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1 IntrodutionIn literature, we an �nd a variety of expansions (onvergent or not) of the speial funtions ofmathematial physis. These expansions have the important property of being given in terms ofelementary funtions: mostly, powers or inverse powers of a ertain variable z and, sometimes,other elementary funtions. However, these expansions are not usually valid simultaneously for
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small and large values of |z|. Thus, it would be interesting to derive new onvergent expansionsin terms of elementary funtions that hold uniformly in z in a large region of the omplex planethat inlude small and large values of |z|.In [1℄ and [2℄, the authors derived new uniform onvergent expansions of the inompletegamma funtions and the Bessel funtions respetively in terms of elementary funtions. Thestarting point of the tehnique used in [1℄ and [2℄ is an appropriate integral representation ofthese funtions. The key point is the use of the Taylor expansion, at an appropriate point ofthe integration interval, of a ertain fator of the integrand that is independent of the variable
z. This fat translates into a onvergent uniform expansion in a large region of the omplex
z−plane. The expansions given in [1℄ and [2℄ are aompanied by error bounds and numerialexperiments showing the auray of the approximations.In this work, we ontinue that line of investigation onsidering the Gauss hypergeometrifuntion 2F1(a, b; c; z). We onsider 2F1(a, b; c; z) as a funtion of the omplex variable z, andderive new onvergent expansions uniformly valid in an unbounded region of the omplex
z−plane that ontains the point z = 0. The hypergeometri funtion 2F1(a, b; c; z) is de�nedby the Gauss series

2F1(a, b; c; z) =
∞
∑

s=0

(a)s(b)s
(c)ss!

zs =
Γ(c)

Γ(a)Γ(b)

∞
∑

s=0

Γ(a+ s) Γ(b+ s)

Γ(c+ s) s!
zs (1.1)on the disk |z| < 1, and by analyti ontinuation elsewhere. In general, 2F1(a, b; c; z) does notexist when c = 0,−1,−2, . . . The branh obtained by introduing a ut from 1 to +∞ on thereal z-axis, that is, the branh in the setor |ph(1−z)| ≤ π, is the prinipal branh (or prinipalvalue) of 2F1(a, b; c; z).Our starting point is the Euler integral representation of the hypergeometri funtion [3,Se 15.6, Eq. (15.6.1)℄

2F1(a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt, ℜc > ℜb > 0, (1.2)valid for |ph(1−z)| < π. For reasons that will beome lear later, it is onvenient to onsider theintegral (1.2) only for ℜa ≥ 0. When ℜa ≤ 0, we onsider instead the integral representation[3, Se 15.8(i), Eq. (15.8.1)℄

2F1(a, b; c; z) =
Γ(c)(1− z)−a

Γ(b) Γ(c− b)

∫ 1

0

tc−b−1(1− t)b−1

(

1 +
z

1− z
t

)−a

dt, ℜc > ℜb > 0, (1.3)valid for |ph(1 − z)| < π. When b and c − b are positive integers, the Gauss hypergemetrifuntion is an elementary funtion of z.By a repeated use of the ontiguous formulas of the Gauss hypergeometri funtion [3,Se. 15.5, eqs. 15.5.11 and 15.518℄ (the �rst one with the roles of the parameters a and binterhanged), we have that 2F1(a, b; c; z), with ℜb ≤ 0 and/or ℜc ≤ ℜb, may be written asa linear ombination of elementary funtions of a, b, c, z and Gauss hypergeometri funtionswith ℜc > ℜb > 0. Therefore, without loss of generality, in the remaining of the paper werestrit ourselves to ℜc > ℜb > 0. 2



The power series expansion (1.1) may be derived from (1.2) by replaing the fator (1−zt)−aby its Taylor series at the origin and interhanging series and integral. The Taylor expansiononverges for t ∈ [0, 1], but the onvergene is not uniform in |z|. Therefore, expansion (1.1) isonvergent, but not uniformly in |z| as the remainder is unbounded for large |z|.The asymptoti expansion of 2F1(a, b; c; z) ([3, Se. 15.2, Eq. (15.2.2)℄ and [3, Se. 15.8,Eqs. (15.8.2) and (15.8.8)℄) is given by
2F1

(

a, b

c
; z

)

=
πΓ(c)

sin(π(b− a))

{

(−z)−a

Γ(b) Γ(c− a) Γ(a− b+ 1)

∞
∑

s=0

(a)s(a− c+ 1)s
(a− b+ 1)ss! zs

− (−z)−b

Γ(a) Γ(c− b) Γ(b− a+ 1)

∞
∑

s=0

(b)s(b− c+ 1)s
(b− a+ 1)ss! zs

}

,

(1.4)for b − a /∈ N ∪ {0} and |ph(−z)| < π. If b − a = m ∈ N ∪ {0}, |z| > 1 and |ph(−z)| < π, wehave
2F1

(

a, a +m

c
; z

)

=
Γ(c)(−z)−a

Γ(a+m)

m−1
∑

k=0

(a)k(m− k − 1)!

k! Γ(c− a− k) zk

+
Γ(c)(−z)−a

Γ(a)

∞
∑

k=0

(−1)k(a+m)k
k!(k +m)! Γ(c− a− k −m) zk+m

× (log(−z) + ψ(k + 1) + ψ(k +m+ 1)

−ψ(a+ k +m)− ψ(c− a− k −m)) ,

(1.5)
where ψ denotes the digamma funtion. Expansions (1.4) and (1.5) are asymptoti for large
|z|, but the remainders are unbounded for small |z| and then, the expansions are not uniformin |z|. These asymptoti expansions may be derived by applying Watson's lemma [4, Chap. 1℄.As an illustration of the uniform approximations that we are going to obtain in this paper(see Theorem 1 below), we derive, for example, the following one,

2F1

(

1

2
,
29

10
,
39

10
; z

)

=
29(−3465z3 + 29260z2 + 421344z − 21888)

2100000 29/10 z4

− 29(162329z3 + 231724z2 + 410400z − 21888)
√
1− z

2100000 29/10 z4
+ ǫ(z),

(1.6)with |ǫ(z)| < 0.015 in the negative half plane ℜz ≤ 0. When z = 0, the right hand side of(1.6) must be understood in the limit sense, obtaining 1 = 0.998491 + ǫ(0), and verifying thatthe absolute value of the error at z = 0, that is ǫ(0) = 0.00150906, is smaller than 0.015. Onthe other hand, when we multiply the above formula by √
−z and take the limit z → −∞,we obtain 1.20833 = 1.20129 + limz→−∞

√
−z ǫ(z), that is, the absolute value of the error inthe approximation of √−z 2F1

(

1
2
, 29
10
, 39
10
; z
) at z = −∞ is 0.00705; a relative error smaller than

0.6%.In order to derive a uniform onvergent expansion of 2F1(a, b; c; z), we apply the tehniqueproposed in [1℄ and [2℄: we onsider a Taylor expansion of the fator tb−1(1 − t)c−b−1 in (1.2)3



and of the fator tc−b−1(1− t)b−1 in (1.3). These funtions are not analyti at the end points ofthe interval of integration unless b ∈ N and c− b ∈ N. Following the arguments given in [2℄, wemust onsider the Taylor expansions of the fators tb−1(1 − t)c−b−1 and tc−b−1(1− t)b−1 at themiddle point t = 1/2 of the integration interval (0, 1) in the orresponding integrals (1.2) and(1.3), in suh a way that we assure that the open interval of integration (0, 1) is ontained intothe disk of onvergene of these Taylor series. These Taylor expansions are onvergent for any
t in the integration interval of (1.2) or (1.3) and, obviously, they are independent of z. Afterthe interhange of the series and the integral, the independene with respet to z translatesinto a remainder that may be bounded independently of z in a large unbounded region of theomplex z−plane that ontains the point z = 0 and that we speify in Theorems 1 and 2 below.In the following setion we onsider the integral representation (1.2) for ℜa ≥ 1. In Setion3 we onsider the integral representation (1.3) for ℜa ≤ 1. Throughout the paper we use theprinipal argument arg z ∈ (−π, π].2 A uniform onvergent expansion of 2F1(a, b; c; z) for ℜa ≥ 0In this setion we onsider the integral representation (1.2). We de�ne the extended setor (seeFigure 1):

Sθ := {θ ≤ | arg(z)| ≤ π} ∪
{

z ∈ C;

∣

∣

∣

∣

z − 1

2

∣

∣

∣

∣

≤ 1

2
and |z − 1| ≥ sin θ

}

, (2.1)with arbitrary 0 < θ ≤ π/2. We have the following theorem.Theorem 1. For ℜa ≥ 0, ℜc > ℜb > 0, z ∈ Sθ, with 0 < θ ≤ π/2, and n = 1, 2, 3, . . .,
2F1(a, b; c; z) =

Γ(c)

Γ(b)Γ(c− b)

n−1
∑

k=0

Ak(b, c)Hk(z, a) +Rn(a, b, c; z), (2.2)where the oe�ients Ak(b, c) are given by
Ak(b, c) :=2k+2−c

k
∑

j=0

(−1)j
(1− b)j(1 + b− c)k−j

j!(k − j)!

=2k+2−c (1 + b− c)k
k!

2F1 (1− b,−k; c− b− k;−1) ,

(2.3)and Hk(z, a) are the elementary funtions
Hk(z, a) :=

(−1)k

2kzk+1

k
∑

j=0

(

k
j

)

2j (z − 2)k−j

[

1− (1− z)j+1−a

j + 1− a
(1− δj,a−1)− δj,a−1 log(1− z)

]

,(2.4)4



that may also be represented in terms of hypergeometri funtions with parameter b = 1,
Hk(z, a) :=

1

(k + 1)2k+1

[

(−1)k2F1

(

a, 1; k + 2;
z

2

)

+ (1− z)−a
2F1

(

a, 1; k + 2;
z

2(z − 1)

)]

.(2.5)The oe�ients Ak(b, c) and the funtions Hk(z, a) an be omputed reursively in the form
Ak(b, c) =

2

k
[(2b− c)Ak−1(b, c) + 2(k − c)Ak−2(b, c)] , k ≥ 2, (2.6)with A0(b, c) = 22−c, A1(b, c) = (2b− c)23−c, and for k = 1, 2, 3, . . . and a 6= 1,

Hk(z, a) =
(−1)k − (1− z)1−a

z(1 − a)2k
+

k

z(1 − a)
Hk−1(z, a+1), H0(z, a) =

1

z(1 − a)

[

1− (1− z)1−a
]

.(2.7)On the other hand, for k = 1, 2, 3, . . . and a = 1,
Hk(z, 1) =

(−1)k − 1

2kkz
+

(

1

z
− 1

2

)

Hk−1(z, 1), H0(z, 1) = −1

z
log(1− z). (2.8)When z = 0, the above formulas must be understood in the limit sense. For n > ℜc − 1, theremainder is bounded in the form

|Rn(a, b, c; z)| ≤
2eπ|ℑa||Γ(c)|Γ(1− ℜc+ n)

π |Γ(b)||Γ(c− b)|[sin(θ)]ℜa

( | sin[(c− b)π]|
Γ(1−ℜb+ n)

+
| sin(bπ)|

Γ(1 + ℜb−ℜc+ n)

)

. (2.9)The remainder term behaves as Rn(z, a, b, c) ∼ n−min{ℜb,ℜc−ℜb} as n → ∞ uniformly in |z| inthe extended setor Sθ.Proof. Consider the trunated Taylor expansion of the fator f(t) := tb−1(1 − t)c−b−1 in (1.2)at the middle point t = 1/2 of the integration interval (0, 1),
tb−1(1− t)c−b−1 =

n−1
∑

k=0

Ak(b, c)

(

t− 1

2

)k

+ rn(b, c, t), t ∈ (0, 1), (2.10)where Ak(b, c) is de�ned by (2.3) and rn(b, c, t) is the Taylor remainder
rn(b, c, t) :=

+∞
∑

k=n

Ak(b, c)

(

t− 1

2

)k

, t ∈ (0, 1). (2.11)Using the di�erential equation t(1− t)f ′ = [b− 1+ (2− c)t]f satis�ed by the funtion f(t), weobtain that the Taylor oe�ients Ak(b, c) an be omputed reursively by (2.6).Replaing (2.10) into the integral representation (1.2) and interhanging sum and integralwe obtain (2.2) with
Rn(a, b, c; z) :=

Γ(c)

Γ(b)Γ(c− b)

∞
∑

k=n

Ak(b, c)Hk(z, a), (2.12)5
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Figure 1: The blue and green regions omprise the extended setor Sθ de�ned in (2.1), with r := sin θ.In partiular, Sπ/2 is just the half plane ℜz ≤ 0 and limθ→0 Sθ = C \ [1,∞). In this region, theremainder Rn(a, b, c; z) is bounded independently of |z| by the right hand side of (2.9).
Ak(b, c) given in (2.3) and

Hk(z, a) :=

∫ 1

0

(

t− 1

2

)k

(1− zt)−adt =
(−1)k

2kz

∫ 1

1−z

(

1− 2

z
+ 2

u

z

)k

u−adu. (2.13)Expanding the �rst fator of the integrand in the last integral in powers of u and integratingterm-wise we obtain (2.4). On the other hand, splitting the �rst integral at t = 1/2 andintegrating the integrals separately we obtain (2.5). The reurrene relations (2.7) and (2.8)follow by integrating by parts in any of the integrals in (2.13).In order to prove the onvergene of (2.2), we observe that, for t ∈ [0, 1], we have that |(1 −
zt)−a| ≤ eπ|ℑa|M(z, a), with

M(z, a) :=











1, if ℜ(z) ≤ 0,

|1− z|−ℜa, if ℜ(1/z) ≥ 1,

|sin(arg(z))|−ℜa , if 0 < ℜ(1/z) < 1.

(2.14)The regions of the omplex z−plane onsidered in this formula are depited in Figure 2. Usingthis bound in the �rst integral in (2.13) we �nd that
|Hk(z, a)| ≤

∫ 1

0

∣

∣

∣

∣

t− 1

2

∣

∣

∣

∣

k
∣

∣(1− zt)−a
∣

∣ dt ≤ eπ|ℑa|M(z, a)

2k(k + 1)
. (2.15)On the other hand, for z ∈ Sθ, we have that M(z, a) ≤ [sin(θ)]−ℜa. This inequality maybe proved using the following geometrial arguments: (i) at the points of the irle |z −

1/2| = 1/2 we have that |1 − z| = |sin(arg(z))|; (ii) the losest points of the setor θ ≤6



Re(z)

Im(z)

1/2

Re(1/z)>1

0<Re(1/z)<1

Re(z)<0

1

Figure 2: Di�erent regions onsidered in formula (2.14). The green region ℜ(1/z) > 1 is the opendisk of radius 1/2 with enter at z = 1/2. The red region 0 < ℜ(1/z) < 1 is the intersetion of thehalf plane ℜz > 0 with the exterior to this disk.
| arg(z)| < π/2 to the point z = 1 are just the two points obtained from the intersetionof the rays arg z = ±θ with the irle |z − 1/2| = 1/2; (iii) the losest points of the region
{

z ∈ C;
∣

∣z − 1
2

∣

∣ ≤ 1
2
and |z − 1| ≥ sin θ

} to the point z = 1 are those of the portion of irle
|z − 1| = sin θ ontained inside this region.On the other hand, from [5, eqs. (16) and (25)℄ and the integral representation of 2F1 [3,Se. 15.6, eq. 15.6.1℄, we �nd that, for k + 2 > ℜc, the oe�ients Ak(b, c) may be written inthe form

Ak(b, c) =
sin[(c− b)π]

π

∫ 1

0

tk+1−c(1− t)c−b−1(1− t/2)−k−1dt

+
(−1)k sin(b π)

π

∫ 1

0

tk+1−c(1− t)b−1(1− t/2)−k−1dt.Taking into aount that (1 − t/2)−k−1 ≤ 2k+1 for t ∈ (0, 1), we have the following bound foroe�ients Ak(b, c) when n + 2 > ℜc,
|Ak(b, c)| ≤

2k+1

π

(

| sin[(c− b)π]|Γ(ℜc−ℜb)Γ(2−ℜc+ k)

Γ(2−ℜb+ k)
+ | sin(b π)|Γ(ℜb)Γ(2 −ℜc+ k)

Γ(2 + ℜb−ℜc+ k)

)

. (2.16)Using (2.15) and (2.16) in (2.12) we �nd
|Rn(a, b, c; z)| ≤

2eπ|ℑa||Γ(c)| sin[(c− b)π]|Γ(ℜc− ℜb)
π |Γ(b)||Γ(c− b)|[sin(θ)]ℜa

+∞
∑

k=n

Γ(2− ℜc+ k)

(k + 1)Γ(2−ℜb+ k)

+
2eπ|ℑa||Γ(c)|| sin(b π)|Γ(ℜb)
π |Γ(b)||Γ(c− b)|[sin(θ)]ℜa

+∞
∑

k=n

Γ(2− ℜc+ k)

(k + 1)Γ(2 + ℜb− ℜc+ k)
.

(2.17)
7



For 1−ℜc + k > 0 we have that
Γ(2−ℜc+ k)

k + 1
<

Γ(2− ℜc+ k)

k + 1− ℜc = Γ(1− ℜc+ k),and then (2.17) may be bounded in the form
|Rn(a, b, c; z)| ≤

2eπ|ℑa||Γ(c)|| sin(c− b)π|Γ(ℜc− ℜb)
π |Γ(b)||Γ(c− b)|[sin(θ)]ℜa

Γ(1−ℜc+ n)

Γ(2− ℜb+ n)
2F1





1, 1− ℜc+ n

2− ℜb+ n

∣

∣

∣

∣

∣

∣

1





+
2eπ|ℑa||Γ(c)|| sin(b π)|Γ(ℜb)
π |Γ(b)||Γ(c− b)|[sin(θ)]ℜa

Γ(1−ℜc+ n)

Γ(2 + ℜb− ℜc+ n)
2F1





1, 1− ℜb+ n

2 + ℜa− ℜb+ n

∣

∣

∣

∣

∣

∣

1



 .(2.18)Finally, using formula [3, Se. 15.4, eq. 15.4.20℄ for argument unity of 2F1, we �nd (2.9).From the right hand side of (2.9) and the Stirling formula for the gamma funtion, we �ndthat Rn(a, b, c; z) ∼ n−min{ℜb,ℜc−ℜb} when n → +∞. Then, the series (2.2) is onvergent for
ℜa ≥ 0 and ℜc > ℜb > 0 and the bound (2.9) shows the uniform harater of the expansion(2.2) in the extended setor Sθ.From the di�erential equation t(1− t)f ′ = [b− 1 + (2− c)t]f satis�ed by the funtion f(t)used in the proof of the above theorem, it is possible to �nd, for ℜb > 1/2 and ℜ(c− b) > 1/2,a more aurate error bound than (2.9). It is given in the following proposition.Proposition 1. In the setor Sθ, 0 < θ ≤ π/2, and for ℜa ≥ 0, 2n ≥ ℜb > 1/2 and
2n ≥ ℜ(c− b) > 1/2, the remainder Rn(a, b, c; z) of the expansion (2.2) is bounded in the form

|Rn(a, b, c, z)| ≤
eπ|ℑa|

2n(n+ 1)[sin(θ)]ℜa

{

n|An(b, c)|
4

[Cn(b) + Cn(c− b)]

+ |n+ 1− c||An−1(b, c)| [Cn+1(b) + Cn+1(c− b)]

}

,

(2.19)where
Cn(b) :=







1

ℜb− 1

[

1− n!

(ℜb)n

] if ℜb 6= 1,

Hn if ℜb = 1,
(2.20)and Hn is the harmoni number of order n.Proof. From the di�erential equation t(1 − t)f ′ = [b − 1 + (2 − c)t]f satis�ed by the funtion

f(t) = tb−1(1 − t)c−b−1 and the reurrene relation (2.6) satis�ed by the Taylor oe�ients of
f(t) at t = 1/2 (see (2.10)), we �nd that the Taylor remainder rn(t) ≡ rn(b, c, t) in formula(2.10) is a solution of the boundary value problem














t(1 − t)r′n + [1− b+ (c− 2)t]rn =
n

4
An(b, c)

(

t− 1

2

)n−1

+ (n+ 1− c)An−1(b, c)

(

t− 1

2

)n

,

rn

(

1

2

)

= 0. 8



The unique solution of this problem is
rn(t) = tb−1(1− t)c−b−1

[n

4
An(b, c)Bn−1(b, c) + (n + 1− c)An−1(b, c)Bn(b, c)

]

,with
Bn(b, c) :=

∫ t

1/2

u−b(1− u)b−c

(

u− 1

2

)n

du.For 2n ≥ ℜb > 0 and 2n ≥ ℜ(c − b) > 0, we have that (u − 1/2)nu−ℜb ≤ (t − 1/2)nt−ℜb for
1/2 ≤ u ≤ t ≤ 1 and (1/2 − u)n(1 − u)ℜ(b−c) ≤ (1/2 − t)n(1 − t)ℜ(b−c) for 0 ≤ t ≤ u ≤ 1/2.Using these bounds in the de�nition of Bn(b, c) we �nd that, for t > 1/2,

|Bn(b, c)| ≤
(

t− 1

2

)n

t−ℜb







(1− t)ℜ(b+1−c) − 2ℜ(c−b−1)

ℜ(c− b− 1)
for c− b 6= 1,

− log[2(1− t)] for c− b = 1,and, for t < 1/2,
|Bn(b, c)| ≤

(

1

2
− t

)n

tℜ(b−c)







tℜ(1−b) − 2ℜ(b−1)

ℜ(b− 1)
for b 6= 1,

− log(2t) for b = 1.Therefore, introduing these bounds into the integral de�nition of the remainder Rn(a, b, c; z),
Rn(a, b, c; z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

rn(t)(1− zt)−adt,and using also the bound |(1− zt)−a| ≤ eπ|ℑa|[sin(θ)]−ℜa derived in the proof of Theorem 1, we�nd the bound (2.19)-(2.20).Formula (1.6) is the partiular ase of formulas (2.2) and (2.19) for the spei�ed values ofthe parameters a, b and c and n = 4.In Table 1 we show the �rst terms of the expansion on the right hand side of (2.2) for
ℜa ≥ 0 and a /∈ N. These terms are rational funtions of z and funtions of (1 − z)−a. When
a ∈ N, the expansion (2.2) also ontains the term log(1− z).In Figure 3 we plot 2F1(0.5, 1.3; 2.5; z) and the approximations given in Theorem 1 for
n = 2, 4 and 6. These plots show the uniform harater of the expansion (2.2).3 A uniform onvergent expansion of 2F1(a, b; c; z) for ℜa ≤ 0In this setion we onsider the integral representation (1.3). For any 0 < r ≤ 1, onsider thepuntured omplex plane at z = 1 with the interval [1,∞) removed:

Cr := {z ∈ C; |z − 1| ≥ r, | arg(1− z)| < π}. (3.1)We have the following theorem. 9



n An(b, c)Hn(z, a)1 22−c

(

1− (1− z)1−a

)

(1− a)z2 22−c

(

1− (1− z)1−a

)

(1− a)z
−

22−c(2b− c)

(

(−2 + a)
(

−1− (1− z)1−a

)

− 2(1−(1−z)2−a)
z

)

(1− a)(2− a)z

3 22−c

(

1− (1− z)1−a

)

(1− a)z
+

22−c

(

2− c+ (−2b+ c)2
)

(1− a)(2 − a)(3− a)z

×
(

1

2
(−3 + a)(−2 + a)

(

1− (1− z)1−a

)

+
4
(

1− (1− z)3−a

)

z2
− 2(−3 + a)

(

−1− (1 − z)2−a

)

z

)

−
22−c(2b− c)

(

(−2 + a)
(

−1− (1 − z)1−a

)

− 2(1−(1−z)2−a)
z

)

(1− a)(2 − a)zTable 1: First few terms in the expansion (2.2) of Γ(b)Γ(c−b)
Γ(c) 2F1(a, b; c; z) when ℜa ≥ 0 and a /∈ N.Theorem 2. For ℜa ≤ 0, ℜc > ℜb > 0, z ∈ Cr with 0 < r ≤ 1, and n = 1, 2, 3, . . .,

(1− z)a2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

n−1
∑

k=0

Ãk(b, c)H̃k(z, a) +Rn(a, b, c; z), (3.2)where the oe�ients Ãk(b, c) are given by
Ãk(b, c) :=2k+2−c

k
∑

j=0

(−1)j
(1 + b− c)j(1− b)k−j

j!(k − j)!

= 2k+2−c (1− b)k
k!

2F1 (1 + b− c,−k; b− k;−1) ,

(3.3)and H̃k(z, a) are the elementary funtions
H̃k(z, a) :=

1

zk+1

k
∑

j=0

(

k

j

)

2j−k(z − 2)k−j (1− z)a − (1− z)j+1

j + 1− a
. (3.4)The oe�ients Ãk(b, c) and funtions H̃k(z, a) an be omputed reusively in the form

Ãk(b, c) =
2

k

[

(c− 2b)Ãk−1(b, c) + 2(k − c)Ãk−2(b, c)
]

, k ≥ 2, (3.5)with Ã0(b, c) = 22−c and Ã1(b, c) = (c− 2b)23−c, and for k = 1, 2, 3, . . .

H̃k(z, a) =
1− z

2k(1− a)z

[

1

(1− z)1−a
− (−1)k

]

− k(1− z)

(1− a)z
H̃k−1(z, a− 1),10
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Figure 3: Plots of the absolute value of 2F1(0.5, 1.3, 2.5, z) (dashed) and the approximations givenin Theorem 1 for n = 2 (red), n = 4 (green) and n = 6 (blue) in several intervals: [−10, 1] (topleft), [−10eiπ/4, 10eiπ/4] (top right), [−10eiπ/2, 10eiπ/2] (bottom left) and [−10e−iπ/3, 10e−iπ/3] (bottomright).with H̃0(z, b) =
1− z

(1− a)z

[

1

(1− z)1−a
− 1

].When z = 0, the above formulas must be understood in the limit sense.For any z ∈ Cr, and n > ℜc− 2, the remainder is bounded in the form
|Rn(a, b, c; z)| ≤

2eπ|ℑa||Γ(c)|Γ(1− ℜc+ n)

π |Γ(b)||Γ(c− b)|r−ℜa

( | sin[(c− b)π]|
Γ(1−ℜb+ n)

+
| sin(bπ)|

Γ(1 + ℜb−ℜc+ n)

)

. (3.6)The remainder term behaves as Rn(a, b, c; z) ∼ n−min{ℜb,ℜc−ℜb} as n→ ∞ uniformly for z ∈ Cr.Proof. It is similar to the proof of Theorem 1, but onsidering the integral representation (1.3)instead of (1.2). That is, we must onsider the Taylor expansion of the fator tc−b−1(1 − t)b−1at t = 1/2 instead of the expansion of the fator tb−1(1 − t)c−b−1. We must also replae z by
z/(z − 1) in the fator (1− zt)−a. Then, we only give here a few signi�ant details.Replaing the trunated series Taylor expansion of tc−b−1(1 − t)b−1 at t = 1/2 on the righthand side of (1.3) we obtain (3.2) with

Rn(a, b, c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∞
∑

k=n

Ãk(b, c)H̃k(z, a), (3.7)11



and̃
Hk(z, a) :=

∫ 1

0

(

t− 1

2

)k (

1 +
z

1− z
t

)−a

dt =
1− z

z

∫ (1−z)−1

1

(

z − 2

2z
+

1− z

z
u

)k

u−adu.Expanding the �rst fator of the integrand in the seond integral in powers of u and integratingterm-wise we obtain (3.4). Then, we obtain (3.2) with Rn(a, b, c; z) given in (3.7). Now, inorder to derive the bound (3.6), instead of a bound for the fator (1 − zt)−a valid for every
t ∈ [0, 1], we need a bound for the fator (1− z(z−1)−1t)−a valid for every t ∈ [0, 1]. It is givenby |(1− z(z − 1)−1t)−a| ≤ eπ|ℑa|M(z, a), with

M(z, a) := max{1, |1− z|ℜa}.It is lear that M(z, a) ≤ rℜa for z ∈ Cr and then, instead of (2.9) we obtain (3.6).The following proposition is an immediate onsequene of Proposition 1 and the proof ofTheorem 2.Proposition 2. In the puntured plane Cr, with 0 < r ≤ 1, and for ℜa ≤ 0, 2n ≥ ℜb > 1/2and 2n ≥ ℜ(c− b) > 1/2, the remainder Rn(a, b, c; z) of the expansion (3.2) is bounded in theform
|Rn(a, b, c, z)| ≤

eπ|ℑa|rℜa

2n(n + 1)

{

n|An(b, c)|
4

[Cn(b) + Cn(c− b)]

+ |n+ 1− c||An−1(c− b)| [Cn+1(b) + Cn+1(c− b)]

}

,

(3.8)with Cn(b) given in (2.20).In Table 2 we show the �rst terms of the expansion (3.2) of Γ(b)Γ(c−b)
Γ(c)

(1 − z)a2F1(a, b; c; z).These terms are rational funtions of z and funtions of (1− z)a.In Figure 4 we plot (1− z)1.52F1(−1.5, 1.7; 3.2; z) and the approximations given in Theorem2 for n = 2, 4 and 6. These plots show the uniform harater of the expansion (3.2).4 AknowledgmentsThis researh was supported by the Spanish Ministry of Eonomía y Competitividad, projetMTM2017-83490-P.5 Dislosure statementNo potential on�it of interest was reported by the authors.12



n Ãn(b, c)H̃n(z, a)1 22−c

(

(1 − z)−1+a − 1
)

(1− z)

(1− a)z2 22−c (−1 + (1 − z)a + z)

(1 − a)z
+

22−c(−2b+ c) (−(1− z)a(2 + (−2 + a)z) + (−1 + z)(−2 + az))

(1− a)(2 − a)z23 21−c

((

4 + 4b2 + c+ c2 − 4b(1 + c)
)

(1− z)a +
(

4 + 4b(1 + b)− 3c− 4bc+ c2
)

(−1 + z)
)

(1− a)z

+
23−c

(

−
(

2 + 4b2 + c2 − 2b(1 + 2c)
)

(1− z)a −
(

2 + 4b2 + b(2− 4c) + (−2 + c)c
)

(−1 + z)2
)

(1− a)(2− a)z2

+
24−c

(

2− c+ (−2b+ c)2
) (

(1− z)a + (−1 + z)3
)

(1− a)(2 − a)(3− a)z3Table 2: First few terms in the expansion (3.2) of Γ(b)Γ(c−b)
Γ(c) (1− z)a2F1(a, b; c; z) when ℜa ≤ 0.
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Figure 4: Plots of the absolute value of (1−z)1.52F1(−1.5, 1.7, 3.2, z) (dashed) and the approximationsgiven in Theorem 2 for n = 2 (red), n = 4 (green) and n = 6 (blue) in several intervals: [−10, 1] (topleft), [−10eiπ/4, 10eiπ/4] (top right), [−10eiπ/2, 10eiπ/2] (bottom left) and [−10e−iπ/3, 10e−iπ/3] (bottomright).
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