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Abstract

Aim: An advance in grapevine phenological stages (including ripening) is occurring worldwide due to global warming and, in
the hottest seasons, already results in a lack of synchrony between sugar and phenolic ripeness, leading to unbalanced wines. In
order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through
cultural practices, particularly under warm growing conditions, where these effects are more deleterious. The aim of this work
is to evaluate to which extent severe trimming and enhanced competition of laterals can delay ripening in Tempranillo
vineyards under semiarid conditions.

Methods and results: The experiment took place during two consecutive seasons in Traibuenas (Navarra, Spain) in a cv.
‘Tempranillo’ vineyard trained to a vertical shoot positioned (VSP) spur-pruned bilateral cordon. Severe mechanical pruning
was performed ca. 3 weeks after fruit-set in order to reduce leaf-to-fruit ratio, and in the trimmed plants, three irrigation doses
were applied until harvest aiming at enhancing lateral growth, hypothesized to compete with ripening. All measurements were
performed in six 10-vine replicates per treatment. Trimming significantly reduced leaf area and yield, resulting in higher water
availability in trimmed plants. The whole ripening process was delayed by trimming: mid-veraison was delayed by about 5
days, and the delay in sugar accumulation and acid degradation was longer, differences being more marked in malic than in
tartaric acid concentration. The use of increased irrigation levels compensated the losses in yield caused by trimming, enhanced
laterals’ growth and implied an additional delay in ripening.

Conclusion: trimming and increased irrigation had an additive effect in terms of delaying ripening, and they can be used
jointly when that delay is needed.

Significance and impact of the study: this study proves the potentiality of the joint use of trimming and increased irrigation to
delay ripening, although it is necessary to analyze the implications the obtained delay has on other quality aspects. The lower
anthocyanin and phenolic values observed in trimmed vines were not solely due to delayed ripening, as lower values were
observed even when data were compared for a given total soluble solid content.
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Introduction

Adaptation to climate change is a major challenge for
the wine grape growing sector, since climatic
conditions affect not only the crop’s sustainability,
but also its typicity, i.e. the specific characteristics
that make a wine produced in a given region or
terroir singular. During the last decades, most of the
world’s highest quality wine-producing regions have
shown a warming trend during the growing season
(Duchéne and Schneider, 2005; Jones et al., 2005).
This change has led to an advance in phenology,
which, jointly with some changes in cultural
practices, resulted in earlier harvest dates, higher
sugar concentration in grapes, and higher alcoholic
concentration in wines (Duchéne and Schneider,
2005; Ramos et al., 2008; Tomasi et al., 2011;
Neethling et al., 2012; Webb et al., 2012; Bock et al.,
2013; Koufos et al., 2014; van Leeuwen and Darriet,
2016). Higher berry sugar content usually implies
higher must pH, which results in less stable, less
colored, leaner wines (Ribéreau-Gayon et al., 2000).

Moreover, advanced phenology indirectly implies
that physiological ripening processes are occurring at
increased temperatures, which can have a direct
impact on grape composition (Keller, 2010). With
regards to aromatic compounds, several studies
suggested that, at equivalent sugar concentrations,
higher temperatures lead to lower levels in white
aromatic grape varietals, thus potentially reducing
aromatic intensity (Mira de Ordufa, 2010). In red
grape varieties, high temperatures during ripening
have also been shown to decouple sugar and phenolic
maturity (Sadras and Moran, 2012; Bonada et al.,

2013; Teixeira et al., 2013), resulting in altered
organoleptic profiles.

Although climate change can favor grape growing in
some regions (Fraga et al., 2012; Hannah et al.,
2013), this is not the case for most wine regions in
Spain and Portugal, where climatic change can
negatively impact grape growing (Malheiro et al.,
2012; Resco, 2015; Lorenzo et al., 2016). The change
in climatic conditions during the last decades is a
matter of fact. For instance, in La Rioja and Navarra,
two wine regions in Northern Spain, all bioclimatic
indices relevant to viticulture have changed
significantly between 1951-1980 and 1981-2010
(Figure 1). As a consequence, the abovementioned
detrimental effects of advanced ripening on grape and
wine composition are becoming an increasing
problem that needs to be addressed (Alonso and
O’Neill, 2011; Martinez de Toda et al., 2014).

Looking at the past to understand the future

When facing a new climatic scenario, winegrowers
can display a wide set of cultural techniques in order
to minimize its effects (Neethling et al., 2016).
Among them, adapting the training systems and
canopy management operations, planting vineyards at
higher altitudes, and changing vinifera/rootstock
varieties and soil management practices can be
regarded as the most powerful tools (Battaglini et al.,
2009; Duchéne et al., 2010; Neethling et al., 2016).
However, some of the changes made in Navarra and
Rioja (and in many other areas in Spain) in the past
decades (particularly in the 1980-2000 period) have
led to a certain degree of miss-adaptation to climate
change, despite being associated to the introduction
of irrigation:

Table 1. Effect of trimming and irrigation treatments on trunk cross sectional area (TCSA),
shoot characteristics, cluster number, yield and carbon isotope ratio (6'*C)

Treatment TZCSA | Main shoot  No. laterals  Total lateral length Cluster Yield (kg vine-  §"°C
(em® vine"  length (cm)*  main shoot ™ (cm shoot™) number vine 1 (%o)
Control 18.3 834 a 120 b 12.6 ¢ 12.1 2.73 ab -25.18 a
Trim + R1 18.2 56.7 b 1.41 ab 192 ¢ 10.8 236D -2597b
Trim + R2 17.9 584 b 1.43 ab 364 b 11.0 2.57 ab -26.94 ¢
Trim + R3 18.2 619 b 1.57 a 49.7 a 11.5 298 a -27.44 d
P 0.844 <0.001 0.016 <0.001 0.474  0.032 <0.001
Year
2014 17.7 - -- - 11.3 224 -26.01
2015 18.7 - -- - 11.6 3.09 -26.75
P 0.005 - -- - 0.583 <0.001 0.013
Interaction
P, 0.924 -- -- - 0.975  0.648 0.205

*main shoot length, no. laterals and total lateral length were measured only in 2015; data were analyzed through a one-way ANOVA
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- (1) New vineyards were frequently planted in
irrigated areas, moving from poor but deep soils to
more fertile but shallower soils, where irrigation
water was available. When the maps of vineyard
locations in Navarra in 1956 and 2012 are compared
(Figure 2), it can be seen that the altitude of vineyards
has changed significantly (Figure 3). At a regional
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Figure 1. Comparison of bioclimatic indices for the 1951-1980 and 1981-2010 periods at Logrofio-Agoncillo (La Rioja)
and Pamplona (Navarra) observatories. Elaborated using the Daily Dataset for European Climate Assessment
(Klein Tank et al., 2002) available at http://www.ecad.eu.

10 0 10 20 30 40 km
| = mm

\

Figure 2. Comparison of the 1956 (left) and 2012 (right) land use maps of Navarre;
agricultural areas are indicated as roman numbers. Elaborated using data provided by Navarre Territorial
Information System (SITNA) distributed under Creative Commons Licence at http://idena.navarra.es/.
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where, apart from the increased water needs
(Reynolds and Heuvel, 2009), clusters are much
more exposed to solar radiation and therefore
subjected to higher temperatures.

(iii) Last, there was a varietal shift from Grenache N
to Tempranillo (Figure 4), tolerant and sensitive to
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Figure 3. Mean altitude of vineyards in Navarra
agricultural areas in 1956 and 2012 (a) and altitude
change in that period (b). Agricultural areas
correspond to those indicated in Figure 2. Elaborated
from land use maps and terrain elevation models
provided by Navarre Territorial Information System
(SITNA, http://idena.navarra.es/) using QGIS 2.12. and
GRASS open access software packages.
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water deficit, respectively (Santesteban et al., 2009;
Martorell et al., 2015), with the former tending to
give lower pH juices than the latter (Garcia et al.,
2011). Tempranillo, as an autochthonous variety, is
well adapted to its original habitat (i.e. the cooler
areas in Rioja), but during this varietal shift, it was
also used for planting most vineyards in the warmest
areas of the region.

Although the introduction of irrigation made it
possible for vineyards to be located in shallower soils
(using a more drought-sensitive cultivar with a more
water-demanding training system), other side-effects
appeared, like unwanted high sugar and pH values,
berry shriveling and uncoupled sugar and phenolic
ripening. In this context, a reversion of the variety
change is starting to be implemented, with the
growing presence of the low pH, high color cv.
Graciano for blending. A big effort is also being
made to find cultural practices that can help the
growers to adapt to climate change (Martinez de Toda
and Balda, 2013; Martinez de Toda et al., 2013;
Martinez de Toda et al., 2014).

The aim of this work is to evaluate to which extent
severe trimming and enhanced competition of laterals
can delay ripening in Tempranillo vineyards under
semiarid conditions.

Materials and Methods
1. Experimental design

The experiment took place during the 2014 and 2015
growing seasons in Traibuenas (Navarra, Spain) in a
4.2 ha ‘Tempranillo’/110 Richter vineyard (42° 23’
77 N, 1°37°29” W, 350 m a.s.l.). Vines were 17
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Figure 4. Evolution of the relative acreage of the red varieties grown in AO Rioja (a) and in AO Navarra (b)
in the 1983-2015 period. Data were provided by the Regulatory Boards of both AO.



years old at the beginning of the experiment, planted
at 3 x 1 m spacing, and trained to a VSP spur-pruned
bilateral cordon, with three 2-bud spurs per arm.

Control vines (CTRL) were subjected to standard
practices and compared to three treatments. In all
treatments, severe mechanical trimming (TRIM) was
performed ca. 3 weeks after fruit-set (pea-size) by
cutting shoots at ca. 55-65 cm. The trimmed
treatments differed in the irrigation level: Trim+R1
plants received the same amount of water than control
plants (ca. 36 L vine! once a week from pea-size to
harvest), whereas Trim+R2 and Trim+R3 plants were
irrigated two and three times a week for 4-5 weeks
after trimming (ca. 72 and 108 L vine! every week,
respectively). None of the treatments was irrigated
between harvest and pea-size. The hypothesis
supporting this approach is that reduced leaf-to-fruit
ratio and enhanced lateral shoot growth can delay
ripening through, respectively, decreased leaf-to-fruit
ratio and increased competition. The experimental
layout was set-up at a nearly commercial scale (2.4 ha
of vines as a whole), measurements being taken in six
10-vine replicates per treatment.

2. Measured variables

In winter, trunk cross sectional area (TCSA) was
calculated after measuring trunk diameter 30 cm
above-ground, and total shoot growth determined
measuring main shoot length, the number of laterals,
and lateral’s length (only in 2015). Veraison was
determined by careful visual inspection of 30 clusters
per replicate twice a week from the onset until the end
of veraison.

Yield was determined at harvest by counting and
weighing all the clusters produced in the 10 vines in
each replicate. Grape composition was determined
weekly between veraison and harvest in one 300-
berry sample per replicate. Samples were processed
according to standard laboratory procedures in order
to determine berry weight (BW), total soluble solids
(TSS), pH, titratable acidity (TA), and malic (MalA)
and tartaric (TarA) acid concentration. Phenolic
ripeness was evaluated using the Cromoenos®
method (Bioenos, Carifiena, Spain, http://www.
bioenos.com/cromoenos/index.php), which allows
determining total anthocyanins (TAnt), total phenolics
(TP), and a phenolic maturity index (PMI) after a fast
extraction in buffer solutions.

Plant water status was monitored weekly between
fruit-set and harvest. Stem water potential at midday
(P midday) Was determined for three healthy leaves per
replicate, bagged 1.5 hours prior to measurement
using zip-bags covered with a metalized high-density
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polyethylene reflective film. Measurements were
carried out with a Scholander pressure bomb (P3000,
Soil Moisture Corp., Santa Barbara, CA, USA).
Finally, berry carbon isotope ratio (8'3C) was
determined in 50-berry samples collected at harvest,
oven-dried, ground into a fine homogeneous powder,
and analyzed using an Elemental analyzer (NC2500,
Carlo Erba Reagents, Rodano, Italy) coupled to an
Isotopic Mass Spectrometer (Thermoquest Delta
Plus, ThermoFinnigan, Bremen, Germany) as
detailed in Santesteban et al. (2012).

3. Data analysis

Data were analyzed using linear regression and two-
way ANOVA (trimming/irrigation treatment x
season). All analyses were performed with
computing environment R (R Development Core
Team, 2015).

Results
1. Vegetative growth and yield

Both trimming and additional irrigation achieved
their goal in terms of vegetative growth (Table 1).
Trimming caused a significant decrease in main
shoot length and a slight increase in the number of
laterals, whereas increased irrigation resulted in
longer laterals. Trimming significantly decreased
yield, but this was compensated by the increased
irrigation treatments.

2. Plant water status

The evolution of water status followed a similar
pattern in both years (Figure 5), with slightly lower
midday stem water potential values in 2015.
Increased irrigation resulted, as expected, in higher
stem water potential, with a clear gradation between
Trim+R1, Trim+R2 and Trim+R3 treatments; the
same trend was observed when carbon isotope ratio
values (6"3C) were compared (Table 1). Trimming
also had a relevant effect on vine water status since
Trim+R1 plants showed higher water potential and
lower §'3C than control plants, indicating that
trimming alleviated to a certain extent the water
deficit.

3. Ripening dynamics

Trimming and increased irrigation caused a delay in
veraison in both years (Figure 6). In 2014, trimming
caused the greatest differences, inducing a 4-day
delay in mid-veraison, whereas increased irrigation
delayed it an additional day. In 2015, a greater delay
was observed, with four days due to trimming, and
an additional three days after increased irrigation.

OENO One,2017,51, 2, 191-203
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Figure 5. Evolution of stem water potential at midday (¥ ;g4ay) in 2014 (a) and in 2015 (b).

Treatments also affected berry size and ripening
dynamics (Figures 7, 8 and 9). Control vines
produced smaller berries in both years, and irrigation
increased berry size (Figure 7a, ¢). Both trimming
and increased irrigation caused a remarkable delay in
sugar content (Figure 7b, d). If we take 23.5 °Brix as
a reference value, trimming resulted in a 9- and 10-
day delay in 2014 and 2015, respectively, while
increased irrigation additionaly induced 5 days of
delay in 2014 and 7 in 2015.. These changes in
ripening dynamics were also reflected in acidity
parameters (Figure 8): untrimmed vines tended to
have an advanced ripening, whereas increased
irrigation resulted in an additional delay, showing
higher titratable acidity and malic and tartaric
concentration, and lower pH for a given date. Last,
with regards to phenolic compounds, no clear trends
were observed in 2014 (only three sampling dates are
available), whereas in 2015 the effects of trimming
and increased irrigation were much clearer (Figure
9). On the one side, trimmed vines showed lower
anthocyanin and phenolic concentration, and lower
PMI values, indicating an advance in phenolic
maturity. On the other side, increased irrigation
tended to cause lower anthocyanin and phenolic
content, and increased PMI values, indicating a delay
in ripening.

Discussion

Trimming and additional irrigation induced
significant changes in ripening dynamics, resulting in
a later onset of ripening and delayed maturity,
proving the soundness of our hypothesis. The effect
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of trimming (estimated as a 5-7-day delay) can be
explained by a reduced leaf-to-fruit ratio, which, as
proved by earlier research, limits plant photosynthesis
(Keller et al., 2005; Poni et al., 2013). As a result,
yield was also decreased, not due to a reduced berry
size, but rather to a lower berry number. Trimming
can cause some damage in clusters and, in the second
season, decrease cluster and flower differentiation
due to an unfavorable carbon balance (Santesteban et
al., 2011a; Dayer et al., 2013; Intrigliolo et al., 2016).
In fact, the berries of trimmed plants were bigger,
probably as a consequence of a lower fruit load and
higher plant water availability. Reduced leaf area can
certainly decrease water use, especially in cvs. such
as ‘Tempranillo’, known to have poor stomatal
control and relatively high night transpiration.
However, it should be taken into account that under
non-limiting solar radiation latitudes, leaf-to-fruit
ratio plays a relatively limited role in carbon balance
(Santesteban and Royo, 2006). Wounds resulting
from trimming are known to promote a complex
response in plants (Schilmiller and Howe, 2005;
Delano-Frier et al., 2013; Béttcher et al., 2015). In
grapevines, trimming has been shown to modify root
hydraulic conductivity through aquaporins and
interfere with the normal signaling process

-197 -

(Vandeleur et al., 2014) and could therefore be a
factor enhancing stomatal control.

The use of additional irrigation increased the delaying
effect of trimming. This delay can be assumed to be
due to the enhanced competition of laterals, since
higher water availability does not induce by itself a
delayed ripening in warm climates, but rather
promotes sugar accumulation (Santesteban and Royo,
2006; Chaves et al., 2007; Valdes et al., 2009). The
enhanced growth of laterals could be the cause of the
higher malic acid content observed, as higher leaf
area in the cluster zone reduces cluster temperature
(data not shown), which in turn decreases malic acid
degradation. However, this does not explain the
delayed sugar accumulation in ‘trimmed +
supplementary irrigation’ vines. The observed delay
in ripening cannot be due to increased yield, which is
known to delay sugar accumulation (Bravdo et al.,
1985; Santesteban et al., 2011b), since the yield in
Trim+R2 plants was similar to that in control vines,
and the delay was remarkable. In all, our results show
the potential of lateral growth-promoting techniques
as a tool to delay ripening and to adapt to climate
change. The originality of our approach is that

OENO One,2017,51, 2, 191-203
©Université de Bordeaux (Bordeaux, France)



Luis Gonzaga Santesteban et al.

10 +

(a)

(<)) ~N oo
|
T

wv
L
T

TA (g TAL?)

(b)

(<)

3.55 +
3.50 +

345 +

pH

340 +

335 +

3.30 +

3.25 +

(e)

MalA (g L)

73 1 (9)
71 4
69 |
67 +
65 -+

6.3 +

TarA (g L)

6.1 +
59 +
57 +

5.5 t

g\.\
\

N

\(\\\\, |
%5 Nt
.o

! | |

+-Control
-o-Trim +R1
-8-Trim + R2

—-Trim + R3

| | I L |

220 230

Figure 8. Titratable acidity (TA), pH, and malic (MalA) and tartaric (TarA) concentration evolution in 2014 (a, c, e, g)

and in 2015 (b, d, f, h).

OENO One,2017,51,2,191-203

T T T

240 250 260
DOY

©Université de Bordeaux (Bordeaux, France)

270

-198 -

220

230

240 250 260 270 280
DOY



1200 +

{a)

1000 +

800 +

TAnt (mg L1)

200 +

" (b)

(<)

1400 +

1300 +

—1200 | /i“$
FI' -7 ¢ —
o —~
801100 + i/

Q- 1000 +
900 +

800 t t t + t

()

(e)

2.8 +
2.6 +
24 +
22 +

PMI

2.0 +

1.8 + i&\
+-Control =\

1.6 + ) ~ %f?
-o-Trim + R1

L4 T 5 Trim+R2

1.2 + —x-Trim+R3

1.0

250 260 270

DOY

220 230 240

DOY

Figure 9. Total anthocyanins (T Ant), total phenolics (TP) and phenolic maturity index (PMI)
evolution in 2014 (a, ¢, ) and in 2015 (b, d, f).

reduced leaf area was combined with enhanced
lateral growth.

The results obtained are globally satisfactory since
the techniques tested were able to delay ripening.
However, it is necessary to test to which extent the
effects on ripening balance are favorable from an
enological point of view. According to berry ripening
dynamics summarized in Figures 8 and 9, berries
from trimmed and supplementary irrigated vines had,
for a given date, lower sugar content, higher acidity
and lower anthocyanin and phenolic content, which
can be due to delayed ripening but also to changes in

-199 -

ripening balance. In fact, when we plot grape
composition variables against soluble solid content
(Figure 10), it can be seen that for a given TSS value,
control vines had similar pH, lower titratable and
malic acidity, higher anthocyanin content and better
phenolic maturity (lower PMI values). Thus, apart
from delaying ripening, trimming and trimming +
supplemental irrigation intrinsically increased acidity
(due to reduced malic degradation), reduced
anthocyanin content and resulted in grapes with
lower phenolic ripeness. Therefore, it is necessary to
be cautious before implementing these techniques at
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a commercial scale. The most positive effect of
trimming and increased irrigation is that delayed
ripening would allow full ripening under cooler
temperatures, more favorable for aroma and phenolic
synthesis (Mira de Ordufia, 2010). However, if its use
implies a decreased anthocyanin and phenolic
accumulation, its introduction would not be justified.
Besides, in some areas it may not be possible to
increase irrigation level (even for a few weeks) due
to water scarcity. It is therefore necessary to test the
implications of these techniques on the composition
and organoleptic properties of the wines produced
prior to making any specific recommendation to
growers.
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