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Abstract: Artificial magnetism enables various transformative optical
phenomena, including negative refraction, Fano resonances, and unconven-
tional nanoantennas, beamshapers, polarization transformers and perfect
absorbers, and enriches the collection of electromagnetic field control mech-
anisms at optical frequencies. We demonstrate that it is possible to excite a
magnetic dipole super-resonance at optical frequencies by coating a silicon
nanoparticle with a shell impregnated with active material. The resulting
response is several orders of magnitude stronger than that generated by bare
silicon nanoparticles and is comparable to electric dipole super-resonances
excited in spaser-based nanolasers. Furthermore, this configuration enables
an exceptional control over the optical forces exerted on the nanoparticle. It
expedites huge pushing or pulling actions, as well as a total suppression of
the force in both far-field and near-field scenarios. These effects empower
advanced paradigms in electromagnetic manipulation and microscopy.
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1. Introduction

Because of the inherent weakness of the magnetic response of matter at optical frequen-
cies [1, 2], there has been a great deal of excitement in the recent development of artificial
magnetic properties based on metamaterial-inspired concepts [3–6]. This ability to tailor mag-
netic, as well as electric optical responses has facilitated the pursuit of negative refraction [3],
cloaking [7, 8] and perfect lensing [9]. It has also stimulated the current investigations of
Kerker-inspired Huygen’s sources [10] at optical and infrared frequencies, aimed at the ad-
vancement of highly directive and efficient nanoantennas [11, 12] and the control of thermal
emissions [13]. Magnetic-based Fano resonances have also attracted great interest; they feature
huge field enhancements and sharp spectral features with consequent applications in the field
of sensing [14, 15]. Moreover, a strong magnetic response is essential to the ultimate design
of thin (one-particle thickness) beam-shapers [16], polarization transformers [17] and perfect
electromagnetic absorbers [18].

As predicted theoretically [19], the relatively high refractive index of silicon (Si) n ∼ 3.5
(see, e.g., [20]) enables the isotropic and low-loss excitation of magnetic dipole modes at op-
tical frequencies. The existence of these magnetic resonances has been experimentally verified
recently [11, 14, 21, 22]. In this article, we demonstrate that it is possible to boost the mag-
netic dipole resonance response of a Si nanosphere by several orders of magnitude by coating
it with a shell impregnated with an active material. Moreover, although the nanoparticle re-
tains a dominant magnetic dipolar response, this enhancement is comparable to those achieved
with spaser-based nano-lasers [23–26]. Thus, this configuration attains unprecedented levels of
magnetic activity at optical frequencies.

Furthermore, it is shown how that the active shell enables an exceptional control of the
electromagnetically-induced mechanical forces exerted on the nanoparticle. In this regard, an-
alytical formulations to determine the force on a particle exhibiting both electric and magnetic
polarizabilities have been presented [27, 28], and numerical examples of the forces exerted by
a plane wave on Si and Ge nanospheres have been reported, respectively, in [29] and [30]. Here
we demonstrate that an active shell provides the degrees of freedom necessary to produce huge
accelerating and/or dragging forces, as well as a complete suppression of the forces exerted on
the nanoparticle in both far-field and near-field scenarios, even when it is re-radiating a signifi-
cant amount of power. These force-related results empower us to envisage advanced paradigms
in electromagnetic manipulation, particle sorting and microscopy.

2. Far-field analysis

A sketch of the geometry of interest is depicted in the inset of Fig. 1(a). Specifically, the
nanoparticle consists of a Si nanosphere with radius a1 = 75nm, covered by an active shell
so that its total radius is a2 = 120nm. A number of experimental studies [31–33] have demon-
strated that metamaterial structures coupled to gain media can be modeled in good agreement
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Fig. 1. (a) Scattering efficiency spectrum Qscat, and the contributions to it from the electric
and magnetic dipoles, Qe

scat and Qm
scat, respectively, for the passive case, κ = 0. Inset: Sketch

of the coated Si particle illuminated by a plane-wave, and the resulting dipolar excitations.
(b) Qscat at the magnetic dipole resonance as a function of the imaginary part of the index
of refraction, κ , as well as the mechanical force exerted on the nanoparticle, normalized to
the incident electromagnetic power projected onto its physical area, Fnorm = F/

(
SRπa2

2

)
.

Insets: Top-right: Zero-force region. Bottom-right: Geometry.

with Lorentzian models [34]. Therefore, as in related works that have studied active materials
for nano-laser applications (e.g., [25]), the active shell will be described by a canonical model
whose refractive index nactive = n+ jκ (corresponding to the exp( jωt) time-convention). More-
over, the gain values will be restricted to those attainable with commercially available core-shell
CdSe/ZnS (n∼ 2.5) quantum-dots (QDs) [35] to demonstrate that the proposed phenomena can
be achieved with realistic material parameters. Furthermore, while the dispersion properties of
the gain medium itself are not considered, the coated nano-particle configuration provides a
means to frequency tune its resonance to match (strongly overlap) it to the resonance of a dis-
persive gain medium [36].

Figure 1(a) shows the scattering efficiency Qscat, defined as the total scattering cross section
normalized to its cross sectional area πa2

2 (see, e.g., [37] p. 72), for the passive case, i.e., when
κ = 0. As found for bare, passive Si nanospheres [22], the Qscat behavior of the core-shell
configuration is dominated by the superposition of the responses arising from the electric and
magnetic dipolar resonances. Figure 1(b) depicts Qscat at the magnetic dipolar resonance as a
function of the imaginary part of the shell refractive index, κ . In order to construct Fig. 1(b),
a Qscat spectrum is calculated for each κ value as in Fig. 1(a). Next, its maximum is identified
and included in Fig. 1(b). Therefore, each point in Fig. 1(b) corresponds to a slightly different
wavelength. Nevertheless, all of these wavelengths are located in the immediate neighborhood
of 725 nm. The figure demonstrates that, although Qscat monotonically increases for small κ
values, there is a optimal value: κ ∼ 0.275, for which a super-resonant state of the coated
nanoparticle is excited and Qscat is increased by several orders of magnitude. While this effect
is somewhat analogous to super-resonant states excited in spaser-based nano-lasers [23–26],
a collection of scattering directivity patterns, scattering efficiency spectra and field plots pro-
vided in Fig. 2 for different gain values demonstrates that the magnetic dipolar resonance is
dominant at such a super-resonant state. Therefore, it can be concluded that the active coated
Si nanosphere is able to provide an unprecedented magnetic response at optical frequencies. In
theory, the scattering efficiency at the super-resonance is unbounded for this canonical model.
In practice however, it will be limited by fabrication tolerances and the difficulty of dealing
with an increasingly narrow bandwidth as the core-shell system begins to lase, as well as the
saturation of the gain media and other non-linear effects. The extent of these effects will be
confined to dampening the super-resonance within a small interval of κ values centered on the
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super-resonance, so that the net enhancement at the super-resonance will be limited to a few of
orders of magnitude as a function of the fabrication tolerances and gain medium properties.

To emphasize the field mechanism that leads to this super-resonant state, the third column of
Fig. 2 gives the combined colormap and quiver (arrow) plots of the electric field at the maxi-
mum of the Qscat spectrum. It can be concluded that as the particle is tuned close to the super-
resonance (see Fig. 2(c)), its response is dominated by a strong circulating electric field, similar
to that excited at the magnetic dipole resonance of a high-permittivity sphere [21]. The circu-
lating field is concentrated in the outer part of the Si core and at its interface with the active
shell. In this manner, and in analogy with spaser-based nano-lasers [23–26], the proposed con-
figuration benefits from the concentration of the fields into its nanometer-sized core-shell form,
which provides the feedback mechanism that leads to the super-resonance. This fact also en-
ables the excitation of the super-resonance with realistic κ values. In particular, we note that
commercially available [35] core-shell CdSe/ZnS are characterized by optical extinction coef-
ficients ranging from 0.01 cm−1 to 5.9 cm−1. Following available models for QDs in the strong
confinement regime [38], it can be found that such values correspond to κ values ranging from
0.01 to 3 [36]. Even higher values κ ∼ 4 have been experimentally retrieved for PbS QDs [39].
Therefore, it can be concluded that it is possible to excite a super-resonant state in coated Si
nanospheres with realistic material parameters.

This active configuration also provides new and exciting opportunities in electromagnetic
manipulation and microscopy. To illustrate this fact, Fig. 1(b) gives the mechanical force exerted
on the particle when it is illuminated by a plane-wave of electric field magnitude E0 = 1V/m.
The force exerted on the particle has been computed by using the analytical formalism intro-
duced in [27, 28], later summarized in this article as Eq. (1). Moreover, since the force is inde-
pendent of its position for this plane-wave excitation, the particle is centered at the origin of
the coordinates for the sake of simplicity. It is apparent from Fig. 1(b) that the mechanical force
exerted on the particle is enhanced by several orders of magnitude at its super-resonant state.
More strikingly, it can be positive (pushing) or negative (pulling). As suggested in [40, 41], the
latter dragging forces correspond to those cases in which the kinetic momentum carried by the
incident plane-wave is increased by the stimulated emission being generated by the nanoparti-
cle. Following these studies [40, 41], here we assume a symmetric pumping orthogonal to the
direction of propagation (see Fig. 1(b)), so that any force action in the nanoparticle mediated by
the pumping can be neglected. However, the aforementioned acceleration and/or dragging ef-
fects enhanced by means of stimulated emission entail large scattered fields, possibly resulting
in a large and undesired interaction with the environment. In this perspective, the proposed ap-
proach of a magnetic dipole super-resonance is advantageous, since the reactive scattered fields
excited by the coated Si nanosphere are dominated by the magnetic rather than electric fields,
and thus the coupling with the immediate environment is minimized with respect to electric
resonances. Moreover, it can be concluded from Fig. 1(b) that the force is totally suppressed at
κ � 0.365. This fact allow us to achieve a high visibility nanoparticle: Qscat � 48 at κ � 0.365
(see Fig. 2(d)), with a zero-force effect. This configuration could be exploited to develop recoil-
less optical microscopy techniques. Furthermore, because the electric polarizability itself is not
necessary small and is tunable, zero-force effects can be obtained with a certain degree of free-
dom in the scattering directivity pattern. For example, at the present zero-force configuration
(κ = 0.365), the scattered power is mostly directed against the direction of propagation of the
incident field, with a maximum directivity of Dscat � 2.1 (see Fig. 2(d)).

3. Near-field analysis

Next we show that the design flexibility provided by the coated Si nanoparticle enables con-
figurations in which the force exerted on the particle is suppressed, while maintaining a high
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Fig. 2. First column: Scattering efficiency spectrum Qscat, and the contributions to it from
the electric and magnetic dipoles, Qe

scat and Qm
scat. Second column: Scattering directivity

patterns, Dscat, in the XZ- and YZ-planes. Dscat = 4πr2 ( r̂ ·Sscat
/

Pscat), where Sscat =
1
2 Re

[
Escat × (

Hscat
)∗] represents the time-averaged Poynting vector field associated with

the scattered field, and Pscat =
‚

S Sscat · r̂ dS is the time-averaged total scattered power.
Third column: Colormap and quiver (arrow) plots of the electric field at the maximum
of Qscat . Each row corresponds to a different gain value (a) κ = 0.1, (d) κ = 0.2, (c)
κ = 0.275, and (d) κ = 0.365.

#205759 - $15.00 USD Received 30 Jan 2014; revised 19 Mar 2014; accepted 24 Mar 2014; published 3 Apr 2014
(C) 2014 OSA 7 April 2014 | Vol. 22,  No. 7 | DOI:10.1364/OE.22.008640 | OPTICS EXPRESS  8645



visibility, even when it is placed in the vicinity of an electromagnetic source (e.g., a probe or a
nanoantenna). To this end, note that the time averaged mechanical force exerted on a particle
characterized by electric, αee, and magnetic, αmm, polarizabilities, when it is illuminated with
an arbitrary electromagnetic field (E,H), can be written as [27, 28]

F =
1
2

Re

{
αeeE · (∇)E∗+αmmH · (∇)H∗ − η0k4

0

6πμ0

[
αeeE× (αmmH)∗

]
}

(1)

In order to compute the force from Eq. (1), the electric and magnetic polarizabilities of the
particle can be determined from the Mie theory solution to the scattering problem, as detailed
in Appendix A. Moreover, Eq. (1) illustrates how the force exerted on a nanoparticle is a com-
plex function of the electromagnetic field illuminating the particle and its spatial derivatives.
Consequently, because of the extreme spatial variations of the fields in the vicinity of a source,
obtaining a suppression of the force, not restricted to an specific position, is a cumbersome task.
In fact, previous works reporting zero-force effects that apply to near-field scenarios are based
either on the compensation of the gradient and absortion/scattering force components [42],
or on plasmonic cloaks [43]. However, the former is restricted to very specific spatial points,
while the latter implies a vanishing total scattered power. Moreover, both studies are based on
particles with negligible magnetic response.

Despite this fact, the symmetry between the contributions to the force associated with the
electric and magnetic fields in Eq. (1) suggest that, in theory, it should be possible to suppress
the force by opposing those contributions. To achieve this, not only must there be a proper
balance between the electric and magnetic responses of the particle, but there also must be a
certain degree of symmetry between the electric and magnetic fields illuminating it. In order
to construct this equilibrium configuration, it is important to note that, taking advantage of the
coated Si nanoparticle, it is possible to find designs in which αee = −αmm/η2

0 . This equality
applies to both the real and imaginary parts of the polarizabilities, which can only be achieved
naturally with an active particle that has a substantial magnetic response, e.g., the proposed
active coated Si nanoparticle. Specifically, it has been found that the αee =−αmm/η2

0 condition
is satisfied for the particular geometry considered in this article when the active shell has κ =
0.568 at 708nm.

Moreover, to ensure the symmetry between the electric and magnetic fields illuminating
the particle, we propose a canonical source configuration consisting of two aligned electric
and magnetic Hertzian dipoles, with current moments Iel = Iml/η0, respectively, as depicted
schematically in Fig. 3(a). For the sake of completeness, explicit expressions of the fields and
field-related quantities excited by this source have been included in Appendix A. Due to the
dual nature of this source, the electric and magnetic field intensities are proportional, i.e.,
|E|2 = η2

0 |H|2, which also implies a zero density of the reactive electromagnetic field energy.
Moreover, the dual electric and magnetic dipoles radiate with the same angular, sin2 θ , power
radiation pattern, but with orthogonal polarizations. Furthermore, the densities of the spin an-
gular momentum associated with the electric and magnetic fields are also symmetric. Due to
this symmetry, the main force components in Eq. (2) are suppressed. Specifically, introducing
closed-form expressions of electric and magnetic Hertzian dipole fields (see, e.g., [44]) into
Eq. (1), it is found that the total force exerted on an active and balanced nanoparticle, i.e., when
αee =−αmm/η2

0 , is reduced to two residual components given by

F = 2η2
0 k5

0

∣
∣
∣
∣

Iel
4π (k0r)

∣
∣
∣
∣

2
{

r̂
2k3

0

3η0
|αee|2 sinθ − φ̂ α ′′

ee
ε0

ω

[
2

(k0r)2 +
−3

(k0r)4

]

cosθ

}

sinθ (2)

The derivation of Eq. (2) has been included in Appendix A. Since the main force components
are cancelled out by the symmetry of the configuration, the residual terms arise from interac-
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Fig. 3. (a) Sketch of the geometry: Coated Si particle illuminated by two aligned electric
and magnetic dipoles with balanced magnitudes Iel = Iml/η0 = 10mA ·nm. Scattering di-
rectivity patterns in the XZ and XY-planes when the nanoparticle is located on the Z-axis.
(b) Mechanical force F and (c) scattered power Pscat spectra (normalized to the power ra-
diated by the source in free-space P0) when the nanoparticle is positioned on the −Z-axis
at the distances d = 2a2, d = 4a2 and d = 20a2 from the source location. Colormaps of the
(d) force magnitude and (e) scattered power (in dB scale, normalized, respectively, to 1 pN
and P0) as functions of the particle location on the XZ-plane at λ = 708nm. The grey areas
indicate those locations which are not physically accessible to the nanoparticle.

tion and interference effects between the electric and magnetic dipoles. Specifically, the radial
component arises from the interaction between the electric and magnetic dipole fields excited
by the particle, while the azimuthal component arises from the force term associated with the
density of the spin angular momentum created by the interference between the fields produced
by the source electric and magnetic dipoles.

Interestingly, both residual terms vanish along the z-axis (θ = 0,π). Therefore, a particle
placed along this axis, as schematically depicted on Fig. 3(a), will feel no mechanical force.
This effect is evidenced in Fig. 3(b), which illustrates the force exerted on the nanoparticle for
different separation distances from the source, r = d. It can be concluded from Fig. 3(b) that the
force is always zero at λ = 708nm, no matter what the separation distance from the source is.
We believe that this effect can be effectively exploited in particle sorting. For example, small di-
electric particles (e.g., those arising as impurities in nano-fabrication processes), are essentially
described by an electric polarizability, and therefore are attracted towards the source region due
to gradient forces, which are in fact maximized on the z-axis [42]. Therefore, the acceleration
exerted by the sources on the coated Si particle, even though it has a much larger scattering
cross-section, will be smaller than that of small dielectric particles, allowing to remove those
impurities from diluted mixtures of particles with strong magnetic activity.

Moreover, since both the electric and magnetic polarizabilities are meaningful, the nanopar-
ticle is scattering a significant amount of power; and, hence, it is visible to external observers.
This effect is confirmed by Fig. 3(c), which shows the scattered power spectrum for different
distances of separation from the source. This figure also manifests the fact that the particle is
not only scattering a significant amount of power, but this occurs at a local maximum. In this
configuration and, as illustrated in Fig. 3(a), the electric and magnetic dipoles excited in the
nanoparticle are parallel and directed along the z-axis. Consequently, the scattering directivity
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pattern is characterized by a sin2θ angular variation, no matter what the relative magnitude and
phase are between the electric and magnetic dipoles. We believe that this powerful combina-
tion of mechanical force suppression and high visibility might trigger innovative paradigms in
near-field microscopy.

To further assess these concepts, Figs. 3(d) and 3(e) are, respectively, colormaps of the force
magnitude and scattered power as a function of the particle location (center of the particle) on
the XZ-plane, at λ = 708nm. On the one hand, Fig. 3(d) illustrates how the force is suppressed
along the z-axis, and how it is weighted by an sinθ factor for other locations, as it was predicted
by Eq. (2). On the other hand, Fig. 3(e) confirms that the particle scatters a significant amount
of power when it is placed along the (zero-force) z-axis. In fact, although there is a null on the
source radiation pattern, the reactive fields are maximized along this axis [42]. Consequently,
the scattered power is maximized in this axis when the particle is located in the near-field of
the sources.

To finalize the discussion, one might wonder what the forces would be in this near field
scenario at the magnetic dipole super-resonance (i.e., for κ values closer to the threshold value
0.275). In such a case, the nanoparticle response is dominated by the magnetic dipole resonance,
and the force field will be analogous to the force field produced by a localized source acting on
a resonant electric dipolar nanoparticle, as studied in [42]. In this manner, the force field will
consist of a balance of the gradient, radiation pressure, and curl-spin force components [42],
whose magnitudes will all be enhanced by the magnetic dipole super-resonance.

4. Conclusion

In summary, we have demonstrated that it is possible to boost the magnetic dipole resonances
present in Si nanoparticles by covering them with a shell impregnated with an active material.
This configuration benefits from the concentration of a circulating electric field in the inter-
face between the Si core and the active shell, and thus the magnetic dipole response is several
orders of magnitude larger than those excited in bare silicon nanoparticles, and comparable
to electric dipole super-resonances excited in spaser-based nanolasers. We believe that such
extraordinarily strong magnetic response can be exploited in a wide range of technological ap-
plications. Furthermore, this configuration enables a great control on the optical forces exerted
on the nanoparticle in both far-field and near-field scenarios. Specifically, colossal pushing and
pulling forces are feasible close to the nanoparticle super-resonance. Moreover, it is possible
to suppress the force exerted on the nanoparticle even when it is scattering a large amount of
power. These effects open up advanced paradigms in electromagnetic manipulation and mi-
croscopy. Future efforts might also include the manipulation of the environment surrounding
the active nanoparticle. These could include, among others, displacing and rotating the source
to control its beam/pattern, optical binding of active/passive nanoparticles to a localized source,
and/or compressing the medium in which the nanoparticle is immersed [45].

Appendix A

This appendix provides explicit expressions for the electric and magnetic polarizabilities of a
core-shell nanoparticle. To this end, equating the scattered fields predicted by Mie theory to the
fields radiated by equivalent electric and magnetic dipoles, it is possible to derive the following
relationships between the n = 1 TM and TE scattered field coefficients, and the electric and
magnetic polarizabilities of a dipolar particle [46]:

αee = j
6πε0

k3
0

bTM
1 , αmm = j

6πμ0

k3
0

bTE
1 (3)
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The above formulation can be applied to any object, provided that the bTM
1 and bTE

1 scatt-
tered field coefficients are known. For a core-shell structure, these coefficients can be explicitly
written as [37]

bTM
1 =

ηsĴ1(k0a2)
[
Ĵ′1(ksa2)+dTM

1 Ĥ ′(2)
1 (ksa2)

]
−η0Ĵ′1(k0a2)

[
Ĵ1(ksa2)+dTM

1 Ĥ(2)
1 (ksa2)

]

η0Ĥ ′(2)
1 (k0a2)

[
Ĵ1(ksa2)+dTM

1 Ĥ(2)
1 (ksa2)

]
−ηsĤ

(2)
1 (k0a2)

[
Ĵ′1(ksa2)+dTM

1 Ĥ ′(2)
1 (ksa2)

]

(4)
with

dTM
1 =

ηcĴ′1(kca1)Ĵ1(ksa1)−ηsĴ1(kca1)Ĵ′1(ksa1)

ηsĴ1(kca1)Ĥ
′(2)
1 (ksa1)−ηcĴ′n(kca1)Ĥ

(2)
1 (ksa1)

(5)

and

bTE
1 =

ηsĴ′1(k0a2)
[
Ĵ1(ksa2)+dTM

1 Ĥ(2)
1 (ksa2)

]
−η0Ĵ1(k0a2)

[
Ĵ′1(ksa2)+dTM

1 Ĥ ′(2)
1 (ksa2)

]

η0Ĥ(2)
1 (k0a2)

[
Ĵ′1(ksa2)+dTM

1 Ĥ ′(2)
1 (ksa2)

]
−ηsĤ

′(2)
1 (k0a2)

[
Ĵ1(ksa2)+dTM

1 Ĥ(2)
1 (ksa2)

]

(6)
with

dTE
1 =

ηcĴ1(kca1)Ĵ′1(ksa1)−ηsĴ′1(kca1)Ĵ1(ksa1)

ηsĴ′1(kca1)Ĥ
(2)
1 (ksa1)−ηcĴn(kca1)Ĥ

′(2)
1 (ksa1)

(7)

where a2 and a1 are, respectively, the external and internal radii of the core-shell structure,
which is characterized by the propagation constants kc and ks, and medium impedances ηc and

ηs, in the core and shell layers, respectively. The terms Ĵn(−) and Ĥ(2)
n (−) are the Schelkunoff

forms of the spherical Bessel functions of the first kind and spherical Hankel functions of the
second kind, respectively.

To finalize, it is worth remarking that the polarizabilities have been formulated by examining
the plane-wave scattering problem [37, 46]. However, since the response of a spherical particle
is isotropic, the derived polarizabilities can be applied for arbitrary incident fields.

Appendix B

This appendix includes a detailed analytical description of the fields and field-related quantities
excited by a source which is composed of a balanced combination of electric and magnetic
Hertzian dipoles oriented along +ẑ, as well as the mechanical forces exerted by such a source
on a magnetoelectric particle.

Aligned electric and magnetic Hertzian dipole fields

Consider an electric Hertzian dipole of current moment Iel located at the origin of the coordi-
nates and oriented along the +ẑ direction. Assuming that the dipole is driven with a sinusoid at
the angular frequency ω , and adopting the e jωt time convention, the components of the time-
harmonic electromagnetic fields produced by the electric Hertzian dipole: Ee = Ee

r r̂+Ee
θ θ̂ ,

He = He
φ φ̂ , are given by the closed form analytical expressions [44]

Ee
r =

η0k2
0

4π
Iel ·2cosθ

[
1

(k0r)2 +
− j

(k0r)3

]

e− jk0r (8)

Ee
θ =

η0k2
0

4π
Iel · sinθ

[
j

k0r
+

1

(k0r)2 +
− j

(k0r)3

]

e− jk0r (9)
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He
φ =

k2
0

4π
Iel · sinθ

[
j

k0r
+

1

(k0r)2

]

e− jk0r (10)

where η0 =
√

μ0/ε0 and k0 = ω√ε0μ0 are the impedance and propagation constant, respec-
tively, in free-space. By duality, the fields produced by the magnetic Hertzian dipole of magnetic
dipole moment Iml = η0Iel, also located at the origin of the coordinates and oriented along +ẑ,
can be written as [44]

Em = η0He (11)

Hm =− Ee

η0
(12)

The total electromagnetic field produced by a source composed of these two elementary
dipoles is given by the superposition of their fields, i.e.,

E = Ee +Em = Ee +η0He (13)

H = He +Hm = He − Ee

η0
(14)

Since Ee ·Em = 0 and He ·Hm = 0, the electric and magnetic field intensities can be written as
a superposition of the intensities produced by the electric and magnetic Hertzian dipoles alone:

|E|2 = |Ee|2 + |Em|2 = |Ee|2 +η2
0 |He|2 (15)

|H|2 = |He|2 + |Hm|2 = |He|2 + |Ee|2
η2

0

(16)

It is interesting to notice that the electric and magnetic fields are proportional, with proportion-
ality constant η2

0 , i.e.,
|E|2 = η2

0 |H|2 (17)

This balance between the electric and magnetic field intensities also imposes a zero reactive
power result, i.e.,

Preac =
ω
2

˚

V

(
μ0 |H|2 − ε0 |E|2

)
dV = 0 (18)

In fact, the density of reactive power ω
2

(
μ0 |H|2 − ε0 |E|2

)
is cancelled out identically at all

points when this balanced condition is satisfied.
Equation (18) can also be tested by studying the complex Poynting vector field S = SR +

jSI =
1
2 E × H∗. To this end, note, in virtue of Poynting’s theorem, that the reactive power

excited by a localized source can be computed via the flux integral of SI through a surface that
completely encloses the sources: [44]

Preac = lim
r→0

‹

S
SI · n̂dS (19)

The complex Poynting vector field and its real and imaginary parts are given by the superpo-
sition of the corresponding Poynting vector fields associated with the electric and magnetic
dipole fields, as well as their cross terms, which represent the interference effects. In particular,
one has:

S = Se +Sm +Scross (20)
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SR = Se
R +Sm

R +Scross
R (21)

SI = Se
I +Sm

I +Scross
I (22)

Since the electric and magnetic dipoles are aligned for our configuration and since they radi-
ate with the same angular power distribution, it can be readily checked that Sm

R = Se
R. Moreover,

since Re [A×A∗]≡ 0, the contribution of the cross product terms to the radiated power is zero:
Scross

R = 0. Thus, the total Poynting vector field can be written simply as twice the one associated
with the electric Hertzian dipole:

SR = 2Se
R (23)

As a consequence, the power radiated into free-space by the combination source, P0, is simply
two times the power radiated by the electric Hertzian dipole or its dual into free-space:

P0 = 2Pe
0 =

η0k2
0

6π
|Iel|2 (24)

On the other hand, the symmetry of the fields lead us to Sm
I = −Se

I and Scross
I = −2ωcLe

SE for
the imaginary parts of the complex Poynting vector field. This means

SI = Scross
I =−2ωcLe

SE (25)

In other words, the electric and magnetic contributions to SI cancel out. The remaining part is
due to the cross-terms only; it is proportional to the density of the spin angular momentum of
the electric dipole. This implies r̂ ·SI = 0; and, in view of Eq. (19), this result is consistent with
the zero-reactive power property.

Finally, the electric and magnetic densities of the spin angular momentum:

LSE =− ε0

4 jω
(E)∗ ×E (26)

LSH =− μ0

4 jω
(H)∗ ×H (27)

can also be subdivided according to the electric dipole, magnetic dipole and interference terms
as

LSE = Le
SE +Lm

SE +Lcross
SE (28)

LSH = Le
SH +Lm

SH +Lcross
SH (29)

Note that since He and Em are linearly polarized, their corresponding densities of the spin
angular momentum are zero, i.e., Lm

SE = 0 and Le
SH = 0. In addition, due to the duality of the

sources, it can also be readily checked that

Le
SE = Lm

SM (30)

Lcross
SE =−Lcross

SM =
Se

I

ωc
(31)

Mechanical forces exerted on a magnetoelectric particle

According to available analytical techniques, the time-averaged force, F, exerted on a particle
that is characterized by electric, αee, and magnetic, αmm, polarizabilities and is illuminated by
an arbitrary electromagnetic field (E,H), can be written as [27, 28]

F = Fe +Fm +Fe−m (32)
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where

Fe =
1
2

Re{αeeE · (∇)E∗}= α ′
ee

4
∇ |E|2 +α ′′

ee

[
η0k0SR − ω

ε0
∇×LSE

]
(33)

Fm =
1
2

Re{αmmH · (∇)H∗}= α ′
mm

4
∇ |H|2 +α ′′

mm

[
k0

η0
SR − ω

μ0
∇×LSH

]
(34)

Fem =− η0k4
0

12πμ0
Re{p×m∗}=− η0k4

0

6πμ0
{Re [αeeα∗

mm]SR − Im [αeeα∗
mm]SI} (35)

Reorganizing these terms, the force can also be written as the combination:

F = Fgrad +Frp +Fcurl +Fint (36)

where the gradient, radiation pressure, curl-spin and electric-magnetic interference force com-
ponents are, respectively, given by [27, 28]

Fgrad =
1
4

(
α ′

ee∇ |E|2 +α ′
mm∇ |H|2

)
(37)

Frp = η0k0

(
α ′′

ee +
α ′′

mm

η2
0

− k3
0

6πμ0
Re [αeeα∗

mm]

)
SR (38)

Fcurl =−ω
[

α ′′
ee

ε0
∇×LSE +

α ′′
mm

μ0
∇×LSH

]
(39)

Fint =
η0k4

0

6πμ0
Im [αeeα∗

mm]SI (40)

For our particular choice of a source consisting of two aligned electric and magnetic Hertzian
dipoles, these force expressions can be conveniently rewritten as

Fgrad =
1
4

(
α ′

ee +
α ′

mm

η2
0

)
∇ |E|2 (41)

Frp = η0k0

(
α ′′

ee +
α ′′

mm

η2
0

− k3
0

6πμ0
Re [αeeα∗

mm]

)
SR (42)

Fcurl =−ω
ε0

[(
α ′′

ee +
α ′′

mm

η2
0

)
∇×Le

SE +

(
α ′′

ee −
α ′′

mm

η2
0

)
∇× Se

I

ωc

]
(43)

Fint =−2ωc
η0k4

0

6πμ0
Im [αeeα∗

mm]L
e
SE (44)

Explicit expressions of these force components for Hertzian dipole fields can be found by intro-
ducing those fields Eqs. (8)-(10) into Eqs. (41)-(44).

This exercise leads to the following relations:

r̂ ·Fgrad =−Caux

(
α ′

ee +
α ′

mm

η2
0

)[
sin2θ
(k0r)3 +

4cos2θ
(k0r)5 +3

2cos2θ + sin2θ
(k0r)7

]

(45)

θ̂ ·Fgrad =Caux

(
α ′

ee +
α ′

mm

η2
0

)[
1

(k0r)3 − 2

(k0r)5 − 1

(k0r)7

]

sinθcosθ (46)
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φ̂ ·Fgrad = 0 (47)

r̂ ·Frp =Caux2

(
α ′′

ee +
α ′′

mm

η2
0

− k3
0

6πμ0
Re [αeeα∗

mm]

)
sin2θ
(k0r)2 (48)

θ̂ ·Frp = 0 (49)

φ̂ ·Frp = 0 (50)

r̂ ·Fcurl =Caux

(
α ′′

ee +
α ′′

mm

η2
0

)
2cos2θ − sin2θ

(k0r)4 (51)

θ̂ ·Fcurl =Caux2

(
α ′′

ee +
α ′′

mm

η2
0

)
sinθcosθ
(k0r)4 (52)

φ̂ ·Fcurl =Caux

(
α ′′

ee −
α ′′

mm

η2
0

){
2

(k0r)4 +
3

(k0r)6

}

sinθcosθ (53)

r̂ ·Fint = 0 (54)

φ̂ ·Fint =Caux2
k3

0

6πμ0
Im [αeeα∗

mm]
sinθcosθ
(k0r)3 (55)

θ̂ ·Fint = 0 (56)

where Caux ∈ R
+ is an auxiliary constant defined as

Caux = k0

∣
∣
∣
∣
η0k2

0

4π
Iel

∣
∣
∣
∣

2

(57)

Then the total force on a balanced active particle, i.e., an active particle for which

αee =− αmm

η2
0

(58)

reduces simply to Eq. (2):

F =
2k4

0

3
|αee|2 SR +2α ′′

ee∇× Se
I

ωc

= 2η2
0 k5

0

∣
∣
∣
∣

Iel
4π (k0r)

∣
∣
∣
∣

2
{

r̂
2k3

0

3η0
|αee|2 sinθ − φ̂ α ′′

ee
ε0

ω

[
2

(k0r)2 +
−3

(k0r)4

]

cosθ

}

sinθ (59)
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