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We introduce a simple method to extend the perfor-
mance of pulse coding techniques in their applica-
tion to Brillouin optical time-domain analysis sensors
(BOTDA). It is based on using a simple logarithmic
processing on the detected probe wave that compen-
sates the deviation from linearity of the sensor re-
sponse for long code lengths. The technique ensures
that the accumulated effect of a sequence of pulses is
equal to the linear addition of the effects of the indi-
vidual components, which is the essential condition to
ensure a correct decoding of the probe gain measure-
ment. We experimentally demonstrate compensation of
the Brillouin frequency shift error induced by the ac-
cumulated gain nonlinearity. Furthermore, a proof-of-
concept 80-km sensing link within a total 200-km fiber
loop demonstrated better than 2-MHz precision with 2-
m spatial resolution.
© 2018 Optical Society of America
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Brillouin optical time-domain analysis (BOTDA) sensors
have been extensively researched in the last years due to the
long range measurements of temperature and strain that they
can provide. These measurements are very valuable to monitor
the integrity of large structures such as oil and gas pipelines,
electric high-voltage cables or railways. However, the range of
BOTDA sensors is ultimately constrained by the attenuation of
the optical fiber used for sensing because the maximum pump
and probe powers that can be deployed are limited by the onset
of nonlinear and nonlocal effects. Multiple solutions have been
proposed to increase the range of BOTDA sensors, but one of
the most powerful is the deployment of pump pulse coding
[1]. These methods are based on launching in the fiber coded
sequences of pulses and processing the detected probe signals
so as to obtain, after a decoding process, a probe intensity re-
sponse equivalent to that of the single-pulse BOTDA, but with

an enhancement in signal-to-noise ratio (SNR), known as coding
gain, that increases with the code length. This enhancement is
due to the increased pump energy in the fiber and it does not
compromise the spatial resolution of the sensor.

Despite its potential, the application of pulse coding methods
so far has been constrained by the linearity assumption, i.e., the
assumption that the effects of interaction with multiple pulses
in a coded sequence on the probe accumulates linearly. This is
required for the decoding process to work properly. However,
this limits the maximum achievable coding gain because for
long codewords the accumulated gain provided by the pulse
sequence for optical frequencies close to the Brillouin peak be-
comes large, so that the linearity approximation is no longer
satisfied. Several solutions have been proposed to mitigate this
constrain. One alternative is the use of color coding, which is
based on introducing an additional optical frequency hopping
to the pulse sequence [2]. This additional and continuous fre-
quency change of the pump pulses of a given sequence reduces
the total gain experienced by the probe because only part of
the pump pulses are close to the Brillouin gain peak. Another
proposal is the use of bipolar coding, which is based on using
codes that include pulses that are upshifted or downshifted in
optical frequency from the probe so that they induce either gain
or loss on the probe wavefront [3]. This ensures that the total
gain or loss experienced by the probe after transversing the fiber
is small; hence, linear conditions prevail. This approach has
demonstrated very good performance at the cost of a rather
increased setup complexity.

In this work, we introduce a much simpler approach to at-
tain pulse coding linearity by a very simple processing of the
detected probe wave. This new technique entails linearizing
the sensor response so that, no matter the amount of gain expe-
rienced by the probe, the accumulated effect of a sequence of
pulses is equal to the linear addition of the effects of the individ-
ual components. The method is experimentally demonstrated in
a 200-km fiber link obtaining a remarkable performance.

In pulse coding there is a fundamental requirement for linear-
ity in order to obtain proper results in the decoding process. In
a single-pulse BOTDA sensor, the objective is to determine the
Brillouin gain experienced by the probe wave at every position
in the fiber, g(z). In practical deployments, the variation of the
detected CW probe intensity, ∆ICW , due to interaction with the
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pump pulse at z is used as a proxy for g(z):

∆ICW(t) = ICW(t)− ICWL exp(−αL)
= ICWL exp(−αL) [exp(g(z)− 1]

≈ ICWL exp(−αL)g(z) (1)

where ICW(t) is the detected intensity of the probe wave exiting
the fiber at t = (L − z)/vg, with vg the group velocity of the
optical waves and ICWL is the probe power injected in the fiber
of length L and attenuation coefficient α. In this expression, the
approximation of the last right-hand side term assumes that
the gain is small. In pulse-coded BOTDA, the methods applied
so far have also relied on the measurement of the total inten-
sity variation experienced by the probe when interacting with
particular codeword sequences of pulses in the fiber, ∆ICWT :

∆ICWT (t) = ICWL exp(−αL)

[
exp

(
LC

∑
i=1

gi(zi)

)
− 1

]

≈ ICWL exp(−αL)
LC

∑
i=1

gi(zi) (2)

where gi is the gain experienced by the probe due to its interac-
tion with the i-th pulse in the codeword sequence at a location
zi along the fiber, and t refers again to the probe wavefront exit-
ing the fiber prior to detection. Notice that the different gi are
identical to g(zi) for the single-pulse case, a fact that is used
in the decoding process. Again, the last approximation on the
right-hand side of Eq. (2) is just valid when ∑LC

i=1 gi(zi) is small.
However, contrary to the single-pulse case, this assumption be-
comes unreasonable as the code length, and hence the total gain,
increases. This makes the recovery of g(z) from the measured
∆ICWT for each codeword to fail, because the decoding process
intrinsically requires that the effects of multiple pulses accumu-
late linearly. Altogether, this linearity requirement constrains the
maximum code length that can be deployed in BOTDA sensors
and, with it, the maximum achievable SNR enhancement and
overall measurement range.

We propose an alternative pulse coding implementation
method that is based on using a linearized version of the probe
intensity variation. This is obtained by calculating the natural
logarithm of the detected probe intensity wave, ICWT , and sub-
tracting its DC component. The linearized variation of the probe
intensity due to its interaction with a given codeword is then
given by:

∆I′CWT
(t) ≡ ln (ICWT (t))− ln (ICWL exp(−αL)) (3)

From this definition, it is easy to demonstrate that working with
∆I′CWT

instead of ∆ICWT provides linearity to the coded signal
no matter what the total gain experienced by the probe is:

∆I′CWT
(t) = ln

(
ICWL exp(−αL) exp

(
LC

∑
i=1

gi(zi)

))
− ln (ICWL exp(−αL))

=
LC

∑
i=1

gi(zi) =
LC

∑
i=1

∆I′CW i
(t) (4)

where ∆I′CW i
(t) is the linearized probe intensity variation due

to interaction of the probe wave with the i-th pulse.
Apart from this really simple modification, the measure-

ment process then proceeds identically to established proce-
dures. First, ICWT (t) is detected for the different codewords

and ∆I′CWT
(t) calculated for each of them, according to Eq. (2).

Then, decoding is performed. For instance, for simplex or cyclic
simplex coding, this involves application of the inverse code
matrix.

In addition to amplification nonlinearity, the other main con-
strain faced by pulse coding in BOTDA is nonlocal effects due to
pump pulses depletion. These effects are exacerbated in BOTDA
sensors deploying coding because successive pulses in a se-
quence interact with probe wavefronts that have been amplified
by previous pulses in the sequence [4]. This increases the en-
ergy transfer from the pump pulses to the probe wave when
providing gain and hence increase pump depletion, which leads
to decoding errors because the relative amplitudes of the pulses
in a sequence are altered along the fiber. This constrain is also
addressed in this work by deploying a method to reduce pump
depletion that is based on introducing a wavelength modulation
or dithering to the probe wave [4].

Fig. 1. Experimental setup for the BOTDA sensor with coding
linearization.

In order to evaluate the performance of the proposed coding
linearization method, we deploy the setup outlined in Fig. 1.
This is a conventional dual-probe BOTDA setup that also incor-
porates the probe dithering method to mitigate first and second
order nonlocal effects [4]. The optical source was a 1550-nm DFB
laser, whose output was divided by a coupler into two branches.
In the upper branch, a semiconductor optical amplifier (SOA)
optical switch, with an extinction ratio around 50 dB, was used
to shape the pump pulses. This SOA was driven by an arbitrary
waveform generator (AWG) that provided the coded sequence of
pulses. Then, an erbium-doped fiber amplifier (EDFA) followed
by a polarization scrambler was used to amplify the pulses to
20 dBm, which corresponds to the modulation instability thresh-
old, and to randomize their polarization, respectively, prior to
injection into the fiber under test (FUT). The pulses had 20-ns
duration, which leads to a spatial resolution of 2 m for the sensor
measurements.

A total of 200 km of fiber in a loop configuration were de-
ployed, with the first half acting as leading fiber and the second
as sensing fiber. Two hotspots are induced at the start and end
of the sensing fiber by introducing 80-m length of fiber at both
locations, in temperature-controlled thermal baths.

In the lower branch, a dual-probe wave was generated using
a Mach-Zehnder electro-optic modulator (MZ-EOM) that was
driven by another output of the AWG. In order to implement the
modulation of the probe wave frequency or dithering, the AWG
generated a microwave tone whose instantaneous frequency
was modulated following a sawtooth shape with a peak-to-peak
frequency deviation of 160 MHz and a period of 4 µs. This
frequency modulation (FM) has been shown to have two main
effects [5]. First, it increases the effective Brillouin threshold of
the FUT, which allows to inject a total probe wave power (per
sideband) of 13 dBm, much larger than the 7 dBm of Brillouin
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threshold measured without dithering. The second effect is
to reduce first and second order nonlocal effects because the
Brillouin interaction induced by the dual probe wave upon the
pulse is spread in a larger frequency range [5].

An optimized cyclic code was deployed in this proof-of-
concept BOTDA sensor setup that was based on a circu-
lant matrix of dimension Lc, with Lc a prime number [2, 6].
The code is generated following the recurrence expression
un+1 = (un + n) mod Lc, with u1 = 0 and mod the modulo
operation. This gives the positions of pulses ("1" bits) in the first
line of the code matrix (first codeword) as pn = un + 1. The
rest of the lines of the matrix are obtained by simple shifting
operations. Instead, the first sequence is simply repeated in a
continuous loop, providing fast averaging [6]. In our implemen-
tation, the temporal distance between two of the contiguous bits
of the generated cyclic code has to be equal to the period of the
FM of the probe waves in order for the decoding process to work
properly [4]. This ensures that, at a given location in the fiber,
successive pulses in a sequence meet the probe wave with the
same frequency detuning.

Finally, the probe wave was detected in an
EDFA-preamplified receiver that include a couple of
narrow-band fiber Bragg gratings (FBG) that were used
to filter out one of the probe sidebands and the Rayleigh
backscattering originated from the pump wave.

The experiments started by measuring the amplitude of the
pump pulses injected in the fiber after their amplification in the
EDFA. This gives information regarding the amplitude distor-
tion introduced by the EDFA transient response, which is crucial
to derive amplitude weighting values to be used in the code ma-
trix so as to ensure a correct decoding. The maximum variation
in amplitude of the pulses in the cyclic sequence was found to be
around 2.5% when Lc = 251 was deployed. Then, the depletion
induced by the probe wave on the pump pulse sequences after
traveling across the fiber was also measured. Fig. 2 highlights
the general trends that the depletion increases along the pulse
sequence and that shorter sequences lead to smaller depletion,
as it had been observed in previous works [4]. Nevertheless,
deployment of the probe dithering method makes depletion
negligible from a practical point of view.
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Fig. 2. Depletion of the different pulses in a code sequence for
code lengths of Lc = 101 (blue) and Lc = 251 (red).

After characterization of the pulses, full BOTDA measure-
ments were performed on the fiber link. Fig. 3 (a) depicts the
decoded probe power variations measured along the fiber for
a frequency difference between pump and probe close to the
Brillouin peak gain and for different coding lengths. Notice
that, as the code length is increased, the decoded signal displays
increased amplitude error compared to that of a single-pulse

Fig. 3. Probe amplitude along the fiber (a) without and (b)
with linearization of the sensor response for code lengths of
Lc = 1 (no coding) (black), Lc = 101 (blue) and Lc = 251 (red).

BOTDA. This error is due to the increased gain experienced by
the probe due to its interactions with successive pulses, partic-
ularly more visible at locations close to the pulses entry in the
fiber, which is where they have larger power, however, as it
will be shown, errors also appear after a certain distance of the
FUT. On the contrary, Fig. 3 (b) highlights that when our simple
processing technique is deployed to linearize the response, the
decoded probe power variation for increased code length be-
comes equivalent to that with no coding and the linearity error is
eliminated altogether. Moreover, Fig. 4 (a) displays the spectrum
measured in the hotspot at the start of the sensing fiber. This
figure highlights that the deviation of linearity when deploying
coding leads to a Brillouin frequency shift (BFS) measurement
error. Note that the increased amplitude measured for the probe
wave for longer code lengths distorts the measured spectra that,
compared to that measured with no coding, is narrowed and
skewed towards the BFS of the fiber outside the hotspot. How-
ever, as shown in Fig. 4 (b), our response linearization method
completely compensates this effect and the spectra for the pulse-
coded BOTDA are seen to coincide with those of the single-pulse
sensor, just with less noise due to the coding gain.

Figure 5 depicts the improvement on the BFS measured along
the sensing fiber by applying our response linearization tech-
nique for a code length Lc = 251. Notice that this link is made of
two fiber spools with slightly different average BFS. The insets
on Fig. 5 show a zoom of the measurement at both hotspots.
It can be seen that for the system without linearization there
is the previously mentioned approx. 2-MHz error in the mea-
sured BFS at the first hotspot for increasing code length, which
is due to the spectral biasing depicted in Fig. 4 (a). This measure-
ment error increases strongly after 54 km, however, this error is
successfully corrected altogether by deploying the linearization
method. For the second hotspot just the BFS linearized result is
shown because without linearization the Brillouin spectrum at
that location was completely distorted.

Figure 5 includes an additional measurement of the sensing
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Fig. 4. Brillouin spectra measured at the hotspot near the start
of the fiber (a) without and (b) with linearization of the sensor
response for code lengths of Lc = 1 (no coding) (black) and
Lc = 251 (red).

fiber swapping the two fiber ends. This measurement highlights
that from around 80 km of sensing fiber there is a deviation of the
BFS from its true value with oscillation and biasing introduced.
However, this error was neither due to nonlocal effects, nor to
nonlinear effects such as self-phase modulation or modulation
instability affecting the pulses. This was confirmed by repeat-
ing the measurements after reducing either the pump or the
probe wave power and simultaneously increasing the number
of averages to maintain the SNR of the detected signal. Identical
BFS distributions were obtained in all cases independently of the
pump and probe power. We finally attributed the small observed
variation of BFS to residual errors in the amplitude weighting
of the pump pulses sequences introduced in the decoding pro-
cess to account for the variation of their relative power at the
output of the EDFA. We found that the decoded measurements
and the obtained BFS distribution were very sensitive to small
variations in those weights, leading to the sort oscillations that
we were observing. Nevertheless, the objective of this work was
to introduce a proof-of-concept experiment demonstrating the
linearization method. The full potential of the coding lineariza-
tion technique in terms of measurement range will be explored
with further work, probably deploying an additional method to
obtain flat amplitude pulses at the output of the EDFA [2, 7].

Finally, Fig. 6 depicts the uncertainty of BFS measurements
along the fiber calculated as the standard deviation of 8 con-
secutive measurements. A remarkable performance is obtained
assuming an 80-km sensing link (within a total 200-km fiber
loop) with a measurement precision better than 2 MHz for 16000
trace averages and 2-m spatial resolution, obtaining a figure-of-
merit of 4400, while if linearization method is not applied the
figure of merit is 84.

In summary, we have introduced a very simple method to
extend the applicability of pulse coding in BOTDA sensors by
compensating the effects of the nonlinear amplification of the
probe wave by a sequence of pulses. Notice that during the
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Fig. 5. BFS measured along the fiber for Lc = 251 with cod-
ing linearization (blue and black) and without linearization
(green): blue and black traces correspond to measurements
swapping the two fiber ends. Insets: BFS measured at the two
hotspots for: Lc = 1 (no coding) (black), Lc = 251 without
linearization (green) and Lc = 251 with linearization (blue).
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Fig. 6. BFS measurement precision along the fiber (standard
deviation of 8 consecutive measurements).

submission and revision process of this work, a similar coding
linearization method has been published [8]. The contribution of
our work, apart from the independently-developed demonstra-
tion of the technique, is its application to a much longer 200-km
link. Furthermore, this new work combines linearization with
the probe dithering technique to get rid of the nonlocal effects
that are exacerbated by coding.
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