aglycone triterpene C30H48O4  51 ± 2 149 ± 11 0.001 3

 Echinocystic acid   16 ± 1 42 ± 5 0.006 2.7

 Hederagenin  26 ± 0 67 ± 6 0.002 2.6

 Hederagenin  26 ± 0 67 ± 5 0.001 2.6

 Soyasapogenol E   70 ± 7 182 ± 13 0.002 2.6

 Oleanolic acid  70 ± 7 181 ± 13 0.001 2.6

 Ursolic acid  71 ± 6 181 ± 13 0.001 2.6

 Rha-hexose-hexose-hexose-Bayogenin     6 ± 1 15 ± 1 0.004 2.5

 Epicatechin-3-Glucoside            107 ± 9 246 ± 23 0.005 2.3

 Hexose-Quillaic acid   11 ± 1  25 ± 2 0.005 2.2

 Quillaic acid   54 ± 5             116 ± 7 0.002 2.1

 Gal-GlcA-SoyB   108 ± 11             220 ± 4 0.001 2

 Gypsogenin   16 ± 2 33 ± 0 0.002 2

 Dehydrosoyasaponin   326 ± 17 656 ± 51 0.004 2

 Isorhoifolin   95 ± 4 40 ± 2 0.000 0.4

 Saponari  533 ± 20 219 ± 11 0.000 0.4

 Isorhoifolin (Apigenin-7-O-rutinoside)  96 ± 4 39 ± 2 0.000 0.4

 Luteolin-3'-7-di-O-glucoside   14 ± 0    6 ± 1 0.000 0.4

 Sakuranin    9 ± 1    4 ± 0 0.001 0.4

 Lignoceric acid     5 ± 0    2 ± 1 0.007 0.4

 Irisolidone    5 ± 1    2 ± 0 0.007 0.4

 Kaempferol    4 ± 0    1 ± 0 0.001 0.3

 Liquiritigenin   87 ± 5  29 ± 1 0.000 0.3

 Liquiritigenin  87 ± 5  28 ± 1 0.000 0.3

 Coumestrol  249 ± 14  78 ± 3 0.000 0.3

 Quercitrin           127 ± 6  33 ± 3 0.000 0.3

 (3',4'-Dimethoxyphenyl)-7-hydroxycoumarin    6 ± 1    2 ± 0 0.005 0.3

 3',4'-Methoxy-phenylo-7-OH-Coumarin    6 ± 1    2 ± 0 0.005 0.3

 Pelargonidin-3-glucoside         1237 ± 44   304 ± 151 0.004 0.2

 Orientin (Luteolin 8-C-glucoside)  10 ± 1    2 ± 1 0.004 0.2

 Orientin (Luteolin 8-C-glucoside)  10 ± 1    2 ± 1 0.004 0.2

 5,6-dihydroxy-3',4'-dimethoxy-flavanone    8 ± 0    2 ± 1 0.000 0.2

 7,3',4'-Trihydroxyisoflavone Precursor  709 ± 15  150 ± 44 0.000 0.2

 7,3',4'-Trihydroxyisoflavone Precursor  709 ± 15  150 ± 44 0.000 0.2

 8-Methylsulfinyl-n-octyl glucosinolate    5 ± 1    1 ± 0 0.003 0.2

METABOLITE p-value Fold change
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4.5 DISCUSSION 

4.5.1 Global metabolism is affected by drought in the AZ of M. truncatula roots  

Drought stress affects several processes in plants, particularly plant growth and 

development (Farooq et al., 2012). Roots, as first organs sensing water shortage in 

soils, play a key role in the first stages of plant responses to water deficit conditions. 

Despite the fact that cell growth is one of the process firstly inhibited by drought 

(Hsiao, 1973), root tissue apparently contradicts this general theory by increasing 

growth rate through morphologic modifications (Comas et al., 2013), which can be 

interpreted as an attempt to reach deeper soil layers where water availability is 

higher (Sharp et al., 1988). In the experimental system employed in the present 

work, the root systems were grown in a Petri dish with homogeneous water 

availability but, even so, root length increased under increased agar concentrations 

(Fig. 4.1C; 4.1E). Similar responses have been observed in other plants when grown 

on plates containing polyethylene glycol as osmotic agent (van der Weele et al., 

2000; Zeid and Shedeed, 2006; Youssef et al., 2016). Conversely, seedling leaf area 

showed a significant reduction in the water stress treatment (Fig. 4.1D), indicating 

a differential response of the aerial plant tissues by prioritizing root growth to face 

drought (Gargallo-Garriga et al., 2014). 

Various research groups have exhaustively analyzed M. truncatula root 

transcriptomic and metabolomic profiles. Zhang et al. (2014) analyzed the 

transcriptomic and metabolomics of roots of adult M. truncatula plants and showed 

the expression profile of a large number of transcripts tightly coupled to the plant 

water potential. Dealing with seedlings, Watson et al. (2015) identified substantial 

metabolic differences between distinct and spatially segregated root regions as root 

tip and seedling border cells, highlighting the need of detailed transcriptomic and 

metabolomics studies to understand root biology properly (Wang et al., 2012; Opitz 

et al., 2015). In the present study, the number of transcripts altered by the water 

deficit applied was limited; it should be noted that the experimental approach 

applied provoked a mild water stress during a short period of time and in a specific 

section of the root, the AZ, thus not including meristematic, a section with high 

transcriptional activity in roots. Summarizing, the genes identified as differentially 

expressed in the present study can be considered as primary responses to drought 

associated to the root AZ. In this sense, the number of up-regulated genes affected 

by low water availability conditions in root AZ of M. truncatula seedlings was 

slightly higher than down-regulated ones. 
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Regarding the GS-MS analysis, the number of significantly regulated 

metabolites (Table 4.4; 134 polar + 45 nonpolar) did not differ substantially from 

other studies analyzing root tissue of adult M. truncatula plants as Zhang et al. 

(2014), who found 100 and 70 known polar and nonpolar metabolites, respectively. 

Among them, those significantly altered by drought were mainly polar compounds 

related to primary metabolism of nitrogen and carbon (Fig. 4.6 and 4.7) which have 

been suggested to prevent damage in stressed plants as amino acids or 

carbohydrates such as ononitol and pinitol (Bartels and Sunkar, 2005; Staudinger 

et al., 2012). The mild changes in important drought markers as the amino acid 

proline (significant at 95% but D/C ratio lower than 2-fold) indicate that drought 

applied treatment is moderate but even under these conditions other metabolic 

pathways less notorious are being activated by drought. Indeed, the UPLC analysis 

identified a higher amount of metabolites than GC-MS (Table 4.4), being most of 

them related to secondary metabolism, especially to terpenes and flavonoids. 

Particularly related to terpene metabolism, saponins are glycosylated triterpenic or 

steroidal compounds with protection properties widely distributed in many plant 

species (Confalonieri et al., 2009); for example, it has been described to be in a high 

amounts in legumes (Huhman and Sumner, 2002; Dixon and Sumner, 2003; 

Huhman et al., 2005) and especially abundant in the genus Medicago. Many of the 

UPLC identified compounds like hederagenin, soyasapogenol E or medicagenic 

acid (Table 4.5, Table S4.5) were linked to saponins. Watson et al. (2015) attributed 

the elevated biosynthesis of these terpene-related compounds with defense function 

in plants. Similar drought studies carried out in potato or in grapevine analyzed the 

metabolic profile finding similar compounds that were altered due to water shortage 

(Evers et al., 2010; Hochberg et al., 2013; Gong et al., 2015).  

In agreement with this response, the majority of the transcripts altered by drought 

were involved in four functional groups related to lipid, hormones, cell wall and 

secondary metabolisms (Figs. 4.2 and 4.3). Interestingly, as a part of early responses 

to water restriction stress, genes related to secondary metabolism such as 

terpenoids, flavonoids, waxes and phenylpropanoids involved in defense and 

protection systems were mainly regulated, as previously observed in alfalfa roots 

(Chen et al., 2008). Also, the identification of many lipid and cell wall metabolism-

related genes in respond to drought stress was in agreement with other studies 

carried out in young maize roots subjected to this stress situations (Voothuluru et 

al., 2016). Studies focused on transcriptomic analysis in other legume species such 

as chickpea and soybean have detected that genes associated to key hormone 

metabolism or that several transcription factors regulate root growth and responses 

under water-deficit conditions (Garg et al., 2016; Song et al., 2016).  
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In summary, transcriptomic and metabolomic analysis performed under mild 

drought conditions disclose the activation of metabolic pathways related to lipid, 

hormones, cell wall and secondary metabolism in the AZ of the root as primary 

responses. 

4.5.2 Drought up-regulated genes involved in lipid, fatty acid and hormone 

metabolisms in roots  

Drought stress up-regulated genes involved in lipid and fatty acid metabolism in 

roots including several lipases and lipid-transfer proteins (Table 4.2) affecting cell 

biological membranes integrity and fluidity. Firstly, a total of 11 lipoxygenases 

(LOXs) genes were identified in the present study being 9 of them strongly up-

regulated in roots under drought conditions (Tables 4.2 and S4.1). LOXs are non-

heme iron-containing dioxygenases ubiquitous in the animal and plant kingdoms 

and are involved in various physiological processes such as seed development and 

germination (Brash, 1999; Porta and Rocha-Sosa, 2002) and responses to stresses 

such as drought (Porta et al., 1999). Recently, LOX6, has been shown to be essential 

for drought stress-induced jasmonate accumulation in Arabidopsis roots (Grebner 

et al., 2013). The first step in jasmonate biosynthesis is catalyzed by a total of 13 

lipoxygenases (LOXs; Feussner and Wasternack, 2002; Maalekuu et al., 2006) by 

deoxygenation of linoleic (methyl 9,12-octadecadienoate) and linolenic acids 

(octadecatrienoic acid methylester, 9,12,15), whose content decreased significantly 

in drought-stressed roots to a fold change of 0.71 and 0.77, respectively (Table 

S4.4). Being linolenic acid the most abundant fatty acid in plant membranes, the 

decrease observed in drought-stressed roots may be related to membrane 

reorganization occurring in plant cells to counteract the metabolic slowdown 

(Upchurch, 2008). Similar responses have been observed in other plant systems 

(Dakhma et al., 1995; Zhang et al., 2005), suggesting that plant drought tolerance 

is dependent on the level of fatty acid unsaturation and/or the ability to maintain or 

adjust fatty acid unsaturation (Berberich et al., 1998; Mikami and Murata, 2003).  

Lipases, transcripts coding for a fatty acid condensing enzyme (CUT1) and a 

nonspecific lipid-transfer protein precursor were also found significantly 

overexpressed under drought conditions (Tables 4.2, S4.1). Lipases are one of the 

lipid hydrolyzing enzymes in plants and their overexpression has been closely 

associated with morphogenesis and development (Matsui et al., 2004). Particularly, 

phospholipases have been described to act as a signaling drought response in plants 

(Hong et al., 2010). In addition, nonspecific lipid transfer proteins are small proteins 

that are ubiquitously distributed throughout the plant kingdom which has been 

related to lipid mobilization during post-germinative growth (Pagnussat et al., 
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2015) and in defense reactions against abiotic stress (Wei and Zhong, 2014), 

particularly under drought conditions in Arabidopsis (Guo et al., 2013). In this 

regard, drought responses of these precursors were validated by quantitative real-

time PCR (qRT-PCR), finding that they increased their expression level more than 

three-fold under water-deficit conditions (Fig. 4.5C). All these results could 

indicate that an enhanced lipid metabolism in roots might also contribute to enhance 

drought tolerance in M. truncatula.  

Among the transcripts regulated under low water availability conditions (Tables 

4.2 and 4.3), there were several oxidoreductases (2-oxoglutarate/Fe (II)-oxygenase 

proteins) which have been associated with ethylene biosynthesis (Farrow and 

Facchini, 2014). In addition, the cytochrome P450 enzymes family was highly 

represented by 19 down-regulated genes (Table S4.2), which play an essential role 

in numerous plant metabolic pathways (Schuler, 1996; Werck-Reichhart et al., 

2002; Nielsen and Møller, 2005; Li et al., 2007; Pan et al., 2009; Nelson and Werck-

Reichhart, 2011). It has been suggested that cytochrome P450 monooxygenases are 

related to the terpene metabolism (Suzuki et al., 2002; Confalonieri et al., 2009; 

Watson et al., 2015), which is highly affected by drought at the transcript (with the 

two terpene synthases highly down-regulated (Table 4.3)) and metabolic level, with 

a reduced content of saponins observed in drought-stressed roots (Table S4.5; 

(Huhman et al., 2005)) together with an accumulation of hederagenin and 

soyasapogenol E (Table 4.5; (Tava et al., 2010)). 

4.5.3 Cell wall modifications to tackle drought situations 

Notably, cell wall associated genes were highly overexpressed in drought 

conditions, most likely affecting cell wall modification and degradation as Mapman 

software indicates (Fig. 4.4). The elongation of roots observed when plants were 

grown in low water availability conditions (Fig. 4.1C) supports the hypothesis of 

expansion of cell walls as part of the mechanism of exploration of deeper substrate 

areas to facilitate water uptake. This suggests that seedling growth is a coordinated 

work between water uptake and cell wall enlargement leading to cell expansion 

(Cosgrove, 1993). In this experiment we found several genes encoding cell-wall 

biosynthesis enzymes which may contribute to root elongation such as cellulose 

synthase, α-expansin and xyloglucan endotransglycosylases/hydrolase (Table 

S4.1). All of them have been reported to play a role on root adaptation to low water 

availability conditions by participating in cell extension (Wu et al., 1994; Wu and 

Cosgrove, 2000; Wu et al., 2001). Additionally, these enzymes have been related 

to root hair initiation (Vissenberg et al., 2001), which agrees with the observed 

activation in the root AZ of  M. truncatula roots. Further  evidence  supporting the  
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idea that plant cells walls are altered is the overexpression of glycine-rich proteins 

(Table S4.1), which has been already reported to be induced under different abiotic 

stresses in A. thaliana seedlings (Kim et al., 2008) and whose activation has been 

related to root cell elongation (Mangeon et al., 2009). Similarly, proline-related 

proteins have been associated to growing regions indicating that cell wall 

modifications are induced in actively growing cells in response to drought (Yoshiba 

et al., 1997; Battaglia et al., 2007; Szabados and Savouré, 2010; Kavi Kishor et al., 

2015), as well as to root hair growth and elongation in A. thaliana plants (Velasquez 

et al., 2011; Boron et al., 2014). These findings suggest that drought stress provokes 

changes in root seedling cell walls promoting their elongation to cope with stress 

conditions.  

4.5.4 The phenylpropanoid pathway is severely modulated under mild drought 

conditions 

The phenylpropanoid pathway serves as a rich source of metabolites in plants by 

the production of many important compounds such as flavonoids, coumarins, and 

lignans. Flavonoids represent a major component of secondary metabolism in plants 

being extensively described as defense metabolites which are synthesized in 

response to both abiotic and biotic stresses. Among flavonoid biosynthesis 

enzymes, anthocyanidin synthase participates in the synthesis of anthocyanins. 

Particularly, anthocyanidin synthase gene is present in the top 10 up-regulated 

genes table (Table 4.2), followed by transcripts with lower D/C ratio as those related 

to flavonoids or phenylpropanoids (Table S4.1), indicating the importance of 

anthocyanins in drought responses at root level. Also, anthocyanidin synthase 

expression level was analyzed by qRT-PCR showing nearly 5-fold increment under 

drought conditions (Fig. 4.5D). It has been previously described that anthocyanins 

are osmoregulators which their accumulation is stimulated by environmental 

stresses, particularly by drought; thus acting as antioxidants by reducing damage 

and protecting against oxidation (Rabino and Mancinelli, 1986; Chalker-Scott, 

1999; Steyn et al., 2002). Related to this point, especially relevant is the amino-acid 

phenylalanine (precursor of phenylpropanoids), whose levels increased 

considerably (Fig. 4.7), leading to an increase in products derived from this pathway 

(such as flavonoids) to cope with drought stress. Several flavonoid-related genes 

changed considerably its expression under drought conditions. Fini et al. (2011) 

deduced that flavonoid biosynthesis is transcriptionally induced in response to 

drought stress while, in agreement with this point, Maloney et al. 2014 suggested 

that flavonols play a major role as antioxidants in roots. Through UHPLC analysis, 

we detected important secondary metabolites such as daidzein (Table S4.5), which  
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is associated with isoflavone metabolism and was also identified in M. truncatula 

seedling roots (Staszków et al., 2011) and kaempferol, a constituent compound in 

the biosynthesis of flavonols. 

4.5.5 Antioxidant responses activated in roots 

The second group is associated with antioxidant responses to water scarcity 

conditions highlighting the importance of oxidative stress and detoxification of 

reactive oxygen species. In this regard, glutathione metabolism is a pathway that is 

involved in the antioxidative system of plants. As in humans, plant gluthatione S-

tranferases (GST) enzymes are induced by diverse environmental stimuli to 

maintain cell redox homeostasis and protect organisms against oxidative stress by 

metabolizing a wide variety of toxic exogenous compounds via the tripeptide 

glutathione (GSH) conjugation. Apart from their detoxification function, they also 

participate in processes such as flavonoid transport (Zhao and Dixon, 2010). 

According to the amino acid sequence and to the conservation of intron:exon 

placement, three types of plant GSTs are described: type I, II, II and then, unknown 

GSTs (Marrs, 1996). In our transcriptomic analysis, we found a probable 

glutathione S-transferase (heat shock protein 26A) transcript, which significantly 

increased its expression under drought conditions. In addition, more transcripts 

related to GST were regulated with drought treatment (Tables S4.1 and S4.2); in 

particular, the expression levels of GST19 were validated by RT-PCR in Fig. 4.5E, 

results that verified that this gene is down-regulated under drought. This and above 

discussed issue are related since GSTs are implicated to secondary metabolism 

since phenylpropanoids are substrates of plant GSTs (Marrs, 1996); changes in 

secondary metabolism could lead in higher drought tolerance of these plants. 

4.5.6 Transcription factors regulated under drought conditions 

It is now well established that alteration in the expression of several types of 

transcription factors (TFs) can provide increased drought tolerance enabling plants 

to withstand unfavorable conditions (Singh and Laxmi, 2015; Joshi et al., 2016). 

The current work identifies several TFs differentially regulated at the 

transcriptional level and Mapman analysis displayed a total of 13 differentially-

expressed genes linked to TFs, being most of them up-regulated (Fig. 4.4). 

Additionally, the relative expression of some of these TFs was validated by qRT-

PCR (Figs. 4.5A-B). WRKY TFs have been described to play an important role in 

plant stress responses (Chen et al., 2012) being particularly WRKY44 a gene 

overexpressed under salinity and drought stress conditions in Arabidopsis plants 

(Claeys and Inzé, 2013). Also, one of the largest groups of plant-specific TFs is the 

AP2 /ERF superfamily. Members of this family are involved in numerous 



Discussion 

 117 

 

biological processes such as plant growth and development and in the responses of 

plants to abiotic stresses (Mizoi et al., 2012). In our study, an AP2/ERF TF shows 

a high fold-change expression ratio (4.4) (Table 4.2). In agreement with our work, 

Sharoni et al. (2012) described the induction of AP2/ERF expression levels under 

drought conditions in rice plants, showing a six-fold increase in the drought-tolerant 

line compared with the drought-susceptible line in the root. Similarly to our study, 

Shu et al., 2015 (Shu et al., 2016) ranked the differentially expressed AP2/ERF TFs 

according to the tissues in which such expression changed and to the response to 

various stresses in adult M. truncatula plants. 

In addition to above described TFs, transcripts associated with APETALA3, 

MYB, LBD and Zn-finger TFs were also differentially regulated in this experiment. 

Specifically, MYB TFs have been described to participate in very-long-chain fatty 

acids and in cuticular wax biosynthesis regulation in wheat plants; so the 

overexpression of these MYB-related proteins could be associated with the 

observed activation of wax biosynthesis (Fig. 4.3), compounds with a relevant role 

in terms of plant responses to environmental stresses like drought (Bi et al., 2016). 

Seo et al. (2011) proposed that the regulation of the expression of RD22 gene was 

carried out by MYB TFs at stomatal movements modulation level under drought 

conditions; however, this differs from the expression pattern of dehydration-

induced protein RD22-like, which was down-regulated as drought became more 

intense (Fig. 4.5F and Table S4.2). 
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4.6 CONCLUSIONS 

In this chapter, we showed that plants have rapid molecular responses upon 

changes in the levels of available water; in the case of M. truncatula roots, lipid, 

hormone, cell wall and secondary metabolisms appear as relevant factors enabling 

plants to cope with drought stress situations. Also, results presented here identify 

several TFs which may be involved in the regulation of gene expression in response 

to drought. Finally, these results suggest that the AZ of roots is very active tissue 

rapidly responded to changes in water levels even during the early stages of M. 

truncatula plant development.  
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GENERAL OVERVIEW 

The overall goal of this work is to gain further insights into drought responses in 

plants of two legume species of great agronomical importance; the tropical legume 

G. max and the temperate model legume M. truncatula. To address this general aim, 

this work is divided in four chapters where results have been presented. 

In chapter 1, we observed that drought stress negatively affected AsA 

biosynthesis in the aerial part of soybean plants both at the AsA content and 

enzymatic level. In roots the levels of this antioxidant were found under detection 

limits, while a decrease was observed in leaves of drought-stressed plants, 

demonstrating that plant tissues respond differently to drought stress; this 

differential response at the tissue level was also observed in terms of gene 

expression via RNA-Seq analysis. Furthermore, this differential pattern of gene 

expression was also observed in plants of M. truncatula as water deficit became 

more intense. These results suggest that the last step of the AsA biosynthesis 

pathway (catalyzed by GAlLDH) is not the only point involved in the control of 

AsA content under drought stress conditions. Genes encoding GDP-D-mannose 

pyrophosphorylase (VTC1) emerge as strong candidates for the regulation of AsA 

biosynthesis in drought-stressed legume plants, while several steps in the pathway 

such as GDP-D-mannose 3´, 5´-epimerase (GME) genes appear to have undergone 

functional specialization in soybean.  

Chapter 2 presents a detailed characterization of plants subjected to two levels 

of progressive drought stress. Changes in biomass and in water parameters indicate 

that these plants prioritize the maintenance of leaf water status and that they modify 

biomass shoot/root ratio as a strategy to cope with water stress. Also, gas exchange 

parameters such as stomatal conductance, photosynthesis and transpiration rates 

were limited by the low water availability. Concomitantly, plants prioritize carbon 

exportation, coming mainly from starch degradation in leaves, supplying carbon 

skeletons toward root in order to promote its growth. Regarding nitrogen 

metabolism, protein degradation was found activated in leaves as a stress signal 

being amino acids partly allocated in both organs. Altogether, responses observed 

here exhibit different behavior patterns present in different plant tissues under this 

stress; a passive survival strategy for the leaf is suggested coexisting with an active 

engagement of the root organ in drought-stressed plants 

Drought responses have been thoroughly studied in plant adult stages but little 

is known about responses at the early stages of development. Responses at these 

stages could affect drought tolerance in subsequent episodes of low water 
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availability. In addition, methods of analysis of the effects of drought in plants have 

been carried out through deprivation of water or the use of polyols that simulate 

osmotic stress, with unwanted secondary effects in terms of plant physiology. For 

that reason, in chapter 3, a new in vivo method for simulating drought conditions 

was developed by using different concentrations of agar in the medium thus 

allowing lowering water availability for plants. The water deficit imposed caused 

reproducible reductions in water potential and other physiological parameters in 

agreement with previous studies in adult plants confirming the validity of the new 

in vivo method. Also, this protocol allows a better characterization of root 

metabolism. These results highlight the key role of this organ during the first plant 

development stages concentrating most of the carbon reserves of the plants. An 

intensive root examination was carried out under two drought levels finding that 

root architecture and morphology are strongly affected by water scarcity. All these 

findings conclude that this method is suitable to simulate different drought stress 

levels under highly controlled conditions in a variety of plant seedlings.  

The focus of chapter 4 is the study the drought stress response of the part of the 

root known as “maturation, differentiation or absorption zone” using transcriptomic 

and metabolomic techniques. This zone corresponds to the area where root hairs are 

present and is the root zone in charge of carrying out the absorption of nutrients and 

water. Analysis presented here showed that root lipid, hormones, cell wall and 

secondary metabolism play a key role in the response of plants to low water 

availability conditions. These factors enable plants to face drought stress situations 

through the expression of genes such as transcription factors or cell wall-related 

genes. Also, several metabolites, mostly amino acids, accumulate in roots, which 

could be related to an activation of plant signaling responses under drought 

conditions. Results presented here show that root tissue is very active under drought 

conditions at the early stages of development in M. truncatula plants. 

In conclusion, this work contributes towards our understanding of legume 

responses to drought stress, particularly at the root level, with potential implications 

for improved plant tolerance to environmental constrains. Results also provide new 

insights of potential mechanisms for water deficit signal transduction and gene 

networks controlling the response of roots to drought, contributing to support the 

crucial role of roots in situations of drought stress. 
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Table S4.1. List of all induced genes in root absorption zone of M. truncatula seedlings under drought treatment (≥2-fold, p ≤ 0.05).  

 

UP-REGULATED

Probesets Target Description Representative Public ID #1 #2 #3 #1 #2 #3

Mtr.46426.1.S1_s_at Cellulose synthase 1767.m00041 227.51 166.95 186.37 306.38 409.11 446.46 193.61 17.85 387.31 41.88 0.013 2.00

Mtr.50397.1.S1_at Protein of unknown function DUF588 IMGAG|971.m00010 201.07 168.07 185.65 310.11 387.79 412.37 184.93 9.53 370.09 30.82 0.005 2.00

Mtr.9873.1.S1_at Thioredoxin H2 TC104708 133.65 128.13 154.54 265.49 303.63 264.28 138.77 8.04 277.80 12.92 0.001 2.00

Mtr.36889.1.S1_s_at NIP3 CX540431 136.01 106.20 130.07 241.92 202.29 301.13 124.09 9.11 248.45 28.72 0.015 2.00

Mtr.36347.1.S1_at MXA21_90 BE320554 15.06 16.94 14.56 35.20 28.88 29.19 15.52 0.72 31.09 2.06 0.002 2.00

Mtr.13198.1.S1_at PHAP2B protein TC97243 15.23 18.27 19.00 31.99 34.66 38.51 17.50 1.16 35.05 1.89 0.001 2.00

Mtr.42503.1.S1_at Isoflavonoid glucosyltransferase TC111703 88.74 62.13 76.68 119.49 166.13 170.86 75.85 7.69 152.16 16.39 0.014 2.01

Mtr.40121.1.S1_at Peroxidase 1C precursor TC106551 518.72 516.86 474.59 975.58 1033.36 1021.27 503.39 14.41 1010.07 17.59 0.000 2.01

Mtr.38699.1.S1_at NADH dehydrogenase subunit 2 TC103343 457.54 402.96 391.85 780.05 787.39 953.29 417.45 20.30 840.24 56.56 0.002 2.01

Mtr.13559.1.S1_s_at LOB domain protein 38 TC98397 171.59 138.17 171.59 326.44 336.65 306.32 160.45 11.14 323.14 8.91 0.000 2.01

Mtr.19019.1.S1_at No apical meristem (NAM) protein IMGAG|969.m00019 382.37 332.77 301.54 639.77 805.85 611.96 338.89 23.53 685.86 60.53 0.006 2.02

Mtr.16234.1.S1_at Allergen V5/Tpx-1 related IMGAG|818.m00026 56.85 41.27 40.92 104.40 70.10 106.96 46.35 5.25 93.82 11.88 0.022 2.02

Mtr.44569.1.S1_at Peroxidase precursor TC97623 1461.29 1147.34 1045.52 2166.57 2432.46 2799.72 1218.05 125.12 2466.25 183.55 0.005 2.02

Mtr.7451.1.S1_at Unknown TC112337 28.51 28.78 36.51 56.95 71.77 62.05 31.26 2.62 63.59 4.35 0.003 2.03

Mtr.4723.1.S1_at Unknown AL378019 100.29 81.65 108.96 145.39 219.78 227.55 96.97 8.06 197.57 26.19 0.021 2.04

Mtr.40106.1.S1_s_at Ripening-related protein TC106511 1222.75 1144.11 975.35 2485.67 1805.87 2524.11 1114.07 72.98 2271.88 233.27 0.009 2.04

Mtr.10910.1.S1_at Probable xyloglucan endotransglucosylase/hydrolase protein 33 precursor TC108325 113.75 79.06 90.63 188.36 187.33 202.78 94.48 10.20 192.82 4.99 0.001 2.04

Mtr.1516.1.S1_at S-receptor kinase-like protein 2 AW257197 30.95 14.97 21.76 37.05 56.94 44.48 22.56 4.63 46.16 5.80 0.034 2.05

Mtr.9617.1.S1_at Auxin induced proline rich protein TC103864 21.40 31.18 37.54 51.43 67.24 66.13 30.04 4.69 61.60 5.10 0.010 2.05

Mtr.25983.1.S1_s_at Pectinesterase 2 precursor 1475.m00044 105.55 99.06 90.93 224.07 156.84 225.50 98.51 4.23 202.14 22.65 0.011 2.05

Mtr.38808.1.S1_at Class III peroxidase TC103581 53.51 48.25 48.78 76.93 108.52 123.79 50.18 1.67 103.08 13.80 0.019 2.05

Mtr.12696.1.S1_at Dimethylaniline monooxygenase (N-oxide-forming)-like protein TC95640 2276.79 2335.80 2338.46 4996.13 4742.60 4543.01 2317.01 20.13 4760.58 131.11 0.000 2.05

Mtr.45327.1.S1_at Unknown TC99383 50.58 62.87 77.72 134.32 148.27 111.31 63.72 7.85 131.30 10.78 0.007 2.06

Mtr.9682.1.S1_at Disease resistance response protein homolog F12L6.9 TC104060 75.13 55.91 68.58 119.09 135.29 156.96 66.54 5.64 137.12 10.97 0.005 2.06

Mtr.39535.1.S1_at N-hydroxycinnamoyl/benzoyltransferase-like protein TC105076 540.01 664.79 708.21 1238.49 1319.36 1395.02 637.67 50.41 1317.62 45.19 0.001 2.07

Mtr.23314.1.S1_at Unknown 1666.m00045 74.39 54.98 65.05 160.70 107.13 135.38 64.81 5.61 134.40 15.47 0.013 2.07

Mtr.17470.1.S1_at Unknown IMGAG|1000.m00022 16.10 16.67 19.41 36.84 28.89 42.62 17.39 1.02 36.12 3.98 0.010 2.08

Mtr.41984.1.S1_at Lanatoside 15'-O-acetylesterase precursor TC110505 46.20 38.45 49.80 90.58 97.22 92.43 44.82 3.35 93.41 1.98 0.000 2.08

Mtr.39065.1.S1_at 3-oxo-5-alpha-steroid 4-dehydrogenase TC104122 46.66 40.91 39.49 84.73 79.27 100.96 42.35 2.19 88.32 6.51 0.003 2.09

Mtr.52180.1.S1_at Zn-finger, C2H2 type IMGAG|780.m00022 206.31 143.73 146.31 359.45 319.87 356.86 165.45 20.44 345.39 12.78 0.002 2.09

Mtr.8585.1.S1_at N3 like protein TC100726 2317.79 2820.04 3220.05 5200.39 7457.31 4793.81 2785.96 261.02 5817.17 828.43 0.025 2.09

Mtr.39005.1.S1_at Nitrate transporter TC104008 864.29 780.27 849.20 1989.92 1571.67 1653.11 831.25 25.86 1738.23 128.02 0.002 2.09

Mtr.1424.1.S1_at Unknown AL375121 57.63 48.29 46.83 104.31 97.18 118.01 50.92 3.38 106.50 6.11 0.001 2.09

Mtr.39289.1.S1_at Flavonoid 1-2 rhamnosyltransferase TC104594 97.41 73.13 88.25 128.96 214.32 199.27 86.27 7.08 180.85 26.31 0.026 2.10

Msa.3151.1.S1_at Unknown TC427 631.47 587.60 636.47 1422.66 1145.96 1321.82 618.51 15.52 1296.81 80.85 0.001 2.10

Mtr.12742.1.S1_at GAST-like gene product TC95807 17.97 12.20 10.92 22.42 27.73 36.06 13.70 2.17 28.74 3.97 0.029 2.10

Mtr.11511.1.S1_at Purple acid phosphatase TC110155 244.53 160.66 127.96 326.47 421.49 371.79 177.72 34.72 373.25 27.44 0.012 2.10

Mtr.42256.1.S1_at Major facilitator superfamily antiporter TC111070 33.36 27.57 32.32 78.69 47.41 69.75 31.08 1.78 65.28 9.30 0.023 2.10

Mtr.8229.1.S1_at Receptor protein kinase-like protein CX530393 37.47 35.48 39.46 68.96 94.03 73.80 37.47 1.15 78.93 7.68 0.006 2.11

Mtr.23748.1.S1_s_at C3HC4-type zinc finger protein family 1693.m00034 16.95 13.92 19.70 37.64 34.57 34.54 16.86 1.67 35.58 1.03 0.001 2.11

P-VALUE
Ratio                         

(D/C)

CONTROL (C) DROUGHT (D)
AVE C SE C AVE D SE D



 Supplemental data 

 

 

 

Table S4.1 (continued). List of all induced genes in root absorption zone of M. truncatula seedlings under drought treatment (≥2-fold, p ≤ 0.05).  

 

Mtr.42918.1.S1_at Protein disulfide isomerase TC94110 176.39 156.82 166.40 377.00 345.58 338.02 166.53 5.65 353.53 11.94 0.000 2.12

Mtr.37046.1.S1_at Anthranilate N-hydroxycinnamoyl/benzoyltransferase-like protein TC111146 35.17 36.51 38.15 83.59 55.54 94.62 36.61 0.86 77.92 11.63 0.024 2.13

Mtr.27152.1.S1_at Cytochrome P450 family protein AW574247 110.60 118.90 137.53 285.68 240.04 258.31 122.34 7.96 261.35 13.26 0.001 2.14

Mtr.36378.1.S1_at Apyrase-like protein BF635526 1360.89 1425.22 1461.23 2962.89 3157.10 2956.04 1415.78 29.35 3025.34 65.91 0.000 2.14

Mtr.37342.1.S1_at Probable mannitol dehydrogenase  TC100466 47.73 46.45 49.12 80.75 139.16 86.96 47.77 0.77 102.29 18.52 0.042 2.14

Mtr.6192.1.S1_at PGPS/D10 BI273325 153.53 162.99 161.57 312.94 403.05 316.32 159.36 2.94 344.10 29.49 0.003 2.16

Mtr.42945.1.S1_x_at Unknown TC94166 1923.64 2053.40 1855.45 4373.80 4032.23 4200.21 1944.16 58.06 4202.08 98.61 0.000 2.16

Msa.897.1.S1_s_at Unknown gi|1592791|gb|X99099.1|MSAIPRP 13.99 18.61 15.33 26.44 39.05 38.13 15.98 1.37 34.54 4.06 0.012 2.16

Mtr.1647.1.S1_at Unknown AW684213 54.56 49.64 57.97 129.57 87.74 133.45 54.06 2.42 116.92 14.63 0.013 2.16

Mtr.43058.1.S1_at Tfm5 protein TC94445 431.35 319.35 322.19 862.81 719.17 738.98 357.63 36.87 773.65 44.94 0.002 2.16

Mtr.21953.1.S1_at Glyoxal oxidase amine-terminal protein 1575.m00042 63.30 54.62 39.25 92.97 148.24 99.62 52.39 7.03 113.61 17.42 0.031 2.17

Mtr.37363.1.S1_at CPRD46 protein TC100514 82.87 82.78 90.98 205.75 176.37 174.46 85.54 2.72 185.53 10.13 0.001 2.17

Mtr.5168.1.S1_at AT4g26540/M3E9_30 AW690301 61.21 49.28 45.11 111.60 115.70 110.27 51.86 4.83 112.52 1.63 0.000 2.17

Msa.1714.1.S1_at Unknown TC499 81.13 59.11 80.13 151.13 135.80 192.51 73.46 7.18 159.81 16.94 0.009 2.18

Mtr.13825.1.S1_at Laccase TC99276 85.13 81.46 82.63 173.83 175.96 194.00 83.07 1.08 181.26 6.40 0.000 2.18

Mtr.17167.1.S1_at Methyladenine glycosylase IMGAG|900.m00026 42.01 38.04 31.56 79.91 74.20 89.55 37.20 3.05 81.22 4.48 0.001 2.18

Mtr.38073.1.S1_at Dihydroflavanol-4-reductase 1 TC102034 27.04 19.48 22.59 61.59 35.89 54.38 23.04 2.20 50.62 7.65 0.026 2.20

Mtr.44844.1.S1_at Chalcone reductase TC98216 106.55 106.96 108.04 246.03 262.42 199.76 107.18 0.44 236.07 18.76 0.002 2.20

Mtr.27068.1.S1_at Unknown AW257160 265.29 278.20 284.74 637.60 628.49 563.19 276.08 5.71 609.76 23.43 0.000 2.21

Mtr.24929.1.S1_at NIP3 1778.m00042 64.09 57.01 58.47 123.33 107.83 167.26 59.86 2.16 132.81 17.80 0.015 2.22

Mtr.8436.1.S1_at Lipoxygenase LoxN3 TC100175 2183.90 1921.04 1720.36 3718.54 4016.86 5199.79 1941.77 134.21 4311.73 452.31 0.007 2.22

Mtr.43937.1.S1_at At1g60590/F8A5_12 TC96355 106.23 71.03 106.56 198.96 228.84 202.79 94.60 11.79 210.20 9.39 0.002 2.22

Mtr.42836.1.S1_at Receptor protein kinase-like protein TC112517 1043.84 895.02 862.56 2184.76 1897.74 2147.19 933.81 55.81 2076.56 90.07 0.000 2.22

Mtr.44300.1.S1_at Bifunctional nuclease TC97086 46.22 35.65 40.25 76.04 121.44 74.19 40.71 3.06 90.55 15.45 0.034 2.22

Mtr.21791.1.S1_at Serine/Threonine kinase family protein 1565.m00048 12.29 9.68 8.31 24.16 23.80 19.66 10.09 1.17 22.54 1.45 0.003 2.23

Mtr.41655.1.S1_at Unknown TC109832 608.60 532.09 458.78 1258.97 1225.45 1090.44 533.16 43.25 1191.62 51.51 0.001 2.24

Mtr.14237.1.S1_at Unknown IMGAG|1216.m00015 21.31 35.99 19.27 46.48 56.84 68.66 25.53 5.27 57.33 6.41 0.019 2.25

Mtr.35240.1.S1_s_at Xyloglucan endotransglycosylase hydrolase 1 CX539544 48.21 41.10 36.06 83.71 93.09 104.78 41.79 3.52 93.86 6.09 0.002 2.25

Mtr.45303.1.S1_at Unknown TC99322 152.78 138.81 126.29 310.41 213.66 415.96 139.29 7.65 313.34 58.42 0.042 2.25

Mtr.40844.1.S1_at Diphosphonucleotide phosphatase 1 precursor TC108163 63.10 67.39 70.99 139.64 165.49 148.10 67.16 2.28 151.08 7.61 0.000 2.25

Mtr.14668.1.S1_at Nucleoside phosphatase GDA1/CD39 IMGAG|756.m00018 490.37 527.81 543.70 1117.88 1267.61 1128.96 520.62 15.81 1171.48 48.17 0.000 2.25

Mtr.33007.1.S1_at Breast cancer protein 1 BF637067 66.90 67.24 70.54 142.08 145.53 174.23 68.23 1.16 153.94 10.19 0.001 2.26

Mtr.42102.1.S1_at Unknown TC110761 45.13 44.81 49.07 111.66 94.93 107.96 46.33 1.37 104.85 5.07 0.000 2.26

Mtr.12712.1.S1_at Alpha-expansin TC95685 186.17 138.08 159.19 354.84 314.00 425.88 161.15 13.92 364.91 32.69 0.005 2.26

Mtr.47022.1.S1_s_at Wound-inducible protein 1705.m00036 511.92 409.42 476.24 1002.17 883.96 1283.56 465.86 30.04 1056.56 118.52 0.008 2.27

Mtr.13481.1.S1_at P-glycoprotein TC98132 23.87 23.97 18.99 42.86 55.57 53.21 22.28 1.64 50.55 3.90 0.003 2.27

Mtr.49432.1.S1_at flavanone 3-hydroxylase-related IMGAG|944.m00030 165.26 108.77 113.96 229.37 302.49 352.54 129.33 18.03 294.80 35.76 0.014 2.28

Mtr.42815.1.S1_at N-hydroxycinnamoyl/benzoyltransferase-like protein TC112471 7.16 6.13 7.16 13.17 20.24 13.62 6.81 0.34 15.67 2.29 0.019 2.30

Mtr.13653.1.S1_at Laccase  TC98681 72.33 66.14 67.97 196.64 125.21 154.96 68.82 1.84 158.94 20.71 0.012 2.31

Mtr.23965.1.S1_s_at Wound-inducible protein 1705.m00053 95.83 73.07 77.96 182.43 158.98 230.71 82.29 6.92 190.71 21.12 0.008 2.32

Mtr.15281.1.S1_at Transferase IMGAG|781.m00001 1415.28 1280.80 1310.30 2963.78 2880.21 3469.05 1335.46 40.81 3104.35 183.94 0.001 2.32

Msa.3182.1.S1_at Unknown TC64 36.00 28.77 26.71 53.47 65.93 94.01 30.50 2.82 71.14 11.99 0.030 2.33

Mtr.11698.1.S1_at APETALA3 TC110754 75.40 60.52 57.32 165.13 174.13 118.98 64.41 5.57 152.75 17.08 0.008 2.37



 

 

 

Table S4.1 (continued). List of all induced genes in root absorption zone of M. truncatula seedlings under drought treatment (≥2-fold, p ≤ 0.05).  

 

Mtr.48892.1.S1_at BURP IMGAG|820.m00016 16.66 17.00 14.98 38.91 31.77 45.39 16.22 0.62 38.69 3.93 0.005 2.39

Mtr.24264.1.S1_at LOX1 Lipoxygenase 1726.m00040 103.17 103.68 110.18 228.77 347.45 184.57 105.68 2.26 253.60 48.63 0.038 2.40

Mtr.37470.1.S1_at Unknown TC100713 242.80 135.05 132.52 390.02 380.83 457.52 170.12 36.35 409.46 24.18 0.005 2.41

Mtr.42071.1.S1_at GTP cyclohydrolase I TC110696 101.88 121.18 115.05 261.49 284.27 277.03 112.71 5.69 274.26 6.72 0.000 2.43

Mtr.21809.1.S1_at PB1 domain protein 1566.m00053 294.58 292.37 259.74 710.91 809.51 549.44 282.23 11.26 689.95 75.80 0.006 2.44

Mtr.9401.1.S1_at High mobility group protein 2 (HMG-2) TC103227 41.46 27.14 31.02 87.79 84.90 70.97 33.21 4.28 81.22 5.19 0.002 2.45

Mtr.10450.1.S1_at genomic DNA, chromosome 1, PAC clone TC106817 83.13 83.00 99.96 221.66 196.38 236.58 88.70 5.63 218.21 11.73 0.001 2.46

Mtr.24198.1.S1_s_at Lipoxygenase 1721.m00031 1108.86 1014.87 881.21 2197.32 2264.22 2952.66 1001.65 66.05 2471.40 241.40 0.004 2.47

Mtr.10893.1.S1_at Acid phosphatase type 5 precursor  TC108256 258.13 260.75 259.18 576.66 649.96 708.40 259.35 0.76 645.01 38.11 0.001 2.49

Mtr.16274.1.S1_at Proteinase inhibitor I12 IMGAG|864.m00004 127.83 127.93 114.83 375.57 263.80 282.48 123.53 4.35 307.28 34.57 0.006 2.49

Mtr.35850.1.S1_at Transcription factor WRKY44 TC97762 19.99 22.09 18.64 44.04 61.78 45.96 20.24 1.00 50.59 5.62 0.006 2.50

Mtr.19818.1.S1_at Ferritin IMGAG|1091.m00001 79.28 68.75 77.25 197.67 187.26 179.74 75.09 3.22 188.22 5.20 0.000 2.51

Mtr.18492.1.S1_at Zinc-containing alcohol dehydrogenase superfamily IMGAG|953.m00006 30.97 27.26 31.63 45.91 97.58 82.27 29.95 1.36 75.25 15.32 0.042 2.51

Mtr.20779.1.S1_at Lipoxygenase IMGAG|1123.m00005 55.87 39.82 38.33 109.25 114.96 113.07 44.67 5.61 112.43 1.68 0.000 2.52

Mtr.11503.1.S1_at Cold acclimation protein TC110135 63.77 71.63 53.20 196.94 175.13 104.14 62.87 5.34 158.73 28.01 0.028 2.52

Mtr.51214.1.S1_at O-methyltransferase, family 2; SAM binding motif IMGAG|755.m00003 66.27 63.16 49.01 157.28 104.19 191.71 59.48 5.31 151.06 25.46 0.024 2.54

Mtr.11694.1.S1_at Albumin 1 C precursor (PA1 C) TC110745 128.98 218.65 208.49 542.13 387.72 483.39 185.38 28.35 471.08 45.00 0.006 2.54

Mtr.20116.1.S1_s_at ZIM IMGAG|1101.m00011 39.15 18.22 35.52 101.80 51.96 83.47 30.96 6.46 79.08 14.55 0.039 2.55

Mtr.14934.1.S1_s_at Gly rich structural protein IMGAG|722.m00022 12.70 14.44 10.17 21.91 34.26 39.33 12.44 1.24 31.83 5.17 0.022 2.56

Msa.3042.1.S1_s_at Unknown TC54 96.32 84.76 69.49 210.68 175.19 262.93 83.52 7.77 216.27 25.48 0.008 2.59

Mtr.47151.1.S1_at Glutathione S-transferase 1695.m00045 53.57 46.55 41.83 124.63 100.87 143.50 47.32 3.41 123.00 12.33 0.004 2.60

Mtr.14667.1.S1_at Nucleoside phosphatase GDA1/CD39 IMGAG|756.m00016 87.95 74.05 94.13 240.31 204.76 220.82 85.38 5.94 221.97 10.28 0.000 2.60

Mtr.32803.1.S1_at Alcohol oxidase p68 BE324295 21.10 24.52 19.96 66.96 32.95 71.19 21.86 1.37 57.03 12.11 0.045 2.61

Mtr.41934.1.S1_at Pupal cuticle protein (Ecdysone-dependent protein 91) TC110406 401.77 391.11 379.11 894.08 932.60 1239.23 390.67 6.54 1021.97 109.20 0.004 2.62

Mtr.33453.1.S1_at Similarity to ATFP3 BG450887 36.82 33.72 39.12 116.28 87.78 83.72 36.55 1.57 95.93 10.25 0.005 2.62

Mtr.40518.1.S1_at Glutathione S-transferase TC107455 440.35 403.18 405.29 965.30 1107.02 1205.13 416.28 12.05 1092.48 69.61 0.001 2.62

Mtr.18406.1.S1_at Sterile alpha motif homology IMGAG|1031.m00005 57.41 45.19 48.01 141.59 124.29 131.28 50.20 3.69 132.39 5.02 0.000 2.64

Msa.3084.1.S1_at Unknown TC87 99.40 87.61 73.40 178.61 227.51 280.90 86.80 7.52 229.01 29.54 0.010 2.64

Mtr.16275.1.S1_at Proteinase inhibitor I12 IMGAG|864.m00006 3042.62 2725.49 2419.68 7949.77 6059.29 7626.55 2729.26 179.84 7211.87 583.80 0.002 2.64

Mtr.12648.1.S1_at Ovary protein induced by treatment with gibberellic acid TC95463 510.96 373.06 338.02 937.63 981.55 1370.65 407.35 52.78 1096.61 137.60 0.009 2.69

Mtr.45103.1.S1_at GTP cyclohydrolase I TC98800 139.89 131.75 148.57 358.88 390.13 391.34 140.07 4.86 380.11 10.62 0.000 2.71

Mtr.23132.1.S1_at Albumin 1 precursor 1654.m00039 669.16 527.46 460.40 1278.16 1396.46 1887.89 552.34 61.53 1520.84 186.68 0.008 2.75

Mtr.37288.1.S1_at Beta-primeverosidase TC100298 710.29 549.90 507.34 1667.97 1327.29 1877.64 589.18 61.79 1624.30 160.37 0.004 2.76

Mtr.7344.1.S1_at Unknown TC109497 427.04 328.74 326.75 690.80 1293.91 1044.11 360.84 33.10 1009.61 174.95 0.022 2.80

Mtr.43942.1.S1_s_at Unknown TC96362 87.57 76.38 76.92 191.52 306.90 176.23 80.29 3.64 224.88 41.24 0.025 2.80

Mtr.42113.1.S1_at AP2 domain transcription factor-like TC110781 30.15 29.13 32.89 106.03 65.92 86.43 30.73 1.12 86.13 11.58 0.009 2.80

Mtr.29537.1.S1_at Unknown TC105793 50.29 34.29 55.40 173.44 84.35 141.13 46.66 6.36 132.97 26.04 0.032 2.85

Mtr.23132.1.S1_s_at  Albumin 1 precursor 1654.m00039 955.47 881.63 736.90 2150.30 2160.76 3043.03 858.00 64.19 2451.36 295.85 0.006 2.86

Mtr.22601.1.S1_at Endoxyloglucan transferase 1617.m00030 765.17 606.28 555.61 1459.61 1779.30 2303.00 642.35 63.13 1847.30 245.83 0.009 2.88

Mtr.37368.1.S1_at At2g22590/T9I22.3 TC100520 115.96 92.13 92.77 191.66 363.79 316.79 100.29 7.84 290.75 51.37 0.021 2.90

Mtr.39873.1.S1_s_at MYB-like protein TC105935 23.63 20.58 20.07 43.47 68.23 74.71 21.43 1.11 62.14 9.52 0.013 2.90

Mtr.9227.1.S1_at Nodulin homologous to narbonin TC102760 108.94 84.32 49.60 267.00 289.47 149.87 80.95 17.21 235.45 43.28 0.029 2.91

Msa.3055.1.S1_at Unknown TC60 66.38 40.11 44.66 124.43 143.62 183.01 50.38 8.11 150.36 17.24 0.006 2.98
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Table S4.1 (continued). List of all induced genes in root absorption zone of M. truncatula seedlings under drought treatment (≥2-fold, p ≤ 0.05).  

 

 

Mtr.8470.1.S1_s_at Strictosidine-O-beta-D-glucosidase TC100295 425.62 329.17 255.46 1022.95 817.13 1182.00 336.75 49.27 1007.36 105.62 0.005 2.99

Mtr.5628.1.S1_s_at Lipoxygenase BF640256 137.15 140.63 157.45 431.67 467.86 458.34 145.08 6.27 452.62 10.83 0.000 3.12

Mtr.21370.1.S1_x_at Glycine rich protein IMGAG|1151.m00029 1580.75 1735.14 1290.24 4657.10 4989.95 5021.38 1535.37 130.42 4889.48 116.54 0.000 3.18

Mtr.5990.1.S1_s_at Unknown BG455728 44.06 28.76 29.72 78.43 125.97 125.07 34.18 4.95 109.82 15.70 0.010 3.21

Mtr.50426.1.S1_at Lipoxygenase IMGAG|970.m00007 481.10 506.26 508.34 1453.63 1750.06 1649.56 498.57 8.75 1617.75 87.04 0.000 3.24

Mtr.41019.1.S1_at Specific tissue protein 1 TC108557 1443.12 1267.54 1119.63 4632.04 3339.40 4461.34 1276.76 93.50 4144.26 405.44 0.002 3.25

Msa.1651.1.S1_at Unknown TC3 158.03 163.29 111.38 380.52 440.22 594.29 144.23 16.50 471.68 63.68 0.008 3.27

Mtr.44449.1.S1_at Patatin-like protein TC97383 30.29 33.30 25.80 94.84 77.95 120.93 29.80 2.18 97.90 12.50 0.006 3.29

Mtr.17550.1.S1_at Plant lipid transfer protein IMGAG|1003.m00011 162.79 155.91 125.29 370.66 472.49 631.65 148.00 11.53 491.60 75.95 0.011 3.32

Mtr.29990.1.S1_at MYB-related protein 306 AW776119 53.21 50.40 44.47 136.29 184.85 176.37 49.36 2.58 165.84 14.97 0.002 3.36

Mtr.38087.1.S1_at Hyoscyamine 6 beta-hydroxylase TC102060 143.05 102.29 83.88 285.41 386.96 454.49 109.74 17.48 375.62 49.14 0.007 3.42

Msa.3070.1.S1_s_at Unknown TC69 14.71 23.19 18.03 61.40 59.29 71.51 18.64 2.47 64.07 3.77 0.001 3.44

Mtr.13634.1.S1_at CPRD12 protein TC98607 69.61 70.38 73.77 278.91 237.18 221.69 71.25 1.28 245.93 17.09 0.001 3.45

Msa.1021.1.S1_at Unknown gi|50316683|gb|CO511809.1|CO511809 53.71 56.96 51.44 172.98 174.28 212.95 54.04 1.60 186.74 13.11 0.001 3.46

Mtr.48778.1.S1_x_at Glycine rich protein IMGAG|1151.m00030 3098.46 3248.29 2454.32 10022.18 10782.62 9747.34 2933.69 243.56 10184.05 309.63 0.000 3.47

Mtr.50430.1.S1_at Lipoxygenase IMGAG|970.m00002 1756.12 1934.30 1786.63 6236.96 6176.87 6956.60 1825.68 55.02 6456.81 250.49 0.000 3.54

Mtr.12256.1.S1_at Nonspecific lipid-transfer protein precursor (LTP) TC94138 1158.23 1202.46 902.90 3120.68 3673.19 4824.84 1087.86 93.36 3872.90 501.98 0.005 3.56

Mtr.36333.1.S1_at Flavonoid 3'-hydroxylase BE248436 12.03 15.60 14.82 60.54 35.69 57.65 14.15 1.09 51.29 7.85 0.009 3.62

Mtr.40156.1.S1_at 3-hydroxy-3-methylglutaryl coenzyme A TC106633 54.68 37.73 37.12 177.97 113.25 180.51 43.18 5.76 157.24 22.01 0.007 3.64

Msa.2936.1.S1_at Unknown TC1 141.27 174.37 110.57 377.42 521.63 677.02 142.07 18.42 525.36 86.51 0.012 3.70

Mtr.37609.1.S1_at Unknown TC101042 32.25 30.35 31.92 130.09 99.23 128.90 31.51 0.59 119.41 10.09 0.001 3.79

Mtr.10364.1.S1_at Ripening-related protein TC106509 175.57 169.98 126.99 415.01 708.31 684.32 157.52 15.35 602.55 94.02 0.010 3.83

Mtr.5433.1.S1_at Unknown BE323853 137.55 113.97 150.28 369.63 599.58 580.46 133.93 10.64 516.55 73.67 0.007 3.86

Mtr.23130.1.S1_at  Albumin 1 precursor 1654.m00037 486.85 467.30 421.53 1596.87 1475.49 2268.56 458.56 19.35 1780.30 246.63 0.006 3.88

Mtr.44147.1.S1_at Lipid transfer protein TC96789 91.86 76.14 77.44 289.91 302.69 362.99 81.81 5.04 318.53 22.53 0.001 3.89

Mtr.8650.1.S1_at Xyloglucan endotransglycosylase hydrolase 1 TC100920 57.75 49.29 44.47 183.63 172.84 233.49 50.50 3.88 196.65 18.68 0.002 3.89

Mtr.13942.1.S1_at Polyphosphoinositide binding protein Ssh2p TC99702 48.82 30.20 34.54 134.38 129.24 182.79 37.85 5.63 148.81 17.06 0.003 3.93

Mtr.5351.1.S1_at Cuticle protein (YORE-YORE protein) BE316021 163.55 150.26 148.40 548.76 573.76 695.46 154.07 4.77 605.99 45.31 0.001 3.93

Mtr.42933.1.S1_s_at Nonspecific lipid-transfer protein precursor (LTP) TC94143 2446.69 2625.96 2034.63 7171.63 9874.96 11272.21 2369.09 175.06 9439.60 1203.58 0.004 3.98

Msa.1746.1.S1_at Glutathione S-transferase GST TC6 187.13 144.63 156.77 564.03 677.83 846.26 162.84 12.64 696.04 81.98 0.003 4.27

Msa.2966.1.S1_s_at Lipid transfer protein 5 precursor TC2 1648.91 1742.24 1245.42 5055.17 6945.68 7821.79 1545.53 152.45 6607.55 816.35 0.004 4.28

Mtr.18492.1.S1_s_at Zinc-containing alcohol dehydrogenase superfamily IMGAG|953.m00006 19.86 20.36 22.31 62.69 108.36 98.93 20.84 0.75 89.99 13.92 0.008 4.32

Mtr.44034.1.S1_at Unknown TC96563 10.82 10.65 13.68 61.74 40.81 51.29 11.72 0.98 51.28 6.04 0.003 4.38

Mtr.28742.1.S1_at Very-long-chain fatty acid condensing enzyme CUT1 BI312233 76.18 56.30 53.41 189.87 246.85 395.74 61.96 7.16 277.48 61.37 0.025 4.48

Mtr.8427.1.S1_at Lipoxygenase  TC100141 698.51 629.82 793.96 2621.45 4052.77 2859.59 707.43 47.59 3177.94 442.79 0.005 4.49

Mtr.39293.1.S1_at Unknown TC104602 34.36 33.38 29.87 166.79 88.25 184.81 32.53 1.36 146.62 29.64 0.018 4.51

Mtr.28774.1.S1_at Anthocyanidin synthase BM812824 37.33 35.44 31.80 187.30 103.97 200.63 34.86 1.62 163.96 30.24 0.013 4.70

Mtr.42933.1.S1_x_at Nonspecific lipid-transfer protein precursor (LTP) TC94143 669.82 803.49 537.08 2142.05 3120.78 4627.95 670.13 76.91 3296.93 723.00 0.023 4.92

Msa.1549.1.S1_at Unknown gi|50321916|gb|CO517042.1|CO517042 62.89 62.07 42.80 181.28 306.10 354.10 55.92 6.56 280.49 51.51 0.012 5.02

Mtr.12258.1.S1_at Nonspecific lipid-transfer protein precursor (LTP) TC94140 678.93 604.50 488.52 2297.30 3603.72 4730.87 590.65 55.40 3543.96 703.15 0.014 6.00

Mtr.12797.1.S1_at Family II lipase EXL3 TC95982 43.02 42.04 30.79 148.86 254.10 334.44 38.62 3.92 245.80 53.73 0.018 6.37

Mtr.39734.1.S1_at Probable glutathione S-transferase (Heat shock protein 26A) TC105598 450.02 365.12 312.26 2173.94 2277.87 2871.32 375.80 40.13 2441.05 217.22 0.001 6.50



 

 

 

Table S4.2. List of all repressed genes in root absorption zone of M. truncatula seedlings under drought treatment (≤0.5-fold, p ≤ 0.05).  

 

 

 

DOWN-REGULATED

Target Description Representative Public ID #1 #2 #3 #1 #2 #3

Histidine decarboxylase (Serine decarboxylase) BG448567 397.19 224.88 227.46 36.66 44.47 36.18 283.18 57.01 39.10 2.69 0.013 0.14

(-)-germacrene D synthase TC100525 1020.38 1036.88 1096.04 141.60 234.59 169.79 1051.10 22.97 181.99 27.53 0.000 0.17

High affinity nitrate transporter TC103501 61.48 51.93 42.34 8.41 9.73 12.68 51.92 5.53 10.28 1.26 0.002 0.20

Anther-specific protein TC94767 4114.29 3829.35 3808.79 693.34 1088.29 572.01 3917.48 98.58 784.55 155.86 0.000 0.20

MtN15 protein precursor TC99324 420.49 497.72 628.81 61.45 161.13 109.71 515.67 60.80 110.76 28.78 0.004 0.21

Non-cyanogenic beta-glucosidase AL385713 163.67 193.37 222.82 36.73 56.76 36.82 193.29 17.08 43.44 6.66 0.001 0.22

Cytochrome P450 82A3  (P450 CP6) TC98420 1739.16 1671.60 1624.92 308.65 504.31 331.27 1678.56 33.16 381.41 61.79 0.000 0.23

expressed protein and genscan 1584.m00048 741.43 572.29 587.11 141.54 194.77 157.76 633.61 54.08 164.69 15.75 0.001 0.26

 (-)-germacrene D synthase TC94781 849.15 718.48 687.64 133.36 313.90 189.67 751.76 49.50 212.31 53.33 0.002 0.28

Peroxidase 1 TC109303 114.15 83.96 90.96 25.71 34.82 23.27 96.36 9.12 27.93 3.52 0.002 0.29

1-deoxy-D-xylulose 5-phosphate synthase 2 precursor TC95651 603.70 314.65 347.40 116.12 128.21 124.59 421.92 91.38 122.97 3.58 0.031 0.29

Unknown TC107928 2145.77 1465.87 1310.36 448.58 448.93 537.81 1640.67 256.51 478.44 29.69 0.011 0.29

Sulfotransferase IMGAG|1250.m00011 87.87 54.18 53.27 17.82 19.47 22.52 65.11 11.38 19.94 1.37 0.017 0.31

conserved hypothetical protein IMGAG|745.m00023 133.29 119.54 141.20 28.63 52.34 42.52 131.34 6.33 41.16 6.88 0.001 0.31

Unknown CX532741 39.54 20.25 20.44 8.25 8.60 8.80 26.74 6.40 8.55 0.16 0.047 0.32

Plant protein of unknown function IMGAG|825.m00016 202.97 156.60 164.18 33.67 78.22 57.52 174.58 14.36 56.47 12.87 0.004 0.32

Unknown CA920546 565.46 416.27 452.79 104.22 222.29 138.88 478.17 44.90 155.13 35.04 0.005 0.32

Cytochrome P450 71D9 (P450 CP3) 1660.m00069 727.65 636.13 603.36 167.07 259.22 212.19 655.71 37.19 212.83 26.60 0.001 0.32

Class Ib chitinase TC106402 1521.05 1396.66 1284.30 458.10 443.79 505.89 1400.67 68.37 469.26 18.78 0.000 0.34

Class III peroxidase 70 precursor TC109304 109.10 93.66 85.25 26.76 37.55 33.20 96.01 6.98 32.50 3.13 0.001 0.34

Hyoscyamine 6-dioxygenase TC103111 461.79 495.23 512.09 121.27 230.41 152.91 489.70 14.78 168.20 32.42 0.001 0.34

(+)-delta-cadinene synthase isozyme A AW774638 42.45 24.27 23.52 8.73 12.67 9.66 30.08 6.19 10.35 1.19 0.035 0.34

Cytochrome P450 monooxygenase TC94158 719.01 648.13 608.23 214.47 212.27 270.94 658.46 32.39 232.56 19.20 0.000 0.35

Macrophage migration inhibitory factor (MIF) 1418.m00029 1841.02 1350.54 1294.34 472.99 603.79 513.96 1495.30 173.62 530.25 38.63 0.006 0.35

Exo70 exocyst complex subunit IMGAG|1246.m00008 516.39 413.95 401.56 137.13 170.83 166.39 443.97 36.39 158.11 10.57 0.002 0.36

strong similarity to unknown protein IMGAG|760.m00012 1476.57 876.86 757.08 289.13 464.67 389.48 1036.84 222.57 381.09 50.85 0.045 0.37

Thioredoxin M-type 4, chloroplast precursor TC107795 2945.07 1723.57 1651.30 601.73 912.04 809.33 2106.64 419.73 774.37 91.27 0.036 0.37

Short-chain dehydrogenase Tic32 AJ503481 391.79 348.15 300.46 91.32 154.11 138.46 346.80 26.37 127.96 18.87 0.003 0.37

FAD linked oxidase, N-terminal IMGAG|760.m00011 350.88 216.13 192.61 66.00 119.76 95.38 253.20 49.31 93.72 15.54 0.037 0.37

Iron/thiamine transport system TC110574 68.17 49.92 49.30 16.15 26.73 19.17 55.79 6.19 20.68 3.14 0.007 0.37

D-arabinono-1,4-lactone oxidase-like protein AJ846328 2305.00 1408.88 1240.79 486.44 735.43 631.23 1651.56 330.30 617.70 72.20 0.038 0.37

Metal transport protein TC109158 1253.74 1007.94 1025.06 345.96 475.99 415.48 1095.58 79.24 412.48 37.57 0.001 0.38

Hexose transporter HT2 BE240339 635.91 463.10 472.02 142.09 256.20 201.05 523.68 56.18 199.78 32.95 0.008 0.38

P-VALUE
Ratio                         

(D/C)

CONTROL (C) DROUGHT (D)
AVE C SE C AVE D SE D
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Table S4.2 (continued). List of all repressed genes in root absorption zone of M. truncatula seedlings under drought treatment (≤0.5-fold, p ≤ 0.05).  

 

 

 

Cytochrome P450 71D9 (P450 CP3) 1660.m00069 456.36 411.75 395.25 147.15 178.45 157.90 421.12 18.25 161.17 9.18 0.000 0.38

DNA-binding WRKY IMGAG|747.m00011 229.81 185.67 173.89 63.55 94.27 69.38 196.46 17.02 75.73 9.42 0.003 0.39

D-arabinono-1,4-lactone oxidase-like protein AJ846328 1559.13 988.66 806.31 286.13 502.32 508.36 1118.03 226.74 432.27 73.09 0.045 0.39

Unknown TC108029 419.96 437.79 415.87 159.79 159.49 177.10 424.54 6.73 165.46 5.82 0.000 0.39

Cytochrome P450 TC96912 411.10 379.96 389.42 134.29 186.15 141.21 393.49 9.22 153.88 16.26 0.000 0.39

Caffeoyl-CoA O-methyltransferase-like protein BM814917 1010.53 849.05 833.71 329.27 331.49 392.51 897.76 56.55 351.09 20.72 0.001 0.39

Geraniol synthase TC99779 1877.33 1479.11 1253.70 621.90 550.67 630.46 1536.71 182.32 601.01 25.29 0.007 0.39

RGC2-like protein TC96613 272.77 194.67 204.44 81.13 110.63 71.29 223.96 24.57 87.68 11.82 0.007 0.39

Geraniol 10-hydroxylase TC110034 846.57 648.37 644.80 253.63 301.53 289.63 713.25 66.67 281.60 14.40 0.003 0.39

Kunitz proteinase inhibitor-1 TC95067 71.41 57.73 75.60 24.74 33.07 23.31 68.25 5.39 27.04 3.04 0.003 0.40

Lipoxygenase TC100240 4177.31 3058.49 3300.96 1162.79 1614.56 1438.73 3512.25 339.81 1405.36 131.48 0.004 0.40

Hexose transporter HT2 AJ845920 223.06 154.73 181.91 53.71 94.91 80.92 186.57 19.86 76.52 12.10 0.009 0.41

Narbonin TC101001 3764.34 3446.36 4006.88 1504.69 2046.22 1063.45 3739.19 162.30 1538.12 284.19 0.003 0.41

Unknown TC105887 71.92 79.27 65.92 26.11 31.59 31.91 72.37 3.86 29.87 1.88 0.001 0.41

Isopenicillin N synthase; 2OG-Fe(II) oxygenase IMGAG|1112.m00009 192.83 148.55 159.77 56.35 84.77 65.81 167.05 13.29 68.97 8.36 0.003 0.41

T1N6.22 protein TC104797 331.14 333.63 343.97 141.58 123.36 154.69 336.25 3.93 139.87 9.08 0.000 0.42

Unknown TC105514 895.38 794.95 708.84 256.50 364.93 381.71 799.72 53.90 334.38 39.24 0.002 0.42

Lipoxygenase TC100184 149.10 117.47 119.77 44.54 73.13 44.14 128.78 10.18 53.94 9.60 0.006 0.42

Acidic glucanase TC96172 1157.07 1041.80 855.90 404.61 424.05 456.69 1018.25 87.73 428.45 15.19 0.003 0.42

Cytochrome P450 IMGAG|802.m00006 2606.55 1821.01 1788.40 590.94 1120.86 905.69 2071.99 267.45 872.50 153.87 0.018 0.42

Cytochrome P450 TC105774 259.72 249.23 248.33 78.78 138.64 102.89 252.43 3.66 106.77 17.39 0.001 0.42

Unknown TC110633 121.96 131.35 116.71 52.29 51.19 53.73 123.34 4.28 52.41 0.73 0.000 0.42

Glutathione S-transferase GST 12 CX550152 4327.10 3176.97 3263.00 1131.18 1950.93 1494.98 3589.02 369.87 1525.70 237.14 0.009 0.43

Lectin-like protein kinase AL367605 382.40 269.33 284.86 119.36 151.40 127.67 312.20 35.39 132.81 9.60 0.008 0.43

Unknown TC97487 1220.40 1130.13 1178.99 424.79 609.91 469.35 1176.50 26.09 501.35 55.78 0.000 0.43

Alpha fucosidase precursor 1572.m00054 207.50 141.06 128.13 61.13 69.64 74.10 158.90 24.59 68.29 3.80 0.022 0.43

ADR6 protein TC100948 5384.54 5648.46 5556.96 2110.58 2721.99 2302.58 5529.99 77.37 2378.38 180.52 0.000 0.43

Receptor-like protein kinase TC105088 68.46 49.19 43.74 18.07 30.93 20.54 53.79 7.50 23.18 3.94 0.022 0.43

Cytochrome b5 DIF-F BF635325 439.67 500.90 420.98 169.84 203.13 214.73 453.85 24.14 195.90 13.45 0.001 0.43

Wound-inducible P450 hydroxylase TC104023 184.05 180.45 177.03 90.71 75.98 67.13 180.51 2.03 77.94 6.88 0.000 0.43

Multidrug resistance-associated protein-like protein TC104059 79.62 64.04 48.11 22.17 34.55 26.09 63.92 9.10 27.60 3.65 0.021 0.43

Unknown TC109529 291.69 228.08 194.31 78.96 121.83 107.70 238.03 28.55 102.83 12.61 0.012 0.43

Sulfate transporter protein-like TC106463 2382.09 1890.71 1958.91 668.82 1225.00 805.14 2077.24 153.69 899.65 167.37 0.007 0.43

Cytochrome P450 BE943181 404.67 303.34 276.29 132.93 136.13 157.33 328.10 39.07 142.13 7.66 0.010 0.43

Protein kinase BF647597 119.76 117.53 141.09 52.90 66.90 44.13 126.13 7.51 54.64 6.63 0.002 0.43

Unknown TC97937 544.57 509.27 457.95 182.48 271.49 201.14 503.93 25.15 218.37 27.10 0.002 0.43

Peptidase M10A and M12B, matrixin and adamalysin IMGAG|1025.m00010 2234.63 2119.30 1969.66 892.13 1015.60 842.67 2107.86 76.70 916.80 51.42 0.000 0.43



 

 

 

Table S4.2 (continued). List of all repressed genes in root absorption zone of M. truncatula seedlings under drought treatment (≤0.5-fold, p ≤ 0.05).  

 

 

 

Receptor-like protein kinase TC109408 1923.76 1278.26 1246.05 510.94 803.64 622.38 1482.69 220.73 645.65 85.29 0.024 0.44

VQ motif protein IMGAG|985.m00022 797.12 513.58 479.98 265.62 237.95 276.62 596.89 100.58 260.06 11.50 0.029 0.44

Galactinol synthase BG451003 658.69 508.46 539.40 238.01 278.05 227.76 568.85 45.80 247.94 15.34 0.003 0.44

Class I helical cytokine receptor number 17 TC109721 815.59 609.34 582.49 234.48 356.10 288.32 669.14 73.63 292.96 35.19 0.010 0.44

Heavy metal transport/detoxification protein IMGAG|825.m00011 599.57 466.34 462.96 166.16 299.87 203.63 509.62 44.99 223.22 39.82 0.009 0.44

Unknown TC97862 113.54 119.52 113.39 54.14 49.94 48.00 115.48 2.02 50.69 1.81 0.000 0.44

GDSL-motif lipase/hydrolase family protein TC103549 194.16 160.70 143.77 59.02 77.27 83.06 166.21 14.80 73.12 7.24 0.005 0.44

Amino acid transporter-like protein 1 TC100219 80.13 58.16 59.98 28.65 30.26 28.44 66.09 7.04 29.12 0.58 0.006 0.44

Predicted protein TC110986 687.77 489.82 506.77 194.14 315.12 232.84 561.45 63.35 247.37 35.67 0.012 0.44

Heat shock protein HSP22.7 TC110284 42.01 45.80 38.23 20.38 18.49 16.87 42.01 2.18 18.58 1.01 0.001 0.44

Cytochrome P450 BG587076 208.06 162.94 144.63 77.22 65.43 85.93 171.88 18.85 76.20 5.94 0.008 0.44

2A6 protein TC109276 611.96 513.96 519.20 215.93 282.24 234.06 548.37 31.83 244.08 19.79 0.001 0.45

Putative receptor-like protein kinase 1742.m00058 110.79 99.44 87.34 36.01 49.69 47.07 99.19 6.77 44.25 4.19 0.002 0.45

F3H-like protein TC104677 1473.63 1446.79 1349.60 599.15 733.30 590.08 1423.34 37.67 640.85 46.30 0.000 0.45

O-methyltransferase TC108939 119.39 81.70 74.08 39.40 36.06 48.96 91.72 14.01 41.47 3.87 0.026 0.45

F3H-like protein TC112116 827.25 771.24 751.75 328.58 418.78 316.90 783.41 22.63 354.75 32.19 0.000 0.45

Cysteine proteinase inhibitor TC107154 224.54 154.68 137.90 67.12 89.26 77.93 172.37 26.53 78.10 6.39 0.026 0.45

Lectin BQ157378 51.97 47.19 37.60 18.77 21.49 21.72 45.59 4.23 20.66 0.95 0.005 0.45

Probable WRKY transcription factor 29 TC112282 465.22 311.30 298.69 143.91 188.39 156.03 358.40 53.53 162.78 13.28 0.024 0.45

Alcohol dehydrogenase I BI263584 46.46 41.69 38.85 22.38 15.31 20.19 42.33 2.22 19.29 2.09 0.002 0.46

Protein kinase; Leucine-rich repeat IMGAG|1106.m00002 21.58 16.88 14.94 8.65 8.28 7.46 17.80 1.97 8.13 0.35 0.008 0.46

Light repressible receptor protein kinase TC99628 425.16 337.13 332.96 134.29 198.36 168.09 365.08 30.06 166.91 18.50 0.005 0.46

Cytochrome P450 IMGAG|1087.m00021 112.04 82.88 86.42 35.68 55.75 37.38 93.78 9.19 42.94 6.43 0.011 0.46

Glycine-rich protein CX538135 120.17 131.63 150.61 39.03 91.81 54.19 134.14 8.88 61.68 15.69 0.016 0.46

MtN1 protein precursor TC100789 45.98 25.85 30.26 16.03 15.45 15.70 34.03 6.11 15.73 0.17 0.040 0.46

Heat shock protein Hsp70 IMGAG|978.m00004 895.80 971.19 906.29 388.49 441.47 453.79 924.43 23.58 427.92 20.03 0.000 0.46

ABC transporter related IMGAG|733.m00011 1519.19 1281.21 1376.30 581.51 740.21 618.29 1392.23 69.16 646.67 47.96 0.001 0.46

NBS-LRR-like protein AJ504337 262.72 181.90 183.06 87.60 103.24 100.83 209.23 26.75 97.22 4.86 0.015 0.46

Glutathione S-transferase GST 19 TC102103 712.35 610.21 640.08 294.06 308.06 310.42 654.21 30.32 304.18 5.11 0.000 0.46

Glutathione S-transferase GST 12 TC95725 8143.39 6485.41 6012.91 2597.02 3829.06 3221.28 6880.57 645.98 3215.78 355.67 0.008 0.47

Flavonoid 3',5'-hydroxylase BE248260 67.61 80.96 76.89 34.23 37.59 33.80 75.16 3.95 35.21 1.20 0.001 0.47

Pectin methylesterase 9 NP1130399 89.91 62.13 61.29 28.20 35.68 36.12 71.11 9.40 33.33 2.57 0.018 0.47

Cytochrome P450 TC97050 181.96 142.73 137.98 70.00 71.39 75.54 154.22 13.94 72.31 1.66 0.004 0.47

Cytochrome P450 93A3  (P450 CP5) AJ500027 470.06 387.29 410.61 177.37 218.32 198.92 422.65 24.64 198.21 11.83 0.001 0.47

Alcohol dehydrogenase TC111275 1524.73 1094.60 1020.23 475.46 650.30 587.59 1213.19 157.24 571.12 51.14 0.018 0.47

Nodulin 6 TC96169 42.83 39.73 38.45 16.34 21.32 19.37 40.34 1.30 19.01 1.45 0.000 0.47
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Table S4.2 (continued). List of all repressed genes in root absorption zone of M. truncatula seedlings under drought treatment (≤0.5-fold, p ≤ 0.05).  

 

 

 

Unknown TC112496 221.86 164.27 173.18 74.67 123.29 66.04 186.44 17.90 88.00 17.82 0.018 0.47

Trypsin/chymotrypsin inhibitor TC105872 110.79 84.83 126.29 41.47 72.10 38.57 107.31 12.10 50.71 10.72 0.025 0.47

Flavonoid 3',5'-hydroxylase CB894445 281.97 300.48 265.73 127.97 138.93 134.32 282.72 10.04 133.74 3.18 0.000 0.47

Tobacco W38/1 PR-1 pathogenesis-related protein TC94626 139.20 145.87 125.29 81.13 51.09 62.15 136.79 6.06 64.79 8.77 0.003 0.47

Isoflavone synthase TC106940 1335.86 1569.26 1418.04 658.02 665.78 726.37 1441.05 68.35 683.39 21.61 0.000 0.47

Corallocarpus bainesii 18S ribosomal RNA gene TC106466 742.31 548.34 615.18 267.18 375.34 262.25 635.28 56.89 301.59 36.90 0.008 0.47

IDS4-like protein 1735.m00025 34.72 27.07 30.52 12.26 19.57 12.01 30.77 2.21 14.61 2.48 0.008 0.47

Unknown CX533341 62.55 57.93 73.55 28.42 32.07 31.67 64.67 4.63 30.72 1.15 0.002 0.47

Cytochrome P450 TC96849 44.71 41.28 39.77 13.82 25.10 21.05 41.92 1.46 19.99 3.30 0.004 0.48

Kunitz proteinase inhibitor-1 TC95067 40.96 44.75 51.42 21.59 24.49 19.40 45.71 3.06 21.83 1.47 0.002 0.48

Methylesterase TC112264 243.35 154.65 154.75 71.99 103.54 88.72 184.25 29.55 88.08 9.11 0.036 0.48

Unknown TC100120 1699.17 1738.12 1754.46 629.52 1045.07 808.02 1730.58 16.40 827.54 120.36 0.002 0.48

X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 MTUCU11TVC 394.90 424.04 384.09 161.54 211.08 203.29 401.01 11.93 191.97 15.38 0.000 0.48

Cytochrome P450 AW687530 606.15 633.96 619.54 324.57 273.32 293.10 619.88 8.03 296.99 14.92 0.000 0.48

NL27 BG585060 47.54 31.55 28.53 14.38 20.65 16.68 35.87 5.90 17.24 1.83 0.039 0.48

Conserved hypothetical protein IMGAG|1091.m00029 206.43 236.07 229.06 98.33 118.72 105.61 223.85 8.94 107.55 5.97 0.000 0.48

Isoflavone synthase TC106940 1748.73 1974.86 1807.37 861.64 863.29 933.50 1843.65 67.75 886.14 23.68 0.000 0.48

Unknown IMGAG|1116.m00009 1254.98 918.05 915.63 450.47 516.63 517.98 1029.55 112.72 495.02 22.28 0.010 0.48

Heat shock protein Hsp20 IMGAG|1174.m00029 2153.24 2598.63 2540.59 893.13 1522.01 1100.00 2430.82 139.80 1171.71 185.05 0.006 0.48

Cytochrome P450 82A4  (P450 CP9) TC98192 1389.56 1442.64 1411.18 767.57 624.01 662.39 1414.46 15.41 684.66 42.91 0.000 0.48

Cytochrome P450 93A3  (P450 CP5) AW685151 74.79 62.54 68.85 33.29 38.64 27.99 68.73 3.54 33.31 3.07 0.002 0.48

Unknown AJ548059 544.16 536.43 639.68 252.55 346.80 237.46 573.43 33.20 278.94 34.21 0.003 0.49

Unknown TC110146 132.90 91.55 95.54 37.13 65.49 53.28 106.66 13.17 51.97 8.21 0.024 0.49

Unknown IMGAG|846.m00025 200.60 182.42 215.71 90.24 118.96 83.13 199.58 9.63 97.44 10.95 0.002 0.49

Thaumatin-like protein 1 precursor TC103744 176.88 131.68 117.57 75.79 43.23 89.28 142.04 17.89 69.43 13.67 0.032 0.49

Conserved hypothetical protein IMGAG|1206.m00006 3091.46 2819.80 3014.97 1134.72 1786.88 1443.71 2975.41 80.88 1455.11 188.35 0.002 0.49

Dehydration-induced protein RD22-like protein 2 TC95843 797.61 1061.14 1053.15 376.52 714.41 333.31 970.64 86.54 474.75 120.48 0.029 0.49

Putative receptor-like protein kinase 1742.m00054 235.34 213.68 234.46 95.30 137.56 102.35 227.83 7.08 111.73 13.07 0.001 0.49

TIR-similar-domain-containing protein TSDC TC109733 89.13 69.84 69.36 27.32 50.28 34.38 76.11 6.51 37.33 6.79 0.015 0.49

FAD-linked oxidoreductase family 1469.m00045 1365.07 931.08 852.27 487.64 478.31 582.64 1049.47 159.43 516.19 33.33 0.031 0.49

F1E22.7 TC98678 1854.18 1303.24 1287.16 591.34 923.72 671.12 1481.52 186.38 728.72 100.18 0.024 0.49

Heat shock factor RHSF2 TC95045 871.63 745.80 727.48 338.66 435.16 379.79 781.64 45.30 384.54 27.96 0.002 0.49

Unknown BG586132 224.35 153.79 149.62 66.00 117.44 77.16 175.92 24.24 86.87 15.62 0.037 0.49

Naringenin-chalcone synthase; Type III IMGAG|918.m00018 2590.36 2317.15 1977.45 1227.16 876.15 1305.31 2294.98 177.28 1136.21 131.97 0.006 0.50

Similar to GB At1g56300 BG452391 41.18 56.66 53.92 19.05 31.35 24.76 50.58 4.77 25.05 3.55 0.013 0.50

Similar to GB At5g49760 BG645819 454.07 361.41 345.00 153.70 241.39 180.35 386.83 33.95 191.81 25.95 0.010 0.50

Class I heat shock protein TC100459 89.69 104.56 99.04 40.00 61.96 43.47 97.76 4.34 48.48 6.82 0.004 0.50

Zn-finger, CCHC type IMGAG|924.m00003 116.80 110.96 119.63 53.98 66.79 51.81 115.80 2.55 57.53 4.67 0.000 0.50

Abscisic acid receptor PYL6 CX533517 916.79 804.90 748.27 411.07 423.22 392.90 823.32 49.51 409.06 8.81 0.001 0.50

TIR-similar-domain-containing protein TSDC TC111675 153.71 127.04 118.08 60.13 74.22 64.22 132.94 10.70 66.19 4.18 0.004 0.50



 

 

 

Table S4.3. List of all GC-MS identified polar metabolites significantly regulated in root absorption zone of M. truncatula seedlings under drought treatment 

(p ≤ 0.05).  

 

 

#1 #2 #3 #1 #2 #3

Canavanine 34.12 0.051 0.044 0.039 0.017 0.025 0.016 0.044 0.004 0.019 0.003 0.006 0.44

Citric Acid 30.68 2.459 2.251 2.154 0.969 1.091 0.973 2.288 0.090 1.011 0.040 0.000 0.44

Pipecolic Acid, N,O- 20.10 0.018 0.019 0.018 0.011 0.012 0.009 0.018 0.000 0.011 0.001 0.001 0.59

Norvaline, DL- 16.52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.59

Fumaric Acid, O,O- 19.61 0.042 0.038 0.039 0.024 0.028 0.019 0.040 0.001 0.024 0.003 0.005 0.60

Malonic Acid, O,O- 15.53 0.178 0.165 0.152 0.110 0.101 0.086 0.165 0.007 0.099 0.007 0.003 0.60

Unknow 16.10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.049 0.71

Daidzein (4',7-dihydroxyisoflavone), O,O- 51.45 0.008 0.008 0.008 0.005 0.007 0.006 0.008 0.000 0.006 0.001 0.017 0.73

Unknow 19.85 0.003 0.003 0.003 0.002 0.002 0.002 0.003 0.000 0.002 0.000 0.017 0.74

Unknow 41.22 0.067 0.068 0.062 0.051 0.059 0.045 0.066 0.002 0.052 0.004 0.033 0.79

Unknow 9.68 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.005 0.84

Unknow 34.21 0.023 0.024 0.023 0.021 0.020 0.020 0.023 0.001 0.020 0.000 0.013 0.88

Unknow 30.95 0.009 0.009 0.009 0.011 0.010 0.010 0.009 0.000 0.010 0.000 0.008 1.12

Pyroglutamic acid 24.12 0.186 0.159 0.161 0.206 0.190 0.208 0.168 0.009 0.201 0.006 0.032 1.20

Unknow 14.65 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.000 0.003 0.000 0.042 1.22

L-Methionine, N,O 24.02 0.701 0.612 0.619 0.841 0.793 0.730 0.644 0.028 0.788 0.032 0.028 1.22

beta-Galactopyranosyl-1,3-arabinose, D- (1MEOX) 43.64 0.029 0.033 0.030 0.035 0.041 0.037 0.031 0.001 0.038 0.002 0.028 1.23

Adenosine 45.23 0.006 0.005 0.005 0.007 0.007 0.007 0.006 0.000 0.007 0.000 0.031 1.24

Butanoic acid, 2,4-diamino- 28.32 0.051 0.043 0.042 0.059 0.061 0.056 0.045 0.003 0.059 0.002 0.015 1.29

Saccharic Acid, O,O,O,O,O,O- 34.88 0.011 0.012 0.011 0.014 0.016 0.015 0.011 0.000 0.015 0.001 0.008 1.33

Ethanol Amine, N,O,O- 16.34 0.013 0.011 0.014 0.018 0.018 0.015 0.013 0.001 0.017 0.001 0.019 1.34

Cysteine 24.84 0.014 0.013 0.012 0.019 0.018 0.016 0.013 0.001 0.018 0.001 0.014 1.34

Glucopyranose [-H20] 29.46 0.038 0.042 0.045 0.055 0.059 0.055 0.041 0.002 0.056 0.001 0.003 1.36

galactosyl glycerol 39.87 0.026 0.028 0.023 0.034 0.040 0.032 0.026 0.001 0.035 0.003 0.030 1.36

Putrescine 29.11 0.742 0.612 0.606 0.935 0.945 0.812 0.653 0.044 0.897 0.043 0.017 1.37

Unknow 24.65 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.000 0.003 0.000 0.049 1.40

Saccharic acid 34.57 0.039 0.044 0.042 0.056 0.064 0.063 0.042 0.001 0.061 0.003 0.003 1.46

Unknow 31.66 0.005 0.004 0.004 0.006 0.007 0.007 0.004 0.000 0.006 0.000 0.008 1.48

Ononitol, O,O,O,O,O- 34.34 0.030 0.027 0.026 0.040 0.046 0.038 0.028 0.001 0.041 0.002 0.007 1.49

L-Tryptophan, N,N-ene,O- 38.53 0.023 0.024 0.022 0.035 0.034 0.034 0.023 0.001 0.034 0.000 0.000 1.50

AVE D SE D P-VALUE
Ratio                         

(D/C)

METABOLITE                                                                                                                                                    

(Name)

Retention 

time (min)

CONTROL (C) DROUGHT (D)
AVE C SE C
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Table S4.3 (continued). List of all GC-MS identified polar metabolites significantly regulated in root absorption zone of M. truncatula seedlings under drought 

treatment (p ≤ 0.05).  

 

 

Unknow 11.60 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.004 1.52

Saccharic Acid, O,O,O,O,O,O- 35.14 0.031 0.035 0.034 0.046 0.053 0.054 0.034 0.001 0.051 0.003 0.003 1.52

L-Valine, N,O- 15.86 0.327 0.280 0.276 0.478 0.380 0.487 0.294 0.016 0.448 0.034 0.015 1.52

Unknow 30.29 0.120 0.133 0.137 0.200 0.196 0.202 0.130 0.005 0.199 0.002 0.000 1.53

n-Octyl-beta-D-glucoside, O,O,O,O 40.44 0.014 0.015 0.014 0.026 0.018 0.024 0.015 0.000 0.023 0.002 0.031 1.54

L-Alanine, N,O- 12.66 0.011 0.008 0.009 0.015 0.014 0.017 0.009 0.001 0.015 0.001 0.013 1.59

L-Asparagine 27.42 2.144 1.814 1.943 3.134 3.497 2.773 1.967 0.096 3.135 0.209 0.007 1.59

Unknow 20.27 0.012 0.010 0.010 0.019 0.018 0.016 0.011 0.001 0.018 0.001 0.003 1.61

Proline [+CO2] 25.58 0.005 0.004 0.004 0.008 0.006 0.006 0.004 0.000 0.007 0.001 0.026 1.61

L-Lysine, N,N,N,O- 32.90 0.004 0.004 0.003 0.006 0.007 0.005 0.004 0.000 0.006 0.001 0.016 1.62

L-Asparagine, N,N,O- 27.60 4.015 3.367 3.628 5.970 6.642 5.266 3.670 0.188 5.959 0.397 0.006 1.62

Cysteine, S-methyl-, DL- 21.54 0.003 0.003 0.003 0.005 0.005 0.004 0.003 0.000 0.005 0.000 0.001 1.63

Serine, O-acetyl- 20.73 0.006 0.006 0.006 0.009 0.011 0.009 0.006 0.000 0.010 0.001 0.003 1.63

Unknow 35.86 0.035 0.039 0.039 0.067 0.067 0.053 0.038 0.002 0.062 0.005 0.008 1.65

Trisiloxane, Octamethyl- 11.57 0.002 0.002 0.003 0.004 0.004 0.004 0.002 0.000 0.004 0.000 0.002 1.66

Histidine 32.91 0.394 0.381 0.331 0.646 0.644 0.545 0.368 0.019 0.612 0.033 0.003 1.66

Threitol 23.46 0.003 0.003 0.003 0.004 0.006 0.004 0.003 0.000 0.005 0.001 0.031 1.68

Threitol 23.27 0.002 0.003 0.003 0.004 0.005 0.004 0.002 0.000 0.004 0.000 0.024 1.68

Unknow 30.56 0.017 0.014 0.013 0.024 0.028 0.023 0.014 0.001 0.025 0.002 0.005 1.71

Isobutanoic acid, 3-amino- 22.48 0.003 0.003 0.003 0.006 0.006 0.005 0.003 0.000 0.006 0.000 0.000 1.74

Unknow 19.84 0.002 0.002 0.002 0.004 0.004 0.004 0.002 0.000 0.004 0.000 0.001 1.75

Unknow 24.98 0.013 0.013 0.013 0.022 0.023 0.022 0.013 0.000 0.023 0.000 0.000 1.76

L-Proline, O- 15.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 1.79

Unknow 33.22 0.016 0.008 0.009 0.019 0.023 0.017 0.011 0.002 0.020 0.002 0.042 1.80

Glycine, N,N,O- 18.44 0.157 0.119 0.131 0.253 0.233 0.247 0.135 0.011 0.244 0.006 0.001 1.80

L-Glutamine, N,N,O- 29.83 0.136 0.120 0.116 0.234 0.227 0.215 0.124 0.006 0.225 0.006 0.000 1.82

Unknow 32.98 0.039 0.041 0.040 0.070 0.081 0.067 0.040 0.001 0.073 0.004 0.002 1.82

L-Isoleucine, O- 14.94 0.006 0.004 0.006 0.010 0.008 0.011 0.005 0.001 0.010 0.001 0.019 1.83

Unknow 15.72 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.043 1.85

Allantoin, N,N,N- 34.49 0.008 0.009 0.009 0.018 0.016 0.015 0.009 0.000 0.016 0.001 0.001 1.87



 

 

 

Table S4.3 (continued). List of all GC-MS identified polar metabolites significantly regulated in root absorption zone of M. truncatula seedlings under drought 

treatment (p ≤ 0.05).  

 

L-Serine, N,O,O- 19.77 1.310 1.058 1.121 2.281 2.203 2.072 1.163 0.075 2.185 0.061 0.000 1.88

Unknow 32.56 0.093 0.048 0.052 0.109 0.156 0.108 0.064 0.014 0.124 0.016 0.049 1.93

L-Aspartic Acid, O,O- 21.59 0.006 0.002 0.004 0.010 0.008 0.008 0.004 0.001 0.008 0.001 0.038 1.95

D-(+)-Galactose, O,O,O,O,O- o-methyloxime 1 32.24 0.363 0.360 0.337 0.590 0.771 0.772 0.354 0.008 0.711 0.061 0.004 2.01

Allantoin, N,N,N,N,N- 32.05 0.009 0.008 0.007 0.019 0.016 0.013 0.008 0.001 0.016 0.002 0.010 2.01

D-(-)-Fructose, O,O,O,O,O-o-methyloxime 2 31.88 0.417 0.341 0.344 0.607 0.804 0.808 0.367 0.025 0.740 0.066 0.006 2.01

L-Phenylalanine, N,O- 26.65 0.156 0.131 0.135 0.324 0.253 0.293 0.141 0.008 0.290 0.020 0.002 2.06

D-(-)-Fructose, O,O,O,O,O- o-methyloxime 1 31.69 0.539 0.455 0.445 0.820 1.051 1.125 0.479 0.030 0.999 0.092 0.006 2.08

D-(+)-Galactose, O,O,O,O,O- o-methyloxime 2 32.65 0.051 0.049 0.046 0.084 0.111 0.110 0.049 0.001 0.102 0.009 0.004 2.09

L-Alanine, N,N,O- 19.90 0.004 0.004 0.004 0.008 0.006 0.011 0.004 0.000 0.008 0.001 0.045 2.09

Alanine, beta- 21.67 0.032 0.026 0.028 0.062 0.062 0.058 0.029 0.002 0.061 0.001 0.000 2.11

Unknow 37.55 0.052 0.051 0.047 0.106 0.127 0.097 0.050 0.002 0.110 0.009 0.003 2.19

Unknow 16.28 0.001 0.001 0.001 0.003 0.002 0.002 0.001 0.000 0.002 0.000 0.001 2.21

Unknow 20.07 0.001 0.001 0.001 0.003 0.002 0.002 0.001 0.000 0.002 0.000 0.013 2.22

L-Asparagine, N, O- 25.94 0.142 0.083 0.120 0.287 0.277 0.216 0.115 0.017 0.260 0.022 0.007 2.26

Ononitol 33.46 0.619 0.534 0.533 1.280 1.415 1.179 0.562 0.029 1.291 0.068 0.001 2.30

L-Serine, N,N,O,O- 25.21 0.001 0.001 0.001 0.002 0.002 0.003 0.001 0.000 0.002 0.000 0.013 2.35

Unknow 26.17 0.012 0.011 0.011 0.027 0.030 0.023 0.011 0.000 0.027 0.002 0.001 2.38

Unknow 30.46 0.518 0.483 0.546 1.171 1.352 1.281 0.516 0.018 1.268 0.052 0.000 2.46

Alanine [+CO2] 20.92 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.012 2.55

Unknow 37.67 0.014 0.013 0.013 0.033 0.045 0.026 0.013 0.000 0.035 0.005 0.018 2.58

Urea, N,N-TMS 16.85 0.019 0.017 0.016 0.046 0.041 0.046 0.017 0.001 0.044 0.002 0.000 2.61

Histidine 37.36 0.003 0.003 0.003 0.007 0.007 0.010 0.003 0.000 0.008 0.001 0.006 2.67

Ascorbic Acid TMS MEOX1 31.80 0.021 0.021 0.022 0.052 0.060 0.061 0.021 0.000 0.058 0.003 0.000 2.74

Unknow 33.75 0.226 0.224 0.234 0.541 0.664 0.677 0.228 0.003 0.628 0.043 0.001 2.75

Unknow 27.46 0.002 0.002 0.001 0.004 0.004 0.004 0.002 0.000 0.004 0.000 0.001 2.77

Ascorbic Acid TMS MEOX2 31.94 0.025 0.018 0.017 0.052 0.060 0.061 0.020 0.003 0.058 0.003 0.001 2.87

Pinitol, D- 30.89 0.011 0.010 0.010 0.029 0.035 0.026 0.010 0.000 0.030 0.003 0.002 3.03

L-Leucine, O- 14.30 0.003 0.002 0.003 0.010 0.007 0.008 0.003 0.000 0.008 0.001 0.006 3.08

L-Valine, trimethylsilyl ester 12.40 0.014 0.006 0.011 0.039 0.031 0.026 0.010 0.002 0.032 0.004 0.008 3.09

Asparagine [-H2O] 23.67 0.290 0.251 0.283 0.997 1.054 0.852 0.275 0.012 0.968 0.060 0.000 3.53

Unknow 30.62 0.109 0.113 0.126 0.346 0.432 0.473 0.116 0.005 0.417 0.037 0.001 3.60

L-Serine, O,O- 17.07 0.002 0.001 0.002 0.008 0.008 0.007 0.002 0.000 0.008 0.000 0.000 4.57

Unknow 19.45 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.001 4.97

Unknow 45.49 0.000 0.000 0.001 0.003 0.003 0.002 0.000 0.000 0.003 0.000 0.003 5.44
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Table S4.4. List of all GC-MS identified nonpolar metabolites significantly regulated in root absorption zone of M. truncatula seedlings under drought treatment 

(p ≤ 0.05).  

 

 

 

 

 

 

#1 #2 #3 #1 #2 #3

Unknow 48.23 0.0018 0.0017 0.0016 0.0010 0.0005 0.0010 0.0017 0.0001 0.0008 0.0002 0.011 0.50

Spinasterol-TMS from M.truncatula seeds 57.17 0.0657 0.0611 0.0573 0.0441 0.0250 0.0322 0.0614 0.0025 0.0338 0.0056 0.011 0.55

Unknow 37.81 0.0003 0.0004 0.0005 0.0003 0.0001 0.0002 0.0004 0.0000 0.0002 0.0000 0.048 0.56

Unknow 37.69 0.0007 0.0011 0.0009 0.0007 0.0005 0.0005 0.0009 0.0001 0.0005 0.0001 0.036 0.60

Tricosanoic acid methyl ester, n- 45.33 0.0061 0.0082 0.0064 0.0040 0.0042 0.0045 0.0069 0.0006 0.0042 0.0002 0.016 0.61

L-Serine, N,O,O-TMS 19.76 0.0085 0.0080 0.0059 0.0042 0.0051 0.0051 0.0075 0.0008 0.0048 0.0003 0.035 0.64

Unknow 26.33 0.0082 0.0092 0.0079 0.0057 0.0060 0.0061 0.0085 0.0004 0.0059 0.0001 0.003 0.70

Ethanolamine (3TMS) 17.31 0.3372 0.3291 0.2910 0.2396 0.2473 0.1946 0.3191 0.0142 0.2272 0.0164 0.013 0.71

Methyl 9,12-(Z,Z)-octadecadienoate 36.49 0.1241 0.1193 0.1037 0.0863 0.0830 0.0787 0.1157 0.0062 0.0827 0.0022 0.007 0.71

Methyl Tetracosanoate 46.80 0.0024 0.0025 0.0022 0.0020 0.0014 0.0018 0.0024 0.0001 0.0018 0.0002 0.039 0.74

Methyl hexadecanoate 33.18 0.0376 0.0353 0.0305 0.0272 0.0257 0.0241 0.0345 0.0021 0.0257 0.0009 0.018 0.75

Octadecatrienoic acid methylester, 9,12,15-(Z,Z,Z)-, n- 36.60 0.0382 0.0366 0.0326 0.0299 0.0259 0.0268 0.0358 0.0017 0.0275 0.0012 0.016 0.77

Pentadecanoic acid, methyl ester 31.12 0.0010 0.0010 0.0009 0.0007 0.0008 0.0007 0.0010 0.0000 0.0007 0.0000 0.022 0.77

Unknow 47.08 0.0076 0.0068 0.0065 0.0058 0.0056 0.0049 0.0070 0.0003 0.0054 0.0003 0.021 0.77

galactosyl glycerol 6TMS 39.88 0.0776 0.0878 0.0753 0.0635 0.0652 0.0578 0.0802 0.0038 0.0622 0.0022 0.015 0.77

Unknow 33.93 0.0046 0.0047 0.0039 0.0034 0.0034 0.0036 0.0044 0.0003 0.0035 0.0001 0.025 0.79

Umbelliferone, O-TMS 31.62 0.1643 0.1716 0.1642 0.1315 0.1388 0.1304 0.1667 0.0025 0.1336 0.0026 0.001 0.80

Cellobiose, MEOX (8-TMS) minor; Glu beta (1-4) Glu) 46.97 0.0138 0.0119 0.0117 0.0103 0.0103 0.0093 0.0125 0.0007 0.0100 0.0003 0.030 0.80

Galactopyranoside, 1-O-methyl-, alpha- (4TMS) 30.68 0.0162 0.0179 0.0149 0.0138 0.0141 0.0125 0.0163 0.0009 0.0135 0.0005 0.047 0.83

Unknow 40.56 0.0033 0.0036 0.0033 0.0054 0.0053 0.0044 0.0034 0.0001 0.0051 0.0003 0.009 1.49

Methyl Docosanoate 43.80 0.0118 0.0128 0.0115 0.0200 0.0199 0.0169 0.0120 0.0004 0.0190 0.0010 0.003 1.58

Cadaverine (4TMS) 31.24 0.1352 0.1545 0.1503 0.3081 0.2112 0.2636 0.1467 0.0059 0.2610 0.0280 0.016 1.78

Arachinyl Alcohol, O-TMS 40.88 0.0062 0.0047 0.0050 0.0140 0.0150 0.0119 0.0053 0.0005 0.0137 0.0009 0.001 2.58

AVE D SE D P-VALUE
Ratio                         

(D/C)

METABOLITE                                                                                                                                                    

(Name)

Retention 

time (min)

CONTROL (C) DROUGHT (D)
AVE C SE C



 

 

 

Table S4.5. List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root absorption zone of M. truncatula seedlings under drought 

treatment (p ≤ 0.05).  

 

#1 #2 #3 #1 #2 #3

447.09276(6.732,Luteolin-4'-O-glucoside_AUT_QQQ) 0.004 0.001 0.002 0.000 0.000 0.000 0.0025 0.0008 0.0003 0.0001 0.0487 0.111

447.0919(6.7914,Kaempferol hexoseose (Put_YDS)) 0.004 0.001 0.003 0.000 0.000 0.000 0.0025 0.0008 0.0003 0.0001 0.0498 0.111

492.1024(3.22,8-Methylsulfinyl-n-octyl glucosinolate  (Put(Lit+emp)_DH )) 0.000 0.001 0.000 0.000 0.000 0.000 0.0005 0.0001 0.0001 0.0000 0.0035 0.183

269.04502(6.87,7,3',4'-Trihydroxyisoflavone Precursor m/z267_AUT_QQQ) 0.073 0.071 0.068 0.018 0.021 0.006 0.0709 0.0015 0.0150 0.0044 0.0003 0.211

269.04502(6.87,7,3',4'-Trihydroxyisoflavone Precursor m/z269_AUT_QQQ) 0.073 0.071 0.068 0.018 0.021 0.006 0.0709 0.0015 0.0150 0.0044 0.0003 0.211

315.08689(12.546,5,6-dihydroxy-3',4'-dimethoxy-flavanone_AUT_QQQ) 0.001 0.001 0.001 0.000 0.000 0.000 0.0008 0.0000 0.0002 0.0001 0.0004 0.235

447.09276(4.624,Orientin (Luteolin 8-C-glucoside) m/z 445_AUT_QQQ) 0.001 0.001 0.001 0.000 0.000 0.000 0.0010 0.0001 0.0002 0.0001 0.0046 0.238

447.09276(4.624,Orientin (Luteolin 8-C-glucoside) m/z 447_AUT_QQQ) 0.001 0.001 0.001 0.000 0.000 0.000 0.0010 0.0001 0.0002 0.0001 0.0046 0.238

449.108(2.45,Pelargonidin-3-glucoside_AUT) 0.126 0.115 0.130 0.049 0.000 0.042 0.1237 0.0044 0.0304 0.0151 0.0040 0.246

297.07632(12.481,3(3',4'-Dimethoxyphenyl)-7-hydroxycoumarin_AUT_QQQ) 0.001 0.001 0.001 0.000 0.000 0.000 0.0006 0.0001 0.0002 0.0000 0.0050 0.258

297.0761(12.51,3,3',4'-Methoxy-phenylo-7-OH-Coumarin_AUT) 0.001 0.001 0.001 0.000 0.000 0.000 0.0006 0.0001 0.0002 0.0000 0.0050 0.258

445.079(6.51,Quercitrin_AUT) 0.013 0.014 0.012 0.003 0.004 0.003 0.0127 0.0006 0.0033 0.0003 0.0001 0.259

367.3582(35.8388,Lignoceric acid (Put_YDS)) 0.024 0.028 0.012 0.008 0.006 0.006 0.0213 0.0048 0.0064 0.0007 0.0375 0.302

267.02937(10.187,Coumestrol_AUT_QQQ) 0.028 0.024 0.023 0.007 0.008 0.008 0.0249 0.0014 0.0078 0.0003 0.0003 0.314

255.0662(8.133,Liquiritigenin_AUT ) 0.010 0.008 0.008 0.003 0.003 0.003 0.0087 0.0005 0.0028 0.0001 0.0003 0.327

255.0661(8.0839,Liquiritigenin (Put_MB)) 0.010 0.008 0.008 0.003 0.003 0.003 0.0087 0.0005 0.0029 0.0001 0.0003 0.330

285.0398(10.61,Kaempferol_AUT) 0.000 0.000 0.000 0.000 0.000 0.000 0.0004 0.0000 0.0001 0.0000 0.0013 0.336

313.0713(15.84,Irisolidone_AUT ) 0.000 0.000 0.001 0.000 0.000 0.000 0.0005 0.0001 0.0002 0.0000 0.0075 0.360

367.35763(36.051,Lignoceric acid_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0005 0.0000 0.0002 0.0001 0.0077 0.389

447.12915(7.7,Sakuranin (4',5-Dihydroxy-7-methoxyflavanone 5-glucoside)_AUT_QQQ) 0.001 0.001 0.001 0.000 0.000 0.000 0.0009 0.0001 0.0004 0.0000 0.0017 0.402

447.0931(5.399,Luteolin-3'-7-di-O-glucoside (fragment)_AUT) 0.001 0.001 0.001 0.000 0.001 0.001 0.0014 0.0000 0.0006 0.0001 0.0003 0.409

577.15576(6.846,Isorhoifolin (Apigenin-7-O-rutinoside)_AUT_QQQ) 0.010 0.009 0.009 0.004 0.004 0.004 0.0096 0.0004 0.0039 0.0002 0.0002 0.411

593.1508(4.45,Saponari_AUT) 0.057 0.050 0.052 0.020 0.024 0.022 0.0533 0.0020 0.0219 0.0011 0.0002 0.412

358.0234(0.84,Sinigrin (2-Propenyl-glucosinolate)_AUT) 0.003 0.005 0.003 0.002 0.001 0.001 0.0034 0.0006 0.0014 0.0002 0.0396 0.413

577.1584(6.76,Isorhoifolin_AUT) 0.010 0.009 0.010 0.004 0.004 0.004 0.0095 0.0004 0.0040 0.0002 0.0002 0.414

445.1135(10.75,Sissotrin (Biochanin A-7-O-glucoside)_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0416 0.471

445.1135(10.75,Sissotrin (Biochanin A-7-O-glucoside) Precursor m/z 505_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0416 0.471

271.0606(6.83,Naringenin-7-O-glucoside - aglycone_AUT) 0.005 0.004 0.004 0.002 0.003 0.002 0.0042 0.0003 0.0021 0.0002 0.0041 0.511

973.4977(14.5488,Hexose-hexose-hexose-Bayogenin (Put_MB)) 0.002 0.002 0.002 0.001 0.001 0.001 0.0019 0.0001 0.0010 0.0002 0.0204 0.515

381.0609(4.84,Scopoletin (dimer)_AUT) 0.005 0.005 0.005 0.003 0.003 0.002 0.0050 0.0002 0.0026 0.0003 0.0017 0.521

465.1035(1.96,Cyanidin-3-O-glucoside_AUT) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0009 0.523

253.0481(8.25,Daidzein_AUT ) 0.001 0.001 0.001 0.001 0.001 0.000 0.0009 0.0001 0.0005 0.0000 0.0071 0.526

SE D P-VALUE
Ratio                         

(D/C)

METABOLITE                                                                                                                                                    
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CONTROL (C) DROUGHT (D)
AVE C SE C AVE D
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Table S4.5 (continued). List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root absorption zone of M. truncatula seedlings under 

drought treatment (p ≤ 0.05).  

 

 

 

227.07084(6.95,Resveratrol_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0272 0.542

283.0607(9.08,Glycitein_AUT) 0.035 0.034 0.032 0.016 0.020 0.019 0.0334 0.0010 0.0182 0.0012 0.0007 0.545

353.08728(2.375,Chlorogenic acid m/z351_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0004 0.0001 0.0002 0.0000 0.0317 0.551

353.08728(2.375,Chlorogenic acid m/z353_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0004 0.0001 0.0002 0.0000 0.0317 0.551

271.06067(9.906,Naringenin (+/-)_AUT_QQQ) 0.003 0.003 0.003 0.001 0.002 0.002 0.0029 0.0001 0.0016 0.0002 0.0046 0.559

271.0598(10.07,Naringenin_AUT) 0.003 0.003 0.003 0.001 0.002 0.002 0.0029 0.0001 0.0016 0.0002 0.0046 0.559

285.0389(1.96,Cyanidin-3-O-glucoside_AUT) 0.005 0.005 0.005 0.003 0.004 0.002 0.0052 0.0001 0.0029 0.0004 0.0045 0.563

267.06576(12.074,7-Hydroxy-4'-methoxyflavone (Pratol)_AUT_QQQ) 0.000 0.001 0.001 0.000 0.000 0.000 0.0005 0.0000 0.0003 0.0001 0.0188 0.565

455.3562(32.81,Boswellic acid, alpha_AUT) 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 0.0000 0.0002 0.0000 0.0302 0.573

339.1241(18.64,Desmethylxanthohumol_AUT) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0001 0.0000 0.0188 0.594

267.0656(8.64,Ferulic acid ) 0.024 0.022 0.023 0.012 0.016 0.014 0.0231 0.0005 0.0140 0.0013 0.0026 0.606

267.0663(8.47,Formononetin-7-O-glucoside_AUT) 0.024 0.022 0.023 0.012 0.016 0.014 0.0231 0.0005 0.0140 0.0013 0.0026 0.607

303.0505(4.93,Taxifolin (3,3',4',5,7-pentahydroxylflavanone) m/z 301_AUT_QQQ) 0.002 0.002 0.002 0.001 0.001 0.001 0.0016 0.0001 0.0010 0.0000 0.0007 0.609

303.0505(4.93,Taxifolin (3,3',4',5,7-pentahydroxylflavanone) m/z 303_AUT_QQQ) 0.002 0.002 0.002 0.001 0.001 0.001 0.0016 0.0001 0.0010 0.0000 0.0007 0.609

359.07672(12.051,5,7,4'-Trihydroxy-6,3',5'-trimethoxyflavone_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 0.0000 0.0002 0.0000 0.0429 0.611

137.02389(2.101,Protocatechuic aldehyde (3,4-Dihydroxybenzaldehyde)_AUT_QQQ) 0.009 0.009 0.008 0.006 0.007 0.003 0.0087 0.0004 0.0053 0.0011 0.0495 0.614

253.05011(9.946,3',4'-Dihydroxyflavone_AUT_QQQ) 0.017 0.017 0.018 0.010 0.011 0.011 0.0171 0.0004 0.0106 0.0004 0.0003 0.618

253.0477(10,4',6-Dihydroxy aurone_AUT) 0.017 0.017 0.018 0.010 0.011 0.011 0.0171 0.0004 0.0106 0.0004 0.0003 0.619

319.21209(16.927,n-Decyl-beta-D-glucopyranoside_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0206 0.623

114.01914(0.725,N-Hydroxysuccinimide_AUT_QQQ) 0.004 0.003 0.003 0.002 0.003 0.002 0.0036 0.0002 0.0023 0.0002 0.0084 0.627

128.07118(0.718,L-Pipecolic acid_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0001 0.0000 0.0402 0.629

191.03446(4.713,Scopoletin_AUT_QQQ) 0.003 0.003 0.003 0.002 0.002 0.002 0.0030 0.0001 0.0019 0.0001 0.0009 0.634

191.0344(4.9,Scopoletin_AUT) 0.003 0.003 0.003 0.002 0.002 0.002 0.0030 0.0001 0.0019 0.0001 0.0009 0.634

461.07203(5.156,Scutellarein-7-glucuronide (scutellarin)_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 0.0000 0.0002 0.0000 0.0192 0.667

471.13(9.7,formononetin_7_O_glucoside_malonate (-COO)) 0.003 0.003 0.004 0.002 0.002 0.002 0.0032 0.0003 0.0023 0.0001 0.0413 0.703

111.01948(0.725,Uracil_AUT_QQQ) 0.078 0.080 0.081 0.054 0.063 0.054 0.0798 0.0012 0.0571 0.0028 0.0018 0.715

433.1121(3.824,Naringenin chalchone 4-O-glucoside (Put_MB)) 1.621 1.547 1.514 1.241 1.211 1.130 1.5607 0.0315 1.1944 0.0331 0.0013 0.765

283.0603(7.3836,Biochanin A (Put_YDS)) 0.013 0.016 0.016 0.010 0.012 0.013 0.0149 0.0007 0.0117 0.0009 0.0491 0.787

299.0566(10.894,Chrysoecin_AUT) 0.008 0.009 0.009 0.007 0.007 0.007 0.0085 0.0001 0.0071 0.0002 0.0017 0.836

299.057(11.07,Diosmetin_AUT ) 0.008 0.009 0.009 0.007 0.007 0.007 0.0085 0.0001 0.0071 0.0002 0.0017 0.836

299.05559(11.097,Diosmetin_AUT_QQQ) 0.008 0.009 0.009 0.007 0.007 0.007 0.0085 0.0001 0.0071 0.0002 0.0017 0.836



 

 

 

Table S4.5 (continued). List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root absorption zone of M. truncatula seedlings under 

drought treatment (p ≤ 0.05).  

 

 

 

299.05559(11.12,Hispidulin_AUT_QQQ) 0.008 0.009 0.009 0.007 0.007 0.007 0.0085 0.0001 0.0071 0.0002 0.0017 0.836

343.0826(15.48,Nevadensin_AUT) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0001 0.0000 0.9794 1.014

647.3766(14.5771,Hexose-Gypsogenic acid (Put_MB)) 0.066 0.064 0.066 0.068 0.074 0.074 0.0652 0.0005 0.0719 0.0020 0.0285 1.104

973.4993(12.8304,Hexose-hexose-hexose-Bayogenin (Put_MB)) 0.601 0.575 0.571 0.628 0.684 0.672 0.5824 0.0096 0.6616 0.0170 0.0152 1.136

973.5025(12.84,hexose-hexose-hexose-Bayogenin (Put_MB)) 0.601 0.575 0.571 0.628 0.684 0.672 0.5824 0.0096 0.6616 0.0170 0.0152 1.136

811.4469(12.441,Glucose-glucose-Bayogenin (Put_DH)) 0.421 0.419 0.409 0.461 0.496 0.523 0.4161 0.0036 0.4937 0.0179 0.0133 1.186

811.4475(12.47,Hexose-hexose-Bayogenin (Put_DH)) 0.421 0.419 0.409 0.461 0.496 0.523 0.4161 0.0036 0.4937 0.0179 0.0133 1.186

811.4449(12.8105,Glu Glu Bayogenin Fragment to 973 (-162) (Put_MB)) 0.421 0.419 0.409 0.462 0.496 0.523 0.4161 0.0036 0.4940 0.0177 0.0125 1.187

811.4505(13.2,Hexose-hexose-Bayogenin (Put_DH)) 0.135 0.141 0.139 0.163 0.170 0.165 0.1381 0.0018 0.1664 0.0020 0.0005 1.205

809.4335(15.29,Hexose-hexoseA-Hederagenin (Put_DH)) 0.028 0.030 0.030 0.033 0.039 0.037 0.0294 0.0005 0.0363 0.0018 0.0205 1.236

973.4997(10.2012,hexose-hexose-hexose-Bayogenin (Put_MB)) 0.009 0.009 0.009 0.010 0.013 0.011 0.0090 0.0001 0.0111 0.0007 0.0442 1.244

287.0545(2.4,Catechin (fragment)_AUT) 0.002 0.002 0.002 0.003 0.002 0.002 0.0018 0.0000 0.0024 0.0001 0.0124 1.302

957.5018(12.4346,Hexose-hexose-Rha-Bayogenin (Put_MB)) 0.020 0.025 0.023 0.028 0.033 0.029 0.0226 0.0015 0.0300 0.0014 0.0225 1.324

253.05011(7.709,7,4'-Dihydroxyflavone_AUT_QQQ) 0.014 0.013 0.014 0.020 0.016 0.019 0.0137 0.0003 0.0188 0.0012 0.0139 1.367

795.4526(19.819,Hexose-hexose-Hederagenin (Put_DH )) 0.019 0.020 0.018 0.024 0.029 0.025 0.0193 0.0006 0.0263 0.0015 0.0115 1.367

939.4936(13.5333,Dehydrosoyasaponin (Put_MB)) 0.012 0.014 0.013 0.018 0.018 0.018 0.0132 0.0007 0.0182 0.0003 0.0025 1.376

175.02429(0.718,D-Glucuronic Acid Lactone_AUT_QQQ) 0.021 0.018 0.019 0.028 0.027 0.025 0.0195 0.0008 0.0268 0.0011 0.0049 1.379

811.4434(16.6846,Hexose-hexose-Bayogenin (Put_MB)) 0.179 0.158 0.159 0.213 0.239 0.234 0.1652 0.0068 0.2285 0.0081 0.0039 1.383

925.511(14.827,Rha-hexose-hexose-Soyasapogenol E (fragment of 1087) (Put_MB)) 0.139 0.103 0.102 0.157 0.152 0.171 0.1145 0.0121 0.1598 0.0057 0.0278 1.395

647.3831(14.14,Hexose-New Aglycone (Put_DH )) 0.014 0.021 0.019 0.023 0.028 0.024 0.0177 0.0020 0.0248 0.0014 0.0459 1.399

925.5173(14.86,Rha-hexose-hexose-SoyE (Put_DH)) 0.136 0.103 0.102 0.157 0.152 0.170 0.1138 0.0114 0.1596 0.0054 0.0218 1.403

269.0452(10.4704,Apigenin  (Put_MB)) 0.013 0.012 0.012 0.017 0.020 0.016 0.0124 0.0004 0.0175 0.0011 0.0123 1.403

269.04502(10.291,Apigenin_AUT_QQQ) 0.013 0.012 0.012 0.017 0.020 0.016 0.0124 0.0004 0.0175 0.0011 0.0132 1.406

911.5005(18.303,Rha-Ara-GlcA-SoyB (Aut_DH)) 0.001 0.001 0.001 0.001 0.001 0.001 0.0007 0.0001 0.0010 0.0001 0.0443 1.438

1103.564(14.0897,Hexose-Rha-hexose-hexose-Hederagenin (Put_MB)) 0.037 0.037 0.036 0.051 0.056 0.052 0.0368 0.0002 0.0532 0.0016 0.0005 1.447

138.01914(0.925,3-Hydroxypicolinic acid_AUT_QQQ) 0.001 0.001 0.001 0.001 0.001 0.001 0.0007 0.0001 0.0010 0.0001 0.0247 1.455

138.01914(0.947,6-Hydroxynicotinic acid_AUT_QQQ) 0.001 0.001 0.001 0.001 0.001 0.001 0.0007 0.0001 0.0010 0.0001 0.0247 1.455

705.3849(18.28,3-Glc-Malonyl-MedicagenicAcid (Put_DH)) 0.012 0.014 0.014 0.019 0.022 0.018 0.0133 0.0008 0.0198 0.0012 0.0105 1.492

987.4791(13.5266,GlcA-Glc-Glc--Bayogenin (Put_MB)) 0.057 0.073 0.070 0.096 0.105 0.099 0.0667 0.0048 0.0998 0.0026 0.0038 1.497

633.4041(20.989,Hexose-Hederagenin (Put_DH )  ) 0.006 0.005 0.005 0.006 0.008 0.008 0.0050 0.0003 0.0075 0.0005 0.0150 1.507
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Table S4.5 (continued). List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root absorption zone of M. truncatula seedlings under 

drought treatment (p ≤ 0.05).  

 

 

 

279.2367(30.6349,Linoleic acid (Put_YDS)) 0.212 0.185 0.182 0.257 0.302 0.317 0.1932 0.0096 0.2917 0.0180 0.0085 1.510

663.3777(17.53,3-Glc-Medicagenic Acid (Aut_DH)) 0.028 0.021 0.022 0.034 0.039 0.035 0.0237 0.0020 0.0358 0.0015 0.0082 1.512

141.0163(23.9785,18-Hydroxy-9-octadecenoic acid (Put_YDS)) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0002 0.0000 0.0467 1.532

663.3756(15.49,Hexose-Medicagenic Acid (Put_DH)) 0.022 0.021 0.020 0.031 0.036 0.031 0.0208 0.0007 0.0326 0.0018 0.0038 1.570

1117.5419(13.6447,Rha-hexose-hexose-hexose-Quillaic acid (Put_MB)) 0.104 0.109 0.109 0.145 0.197 0.173 0.1074 0.0015 0.1716 0.0152 0.0138 1.597

607.1635(7.98,NeoDiosmin_AUT  ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0002 0.0000 0.0066 1.597

957.5092(16.05,Rha-hexose-hexose-Bayogenin (Put_DH)) 0.007 0.006 0.006 0.010 0.011 0.009 0.0061 0.0003 0.0097 0.0005 0.0041 1.602

167.0346(4.904,5-Methoxysalicylic acid_AUT) 0.002 0.002 0.002 0.003 0.003 0.003 0.0018 0.0001 0.0029 0.0002 0.0051 1.614

167.03446(4.964,5-Methoxysalicylic acid_AUT_QQQ) 0.002 0.002 0.002 0.003 0.003 0.003 0.0018 0.0001 0.0029 0.0002 0.0051 1.614

167.0346(5.01,2,4,6-Trihydroxyacetophenone_AUT) 0.002 0.002 0.002 0.003 0.003 0.003 0.0018 0.0001 0.0029 0.0002 0.0051 1.614

167.03446(5.046,2,4,6-Trihydroxyacetophenone_AUT_QQQ) 0.002 0.002 0.002 0.003 0.003 0.003 0.0018 0.0001 0.0029 0.0002 0.0051 1.614

649.394(17.44,Hex-Bayogenin (Put_DH)) 0.093 0.090 0.085 0.143 0.161 0.136 0.0895 0.0025 0.1466 0.0073 0.0018 1.638

287.05559(4.513,3,7,3',4'-Tetrahydroxyflavanone (Fustin)_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 0.0000 0.0004 0.0000 0.0026 1.662

501.3211(19.7996,Medicagenic Acid (Put_MB)) 0.009 0.006 0.006 0.009 0.014 0.012 0.0069 0.0008 0.0116 0.0015 0.0478 1.685

563.14011(7.25,Apiin (Apigenin-7-apioglucoside)_AUT_QQQ) 0.001 0.002 0.001 0.002 0.003 0.003 0.0016 0.0001 0.0027 0.0002 0.0127 1.728

277.2173(28.606,Linolenic acid (Put_YDS)) 0.154 0.144 0.145 0.231 0.279 0.271 0.1478 0.0033 0.2607 0.0149 0.0018 1.763

617.4049(22.001,Hexose-SoyE (Put_DH )) 0.001 0.002 0.002 0.002 0.003 0.003 0.0016 0.0001 0.0028 0.0002 0.0078 1.782

973.50084(10.615,Madecassoside_AUT_QQQ) 0.009 0.009 0.009 0.016 0.017 0.014 0.0088 0.0002 0.0157 0.0010 0.0024 1.788

219.17492(13.716,2,6-Di-tert-butyl-4-methylphenol_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0004 0.0000 0.0190 1.868

193.0492(5.37,3-Hydroxy-4-methoxycinnamic acid_AUT) 0.002 0.003 0.003 0.005 0.006 0.005 0.0028 0.0002 0.0053 0.0003 0.0027 1.870

1063.237(11.665,cyanidin_3_O_glucoside_malonate (Dimer)) 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0001 0.0000 0.0326 1.873

164.05726(1.064,6-Methylguanine_AUT_QQQ) 0.015 0.015 0.015 0.031 0.024 0.029 0.0148 0.0002 0.0277 0.0021 0.0037 1.880

423.42023(36.053,n-Octacosanoic acid_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.0000 0.0003 0.0000 0.0385 1.913

130.08683(0.71,6-Amino-n-hexanoic acid_AUT_QQQ) 0.009 0.009 0.011 0.020 0.016 0.020 0.0097 0.0004 0.0188 0.0014 0.0030 1.934

237.05519(11.889,7-Hydroxyflavone_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0002 0.0000 0.0354 2.002

939.4945(19.2447,Dehydrosoyasaponin (Put_MB)) 0.030 0.036 0.032 0.060 0.061 0.076 0.0326 0.0017 0.0656 0.0051 0.0036 2.010

1205.5675(13.756,Gypsogenin (Put_MS/MS_JHS)) 0.002 0.001 0.002 0.003 0.003 0.003 0.0016 0.0002 0.0033 0.0000 0.0017 2.023

481.1135(8.3,Silychristin_AUT_QQQ) 0.000 0.000 0.000 0.001 0.001 0.001 0.0003 0.0001 0.0007 0.0000 0.0204 2.036

795.4543(17.945,Gal-GlcA-SoyB (Put_DH)) 0.012 0.009 0.012 0.022 0.021 0.023 0.0108 0.0011 0.0220 0.0004 0.0007 2.044

485.327(26.3936,Quillaic acid (Put_MB)) 0.006 0.005 0.005 0.010 0.013 0.012 0.0054 0.0005 0.0116 0.0007 0.0022 2.134



Table S4.5 (continued). List of all UHPLC-QTOF-MS identified metabolites significantly regulated in root absorption zone of M. truncatula seedlings under 

drought treatment (p ≤ 0.05).  

407.18587(24.88,6,8-Diprenylnaringenin_AUT_QQQ) 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0001 0.0000 0.0101 2.168

647.3793(16.8011,Hexose-Quillaic acid (Put_MB)) 0.001 0.001 0.001 0.002 0.002 0.003 0.0011 0.0001 0.0025 0.0002 0.0052 2.203

301.0373(5.02,3,7,3',4',5'-Pentahydroxyflavone (Robinetin)_AUT) 0.000 0.000 0.000 0.001 0.001 0.000 0.0003 0.0001 0.0007 0.0001 0.0408 2.212

1205.5549(13.83,Many possible_3x Arab/xyl, 2x hexose (Put_MS/MS_JHS)) 0.001 0.001 0.002 0.003 0.003 0.004 0.0014 0.0003 0.0032 0.0003 0.0103 2.292

451.1235(3.09,Epicatechin-3-Glucoside_AUT) 0.011 0.012 0.009 0.020 0.027 0.027 0.0107 0.0009 0.0246 0.0023 0.0048 2.300

1119.5621(12.64,Rha-hexose-hexose-hexose-Bayogenin (Put_DH)) 0.001 0.001 0.000 0.001 0.002 0.002 0.0006 0.0001 0.0015 0.0001 0.0037 2.516

455.3565(28.83,Ursolic acid_AUT) 0.008 0.007 0.006 0.016 0.020 0.019 0.0071 0.0006 0.0181 0.0013 0.0014 2.569

455.3569(28.77,Oleanolic acid_AUT) 0.008 0.007 0.006 0.016 0.020 0.019 0.0070 0.0007 0.0181 0.0013 0.0014 2.579

455.3538(28.766,Soyasapogenol E (Put_MB)) 0.008 0.007 0.006 0.016 0.020 0.019 0.0070 0.0007 0.0182 0.0013 0.0016 2.583

793.4408(19.62,Hexose-hexoseA  (Put_DH )) 0.001 0.001 0.001 0.003 0.003 0.002 0.0011 0.0002 0.0027 0.0004 0.0183 2.586

471.3485(23.0424,Hederagenin (Put_MB)) 0.003 0.003 0.003 0.006 0.007 0.007 0.0026 0.0000 0.0067 0.0005 0.0015 2.617

471.3519(23.07,Hederagenin_AUT) 0.003 0.003 0.003 0.006 0.007 0.007 0.0026 0.0000 0.0067 0.0006 0.0022 2.619

471.3468(25.8634,Echinocystic acid (Put_MB)) 0.002 0.002 0.001 0.003 0.005 0.005 0.0016 0.0001 0.0042 0.0005 0.0060 2.665

471.3486(26.543,Aglycone triterpene C30H48O4 (isomer of Hederagenin)(Put_MB)) 0.005 0.005 0.005 0.013 0.016 0.016 0.0051 0.0002 0.0149 0.0011 0.0010 2.954

473.111(7.95,apigenin_7_O_glucoside_malonate  (-COO)) 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0003 0.0001 0.0403 3.032

469.3342(24.75,Glycyrrhetinic acid, 18 beta_AUT) 0.000 0.000 0.000 0.001 0.001 0.001 0.0002 0.0001 0.0006 0.0000 0.0063 3.089

469.33181(24.769,Glycyrrhetinic acid, 18 beta-_AUT_QQQ) 0.000 0.000 0.000 0.001 0.001 0.001 0.0002 0.0001 0.0006 0.0000 0.0056 3.163

469.3339(24.82,Glycyrrhetinic acid, 18 alpah_AUT) 0.000 0.000 0.000 0.001 0.001 0.001 0.0002 0.0001 0.0006 0.0000 0.0056 3.163

1265.5499(11.315,Zanhic acid (Put_MS/MS_JHS)) 0.000 0.000 0.000 0.001 0.001 0.002 0.0004 0.0000 0.0013 0.0003 0.0485 3.418

193.05011(4.92,Ferulic acid_AUT_QQQ) 0.002 0.001 0.001 0.005 0.002 0.005 0.0012 0.0003 0.0040 0.0010 0.0454 3.497

223.06067(5.208,Sinapic acid_AUT_QQQ) 0.000 0.000 0.000 0.001 0.001 0.001 0.0003 0.0001 0.0011 0.0001 0.0014 3.916

649.3969(17.47,hexose-Bayogenin (Put_DH)) 0.005 0.090 0.004 0.143 0.160 0.137 0.0330 0.0287 0.1466 0.0071 0.0185 4.439

485.3257(22.7271,Gypsogenic acid (Put_MB)) 0.002 0.005 0.002 0.012 0.016 0.014 0.0029 0.0011 0.0140 0.0010 0.0016 4.880




