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Abstract

Zernike polynomials are commonly used to represent the wavefront phase on circular
optical apertures, since they form a complete and orthonormal basis on the unit disk. In
[Diaz et all, 2014] we introduced a new Zernike basis for elliptic and annular optical aper-
tures based on an appropriate diffeomorphism between the unit disk and the ellipse and the
annulus. Here, we present a generalization of this Zernike basis for a variety of important
optical apertures, paying special attention to polygons and the polygonal facets present in
segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on
the Gram-Smith orthonormalization method, here we consider a piece-wise diffeomorphism
that transforms the unit disk into the polygon under consideration. We use this mapping to
define a Zernike-like orthonormal system over the polygon. We also consider ensembles of
polygonal facets that are essential in the design of segmented mirror telescopes. This gener-
alization, based on in-plane warping of the basis functions, provides a unique solution, and
what is more important, it guarantees a reasonable level of invariance of the mathematical
properties and the physical meaning of the initial basis functions. Both, the general form
and the explicit expressions for a typical example of telescope optical aperture are provided.

2010 AMS Mathematics Subject Classification: 41A10 (Approximation by polynomials); 41A63
(Multidimensional problems); 78M99 (None of the above, but in this section: Optics, electro-
magnetic theory); 85-08 (Computational methods: Astronomy and astrophysics).

Keywords & Phrases: Zernike polynomials; orthonormal systems; polygonal facets; segmented
mirror telescopes.

1 Introduction

The problem of finding complete orthonormal systems to represent functions defined on finite
supports with a given geometry appears in many areas of Physics and Engineering. In particular,
Zernike circle polynomials [31] are widely used to represent optical path differences (phase
differences or wave aberrations) in wavefronts, or even the sag of optical surfaces (such as the
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human cornea [28], [9]) as they are well adapted to the circular shape (disks or slightly deformed
disks) of a majority of conventional optical systems. There is an infinite number of possible
systems, but Zernike polynomials (ZPs) (or lineal combinations of them [11]) show important
advantages and interesting properties. Among these properties, ZPs permit to establish a link
with the traditional Seidel theory of aberrations [1], which is based on a third order Taylor series
expansion, and with further extensions of the Seidel theory to 5th order, etc. The theoretical
and practical advantages of orthonormal polynomials, make that ZPs became the standard way
to describe the phase of wavefronts [22] (or the wave aberration or optical path differences) in
many fields ranging from atmospheric optics [23], optical design and testing [17] or visual optics
(the ANSI Z80.28 standard for reporting aberrations in the human eye is based on ZPs).

The circle is the most common optical aperture, but other more complicated geometries
have gained interest in recent years after the development of large telescopes that require more
sophisticated optical designs such as the annular pupils in large telescopes [26]. In particular,
segmented mirror telescopes (SMTs) are commonly used nowadays by NASA, ESA and other
astronomical and astrophysical organizations all over the world to collect information from the
outer space in the form of electromagnetic radiation. An SMT is an array of smaller mirrors
designed to act as segments (or facets) of a single large mirror. The facets can have diverse
shapes, ranging from planar squares to curved asymmetric polygons [24]. They are used as
objectives for large reflecting telescopes. To function, all the mirror segments have to be polished
to a precise shape and actively aligned by a computer controlled active optics system using
actuators built into the mirror support cell.

Figure 1: Construction of a SMT telescope projected by
NASA. Picture taken from the James webb space telescope
(https://www.flickr.com/search/?text=James Webb Space Telescope&sort=relevance& li-
cense=1%2C2%2C3%2C4%2C5%2C6).

An important example of SMT is The European Extremely Large Telescope [5]. Because
current monolithic mirrors cannot be constructed larger than about eight meters in diameter,
the use of segmented mirrors is a key component of current large-aperture telescopes. This is
because of the technological limit of a primary mirror made of a single rigid piece of glass [21].
Using a monolithic mirror much larger than 5 meters is prohibitively expensive due to the cost
of both the mirror, and the massive structure needed to support it. A mirror beyond that size
would also sag slightly under its own weight as the telescope was rotated to different positions
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changing the precision shape of the surface [7]. Facets are also easier to fabricate, transport,
install, and maintain over very large monolithic mirrors.

Other examples of SMTs are: (i) The Keck Telescope in Hawaii, the largest optical and
infrared telescope in the world, that consists of 36 hexagonal segments, each 0.9 meters on
a side (http://www.ps.uci.edu/physics/news/chanan.html). (ii) The Gran Telescopio Canarias
(GTC), whose useful wavelength range extends from 365nm to 25 µm, its primary mirror consists
of 36 hexagonal facets of Zerodur coated with aluminium; each segment measures 1.9m from
vertex to vertex and has a side length of 0.9m and a weight of 470 kg. They cover a total
surface of 75.7 square metres and have gaps of 3mm between them (http://www.gtc.iac.es/
observing/GTCoptics.php$\#$M1).

Figure 2: Example image of a wavefront test (left) and example of wave-
front solution (right). Pictures taken from the GTC theoretical base data:
http://www.gtc.iac.es/observing/GTCoptics.php#M1.

The importance of these non-circular geometries motivated the development of a series of
ad hoc solutions, most of them based on the Gram-Smith (G-S) method to obtain orthonormal
basis on different types of apertures [29], [30] such as ellipses [4], rectangles [15], annuli [12],
circular sectors [3], etc. The main drawback of the G-S method is that it does not provide of a
unique solution that hinder the physical interpretation of the associated expansion coefficients
(especially for the higher orders due to a cumulative effect associated to the G-S method).

In our previous paper [20], we proposed a mapping that transforms the unit circle into the
desired geometry, paying special attention to elliptic and annular aperture geometries. Using
this mapping, we obtained a new Zernike basis for elliptic and annular optical apertures with
important mathematical and physical properties. In this paper we go a step further giving a
rigorous formulation under a unique criterion and providing a unique general solution for most
of the usual optical apertures. As it is explained in [20], our approach is based in finding an
appropriate mapping that transforms the unit circle into the desired aperture geometry. That
is finding piece-wise diffeomorphism that transforms the unit circle into the set within the plane
that represents the optical aperture. This mapping means warping the input basis functions so
that they fit into the new aperture geometry. On the contrary that ad hoc solutions, that warping
permits not only unicity, but also a high level of invariance of the mathematical properties and
physical meaning of the basis functions (tilt, defocus, astigmatism, coma, etc.) and hence a
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natural generalization of the aberration theory.

Although this technique may be applied to different optical systems defined by different
geometries (ellipses, circular sectors, annuli,...), in this paper we focus our attention in the
geometries required for the SMTs: polygons and ensembles of polygonal facets. Apart from
SMTs, a different optical context where this kind of geometry is of interest can be found in the
high resolution compound superposition eyes of some diurnal insects that suggest high resolution
optics [19].

In the following section we report the definition of the Zernike orthonormal system and
revise, within a rigorous formulation, the general method introduced in [20], that is valid for
any domain, piece-wise diffeomorphic to the unit disk. In Section 3 we focus our attention on
polygonal domains and give a detailed description of the corresponding Zernike-like system. In
Section 4 we consider an ensemble of hexagons typically used in the primary phase of SMTs and
give an orthonormal system composed by a combination of the Zernike-like systems of the facets.
In Section 5 we give an example of wave front description in a polygon and in an ensemble of
polygonal facets using the Zernike-like basis introduced in Sections 3 and 4. Some final remarks
are given in Section 6.

2 Zernike-like systems in compact sets of the plane

2.1 Zernike polynomials in the unit disk

Through out this paper, u⃗ := (u, v) represent cartesian coordinates in the unit Disk D and ρ, ϕ
the corresponding polar coordinates: (u, v) = σ(ρ, ϕ) := (ρ cosϕ, ρ sinϕ), 0 ≤ ρ2 = u2 + v2 ≤ 1
and 0 ≤ ϕ = arctan(y/x) < 2π. Also, we will use the notation Zm

n (u, v) for the Zernike
polynomials in cartesian coordinates and the notation Z̄m

n (ρ, ϕ) for the Zernike polynomials in
polar coordinates defined in the unit disk D: Z̄m

n := Zm
n ◦ σ. The standard definition of the

Zernike polynomials in polar coordinates is the following [22]:

Z̄m
n (ρ, ϕ) :=

{
Nm

n R|m|
n (ρ) cos(mϕ), m ≥ 0,

−Nm
n R|m|

n (ρ) sin(mϕ), m < 0.
(1)

In this formula, the polynomials R
|m|
n (ρ) and the normalization factor Nm

n are:

R|m|
n (ρ) :=

(n−|m|)/2∑
k=0

(−1)k(n− k)!

k!
(
n+|m|

2 − k
)
!
(
n−|m|

2 − k
)
!
ρn−2k, Nm

n :=

√
2(n+ 1)

1 + δm,0
(2)

where δm,0 is the Kronecker delta function: δ0,0 = 1 and δm,0 = 0 for m ̸= 0. The index n

indicates the degree of the radial polynomial R
|m|
n (ρ) and the index m the azimutal frequency of

the azimutal component. The index n is any positive integer or zero: n = 0, 1, 2, .... For a given
n, the index m takes the values m = −n,−n+2,−n+4, . . . , n. More details, as the expression
of the Zernike polynomials in cartesian coordinates may be found in [20] for example. For later
convenience, we summarize here the orthogonality and completeness properties of the Zernike
polynomials:

The family {Zm
n }m=−n,−n+2,...,n

n=0,1,2,... is an orthonormal system in L2(D). Here, and in the re-

maining of the paper, L2(D) represents the set of square integrable functions defined on the
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unit disk D with respect to the normalized Lebesgue measure dµ := dudv/π. Equivalently,

the family
{
Z̄m
n

}m=−n,−n+2,...,n

n=0,1,2,...
is an orthonormal system in L2(D) with respect to the measure

dµ̄ := ρdρdϕ/π [ [22], chap. 2]:

(Zm
n , Zm′

n′ )µ :=

∫ ∫
D
Zm
n · Zm′

n′ dµ = (Z̄m
n , Z̄m′

n′ )µ̄ :=

∫ ∫
D
Z̄m
n · Z̄m′

n′ dµ̄ = δn,n′δm,m′ . (3)

Moreover, the Zernike set is a complete orthomormal system of L2(D). That is, any square
integrable function f : D → C can be written in the form [ [22], chap. 2]:

f =
∞∑
n=0

n∑
m=−n

cmn Zm
n , f̄ =

∞∑
n=0

n∑
m=−n

cmn Z̄m
n , (4)

where f̄ := f ◦ σ is the function f in polar coordinates. In the above equalities:

cmn := (Zm
n , f)µ =

∫ ∫
D
Zm
n · f dµ, or cmn := (Z̄m

n , f̄)µ̄ =

∫ ∫
D
Z̄m
n · f̄ dµ̄, (5)

The equality (4) must be understood in the L2 sense, that is, the convergence of the series in
the right hand side is understood in the L2(D) norm ||f ||2 := (f, f)µ = (f̄ , f̄)µ̄:

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣f −

N∑
n=0

n∑
m=−n

cmn Zm
n

∣∣∣∣∣
∣∣∣∣∣ = lim

N→∞

∣∣∣∣∣
∣∣∣∣∣f̄ −

N∑
n=0

n∑
m=−n

cmn Z̄m
n

∣∣∣∣∣
∣∣∣∣∣ = 0. (6)

2.2 Zernike-like systems in other sets of the plane

Any planar optical aperture may be mathematically described as a set M in the plane piece-wise
diffeomorphic to the unit disk D. Then, we consider all the subsets M ⊂ R2 obtained from D
by means of a mapping φ : D → M that is a diffeomorphism a.e. in D (see Figure 3):

φ : D −→ M ⊂ R2,
(u, v) → (x, y) = φ(u, v).

(7)

x

y

M

ϕ

D
u

v

x

y
ϕ

ϕ-1

Figure 3: The unit disk D and the set M are deformed each in other by the respective mappings
φ and φ−1.
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In the remaining of the paper we use the notation x⃗ := (x, y) for the cartesian coordinates
in M and r2 = x2 + y2 and θ = arctan(y/x) for the corresponding polar coordinates in M , with
0 ≤ θ < 2π. Then, for (x, y) ∈ M we write x⃗ := (x, y) := φ(u, v) = (x(u, v), y(u, v)). And
reciprocally, u⃗ := (u, v) = φ−1(x, y) = (u(x, y), v(x, y)). We denote by J(x, y) the jacobian of
φ−1 that is defined a.e in M :

J(x, y) :=

(
∂u⃗

∂x⃗

)
, (8)

and dµJ := |J(x, y)|dxdy/π the measure induced by φ in M . In the remaining of the paper we
assume that J(x, y) is continuous a. e. in M . Then, it is clear that:

δn,n′δm,m′ =

∫ ∫
D
Zm
n Zm′

n′ dµ =

∫ ∫
M
(Zm

n ◦ φ−1) · (Zm′
n′ ◦ φ−1) dµJ . (9)

In other words, the set of functions

Km
n := Zm

n ◦ φ−1; n = 0, 1, 2, ...; m = −n,−n+ 2,−n+ 4, . . . , n, (10)

defined in M , is an orthonormal system of L2(M) of complex square integrable functions defined
over M with respect to the measure dµJ .

It is straightforward to see that the family {Km
n }m=−n,−n+2,...n

n=0,1,2,... is complete in L2(M) with

respect to the measure dµJ . For any function F ∈ L2(M), we define the function f ∈ L2(D)
induced by the mapping φ in the form f := F ◦φ. The Zernike system is a complete orthonormal
system in L2(D) and then

F ◦ φ =

∞∑
n=0

n∑
m=−n

cmn Zm
n (11)

a.e., with cmn given in (5). Using that Zm
n = Km

n ◦ φ we find that

F =

∞∑
n=0

n∑
m=−n

cmn Km
n (12)

a.e., with

cmn = (Km
n , F )dµJ :=

∫ ∫
M

Km
n · F dµJ . (13)

3 Zernike-like systems in polygons

In this section we particularize the above general formulation to polygonal domains, that is, the
set M is a polygon of p ≥ 3 sides and radius R0 centered at the origin. We define α := π/p and
assume that one of the radii of the polygon is located at an angle α from the positive X axis, as
it is indicated in right picture of Figure 4 for the particular case p = 8.

The key point here is just to write down a convenient mapping φ from the disk D to the
polygon M . To this end, we first find the mapping φ0 from the sector of the disk Sα :=
{(ρ cosϕ, ρ sinϕ); −α ≤ ϕ < α, 0 ≤ ρ ≤ 1} ⊂ D into the triangular portion of the polygon M
located over the positive X axis; the triangle of vertices (0, 0) and (R0 cosα,±R0 sinα). (φ0
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α

R 0

M

x

y

α

D

u

v

1

ϕ

Figure 4: Right picture: octagon of p = 8 sides centered at the origin. One of the sides is
orthogonal to the X axis and is divided in two equal segments by the positive X axis. Left
picture: division of the unit disk into p identical sectors.

maps the shaded sector of the disk D into the shaded triangle of the octogonon M in Figure 4.)
This mapping φ0 is given by

(x, y) = (r cos θ, r sin θ) = φ0(ρ, ϕ) = R0ρ cosα

(
1,

sinϕ

cosϕ

)
, 0 ≤ ρ ≤ 1, −α ≤ ϕ < α, (14)

where, for convenience, we have used polar coordinates (ρ, ϕ) in the disk. Observe that θ = ϕ
and r = R0ρ cosα/ cosϕ.

Now, in order to find the complete mapping φ : D → M , we just need to consider a division
of the disk D into p sectors of amplitude 2α and repeat the mapping φ0 from everyone of these
p sectors to everyone of the p triangles that compose the polygon M (see Figure 4). To this end
we define the function

Uα(ϕ) := ϕ−
⌊
ϕ+ α

2α

⌋
2α, 0 ≤ ϕ < 2π, (15)

where ⌊·⌋ represents the integer part function. This function is piece-wise linear with slope 1,
discontinuous at θ = (2m+ 1)α, for integer m and bounded by ±α. We also define the variable
radius

Rα(ϕ) :=
R0 cosα

cos(Uα(ϕ))
. (16)

We find that R0 cosα ≤ Rα(ϕ) ≤ R0. The function Rα(ϕ) is an increasing function for ϕ ∈
(2mα, (2m+ 1)α) and decreasing for ϕ ∈ ((2m+ 1)α, 2(m+ 1)α), m = 0, 1, 2, ....

With these preparations, we can finally define the mapping φ that transforms the unit disk
D into the polygon M :

(x, y) = φ(u, v) = (uRα(arctan(v/u)), vRα(arctan(v/u))), u2 + v2 ≤ 1. (17)

Or, in polar coordinates:

r(ρ, ϕ) = ρRα(ϕ), θ(ρ, ϕ) = ϕ, 0 ≤ ρ ≤ 1, 0 ≤ ϕ < 2π. (18)
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The jacobian of the inverse transformation

(u, v) = φ−1(x, y) =

(
x

Rα(arctan(y/x))
,

y

Rα(arctan(y/x)

)
, (19)

is, in polar coordinates, Jα(θ) = [Rα(θ)]
−2. From Section 2 we find that the family {Km

n }m=−n,−n+2,...,n
n=0,1,2,... ,

Km
n (x, y) = Zm

n

(
x

Rα(arctan(y/x))
,

y

Rα(arctan(y/x))

)
, (20)

or, in polar coordinates,

K̄m
n (r, θ) = Z̄m

n

(
r

Rα(θ)
, θ

)
, (21)

is a complete orthonormal system in L2(M) with respect to the measure (in cartesian and polar
coordinates):

dµJ =
dxdy

πR2
α(arctan(y/x))

, dµ̄J =
rdrdθ

πR2
α(θ)

. (22)

More precisely:

K̄m
n (r, θ) :=

 Nm
n R

|m|
n

(
r

Rα(θ)

)
cos(mθ), m ≥ 0,

−Nm
n R

|m|
n

(
r

Rα(θ)

)
sin(mθ), m < 0,

(23)

where the polynomials R
|m|
n are given in (2). Also, following [20, Section 2.], the family

{Hm
n }m=−n,−n+2,...,n

n=0,1,2,... , with

Hm
n (x, y) =

1

Rα(arctan(y/x))
Zm
n

(
x

Rα(arctan(y/x))
,

y

Rα(arctan(y/x))

)
, (24)

or, in polar coordinates,

H̄m
n (r, θ) =

1

Rα(θ)
Z̄m
n

(
r

Rα(θ)
, θ

)
, (25)

is a complete orthonormal system in L2(M) with respect to the measure (in cartesian and polar
coordinates)

dµ =
dxdy

π
, dµ̄ =

rdrdθ

π
. (26)

Then, any function F ∈ L2(M) can be written, a.e., in the form

F =

∞∑
n=0

n∑
m=−n

cmn Km
n , (27)

with

cmn =
1

π

∫ ∫
M

Km
n (x, y)F (x, y)

dxdy

R2
α(arctan(y/x))

. (28)

Also, any function F ∈ L2(M) can be written, a.e., in the form

F (x, y) =
∞∑
n=0

n∑
m=−n

cmn Hm
n , (29)
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with

cmn =
1

π

∫ ∫
M

Hm
n (x, y)F (x, y)dxdy. (30)

Several representative examples, corresponding to various Zernike wavefront aberrations:
tilt, defocus, astigmatism, coma, trefoil and spherical aberration are represented in Figure 5 for
the particular case of the octagon, α = π/8 and R0 = 1 (Only positive values of m are shown
since m < 0 are rotated versions of the same aberration modes).

Figure 5: Level sets for the first few polygonal Zernike functions Km
n (x, y) in an octagon, that

determine the first classical aberrations.

4 Zernike-like systems in an ensemble of hexagonal facets

In this section we consider a set A composed by the union of N equal polygons of p sides. A
typical example frequently used in the primary phase of SMTs telescopes consist of 18 hexagons
Mk, k = 1, 2, ..., 18 disposed as in Figure 6.

Denote by {(xk, yk)}k=1,2,...,N the cartesian coordinates of the centers of every one of the N
polygons Mk of A. Then, from the previous section, we know that each one of the N families of
functions

[Km
n ](k)(x, y), k = 1, 2, . . . , N, n ∈ N ∪ {0}, m = −n,−n+ 2, ..., n, (31)

defined by
[Km

n ](k)(x, y) := Km
n (x− xk, y − yk), (32)

with Km
n (x, y) given in (20) (or (21) in polar coordinates), is an orthonormal system in L2(Mk)

with respect to the measure dµJ given in (22) with (x, y) replaced by (x− xk, y − yk).
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1

23

4

5 6

7

8

91011

12

13

14

15 16 17

18

x

y

A

Figure 6: Left picture: disposition of the 18 hexagonal facets designed for the primary mirror of
the James Webb space telescope projected by NASA (picture taken from http://www.quantum-
rd.com/2010/05/el-james-webb-space-telescope-jwst.html). Right picture: disposition of the 18
hexagons that conform the set A with N = 18 and p = 6.

On the other hand, any function F in the set L2(A) of complex square integrable functions
defined in A may be decomposed in the sum of N functions Fk ∈ L2(Mk), each one supported
in each one of the polygons Mk:

F (x, y) = F (x, y)

N∑
k=1

χMk
(x, y) =

N∑
k=1

Fk(x, y), (33)

where χMk
(x, y) is the characteristic function of the polygon Mk (i.e. χMk

(x, y) = 1 inside of
region defining the polygon, and χMk

(x, y) = 0 outside). From the previous section we know
that, for every k = 1, 2, 3, ..., N ,

Fk(x, y) =
∞∑
n=0

n∑
m=−n

[cmn ](k)[Km
n ](k)(x, y), (34)

a.e. in Mk, with

[cmn ](k) =
1

π

∫ ∫
Mk

Km
n (x− xk, y − yk)Fk(x, y)

dxdy

R2
α(arctan((y − yk)/(x− xk))

. (35)

Then we find that

F (x, y) =

N∑
k=1

∞∑
n=0

n∑
m=−n

[cmn ](k)[Km
n ](k)(x, y) (36)

a.e. in A. In other words, any complex square integrable function in A may be written, a.e.,
as a linear combination of elements of the orthonormal system {[Km

n ](k)(x, y)χMk
(x, y)} with

k = 1, . . . , N , n = 0, . . . ,∞ and m = −n,−n+ 2, . . . , n.
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In the particular case considered in Figure 6 of an ensemble of N = 18 hexagons (p = 6) we
have that α = π/6 and the centers (xk, yk) of each one of the 18 hexagons Mk is located at the
points

(xk, yk) =
√
3R0

(
cos

(
(k − 1)π

3

)
, sin

(
(k − 1)π

3

))
, 1 ≤ k ≤ 6,

(x2k+1, y2k+1) = −2
√
3R0

(
cos

(
kπ

3

)
, sin

(
kπ

3

))
, 3 ≤ k ≤ 8, (37)

(x2k, y2k) = 3R0

(
− cos

(
π

6
− kπ

3

)
, sin

(
π

6
− kπ

3

))
, 4 ≤ k ≤ 9.

In the appendix we give details about a second example of disposition of hexagonal facets
for the primary phase of biger SMT telescope considered in the simulations that we show in the
next section.

5 Atmospheric turbulence simulation and results

In this section we test the expansion (36) for a realistic simulation of a wavefront distorted
by an atmospheric turbulence at the pupil plane of a very large ground based telescope. It
is well-known that the random distortions associated to an atmospheric turbulence follow the
Kolmogoroff statistical model [27]. Roddier [27] proposed an algorithm to generate realizations
of these distorted wavefronts in terms of Zernike coefficients (or amplitudes). Each realization
is obtained by generating normally-distributed random numbers with zero mean and a given
covariance matrix according to the Kolmogoroff statistics. We consider the covariance matrix,
given in [23]. This matrix, proposed by Noll from energy considerations, is related to (D/r0)

5/3,
an overall scaling factor that depends on the telescope’s diameter D and the Fried’s parameter
r0, which represents the coherence length of the wavefront, or the maximum diameter of an ideal
diffraction-limited telescope having the same optical resolution (given by the seing disk).

For this simulation, we consider the pupil of the Gran Telescopio Canarias (GTC), with a
primary segmented mirror that has a diameter of 10.4 metres. It is located in La Palma (2.326
metres of altitude) in the Canary Islands of Spain. The primary mirror consists of 36 hexagonal
facets (disposed as indicated in the appendix). The segmented primary mirror is adaptive, which
means that both the shape, and relative position of each facet can be changed to compensate
atmospheric turbulences, and other possible deformations of the telescope structure. For this
reason, it is crucial to determinate, as much accurately as possible, the wavefront in these
adaptive optical telescopes.

The simulated random wavefront follows the Kolmogoroff turbulence model. Using the
covariance matrix given in [23], with D = 10.4m, and fried’s parameter r0 = 1m (this is a
typical value for a reasonably good seing), we have that, in polar coordinates, the fourth order
approximation to one particular realization of the random atmospheric wavefront at a certain
instant of time is the function, in phase radians,

f̄(r, θ) =

4∑
n=0

n∑
m=−n

amn Z̄m
n (r, θ), (38)

where a00 = 0 in this model, Z̄m
n ≡ Z̄m

n (r, θ) are given in (1), the coordinates (r, θ) are the global
polar coordinates corresponding to the reference system given in Figure 7 (left) and Figure 11:
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x = r cos θ, y = r sin θ, and the coefficients amn are computed using the covariance matrix given
in [23].

We approximate the input wavefront (38) by the expansion (36) up to 4th order:

f̄(r, θ) ≃ f̄approx(r, θ) :=

36∑
k=1

4∑
n=0

n∑
m=−n

[cmn ](k)[K̄m
n ](k)(rk, θk), (39)

where the Fourier coefficients [cmn ](k) are given in (35), and (rk, θk) are the local polar coordinates
given in the hexagon k: x− xk = rk cos θk, y − yk = rk sin θk.

The function (38) represents an incident wavefront before it crosses the telescope’s pupil. The
right hand side of (39) is an approximation to the wavefront immediately after passing through
the telescope pupil. We compute the coefficients [cmn ](k) in (39) in two different ways. On the
one hand we obtain [cmn ](k) just from their definition: computing the integral (35). On the other
hand, we use the least square approximation method by fitting the values of the wavefront (38)
in a discrete data set given by a uniform hexagonal mesh in the mirror containing 25 points in
each hexagon, as detailed in Figure 7 (left).

Figure 7: Left picture: uniform mesh of the mirror. Right picture: density plot of the wavefront
(38) on the GTC mirror telescope for the particular realization [27] amn = {4.25, -9.28, -0.024,
-0.11, -0.37, 0.28, -0.75, 2.002, 0.49, 0.35, 0.022, -0.009, 0.34, -0.02}.

Therefore, depending on which of the two methods we use to compute the coefficients [cmn ](k),
we get two different approximations of the function (38) immediately after passing through the
telescope pupil: a “least square approximation” and “an integral approximation”. The least
square approximation allows us to compute approximately the coefficients [cmn ](k) when we do
not know the functional expression of the wavefront, but we only know its values at the mesh
points. The integral approximation gives us the exact value of the coefficients [cmn ](k); however,
the calculus of the integral (35) is complicated and requires the knowledge of the functional
expression of the wavefront.

The accuracy of both approximations is illustrated in Figures 8 and 9 for the wave front (38)
with the values of the coefficients an given in the caption of Figure 7. Figure 8 shows the density
plots of the exact function (38) and the approximation f̄approx(r, θ) given in the right hand side
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of (39) with coefficients [cmn ](k) computed by both methods. We define the relative error of the
approximation in the form:

f re(r, θ) :=

∣∣∣∣ f̄(r, θ)− f̄approx(r, θ)

f̄(r, θ)

∣∣∣∣ , (40)

where f̄approx(ri, θi) represents either, the least square, or the integral approximation. Because
of the small values of f̄ re(r, θ), in order to visualize graphically the behavior of this function, we
show in Figure 9, its cubic root. We define the relative root mean squared fitting error in the
form:

rrmseapprox :=

[
1

M

M∑
i=1

(
f̄ re(ri, θi)

)2]1/2
, M = total number of points of the mesh. (41)

In Figure 10 we show rrmseapprox for some simulations using both methods.

Figure 8: Left picture: function (38) for the particular coefficients given in the caption of Figure
7. Middle picture: the least square approximation. Right picture: the integral approximation.

Figure 9: Cubic root of the relative error function f̄ re(r, θ) given in (41), for the least square
approximation (left), and the integral approximation (right).
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Figure 10: Relative root mean squared fitting errors (41), obtained using the least square and
integral approximation for 7 different realizations of (38) (7 different sets of coefficients amn ).
One of these realizations is the given in Figure 7 (right).

These results suggest that the accuracy of the estimations is reasonable. The two methods
used to compute the coefficients [cmn ](k), the least square and the integral method, seem to be
equivalent in practice.

6 Final Remarks

In this paper we present a rigorous formulation for the general method introduced in [20] to
obtain complete orthonormal Zernike-like systems in any set M of the plane piece-wise diffeo-
morphic to the unit disk. It consists of applying a diffeomorphism to the Zernike system on the
unit disk to transform the circle basis functions into the new system on the desired geometry.
We then particularize the method to polygons and ensembles of polygonal facets, that are es-
pecially important in the wave theory of aberrations and optical image formation in segmented
mirror telescopes. In Section 5 we perform a numerical experiment that shows the efficiency of
the Zernike-like system obtained in Section 4 for the SMTs.

We believe that the mapping method proposed here, implemented as a change of variables,
overcomes most of the difficulties and drawbacks of previous methods, and provides a common
framework, especially well-suited for a unified theory of aberrations. On the other hand, the
precise physical meaning of the new zernike-like basis Km

n (x, y) deserves a further investigation.
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8 Appendix

A second important example frequently used in the primary phase of SMTs telescopes consist
of 36 hexagons Mk, k = 1, 2, ..., 36 disposed as in Figure 11.
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Figure 11: Disposition of the 36 hexagons that conform the set A with N = 36 and p = 6.

The centers (xk, yk) of each one of the 36 hexagons Mk is located at the points

(xk, yk) =
√
3R0

(
cos

(
(k − 1)π

3

)
, sin

(
(k − 1)π

3

))
, 1 ≤ k ≤ 6,

(x2k−7, y2k−7) = 2
√
3R0

(
sin

(
π

6
+

kπ

3

)
,− cos

(
π

6
+

kπ

3

))
, 7 ≤ k ≤ 12,

(x2k−18, y2k−18) = 3R0

(
cos

(
π

6
− kπ

3

)
,− sin

(
π

6
− kπ

3

))
, 13 ≤ k ≤ 18,

(x3k−38, y3k−38) = 3
√
3R0

(
cos

(
(k − 19)π

3

)
, sin

(
(k − 19)π

3

))
, 19 ≤ k ≤ 24,

(x3k−55, y3k−55) =
√
21R0

(
cos

(
(k − 25)π

3
+ arctan

(√
3

5

))
, sin

(
(k − 25)π

3
+ arctan

(√
3

5

)))
,

25 ≤ k ≤ 30,
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(x3k−72, y3k−72) =
√
21R0

(
cos

(
(k − 31)π

3
+ arctan

(√
3

5

))
, sin

(
(k − 31)π

3
+ arctan

(√
3

5

)))
,

31 ≤ k ≤ 36.
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