
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

TBDClust: Time-based density clustering to enable free browsing of sites in
pay-per-use mobile Internet providers

Luis Miguel Torresa, Eduardo Magañab,c,⁎, Daniel Moratób,c, Santiago Garcia-Jimenezb,
Mikel Izalb,c

a Naudit High Performance Computing and Networking S.L., calle Faraday 7, 28049 Madrid, Spain
b Public University of Navarre, Departamento de Automática y Computación, Campus Arrosadia, 31006 Pamplona, Spain
c Institute of Smart Cities, calle Tajonar s/n, 31006 Pamplona, Spain

A R T I C L E I N F O

Keywords:
Clustering TCP connections
Time-based density clustering
DBSCAN
Mobile web browsing
Online monitoring
Real traffic dataset

A B S T R A C T

The World Wide Web has evolved rapidly, incorporating new content types and becoming more dynamic. The
contents from a website can be distributed between several servers, and as a consequence, web traffic has
become increasingly complex. From a network traffic perspective, it can be difficult to ascertain which websites
are being visited by a user, let alone which part of the user's traffic each website is responsible for. In this paper
we present a method for identifying the TCP connections involved in the same full webpage download without
the need of deep packet inspection. This identification is needed for example to enable free browsing of specific
websites in a pay per use mobile Internet access. It could be not only for third party promoted websites but also
portals to gubernamental or medical emergency websites. The proposal is based on a modification of the
DBSCAN clustering algorithm to work online and over one-dimensional sorted data. In order to validate our
results we use both real traffic and packet captures from a controlled environment. The proposal achieves
excellent results in consistency (99%) and completeness (92%), meaning that its error margin identifying the
webpage downloads is minimal.

1. Introduction

The web is probably the Internet application that has grown and
evolved the most during the past two decades. The simple and mostly
static webpages of the 1990s have given way to much more complex
sites. This complexity is caused, in the first place, by the addition of a
wide variety of content types (like videos, scripts or interactive media)
to the text and images that classic webpages hosted. However, modern
websites not only offer these new content types, but they do so in a very
dynamic way, keeping their content updated and tailoring their offer to
each specific visitor. Services like e-mail, video streaming, on-line
games or e-learning are, in many cases, provided through the web,
taking advantage of the fact that web browsers are present in almost
any network-enabled device and that web traffic usually faces few
network restrictions. This ever-increasing popularity of the web has
introduced new network requirements which have pushed for improve-
ments in the web application protocols and the development of new
techniques, like content distribution networks (CDNs) (Fortino and
Mastroianni, 2009). As a consequence, the web has achieved a

remarkable flexibility which allows it to provide a huge range of
different services, but adding many layers of complexity in order to
achieve it.

All these changes have obviously affected the profile of web traffic.
Recent studies (Charzinski, 2010; Fang et al., 2016; Weinreich et al.,
2008; Ihm and Pai, 2011) show that its characteristics have greatly
changed from the (simpler) ones described in the 1990s (Catledge and
Pitkow, 1995) for HTTP/1.0. This is partially the result of the
introduction of HTTP/1.1. Persistent connections and pipelining have
made obsolete the notion that every connection comprises a single
request/response pair. CDNs have also made obsolete the notion of
downloading the whole web page from a single server. Accessing a
webpage requires nowadays downloading resources from multiple
servers, due to the distribution of root webpage files, advertising
banners, scripts for user tracking or multimedia content files. From a
network traffic perspective, the whole webpage download implies a
variable number of TCP connections with different durations and sizes,
to multiple server IP addresses that will compose what we call a full
webpage download. As a sizable amount of the content is dynamic,

http://dx.doi.org/10.1016/j.jnca.2017.10.007
Received 16 February 2017; Received in revised form 21 June 2017; Accepted 3 October 2017

⁎ Corresponding author at: Public University of Navarre, Departamento de Automática y Computación, Campus Arrosadia, 31006 Pamplona, Spain.
E-mail addresses: luismiguel.torres@naudit.es (L.M. Torres), eduardo.magana@unavarra.es (E. Magaña), daniel.morato@unavarra.es (D. Morató),

santiago.garcia@unavarra.es (S. Garcia-Jimenez), mikel.izal@unavarra.es (M. Izal).

Journal of Network and Computer Applications 99 (2017) 17–27

Available online 05 October 2017
1084-8045/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.10.007
http://dx.doi.org/10.1016/j.jnca.2017.10.007
http://dx.doi.org/10.1016/j.jnca.2017.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.10.007&domain=pdf
Mikel

these connections may change if the webpage is accessed at a different
time, by a different user, from different location, etc. Moreover, the
same servers can be shared between different webpage providers, as
happens with traditional shared hosting or with CDNs. This means that
not even the server IP addresses can be used to identify a particular
webpage download.

Identifying all the TCP connections involved in a webpage down-
load is a functionality needed for example in the case of a mobile ISP
(Internet Service Provider) offering a scheme of pay-per-use and
providing free browsing to strategic commercial websites (Free
Facebook, 2017). Another use case could be the whitelisting of
institutional or emergency websites where availability could be of
crucial importance and should be at no cost.

If we consider the set of TCP connections opened by a web browser
during a period of time, it is far from trivial to ascertain which webpage
download has originated each connection. In this paper we address this
problem by presenting a method capable of identifying individual full
webpage downloads by clustering related connections together in real
time. This identification of the connections belonging to the same full
webpage download could be implemented in web browsing control
systems, proxys, and firewalls, where different treatments are neces-
sary when browsing through different websites.

Traditionally, the method to control access to different sites has
been to provide a white or black list of domain names or IP addresses
to which the users are allowed access or not. All the IP addresses from
all the servers that host files for a certain service have to be added to the
white list. Those lists are hard to maintain because of the complex
distribution of contents along different servers and CDNs. A change in
the linked elements from a webpage could result in a new server where
they are located. In order to allow access to this server, its IP address
must be added to the white list. This requires updating the lists with a
growing and changing number of IP addresses over time. This is
neither scalable nor maintainable.

The most straightforward methods to cluster related connections
together are based on Deep Packet Inspection (DPI). Using DPI the
content of the HTML files can be parsed and the links to external files
collected. Ad-hoc access rules can be added to the networking elements
in order to allow access to the external content based on these links.
However, deep packet inspection has multiple drawbacks: (1) it requires
processing a lot of information for each connection, hindering real-time
operation; (2) not all of the required URLs are available in the HTML file
as some of them are dynamically created by Javascript code; (3)
accessing user data raises privacy concerns and, depending on the local
legislation, it may be illegal (Macia-Fernandez et al., 2012); (4) a sizable
fraction of web traffic nowadays is HTTPS, for which application-level
data is encrypted (Finley, 2014); and (5) encrypted traffic is indeed
expected to become more and more prevalent in the future with HTTP/2
using transport layer security (TLS) by default (Belshe et al., 2014).

These considerations have motivated us to work with connection
data at the transport level. Our proposal uses no DPI and it requires
only to specify the main domain name or IP address of the website. The
clustering of related connections with the main one will provide which
connections must be allowed in order to render the full webpage or
which traffic must be billed or not. Only the first packet for each TCP
connection establishment will be used in the clustering process. This
will allow very fast classification of TCP connections, enabling opera-
tion in real time even for heavy loaded links. Equivalently, NetFlow-
type records as described by the IPFIX protocol (Claise, 2008) can be
used in cases where real time operation is not necessary. These
NetFlow records are easy to collect, store and process by routers and
switches. NetFlow offers a very summarized description of each
transport connection, providing source and destination IP addresses
and ports, total bytes and packets in each direction, start timestamp,
and duration. These fields provide more than the necessary informa-
tion offered by the first packet in the connection. As far as we know, the
problem of clustering connections related to the same webpage down-

load using such small information and in real time operation has not
been tackled by the scientific community.

In order to test our identification methodology we have used both
real traffic traces and automatic captures of webpage downloads. After
performing a thorough characterization of these captures and testing
different approaches to our problem, we present a method based on the
DBSCAN (Ester et al., 1996) clustering algorithm which was designed
for density-based clustering in noisy databases. It is suited for our
purposes as most of the connections from a webpage download are
usually very close in time and there is a lot of noise in the form of
automatic web connections initiated by other programs running in
background (e.g. operating system updates, online cloud storage,
antivirus updates, etc.). The results show that the proposal is able to
cluster together a very high percentage of TCP connections belonging to
the same web download (92%). It also reduces the effect of background
connections, considering them as noise and obtaining an almost perfect
consistency of the created clusters.

The rest of this paper is structured as follows. Section 2 provides a
brief compilation of related work. Section 3 presents the Time-Based
Density Clustering (TBDClust) algorithm for webpage downloads. In
Section 4 we select the best values for the parameters in the algorithm
and validate its correct behavior using real traffic datasets. Section 5
evaluates the performance and real-time operation of the algorithm.
Finally, Section 6 concludes the work.

2. Related work

Web traffic characterization has been a popular field of study over
the years, and works in the literature have taken different approaches
to the problem. From a server perspective, some authors have focused
on modeling the behavior and habits of the users that access the web
server (Liu and Kešelj, 2007). Other researches have taken a user-
centric point of view with works focused on application-level operation
(Khandelwal, 2013) or the characteristics of the downloaded content
(Zink et al., 2009; Butkiewicz et al., 2014). For example in Xie et al.
(2013), a model for reconstructing web-surfing activities from packet
traces is proposed. Other works have characterized specific types of
web applications, usually with the intention to classify their traffic
(Schatzmann et al., 2010; Schneider, 2008). All those analysis rely on
DPI, which has serious drawbacks in scenarios with high load or
encrypted traffic. There exist proposals without DPI requirements for
traffic classification, like for example the one presented in Lu et al.
(2016), but they do require some insight into the traffic profile for each
application (packet sizes, inter-arrival patters, etc), which they obtain
by analyzing a large quantity of packets from each flow, which takes a
toll in the throughput they can achieve.

Clustering and other machine learning techniques have been used
in multiple works for traffic classification purposes (Nguyen and
Armitage, 2008; Callado et al., 2010; Zhang et al., 2015). However,
the intent on most of those proposals has been to identify the
application that generated the traffic, rather than trying to identify
elements inside the traffic of a single application. The latter is precisely
our case: we focus on the web application and we intend to find groups
of related connections in its traffic. For unencrypted connections, this
can be done by inspecting HTTP data, checking from which document
each object was linked. However, we are interested in methods that do
not require DPI. Some proposals have tried to address this problem.
Bianco et al. (2009) used clustering techniques to identify user-sessions
in web traffic. They defined a session as a set of TCP connections
generated by a user while browsing through multiple webpages during
a period of time. They used a mix of a hierarchical clustering and
partitioning approach in a three-step process applied to connection
start times. It was usable only for offline analysis because of its design
and computational complexity. Other proposals require access to
server logs and they group all the request from a single user into a
browsing session for pattern analysis (Fatima et al., 2015).

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

18

In this paper, we focus on real time clustering of connections
related with a single webpage download, with limited information
provided by the first packet of each TCP connection (connection start
times). Macia-Fernandez et al. (2012) introduced a method that
intended to find individual webpage downloads in user traffic. Their
approach was directed at identifying specific webpages for advertising
purposes. It required a previous characterization of said webpages and
relied on DPI. By contrast, the method we present in this paper is able
to find individual webpage downloads by using only basic information
from the first packet of each TCP connection and without requiring any
previous characterization of the webpages.

3. Methodology for a webpage clustering algorithm

We consider that a webpage download comprehends all the data
exchanged between a web browser and one or multiple web servers in
order to render a specific webpage. From a traffic perspective, a
webpage download comprehends the connections opened by the web
browser after a user types a URL address or follows a hyperlink to a
new webpage. These connections carry the content of said webpage or
are somehow triggered by accessing it (e.g. Google Safe Browsing,
2017). We focus on connection parameters that can be used to identify
which connections belong to the same webpage download.

In this section we present an evaluation of the information available
from the network traffic that could be used in a clustering procedure.
After this evaluation we formulate the new clustering algorithm
proposal

3.1. Webpage downloads from a traffic perspective

Through this work, the client IP address is used to identify
connections belonging to the same webpage download. The server IP
addresses are not as useful for our purposes as they may seem
intuitively. A single server IP address can host information for different
websites like in a CDN or third-party provider scenario (Charzinski,
2010; Butkiewicz et al., 2011). Modern sites download content from a
big number of different servers, a substantial fraction of which belong
to third-party services that may be shared with other websites. This
suggests that modern websites are less and less centralized in easily
identifiable servers.

Another parameter of interest is the connection start timestamp.
The connections that take part in the download are usually opened very
close in time in order to provide the best user experience. Therefore,
start timestamps are very interesting for clustering purposes and they
will be discussed later.

The connection end timestamp is another candidate parameter: two
connections from the same webpage download have a high probability
of ending close in time. However, in most cases this is an effect of the
connections also starting close in time. Non-persistent connections are
usually very short and persistent connections have lengths defined by
persistence timeouts in the client (the same timeout for all connections
from the same browser) or in the server (usually the same default
timeout for connections to the same server software). It is probable that
two connections from the same webpage download would start close in
time and have a similar duration, thus ending also close in time. The
only case in which end timestamps offer non-redundant information is
when a user closes the web browser or the navigation tab. All
connections related to the webpage that are still open will be closed
at this time. However, it is difficult to know how many webpages (tabs)
the user is closing at the same time.

Finally, the last connection parameter to consider, the connection
size (in bytes or packets), is useless, as connections for the same
webpage download are very variable in size. Although some services
tend to produce larger downloads (e.g. video streaming), they will also
use smaller ones for the accessory content.

The timestamps in all packets and connection sizes do not allow

clustering on the fly. Therefore, the start timestamps are the most
promising connection-level parameters for identifying connections that
belong to the same webpage download. This parameter can be
extracted from the first packet of the TCP connection which is easily
identified by looking for packets with only the TCP SYN flag activated.
We discuss this parameter intuitively below.

Lets consider a typical web session of around one minute of length,
where a user accesses his Facebook profile. He browses through it for
20 s, and then he follows a link to an article in a local newspaper
website. After reading it, he follows a link to another article in the same
newspaper website. Fig. 1 shows data captured from this example web
session. The top sub-figure shows the evolution of the number of active
connections during the capture and the bottom sub-figure shows the
instants at which connections are opened. The session comprises three
individual webpage downloads (shown as the three zones with more
connection openings in the figure).

As expected, we can see that the connections from the same webpage
download are very close in time. A short interval after the start of the
download concentrates most of the connections. In this example, the
majority of connections are persistent and, in fact, some of the
connections opened for the first newspaper webpage are used in the
second webpage to download new content. This effect can be checked in
Fig. 2, that presents the server IP addresses to which new connections
are opened through time. In the third download, only a small number of
new connections are opened because previous connections are reused.

Fig. 1. Start timestamps for the example web session with 3 webpage downloads: 0–10 s
facebook, 20–30 s newspaper, 40–50 s newspaper again.

Fig. 2. Connections to different servers by IP server address, for the example web
session.

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

19

At the end of the capture, the user closes the browser and the
connections still open are terminated. Some of these still active
connections were used to download the Facebook webpage at the
beginning (they are persistent connections). As we said previously, this
is one of the reasons why we do not consider end timestamps for our
identification method, as they can mix connections from different
webpage downloads.

An approach to identify connections belonging to a webpage
download is to consider the times between consecutive connection
start timestamps and decide if two consecutive connections belong to
the same webpage download depending on how close they are.
However, even though it is true that connections from the same
webpage download are close in time to each other, it is difficult to
take advantage of this fact when dealing with real web traffic. The
variability in user behavior and the disruptions introduced by other
applications using web ports (for example antivirus or operating
system updates) generate complex traffic patterns, from which web-
page downloads can be difficult to identify using simple thresholds. An
improved method based on clustering can help us to get better results.

If we want to cluster connections using only their start timestamps,
the problem we are facing is grouping one-dimensional data, which is a
different problem than grouping multidimensional data, what typical
clustering algorithms are designed for. There are some specific
methods for grouping one-dimensional data. A classical one is Jenks
natural breaks optimization (Jenks, 1967), but it requires an input
parameter with the number of classes (clusters) in which the data will
be divided. A generalization of this method is the K-means clustering
algorithm, which has the same restriction. As we do not know before-
hand how many webpages a user accesses during a period of time, we
cannot use these methods. Another common approach is estimating the
probability density function (p.d.f.) of connection start times. In our
case, studying the shape of this density function could allow us to
identify intervals with high density of connections, and therefore the
instants of webpage downloads. However, estimating the p.d.f. is
complex. We could use simple histograms but the information they
provide can be very misleading depending on the selected box width.
Complex approaches like the Kernel density estimation (Parzen, 1962)
provide a more faithful p.d.f. but they have severe computational
requirements. In any case, the exact p.d.f. cannot be estimated on the
fly, preventing the system from working in real time.

We propose a modification of DBSCAN (Density Based Clustering
of Applications with Noise) algorithm (Ester et al., 1996), which was
specially designed to work with large databases with noise, and is
nowadays one of the most popular clustering algorithms (Folino and
Sabatino, 2016). Clustering algorithms like DBSCAN or K-means have
been used previously for traffic classification (Erman et al., 2006) or
web session clustering (Fatima et al., 2015), but not for webpage
download clustering. The DBSCAN algorithm estimates the density
around each data point by counting the number of points in a
neighborhood and it applies a threshold to choose the points to be
assigned to each cluster. Even though it was designed for multi-
dimensional data, we have modified it in order to work with one
dimension data, taking advantage of the opportunity of sorting the
data. These modifications allow our algorithm (time-based density
clustering) to operate in real time (i.e. clustering connections as they
are captured) rather than processing a database of already captured
traffic.

3.2. Time-based density clustering (TBDClust)

Similar to DBSCAN, TBDClust depends on two parameters. The
first parameter is related to the distance between points, and in our
case it will be a time interval between connection start times Tbc. The
second parameter is the minimum number of points in a cluster in
order to not consider the cluster noise. This second parameter will be a
number of connections Nc. With these parameters, and considering U

as the set of connections opened by a certain user (the clusters are
independent for each client), we present the following definitions:

Definition 1. given two connections, x and y, and their respective
start timestamps, Tx and Ty, the distance between those connections is
defined as:

dist x y T T(,) = | − |x y

Definition 2. the Tbc-neighborhood of a connection x, denoted by
N x()Tbc , is defined as:

N x y U dist x y Tbc() = { ∈ (,) ≤ }Tbc

Therefore, x and y are neighbor connections if y N x∈ ()Tbc , where Tbc is
the maximum time distance between two neighbor connections.

Definition 3. a connection x is a core connection if it verifies that
N x Nc| ()| ≥Tbc . As a consequence, Nc represents the minimum number
of neighbors that a connection must have in order to be a core
connection.

Definition 4. a cluster core is a set of consecutive core connections,

CC c c n i n c N c= , …, , ≥ 1 ∧ (∀ < , ∈ ()).n i Tbc i1 +1

Definition 5. a cluster border is the set of the neighbors of the
connections in a cluster core that are not core connections,

CB y U N y Nc y N x N x Nc= ∈ (| ()| ≤) ∧ (∈ ()) ∧ (| ()| ≥)Tbc Tbc Tbc

Definition 6. a cluster is a set of consecutive connections formed by a
cluster core and its cluster border.

Definition 7. connections that do not belong to a cluster, that is, they
are neither core connections nor in the neighborhood of one, are
considered noise.

With these definitions, the clusters that we create have a core with a
high density of connections and a less dense border. If for a cluster, Tc1
is the start time of the first core connection and Tcn is the start time of
the last one, the total cluster length, TCL (the time difference between
the start times of the first and last connections in the cluster) has an
upper limit: TCL T T Tbc≤ − + 2*cn c1 . This means that the total cluster
length is limited by the length of the cluster core, and thus clusters only
“grow” through periods of time where the density of connections
opened by the user is high.

Given the previous definitions, a connection may belong to the
cluster border of two different clusters. If this happens, the algorithm
will assign the connection to the oldest one. This makes sense because,
as we have seen previously, the density of connections is usually higher
at the beginning of a webpage download, so we expect to find more
connections in the cluster border after the core than before.

Fig. 3 shows a flow diagram of the clustering algorithm. In order to
explain its operation, let as consider the traffic of a particular user
(client IP address), as the algorithm treats each user individually.

When a connection is opened by the user, the algorithm checks
whether there are neighbors in a connection array that it keeps for each
user. In this array, connections are identified by the classic 5-tuple and
the timestamp of their first packet. Applying definition 2, the new
connection will be a neighbor of those in the array that were opened
less than Tbc seconds ago. If the array is empty there are no neighbors
and the connection is simply added to it. If the array is not empty but
none of the connections are neighbors of the new one, the array is
emptied and the new connection is added to it afterwards. A neighbor-
hood size counter is kept for the connection, with the number of
neighbors it has in any given moment.

If, on the other hand, there are neighbors in the array, the
connection is added to it and neighborhood size counters in the array
are updated for the new connection and its neighbors. We then check
the neighborhood size for the oldest neighbor of the new connection. If
this neighbor is not a core connection N x Nc(| ()| <)Tbc , none of the more
recent ones can be a core connection because their neighborhoods will

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

20

be equal or smaller. In this case, we do nothing more and wait for the
next connection. However, if the oldest neighbor is a core connection
N x Nc(| ()| ≥)Tbc it has to be part of a cluster. In this case, we check
whether it is already part of a cluster (it may have been a core
connection or part of a cluster border before the new connection was
opened). If it is part of a cluster, we make all its neighbors part of the
same cluster. If it is not, we create a new cluster and make all its
neighbors part of it. An exception to this occurs if a neighbor already
belongs to a different cluster, in which case we leave it as it is. This is
the case of border connections that could belong to two different
clusters, which are assigned to the oldest one.

The array of connections that the clustering uses for each user is
emptied when the new connection has no neighbors in it. This happens
when the time interval between the new connection and the most
recent connection in the array is bigger than Tbc. In this case, the new
connection cannot be part of the same clusters as any of the ones in the
array, and it is not necessary to keep them in memory. When the array
is emptied, the connections in it that do not belong to a cluster are
considered noise and discarded.

4. Results and validation

The proposed TBDClust algorithm depends on two parameters: the
maximum time interval between neighbor connection starts, Tbc, and
the minimum number of neighbors that a core connection must have,
Nc. In this section we use different datasets to estimate the best
parameter values and to validate the clustering results.

4.1. Experimental datasets

We use web traffic from two different sources: automatic captures
of webpage downloads in a controlled setup (automatic captures

dataset) and traces of real traffic from web users in a large network
(real dataset). Both datasets are summarized in Table 1.

The automatic captures dataset was presented in Torres et al.
(2014). It is composed of 20,000 downloads with the landing pages of
1000 different popular websites. We extracted them from the top
100,000 websites of the Alexa global ranking (Alexa, 2017), taking care
that the most popular and interesting sites, like Google, Facebook, or
Amazon, were well represented while also collecting data from a wide
variety of less popular sites from all around the world. We accessed the
landing pages of these websites automatically and the browser was
closed 2 min after starting the download. The network traffic was
captured at least for half a minute more after this closure. This way,
each individual capture file contained the download of an individual
webpage, and therefore all its connections could be uniquely labeled as
belonging to that individual webpage download. We used both Firefox
and Google Chrome as web browsers. This automatic captures dataset
will be used to test our identification system.

Testing the identification method requires also real traffic from real
web users. For this purpose we have captured web traffic from the
Internet link of a network with around 9.000 users during 9 workdays.
This accounts for over 15 million web connections. We will refer to
these captures as the real dataset. In this case the dataset has to be
labeled with the connections belonging to the same individual webpage
download. For this labeling, DPI and DNS name resolutions are used.

For both datasets, we work with connection records rather than
packet traces. In order to obtain them we use Argus (QoSient, 2017).
Argus is an open-source audit tool that is able to generate flow
summaries with the same features (and more) than NetFlow/IPFIX.
In particular, aside from the classic TCP/IP 5-tuple that defines each
connection (IP addresses, ports and protocol) we save timestamps
(start and end), total packets, total bytes and application-level bytes
(upload and download). All these parameters are easily calculated and
they can be inferred or at least estimated from either the downstream
or upstream data if only one of the directions is available for capture
from a specific vantage point.

4.2. Parameter optimization

As with any clustering algorithm, selecting an appropriate value for
its parameters is key for a correct operation (Ester et al., 1996). With
data as complex and variable as web traffic, we do not expect to find
exact values for the parameters that offer the best results in any
possible scenario. Rather than that, we would like to find ranges of
parameter values for which the clustering algorithm offers good results.
A more precise tuning would be advisable on a network basis (or even
taking into account the characteristics of different users).

Nc is the minimum number of neighbors required for a connection
to be core. Because of this, it defines minimum cluster size and it will be
related to the minimum number of connections in a webpage down-
load. In the classic DBSCAN clustering algorithm (Ester et al., 1996), a
default value for Nc of 4 is proposed, arguing that DBSCAN behaves
similarly with higher values while adding computational complexity.
Nc = 4 produces clusters of a minimum size of 5 connections.

From the automatic captures dataset we have extracted the number
of connections in each webpage download. For the 10th, 50th (median)
and 90th percentiles of the number of connections per webpage

Fig. 3. Flow diagram of the clustering algorithm.

Table 1
Web traffic datasets.

Automatic captures
dataset

20,000 downloads of the landing pages of 1000 different
popular websites extracted from the top 100,000 websites
of the Alexa global ranking

Real dataset Captured web traffic from the Internet link of a network
with over 15 millions of web connections during 9
workdays

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

21

download, the values are 6, 43 and 125 connections respectively. This
means that it is consistent to have clusters with a minimum size of 5
connections.

On the other hand, Tbc is the maximum time between neighbor
connection start times. Its value has to be chosen carefully in order to
avoid dividing a webpage download into multiple clusters while also
avoiding clustering together connections from different webpage down-
loads. A k-distances graph (Ester et al., 1996) Fig. 4 can help in
choosing a correct value for Tbc. This graph represents the time
distances between connections and their kth nearest neighbors.
According to Ester et al. (1996), if k Nc= , a “knee” in the k-distances
graph marks a good value for Tbc. This value will allow distinguishing
between core and non-core connections.

For Fig. 4 we have selected a complete workday from our real
dataset and calculated the k-distances (with k = 3,4,5,6,7) for every one
of the over a million connections opened during the day. We have then
aggregated the data from every user and sorted all the distances from
highest to lowest. We set a top limit of 30 s for the ordinate axis in
order to focus on the interesting part of the plot. We can see that there
is not a big difference among the lines for k ≤ 5, while the 6-distances
and 7-distances lines are higher. This suggests that a top limit for Nc
should be around 3–5, as with bigger values the smallest webpage
downloads will not be considered clusters. As for Tbc, if we focus on
k ≤ 5, we can see a “knee” that marks that around 80% of the k-
distances are smaller than 2 s.

We can check whether a Tbc value around 2 s makes sense by
studying the connection start timestamps in the download of webpages
from a variety of websites. In this case we use the automatic captures
dataset. In Fig. 5 we represent the complementary cumulative dis-
tribution function (CCDF) of the start timestamps for the last connec-
tion in each webpage download. Additionally, we consider the set of
connections that carry the first 90% and 95% of the traffic in the
webpage downloads and represent the CCDFs of the start timestamps
for the last connection in this set. This gives a better idea of the time
interval during which most of the webpage is downloaded. As we can
see, although connections opening late in the capture are a relatively
common occurrence most of the traffic is concentrated in the connec-
tions opened during the first seconds. We can say that 90% of the
traffic is carried by connections opened in the first 20 s for more than
90% of the captured webpage downloads (P90 = 17.85 s), although the
median is in fact much lower (P50 = 3.36 s).

In Fig. 6 we look at connection start times from a different
perspective by considering time differences between consecutive con-
nection start timestamps. In that figure we have calculated the sample
average and median values of the time differences between consecutive
connection starts in each capture of the automatic captures dataset and
represented the CCDF of both statistics. The CCDF of the sample

median shows that connections of the same webpage download are
usually very close from each other. Some time-differences are bigger, as
evidenced by the CCDF of the sample average which is far less robust
against extreme values. From this figure we obtain that 90% of the
sample values of median and average are below 0.13 and 3.95
respectively. These values are small enough if we compare them with
the time a user spends browsing in a webpage.

Webpage dwell times are difficult to model as they depend on the
user's navigation habits, the interest and complexity of the webpage
and its actual content. For example, a user will take some time in
reading a news article or watching a video but may follow a link to
another webpage rapidly after using a search engine. A minimum dwell
time of 30 s has often been used for webpages that are of interest to the
user (Kim et al., 2014) although very simple or uninteresting webpages
may experience lower dwell times.

We can describe a typical webpage download as a group of
connections that, if considered as a whole, span a limited time frame
and that, if considered in consecutive pairs, happen very close to each
other. We have quantified the download length and the time between
consecutive connections by calculating the 90th percentile from our
automatic captures dataset using medians. The results are 17.85 s for
download length and 0.13 s for time between consecutive connections.

In brief, for Nc we will follow the recommendations for tuning the
algorithm and use Nc = 4. This value is consistent with our experi-
mental knowledge of the problem and the k-distances graph suggests
that choosing Nc = 3 or Nc = 5 would not produce very different

Fig. 4. k-distances graph (real dataset).
Fig. 5. Start time of last connections in webpage downloads (automatic captures
dataset).

Fig. 6. Time between consecutive connections in webpage downloads (automatic
captures dataset).

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

22

results. Choosing an exact value for Tbc is more complicated, although
we have seen that it should be in the vicinity of 2 s. This seems
consistent with Fig. 6, as most connections from the same webpage
download are closer than 2 s to each other.

4.3. TBDClust validation using a one-day real dataset

In this section we validate the working ranges for the Nc and Tbc
parameters. We work with data from one whole workday from the real
dataset. We will later on test the final tuned system with the full dataset
and check whether it still operates correctly.

First we have analyzed the dependency with the Tbc parameter. We
have run the TBDClust algorithm with the real dataset, obtaining the
results shown in Figs. 7 and 8 for different values of Tbc. Fig. 7 shows
the CCDF of cluster length considered as the time difference from the
first to the last connection in the cluster. Fig. 8 shows the CCDF of the
number of connections.

The cluster length is influenced very little by the chosen threshold
Tbc (Fig. 7). This makes sense because the noise connections will not
be taken into account unless they are very close to the connections of
the webpage download. In fact, it is less problematic if the first
connection of a cluster is a “noise connection” as there is no time limit
from the start of this connection and the end of the cluster, and
webpage downloads will not be split because of this reason.
Nevertheless, even if there is not a maximum cluster length, this
method usually avoids creating massive clusters for very active users

because clusters only grow through core connections that have a
minimum number of close neighbors.

On the other hand, as Nc is the minimum number of connections
for a cluster, the method does not create very small clusters (less than 5
connections for Nc = 4). This is good because smaller clusters would
not contain a full webpage download. These small clusters can contain
web connections corresponding to updates from the antivirus, operat-
ing system or any other automatic task. Using a small value of Nc, the
algorithm will consider these clusters as noise.

We analyze the results for different values of Tbc. Fig. 9 shows the
percentage of connections that have been included in the correct
clusters. From all the connections that we have labeled as belonging
to a certain webpage download, this measures how many are really in
the cluster associated to that webpage download. The Tbc parameter is
shown in the bottom abscissa axis. The values of the percentage of
clustered connections are in the 78–90% range, depending on the Tbc
values. This has to be interpreted taking into account that we are
working in a very noisy environment where a sizable percentage of the
connections to ports 80 and 443 belong to applications other than web
browsing (such as application updates, as mentioned previously). The
curve tends to stabilize as the generated clusters start to group almost
all the connections from each download. This suggests that the range
for the parameter Tbc has been properly selected.

Fig. 10 shows the average length of those clusters, measured as the
time difference between the first and the last connection in the cluster.
The increase in cluster time length is related to the parameter Tbc. It
tends to stabilize on values of Tbc around 5 s. This behavior is thanks to
its ability to accurately find time intervals with a high density of
connections. Connections considered as noise are not included in any
cluster (hence in no webpage download).

Previous Figs. 9 and 10 do not allow us to check how well formed
the resulting clusters are. We need to perform a validation process that
checks whether each cluster comprehends a full webpage download.
We use two metrics from the clustering literature (Ballou and Pazer,
2003; Khaleghi et al., 2016): consistency and completeness.

We define the cluster consistency as the percentage of the connec-
tions in the cluster that are related to the same webpage download. Two
connections would be related if they belong to the same webpage
download and unrelated if they are not. Using this criterion, a
consistency of 100% will mean that all the connections inside a cluster
are related and belong to the same webpage download.

Fig. 11 shows the average cluster consistency obtained with the
TBDClust algorithm, depending on the parameter Tbc. The data comes
from the real dataset. As we can see, for Tbc s≤ 2 , the method reaches
consistency averages very near to the expected maximum. This means
that the method is not prone to mixing connections of different

Fig. 7. TBDClust: CCDFs of cluster length, for different Tbc values (real dataset).

Fig. 8. TBDClust: CCDFs of the number of connections per cluster, for different Tbc
values (real dataset). Fig. 9. Percentage of connections (in clusters of more than 5 connections) (real dataset).

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

23

webpage downloads. A larger value of Tbc would not enlarge a cluster
as there would not be enough connections to become core. The
occurrence of a new set of connections would imply the creation of a
new cluster and not the growth of the previous one.

Internal consistency is not enough to validate the clustering
method. We also need to ascertain that the connections that belong
to the same webpage download are not divided into multiple clusters.
We define the completeness of a cluster as the percentage of connec-
tions from the original webpage download that are classified in the
same cluster. Fig. 12 shows the completeness for the real dataset. Its
average stabilizes in values over 90% when the parameter Tbc takes
values larger than 2 s. The lack of perfect completeness is caused by
some asynchronous connections opened by the web browser very late
from the initial webpage download and therefore it is arguable whether
the last connection should belong to the same cluster. Another cause
for this difference are websites that use gallery-like webpages, in which
the user cycles through different content (for our purposes, different
webpages) but in the labeling they are considered as the same webpage
download.

The fact that the completeness stabilizes is important because it
shows that if we increase the parameter Tbc (aggregating more
connections to the clusters) most of these new connections in the
cluster will not belong to the same webpage download as consistency
falls but completeness stays almost constant. Although the presented
values for completeness are not completely satisfactory (slightly above
90%) they are not a critical factor on webpage classification. Even if the

webpage download is not contained in a single cluster, the second
cluster could be correctly classified if its first connection targets the
white/black-listed server. Therefore, these are worst-case results,
where we consider the second cluster as never correctly classified.

As for the optimal value of the Tbc interval, studying Fig. 11 we see
that consistency values are more or less stable up to 2 s; from that
point, they start to decrease. On the other hand, completeness grows
while we increase Tbc up to 2 s and then it changes much more slowly.
Because of this, a value of 2 s is a good value for Tbc for the selected
workday with the real dataset. In the following section we will use the
full 9-days real dataset to test the algorithm with Nc(= 4; Tbc s= 2)
and check whether consistency and completeness values remain in
acceptable values or not.

4.4. TBDClust validation using a one-week real dataset

We have tested TBDClust with the parameters Nc(= 4; Tbc s= 2)
for the rest of the days in the real dataset. The average daily values for
consistency and completeness are shown in Figs. 13 and 14. Both
parameters remain close to the ones obtained for the day 1, for which
the algorithm was tuned (shown in the figure in a lighter shade). This
shows that once tuned with a sample of network traffic, the time-based
density clustering algorithm offers a stable performance.

One of our concerns when designing the clustering system was that
modern users are accustomed to tab based browsing, which allows
them to browse through different websites concurrently. We thought

Fig. 10. Average cluster length (real dataset).

Fig. 11. Consistency (real dataset).

Fig. 12. Completeness (real dataset).

Fig. 13. Testing TBDClust, daily average consistency (real dataset).

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

24

that this might cause a time-based method to mix simultaneous
downloads of different webpages. However, this does not seem to be
problematic, given the fact that consistency values remain constant in
Fig. 13 and that they are close to the expected value calculated with the
automatic captures dataset. Even though users keep multiple tabs open
and browse through different websites, the time intervals between the
download of each individual webpage are usually long enough, allowing
the clustering to work properly.

We present some additional characteristics that describe the
clusters created by the algorithm, using the real dataset. Fig. 15 shows
the CCDF of the daily number of clusters per user. With a median of 59
clusters and 10th and 90th percentiles at 18 and 179 clusters
respectively, the number of clusters is in a reasonable range, consider-
ing that it should be closely related to the number of webpages visited
daily by each user. For comparison, the authors from Weinreich et al.
(2008) found that the average number of webpages visited per user and
day ranged from 25 to 284.

Although rare, some of our users have a very high daily number of
clusters (P99=426). We have checked these cases manually and we
have found that most of the clusters are related to abnormal cases. In
some cases, webpages with automatic reload are left open in the
browsers, so every some minutes during the day they are reloaded. In
another case, a malfunctioning web browser was attempting to down-
load favicons over and over. We have also checked that for non web
applications using web ports (p.e. antivirus updates), TBDClust filters
most of this traffic as noise.

Fig. 16 shows the distributions of cluster length in seconds and the
time between consecutive cluster start timestamps. Values for both
parameters are close to what we expected. With a median length of
2.1 s, our clusters are shorter than the webpage downloads from the
automatic captures dataset. Nevertheless, this is understandable be-
cause the webpages visited in the automatic captures dataset were only
landing pages (which usually are more complex) and because in real
traffic some of the content may be already cached in the host as users
usually revisit the same webpages. Median time between clusters is
39 s which seems a reasonable webpage dwell time.

Another interesting consideration arises if we consider extreme
percentiles for both distributions. The 90th percentile of cluster length
is 6.2 s while the 10th percentile of the time between consecutive
cluster start times is 6.7 s. This shows that even the longest clusters are
shorter than the time between the closest ones, which makes the
possibility of overlapping two different webpage downloads in the same
cluster a remote one.

5. TBDClust performance evaluation

An important design objective in TBDClust was the capability to be
used in real time. We want the clustering to take place as the
connections arrive to a monitoring system, network firewall or any
other middlebox. The presented algorithm allows for this behavior. In
this section we show that its complexity is so low that it does not limit
its usability in high traffic load scenarios.

As described in Section 3, the algorithm takes two passes through
arrays for each new connection arrival. The array depth depends on the
number of neighbor connections and therefore it is variable with time.
In order to evaluate the running time of the algorithm we prepared a
high traffic load scenario. We show the results for a whole day of web
traffic, consisting of 800.4 GiB from 816.7 million packets in 6.3 mil-
lion TCP connections. We replayed this traffic trace at the maximum
possible speed and measured how fast the algorithm implementation
consumed the traffic. We used a Commodity Off-The-Shelf (COTS)
server with an Intel Xeon E5-2609 CPU running at 1.7 GHz. We ran
the algorithm using a single CPU core or splitting the traffic between
two cores operating in parallel.

Fig. 17 shows the processing, averaged per second. In order to
compare the runs using 1 and 2 cores we plot the speed versus the
traffic trace length and not versus the real time it took to process the
trace (which was different, shorter for the faster scenario). The
experiment using a single CPU core was capable of consuming
10 Gbps for 97.3% of the time, while using 2 CPU cores the computer
was always capable of consuming 10 Gbps of network traffic and 97.8%
of the time it could consume 20 Gbps.

Fig. 14. Testing TBDClust, daily average completeness (real dataset).

Fig. 15. Testing TBDClust, CCDFs of the number of clusters per user and day (real
dataset).

Fig. 16. Testing TBDClust, CCDFs of the cluster length and time between consecutive
cluster starts (real dataset).

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

25

Any tool for high-speed TCP traffic processing must decode packet
headers, sort TCP connections into lists or arrays, manage memory, etc.
The presented time-based clustering algorithm adds a small amount of
work, but only for connection start times, and not for every other
packet, therefore processing speed is not critically limited by TBDClust.

In comparison, DPI based clustering could achieve close to 100%
completeness and consistency but only in very limited scenarios
because it would only work with non-encrypted traffic, which in the
public Internet is less abundant every day (Finley, 2014). DPI requires
processing every data packet. It has to reconstruct the whole TCP
stream, in order to access the HTTP data, parse the HTML content and
locate the embedded URLs. Based on those URLs it could recognise
later HTTP sessions corresponding to the same webpage. However, in
modern webpages some URLs are constructed on-the-fly by Javascript
code. DPI could not detect those URLs in the downloaded HTML or
Javascript code as they are constructed depending on user actions.
Therefore, nowadays not even DPI could reach 100% in every cluster-
ing metric and for every webpage, while its performance is clearly
handicapped by its computing complexity and high memory require-
ments.

6. Conclusions

In the case of a mobile Internet provider that offers a pay-per-use
data plan, sometimes the provider wants to allow free browsing
through strategic commercial web sites or the authorities require to
allow browsing of institutional or emergency websites at no cost. The
most common way to allow this differentiation has been to have a white
list of domains or IP addresses to which the users are allowed access. In
this paper we have proposed having a white list only with the main
domain name or main IP address of the website that we want to allow,
and use a clustering method to identify those TCP connections related
to the main connection. This will allow the user to load contents from
all the necessary servers, keeping a good browsing experience.

The proposed clustering method is based on a time density scheme
that is able to group TCP connections that belong to the same webpage
download. It is an adaptation of the well-known DBSCAN clustering
technique over one-dimensional data. The method does not need deep
packet inspection. It needs only very basic information from the first
packet of each TCP connection: timestamp and client IP address.
Therefore, the proposed method is simple and fast, which makes it
suitable for real-time operation. We have proved that a single CPU core
in commodity hardware is capable of processing 10 Gbps of network
traffic.

The TBDClust (Time-Based Density clustering) algorithm has been
tested using both automatically collected samples of webpage down-
loads and real web traffic from a network with more than 9.000 users.

We have been able to obtain clusters with average internal consistency
of around 99% and average completeness of near 92%. This means a
very low rate of error in connection identification to its corresponding
webpage download. These results have been shown to be stable over
time. This allows the operation in almost any network with very low
tuning.

Acknowledgements

This work is supported by Spanish MINECO through project PIT
(TEC2015-69417-C2-2-R).

References

Alexa, Toolbar and Site Rankings. 〈http://www.alexa.com〉 (last checked: Feb. 7, 2017).
Ballou, D.P., Pazer, H.L., 2003. Modeling completeness versus consistency tradeoffs in

information decision contexts. IEEE Trans. Knowl. Data Eng. 15 (1), 240–243.
Belshe, M., Peon, R., Thomson, M., Oct. 2014. Hypertext Transfer Protocol version 2.

〈https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2〉.
Bianco, A., Mardente, G., Mellia, M., Munafo, M., Muscariello, L., 2009. Web user-

session inference by means of clustering techniques. IEEE/ACM Trans. Netw. 17 (2),
405–416.

Butkiewicz, M., Madhyastha, H.V., Sekar, V., 2011. Understanding website complexity:
measurements, metrics, and implications. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement, IMC '11, ACM, New York, NY,
USA, pp. 313–328.

Butkiewicz, M., Madhyastha, H.V., Sekar, V., 2014. Characterizing web page complexity
and its impact. IEEE/ACM Trans. Netw. 22 (3), 943–956.

Callado, A., Kelner, J., Sadok, D., Kamienski, C.A., Fernandes, S., 2010. Better network
traffic identification through the independent combination of techniques. J. Netw.
Comput. Appl. 33 (4), 433–446.

Catledge, L.D., Pitkow, J.E., 1995. Characterizing browsing strategies in the world-wide
web. Comput. Netw. ISDN Syst. 27, 1065–1073.

Charzinski, J., 2010. Traffic properties, client side cachability and CDN usage of popular
web sites. In: Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance, Vol. 5987 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 136–150.

Claise, E.B., Jan. 2008. RFC 5101: Specification of the IPFIX Protocol for the Exchange
of IP Traffic Flow Information.

Erman, J., Arlitt, M., Mahanti, A., 2006. Traffic classification using clustering algorithms.
In: Proceedings of the SIGCOMM workshop on Mining network data (MineNet '06),
pp. 281–286.

Ester, M., Kriegel, H., Sander, J., Xu, X., 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise, In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD-96, AAAI
Press, pp. 226–231.

Fang, C., Liu, J., Lei, Z., 2016. Fine-grained HTTP web traffic analysis based on large-
scale mobile datasets. IEEE Access. 4, 4364–4373.

Fatima, B., Ramzan, H., Asghar, S., 2015. Session identification techniques used in web
usage mining: a systematic mapping of scholarly literature. Online Inf. Rev. 40 (7),
1033–1053.

Finley, K., May 2014. Encrypted Web Traffic More than Doubles after NSA Revelations.
〈http://www.wired.com/2014/05/sandvine-report/〉.

Folino, G., Sabatino, P., 2016. Ensemble based collaborative and distributed intrusion
detection systems: a survey. J. Netw. Comput. Appl. 66, 1–16.

Fortino, G., Mastroianni, C., 2009. Next generation content networks. J. Netw. Comput.
Appl. 32 (5), 941–942, (next Generation Content Networks).

Free Facebook browsing in Vodafone Mobile Operator at Albania, 〈http://www.
vodafone.al/vodafone/Facebook_3837_2.php〉 (last checked: Feb. 7, 2017).

Google Safe Browsing for developers, 〈https://developers.google.com/safe-browsing〉
(last checked: Feb. 7, 2017).

Ihm, S., Pai, V.S., 2011. Towards understanding modern web traffic. In: Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC
'11, ACM, New York, NY, USA, pp. 295–312.

Jenks, G., 1967. The data model concept in statistical mapping. In: International
Yearbook of Cartography, Vol. 7, George Philip, pp. 186–190.

Khaleghi, A., Ryabko, D., Mary, J., Preux, P., 2016. Consistent algorithms for clustering
time series. J. Mach. Learn. Res. 17 (1), 94–125.

Khandelwal, H., Hao, F., Mukherjee, S., Kompella, R., Lakshman, T., 2013. Cobweb: In-
network cobbling of web traffic. In: Proceedings of IFIP Networking Conference, pp.
1–9.

Kim, Y., Hassan, A., White, R.W., Zitouni, I., 2014. Modeling dwell time to predict click-
level satisfaction. In: Proceedings of the 7th ACM International Conference on Web
Search and Data Mining, WSDM '14, ACM, New York, NY, USA, pp. 193–202.

Liu, H., Kešelj, V., 2007. Combined mining of web server logs and web contents for
classifying user navigation patterns and predicting users' future requests. Data
Knowl. Eng. 61 (2), 304–330.

Lu, C.-N., Huang, C.-Y., Lin, Y.-D., Lai, Y.-C., 2016. High performance traffic
classification based on message size sequence and distribution. J. Netw. Comput.
Appl. 76, 60–74.

Macia-Fernandez, G., Wang, Y., Rodríguez-Gómez, R.A., Kuzmanovic, A., 2012.

Fig. 17. Testing TBDClust running time.

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

26

http://www.alexa.com
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref1
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref1
https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref2
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref2
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref2
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref3
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref3
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref4
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref4
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref4
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref5
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref5
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref6
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref6
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref7
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref7
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref7
http://www.wired.com/2014/05/sandvine-report/
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref8
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref8
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref9
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref9
http://www.vodafone.al/vodafone/Facebook_3837_2.php
http://www.vodafone.al/vodafone/Facebook_3837_2.php
https://developers.google.com/safe-browsing
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref10
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref10
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref11
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref11
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref11
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref12
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref12
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref12
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref13

Extracting user web browsing patterns from non-content network traces: the online
advertising case study. Comput. Netw. 56 (2), 598–614.

Nguyen, T.T.T., Armitage, G., 2008. A survey of techniques for Internet traffic
classification using machine learning. Commun. Surv. Tutor., IEEE 10 (4), 56–76.

Parzen, E., 1962. On estimation of a probability density function and mode. Ann. Math.
Stat. 33 (3), 1065–1076.

QoSient, Argus: Audit Record Generation and Usage System, 〈http://www.qosient.com/
argus/〉 (last checked: Feb. 7, 2017).

Schatzmann, D., Mühlbauer, W., Spyropoulos, T., Dimitropoulos, X., 2010. Digging into
HTTPS: flow-based classification of webmail traffic. In: Proceedings of the 10th
Conference on Internet Measurement (IMC '10), ACM, New York, NY, USA, pp.
322–327.

Schneider, F., Agarwal, S., Alpcan, T., Feldmann, A., 2008. The new web: Characterizing
AJAX traffic. In: Passive and Active Network Measurement, vol. 4979 of Lecture
Notes in Computer Science, Springer, pp. 31–40.

Torres, L.M., Magaña, E., Izal, M., Morato, D., 2014. Characterizing webpage load from
the perspective of TCP connections. In: Proceedings of the 2014 Federated
Conference on Computer Science and Information Systems, vol. 2 of Annals of
Computer Science and Information Systems, IEEE, pp. 977–984.

Weinreich, H., Obendorf, H., Herder, E., Mayer, M., 2008. Not quite the average: an
empirical study of web use. ACM Trans. Web 2 (1), 1–31.

Xie, G., Iliofotou, M., Karagiannis, T., Faloutsos, M., Jin, Y., 2013. Resurf:
Reconstructing web-surfing activity from network traffic. In: Proceedings of IFIP
Networking Conference, pp. 1–9.

Zhang, J., Chen, X., Xiang, Y., Zhou, W., Wu, J., 2015. Robust network traffic
classification. IEEE/ACM Trans. Netw. 23 (4), 1257–1270.

Zink, M., Suh, K., Gu, Y., Kurose, J., 2009. Characteristics of YouTube network traffic at a
campus network: measurements, models, and implications. Comput. Netw. 53 (4),
501–514.

Luis Miguel Torres received his degree in
Telecommunications Engineering by the Public University
of Navarre (UPNA) in 2008 and his MSc and Ph.D. in
Communications Technology by the same university in
2009 and 2015 respectively. From 2008–2016 he has
worked with the Networks, Systems and Services research
group at the department of Automatics and Computation at
the Public University of Navarre. Nowadays he works as a
network traffic analyst in Naudit HPCN. His professional
activity centers around the analysis of Internet traffic.

Eduardo Magaña received his M.Sc. and Ph.D. degrees
in Telecommunications Engineering from Public University
of Navarra, Pamplona, Spain, in 1998 and 2001, respec-
tively. He is an associate professor at Public University of
Navarra. During 2002 he was a postdoctoral visiting
research fellow at the Department of Electrical
Engineering and Computer Science, University of
California, Berkeley. His main research interests are net-
work monitoring, traffic analysis and performance evalua-
tion of communication networks.

Daniel Morató received the M.Sc. degree in telecommu-
nication engineering and the Ph.D. degree from the Public
University of Navarre, Spain. During 2002 he was a visting
postdoctoral fellow at the Electrical Engineering and
Computer Sciences Department, University of California,
Berkeley. Since 2006 he has been working at the
Department of Automatics and Computer Sciences, Public
University of Navarre, as an associate professor. His
reseach interests include high-speed networks, perfor-
mance and traffic analysis of Internet services and network
monitoring.

Santiago Garcia-Jimenez received his M.Sc. and Ph.D.
degrees in Computer Science from Public University of
Navarra, Pamplona, Spain, in 2007 and 2013, respectively.
He had a fellowship in Telecommunications Engineering
Department in 2003–2008 and he has participated in
several European projects. His interests are network mon-
itoring based on active and passive measurements, network
measurement platforms, discovery of Internet topology, IP
addresses alias resolution and web troubleshooting.

Mikel Izal received his M.Sc. and Ph.D. degrees in
telecommunication engineering in 1997 and 2002 respec-
tively. In 2003 he worked as a scientific visitant at Institute
Eurecom, Sophia-Antipolis, France, performing measures
in network tomography and peer-to-peer systems. Since
then, he has been with the Department ofAutomatics and
Computer Sciences of the Universidad Pblica de Navarra
where he is an Associate Professor. His research interests
include traffic analysis, network tomography, high speed
next generation networks and peer to peer systems.

L.M. Torres et al. Journal of Network and Computer Applications 99 (2017) 17–27

27

http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref13
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref13
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref14
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref14
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref15
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref15
http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref16
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref16
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref17
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref17
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref18
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref18
http://refhub.elsevier.com/S1084-8045(17)30319-3/sbref18

	TBDClust: Time-based density clustering to enable free browsing of sites in pay-per-use mobile Internet providers
	Introduction
	Related work
	Methodology for a webpage clustering algorithm
	Webpage downloads from a traffic perspective
	Time-based density clustering (TBDClust)

	Results and validation
	Experimental datasets
	Parameter optimization
	TBDClust validation using a one-day real dataset
	TBDClust validation using a one-week real dataset

	TBDClust performance evaluation
	Conclusions
	Acknowledgements
	References

