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Frozen modes arising in stacked subwavelength hole arrays are studied in detail. Their origin is proved to
be connected with the interaction between the extraordinary transmission resonance and the Fabry—Perot cavity
mode. The analysis is done for various situations that differ in metal plate thicknesses and sizes and shape of the
holes. Dispersion results and finite-stack transmission spectra are in good agreement, both showing the features
indicating hybridization. The boundaries of the hybridization are found in terms of the geometrical parameters.
The effect of the number of stacked plates on the transmission has been demonstrated. Finally, it is shown that
the group index of refraction n, in the considered finite structures can be larger than 200. The obtained estimates
of n,, which are based on dispersion and transmission results, well coincide with each other.
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I. INTRODUCTION

Periodic structures have historically played a prominent role
in electromagnetism, mainly to offer control of the electromag-
netic radiation. In general, their properties arise from the par-
ticular arrangement and geometry of the constituent particles,
i.e. unit cell, rather than from their specific nature or chemical
composition. Hence, they have been successfully employed for
synthesizing artificial media, usually with features not directly
available or difficult to find in natural materials. Following this
concept, artificial dielectrics, i.e. metallodielectric structures
engineered to obtain an effective electric response, were the
subject of intensive investigation decades ago.! Also, the
roots of artificial magnetism can be found in the book of
Schelkunoff.? In the late 1980s, photonic bandgap structures
were proposed to control radiation and propagation of light.**
More recently, artificial magnetism has been exploited® and
has given rise to the topic of metamaterials.’ At difference
with artificial dielectrics, metamaterials offer the possibility
to control at will not only the electric response but also
the magnetic response, widening the applicability of artificial
materials substantially.

Periodicity is also essential in the topic of plasmonics,
a discipline devoted to the control of light using surface
waves at metal-air/dielectric interfaces. In fact, extraordinary
transmission (ET) structures, which were central for the
development of this topic, rely fundamentally on periodicity.®°
A tight link between metamaterials and ET was found in the
past by using a periodic stack of ET hole arrays.'!! Again,
periodicity was crucial for the performance. If the stack period
was short in terms of operation wavelength, a backward-wave
appeared inside the structure, also called left-handed (LH)
propagation. In turn, if the period was relatively large, the
wave inside the structure was of the forward type, also
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called right-handed (RH) propagation. In between, the mode
inside was ideally neither backward nor forward, and rather a
“frozen-mode” appeared!! (although, in a realistic case, this
mode has a small but nonzero slope and, strictly speaking, is
either forward or backward despite being very slow).

The band structure of stacked hole arrays depends mainly
on two factors:'"!? stack period (d,) and in-lattice period
(d), which govern, respectively, the fundamental Fabry—Perot
(FP) mode of the cavity enclosed by consecutive hole arrays,
and the onset of the (0,—1) diffraction mode (following the
notation of Ref. 13) or Rayleigh-Wood’s anomaly'* that
gives rise to the ET resonance. The third factor that can
produce a band is an aperture resonance, which happens
at the cutoff frequency of the fundamental mode supported
by the hole.'? This last case has received a lot of attention in
the context of ET, and theoretical models have been proposed
to explain the enhancement of transmission near the aperture
resonance.'® Even more, related with the content of this paper,
slow-group velocity modes associated with this resonance
have been detected,'® and the interaction between FP modes
and aperture resonances (dubbed localized surface plasmon
resonances) has been analyzed.!” It is worth mentioning that
a resonant slot was easily explained by Booker in his seminal
paper of 1946'8 by observing that a rectangular aperture on
a metallic screen is the complement of a half-wave dipole,
in terms of Babinet’s principle, and since then has been
commonplace for microwaves and antenna engineers. In fact,
the well-known, pervasive, and cost-effective slot antennas
operate following this rationale. Moreover, it is arguable to
label this resonance as ET, since the aperture is not strictly
subwavelength (by definition, it is operating very near cutoff).
For these reasons, we will leave aside the aperture resonance
regime and concentrate only on ET and FP resonances. In
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Ref. 11, RH, LH, and frozen-mode propagation were described
and experimentally demonstrated in stacked subwavelength
hole arrays. Right-handed propagation for large periods was
explained as a FP type passband. In Ref. 12, a modal analysis
led to similar conclusions. In Refs. 19 and 20, FP modes inside
a stacked mesh-grid structure with a rather weak metallization
were studied in depth. Several papers can be found in the
literature analyzing LH propagation. In Refs. 10 and 11, it was
explained in terms of an inverse transmission line model. The
modal analysis performed in Ref. 12 also led to a similar
inverse transmission line model. A pure equivalent circuit
explanation for a stack of only two plates—usually called as
fishnet structure—can be found in Ref. 21.

Frozen-modes or slow-light regimes have been intensively
investigated since the seminal experiment by Hau et al.
demonstrating electromagnetically induced transparency
(EIT) and light velocity reduction up to 17 m/s.?? Slow
light has a strong technological significance, allowing
applications such as all-optical processing and optical storage,
see Refs. 23-26 and references therein. Metamaterials have
already been employed in slow-light regimes proposing
fascinating applications such as a trapped rainbow.?* Photonic
crystals are also typically used for slow-wave applications,?*?’
as well as magnetic photonic crystals.?®?

In this paper, we study numerically details of appearance
and main features of frozen modes in stacked ET hole arrays
with the emphasis put on clarifying their nature. This regime
has been studied experimentally in the past!' in stacked hole
arrays where it has been proposed for absorbers.>* However,
a thorough analysis to unveil the ultimate mechanism of the
slow-light regime was not given yet. First, a dispersion based
study is carried out in order to observe the evolution of
the bands as a function of the stack period for several hole
sizes and shapes and metal thicknesses. It will be shown that
the origin of the frozen mode is related to the interaction
between ET and FP resonance and can be controlled by
variations in hole size, stack period, and metal thickness.
This will be confirmed by a finite stack analysis, where the
fields of the different transmission peaks will be examined. In
particular, multiple total-transmission peaks can be obtained
in the lossless case for various numbers of stacked plates,
whose spectral positions are in good coincidence with the
predictions that are based on the dispersion results. The
metallic plates are assumed to be perfect electrical conductors,
so that the obtained results are scalable, provided that the
losses remain relatively low. The results presented in this paper
are obtained using CST Microwave Studio.?! Throughout this
paper, normalization with respect to the hole period d is used
for all the magnitudes except for the propagation constant
along z which is normalized with respect to the stack period
B = B'd,. Therefore, a normalized frequency will be used,
f = f'd/c, where f’ is the physical frequency, and c is the
speed of light in vacuum.

II. DISPERSION ANALYSIS OF INFINITE STRUCTURES

A. Small holes and infinitesimally thin plates

The first structure analyzed is a square metallic hole array
with periodicity d and infinitesimal thickness perforated with
square holes of side a = d/6, see schematic in Fig. 1(a).
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The dispersion diagrams for the two lowest passbands of the
structure—assumed infinite along all three axes—and several
stack periods ranging from d, = 0.38d to 0.6d were obtained
using the eigenmode solver of CST Microwave Studio. In
order to achieve accurate results and discretize accurately the
sample, a denser local mesh has been applied to the aperture.
The minimum edge length in the simulation is 16 x 1073 d,
whereas the maximum edge length is 16 x 1072 d. The
propagation direction was assumed here to coincide with the
stacking direction z, and a vertical polarization was used E,.

As mentioned in the introduction, the band structure
depends mainly on two factors: the stack period (d,) and in-
lattice period (d), which govern the FP and the ET resonance,
respectively. These resonances happen when

f = fre~d/2d, (la)
f=fer~L (1b)

The third factor that can produce a band is a slot resonance.
However, due to the small hole size, this resonance will be
out of the frequency span considered ( feyofr = 3) and will be
neglected in the subsequent analysis.

Figure 1 presents dispersion results as well as the electric
field distribution when the first two bands do not interact.
Looking at the dispersion results of Figs. 1(d) and 1(e), it
is found that, in general, the FP band extends from the FP
resonance condition (represented as dashed grey lines in the
figure) downwards. If the stack period is small enough so that
the FP band lowest edge is above f = 1, then there is no band
interaction and the first and second bands correspond entirely
to ET or FP resonances, governed by d and d, respectively, see
Fig. 1(d). Similarly, when the stack period is so large that the
FP cavity resonance falls entirely below the lowest ET band
edge, separation between the bands occur again, so the first
band corresponds entirely to the FP resonance and the second
band does to the ET resonance, see Fig. 1(e).

From the comparison of these two cases, it can be concluded
that, if geometrical parameters are chosen so that ET and
FP resonances are sufficiently far away, the nature of each
band does not depend on variation of the stack periodicity
but only on the type of resonance. In short, the ET band is
totally determined by the hole array periodicity d (upper limit
around fgr), is always LH, and its bandwidth is larger for small
stack periods.'®'? On the other hand, the FP band is totally
determined by the stack period d, (upper limit around fgp), is
always RH, and has a narrow bandwidth as well. Attending to
the modal field pattern, within the ET band, the electric field
is contained mainly along the longitudinal direction, so that
E. dominates over E| [Fig. 1(b)] contrarily to what happens
at the FP resonance where E, is noticeably stronger than
E, [Fig. 1(c)]. We will use these features in the subsequent
discussion to identify the ET or FP nature of the resonances.
Also, note that these plots have been obtained for a phase
difference between input and output (periodic) ports Bd, = 0°.

Things are completely different when frp & fgr. This
condition implies that d, ~ d/2. In turn, it corresponds
to the case when a frozen mode appears.!! To analyze in
detail this case, the dispersion diagram has been obtained for
stack periods near this condition. The results are presented
in Fig. 2(a). At d, ~ 0.492d, the resonances are still fully
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FIG. 1. (Color online) (a) Schematic of the unit cell of a square hole array of infinitesimal thickness and square aperture, along with the
relevant dimensions. Cross-sectional view of the electric field at (b) ET resonance and (c) FP resonance. Calculated dispersion diagram of a
hole array with a = d/6 and infinitesimal thickness when the first two bands and decoupled so that the FP band is either entirely (d) above
the ET band or (e) below the ET band. Grey dashed lines correspond to the analytical fundamental FP resonance frequency calculated with

Eq. (1a).

separated, and the behavior of the dispersion curves is similar
to that in Fig. 1(d). However, a slight increment of the stack
period d, = 0.496d makes the FP band tail meet the ET
band top edge, setting off band interaction. From this point
on, it is no longer possible to establish an unambiguous
correspondence between the bands and types of resonances,
i.e. ET or FP. So, this notation will be left aside, and we will
refer subsequently to each band simply as first (low frequency)
or second (high frequency) bands.

Looking closely at the cases d./d € [0.496, 0.498], we
can establish a qualitative analysis. First, it is observed that
the second band top edge is always near fgp, suggesting a FP
resonance, as usual. As for the second band bottom edge, it
would normally fall below f = 1, following the tendency
of smaller stack periods. However, the Rayleigh—Wood’s
anomaly imposes a strict bandstop condition precisely at
f = 1. This singularity is governed by in-lattice period d
and cannot be overridden by the cavity mode, resulting in a
band edge exactly at fgr = 1. This suggests that this point
has an ET resonance nature. However, below the extreme
singularity of the Rayleigh—Wood’s anomaly, the FP resonance
still has some energy stored and pushes the first band top edge

downwards. More technically, this can be interpreted as a direct
consequence of Foster’s theorem, which forces alternating
poles and zeros in the frequency response of passive structures
such as frequency selective surfaces.>? In physical terms, this
behavior is usually called band hybridization®* that results
from the interaction of two different resonances. Since the shift
of the first band top edge is an outcome caused by d_, it can be
attributed to a cavity effect, i.e. a FP resonance. The first band
bottom edge remains at the same location as in all previous
cases, so it should correspond to an ET resonance. From this
picture, it is then clear that, in this stack period interval,
the resonance nature at the band edges flips in both bands
from ET to FP and vice versa. Consequently, out of the band
edges, the modes must be strongly hybridized so that the fields
show the features typical for both ET and FP resonances. This
hypothesis is demonstrated subsequently while discussing the
case d,/d = 0.5, which is highly remarkable since the bands
become almost perfectly flat. As for the handedness, it is
noticed that, despite the hybridization, the first band remains
LH and the second band RH in this interval.

At the critical distance of d, /d = 0.5, both the FP condition
and the Rayleigh—Wood’s anomaly exactly correspond to
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FIG. 2. (Color online) (a) Band diagram of the hole array of Fig. 1(a) around the frozen-mode condition d, =~ d/2: as explained in the text,
due to band interaction, it is no longer possible to establish an explicit correlation between bands and resonances (ET or FP), so bands are
labeled as first band (blue) and second band (red). Complete sequence of the electric field pattern evolution at d, = d/2 as Bd, varies from
0° to 180° with a step of 20°: (b) first mode and (c) second mode (E, above and E, below in each panel). Grey dashed lines correspond to the

analytical fundamental FP resonance frequency calculated with Eq. (1a).

the same frequency f = 1. In this situation, there are two
resonances, which are indeed very different in nature (ET
governed by d and FP governed by d,), competing to share
exactly the same spectral location. This provokes such a
strong modal interaction that both bands become nearly flat
(the first band has a tiny positive slope, so it is “flatter”
at a slightly smaller distance) and, moreover, emerge very
near in frequency, one at f = 0.99 and another at f = 1.
At this point, band hybridization is taken to the extreme.
Looking at the electric field in each band, it is observed
that the field distribution changes gradually as the phase is
varied, see Figs. 2(b) and 2(c) where a complete sequence of
the electric field pattern evolution is shown for both bands,
varying the phase from 0 to 180° with a phase step of 20°. In
particular, the first band switches from FP at fd, = 0° to ET at
Bd, = 180° even though the frequency remains almost
unchanged. The percentage bandwidth is here just 0.19%. The
second band does exactly the opposite switching from ET to
FP, within a negligible percentage bandwidth of just 5.7 x
107%. Putting it in a slightly different way, the frequency
remains almost constant as the phase is varied, but the field
distribution is completely different (and is swapped in bands)
at the band edges. In the middle, the modes are neither ET nor
FP, but rather a hybrid between these resonances.

This behavior is maintained as long as band interaction is
present. It is interesting to observe that, for stack periods d,/d
€ [0.502, 0.504], the first band becomes RH and the second
band LH, but it has been observed that the modal swapping
between edges is exactly as before (not shown here). Finally,
when d, /d = 0.504, both bands begin to detach from each other
until they are again completely separated at d,/d = 0.508. At
this point, the first band is totally due to the FP resonance, and

the second is caused by a conventional ET resonance, without
any band hybridization. A summary of the behavior of both
bands at the edges is presented in Table 1.

So, the physical mechanism underlying the frozen-mode
regime is clearly the interaction between ET and FP resonance.
When both compete to share the same spectral location,
hybridization occurs, and then two narrow frozen-mode bands
appear. Interestingly, none of them can be unambiguously
related either to ET or to FP resonances. Rather, the field
pattern demonstrates that each band behaves purely either as
ET or FP at the extremes Sd, = 0° and Bd, = 180° and are
strongly hybridized in the middle.

B. Medium-sized holes and infinitesimally thin plates

Increasing the hole size to a = d/3 (now feyor = 1.5 so
we are still within the ET limits, fgr < feuofr), widens the ET
bandwidth, see Fig. 3(a), a feature that was already observed
in Refs. 9 and 12. The FP bandwidth is also increased since
now the metal in the plates is reduced, and their reflectivity
must diminish accordingly. So, the cavity resonance condition
is less strict, and the FP resonance is less sharp than for small

TABLE I. Dominant resonance at the band edges as a function of
the stack period. Hole arrays of infinitesimal thickness and a = d /6.

Normalized stack First band Second band

period Bd, = 0° Bd. = 180° Bd, = 0° Bd, = 180°
d./d < 0.496 ET ET FP FP
0.496 < d,/d < 0.504  FP ET ET FP
d,/d > 0.504 FP FP ET ET
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FIG. 3. (Color online) Calculated dispersion for a hole array with
a = d/3 and d, varied from 0.38d to 0.54d. For the sake of clarity,
the figure is divided in two panels (a) and (b). Grey dashed lines
correspond to the analytical fundamental FP resonance frequency
calculated with Eq. (1a).

holes, i.e. the quality factor is reduced, and the bandwidth is
enlarged. This implies that the FP band bottom tail encounters
the ET band top edge for a stack period as small as d, /d = 0.4,
pushing the ET band downwards. This is the limit where
band interaction and hybridization start. A summary of the
bands’ edges’ performance obtained from the observed field
distribution at each point is shown in Table II for different
values of the stack period.

An important consequence of the increment of the hole size
is that, now, the first and second bands become flat at different
stack periods: at d,/d = 0.44 and d,/d = 0.5, respectively,
compare Figs. 3(a) and 3(b). This means that it is possible to
excite two different frozen modes at different frequencies for
two different stack periods.

C. Stacks of finite-thickness arrays with circular holes

In practice, hole arrays have nonnegligible thickness. Also,
for fabrication purposes, it is sometimes easier to drill circular
holes, rather than square ones. Thus, here, we concentrate on
realistic hole arrays similar to those employed in Refs. 9-11
with finite thickness ¢ = 0.1d and circular apertures of diameter
a =0.5d, see schematic in Fig. 4(a). Now, the cutoff frequency
is fcutoff =12

Strictly speaking, now, the cavity length is d, — ¢, so the
FP resonance should happen at frp &~ 0.5d/(d, — t). However,
since the field penetrates through the apertures, the effective
cavity length is somewhat larger. A good fitting is obtained
when the cavity length is approximated as d, — 0.081d, putting

TABLE II. Dominant resonance at the band edges as a function
of the stack period. Hole arrays of infinitesimal thickness and
a=d/3.
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FIG. 4. (Color online) (a) Schematic of unit cell of the stacked
hole arrays with finite thickness and circular holes along with relevant
dimensions. (b) Dispersion for such structures for d, from 0.36d
to 0.684d in step of 0.04d, with a finer step near the frozen-mode
condition d, = 0.48d, 0.49d, and 0.50d, highlighted with a black
ellipse in the curve. Grey dashed lines correspond to the analytical
fundamental FP resonance frequency calculated with Eq. (1a) and the
cavity length conveniently modified, as explained in the text. Black
ellipses delimit the region where the first band becomes almost flat.

the FP resonance at fpp & 0.5d/(d, —0.081d). Looking
at the dispersion results of Fig. 4(b), it is observed that,
for small stack periods d,/d € [0.36, 0.44], the top edge
of the second band is noticeably below the FP resonance
condition. What happens here is that, following the notation
of Ref. 34, near the onset of the (1, —1) diffraction mode
at the normalized frequency f = /2, there is another band
(not shown) which interacts with the second one and pushes it
downwards. However, study of this effect is beyond the scope
of this paper. Concentrating on the first and second bands, it
is seen that interaction starts at d, = 0.44d. At d, = 0.48d,
the FP cavity condition effectively determines the top edge
of the second band, and moreover, interaction between first
and second band is more accentuated. In the interval d,/d €
[0.48, 0.50], the first band becomes nearly flat. The frequency
excursion at d, = 0.49d is less than 0.07%. As in the previous
case, the second band is nearly flat at a different periodicity
d, = 0.58d, with a frequency variation of 1.5%. Interaction
lasts until a sufficiently large period is reached d, = 0.64d.
Finally, a summary of the bands’ edges’ performance obtained
from the observed field distribution at each point is shown in
Table III for different values of the stack period.

TABLE III. Dominant resonance at the band edges as a function
of the stack period. Hole arrays of t = 0.1d and circular apertures of
diameter a = d /2.

Normalized stack First band Second band

Normalized stack First band Second band

period Bd, =0° Bd.=180° Bd,=0° pd, =180°  period Bd, =0° Bd.=180° Bd, =0° Bd, = 180°
d.)d <04 ET ET FP FP d,/d < 0.44 ET ET FP (£1,-1)
04<d,/d<052 FP ET ET FP 044 <d,/d <0.64  FP ET ET FP
d./d > 0.52 FP FP ET ET d./d > 0.64 FP FP ET ET
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FIG. 5. (Color online) Transmittance of realistic hole arrays with finite thickness + = 0.1d and circular apertures of diameter a = 0.5d at
the frozen-mode operation d, = 0.5d for N = 2 (blue), 3 (red), and 4 (green) plates. (Insets) Electric field at the peaks observed in the spectra.

III. FINITE STACKS: TRANSMISSION SPECTRA AND
MODAL DISTRIBUTIONS

Next, the transmission spectra of structures with a finite
number of stacked plates were analyzed. The study was
particularized to the structure discussed in Sec. I C, which
is the most interesting from a practical point of view. Normal
incidence # = 0° and the critical distance d, = 0.5d were
considered, while the number of stacked plates N was varied.
In Fig. 5, the spectra corresponding to N 2 (blue),
3 (red), and 4 (green) are shown along with the field distribution
at notable points.

The first peak for N = 2 (P1) appears at f = 0.95 and has
a transmittance of 0.7. Two snapshots at different time slots
are shown in the inset. As seen, the field oscillates and twists
inside the structure with the result that y component (leftmost
inset of top plot) dominates at one time slot, whereas the z
component (central inset of top plot) dominates at the other.
Also, the magnitude of both components E and E; is similar
so it has traces of both FP and ET resonances. This peak
shifts towards higher frequencies and decays abruptly as N is
increased (P4, P8). This is a clear fingerprint of the interaction
between FP and ET resonances: when they are well separated
from each other, the ET band appears at this frequency range,
as shown in the dispersion diagram of Fig. 4(b) and in the
transmittance plots of Fig. 5. However, when band interaction
occurs, a bandgap appears around f = 0.95. So, the mode in
this case is evanescent, power decays exponentially through
the structure, and transmittance is noticeable only for a small
number of stacked plates.

A new total-transmission peak (P3) appears around f =
0.925 when taking N = 3 instead of N = 2. This peak
corresponds to the frozen-mode shown in the dispersion results
of Fig. 4(b) and discussed deeply in Ref. 11. It is remarkable
that this band only appears for stacks of more than two plates,
in good agreement with the experimental results of Ref. 11. As
explained in Ref. 11, the frozen-mode has a dynamic nature
in the sense that it only appears for periodic structures, and
obviously, the minimum structure to be considered periodic

is a three-plates stack. Here, we have found that the frozen
mode arises due to the interaction of FP and ET resonances.
Moreover, the electric field plot shows that the field is confined
around the central plate, and its distribution is very similar to
that at P4 and P8, see the left panel in the middle plot. However,
in contrast to P4 and P8, it is localized for P3 around the central
plate, a situation that is not possible for only two stacked
plates. This clearly confirms that FP and ET resonances are
fully interacting: the resonance is confined inside the stack,
and moreover, the resonance frequency happens exactly at
the otherwise tail of the ET band. At N = 4, two peaks
appear (P6 and P7), whose field pattern presents even and odd
symmetry with respect to the central x-y plane, respectively.
Also, between the second and the third plates, E, dominates
over E, at P6, implying a mostly FP-like mode, whereas the
contrary is true for P7, implying a mostly ET-like mode. This
is in perfect agreement with our analysis in terms of dispersion
diagrams, see Sec. II and especially Table III. Also, all these
peaks can be identified as internal modes.>*

The total-transmission peak around f = 1 (P2, PS5, and
P9) is located near the lower edge of the second band.
This corresponds to the well-known external mode or long-
range spoof plasmon,’'3343¢ which always appears near
the Rayleigh—-Wood’s anomaly, and has an obvious ET
nature, as predicted by our previous analysis; as shown
in Fig. 5, E; dominates clearly over E,, and the field
pattern presents odd symmetry with respect to the central x-y
plane.

Figure 6 gives a wider view of the transmittance under
normal incidence when the number of the stacked plates N
and stack period d; are varied from two to four and from 0.36d
to 0.7d, respectively. The structure thickness in each case is
D =t +d,(N — 1). In Fig. 6, the horizontal axis represents
the normalized frequency, the vertical axis represents the
normalized stack period, and the color scale the transmittance
in dB. The figure is plotted for the region of interest where the
frozen mode arises, i.e. around d, = 0.5d and f = 1. The insets
show a wider view. Superimposed in the insets (cyan line) is
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FIG. 6. (Color online) Contour maps of the transmittance in dB scale for realistic hole arrays with finite-thickness plates t = 0.1d and
circular apertures of diameter @ = 0.5d as a function of frequency and stack period at N = 2 (left), 3 (middle), and 4 (right). Insets: wider view
with the full calculation spectra and a wider range of d,. Superimposed in the insets (cyan line) is the calculated FP resonance frequency.

the FP resonance frequency calculated as frp ~ 0.5d/(d, —
0.081d).

From Fig. 6, it is obvious that the minimum of transmission
is introduced by the Rayleigh—Wood’s anomaly at f = 1 for
all stack periods and number of plates. Also, the transmittance
is always larger when the band is located below f = 1,
regardless of the nature of the band. This can be explained
invoking equivalent circuit arguments: the admittance of the
first high-order mode responsible for ET (TMyy, in the artificial
waveguide of mutually orthogonal electric and magnetic walls)
is purely imaginary below Wood’s anomaly, whereas it is
purely real above Wood’s anomaly, leading to an inevitable
impedance mismatch. This will be analyzed in detail in a
subsequent paper. For small stack periods d,/d < 0.45, ET
and FP bands are clearly separated in the spectra, being the
first noticeably more intense. Around the conditiond, /d = 0.5,
ET and FP bands merge. Again, no trace of a frozen mode is
detected for two plates, whereas for three and four plates a very
narrow peak in the vicinity of f = 0.93 and another around
f = 1 appear. The frozen mode becomes better pronounced
as the number of plates increases. Due to the band interaction,
there arises a region of very low transmission approximately
between 0.5 < d,/d < 0.55 and 0.93 < f < 0.99, which is
highlighted in Fig. 6 by dashed blue line ellipses. Again, the
higher number of plates, the more emphasized this mechanism
is. Finally, for larger periods, the FP band is located below the
ET band. Note that in this case the number of peaks in the
FP band is always N — 1, in good agreement with a FP
cavity mode nature. Note that this behavior is also in very
good agreement with the dispersion diagram of Fig. 4(b).

IV. GROUP INDEX: FINITE STACK AND DISPERSION
DIAGRAM

The appearance of slow electromagnetic waves in trans-
mission is a fingerprint of frozen modes. To characterize
transmission in the infinite stacked hole-array structure, the
standard formula for the group velocity (v,)

v, =dow/dB 2

can be used. The corresponding values of the group refractive
index can be found as follows:?’

ng =c/vg =n, +wdn,/dw, 3)

where 1, is the phase refractive index defined as n, = w/B.

Figure 7 presents the frequency dependence of n, at
d, = 0.5d, which is inferred from the dispersion results, i.e.
by using Eq. (3). Also, the group index is estimated from the
transmission results obtained for N varied from 2 to 10. The
latter has been obtained by using the standard procedure based
on the formula:?®

ng=c/2D(f2 = f1), “

where D is the total thickness, fi and f, are the frequencies
of two adjacent peaks. The obtained value of n, is usually
assigned to the mid frequency. In the inset of Fig. 7, the
transmission spectra are shown for the frozen-mode band.
Most of them represent a sequence of transmission peaks
whose number depends on N. One can see that it is always
equal to N — 2, as follows from our discussion in Sec. III.
For this reason, the group index in the finite stack structure
is calculated only for four plates onwards. It is worth noting
that the peaks at the right edge of the band are also expected

¢4 M5 A6 X7 X8 @9 +10

50
0.922 0.923 0.924 0.925 0.926 0.927 0.928 0.929

Frequency (in units of c/d)

FIG. 7. (Color online) Group index of refraction obtained from
transmission results (symbols) and from the dispersion diagram (solid
line) at various N. Inset: transmission spectra for N varied from
2to 10.
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to correspond to the total transmission, as might be obtained
from more accurate simulations.

The coincidence of the results obtained by both methods
is quite good. A minimum value of n, = 87.62 is obtained,
according to the dispersion results, somewhere in the center
of the first half of the frozen-mode passband. Both dispersion
and transmission-based estimates show that n, > 200 can be
obtained in the finite structures at N > 7. Clearly, the larger
N, the larger n, can be obtained at the peak being nearest
to the band edge. To compare, n, = 14 and n, > 60 have
been reported at optical frequencies for the coupled resonator
structures® and photonic crystal slabs working in the defect-
mode waveguide regime,*® respectively. In addition, n, = 220
for a photonic crystal working in the defect-mode transmission
regime at microwave frequencies has been demonstrated.’®
Ultrahigh values of ng, e.g. n, =2 x 10° are known to be
obtainable in the EIT slow-light optical buffers.?> As a final
word on this subject, it is worth mentioning that we have
particularized the analysis to the case d, = 0.5d, since this is
the one that we had characterized in Ref. 11. We have found
numerically a maximum value of n, = 1442 for d, = 0.49d.
However, the strong dispersion of the structure as well as the
difficulty to experimentally ensure that all plates are placed at
exactly the same distance prevents us from putting the focus
on this ideal high value. Our main goal here was to elucidate
the origin of the frozen mode in stacked hole arrays, rather
than claiming an astonishingly low value of group velocity.

V. CONCLUSIONS

In this paper, a comprehensive analysis of the nature of
frozen-mode regimes in stacked ET hole arrays has been
presented. By performing a dispersion study, it has been
demonstrated that frozen modes appear due to the interaction
between FP and ET resonances. When both are sufficiently
far apart, interaction disappears, and then FP band is entirely
related to the stack period and ET band to the in-lattice
period. However, near the frozen-mode condition, the ET and
FP type modes can be strongly hybridized, sharing features
of each other within a single band. Moreover, at the band
edges, the modal distribution is swapped from ET to FP and
vice versa. For the studied hole array geometries, it has been
observed that, as the aperture size increases, band interaction

PHYSICAL REVIEW B 87, 205128 (2013)

starts for smaller stack periods, permitting the existence of
two different frozen bands at different stack periodicities.
Besides, modal properties have been analyzed for stacks of
realistic hole arrays, showing nonnegligible thickness, so that
the difference compared to the infinitesimal thickness case is
in the field penetration through the holes that tunes the FP
cavity condition.

Transmission analysis has also been done for the finite
stacks of hole arrays that are composed of the plates with
certain thickness. A very good agreement with the dispersion
results for the corresponding infinite stack has been obtained
by comparing the band location in the dispersion diagram
with the peak appearance in the transmittance of finite
stacks. Also, the field distribution at each peak appearing
in the spectra has been analyzed, demonstrating unequivocally
the strong hybridization at the frozen-mode regime. Finally,
the behavior of the group index of refraction has been studied,
based on both dispersion and transmission results, with an
overall good agreement. A group index around 90 at the
central frequency and more than 200 at the band edges has
been found for the finite stacks. It must be pointed out that all
the analysis is done for lossless structures. In the presence of
losses, the quality factor of the frozen-mode band is expected
to diminish, or equivalently, the band must widen. With this
qualitative interpretation, it is clear then that the slope of
the frozen-mode band would deviate from zero, giving as a
result a reduction in the group index magnitude. These results
could be interesting for applications such as field concentrators
used to enhance field interaction with matter, sensors, filters,
absorbers, frequency selective surfaces, spatial filters, etc.
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