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Abstract

The main difficulty in the practical use of the stationary phase method in asymptotic ex-
pansions of integrals is originated by a change of variables. The coefficients of the asymptotic
expansion are the coefficients of the Taylor expansion of a certain function implicitly defined
by that change of variables. In general, this function is not explicitly known, and then the
computation of those coefficients is cumbersome. Using the factorization of the exponential
factor used in previous works of [Tricomi, 1950], [Erdélyi and Wyman, 1963] and [Dingle,
1973], we obtain a variant of the method that avoids that change of variables and simplifies
the computations. On the one hand, the calculation of the coefficients of the asymptotic
expansion is remarkably simpler and explicit. On the other hand, the asymptotic sequence
is as simple as in the standard stationary phase method: inverse powers of the asymptotic
variable. New asymptotic expansions of the Anger and Weber functions Jλx(x) and Eλx(x)
for large positive x and real parameter λ 6= 0 are given as an illustration.
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1 Introduction

We consider integrals of the form

F (x) :=

∫ b

a
ei xf(t)g(t)dt, (1)

where (a, b) is a real interval (finite or infinite), x is a large positive parameter and the real
functions f(t) and g(t) are smooth enough in (a, b). Long ago, Stokes and Kelvin ([6], [12])
made the observation that the major contribution to the value of the integral (1) comes from
the neighborhoods of the end points of the interval (a, b) and from the neighborhoods of those
points at which f(t) is stationary, that is, f ′(t) = 0. It is worth noting that, at the first order
of the asymptotic approximation, the contribution of stationary points, if any, dominates the
contribution of the end points.
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If f(t) has no stationary points in the interval (a, b), only the end points contribute to the
asymptotic expansion of (1), that can be obtained by integrating by parts [14, Chap. 2, Sec. 3]:

F (x) =

∫ b

a
ei xf(t)g(t)dt =

ei xf(b)

i xf ′(b)
g(b)− ei xf(a)

i xf ′(a)
g(a) +

1

i x

∫ b

a
ei xf(t)g1(t)dt, (2)

where,

g1(t) := − d

dt

(
g(t)

f ′(t)

)
.

The last integral on the right hand side of (2) is of the same form as that on left hand side.
Then, repeating this procedure K times we obtain

F (x) =
ei xf(b)

i xf ′(b)

K∑
k=0

gk(b)

(i x)k
− ei xf(a)

i xf ′(a)

K∑
k=0

gk(a)

(i x)k
+

1

(i x)K+1

∫ b

a
ei xf(t)gK+1(t)dt, (3)

with g0(t) := g(t) and

gk+1(t) := − d

dt

(
gk(t)

f ′(t)

)
, k = 0, 1, 2, . . .

Now, assume that f(t) has one or more stationary points in [a, b] of the first order. By
subdividing the interval of integration if necessary, we may assume that f(t) has only one
stationary point in the integration interval and that it occurs at the lower limit t = a; that is,
f ′(a) = 0, f ′′(a) 6= 0. We may also assume that f(t) is strictly increasing in (a, b). Then, the
integral (1) can be transformed into a standard integral by using the change of variable [14,
Chap. 2, Sec. 3]

f(t)− f(a) = u2, sign(u) = sign(t− a). (4)

The integral F (x) may be written in the form

F (x) = ei xf(a)
∫ U

0
ei x u

2
h(u)du, h(u) = g(t)

dt

du
, (5)

where U is a positive parameter that follows from the change of variable. In order to derive the
asymptotic expansion of F (x) for large x, it is convenient to rewrite F (x) in the form

F (x) = ei xf(a)
(∫ ∞

0
ei x u

2
h(u)du−

∫ ∞
U

ei x u
2
h(u)du

)
. (6)

The approximation of the first integral in the right hand side requires the assumption that h(u)
has a Taylor expansion at u = 0: h(u) =

∑∞
n=0 cn u

n. When we replace this expansion in (6)
and interchange sum and integral (see [14, Chap. 2, p.77-81] for more details) we obtain:∫ ∞

0
ei x s

2
h(s)ds ∼

∞∑
n=0

cn

∫ ∞
0

ei x u
2
un du =

∞∑
n=0

Γ

(
n+ 1

2

)
cn

2(−i x)
n+1
2

. (7)

The phase function in the second integral in the right hand side of (6) has not any stationary
point in [U,∞). Therefore, its asymptotic expansion follows straightforwardly from formula (3)
replacing a by U and setting b =∞.

From a theoretical point of view, the problem of the derivation of an asymptotic expansion
of F (x) is solved. But from a practical point of view the situation is different. When the
phase function f(t) in (1) has no stationary points in [a, b], the asymptotic expansion of F (x)
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is given in formula (3); the computation of the terms of (3) is straightforward and the problem
is over. But when f(t) has stationary points, the computation of the asymptotic expansion (7)
is not straightforward. In general, the computation of the coefficients cn is quite complicated,
depending on the difficulty of the change of variable t → u. This is so because the coefficients
cn are the Taylor coefficients at u = 0 of the function h(u) = g(t) dtdu , that is defined in an
implicit form because, in general, the function t(u) is not explicitly known. In fact, traditional
text books of asymptotic expansions of integrals like for example [1], [4] or [14] do not give an
explicit and general analytic formula for these coefficients.

In the classical Laplace and saddle point methods, the difficulty of the computation of the
coefficients of the expansion is also a drawback, and for the same reason: a change of the
integration variable defined in an implicit way. In previous papers [7] and [8], inspired in the
ideas of [3, p. 113], [5] and [13], we have circumvented this problem by designing modified
Laplace and saddle point methods that avoid the change of variable. In this way, these modified
methods give asymptotic expansions where the coefficients are computed explicitly at any order
of the approximation without complicating the computation of the asymptotic sequence. In this
paper we pursue the same objective for the stationary phase method for the integral (1) when
f(t) has stationary points in [a, b]. In the remainder of the paper we assume (without loss of
generality as we have argued above) that f(t) has only one stationary point at t = a.

In the following section we specify with precision the conditions for the functions f(t) and
g(t) in the integrand of (1) and establish some preliminary results. In Section 3 we introduce
the modified method and summarize the discussion in Theorem 1. In Section 4 we use Theorem
1 to derive new asymptotic expansions of the Anger and Weber functions Jν(x) and Eν(x) for
large index ν and argument x.

2 Preliminaries

We let the function g(t) possess, perhaps, an algebraic branch point at t = a, that is, g(t) =
(t − a)s−1ḡ(t), where s ∈ (0, 1] and ḡ(t) is analytic at t = a. We also assume that the phase
function f(t) has a Taylor expansion at t = a. These analyticity conditions for f(t) and ḡ(t) may
be relaxed and require only that both, f(t) and ḡ(t), have an asymptotic expansion at t = a.
But for the sake of clarity in the exposition we require their analyticity; on the other hand, it is
the usual situation in most of the practical examples. We also require that both, f(t) and ḡ(t),
are infinitely differentiable in [a, b] (or [a, b) if b =∞).

In principle, the functions f(t) and ḡ(t) are defined only in [a, b]. As in the classical method
of the stationary phase, the modified method that we present here requires the extension of the
functions f(t) and ḡ(t) to infinite differentiable functions defined in [a,∞) with f(t) ≡ 0 and
ḡ(t) ≡ 0 in a neighborhood of infinity. As it is argued in [14, Chap. 2, Sec. 3], the explicit
extension is not required; a construction of this extension is detailed in [11, p. 418]. Also, as
in the classical method, we extend the integration interval in (1) up to the infinity by writing
F (x) = F1(x)− F2(x), with

F1(x) :=

∫ ∞
a

ei xf(t)(t− a)s−1ḡ(t)dt, F2(x) :=

∫ ∞
b

ei xf(t)g(t)dt. (8)

Eventually, when b = ∞, F2(x) = 0 and the extension of the functions f(t) and ḡ(t) is not
necessary. In any case, as we have explained in the introduction, all the difficulty is encoded
in the approximation of F1(x), as the asymptotic approximation of F2(x) follows easily from
(3). Now, the key point that makes the difference with respect to the standard stationary phase
method is that we do not require any change of variable for the first integral F1(x). Instead, we
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divide the phase function f(t) into a “main part”:

fm(t) := f(a) +
f (m)(a)

m!
(t− a)m

and a “secondary part” fp(t) := f(t)− fm(t), where the integer m is the degree of the first non-
vanishing derivative of f(t) at t = a and p is the degree of the next non-vanishing derivative.
The “main part” fm(t) and f(t) have the same asymptotic behavior at t = a: apart from the
constant term f(a), both behave as (t − a)m, and this determines the asymptotic behavior of
F1(x) for large x. Then, roughly speaking, the idea is the following: we will leave only fm(t)
in the exponent of the integral F1(x) and will attach the exponential of ixfp(t) to the function
ḡ(t):

F1(x) = ei xf(a)
∫ ∞
a

ei x
f(m)(a)
m!

(t−a)m(t− a)s−1h(t, x)dt, h(t, x) := ei xfp(t)ḡ(t). (9)

Now, as a difference with respect to the classical method, the function that multiplies the
exponential, h(t, x), depends also on the asymptotic variable x. This technical complication,
conveniently managed, does not distort the asymptotic analysis of F1(x). The key point is the
following: the “new” phase function in the integral (9) is just a power of t − a, and then a
change of variable of the form (4) is not required. The remaining steps are similar to those of
the classical method. We develop these ideas in detail in the following section.

3 The modified Stationary Phase method

3.1 The asymptotic analysis of F1(x)

The derivation of the asymptotic expansion of F1(x) by using the classical stationary phase
method requires the Taylor expansion of the function h(u) in (5) at u = 0. Analogously, we
require here the Taylor expansion of h(t, x) at t = a. We may derive this expansion from the
Taylor expansions of its factors ei xfp(t) and ḡ(t). Therefore, we need to compute the coefficients
An(x) and Bn of the respective Taylor expansion of ei xfp(t) and ḡ(t) at t = a,

ei xfp(t) =

∞∑
n=0

An(x)(t− a)n, ḡ(t) =

∞∑
n=0

Bn(t− a)n.

Then, the coefficients an(x) of the Taylor expansion of the function h(t, x) at t = a,

h(t, x) = ei xfp(t)ḡ(t) =

N−1∑
n=0

an(x)(t− a)n + hN (t, x), (10)

where hN (t, x) is the Taylor remainder, may be computed in the form

an(x) =
n∑
k=0

Ak(x)Bn−k. (11)

Remark 1. Consider the coefficients of the Taylor expansion of fp(t) at t = a, fp(t) =∑∞
n=p

f (n)(a)
n! (t − a)n. Then, the coefficients An(x) of the Taylor expansion of ei xfp(t) at t = a

may be computed in terms of f (n)(a) by using the Faá di Bruno’s formula [2]:

An(x) =

n∑
k=0

bn,k
n!

(ix)k,
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where bn,k are the partial ordinary Bell polynomials [10, p. 190]. They may be computed recur-
sively in the following form [10, p. 190]: b0,0 = 1; bn,0 = 0, n = 1, 2, 3, ...; and

bn,k =

n−k+1∑
j=p

(
n− 1
j − 1

)
f (j)(a) bn−j,k−1, n = 1, 2, 3, ..., k = 1, 2, 3, ..., n,

where empty sums must be understood as zero.
Remark 2. It is straightforward to show that the coefficients an(x) are polynomials in the
variable x of degree bn/pc (see [7] for a detailed proof in a similar situation). Therefore,

an(x) = O
(
xbn/pc

)
as x→∞. (12)

When we replace the expansion (10) in (9) and interchange sum and integral we obtain:

F1(x) = ei xf(a)

(
N−1∑
n=0

an(x)Φn(x) +RN (x)

)
, (13)

with

Φn(x) :=

∫ ∞
a
ei x

f(m)(a)
m!

(t−a)m(t− a)n+s−1dt =

∫ ∞
0
ei x

f(m)(a)
m!

tmtn+s−1dt. (14)

and

RN (x) :=

∫ ∞
a
ei x

f(m)(a)
m!

(t−a)m(t− a)s−1 hN (t, x)dt =

∫ ∞
0
ei x

f(m)(a)
m!

tmts−1 hN (t+ a, x)dt. (15)

We may compute the integral (14) by using the Cauchy’s residue theorem: we replace the
integration path (0,∞) in (14) by the straight line Γ+ := {t = uei

π
2m : 0 < u <∞} if f (m)(a) > 0

or by the straight line Γ− := {t = ue−i
π
2m : 0 < u <∞} if f (m)(a) < 0. In any case we obtain:

Φn(x) =

∫ ∞ e±i
π
2m

0
ei x

f(m)(a)
m!

tmtn+s−1dt =
1

m

(
im!

f (m)(a)x

)(n+s)/m

Γ

(
n+ s

m

)
. (16)

Obviously, we cannot compute exactly the integral (15), but we can determine its asymptotic
behavior for large x. For this purpose we define inductively the sequence of functions Kn(t) in
the following way [14, Chap. 2, Sec. 3]:

Kn+1(t) := −
∫ t+∞ei α

π
2m

t
Kn(u) du, n = 0, 1, 2, . . . ,

with

K0(t) := ts−1ei x
f(m)(a)
m!

tm .

In the above integral, α := sign
(
f (m)(a)

)
and the path of integration is the ray arg(u − t) =

(απ)/(2m). Then, the function Kn+1(t) is the n+ 1 iterated integral of the function K0(t), that
may be written in the following way:

Kn+1(t) =
(−1)n+1

n!

∫ t+∞ei α
π
2m

t
(u− t)nus−1ei x

f(m)(a)
m!

um du =

=
(−1)n+1

n!
tn+s

∫ 1+∞ei α
π
2m

1
(u− 1)nus−1ei x

f(m)(a)
m!

(tu)m du.

(17)
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Integrating by parts N times in the most right integral in (15) and using the fact that K ′n+1(t) =

Kn(t), Kn(∞) = 0 ∀n = 1, 2, 3, ..., N , and h
(n)
N (a, x) = 0 ∀n = 0, 1, 2, ..., N − 1, the remainder

RN (x) can be written in the form:

RN (x) = (−1)N
∫ ∞
0
KN (t)h

(N)
N (t+ a, x)dt. (18)

Observe that, because ḡ(t) = 0 in a neighbourhood of infinity, then h
(N)
N (t + a, x) = 0 in a

neighbourhood of infinity as well. From (10) and using Faá di Bruno’s formula for the derivative
of a composite function [2] we find that

h
(N)
N (t+ a, x) =

(
ei x fp(t+a)ḡ(t+ a)

)(N)
= ei x fp(t+a)G(t+ a, x), (19)

with

G(t+ a, x) :=
N∑
k=0

(−N)k(−1)k

k!

 k∑
r=0

(i x)r

r!

r∑
j=0

(−r)j
j!

(
f r−jp (t+ a)

)(k)
f jp (t+ a)

 ḡ(N−k)(t+ a).

(20)
Rearranging sums in the above formula we can write G(t+ a, x) in the form of a polynomial in

the variable x of degree at most N : G(t+a, x) =

N∑
k=0

(i x)kGk(t+a), whose coefficients Gk(t+a)

are

Gk(t+ a) :=
N∑
r=k

(−N)r(−1)r

r! k!

k∑
j=0

(−k)j
j!

(
fk−jp (t+ a)

)(r)
f jp (t+ a) ḡ(N−r)(t+ a).

From the hypotheses for f(t) and ḡ(t) we know that the functions Gk(t + a) are analytic
functions of the variable t at t = 0. On the other hand, it is straightforward to see that
Gk(t+ a) ∼ tMax{pk−N,0} as t→ 0; in other words,

Gk(t+ a) ∼
{
tpk−N if k > bN/pc

1 if k ≤ bN/pc as t→ 0.

(Observe that, at t = 0, G(a, x) = ei xf(a)aN (x) and then Gk(a, 0) = 0 for k > bN/pc.) Then,
from (17), (18) and (19) we find

RN (x) = (−1)N
∫ 1+∞ei α

π
2m

1
(u− 1)N−1us−1du

∫ ∞
0

ei x F (t,u) tN+s−1G(t+ a, x)dt, (21)

with F (t, u) := f(t+ a)− f(a)− f (m)(a)

m!
tm(1− um). The inner integral (in the variable t) may

be written in the form

H(u, x) :=

∫ ∞
0

ei x F (t,u) tN+s−1G(t+ a, x)dt =

=

bN/pc∑
k=0

(i x)k
∫ ∞
0

ei x F (t,u) tN+s−1Gk(t+ a)dt+

N∑
k=bN/pc+1

(i x)k
∫ ∞
0

ei x F (t,u) tN+s−1Gk(t+ a)dt.

(22)
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In every one of the above integrals, the phase function F (t, u) has a unique stationary point
at t = 0 with F (n)(0, u) = 0, n = 0, 1, 2, ...,m− 1 and F (m)(0, u) = f (m)(a)um 6= 0. After these
preparations, we can apply the classical stationary phase first order approximation to every one
of the integrals in (22), using formula [[14], eq.(3.13)] with ρ = m, n = 0 and λ = N + s or
λ = pk + s. We obtain

H(u, x) = u−N−s
bN/pc∑
k=0

(i x)kO
(
x−

N+s
m

)
+

N∑
k=bN/pc+1

(i x)k u−pk−sO
(
x−

pk+s
m

)
as x→∞,

where the O symbols stand uniformly for |u| ∈ [1,∞) along the ray arg(u − 1) = (απ)/(2m).
The asymptotic behavior of the above sum for large x is dominated by the last term in the first
sum, the term corresponding to k = bN/pc. Therefore

H(u, x) = u−N−sO
(
xbN/pc−

N+s
m

)
. (23)

When we replace (23) in (21) we obtain

RN (x) = O
(
xbN/pc−

N+s
m

)
as x→∞,

and then,

F1(x) = ei xf(a)

[
N−1∑
n=0

an(x)

m
Γ

(
n+ s

m

)(
im!

f (m)(a)x

)(n+s)/m

+O
(
x

⌊
N
p

⌋
−N+s

m

)]
(24)

as x → ∞. The terms of the expansion (24) satisfy an(x)Φn(x) = O(xbn/pc−(n+s)/m). Then,
(24) is not a genuine asymptotic expansion, as the order of the terms of the expansion do not
decrease linearly with n, but in the form of a saw-tooth: the order decreases 1/m unities from
every term to the next one, but it also increases 1 unity every p terms. Although this is not
a standard Poincare-like expansion, it performs perfectly well in practical applications as it is
always possible to select a prescribed order of approximation (M+s)/m (error term of the order
O(x−(M+s)/m)) by choosing a number of terms N = Mp/(p −m), with M integer multiple of
p−m.

3.2 Summary of the discussion

The asymptotic analysis of the integral F2(x) in (8) is much simpler than that of F1(x), since
the phase function f(t) has no stationary points in the integration interval [b,∞) and then we
can just repeatedly integrate by parts to get an asymptotic expansion [14, Chap. 2, Sec. 3]. We
give details in the following theorem, where we also summarize the discussion of Section 3.1. for
the integral F1(x) and give the complete asymptotic expansion of the integral F (x).

Theorem 1. Let the functions f(t) and ḡ(t) := (t−a)1−sg(t) be infinitely differentiable in [a, b],
or in [a, b) when b =∞, for a certain s ∈ (0, 1]. Let also the functions f(t) and ḡ(t) be analytic
at t = a. Then, for N and K = 1, 2, 3, ...,∫ b

a
ei xf(t)g(t)dt = ei xf(a)

[
N−1∑
n=0

an(x)

m
Γ

(
n+ s

m

)(
im!

f (m)(a)x

)(n+s)/m

+O
(
x

⌊
N
p

⌋
−N+s

m

)]
+

ei xf(b)

f ′(b)

[
K−1∑
k=0

gk(b)

(
− i
x

)k+1

+O
(
x−K−1

)]
, as x→∞,

(25)
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where

g0(t) := g(t), gn+1(t) := − d

dt

(
gn(t)

f ′(t)

)
, n = 0, 1, 2, . . . , (26)

the integer m is the degree of the first non vanishing derivative of f(t) at t = a and p is the
degree of the next non-vanishing derivative. For n = 0, 1, 2, ...,

an(x) :=
n∑
k=0

Ak(x)Bn−k, (27)

where Ak(x) and Bk are the Taylor coefficients at t = a of ei xfp(t) and ḡ(t) respectively:

ei xfp(t) =

∞∑
n=0

An(x)(t− a)n, ḡ(t) =

∞∑
n=0

Bn(t− a)n.

The coefficients An(x) may be computed in the form:

An(x) =
n∑
k=0

bn,k
n!

(ix)k,

where bn,k are the partial ordinary Bell polynomials. These polynomials may be computed recur-
sively in the following form: b0,0 = 1; bn,0 = 0, n = 1, 2, 3, ...; and

bn,k =

n−k+1∑
j=p

(
n− 1
j − 1

)
f (j)(a) bn−j,k−1, n = 1, 2, 3, ..., k = 1, 2, 3, ..., n,

where empty sums must be understood as zero. In order to get an approximation of the order
O(x−(M+s)/m), we must take N = Mp/(p −m) and K = d(M + s)/m − 1e, where the symbol
dqe stands for the integer greater than or equal to q and M = (p−m), 2(p−m), 3(p−m), ....

Proof. The integral in the left hand side of (25) is the function F (x) = F1(x) − F2(x), with
F1(x) and F2(x) defined in (8). The first term in the right hand side of (25) is just the asymptotic
expansion of F1(x) derived in (13)-(16). The second term is the asymptotic expansion of F2(x)
that may derived straightforwardly: since the integrand in F2(x) is infinitely differentiable and
f(t) has no stationary points in [b,∞), by repeated integration by parts we get the second term
in the right hand side of (25) with gn(t) given in (26). The last sentence is trivial. •

4 Example

For x > 0 and real parameter λ 6= 0, we consider the integral

Fλ(x) :=
1

π

∫ π

0
ei x(λt−sin(t))dt. (28)

We have that Jλx(x) = <(Fλ(x)) and Eλx(x) = =(Fλ(x)), where J and E are the Anger and
Weber functions respectively [9, Sec. 11.10]. The first order asymptotic approximation of Jλx(x)
and Eλx(x) for large x may be found in [9, Sec. 11.11(iii)]; but only the first few coefficients of
the expansion are given. We apply below Theorem 1 to derive the complete asymptotic expan-
sions of these functions when x → ∞ and λ is fixed. Conveniently reorganized in the form of
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Poincaré expansions, the approximations given below agree with those given in [9, Sec. 11.10],
up to the order given there.

According to Theorem 1, we have f(t) = λt− sin(t), f ′(t) = λ− cos(t) and g(t) = 1, s = 1.
The location of the stationary points of f(t) depends on λ and we find four different situations
that we study separately in the following subsections.

4.1 Case 1: −1 < λ < 1 and λ 6= 0

The phase function f has a unique stationary point in [0, π] at t0 = arccos(λ) with 0 <
arccos(λ) < π and f(t0) = λ t0 −

√
1− λ2. We separate (28) in two integrals:

Fλ(x) =
1

π

∫ 0

−t0
ei x(−λt+sin(t))dt+

1

π

∫ π

t0

ei x(λt−sin(t))dt.

According to the notation of Theorem 1, in the first integral in the right hand side we have
a = −t0 and b = 0. In this case the unique stationary point in the interval is found at t = −t0.
Hence m = 2, p = 3 and s = 1. On the other hand, in the second integral we have a = t0
and b = π. In this case the unique stationary point in the interval is found at t = t0. Hence
m = 2, p = 3 and s = 1. Applying Theorem 1 to both integrals and after some manipulations
we obtain, for M = 1, 2, 3, ...,

Fλ(x) =
ei x f(t0)

π

3M−1∑
n=0

(
2 i

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

)
Pn(x)+

− i

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k

(
g2k(0)

1− λ
+
ei xλπg2k(π)

1 + λ

)
+O

(
x−(M+1)/2

)
,

(29)

where g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) :=
d

d t

(
gn(t)

λ− cos(t)

)
, Pn(x) :=

1

n!

n∑
k=0

b1n,k + b2n,k
2

(i x)k,

bα0,0 := 1 , bαn,0 := 0 and bαn,k :=

n−k+1∑
j=3

(
n− 1
j − 1

)
(−1)α j cj b

α
n−j,k−1 , α = 1, 2,

with cj := (−1)(j+1)/2λ if j is odd and cj := −(−1)j/2
√

1− λ2 if j is even.
The real and imaginary parts of (29) constitute asymptotic expansions for the Anger and

Weber functions respectively. Then, separating the polynomial Pn(x) in real and imaginary
parts,

Pn(x) =
1

n!

[n/2]∑
k=0

b1n,2k + b2n,2k
2

(−1)k x2k︸ ︷︷ ︸ + i

 1

n!

[(n−1)/2]∑
k=0

b1n,2k+1 + b2n,2k+1

2
(−1)k x2k+1

 ,

︸ ︷︷ ︸
P 1
n(x) P 2

n(x)
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with P 2
0 (x) := 0, we find

Jλx(x) =
1

π

3M−1∑
n=0

(
2

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

) (
cos (θ1) P

1
n(x)− sin (θ1) P

2
n(x)

)
+

1

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k
sin(xλπ)

1 + λ
g2k(π) +O

(
x−(M+1)/2

) (30)

and

Eλx(x) =
1

π

3M−1∑
n=0

(
2

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

) (
cos (θ1) P

2
n(x) + sin (θ1) P

1
n(x)

)
− 1

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k

(
g2k(0)

1− λ
+
g2k(π)

1 + λ
cos(λπ x)

)
+O

(
x−(M+1)/2

)
.

(31)

In these formulas, θ1 := x
(
λ t0 −

√
1− λ2

)
+
n+ 1

4
π.

4.2 Case 2: λ = −1

After the change of variable t→ −t we get

F−1(x) =
1

π

∫ 0

−π
ei x(t+sin(t))dt.

Following the notation of Theorem 1 we have a = −π and b = 0. The unique stationary point
of the phase function in the interval is found at t = −π. In this case m = 3, p = 5 and s = 1.
From Theorem 1 we obtain, for M = 2, 4, 6, ...,

F−1(x) =
e−i x π

3π

5M/2−1∑
n=0

(
6i

x

)n+1
3

Γ

(
n+ 1

3

)
Pn(x)

− i

2πx

d(M+1)/3e−2∑
k=0

g2k(0)

(−x2)k
+O

(
x−(M+1)/3

)
,

(32)

with g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) := − d

d t

(
gn(t)

1 + cos(t)

)
, Pn(x) :=

1

n!

n∑
k=0

bn,k(i x)k,

b0,0 := 1 , bn,0 := 0 and bn,k := −
n−k+1∑
j=5

(
n− 1
j − 1

)
sin

(
j

2
π

)
bn−j,k−1.

The real and imaginary parts of (32) constitute asymptotic expansions for the Anger and
Weber functions respectively. Then, decomposing Pn(x) in its real and imaginary parts,

Pn(x) =
1

n!

[n/2]∑
k=0

bn,2k(−1)k x2k︸ ︷︷ ︸ + i

 1

n!

[(n−1)/2]∑
k=0

bn,2k+1(−1)k x2k+1


︸ ︷︷ ︸

P 1
n(x) P 2

n(x)
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with P 2
0 (x) := 0, we find

J−x(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos (θ2)P

1
n(x)− sin (θ2)P

2
n(x)

)
+O

(
x−(M+1)/3

)
(33)

and

E−x(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

) (
cos (θ2) P

2
n(x) + sin (θ2) P

1
n(x)

)
−
d(M+1)/3e−2∑

k=0

(−1)k g2k(0)

2π x2k+1
+O

(
x−(M+1)/3

)
,

(34)

In these formulas, θ2 := π

(
−x+

n+ 1

6

)
.

4.3 Case 3: λ = 1

The integral (28) reads

F1(x) =
1

π

∫ π

0
ei x(t−sin(t))dt.

In this particular case we have a = 0 and b = π and the unique stationary point of phase function
in the interval is found at t = 0 with m = 3, p = 5 and s = 1. From Theorem 1 we obtain, for
M = 2, 4, 6, ...,

F1(x) =
1

3π

5M/2−1∑
n=0

(
6i

x

)n+1
3

Γ

(
n+ 1

3

)
Pn(x) +

ei x π

2 i πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

)
,

(35)
with g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) :=
d

d t

(
gn(t)

cos(t)− 1

)
, Pn(x) :=

1

n!

n∑
k=0

bn,k(i x)k,

b0,0 := 1 , bn,0 := 0 and bn,k := −
n−k+1∑
j=5

(
n− 1
j − 1

)
sin

(
j

2
π

)
bn−j,k−1.

The real and imaginary parts of (35) constitute asymptotic expansions for the Anger and
Weber functions respectively. Therefore, separating Pn(x) in real and imaginary parts,

Pn(x) =
1

n!

[n/2]∑
k=0

bn,2k(−1)k x2k︸ ︷︷ ︸ + i

 1

n!

[(n−1)/2]∑
k=0

bn,2k+1(−1)k x2k+1


︸ ︷︷ ︸

,

P 1
n(x) P 2

n(x)

with P 2
0 (x) := 0, we find

Jx(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos

(
n+ 1

6
π

)
P 1
n(x)− sin

(
n+ 1

6
π

)
P 2
n(x)

)

+
sin(π x)

2πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

) (36)
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and

Ex(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos

(
n+ 1

6
π

)
P 2
n(x) + sin

(
n+ 1

6
π

)
P 1
n(x)

)

− cos(π x)

2πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

)
.

(37)

4.4 Case 3: |λ| > 1

In this case, the phase function f(t) = λ t − sin(t) has no stationary points in the integration
interval. From formula (3) with a = 0 and b = π we obtain

Fλ(x) =
i

π

M−1∑
m=0

(−1)m

x2m+1

(
g2m(0)

λ− 1
− ei x λ πg2m(π)

λ+ 1

)
+O

(
x−2M−1

)
, (38)

with g0(t) := 1 and, for n = 0, 1, 2,..., gn+1(t) =
d

d t

(
gn(t)

cos(t)− λ

)
. The real and imaginary parts

of (38) constitute asymptotic expansions for the Anger and Weber functions respectively:

Jλx(x) =
1

π

M−1∑
m=0

(−1)m

x2m+1

sin(λπ x)

λ+ 1
g2m(π) +O

(
x−2M−1

)
(39)

and

Eλx(x) =
1

π

M−1∑
m=0

(−1)m

x2m+1

(
g2m(0)

λ− 1
− cos(λπ x)g2m(π)

λ+ 1

)
+O

(
x−2M−1

)
. (40)

4.5 Numerical experiments

The following tables show some numerical experiments that illustrate the accuracy of the above
approximations for several values of λ and x and different orders M of the approximation. As
the exact value of the Fλ(x) function, we have taken the numerical integration of (28) obtained
with the program Mathematica 11.

λ = 1/2 M
x 1 2 3 4 5

15 2.418 · 10−1 5.619 · 10−3 5.182 · 10−3 1.686 · 10−3 1.474 · 10−3

50 7.642 · 10−2 1.391 · 10−3 2.894 · 10−4 2.571 · 10−5 6.314 · 10−6

125 7.541 · 10−2 6.756 · 10−4 1.959 · 10−5 3.582 · 10−6 2.629 · 10−7

500 4.261 · 10−2 1.561 · 10−4 2.007 · 10−6 1.918 · 10−7 4.286 · 10−9

1000 3.077 · 10−2 7.829 · 10−5 4.386 · 10−7 4.841 · 10−8 5.018 · 10−10

Table 1: Relative errors supplied by the approximation (29).
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λ = −1 M
x 2 4 6 8

15 5.907 · 10−2 5.301 · 10−4 4.841 · 10−5 5.661 · 10−6

50 1.829 · 10−2 1.131 · 10−4 4.539 · 10−6 2.458 · 10−7

125 1.149 · 10−2 4.451 · 10−5 1.131 · 10−6 3.865 · 10−8

500 3.919 · 10−3 5.162 · 10−6 4.503 · 10−8 5.282 · 10−10

1000 2.467 · 10−3 2.045 · 10−6 1.125 · 10−8 8.297 · 10−11

Table 2: Relative errors supplied by the approximation (32).

λ = 1 M
x 2 4 6 8

15 5.907 · 10−2 5.301 · 10−4 4.841 · 10−5 5.661 · 10−6

50 1.829 · 10−2 1.131 · 10−4 4.539 · 10−6 2.458 · 10−7

125 1.469 · 10−2 3.248 · 10−5 7.141 · 10−7 2.104 · 10−8

500 3.919 · 10−3 5.162 · 10−6 4.503 · 10−8 5.283 · 10−10

1000 2.467 · 10−3 2.045 · 10−6 1.125 · 10−8 8.324 · 10−11

Table 3: Relative errors supplied by the approximation (35).

λ = 3/2 M
x 1 2 3 4

20 3.148 · 10−2 8.331 · 10−3 5.042 · 10−3 4.871 · 10−3

50 2.755 · 10−3 1.001 · 10−4 1.082 · 10−5 2.447 · 10−6

125 5.045 · 10−4 2.739 · 10−6 4.181 · 10−8 1.261 · 10−9

500 4.007 · 10−5 1.345 · 10−8 1.261 · 10−11 3.378 · 10−14

1000 1.001 · 10−5 8.401 · 10−10 2.081 · 10−13 6.386 · 10−16

Table 4: Relative errors supplied by the approximation (38).
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