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SUMMARY 

Over the last century, the production of crops worldwide has substantially 

increased due to the improvement in crop varieties and in management 

techniques. One of the most powerful tools used to achieve this increase was 

herbicides, which eliminates the weeds that compete with the crops for natural 

resources. However, the sustainted use of herbicides has triggered the 

appearance of resistance in weeds, which is a global agricultural problem that 

has been exponentially increasing over the last 30 years.  

Glyphosate is the most highly used herbicide worldwide due to its 

effectiveness and due to genetically modified crops that are resistant to this 

herbicide. The target site of glyphosate is 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS), an enzyme in the biosynthetic pathway of the aromatic 

amino acids (AAAs). One of the worst weeds reported to have resistant 

populations to glyphosate is Amaranthus palmeri, whose resistance 

mechanism involves EPSPS gene amplification, which leads to an 

overexpression of the enzyme target of glyphosate. 

The general objective of this work was to evaluate the physiological 

effects triggered by glyphosate that resulted in plant mortality in sensitive (GS) 

and resistant (GR) populations, focusing mainly on the consequences of 

glyphosate treatment in the AAA pathway and the branched-chain amino acid 

(BCAA) pathway. In addition, mixtures of glyphosate and the AHAS-inhibitor 

imazamox (an inhibitor of the BCAA pathway) were applied to obtain new 

insights into the regulation of both amino acid biosynthetic pathways and the 

possible cross-regulations and to confirm or reject the possibility of the 

employment of their mixture as an alternative to the application of glyphosate 

alone. To this end, the response to glyphosate of one glyphosate-sensitive (GS) 

and one glyphosate-resistant (GR) population of A. palmeri from North Carolina 

were compared at the molecular and biochemical levels.  

In this work, a correlation between EPSPS overexpression, EPSPS 

protein content and EPSPS activity and the level of resistance of the A. palmeri 

GR population was confirmed. A high copy number variation (CNV) of EPSPS 

had no major pleiotropic effect on the studied parameters; the AAA and BCAA 

pathway expression, free amino acid profiles and carbohydrate contents were 

similar for both populations in the untreated plants. This suggests that the CNV 



 
 

of EPSPS had no major pleiotropic effects on the physiology of the resistant 

plants.  

The significant increase in shikimate content with increasing doses of 

glyphosate in the GS population (but not in the GR population) suggests that 

the damage produced in the sensitive population was higher. The lower general 

increase in total free and aromatic amino acid (AAA) content in the GR 

population than in the GS population confirmed that the GS population damage 

was higher. 

The transcriptional response of the GS and GR populations to 

glyphosate treatment was studied, and a general induction of AAA pathway 

enzyme expression was identified. Very high increases in the Anthranilate 

synthase enzyme transcript levels were measured, while Chorismate mutase 

transcripts were not increased, suggesting a preferential flux of carbon towards 

the formation of tryptophan instead of tyrosine or phenylalanine after the 

regulatory point of chorismate formation. The absence of a response of BCAA 

gene expression to glyphosate treatment and the AAA gene expression after 

imazamox treatment suggests that no cross regulation exists between the AAA 

and BCAA pathways at the transcriptional level, despite their close relationship.  

Finally, interactions between mixtures of two different doses of 

glyphosate and one of imazamox were tested on A. palmeri. A general 

antagonistic effect was detected in the main physiological markers (shikimate, 

amino acid and carbohydrate levels) because effects that were detected after 

the application of the mixtures were mostly lower than the effects seen when 

applying the individual compounds. This general physiological antagonism 

suggests that the doses cannot be lowered in the mixtures of glyphosate and 

imazamox that are to be applied in the field.  

To summarize, this study describes new physiological insights into the 

characterization of the glyphosate-resistant weed population of North Carolina 

and unravels the mode of action of glyphosate on sensitive and resistant plants 

when applied alone or in combination with imazamox.  



 
 

RESUMEN 

Durante el siglo pasado, la producción agrícola se ha ido incrementando en 

todo el mundo gracias a la mejora en sus técnicas de manejo. Una de las 

herramientas más poderosas para alcanzar ese incremento en la producción 

fueron los herbicidas, los cuales eliminan las malas hierbas que compiten con 

los cultivos por los recursos naturales. Sin embargo, el uso inapropiado de los 

herbicidas ha desencadenado la aparición de resistencias en malas hierbas, 

un problema global para la agricultura que se ha ido incrementando durante 

los últimos 30 años. 

El glifosato es el herbicida más usado en todo el mundo debido a su 

efectividad como herbicida total, y sobre todo desde la aparición de cultivos 

genéticamente modificados resistentes a este herbicida. La diana del glifosato 

es la enzima 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), en la 

ruta biosintética de los aminoácidos aromáticos (AAA). Una de las peores 

malas hierbas que se ha descrito como resistente al glifosato es Amaranthus  

palmeri, cuyo mecanismo de resistencia es la amplificación génica de la 

enzima EPSPS, lo que conlleva una sobreexpresión de ésta enzima diana del 

glifosato.   

El objetivo general de este trabajo fue evaluar los efectos fisiológicos 

desencadenados por el glifosato que llevan a los individuos de las poblaciones 

sensible (GS) y resistente (GR) a la muerte, centrándolo fundamentalmente en 

las consecuencias del tratamiento con glifosato sobre la ruta de los AAA y la 

ruta de los aminoácidos ramificados (BCAA). Además, se aplicarion mezclas 

de glifosato y el inhibidor de la AHAS imazamox (inhibidor de la ruta de los 

BCAA) para profundizar en la regulación de ambas rutas biosintéticas de 

aminoácidos y su posible regulación cruzada, además de para confirmar o 

rechazar la posibilidad del empleo de las mezclas como una alternativa a la 

aplicación del glifosato en solitario. Para estas metas, la respuesta al glifosato 

de una población sensible (GS) y otra resistente (GR) de A. palmeri obtenidas 

en Carolina del Norte, fueron comparada a los niveles molecular y bioquímico. 

En este trabajo se ha confirmado la correlación entre la sobreexpresión 

génica, el contenido proteico y el nivel de actividad de la enzima EPSPS con 

el nivel de resistencia de la población GR de A. palmeri. Los altos niveles de 

variación en el número de copias génicas (CNV) de la enzima EPSPS no 



 
 

tuvieron efectos importantes en los parámetros estudiados: la expresión de las 

rutas de biosíntesis de los AAA y  de los BCAA, el contenido en aminoácidos 

libres y el contenido en carbohidratos fue similar para ambas poblaciones en 

condiciones de control. Esto sugiere que la CNV de la enzima EPSPS no tuvo 

un efecto pleiotrópico importante en la fisiología de las plantas resistentes.  

La acumulación de siquimato producida tras el tratamiento con 

glifosato en la población GS (pero no en la GR) indicó que la afección producida 

en la población sensible fue mayor. Los incrementos en los niveles de 

aminoácidos totales libres y aromáticos, menores en la población GR que en 

la GS, confirmaron que el daño producido en la población sensible fue mayor. 

Se estudió la respuesta transcripcional de las poblaciones GS y GR al 

tratamiento con glifosato, y se detectó una inducción general de la expresión 

de las enzimas de la ruta de los AAA. Se encontraron incrementos muy grandes 

en los niveles de tránscritos de la enzima Antranilato sintasa mientras que los 

niveles de tránscritos de la enzima Corismato mutasa no se incrementaron, lo 

que sugiere un flujo preferencial de carbono hacia la formación de triptófano 

en vez de tirosina o fenilalanina tras el punto regulatorio de la formación de 

corismato en presencia del herbicida. La ausencia de respuesta al tratamiento 

con glifosato en la expresión génica de la ruta biosintética de los BCAA, y de 

la ruta de los AAA al imazamox, sugirió que no existe regulación cruzada entre 

las rutas biosintéticas de los AAA y de los BCAA a nivel transcripcional, a pesar 

de su estrecha relación. 

Por último, las interacciones entre las mezclas de dos dosis diferentes 

de glifosato y una de imazamox se estudiaron en A. palmeri. Se detectó un 

efecto antagonista general en los principales parámetros fisiológicos: 

siquimato, aminoácidos y niveles de carbohidratos, porque los efectos 

detectados con las mezclas fueron en su mayoría menores que la adición de 

los efectos individuales de cada herbicida. Este antagonismo fisiológico 

general sugiere que al aplicar la mezcla de glifosato e imazamox en campo,  

las dosis recomendadas no pueden ser disminuidas. 

Resumiendo, esta Tesis describe nuevos aspectos fisiológicos en la 

caracterización de la población de Carolina del Norte resistente al glifosato y 

desentraña el modo de acción del glifosato en plantas sensibles y resistentes 

cuando éste es aplicado individualmente o combinado con imazamox. 
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GI.1 OVERVIEW: HERBICIDE RESISTANCE 

 

GI.1.1 Herbicides 

In a world with a growing population and increasing demand for food, 

innovations in agronomy are not an option but a necessity. In this context, in 

the middle of the past century, the “green revolution” began, which substantially 

increased the production of crops all over the world thanks to improvements in 

crop management and adjusting fertilization, irrigation, rotation and weed 

control techniques, among many others. These investigations and new 

applications brought many advantages but also some disadvantages, such as 

water contamination, risks to health and the environment, loss of soils and 

ecosystems, and increased resistance in non-beneficial organisms, such as 

weeds. 

 Weeds increase the cost of crop production because they compete with 

the crops for available resources such as water, nutrients, light and space, and 

they can host dangerous pests for crops and make harvest difficult. 

Several methods have been implemented to avoid the problems 

derived from weeds. Although there are other methods to control weeds, 

including agronomical and mechanical measures, chemical methods are the 

most extensively used, and among them, herbicides are the most important 

tools to control weeds (Edwards et al. 2014).       

Herbicides are small molecules (molecular mass of 700 Da or less) that 

inhibit specific molecular target sites within plant biochemical pathways and/or 

physiological processes (Dayan et al. 2010), which usually trigger a large 

number of negative effects in the plants that lead to death. In addition, the 

affinity of these compounds for their respective biological targets makes them 

useful tools to study plant biochemical and physiological processes (Dayan et 

al. 2010). 

At this point, two concepts that will be used in this work must be 

clarified: the mechanism of action and the mode of action of an herbicide. The 

mechanism of action is the target site or biochemical process that is specifically 

blocked by the herbicide, and the mode of action could be defined as the 

subsequent physiological processes that lead them to the death of the plant. 
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Herbicides can be classified in a variety of ways according to their 

chemical structure group, selectivity, application characteristics or mechanism 

of action. Classification based on the mechanism of action is one of the most 

useful and includes at least 25 groups that encompass all major plant functions: 

photosynthesis; fatty acid, amino acid, protein and pigment synthesis; the 

hormone system; and the cell cycle and cell wall formation. The most 

widespread herbicide site of action classification system is the HRAC 

classification (Herbicide Resistance Action Committee). This system 

differentiates groups of actions named with letters of the alphabet and 

describes not only the chemical family belonging to a specific site of action but 

all compounds, via their common names, included in each family. Délye et al. 

(2013) summarized this classification system taking into account the cellular 

distribution of the sites of action (Fig. GI.1).  

In this work, herbicides of family B and family G were used. Both of 

them affect the amino acid synthesis of the plant (Fig. GI.1). Family G affects 

the aromatic amino acid biosynthesis pathway (AAA pathway), with the enzyme 

5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) being the target of 

herbicides belonging to this family (Steinrücken and Amrhein 1980). The unique 

herbicide of this family is glyphosate, which has been commercialized and is 

the most highly used herbicide worldwide. Glyphosate is a broad-spectrum 

herbicide that controls a large number of weeds. It is a total, systemic herbicide 

that can be used in pre- or post-emergence (Shaner 2000; Duke and Powles 

2008). The use of glyphosate is allowed in crops in Spain (Regulation (EC) Nº 

1107/2009). 

Family B herbicides affect the branched-chain amino acid biosynthesis 

pathway (BCAA pathway). This family of herbicides inhibits the 

acetohydroxyacid synthase (AHAS) enzyme blocking BCAA pathway, which 

leads to plant death. AHAS-inhibitors are selective herbicides with the capability 

to control many weed species at low rates and with low risk to mammalian 

health, characteristics that have led them to be intensively used worldwide in 

most of the important crops (Powles and Yu 2010). 
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Figure GI.1. Cellular targets of herbicide action and herbicide classification by mechanism of action 
according to the Herbicide Resistance Action Committee (HRAC). Each capital letter in box is a 
family of herbicides that has the same mechanism of action. Herbicides target only a few proteins 
or processes among the tremendous range present in plants. (Délye et al. 2013). 
 

Since their discovery in the 1980s, new compounds belonging to this 

family of herbicides have been developed, and there are currently five different 

chemical classes of herbicides that inhibit AHAS: sulfonylureas, 

sulfonylaminocarbonyltriazolinones, imidazolinones, triazolopyrimidines and 

pyrimidinyl-oxy-benzoates (Powles and Yu 2010). Concerning imidazolinones, 

six herbicide active ingredients have been registered: imazamox, imazethapyr, 

imazapyr, imazamethabenz-methyl, imazaquin and imazapic, and they can be 

applied as a single active ingredient, as a combination of two ingredients, or in 

combination with other herbicides (Tan et al. 2006; Délye et al. 2016). Although 

six active ingredients have been registered, only the use of imazamox is 

allowed on crops in Spain (Regulation (EC) Nº 1107/2009). Imazamox is a 

selective herbicide that can be used on different crops such as Medicago sativa, 

Pisum sativum, Vicia faba, Phaseolus vulgaris, Glycine max, and Papaver 

somniferum and the Clearfield® crops of Oryza sativa, Helianthus annuus and 

Zea mays. 
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The BCAA and AAA biosynthetic pathways take place in the chloroplast 

and mainly take part in the building of proteins. Moreover, these pathways are 

involved in the synthesis of secondary metabolites related to a broad range of 

functions in the plant (Noctor et al. 2002; Sato et al. 2006), including defence 

functions against stress factors such as herbicides. 

 

GI.1.2 Resistance, a global problem 

Herbicide resistance is the ability of a weed biotype to survive an herbicide 

application, where under normal circumstances, that herbicide applied at the 

recommended rate would kill the weed. The resistance of weed biotypes to 

herbicides is a consequence of naturally occurring mutations and evolutionary 

processes. Individuals within a species that are best adapted and not 

susceptible to a particular practice, such as the application of a specific 

herbicide, are selected for and will increase in the population over time. 

Mitigating or slowing the evolution of herbicide resistance relies on reducing the 

selection pressure for resistance through the application of diverse weed 

management practices (Duke 2018). 

Today, some integrated management techniques that take into account 

all the interactions in a crop environment are being proposed. However, the 

need for fast solutions to overcome the lack of efficient tools for the control of 

resistant weeds makes long-term techniques difficult to apply and makes faster 

solutions more attractive, even though they do not often solve the whole 

problem. Although chemical management has been very effective for weed 

control, this practice brings a variety of issues, including the potential risk for 

the development of resistant weeds (Fig. GI.2) that eventually results in the 

herbicides being inefficient tools for weed control; thus, making weed control 

much more expensive and difficult.   

Long-term repeated application of the same herbicide, or other 

herbicides with the same site of action, accelerates the selection of resistant 

weeds to that type of herbicide (Neve et al. 2014). Thus, the classification of 

herbicides concerning their mechanism of action must be taken into account 

(Fig. GI.1). In this sense, the HRAC classification system is very useful because 

it classifies herbicides into families according to their mechanism of action, 

which is visually represented and summarized in Délye et al. 2013 (Fig. GI.1). 
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This classification groups herbicides that have the same affected 

processes in the weed; therefore, in case of the appearance of resistance when 

an herbicide is used, selection of an herbicide from another family would be the 

first alternative to improve weed control.   

 
Figure GI.2. Evolution of the number of species that have at least one population resistant to 
herbicides, grouped for several mechanisms of action with Herbicide Resistance Action Committee 
(HRAC) codes (each different capital letter indicate a different mechanism of action) (Heap 2018). 
 

In the last 40 years, the increase of resistance is a general feature 

among all chemical families (Fig. GI.2). In 1980, less than 50 different weed 

species showed at least one population with resistance to herbicides, while in 

2018 this number has increased to close to 500 weeds (Heap 2018) (Fig. GI.2). 

In addition, another problem is that almost 100 weed species have populations 

that are resistant to multiple sites of action (Heap 2018), further complicating 

their management (Tetard-Jones et al. 2018). Multiple resistance is defined as 

the expression (within individuals or populations) of more than one resistance 

mechanism (Powles and Preston 1995). Multiple-resistant plants may possess 

from two to several distinct resistance mechanisms and may exhibit resistance 

to only a few or several herbicides (Powles and Preston 1995). 

The selection pressure that chemicals place on weeds is the perfect 

example of evolutionary mechanisms and the “artificial” selection of some 

favourable mutations or developed abilities, which in this case allows weeds to 

be able to resist herbicides (Duke 2018). The global issue of herbicide 

resistance for weed management is a serious challenge for global food security 

(Délye et al. 2013, Tétard-Jones et al. 2018). 
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GI.1.3 Mechanisms of resistance to herbicides 

After application, herbicide molecules penetrate into the plant and are 

translocated to the location of the target protein. The herbicide molecules 

accumulate at the location of the target proteins and bind to the target proteins, 

thereby disrupting biosynthetic pathways or vital cell structures and/or 

generating cytotoxic molecules (Fig. GI.3) (Délye et al. 2013). Several 

resistance mechanisms that interfere with the action for the herbicide at 

different steps have evolved in weeds (Délye et al. 2013).  

Resistance can be classified into two main groups depending on the 

strategy used by the plant to survive the herbicide: non-target site and target 

site mechanisms (Powles and Preston 1995, Tétard-Jones et al. 2018). 

 

 Non‐target site mechanisms 

Evolved non-target site herbicide resistance can be due to one or a combination 

of different mechanisms that make it difficult for an herbicide to reach its target 

or limits the amount of herbicide that reaches the target protein to a nonlethal 

dose. This type of mechanism, which is unspecific, includes decreased 

herbicide penetration into the plant, decreased rates of herbicide translocation, 

increased rates of herbicide sequestration/metabolism (Powles and Yu 2010), 

and protection against herbicide effects (Délye et al. 2013). Non-target site 

herbicide resistances are proposed to be irrespective of the mechanism of 

action of the herbicides applied (Sabbadin et al. 2017) and can be explained by 

following the path of the herbicide from its application to its final effect (Fig. 

GI.3). 

Non-target site mechanisms of resistance include reduced penetration 

(Powles and Yu 2010) and translocation (Shaner 2009) (Fig. GI.3, letters A and 

B). A reduction in herbicide penetration has been reported in plants that are 

resistant to all major herbicides (Délye 2012), among them are glyphosate (Vila-

Aiub et al. 2012) and AHAS-inhibitors (White et al. 2002). Differences in the 

physical and chemical properties of the cuticle of resistant plants cause a 

reduction in the retention of the herbicide solution or penetration through the 

cuticle (Délye 2012). This type of mechanism is not expected to confer high 

levels of resistance (Délye 2012).  
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If the herbicide reaches the target site, an enhanced metabolism can 

degrade the active herbicide molecules before it can affect its target (Fig. GI.3, 

letter C). Herbicide degradation is a complex process that involves the 

coordinated action of several types of enzymes (Délye 2012): cytochrome 

P450s, glutathione-S-transferases, glycosyl-transferases, esterases, ABC 

transporters and hydrolases (Yuan et al. 2007; Powles and Yu 2010; Délye et 

al. 2013; Brazier-Hicks et al. 2018). These proteins act in four consecutive 

steps. First, the herbicide molecules are transformed into more hydrophilic 

metabolites, usually via oxidation. They are then conjugated to a plant acceptor 

molecule (normally thiols or sugars) and the metabolites are transported to a 

vacuole and/or the cell wall where, finally, further degradation may occur (Yuan 

et al. 2007).  

 
Figure GI.3 Resume of target site and non-target site mechanisms of resistance with the 
consecutive steps of herbicide action as a guide. Capital letters in black (A, B and D) indicate non-
target site mechanism of resistance and capital letters in blue (E and F) indicate target site 
mechanism of resistance. Numbers 1 to 5 indicate the consecutive steps of herbicide action. (Taken 
from Délye et al. 2013). 
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If damage is produced by the herbicide, some plants can neutralize the 

effects of toxic molecules generated by the herbicide-target site interaction 

(Délye et al. 2013) (Fig. GI.3, letter D). An increase in the expression of 

oxidases and peroxidases protects the cells against oxidative damage, thereby 

giving the resistant plant more time to degrade the herbicide (Délye 2012). 

The most negative aspect of non-target site resistance is an associated 

cross-resistance, which is unpredictable and is not specific to the mechanism 

of action of the herbicides (Edwards et al. 2014). Resistance that has been 

evolved by a given herbicide can confer cross-resistance to other herbicides 

with other mechanisms of action (Délye et al. 2013). 

 

 Target site mechanisms 

Evolved target-site resistance can be produced by the overexpression of a 

target enzyme or can occur by a gene mutation that allows an amino acid 

change in a target enzyme that prevents the herbicide from binding (Powles 

and Yu 2010).  

In the first case, the target overproduction (Fig. GI.3, letter E) increases 

the herbicide dose needed for weed control. The overproduction of the target 

can occur either due to an increase in the genomic copy number of the target 

or due to an enhanced translation of a normal genomic copy number into 

proteins. Several cases of resistance by target overproduction have been 

described in recent years, and this mechanism was first identified in glyphosate-

resistant plants in Gaines et al. (2010).  

In the second case, mutations that provoke structural changes in 

proteins (Fig. GI.3, letter F) can be selected over generations by pressure from 

the repetitive use of an herbicide with the same target site (Sabbadin et al. 

2017). These structural changes could result in strong negative effects on the 

ability of the herbicide to bind the target protein, which results in no (Fig. GI.3, 

letter F-a), moderate (Fig. GI.3, letter F-b) or a marked reduction (Fig. GI.3, 

letter F-c) in herbicide sensitivity at the protein level. In contrast, structural 

changes could result in an increased ability of the herbicide to bind the target 

protein (Fig. GI.3, letter F-d), which increases the sensitivity to the herbicide at 

the protein level (Délye et al. 2013).  
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GI.2 GLYPHOSATE 

 

GI.2.1 Overview 

Over the past four decades, the herbicide glyphosate has changed modern 

agriculture. Glyphosate is the common name of the molecule N-

(phosphonomethyl) glycine that was first commercialized as Roundup® in 1974. 

This compound is a unique herbicide that stands alone in many categories 

(Sammons and Gaines 2008), and due to its properties, it is the most highly 

used herbicide around the world.  

Glyphosate is a water-soluble herbicide that penetrates the leaf cuticle 

and is symplastically translocated via phloem to apical meristems, although 

acropetal glyphosate movement through the apoplast has also been reported 

(Vila-Aiub et al. 2012). This herbicide belongs to the G family of herbicides, 

which means that its mechanism of action is the specific inhibition of EPSPS, 

an enzyme that converts shikimate-3-phosphate (S3P) and 

phosphoenolpyruvate (PEP) to 5- enolpyruvylshikimate-3-phosphate (EPSP) in 

plastids in the biosynthetic AAA pathway (Steinrücken and Amrhein 1980) (Fig. 

GI.4). In the functioning of EPSPS, the enzyme must first bind to S3P as the 

first substrate, and the complex formed by EPSPS and S3P (EPSPS-S3P) 

subsequently binds to PEP as the second substrate. Glyphosate is a 

competitive inhibitor of PEP. When glyphosate binds to EPSPS, this prevents 

binding between PEP and the EPSPS-S3P complex, blocking its enzymatic 

activity (Schönbrunn et al. 2001). This affects the biosynthesis of three aromatic 

amino acids (AAAs): tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe).  

Glyphosate is a total herbicide that, today, can be used as a post-

emergence or pre-emergence herbicide. 

When glyphosate reached the market in 1974, it was classified as a 

post-emergence, non-selective herbicide (Duke and Powles 2008). For 

agricultural purposes, when it is not applied in combination with genetically 

modified (GM) crops, glyphosate is applied over the cropland only in pre-

emergence due to its capability to kill almost all plants (weeds or otherwise) 

(Duke and Powles 2008; Duke 2018). Glyphosate is the most highly used 

herbicide for early-season weed control before planting wheat crops (Duke and 
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Powles 2008), demonstrating the importance of pre-emergence glyphosate use 

in direct seeding techniques. In addition to agricultural uses, glyphosate has a 

side use in non-crop areas where the absence of plants is wanted, such as 

railways or pathways (Gomes et al. 2014; Duke 2018).  

The development of genetically modified resistant crops during the 

1990s made possible the agricultural use of glyphosate as a post-emergence 

herbicide in places where the cultivation of GM resistant crops is authorized 

(Duke 2018). In these cases, glyphosate is sprayed onto the plant foliage 

(Gomes et al. 2014) to kill weeds exactly at the time that it is needed.  

GM crops resistant to glyphosate were obtained using the 

Agrobacterium sp. strain CP4 (CP4-EPSPS), which is naturally resistant to 

glyphosate (Tétard-Jones and Edwards 2016). All plants and most bacteria 

have glyphosate-sensitive class I EPSPS, whereas some bacteria, such as 

Agrobacterium sp. strain CP4, have class II EPSPS that are relatively resistant 

to glyphosate and therefore have been used to generate glyphosate-resistant 

crops (Funke et al. 2006). To that end, the CP4-EPSPS gene was inserted into 

plants to encode an alternative EPSPS that was less sensitive to glyphosate 

than the endogenous EPSP synthase (Tan et al. 2006). As a result, the plant 

with the inserted CP4-EPSPS had an alternative EPSPS that was less sensitive 

or insensitive to glyphosate compared to endogenous EPSPS (Tan et al. 2006) 

and this allowed plants to survive glyphosate treatment.  

For post-emergence treatment, management with glyphosate requires 

glyphosate-resistant crops; therefore, the increase in the use of glyphosate has 

been closely related to the increasing development of genetically modified GM 

crops (Vila-Aiub et al. 2012; Duke 2018). Mechanical innovations such as 

shielded sprayers and devices that wipe the herbicide onto weeds that are taller 

than the crop have been developed to allow the use of this herbicide for crops 

that do not have GM glyphosate resistance. The application of glyphosate to 

GM crops brings a wide range of advantages (Duke and Powles 2008), and 

thus, crops can take advantage of their resistance to glyphosate and use all the 

resources for their growth with no competition. In this context, glyphosate is 

used on several million hectares of cropland (Powles 2008). However, the use 

of GM herbicide-resistant crops also brings many risks for weed control, such 

as grain contamination, segregation and introgression of herbicide-resistant 
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characteristics, weed population shifts between herbicide-resistant crops and 

weeds, and an increased use of herbicides for weed control (Owen and Zelaya 

2005).  

The toxic effect of glyphosate cannot be considered only in terms of its 

interaction at the target site. The inhibition of EPSPS results in a metabolic 

roadblock, with physiological consequences leading to plant death (Gomes et 

al. 2014). Thus, even though the changes in physiological plant processes 

induced by glyphosate have not been considered as primary effects, these 

changes contribute to the overall toxic effects of glyphosate. 

 

Figure GI.4 Aromatic amino acid pathway (AAA pathway) (in the right side) with their main 
enzymes: D-arabino-heptulosonate 7-phosphate synthase (DAHPS), dehydroquinate synthase 
(DHQS), 3-dehydroquinate dehydratase/shikimate dehydrogenase (DQ/SD), shikimate kinase 
(SK), 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), chorismate synthase (CS), 
chorismate mutase (CM) and  anthranilate synthase (AS). Branched-chain amino acid pathway 
(BCAA pathway) (in the left side) with their main enzymes: Acetohydroxy acid synthase (AHAS), 
acetohydroxyacid isomerreductase (AHAIR), dihydroxyacid dehydratase (DHAD) and BCAA 
transaminase (TA).The enzyme that synthesizes 2-ketobutyrate, threonine deaminase (TD), 
needed to start the reactions in the branch of Isoleucine (ILE) biosynthesis is represented too. Main 
enzymes of both pathways are represented in bold letters inside a dotted blue box. In black lower 
case letters the inhibitors of both pathways: Glyphosate in aromatic amino acid pathway and AHAS-
inhibitors in branched chain amino acid pathway. The source of carbon for both pathways is 
phosphoenol pyruvate (PEP) that comes from the photosynthesized glucose through glycolysis. 
Final products, leucine (LEU), valine (VAL), and isoleucine (ILE) in BCAA pathway, and tryptophan 
(TRP), phenylalanine (PHE) and (TYR) tyrosine in AAA pathway are represented in bold capital 
letters and intermediate products are represented in grey lower case letters. (Modified from Tan et 
al. 2006).  
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GI.2.2 Glyphosate mode of action  

The exact mechanism of plant death after glyphosate treatment is not known. 

Many studies have included new molecular methods, such as transcriptional 

comparisons (Yu et al. 2007; Zhu et al. 2008), proteomic approaches (Ahsan et 

al. 2008) and metabolomic profiling (Maroli et al. 2015; Trenkamp et al. 2009), 

but to date, the mode of action of this herbicide is not clear. 

In general, when the target of an inhibitor is affected, in this case, the 

EPSPS enzyme affected by glyphosate, death can occur due to different 

causes:  

 

 Accumulation of substrates 

Plant death could be the consequence of an accumulation or increased 

availability of the substrates of the inhibited enzymatic pathway. These 

accumulated substances could affect other important pathways in the plant, 

related in some way in a subtle balance between them.  

The main metabolite whose accumulation has been reported upstream 

of EPSPS is shikimate. Massive levels of shikimate have been detected in plant 

tissues (Lydon and Duke 1988; Becerril et al. 1989; Gaines et al. 2011) because 

inhibition of EPSPS causes feedback loops that drive an increased flow of 

carbon through the shikimate pathway, promoting shikimate accumulation. A 

decreased activity of the EPSPS enzyme is not enough to consume all the S3P, 

provoking the upstream accumulation of shikimate. The accumulation of 

shikimate is a well-known stress marker in plants treated with glyphosate (Zhu 

et al. 2008; Orcaray et al. 2010; Gaines et al. 2011; Whitaker et al. 2013; 

Lorentz et al. 2014; Doğramacı et al. 2015; Dillon et al. 2017). Although 

shikimate accumulation has been proposed to have toxic effects in the plants 

(De Maria et al. 2006), no evidence confirming this toxicity has been found.    

Quinate is another metabolite whose accumulation upstream of EPSPS 

has been reported (Orcaray et al. 2010). Quinate can enter into the AAA 

pathway by its conversion to either dehydroquinate or to shikimate by 

dehydroquinate synthase or 3-dehydroquinate dehydratase/shikimate 

dehydrogenase, and the inhibition of this main trunk results in an accumulation 

of quinate (Orcaray et al. 2010). Other metabolites upstream of EPSPS, such 
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as gallic acid and protocatechuic acid, which are produced in lateral branches 

of the shikimate pathway, accumulate after glyphosate treatment (Lydon and 

Duke 1988; Becerril et al. 1989; Hernandez et al. 1999). Nevertheless, it has 

not been possible to correlate the accumulation of these metabolites with the 

toxic response of the plant. Death could be the consequence of an 

accumulation or increased availability of the substrates of the inhibited 

enzymatic pathway. These accumulated substances could affect other 

important pathways in plant, related in some way in a subtle balance with them.  

 

 Lack of end products 

The lack of end products due to the blockage of a biosynthetic pathway when 

glyphosate is applied is another possible cause of plant death. If AAA levels are 

insufficient to maintain necessary protein synthesis, this could trigger injury 

symptoms and the lack of essential plant compounds, and in the long run, could 

lead to plant death (Duke and Powles 2008). However, the reduction of AAAs 

is a tendency that is not always seen in plants when glyphosate is applied. In 

some cases, a transient decrease occurs, but after that, the AAA content does 

not decrease significantly (Orcaray et al. 2010). The recovery in AAA levels 

could be due to increased protein turnover, with a resultant total free amino acid 

accumulation, including AAAs, and a decrease in soluble protein levels (Zulet 

et al. 2013a, 2015). 

 

 Deregulation of the pathway 

Lethality could be associated with the deregulation of the pathway. When the 

pathway is deregulated because of the inhibition of the target, several side 

reactions are triggered, and these side reactions can have effects on different 

metabolic pathways that are related to the affected pathway (Maroli et al. 2015). 

EPSPS can directly affect carbon metabolism because PEP is not consumed 

when EPSPS is inhibited (Fig. GI.4), which causes deregulation at this level 

(Colombo et al. 1998; De Maria et al. 2006). This deregulation, provoked by 

glyphosate in a key product of carbon metabolism, could affect carbohydrate 

biosynthesis and translocation. In relation to this, it has been reported that 

treatment with glyphosate produces carbohydrate accumulation in leaves and 

roots of treated pea plants and an enhanced ethanol fermentative metabolism 
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(Orcaray et al. 2012). Another point of possible deregulation is in the 

biosynthesis of amino acids.  

 

GI.2.3 Resistance to glyphosate 

In 1997, glyphosate-resistant weeds were reported for the first time (Heap 

2018; Powles et al. 1998), twenty-three years after the initial use of this 

herbicide in 1974 (Powles 2008). The introduction of genetically modified crops 

such as corn, cotton, and soybean exacerbated the evolution of resistance to 

glyphosate due to its extended use (Nandula 2010; Vila-Aiub et al. 2012). To 

date, resistance to glyphosate has been documented in 41 species (Fig. GI.5.) 

(Heap 2018).  

 
Figure GI.5 Evolution of the number of species that have at least one population resistant to 
glyphosate in the last 20 years (Heap 2018). 
 

Glyphosate-resistant weeds are a serious challenge to modern 

agricultural practices and are likely to increase the cost of production 

(Livingston et al. 2015). Glyphosate resistance individually would not be a major 

issue because it is controllable by usual herbicide management practices. 

However, glyphosate was applied to fields that contained weeds that were 

resistant to other herbicides and, as a result, multiple resistances, which are 

ever more difficult to control, have arisen (Heap and Duke 2018). Thus, some 
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important weeds, such as Amaranthus rudis (Legleiter and Bradley 2008), 

Conyza canadensis (Davis et al. 2009) and Lolium rigidum (Neve et al. 2004), 

which are simultaneously resistant to glyphosate and another herbicides, have 

appeared (Powles and Preston 1995; Yu et al. 2009). A major lesson is that 

maintenance of diversity in weed management systems is crucial for glyphosate 

to be sustainable (Powles 2008). 

Over the years, target site and non-target site resistance and the 

combination of these have emerged (Nandula et al. 2013). 

 

 Non‐target site resistance to glyphosate 

Non-target site resistance to glyphosate could be an important evolutionary 

mechanism of weed resistance (Yuan et al. 2007). Glyphosate provokes low 

variations for target-site resistance alleles, which leads to a limited number of 

instances of target-site resistance and confers special importance to the 

appearance of non-target site resistance. 

However, a few cases in which the cause of resistance is at least a 

partially non-target site mechanism have been described. The main non-target 

site resistance to glyphosate that has been described is an alteration in the 

pattern of glyphosate translocation; thus, in resistant plants, less herbicide is 

translocated to the sinks, and it is blocked in treated leaves in Sorghum 

halepense (Vila-Aiub et al. 2012). In Lolium rigidum, there is an increased 

transport of the herbicide to the leaf tips, with 3-fold less glyphosate being 

translocated from the leaves to other plant organs (Lorraine-Colwill et al. 2002; 

Yu et al. 2009). The preferential accumulation of glyphosate in the leaf tips of 

treated leaves in resistant plants suggests that more glyphosate is travelling in 

the xylem than is moving into the phloem. Although these authors do not 

propose vacuolar sequestration in this case, rapid vacuole sequestration of 

glyphosate has been described in several species as contributing to glyphosate 

resistance (Shaner 2009; Sammons and Gaines 2014). Reduced glyphosate 

foliar uptake enhanced reduced translocation and was reported in glyphosate-

resistant Lolium multiflorum (Nandula et al. 2008) and in Conyza bonariensis 

(Dinelli et al. 2008). 
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 Target site resistance to glyphosate 

-Target mutation: In the structure of the EPSPS enzyme, the substitution of 

proline in position 106 with other amino acids changes the physical-chemical 

properties of the enzyme. Pro-106 substitutions cause a slight narrowing of the 

glyphosate/PEP binding site cavity, which endows glyphosate resistance but 

preserves EPSPS functionality (Healy-Fried et al. 2007). Other substitutions in 

amino acid positions, such as glycine-101 and threonine-102, have also been 

reported (Powles and Yu 2010), but they cause such a great reduction in 

binding that neither glyphosate nor PEP can bind to EPSPS, which implies that 

EPSPS losses its functionality (Powles and Yu 2010). 

The first report of this type of resistance was in Eleusine indica (Lee 

2000), where proline was changed for serine (Pro-106-Ser) (Powles and Yu 

2010). Subsequently, threonine substitution (Pro-106-Thr) in Lolium rigidum 

(Wakelin and Preston 2006) and alanine substitution (Pro-106-Ala) (Yu et al. 

2007) were reported in a variety of weeds. Recently, leucine (Pro-106-Leu) and 

serine substitutions (Pro-106-Ser) were reported in Chloris virgate (Ngo et al. 

2018a). These mutations endow only a limited resistance to glyphosate (Powles 

and Yu 2010) unless they are combined with other resistance mechanisms. 

 

-Target overproduction: An increase in the copy number of the gene that 

encodes the EPSPS enzyme allows its overproduction, which confers a high 

value of resistance to glyphosate (Gaines et al. 2010; Ngo 2018b). This EPSPS 

gene amplification is heritable and correlates with the expression level and 

glyphosate resistance (Powles and Yu 2010). Plants with higher amplification 

of the EPSPS gene showed higher levels of glyphosate resistance, whereas 

less amplification of the EPSPS gene endowed a lower level of glyphosate 

resistance (Vila-Aiub et al. 2014; Ngo 2018b). In addition, it has been 

demonstrated that EPSPS overproduction does not have an associated fitness 

cost (Vila-Aiub et al. 2014).  

This type of resistance was first detected in Amaranthus palmeri, with 

a copy number variation (CNV) between 30 and 50 times higher in resistant 

populations than in sensitive ones (Gaines et al. 2010). The CNV of EPSPS is 

the mechanism of resistance in several other weed species, including Lolium 

multiflorum (Salas et al. 2012) and Kochia scoparia (Wiersma et al. 2015) and 
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in Amaranthus, species such as Amaranthus tuberculatus (Lorentz et al. 2014) 

and Amaranthus spinosus (Nandula et al. 2014). 

 

GI.3 AROMATIC AMINO ACID BIOSYNTHETIC PATHWAY 

 

GI.3.1 Overview 

Aromatic amino acids (AAA) can only be synthesized by bacteria, fungi and 

plants and are essential amino acids for humans. In plants, the AAA 

biosynthetic pathway is located in plastids (Schmid and Amrhein 1999; Délye 

et al. 2013). The importance of this pathway for the plant is well known, in fact, 

under normal conditions, this pathway can fix approximately 20% of the total 

carbon fixed by the plant (Haslam 1993).   

To understand the complex mechanisms that are triggered in a plant 

after glyphosate treatment, the entire AAA biosynthetic pathway must be 

understood, from the carbon inputs to the products of this pathway, which are 

the three aromatic amino acids Phe, Tyr, and Trp. The AAA pathway uses 

carbon from primary metabolism derived from glycolysis and the pentose 

phosphate pathway (Maeda and Dudareva 2012) to form chorismate, the 

precursor of the essential AAAs (Tzin and Galili 2010) (Fig. GI. 4). The AAA 

synthesis pathway can be subdivided into two steps: (i) the pre-chorismate 

pathway (also known as shikimate pathway), which provides the precursor 

chorismate used for the synthesis of all AAAs; and (ii) the post-chorismate 

pathway, which can lead to the synthesis of either Phe and Tyr, or Trp, via two 

different routes (Maeda and Dudareva 2012; Tohge et al. 2013a) (Fig. GI.1). 

The synthesis of chorismate is catalysed by seven enzymes acting 

sequentially (Fig. GI.1): D-arabino-heptulosonate 7-phosphate synthase 

(DAHPS), dehydroquinate synthase (DHQS), 3-dehydroquinate 

dehydratase/shikimate dehydrogenase (DQ/SD), shikimate kinase (SK), 

EPSPS, and chorismate synthase (CS). Enzymes DQ and SD form a 

bifunctional DHQ-SDH dimer in plants that acts in close coordination (Maeda 

and Dudareva 2012); therefore, in this work, they were treated as one 

enzymatic complex rather than two different enzymes, and this complex is 

called DQSD. 
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By using chorismate as a substrate, there are two enzymes that can 

act in this pathway, which divides the pathway into two branches. In one branch, 

the synthesis of Trp starts with the reaction catalysed by anthranilate synthase 

(AS) using chorismate as a substrate. In the other branch, the synthesis of Phe 

and Tyr starts with the reaction catalysed by chorismate mutase (CM), again 

using chorismate as a substrate (Maeda and Dudareva 2012; Tohge et al. 

2013a).  

Some of the AAAs formed in the pathway are used by plants to form 

proteins, are precursors for secondary metabolites, and are involved in plant 

stress tolerance, such as phenylpropanoids, lignans, flavonoids, isoflavonoids, 

condensed tannins, anthocyanin pigments and some simple phenolic 

compounds (Janzik et al. 2005; Sato et al. 2006; Maeda et al. 2010; Tohge et 

al. 2013a). 

The synthesis of AAAs is a process that is strongly controlled by many 

regulators because it is a key pathway in the biology of the plant (Bentley and 

Haslam 1990; Tzin and Galili 2010a; Tohge et al. 2013b; Galili et al. 2016). 

There are four main points in the pathway that can be regarded as checkpoints:  

 

1. The entrance of the pathway. The enzyme DAHPS catalyses the first reaction 

of the pathway: an aldol condensation of PEP and erythrose 4-phosphate to 

form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) (Shumilin et al. 

2003). This enzyme is highly regulated by different mechanisms, as this 

reaction can either increase or decrease the entrance of carbon into the entire 

pathway (Sato et al. 2006; Maeda and Dudareva 2012). 

 

2. The target site of glyphosate. The enzyme EPSPS, whose gene 

overexpression or mutation confers resistance to glyphosate, may be regulated 

by a variety of mechanisms at either the pre- or post-transcriptional level, which 

coordinates the plant response to herbicide treatment (Maeda and Dudareva 

2012; Gaines et al. 2013). EPSPS is the sixth enzyme in the AAA pathway 

(Fig.GI. 4) and is a nuclear-encoded protein that is transported into the plastids 

(Della-Cioppa et al. 1986; Délye et al. 2013). This enzyme is monomeric and 

has two differentiated domains joined by protein fibres (Schönbrunn et al. 

2001). These fibres can function like a hinge that brings the two protein domains 
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closer together. When a substrate binds to the enzyme, the two parts of the 

active site of the enzyme close over the substrate (Schönbrunn et al. 2001). 

 

3. The branch point in the AAA pathway. The two enzymes that use chorismate 

as a substrate, CM and AS, could also be regarded as checkpoints. Any 

preferential flux to one branch or another could be related to different signals in 

the pathway and could give information regarding which amino acid has a 

regulatory function, what type of regulation is occurring, and what possible pre- 

and post-transcriptional mechanisms are involved in these enzymatic activities 

and other intermediate metabolites (Tzin and Galili 2010b; Maeda and 

Dudareva 2012). 

 

4. The exits of the pathway. Phe serves as a precursor for a large family of 

secondary metabolites, of which the main group is the phenylpropanoids 

(flavonoids, monolignols, flavonoids, coumarins, stilbenes, xanthones, phenolic 

esters, benzoic derivatives, anthocyanins, and cell wall components) (Sato et 

al. 2006; Boudet 2007) whose biosynthesis is initiated by the activity of 

phenylalanine ammonia lyase (PAL). The phenylpropanoids possess multiple 

functions, in particular, protection against various abiotic and biotic stresses, 

and their production is generally stimulated by such stresses. 

Tyr serves as a precursor to several secondary metabolites, including 

plastoquinones, isoquinolines, alkaloids and non-protein amino acids, which 

can be catalysed with PAL enzyme that is the principal exit of the pathway. The 

secondary metabolites formed with this amino acid are of the utmost 

importance for the plant. Tyr is catalysed by tyrosine ammonia lyase (TAL) or 

by Tyr-aminotransferase (TAT) (MacDonald and D’Cunha 2007).  

Trp is catalysed into many indol-containing secondary metabolites, 

such as IAA, phytoalexins and terpenoids. There are many enzymes proposed 

that use Trp as a substrate, such as two cytochrome P450s, Trp decarboxylase 

and Trp aminotransferase, and it is not clear if one of these is more prominent 

(Tzin and Galili 2010b). 
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GI.3.2 Regulation of AAA pathway 

All enzymes involved in the AAA pathway have been biochemically 

characterized, and the corresponding genes have been identified in both 

microbes and plants (Maeda and Dudareva 2012). Microbial enzymes of the 

pathway have been extensively studied with genetic analyses that have clarified 

AAA pathway regulation. In contrast, only limited genetic studies have been 

performed in plant enzymes of the AAA pathway, and thus, the regulation of the 

AAA pathway remains poorly understood in plants (Maeda and Dudareva 

2012). Although the regulation of the AAA pathway is not completely clear, 

recent advances have elucidated some possible transcriptional and post-

transcriptional regulations.  

 

 Transcriptional regulation 

It has been reported that the presence of many transcription factors co-regulate 

gene expression of the AAA pathway. This regulation is based in several 

transcription factors: ODORANT1 (ODO1), EMISSION OF BENZENOIDS II 

(EOBII) (Verdonk 2005) and EPF1, a C2H2-type zinc finger DNA-binding 

protein (Takatsuji et al. 1992) (Fig. GI.6).  

ODO1 and EOBII are closely related; in fact, it has been proposed that 

EOBII activates ODO1 in Petunia hybrida (Van Moerkercke et al. 2011). The 

suppression of both transcription factors decreased the expression of CM, and 

EOBII suppression resulted in partial ODO1 downregulation (Spitzer-Rimon et 

al. 2010) (Fig. GI.6). In contrast, the overexpression of EOBII did not 

significantly alter the expression of ODO1 or CM (Spitzer-Rimon et al. 2010); 

therefore, additional factors are likely involved (Maeda and Dudareva 2012). 

ODO1 affected the expression of several enzymes in the AAA pathway; indeed, 

DAHPS and EPSPS expression were affected by this transcription factor 

(Verdonk 2005) (Fig. GI.6).  

It was demonstrated that in Petunia hybrida, EPF1 exhibited a very 

similar activation pattern in expression compared with the EPSPS activation 

pattern (Takatsuji et al. 1992). This common pattern was proposed as evidence 

of specific regulation, in which EPF1 is a positive transcription factor of EPSPS 

(Takatsuji et al. 1992) (Fig. GI.6).  
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It was reported in Arabidopsis thaliana that other transcription factor 

members of the MYB family (MYB 51 and MYB 34) activated genes encoding 

DAHPS (Bender and Fink 1998) and AS (Gigolashvili et al. 2007) and that AS 

had complementary regulation with ORCA3 (another MYB) in Catharanthus 

roseus (Van Der Fits and Memelink 2000) (Fig. GI.6).   

Other transcription factors, such as NST1, NST3, and MYB 8, had a 

general effect on the transcription of all the enzymes in the pre-chorismate part 

of the AAA pathway (Maeda and Dudareva 2012). 

  

 Post‐transcriptional regulation 

It has been proposed that a general feedback regulation is carried out by the 

final products of the AAA pathway, with Trp regulating DAHPS and AS, and Tyr 

and Phe regulating CM (Tzin and Galili 2010b; Galili et al. 2016), although in 

the case of DAHPS inhibition by Trp, feedback inhibition remains controversial. 

In fact, other studies have reported the stimulation of this enzyme when Trp 

levels increase (Fig. GI.6) (Pinto et al. 1988; Maeda and Dudareva 2012). In 

addition, it has been proposed that Trp stimulates CM enzyme activity (Maeda 

and Dudareva 2012; Galili et al. 2016), in which case this enzyme acts in the 

opposite direction as the other two aromatic amino acids (Fig. GI.6).  

In the case of Tyr and Phe, it has been proposed that there is not only 

allosteric inhibition of CM but also inhibition of the final enzymes whose 

products are the other two AAAs – arogenate dehydrogenase (ADT) in the case 

of Phe, and arogenate dehydratase (ArDH) in the case of Tyr (Maeda and 

Dudareva 2012; Galili et al. 2016) (Fig. GI.6).  

Currently, it has not been confirmed whether or not there is any kind of 

post-transcriptional regulation over EPSPS, although an additional control of 

transcriptional regulation has been proposed (Mazzucotelli et al. 2008; Délye 

2012). 

A general coordination of transcriptional and post-transcriptional 

regulation in some important amino acid pathways, including the AAA pathway, 

has been proposed (Less and Galili 2008). These authors proposed that the 

stimulation or repression produced by stress causes a reduction or increase in 

the level of amino acids. This provokes a concomitant elevation or reduction in 

the allosteric feedback inhibition (red and green arrows in Fig. GI.6), resulting 
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in an acceleration or slowdown of the carbon flux into the pathway. Only when 

the levels of the biosynthetic enzymes are not sufficient to maintain flux through 

the pathway in response to a stress (e.g., glyphosate) would the expression of 

the genes also be stimulated (or repressed) (Less and Galili 2008).  

 

Figure GI.6 Regulation of the AAA pathway with their main enzymes: D-arabino-heptulosonate 7-
phosphate synthase (DAHPS), dehydroquinate synthase (DHQS), 3-dehydroquinate 
dehydratase/shikimate dehydrogenase (DQSD), shikimate kinase (SK), 5-enolpyruvylshikimate 3-
phosphate synthase (EPSPS), chorismate synthase (CS), anthranilate synthase (AS), chorismate 
mutase (CM) and two post-prephenate enzymes with a regulatory role:arogenate dehydratase ADT 
and arogenate dehydrogenase (ArDH). Arrows in purple: transcriptional regulation produced by 
transcriptional factors. Arrows in red, green and brown: Post-transcriptional regulation, being red 
for inhibition loop, green for enhanced loop, and brown for controversial behavior. In purple circles 
transcriptional factors: myelobastosis family (MYBs), octadecanoid-derivative responsive 
Catharanthus AP2-domain 3 (ORCA3), ODORANT1 (ODO1),  EPIDERMAL PATTERNING 
FACTOR 1 (EPF1) and EMISSION OF BENZENOIDS II (EOBII) and in blue boxes enzymes of the 
pathway. (Based on Maeda and Dudareva 2012). 
 

The stimulation of the genes is probably mediated by transcription 

factors (Maeda and Dudareva 2012) (purple arrows in Fig. GI.6). It has been 

proposed a general feedback regulation produced by the final products of the 

AAA pathway, the three aromatic amino acids (Trp over DAHPS and AS; and 
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Tyr and Phe over CM) (Tzin and Galili 2010b; Galili et al. 2016) although in the 

case of DAHPS inhibition by Trp, feedback inhibition is controversial. In fact, 

other studies reported the stimulation of this enzyme when Trp levels increase 

(Fig. GI.6) (Pinto et al. 1988; Maeda and Dudareva 2012). In addition, it has 

been proposed a stimulation of CM enzyme activity by Trp (Maeda and 

Dudareva 2012; Galili et al. 2016), that acts over this enzyme in the opposite 

direction comparing to the other two aromatic amino acids (Fig. GI.6). 

 

GI.4 BRANCHED-CHAIN AMINO ACID BIOSYNTHETIC 

PATHWAY 

 

GI.4.1 Overview 

Branched-chain amino acids (BCAAs) can only be synthesized by 

microorganisms and plants and are essential amino acids for humans. In plants, 

the BCAA biosynthetic pathway is located in plastids (Wittenbach and Abell 

1999). 

This pathway is composed of two parallel branches, where Ile is 

synthesized in one branch and Val and Leu in the other branch. Both branches 

consist of a single set of four enzymes that develop their function one by one 

(Galili et al. 2016). These reactions start with the enzyme AHAS, which is a 

nuclear-encoded protein that is transported into plastids (McCourt and 

Duggleby 2006). AHAS catalyses the condensation of either two molecules of 

pyruvate to form acetolactate, or one molecule of pyruvate and one molecule 

of 2-ketobutyrate to form 2-aceto-2-hydroxybutyrate (Singh 1999; Binder et al. 

2007) (Fig. GI.4). 2-Ketobutyrate is synthesized from threonine with the 

intermediation of the enzyme threonine deaminase (TD) (Halgand et al. 2002) 

(Fig. GI.4). Once 2-acetolactate or 2-aceto-2-hydroxy-butyrate are formed, the 

next enzymes act sequentially until the biosynthesis of the BCAAs is complete 

(Fig. GI.4). Acetohydroxyacid isomerreductase (AHAIR) catalyzes the reductive 

isomerization of acetolactate to 2,3-dihydroxy-3-isovalerate or the conversion 

of 2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-methylvalerate (Durner et al., 

1993). Dihydroxyacid dehydratase (DHAD) catalyses the dehydration of 2,3-

dihydroxy-3-isovalerate or 2,3-dihydroxy-3-methylvalerate to the 2-oxo acids 3-
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methyl-2-oxobutanoate (3MOB) or 3-methyl-2-oxopentanoate (3MOP). 3-MOB 

and 3-MOP are 2-oxo acids that can be converted into the three BCAAs; 3-

MOB serve as a substrate for the biosynthesis of valine and leucine, and 3-

MOP is the substrate for the biosynthesis of isoleucine (Binder 2010). The last 

step in the biosynthesis is the action of BCAA transaminase (TA), which 

catalyses the transamination of the respective 2-oxo acids into their 

corresponding amino acids: 4-methyl-2-oxopentanoate to Leu, 3-methyl-2-

oxobutanoate to Val, and 3-methyl-2-oxopentanoate to Ile (Fig. GI. 4) (Singh 

1999). 

 

GI.4.2 BCAA regulation 

For BCAA regulation, a predominant mechanism of allosteric post-

transcriptional regulation with a general feedback loop produced by BCAA 

accumulation has been proposed, with other possible transcriptional and post-

transcriptional mechanisms that are not yet elucidated (Binder et al. 2007; Galili 

et al. 2016). An increase in BCAA levels inhibits the AHAS enzyme, which 

blocks the pathway at the first step. In addition, TD is inhibited by high levels of 

Ile, although this inhibition of the TD enzyme is weakened by an increase in Val 

levels (Halgand et al. 2002).  

Each AHAS catalytic subunit comes with two separate repeats of its 

regulatory subunit, and it is speculated that these duplicate regions provide two 

separate regulatory sites, one for leucine and another for valine/isoleucine, 

taking into account the synergistic inhibition between leucine and 

valine/isoleucine (Duggleby et al. 2008), rather than a general inhibition by 

BCAAs for both branches of the pathway.  

 

GI.4.3 BCAA inhibitors 

BCAA inhibitors belong to the B family of herbicides according to HRAC 

classification, as was explained in GI.1.1. AHAS catalyses the synthesis of 

acetolactate, a precursor of valine and leucine, and acetohydroxybutyrate, a 

precursor of isoleucine (Binder 2010). As AHAS is the entrance point of the 

BCAA biosynthetic pathway, it has been intensely used as a target point for 



GENERAL INTRODUCTION 

27 
 

herbicides (Tan et al. 2006). Indeed, AHAS inhibitors are the only known 

commercialized herbicides belonging to this family. 

AHAS has a catalytic subunit that is normally activated by the cofactor 

thiamine diphosphate (TPP, also known as ThDP) and a smaller regulatory 

subunit that controls the catalytic site (Li et al. 2013). It is in this regulatory 

subunit where the feedback inhibition by BCAAs takes place (Duggleby et al. 

2008). The mechanism of AHAS inhibition is not the same as in EPSPS, where 

glyphosate mimics PEP and binds to the enzyme causing a blockage of the 

active site of the enzyme. In the case of AHAS, the inhibitors block the channel 

that allows either the two molecules of pyruvate or one of pyruvate and another 

of 2-ketobutyrate to enter the active site in the catalytic subunit. This is possible 

because the active site is deep inside a narrow channel that can be obstructed 

by the herbicide (McCourt and Duggleby 2006). 

Very little is known about AHAIR and DHAD (Zhang et al. 2015). AHAIR 

has been studied as a target of herbicides, but the inhibition of this enzyme is 

less efficient than the inhibition of AHAS (Dumas et al. 1994), making AHAS 

inhibitors much more effective at altering plant metabolism than AHAIR 

inhibitors (Zabalza et al. 2013). There are two main problems for AHAIR 

inhibitors. First, there is a larger amount of AHAIR than AHAS; therefore, higher 

concentrations of herbicide are needed to obtain the same results. Second, 

binding between AHAIR herbicides and the enzyme are reversible, while 

AHAS-inhibitor binding is irreversible (Durner et al. 1993). Even fewer studies 

are available regarding the DHAD enzyme, although the DHAD gene is an 

essential gene whose decreased expression has been related to slowed root 

growth, and its disruption has been related to a higher susceptibility to salinity 

in Arabidopsis thaliana (Zhang et al. 2015). This lack of knowledge makes it 

difficult to design inhibitors, and to date, none are present in the market.    

 TAs have been studied only in a few plant species (Maloney et al. 

2010). Six TA genes were identified in Arabidopsis thaliana (Diebold et al. 2002) 

and in Solanum lycopersicum (Maloney et al. 2010). The location of TAs and 

their function have been reported in many studies as being highly variable 

(Diebold et al. 2002; Schuster et al. 2006; Binder et al. 2007; Maloney et al. 

2010). This complexity makes very difficult to design an inhibitor for 

commercialization, and to date, none are commercially available. 
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GI.4.4 Resistance to herbicides inhibiting AHAS 

The primary use of this type of herbicide concerns non-transgenic crops, where 

they are effective, but their continuous use has resulted in the development of 

resistance in weeds (Powles and Preston 1995) as has occurred in the case of 

glyphosate and any other herbicide used in excess. Currently, there are 159 

AHAS weed species with at least one population that has shown resistance to 

AHAS inhibitors, and 39 of them are resistant to imazamox (Heap 2018). This 

is the highest number of species with at least one population resistant to this 

group of herbicide (Délye et al. 2016). A. palmeri is now included among these 

species (Gaedert et al. 2017; Küpper et al. 2017).  

The main mechanisms of resistance to this family of herbicides are 

target site mechanisms based on AHAS protein mutations (Ala-122, Pro-197, 

Ala-205, Asp-376, Trp-574, Ser-653 and Gly-654) (Powles and Yu 2010). This 

family of herbicides is well known for their ability to select resistant weed 

populations (Tranel and Wright 2002); therefore, their repetitive use has likely 

caused the appearance of these mutations and the subsequent resistance in 

weeds (Sabbadin et al. 2017). Because of this, these herbicides should not be 

used individually as the sole means of weed control in any field over a long 

period of time, and mixtures of herbicides could be a possible alternative 

(Shaner 1999). 

Non-target site resistance mechanisms to AHAS inhibitors based on 

cytochrome P450 monooxygenases have been described (Busi et al. 2011), 

and it is proposed that these can appear in a wide range of species and can be 

very specific to a given herbicide (Yu and Powles 2014). These mechanisms 

are another cause of resistance to AHAS inhibitors in weeds (Délye et al. 2013), 

although to date they have only been demonstrated in three broadleaf weed 

species (Délye et al. 2016).  

Differential herbicide uptake has been identified as a resistance 

mechanism to AHAS inhibitors in Helianthus annuus (White et al. 2002) and in 

Sorghum bicolor (Anderson et al. 1998). Regarding translocation, only 

Echinochloa crus-galli (Riar et al. 2013) has been reported to have this effect 

in its resistance against imazamox.  

Growers have rapidly adopted glyphosate-resistant crops, in part to 

control weeds that had evolved resistance to other herbicide chemistries, in 
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particular, weeds resistant to AHAS inhibitors, ACCase (Acetyl CoA 

carboxylase) inhibitors and triazines (Heap and Duke 2018), and they have 

treated the crops only with glyphosate. With the rise of glyphosate-resistant 

weeds, multiple resistances to glyphosate and other herbicides are presenting 

a large problem, particularly the multiple resistances to AHAS inhibitors and 

glyphosate. Today, there are no new herbicide mechanisms of action known, 

and few new chemistries to work with, which makes the increasing number of 

glyphosate multiple resistant weeds a particularly difficult problem (Heap and 

Duke 2018). 

 

GI.4.5 Common physiological effects of AHAS-inhibitors and 

glyphosate 

The targets of the herbicides in the BCAA and AAA biosynthesis pathways are 

well known. In the AAA pathway EPSPS is blocked, while in the BCAA pathway 

AHAS is blocked (Binder 2010) (Fig. GI.4). Despite knowing these mechanisms 

of action, it is still unclear how the inactivation of AHAS or EPSPS results in 

plant death. Previous studies have reported that in both cases growth arrest is 

followed by a slow death of the herbicide-treated plants (Gruys and Sikorski 

1999; Wittenbach and Abell 1999), and those common effects occur even 

though glyphosate and AHAS inhibitors act through different pathways. At a 

molecular level, it has been reported that with both herbicides, an accumulation 

of free amino acids (Maroli et al. 2015; Orcaray et al. 2010; Zabalza et al. 2017; 

Zulet et al. 2015), a decrease in the general soluble protein content (Maroli et 

al. 2015, 2016; Zulet et al. 2013), an accumulation of carbohydrates (Orcaray 

et al. 2012; Maroli et al. 2015; Zulet et al. 2015) and an increase in fermentative 

enzymatic activity of pyruvate decarboxylase (PDC) and alcohol 

dehydrogenase (ADH) (Orcaray et al. 2012) are present. Although the 

herbicides target different enzymes, these common physiological effects 

suggest that they kill plants by similar mechanisms and that there is a close 

cross relation between both pathways. 

Herbicide mixtures can interact in three different ways: antagonistic, 

additive, and synergistic (Barrett 1993). The close relationship between AAAs 
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and BCAAs could cause notable synergistic effects; therefore, it is important to 

clarify whether this occurs. 

The efficacy of glyphosate-AHAS inhibitor mixtures have been 

repeatedly tested (Hydrick and Shaw 1994; VanLieshout et al. 1996; Lich et al. 

1997; Starke and Oliver 1998; Johnson, W.G. et al. 1999; Li et al. 2002; Nelson 

and Renner 2002; Shaw and Arnold 2002). Although some additive results have 

been obtained (Starke and Oliver 1998; Li et al. 2002; Nelson and Renner 

2002), other experiments showed antagonistic behaviour (Hydrick and Shaw, 

1994; Johnson, et al., 1999; Lich et al., 1997; VanLieshout et al., 1996); thus, 

more studies are needed to more thoroughly understand what kind of effects 

are produced in the plant by the mixtures and optimize them. 

In the case of A. palmeri, it is a crucial time because some populations 

of this weed have started to show resistance not only to glyphosate but also to 

AHAS inhibitors (Gaedert et al. 2017; Küpper et al. 2017).  

 

GI.5 CROSS-REGULATION BETWEEN AMINO ACID 

BIOSYNTHETIC PATHWAYS 

 

The hypothesis of the existence of cross-regulation of amino acid metabolic 

pathways at the transcriptional level has been proposed (Pratelli and Pilot 

2014). Some direct interactions were reported in that paper, such as the 

requirement of Glu for transamination reactions in the synthesis of BCAAs, the 

diaminopimelate amino transferase for Lys, the histidinol-phosphate 

aminotransferase for His, prephenate amino transferase (PAT) for Phe and Tyr, 

and glutamine (Gln) for the synthesis of anthranilate from chorismate for Gln 

(mediated by AS) (Pratelli and Pilot 2014). Moreover, the carbon skeleton of 

some amino acids is used to synthesize other amino acids (e.g., Ser is used for 

the synthesis of Trp, Cys for the synthesis of Met, and Asp for the synthesis of 

Arg). It was proposed that these close relationships imply that the donor 

metabolites are synthesized concordantly with their use in the other amino acid 

biosynthetic pathways (Pratelli and Pilot 2014). 

In contrast, it has been proposed that the apparent cross-regulation of 

the pathways is the consequence of a stress response triggered by alterations 
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in the activity of specific amino acid pathways that modify normal amino acid 

levels that were triggered by amino acid perturbation (Hey et al. 2010).  

Some cases of specific coordination between the AAA and BCAA 

pathways have been reported. Plants expressing two decarboxylases specific 

for Trp or Tyr showed modification of the content in amino acids from most of 

the other pathways (Guillet et al. 2000). The contents of many minor amino 

acids vary in concert between different amino acid biosynthetic families (Noctor 

et al. 2002), and it has been reported that the closest amino acid biosynthetic 

pathway to the AAA pathway is the BCAA pathway (Noctor et al. 2002; Orcaray 

et al. 2010) (Fig GI.4). Treatment of Lemna minor with an aminotransferase 

inhibitor showed the concomitant accumulation of BCAAs and two AAAs (Tyr 

and Phe) (Brunk and Rhodes 1988). Interactions between Leu synthesis and 

levels of Tyr and Phe were also observed (Wittembach et al. 1994).  

The common physiological effects of BCAA and AAA inhibitors (GI.4) 

suggest that the lethal physiological processes triggered could be similar. 

Additionally, specifically suggested cross interactions (Pratelli and Pilot 2014) 

make it possible to hypothesize the existence of cross-regulation between the 

AAA and BCAA biosynthesis pathways (Guyer et al. 1995; Mohapatra et al. 

2010; Pratelli and Pilot 2014). 

 

GI.6 AMARANTHUS PALMERI 

 

One of the most damaging glyphosate-resistant weed species is Amaranthus 

palmeri S. Wats (Culpepper et al. 2006; Powles and Yu 2010; Whitaker et al. 

2013), located in places as diverse as the southern Canadian border and Brazil, 

which have quite different climates, soil types and agricultural techniques.  

A. palmeri is a common C4 summer annual of the Sonoran Desert. 

Under conditions of high soil water availability, its photosynthetic capacity 

exceeds 70 μmol CO2 m-2 s-1 at a leaf temperature optimum of 42°C 

(Ehleringer 1983). It is dioecious with its inflorescences being a terminal spike, 

with male and female flowers on separate plants (Keeley et al. 1987). This erect 

annual weed can grow up to 2 m in height, and its terminal seed heads can 

reach up to 0.5 m (Culpepper et al. 2006). Compared with other Amaranthus 
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species, A. palmeri has the largest plant volume, dry weight, leaf area (Horak 

and Loughin 2000) and rate of height increase per growing degree day (24 to 

62% greater) (Culpepper et al. 2006). A rapid growth rate and tall stature make 

A. palmeri extremely competitive with crops (Culpepper et al. 2006). 
A. palmeri can cause severe losses in yields in a wide range of crops; 

representative cases are summarized in Culpepper et al 2006, such as Zea 

mays L. yields, with values reduced from 11 to 91% with 0.5 to 8 plants m-1 of 

row, respectively (Massinga et al. 2001), Glycine max yields, with values 

reduced from 17 to 68% with 0.33 to 10 plants m-1 of row, respectively 

(Klingaman and Oliver 2018) and Gossypium hirsutum yields, with values 

decreasing linearly from 13 to 54% as Palmer amaranth density increased from 

1 to 10 plants in 9.1 m of row, respectively (Morgan et al. 2001).  

The first case of resistance in A. palmeri was reported in 1989 and was 

to the herbicide family K1 (microtubule inhibitors). The resistances reported 

until 2005 were to herbicide families K1, C1 (photosystem II inhibitors) and B 

(AHAS inhibitors). After the first case of resistance was reported against the G 

family of herbicides (the EPSPS inhibitor, glyphosate) (Culpepper et al. 2006), 

in most cases subsequently reported resistances in the United States were to 

glyphosate (Table GI.1).  Moreover, resistance to glyphosate was also reported 

in Brazil and Argentina, probably due to the use of GM crops in these three 

countries (Table GI.1). Outside of America, only one case of resistance of A. 

palmeri has been reported (in Israel in 2008), but it was to AHAS inhibitors 

instead of to glyphosate (Heap 2018). Since 2008 there has been a notable 

increase in cases of multiple resistances to more than one site of action with 

glyphosate involved (Table GI.1), and there have even been cases of multiple 

resistances without the involvement of glyphosate, which highlights the 

necessity to improve the control of this weed. 

The mechanism of resistance to glyphosate in some of these 

populations has been identified as the gene amplification of 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS) (Fig. GI.7) (Gaines et al. 

2010; Chandi et al. 2012). 
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  Country Year Site of action 
1 United States (Georgia) 2005 G 
2 United States (North Carolina) 2005 G 
3 United States (Arkansas) 2006 G 
4 United States (Tennessee) 2006 G 
5 United States (South Carolina) 2006 G 
6 United States (New Mexico) 2007 G 
7 United States (Mississippi) 2008 MR: G+B 
8 United States (Alabama) 2008 G 
9 United States (Missouri) 2008 G 

10 United States (Georgia) 2008 MR: G+B 
11 United States (Tennessee) 2009 MR: G+B 
12 United States (Louisiana) 2010 G 
13 United States (Illinois) 2010 G 
14 United States (Ohio) 2010 G 
15 United States (South Carolina) 2010 MR: G+B 
16 United States (Georgia) 2010 MR: B+C+G 
17 United States (Kentucky) 2010 G 
18 United States (Michigan) 2011 G 
19 United States (Virginia) 2011 G 
20 United States (Kansas) 2011 G 
21 United States (Texas) 2011 G 
22 United States (Arizona) 2012 MR: G+B 
23 United States (Delaware) 2012 G 
24 United States (Indiana) 2012 G 
25 United States (Pennsylvania) 2013 G 
26 United States (Illinois) 2013 MR: G+B 
27 United States (Florida) 2013 G 
28 United States (Florida) 2013 MR: G+B 
29 United States (Wisconsin) 2013 G 
30 United States (Delaware) 2014 MR: G+B 
31 United States (Maryland) 2014 MR: G+B 
32 United States (New Jersey) 2014 G 
33 Argentina 2015 G 
34 Brazil 2015 G 
35 United States (Tennessee) 2015 MR: G+E 
36 United States (California) 2015 G 
37 Brazil 2016 MR: G+B 
38 United States (Nebraska) 2016 MR: G+C 
39 United States (Illinois) 2016 MR: G+E 
40 United States (Oklahoma) 2018 G 

 
Table GI.1 Cases of resistance to glyphosate in Amaranthus palmeri populations since the first 
case detected in 2005. In orange, cases of multiple resistance to 2 sites of action and in purple to 
3 sites of action. Capital letters indicate multiple resistance (MR) and the name of the herbicide 
family: AHAS-inhibitors (B), Photosystem II inhibitors (C), protoporphyrinogen oxidase (PPO) 
inhibitors (E), and glyphosate (G). (Based on Heap 2018).  

 

The recommended field dose is not sufficient to inhibit EPSPS activity 

when this enzyme is overexpressed, and thus the plants survive, making the 

management of this weed more complicated. The resistance to glyphosate of 

A. palmeri was first reported in 2006 (Culpepper et al. 2006), and a few years 

later the mechanism of resistance was elucidated. This reported mechanism of 
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gene amplification was important because it was the first study where gene 

amplification in field-evolved resistance to an herbicide was confirmed 

(Sammons and Gaines 2014). 

It is known that the CNV can vary by 2- to >63- fold compared with 

sensitive populations in different species, and even between individuals of a 

single population (Sammons and Gaines 2014). Notably, no fitness cost has 

been associated with the increase of EPSPS gene expression and subsequent 

increase in enzymatic activity in GR populations (Giacomini et al. 2014; Vila-

Aiub et al. 2014). The gene amplification resistance mechanism found in A. 

palmeri (Fig. GI.7) offers us the opportunity to study the effect of glyphosate 

application, the regulation of the AAA pathway, the effect of EPSPS 

overexpression due to extra EPSPS gene copies, and possible cross-regulation 

mechanisms with other biosynthetic amino acid pathways. 

 

 
Figure GI.7 Mechanism of target site resistance in Amaranthus palmeri. Target overproduction in 
resistant population (R) comparing to susceptible (S) one. And overproduction at 5-
enolpyruvylshikimate 3-phosphate synthase (EPSPS) segment of DNA (helix in purple) results in 
an increase in EPSPS enzyme (Oval grey with two domains joined by protein fibers, in red) 
 

 



 

35 
 

 

 

OBJECTIVES 





OBJECTIVES 

37 
 

Although the target site of glyphosate is the well-known inhibition of the EPSPS 

enzyme in the AAA biosynthetic pathway, its mode of action is not completely 

clear. The main objective of this work was to evaluate the physiological 

effects triggered by glyphosate that lead to the death of A. palmeri plants 

and to clarify whether these effects are different in sensitive and resistant 

plants, focusing mainly on the consequences of glyphosate treatment in the 

AAA and BCAA pathways. To this end, the responses of glyphosate-sensitive 

and glyphosate-resistant populations (due to EPSPS gene amplification) of A. 

palmeri upon glyphosate treatment were compared at the molecular and 

biochemical levels. This general aim was approached by three specific 

objectives that are covered in the three individual chapters of this thesis: 

 

1. To characterize the physiology of A. palmeri-resistant populations by 

comparing with sensitive populations after confirming resistance to the 

herbicide. This information is fundamental for further studies regarding 

the effects of glyphosate on this weed.  

2. To evaluate the impact of EPSPS overexpression by gene amplification 

and of glyphosate treatment on the regulation of the AAA pathway 

and to look for a possible transcriptional cross-regulation between 

the AAA and BCAA biosynthetic pathways.  

3. To evaluate whether a mixture of glyphosate and BCAA inhibitors is 

synergistic, antagonistic or additive and whether the effect is different 

if the treated plant is resistant to glyphosate.   

 

This thesis consists of a general introduction, a general materials and methods 

section, three chapters that are original research works (two of them already 

published) and one general discussion for the three chapters, with a short 

conclusion of the thesis. The bibliography is presented at the end and covers 

the three chapters.





 

 
 

 

 

MATERIALS AND METHODS 





MATERIALS AND METHODS 

41 
 

MM.1 PLANT MATERIAL AND TREATMENT APPLICATION 

 

MM.1.1 Plant material  

To develop the experiments in all chapters, resistant and sensitive populations 

of A. palmeri originally collected from North Carolina (United States) with a 

described copy number variation between 22 and 63 fold more in GR population 

in field respect to GS population  (Chandi et al. 2012), were used. The seeds of 

these populations were provided by Dr. Todd Gaines (Colorado State 

University, Fort Collins, Colorado).  

A. palmeri plants were grown in similar conditions in the three chapters. 

In all chapters plants were treated when they were homogenous in height 

(between 5 and 7 cm) (Culpepper et al. 2006). Firstly, seeds were surface 

sterilized prior to germination (Labhilili et al. 1995).  

For germination, seeds were incubated for 7 days at 4 °C in darkness 

and then maintained for 48 h in a light/darkness cycle of 16 h/8h at temperature 

of 30 °C in light and at 18 °C in darkness (Fig. MM.1).  

Seeds were then transferred to aerated 2.7 L hydroponic tanks in a 

phytotron (day/night, 16 h/8 h; light intensity, 500 μmol s−1 m−2 PAR; 

temperature, 22/18 °C; relative humidity of the air, 60/70%) (Fig. MM.1). 

Throughout the course of the experiment, the plants remained in the vegetative 

phenological stage. The nutrient solution (Hoagland and Arnon 1950) was 

supplemented with 15 mM KNO3. 

 
Figure MM.1 Growth process of A. palmeri plants. In the left, plants after 48 hours of incubation, in 
the middle, in an intermediate state of growth in the phytotron and in the right, plants in phytotron 
just the day of treatment.  
 

Three week-old plants (after reaching the growth stage defined as 

BBCH 14 (Hesset al., 1997)) were treated with glyphosate (commercial formula, 

Glyfos, 360 g a.e. L-1, isopropylamine salt, BayerGarden, Valencia, Spain) (Fig. 

MM.1), and in chapter three with a simultaneous treatment of imazamox (1.5 
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mg active ingredient L-1) 4% P/V (Pulsar 40®, BASF, Barcelona, Spain). 

Glyphosate treatment was performed using an aerograph (Junior Start model; 

Definik; Sagola) at a rate of 500 L ha-1, while imazamox was added to the 

nutrient solution. 

 

MM.1.2 Dose response study 

This experiment was developed only in chapter one to verify the previously 

reported resistance of A. palmeri population GR and to stablish comparable 

doses between resistant and sensitive populations in order to perform the 

physiological studies.  

 

 
Figure MM.2 Control, 0.1G (0.084 kg ha-1), 0.25G (0.21 kg ha-1), 0.5G (0.042 kg ha-1) and 1G (0.84 
kg ha-1) being G recommended field dose (0.84 kg ha−1) treated plants of sensitive (GS) and 
resistant (GR) populations after five days of treatment. Pictures show that in GS population 
glyhposate dose affects more aggressively plants than in GR population. 0.05G (0.042 kg ha-1) 
dose was tested only in GS population so it is not include in this comparative picture between both 
populations (GR and GS). 2G (1.68 kg ha-1) and 3G (2.52 kg ha-1) treatment kill all sensitive plants 
of sensitive after five days so these treaments were removed from the picture. 
 

The dose-response relationship was established as in previous studies 

(Seefeldt et al. 1995). For each population, plants of uniform size and 

appearance were selected, and three tanks with four to five plants each were 

treated with each glyphosate rate.  
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Both populations were treated when plants were approximately three 

weeks old. Glyphosate was sprayed at these rates: 0.0, 0.042 (only for GS), 

0.084, 0.21, 0.42, 0.84, 1.68 and 2.52 kg ha−1, and were represented (Fig. 

MM.2) as a percentage of the recommended field dose (0.84 kg ha−1) : control, 

0.1G, 0.25G, 0.5G, 1G, 2G and 3G.  

Their effects were evaluated in terms of biomass weight, and 

completed with shikimate content data. For biomass evaluation, the shoot and 

root fresh weights of each plant were determined five days after treatment. The 

material was dried for 48 h at 75−80 °C to obtain the dry weight. Data were 

analyzed with a log-logistic adjustment that is a good model to evaluate 

herbicide effects (Seefeldt et al. 1995; Ritz et al. 2015). 

 

MM.1.3 Physiological studies 

 
With the information obtained in the dose response study, different doses of 

glyphosate were used according to the objectives of each chapter. In the one 

hand, in chapter one and two, recommended field rate (1G = 0.84 kg ha-1) 

(Culpepper et al. 2008) and three times that rate (3G = 2.52 kg ha-1) were used 

(Fig. MM.3), to better observe the variations in AAA pathway and physiological 

effects produced by increasing the dose. In the other hand, in chapter three, as 

the main objective was determine the effect of mixtures, lower doses of 

glyphosate were used. Too High doses of glyphosate would have covered up 

the effect of imazamox in mixtures, and the results probably had been similar 

to those with glyphosate applied individually. For this, in chapter three 0.25 

times recommended field rate (0.25G=0.21 kg ha-1) and recommended field 

rate (1G=0.84 kg ha-1) were used.  

Imazamox was only used in chapter three, applied directly in the 

nutrient solution at 1.5 mg L-1 rate, at the same time of aerial glyphosate 

treatment in mixtures. Preliminary studies were performed to determine a dose 

of imazamox that allowed to display the response to the herbicide without kill 

the plants too fast. 

Three days after treatment, leaves and roots were collected, frozen with 

liquid N2 and stored at -80 ºC. Three days of treatment were selected because 

of this period of time allowed plants to show the effects of relative high doses 
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of herbicides in a short term preventing from a massive death of plants (over all 

in GS population). After that, the samples were ground to a fine powder under 

liquid N2 using a Retsch mixer mill (MM200, Rescht, Haan, Germany) 

maintaining separately individual plants as biological replicates. Additionally, 

leaf disks were excised at the same time of leaf collection to determine 

shikimate content three days after treatment. Three leaf disks were excised 

from each plant using one Harris Uni-Core puncher (4 mm-diameter) 

(Healthcore, Bucks, UK), trying to avoid the nerves of the leaves, and then were 

frozen with liquid N2 and stored at -80 ºC. 

 
Figure MM.3 Control, 1G (glyphosate recommended field dose) and 3G (three times glyphosate 
recommended field dose) treated plants of sensitive (GS) and resistant (GR) populations after three 
days of treatment. It can be seen that in GS population glyhposate dose affects more agresively 
plants than in GR population. 
 

MM.2 ANALYTICAL DETERMINATIONS 

 

Physiological responses to the treatment (amino acid content variation, 

carbohydrate content variation and fermentative enzymatic activities variation), 

were studied in roots and leaves in chapter one, while in chapter two and three, 

it was preferred to develop the experiments only in leaves (amino acid content 

and carbohydrate content).
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MM.2.1 Shikimate assays 

In this study, shikimate levels in plant were quantified with in vivo shikimate 

assays (chapter one) and shikimate determinations in plants tissues after 

glyphosate treatment (chapter one, two and three). 

 

MM.2.1.1 In vivo shikimate assay 

This experiment was developed in chapter one to verify plant sensitivity to 

glyphosate by incubating excised leaf disk tissue in a 96-well microtiter. 

Shikimate accumulation following glyphosate treatment was compared 

between GR and GS as described previously (Shaner et al. 2005). Leaf disks 

with a 4 mm-diameter (6−10 disks) were excised from the youngest leaf of three 

to six plants of each biotype using a Harris Uni-Core puncher (Healthcore, 

Bucks, UK). One disk was placed in a well of a 96-well microtiter plate. Each 

well contained 100 μL of a solution containing 169, 84.5, 42.3, 21.1, 10.6, 5.3, 

2.6, 1.3, or 0 mg glyphosate L−1. Glyphosate was diluted from commercial 

formula (Glyfos, BayerGarden, Valencia, Spain). Each row of the microtiter 

plate contained a different glyphosate concentration. The plates were incubated 

at 22 °C under continuous light for 16 h. After incubation, the plates were placed 

in a freezer (−20 °C). Microplates were thrown at room temperature and the 

concentration of shikimate in each well was measured according to the 

procedure of Cromartie and Polge (Cromartie and Polge 2000).  

Shikimate was extracted from the frozen-thawed leaf disks by adding 

25 L of 1.25 N HCl and incubating the plates at 60 ºC for 15 min. Aliquots of 

25 L of each well were transferred to a new plate, and 100 L of 0.25% periodic 

acid/0.25% metaperiodate was added to each well. After the periodic acid-

metaperiodate incubation (60 min in the dark), 100 L of 0.06 M sodium 

hydroxide with 0.22 M sodium sulfate solution were added. The optical density 

of the solution was determined spectrophotometrically at 380 nm. For 

absorbance measurements a SinergyTM HT Multi-Detection Microplate Reader 

(BioTek Instruments Inc., Winooski, VT, USA) was used. A shikimate standard 

curve was developed by adding known amounts of shikimate to wells containing 

leaf disks not exposed to glyphosate (3, 6, 12, 25, 50, and 100 μg mL−1). 
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MM.2.1.2 Shikimate determination after treatment  

Shikimate accumulation is a well-known marker of glyphosate damage, so it 

was determined in the three chapters. In chapter one, shikimate content was 

determined at 5 days after glyphosate treatment, because it was needed to 

know how damaged were the plants at that time of treatment to support the 

dose-response study. In chapter two and three, all experiments were developed 

with tissues collected three days after herbicide treatment, so it was needed to 

determine shikimate content after 3 days of treatment. Three leaf disks (4 mm 

diameter) were excised from the youngest leaf of each plant three days after 

treatment. Leaf disks were placed in a screw-top 2 mL epitube, frozen, and 

stored at -80ºC until analysis. Shikimate was extracted as it was described 

(Koger et al. 2005a). After addition of 100 L of 0.25 N HCl per disk to each 

vial, samples were incubated at 22ºC for 1.5 h and mixed by vortexing. 

Shikimate content was quantified spectrophotometrically as determined in 

MM.2.1.1 section. 

 

MM.2.2 Nucleic acid determinations 

In this study, genomic DNA for EPSPS enzyme (in chapter one) and mRNA 

levels for all main enzymes in AAA and BCAA pathway (in chapters two and 

three) were determined. 

 

MM. 2.2.1 EPSPS relative genomic copy number 

This data, determined in chapter one, was used in the three chapters, as a 

reference mean value of EPSPS relative genomic copy number of GR 

population. Quantitative realtime PCR was performed to determine the EPSPS 

genomic copy number relative to AHAS in untreated GS and GR plants.  

Genomic DNA was extracted from approximately 0.1 g of previously 

ground A. palmeri leaves. The plant material was homogenized in 375 μL of 2× 

lysis buffer (0.6 M NaCl, 0.1 M Tris-HCl (pH 8.0), 40 mM 

Ethylendiaminetetraacetic acid (EDTA) (pH 8.0), 4% sarcosyl, and 1% sodium 

dodecyl sulfate (SDS)) and 375 μL of 2 M urea. One volume (750 μL) of 

phenol/chloroform/isoamyl alcohol (25:24:1) was added to the mixture and 

mixed briefly. The homogenates were centrifuged at 20,000 g for 10 min at 

room temperature. To precipitate the DNA, 0.7 volume (525 μL) of cold 
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isopropanol was added to the supernatants, and the tubes were centrifuged at 

20,000 g for 15 min at 4 °C. The DNA pellet was washed twice with 1 mL of 

70% ethanol, air-dried, and resuspended in 25 μL of resuspension buffer (10 

mM Tris-HCl (pH 8.0), containing 30 μg mL−1 RNase A). Samples were briefly 

incubated at 37 °C for 5 min to degrade contaminating RNAs. 

The extracted DNA was quantified using a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). OD 260 and 

280 nm were read for every sample. The DNA quality was also checked using 

a 1% agarose gel. Ten-fold diluted DNA samples were loaded onto a 1% 

agarose gel and run at 75 mA for 35 min. The gels were visualized using a Gel 

Doc 2000 system (Bio-Rad Laboratories Inc., Hercules, CA, USA). DNA 

concentrations were adjusted to 5 ng μL−1. Quantitative real-time PCR was 

performed as in Gaines et al. (2010) with some modifications. The following 

primer sets were used: EPSPS forward (5′-atgttggacgctctcagaactcttggt-3′) 

and EPSPS reverse (5′-tgaatttcctccagcaacggcaa-3′); AHAS forward (5′ -

gctgctgaaggctacgct-3′) and AHAS reverse (5′-gcgggactgagtcaagaagtg-3) 

specified in Gaines et al. (2010). To determine the efficiency of the primers, a 

standard curve using a 1 X, 1/5 X, 1/25 X, 1/125 X, and 1/500 X dilution series 

of genomic DNA from GR was conducted. 

Real-time PCR amplifications were performed in an optical 96-well 

plate using an ABI PRISM 7900 HT Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA). Each reaction was performed using 10 ng 

of genomic DNA in a total volume of 20 μL containing 1× SYBR Premix Ex Taq 

(Takara Bio Inc., Otsu, Shiga, Japan), 300 nM specific forward primer, and 300 

nM specific reverse primer. The following thermal profile was used for all PCRs: 

50 °C for 2 min, 95 °C for 1 min, and 40 cycles of (95 °C for 30 s and 60 °C for 

1 min). To calculate the final Ct values, 10 biological replicates were performed, 

and each individual sample was run in triplicate. The average increase in 

EPSPS copy number relative to AHAS and the standard deviation were 

calculated for each sample. The increase in EPSPS copy number was 

expressed as 2∆Ct, where ∆Ct = (Ct, AHAS −Ct, EPSPS) (Gaines et al. 2010).
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MM.2.2.2 Transcript levels 

This parameter was determined in chapter two and three. A stay in Colorado 

State University (CSU) was carried out to obtain mRNA data for chapter two, 

and, with the procedure learned there and the primers designed, the 

determination was repeated for data of chapter three, to check the response of 

those enzymes to herbicide mixtures. This was the first time where mRNA 

levels of all the main enzymes of AAA and BCAA pathway were determined, in 

A. palmeri, so all primers except EPSPS primer, were designed for the 

experiment. 

As A. palmeri was not sequenced, primers were designed using a near 

sequenced species of Amaranthaceous family, Amaranthus hypochondriacus. 

The data base of the genome of   A. hypochondriacus was crossed with the one 

of Arabidopsis thaliana, which is sequenced and their genes were related with 

their function in The Arabidopsis Information Resource (TAIR) website. To 

cross genes of both species a variety of informatics tools were used. 

Notepad++® was used to manage the A. hypochondriacus genome, EMBOSS 

needle website to compare sequences, NCBI page to blast the nucleotides to 

proteins and to obtain the open reading frames (ORFs) A plasmid editor (APE®) 

software.  

EPSPS primer was modified from Gaines et al. (2010).  The protocol 

followed was the same for data in chapter two and three, although experiment 

in chapter two was developed in CSU and in chapter three in UPNA. RNA was 

extracted from leaf tissues using the Macherey-Nagel NucleoSpin® RNA Plant 

kit following manufacturer’s instructions. Total RNA concentration was 

measured with Gen 5.1.11 (Biotek Instruments, Inc., Winooski, VT, United 

States) and RNA quality was assessed using RNA gel electrophoresis. The gels 

were visualized using a Gel Doc 2000 system (BIORAD Laboratories Inc., 

Hercules, CA, USA). 

cDNA (complementary deoxyribonucleic acid) extraction was 

performed using Biorad iScriptTM cDNA Synthesis Kit with 1 g of total RNA 

following manufacturer’s instructions. Each sample contained 4 L of 5x iScript 

reaction mix, 1 L of iScript reverse transcriptase and 15 L of nuclease-free 

water and RNA template, being this concentration calculated to obtain 1 g of 
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RNA per sample. The reaction protocol was 5 min at 25 ºC, 30 min at 42 ºC, 5 

min at 85 ºC and hold at 4 ºC until their storage at -20 ºC. 

GENE  FORWARD  REVERSE 
Annealing 

temperature 
Efficiency 

Aromatic amino acid biosynthetic pathway   

DAHPS  cctcataggatgataagggc  ctttgcatggcagcataacc  55 ºC  96 % 

DHQS  gcattgttggctagggatcc  aacctcggccttgttttcac  61 ºC  91 % 

DQSD  ggtgtactcaagcaaggagc  tgtggactcttactatggcc  57 ºC  84 % 

SK  gattctgaagcacaaagcagc  cagttgttttcccagagccc  55 ºC  91 % 

EPSPS  aatgctaaaggaggccttcc  tcaatctccacgtctccaag  61 ºC  93 % 

CS  cttgatagaaggaggcctgg  gtttctttcctaggagtagtg  57 ºC  90 % 

CM  gaatacattatggcaagtatgt  gtcataagtcgctccttgtc  52ºC  97 % 

AS  tttggagggaaggttgtgcg  ctggtgagctttttccatgc  57 ºC  88 % 

Branched chain amino acid biosynthetic pathway   

AHAS  cttcctcgacatgaacaagg  attagtagcacctggacccg  57 ºC  84 % 

AHAIR  atggctcagattgagatcttg  ccacggcttcaatcacactc  52 ºC  90 % 

DHAD  taccatggcatcagctatcg  ggtgttgacgagctgtaagg  55 ºC  96 % 

TA  gtgaagatgatcttcgtcggc  tcacaatcagacttgaaagatg  52 ºC  99 % 

Normalization gene       

Beta 

tubulin 
gatgccaagaacatgatgtg  tccacaaagtaggaagagttc 

55 ºC  90 % 

 
Table MM 1 Primers of genes from aromatic amino acid (AAA) pathway enzyems: D-arabino-
heptulosonate 7-phosphate synthase (DAHPS), dehydroquinate synthase (DHQS), 3-
dehydroquinate dehydratase/shikimate dehydrogenase (DQ/SD), shikimate kinase (SK), 5-
enolpyruvylshikimate 3-phosphate synthase (EPSPS), chorismate synthase (CS), chorismate 
mutase (CM) and  anthranilate synthase (AS), branched-chain amino acid (BCAA) pathway: 
Acetohydroxy acid synthase (AHAS), acetohydroxyacid isomerreductase (AHAIR), dihydroxyacid 
dehydratase (DHAD) and BCAA transaminase (TA) and normalization gene selected for this study. 
For each primer is shown the anealing temperature and the efficiency. 

 

Quantitative RT-PCR (qRT-PCR) was performed using a Thermocycler 

Biorad CFX Connect TM Real-Time System (Biorad Laboratories Inc., 

Hercules, CA, USA). The reaction kit used for qPCR was PerfeCTa SYBR® 

Green SuperMix (Quantabio, Beverly, MA, United States). Each reaction was 

performed using 1 L of cDNA template, 10 L of Perfecta SYBR green 

supermix (2x), 1 L of a solution with forward and reverse primers (10 Mol for 
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primer forward and another 10 Mol for primer reverse) in nuclease-free water 

and 8 L of nuclease-free water. The following thermal profile was used for all 

PCRs: denaturation at 95ºC for 2 min, 40 cycles of 95 ºC for 15 s and 52–61ºC 

for annealing and extension for 20 s. Optimal annealing temperature for each 

primer was determined using gradient PCR. All primers and annealing 

temperatures are listed in table MM.1. EPSPS primer was modified from Gaines 

et al. (2010). Melting curve analysis was conducted to verify amplification of 

single PCR products. 

Gene expression was monitored in five biological replicates. Relative 

transcript level was calculated as in previous protocols: EGOI
CPGOI control-

CPGOItreated/EREF
CPREF control-CPREF treated (Pfaffl 2001), where GOI = gene of interest, 

REF = reference gene (beta tubulin was used as normalization gene), and CP 

= crossing point, the cycle at which fluorescence from amplification exceeded 

the background fluorescence. In chapter two, values of all treatments in both 

populations were calculated respect to GS mean control, but in chapter three it 

was decided to calculate the GR values respect to their own control. 

 

MM.2.3 Enzymes (EPSPS, DAHPS and PAL) content 

measurements 

In this study, protein contents of the enzymes EPSPS (chapters one, two and 

three), DAHPS (chapters two and three) and PAL (chapter two) were 

determined. All protein determinations were done in leaf tissues of sensitive 

and resistant populations.  

 

MM.2.3.1 Protein extraction 

Protein extraction was performed using 0.1 g of ground leaf tissue in 0.2 mL of 

extraction buffer (100 mM MOPS, 5 mM EDTA, 1% Triton-X 100, 10% glycerin, 

50 mM KCl, 1 mM benzamidine, 100 mM iodoacetamide, 5% 

polyvinylpyrrolidone (PVP)  and 1 mM phenylmethylsulfonyl fluoride (PMSF)) 

for each one of the three enzymatic contents analyzed. Then it was centrifuged 

at 4ºC 18,000 g for 30 min, and the supernatant was collected for protein 

content determination. 
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MM.2.3.2 Soluble protein content 

Protein levels of the samples were measured following Bradford protocol 

(Bradford 1976). Protein aliquots were diluted with deionized water to 1:60, and 

60 L of the dilutions were mixed with 200 L Biorad Protein Assay Dye 

Reagent (Biorad Laboratories Inc., Hercules, CA, USA). The mixtures were 

incubated at room temperature for 5 min and the optical density (OD) was 

measured at 595 nm. A curve ranging from 0 g to 6 g of a given concentration 

per well of bovine serum albumin (BSA) was performed to calibrate the protein 

determination of each sample. For absorbance measurements was used a 

SinergyTM HT Multi-Detection Microplate Reader (BioTek Instruments Inc., 

Winooski, VT, USA). 

MM.2.3.3. SDS-PAGE transference and immunoblotting 

Proteins were separated by 4.6% stacking gel and 12.5% resolving gel SDS-

PAGE. The gel was run in a vertical electrophoresis cell (Mini protean III; 

(Biorad 170, Biorad Laboratories, Inc., Hercules, CA, United States) and using 

an electrophoresis buffer (10% (v/v) Tris-Glycine (10x), 1% (v/v) SDS (10%) 

and 89% (v/v) H2O mili-Q). The current was of 120 V for 15 min and then 150 

V until migration across the gel was finished. The gel was blotted onto P 0.45 

polyvinylidene difluoride (PVDF) membrane GE Healthcare Life Science 

(Amersham Life Science, Arlington Heights, IL, USA) (previously activated with 

absolute methanol) for 75 min at 100 V in a Mini-trans blot electrophoretic 

transfer cell (Biorad 170, Biorad Laboratories, Inc., Hercules, CA, United 

States) and using a transfer buffer (20% (v/v) absolute ethanol, 10% (v/v) tris-

glycine and 70% (v/v) H2O mili-Q). The membrane was blocked with nonfat milk 

powder in 10% Twin Tris Buffer Saline (TTBS) for 1 h. Gel was stained with Gel 

codeTM blue safe protein stain, (Thermo Fisher Scientific Inc., Waltham, MA, 

USA) to ensure that the transference and protein content were homogeneous. 

The membrane was washed three times for 5 min with 10 % TTBS, and then 

was incubated with specific primary antibody for each enzyme. After 1 hour of 

incubation, the membrane was washed three times during 5 minutes with 10% 

TTBS and then the membrane was incubated with the secondary antibody. 

Except for EPSPS protein content in chapter 1 (in which different method of 

band identification was used), An anti-rabbit AP conjugated antibody (Sigma 
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Chemical, Co., St. Louis, MO, United States) was used as a secondary antibody 

at a dilution of 1:20,000. After 1 h of incubation, the membrane was washed 

three times during 5 minutes with 10% TTBS and after that bands were 

identified using a BCIP/NBT kit which was amplified alkaline phosphatase 

immunoblot assay kit (1% (v/v) color reagent A, 1% (v/v) color reagent B, 4% 

(v/v) color development (25x) and 94% (v/v) H2O mili-Q) (Biorad 170-6412, 

Biorad Laboratories, Inc., Hercules, CA, United States). Immunoblots were 

scanned using a GS-800 densitometer, and protein bands were quantified 

using Quantity One software (Biorad Laboratories Inc., Hercules, CA, United 

States).    

MM.2.3.4 EPSPS specific parameters 

Protein loaded for EPSPS enzyme determinations were 60 g per well of 

protein in GS samples and 15 and 5 g per well of protein in GR samples were 

loaded in chapter 1 and 2, and 80 g per well in GS and 15 g per well in GR 

were loaded in chapter 3. EPSPS primary antibody was produced by a custom 

peptide facility (Agrisera AB, Vännäs, Sweden) against a sequence of residues 

(numbers 193−206) of A. Palmeri EPSPS (GenBank accession no. 

FJ861242).The primary EPSPS antibody dilution was 1:2000. The secondary 

antibody used is specified in MM.2.3.3 section, except for the secondary 

antibody used for EPSPS enzyme content in chapter one. For EPSPS enzyme 

determinations in this chapter, an anti-rabbit immunoglobuline G horseradish 

peroxidase (IgG HRP) conjugated antibody (Agrisera AB, Vännäs, Sweden) 

was used as a secondary antibody at a dilution of 1:75000. After 1 hour of 

incubation, the membrane was washed three times during 5 minutes with 10 % 

TTBS and after that. Bands were identified using an advanced ECL 

chemiluminescence detection kit. 

 

MM.2.3.5 DAHPS specific parameters 

Protein loaded in each well were 40 g of protein in GS and GR samples for 

DAHPS enzyme determinations in chapters 2 and 3. DAHPS primary antibody 

was produced by a custom peptide facility (Biogenes, Berlin, Germany) using a 

short, conjugated peptide as an antigen (C-QFAKPRSDS-FEEEKN) and the 

dilution used was 1:1000 (Orcaray et al. 2011).  
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MM.2.3.6 PAL specific parameters 

For PAL enzyme content determinations, 90 g per well of protein in GS and 

GR samples were loaded in chapter 1. PAL primary antibody was produced by 

a custom peptide facility (Biogenes, Berlin, Germany) using a short, conjugated 

peptide as an antigen(C-GATSHRRTKQGGA). The primary antibody dilution 

was 1:500. 

 

MM.2.4 Enzymatic activities 

In this study, enzymatic activities of the enzymes EPSPS (chapters one and 

two), CM (chapter two), AS (chapter two), PAL (chapter two), PDC and ADH 

(chapter 1) were determined. All determinations of enzymatic activities were 

done in sensitive and resistant populations in leaf tissues, except pyruvate 

decarboxylase (PDC) and alcohol dehydrogenase (ADH) in which 

determinations only were done in roots.  

 

MM.2.4.1 EPSPS activity 

The EPSPS extraction and assay were conducted following the procedures of 

Gaines et al. (Gaines et al. 2010).  One g of leaf tissue was ground to a fine 

powder in a chilled mortar and mixed with 10 mL of cold extraction buffer (100 

mM MOPS, 5 mM EDTA, 5mM KCl, 10% (v/v) glycerol, 0.5 mM benzamidine, 

7.3 M pepstine, 2.5 mg tripsine inhibitor and 4.2 M leupeptine and pH 7). 1% 

(p/v) polyvinylpolypyrrolidone (PVPP) and 0.07 % (v/v) mercaptoethanol were 

added in fresh. Samples were centrifuged 40 min at 7500 g and 4 ºC. After 

centrifugation, the supernatant was precipitated with ammonium sulfate 

(45−70%). Then samples were centrifuged 30 min at 10,000 g and 4ºC. Pellets 

formed were resuspended with resuspension buffer (10mM MOPS, 0.5mM 

EDTA, 5% (v/v) glycerol, 0.07% (v/v) mercaptoethanol and pH 7) and desalted 

in Zeba desalt columns (Zeba, 7K MWCO, Thermo Scientific; Pierce 

Biotechnology, Rockford, IL, USA) with centrifugation at 1000 g.  

A phosphate detection kit (Molecular Probes, Eugene, OR, USA) was 

used for the continuous measurement of inorganic phosphate release for 

EPSPS activity. Protein levels of the desalted samples were measured 

following Bradford protocol (Bradford 1976) as it was indicated in MM.3.2 

section. The total soluble protein in the reaction mixtures were 12.5 μg per well 
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for the GS population and 1.25 μg per well for the GR population.  The volume 

of desalting samples needed to obtain the amount of desired protein were 

added: 125 L 2x reaction buffer (100 mM MOPS, 10 mM Mg2Cl, 10 % (v/v) 

glycerol, 2 mM Na2MoO4, 200 L NaF and pH 7), 50 L of 1mM 2-amino, 6-

meracptho, 7-methyl-purine riboside (MESG), 2.5 L of 100 units/mL purine-

nucleoside phosphorylase (PNP), 6.25 L of PEP, and mili-Q water until a total 

sample volume of 250 L.  

After obtaining a background phosphate release level (10 min) at 360 

nm, the final step was the addition of 12.5 L of 10 mM shikimate-3-phosphate 

(S3P). Phosphate release was measured spectrophotometrically for an 

additional 10 min at 360 nm. 

 

MM.2.4.2 CM and AS activities 

Enzyme extraction for CM and AS activity assays was developed as described 

in Singh and Widholm (1974) with addition of 1 mM PMSF (Goers and Jensen 

1984).  Each sample (0.1 g) was extracted with 500 L of extraction buffer 

(100mM Tris-HCL, 20 mM glutamine, 10 % (v/v) glycerol, 0.1 mM Na2EDTA, 4 

mM MgCl2 and added in fresh 0.01 mM dithiothreitol (DTT) and 1 mM PMSF. 

After vortexing and 10 min in ice, samples were centrifuged 20 min at 15,000 g 

and 4 ºC. The supernatants of each sample were desalted with desalting 

columns PD MiniTrapTM G-25 (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK). Protein levels of the samples were measured following 

Bradford protocol (Bradford 1976) as it was indicated in MM.3.2 section.  

CM enzymatic activity was measured as described in Goers and 

Jensen (1984). Eighty L of reaction buffer and 100 L of 2.7 mM chorismate 

were added to 20 L of desalted extracts and incubated for 30 min. Chorismate 

was added in the form of chorismic acid barium salt obtained from Enterobacter 

aerogenes with between 55-80% of richness purchased to Sigma-Aldrich® 

(Sigma-Aldrich Co., St. Louis, MO, USA). Control for each sample was carried 

out using enzymatic extracts inactivated with 100 L of 1 N HCl. After the first 

incubation, 100 L of 1 N HCl were added to samples and the mix was 

incubated for 20 min more at 37 ºC. After the second incubation, 700 L of 2.5 

N NaOH were added to the samples and 300 L of this mix were charged in an 
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ultraviolet (UV) plate Costar® (Corning Inc., Corning, NY, USA). 

Phenylpyruvate content was measured spectrophotometrically at 320 nm. The 

molar extinction (of phenylpyruvate is 17500 M-1cm-1 (corrected with the 

absorbance values, heigth and volume of the sample and extinction coefficient). 

The units of CM activity were nkat mg-1 protein.  

AS enzymatic activity was quantified as described in Ishimoto et al. 

(2010). They were added 100 L of 2.7 mM chorismate to 100 L of desalted 

extract and were incubated 30 min at 30 ºC. Controls of each sample were 

performed using 5 min boiled enzymatic extract (Matsukawa et al. 2002). After 

incubation, samples were boiled for 5 min and then centrifuged 10 min at 18,000 

g. In a fluorescence Black cliniplate (Thermo Scientific, Thermo-Fisher 

Scientific, Vantaa, Finland) 150 L of each supernatant were loaded. AS activity 

was measured with an excitation filter at 330 nm and a fluorescence filter of 

emission at 400 nm AS activity was calculated as relative units of fluorescence 

mg-1 protein.  

  

MM.2.4.3 PAL activity 

PAL activity was carried out mainly according to Politycka and Mielcarz (2007). 

Protein extraction was performed using 0.1 g of ground leaf tissue in 650 L of 

extraction buffer (100 mM Tris-HCl pH 8.9, 10 mM mercaptoethanol and 2% 

(p/v) PVPP) in each sample. Samples were sonicated and then centrifuged at 

12,000 g, 20 min, 4ºC (Maroli et al. 2015). The supernatant was collected and 

the protein content was determined in them following Bradford protocol 

(Bradford 1976) as it was indicated in MM.3.2 section.  For first incubation 500 

L of 50 mM Na-borate (pH 8.8) were added to 100 L of extracted samples, 

for 5 min at 37 ºC.  Reaction was started by the addition of 25 L of 50 mM l-

phenylalanine (Maroli et al. 2015). Controls (without l-phenylalanine) were 

prepared to determine endogenous levels of transcinnamic acid (t-CA). 

Incubation was performed for 1 h at 37ºC (Sarma et al. 1998; Wang et al. 2007). 

The reaction was stopped with the addition of 600 L of 5N HCl. After reaction 

was stopped, samples were centrifuged for 5 min at 5,000 g and 4ºC (Rivero et 

al. 2001). In an ultraviolet (UV) plate Costar® (Corning Inc., Corning, NY, USA) 

200 L of supernatants were charged and absorbance was measured 



MATERIALS AND METHODS 

56 
 

spectrophotometrically at 290 nm. Cinnamic acid at 10-100 µM was used as 

standard. 

 

MM.2.4.4 Fermentative enzymatic activities (PDC and ADH) 

PDC and ADH activities were assayed in desalted extracts as described 

previously (Gaston et al. 2002).  

About 0.1 g of root tissue was ground and homogenized with 650 L of 

the following extraction buffer (50 mM MOPS, 5 mM MgCl2, 20 mM KCl, 1mM 

EDTA Na2 and pH 7) and 1 mM DTT added in fresh. Homogenates were 

centrifuged for 30 min at 18,000 g and 4ºC. After centrifugation, supernatants 

were collected and soluble protein content was determinate following Bradford 

protocol (Bradford 1976) as it was indicated in MM.3.2 section. 

They were desalted 200 L of the supernatants in a Whatman 

UNIFILTERTM filtration microplate (Whatman Inc., Clifton, NJ, USA) containing 

600 L of Sephadex® G-50. The columns were equilibrated with a desalting 

buffer (50 mM MOPS (pH 7.0), 5 mM MgCl2 and 20 mM KCl). To measure each 

one of PDC and ADH enzymatic activities 20 L of desalted samples were 

collected. After that, soluble protein content was determinated again in the 

desalted extract following Bradford protocol (Bradford 1976). 

In the case of PDC activity, 150 L of reaction buffer (100 mM Tricine  

(pH 6.5), 2 mM MgCl2, 1 mM DTT, 0.2 mM nicotinamide adenine dinucleotide 

(NADH), 3 Uml-1 Saccaromyces cerevisae’s ADH, 25 mM oxamate, 1 mM  TPP 

and 10 mM pyruvate) were added to 20 L of the sample. PDC activity was 

measured in the pyruvate-to-acetaldehyde direction in the presence of 25 mM 

oxamate to inhibit LDH (Bouny and Saglio 1996). Consumption of NADH was 

determinated at 340 nm. Blanks were done not adding the substrate of the 

reaction (pyruvate). 

In the case of ADH activity, 150 L of ADH reaction buffer (50 mM 

Bicine (pH 8.8), 5 mM MgCl2, 49 M absolute ethanol and 1 mM NAD+) were 

added to the 20 L of the sample. ADH activity was measured in the ethanol-

to-acetaldehyde direction (John and Greenway 1976). The production of NADH 

is determined at 340 nm. Blanks were done by not adding the substrate of the 

reaction (ethanol). 
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MM.2.5 Amino acid content determination 

Ground leaf and root samples (0.1 g) were homogenized in 1.5 mL of 1 M HCl 

for amino acid extraction. Protein precipitation was performed after incubation 

on ice for 10 min and centrifugation at 18,000 g for 15 min at 4 ºC. The 

supernatant was collected and then, extracts were neutralized to a pH between 

7 and 8 by adding NaOH 1 M and 4 M and stored at -20 ºC. Samples were 

derivatized with 1 mM fluorescein isothiocyanate (FITC) dissolved in acetone, 

and then samples were 5-fold diluted in 20 mM borate buffer (pH 10.0). 

Samples were finally incubated for 15 h at room temperature in the dark until 

amino acid content determination (Orcaray et al. 2010). 

After derivatization with FITC, amino acid content was measured with 

a Beckman Coulter capillary electrophoresis PA-800 (Beckman Coulter Inc., 

Brea, CA, USA) coupled to a laser-induced fluorescence detector (Argon laser 

at 488 nm). Separation was performed basically as described in Arlt et al. 

(2001), using a 45 mM a-cyclodextrin in 80 mM borax buffer (pH 9.2) except for 

Cys (its content was only determined in chapter 1).  

Cys content was determined from the same acid extracts derivatized 

with 5-iodoacetamide fluorescein and reduced with tributylphosphine, as 

described previously (Zinellu et al. 2005) and the fluorescein was detected 

using the laser at 494 nm excitation and 518 nm emission. In Cys the separation 

is obtained by using this buffer: 20 mM of Na3PO4, 16.5 mM H3BO3, 100 mM N-

methyl N-glucamine (pH 11.2). Analyses were performed at 20 ºC and at a 

voltage of +30 kV. For chapter one, an extra electropherogram was performed 

to determine Trp and Val contents, where voltage was reduced to +20 kV in 

order to improve separation. In chapter three it was no needed this second 

measurement to obtain these two values. 

 

MM.2.6 Carbohydrate content determination 

Content in soluble sugars (glucose, fructose and sucrose) and starch were 

determined in chapters one in roots and leaves and, in chapter three, only in 

leaves.  

Two different methods were used to determine carbohydrate content. 

In chapter one, starch and soluble sugar concentrations were determined by 
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capillary electrophoresis (Zabalza et al. 2004) while in chapter three, ion 

chromatography (930 Compact IC Flex) following manufacturer´s instructions 

(Gomensoro scientific instrumentation, Madrid, Spain) was used to improve the 

accuracy of the measurement method. For both methods, samples were 

prepared in the same way. 

 The soluble carbohydrate (glucose, fructose, and sucrose) content 

was determined in ethanol-soluble extracts, and the ethanol-insoluble residue 

was extracted for starch analysis. In an epitube, 1.5 mL of ethanol 80% were 

added to 0.1 g of ground leaf tissue. Samples were boiled for 30 s and then 

centrifuged at 7,500 g and 4ºC for 5 min. This step was repeated three times 

and then samples were washed one more time with ethanol but at room 

temperature. The supernatant was collected for soluble sugar determinations 

and then samples were evaporated in a Turbovap® LV evaporator (Zymark 

Hopkinton, MA, USA) at 40ºC and 1-1.2 bar. When all the ethanol was 

evaporated, the dried sample was suspended in 1 mL of deionized water, mixed 

and centrifuged at 6,000 g for 10 min at 4ºC and samples were stored in 2 mL 

epitubes at -20ºC for capillary electrophoresis or ion chromatography 

determinations. 

The preparation of samples for the determination of starch was 

performed following the protocol of MacRae (1971). The pellet that remains in 

the epitube after the collection of supernatant was dried in an oven at 70 ºC for 

24 h for starch determinations. Dried pellets were resuspended with 1 mL of 

deionized water. Then the samples were boiled at 100 ºC for 1 h. After that, 

samples were cooled on ice. To obtain the monomers of glucose whose content 

was going to be measured, 250 L of 0.082 % (w/v) amyloglucosidase 

dissolved in 8.55 mM acetate (pH 4.5) were added to each sample to catalyze 

the hydrolysis needed. The reaction was incubated at 50 ºC overnight in the 

darkness with a continuous shaking. The resultant mixture was centrifuged at 

7,500 g for 15 min at 4 ºC and supernatant was collected and stored in 2 mL 

epitubes at -20 ºC or capillary electrophoresis or ion chromatography 

determinations.  

To obtain the measurements of soluble sugars and starch by capillary 

electrophoresis a Beckman Coulter P/ACETM MDQ (Beckman Coulter Inc., 

Brea, CA, USA) was used, following Warren and Adams (2000) protocol. The 
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background buffer consist of a 10 mM benzoate (pH 12.0) 0.5 mM myristril 

trimethyl ammonium bromide (MTAB). The sample dilution used for soluble 

carbohydrates and starch was 1:2. The applied potential was -15 kV and the 

indirect UV detection wavelength was set at 225 nm.  

The ion cromatograph 930 Compact IC Flex (930 Compact IC Flex, 

Metrohm AG, Herisau, Swizerland), was used to obtain the measurements of 

carbohydrate content, following manufacturer’s instructions (Gomensoro 

scientific instrumentation, Madrid, Spain). To prepare the samples, the eluent 

used was 300 mM NaOH/1 mM sodic acetate in mili q water solution. The 

sample dilution used for soluble carbohydrates was 1:10 and for starch 1:50. 

The applied current for the amperometric detection was 200-500 mA, with 

pressure of 1000-1200 psi and temperature between 30 and 35 ºC. 

 

MM.2.7 Statistical analysis 

The dose-response study was constructed using the program Sigma Plot 12.0 

to calculate the four-parameter sigmoid log-logistic dose-response model 

based on fresh/dry weight.  

In all chapters statistical analyses were performed using IBM SPSS 

statistics (from 18.0 to 24.0 version) (IBM, Corp., Armonk, NY, United States). 

One-way ANOVA (analysis of variance) with a multiple-comparison adjustment 

for least significant difference (LSD) at p<0.05 was used to determine significant 

difference. Analyses were performed using at least 4 biological replicates using 

samples from different individual plants. 
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ABSTRACT 

 

The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-

phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic 

pathway. The physiologies of an Amaranthus palmeri population exhibiting 

resistance to glyphosate by EPSPS gene amplification (GR) and a susceptible 

population (GS) were compared. The EPSPS copy number of GR plants was 

47.5-fold the copy number of GS plants. Although the amounts of EPSPS 

protein and activity were higher in GR plants than in GS plants, the AAA 

concentrations were similar. The increases in total free amino acid and in AAA 

contents induced by glyphosate were more evident in GS plants. In both 

populations, the EPSPS protein increased after glyphosate exposure, 

suggesting regulation of gene expression. EPSPS activity seems tightly 

controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol 

fermentation were detected in both populations. 

 

KEYWORDS: free amino acid accumulation, carbohydrate accumulation, 

ethanol fermentation, herbicide resistance, physiological effects 
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1.1 INTRODUCTION 

 

Over the past three decades, the herbicide glyphosate has revolutionized 

modern agriculture. Glyphosate is a once-in-acentury herbicide that stands 

alone in many categories (Duke and Powles 2008). This broad-spectrum, 

systemic herbicide is the most widely used herbicide in the world. Glyphosate 

inhibits the biosynthesis of the aromatic amino acids (AAAs) tryptophan (Trp), 

tyrosine (Tyr), and phenylalanine (Phe). The primary site of action of glyphosate 

is the specific inhibition of a key step in the shikimate pathway catalyzed by the 

enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) (EC 2.5.1.19), 

which converts shikimate-3-phosphate and phosphoenolpyruvate to 5-

enolpyruvylshikimate-3-phosphate in plastids (Steinrücken and Amrhein 1980). 

Although chemical management has been very effective for weed 

control, it has also resulted in the evolution of resistant weeds. Initially, 

glyphosate controlled most weeds, but as early as 1997, glyphosate-resistant 

weeds were reported (Heap 2013). Glyphosate was widely used in 

nonagricultural areas, but the introduction of genetically modified crops such as 

corn, cotton, and soybean exacerbated the evolution of resistance to 

glyphosate (Nandula 2010). In this context, glyphosate is used as a stand-alone 

weed control method on several million hectares of crop land. The intensive use 

of glyphosate has resulted in the evolution of resistance to this herbicide in 

several problematic weeds to what had been a very effective herbicide. To date, 

resistance to glyphosate has been documented in 32 species (Heap 2013). 

Glyphosate-resistant weeds now pose a serious challenge to modern 

agricultural practices and are likely to increase the cost of production 

(Livingston et al. 2015). 

The toxic effect of glyphosate cannot be considered only in terms of its 

interaction at the target site. The inhibition of EPSPS results in a metabolic 

roadblock, with physiological consequences leading to plant death. Thus, even 

though the changes in physiological plant processes induced by glyphosate 

have not been considered as primary effects, these changes contribute to the 

toxic effects of glyphosate. 

Despite its widespread use in global crop production, the precise 

mechanisms by which glyphosate kills plants remain unclear, despite studies 
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using new molecular methods such as transcriptional comparison, (Yu et al. 

2007; Zhu et al. 2008) proteomic approaches (Ahsan et al. 2008), and 

metabolomic profiling (Trenkamp et al. 2009; Maroli et al. 2015). In general, 

after the target of an inhibitor has been affected, death can occur due to 

different causes. First, plant death could result from an accumulation or 

increased availability of the substrates of the inhibited enzymatic pathway. 

Second, death could be associated with the lack of end products generated by 

the inhibited pathway (mainly AAAs). Third, lethality could be associated with 

several side reactions triggered after the inhibition of the target because the 

dysregulation caused by the inhibition of this pathway can lead to effects on 

different metabolic pathways. 

The main metabolite that accumulates upstream of EPSPS is 

shikimate. Massive levels of shikimate have been detected in plant tissues 

(Lydon and Duke 1988; Becerril et al. 1989) because inhibition at the level of 

EPSPS causes feedback loops that drive an increased flow of carbon through 

the shikimate pathway, thereby exacerbating the accumulation of shikimate. 

Moreover, toxic effects of shikimate accumulation have been proposed (De 

Maria et al. 2006). 

Some authors assume that AAA production at a level insufficient to 

maintain necessary protein synthesis is the main effect of glyphosate exposure, 

and this mechanism is consistent with the slow development of injury symptoms 

and the lack of essential plant compounds leading to plant death (Duke and 

Powles 2008). However, although a transient decrease has sometimes been 

reported (Orcaray et al. 2010), the AAA content does not decrease significantly 

(Orcaray et al. 2010) due to an increase in protein turnover and concomitant 

total free amino acid accumulation (Zulet et al. 2013a, 2015) and soluble protein 

decrease. 

In relation to the side reactions, the blockage of the shikimate pathway 

by glyphosate has recently been suggested to reverberate across other 

biochemical pathways (Maroli et al. 2015). Deregulation at the level of PEP that 

is not consumed by the inhibited EPSPS in the shikimate pathway can directly 

affect carbon metabolism (Colombo et al. 1998; De Maria et al. 2006). In this 

sense, glyphosate can also impair carbon metabolism by interfering with sugar 

metabolism and translocation. Carbohydrate accumulation has been detected 
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in both the leaves and roots of treated pea plants, and ethanolic fermentative 

metabolism is enhanced by glyphosate (Orcaray et al. 2012). 

Amaranthus palmeri is among the three most troublesome weeds in the 

main crops in Georgia (cotton, peanut, and soybean) and is among the top five 

most troublesome weeds in most other southeastern states. This annual weed 

is highly problematic due to its competitiveness, aggressive growth habit, and 

prolific seed production (Culpepper et al. 2006). A. palmeri was initially 

controlled by glyphosate in glyphosate-resistant crops but became a major 

glyphosate-resistant weed that occurs in several states. Glyphosate-resistant 

A. palmeri was first reported in 2006, (Culpepper et al. 2006) and the 

mechanism of resistance was gene amplification (Gaines et al. 2010). This was 

the first reported occurrence of gene amplification in a field-evolved resistance 

to any herbicide (Sammons and Gaines 2014). The EPSPS gene was amplified 

from 2- to >100- fold compared with sensitive populations. This mechanism of 

resistance to glyphosate has since been reported in a number of other species, 

including Amaranthus tuberculatus (Lorentz et al. 2014; Chatham et al. 2015), 

Amaranthus spinosus (Nandula et al. 2014), Kochia escoparia (Wiersma et al. 

2015), Lolium multiflorum (Salas et al. 2012, 2015) and Bromus diandrus 

(Malone et al. 2015). 

The availability of a biotype with overexpression of the EPSPS enzyme 

provides an opportunity to analyze how overexpression of EPSPS affects AAA 

synthesis and other physiological factors by comparison with a sensitive 

population. In addition, comparison of the different effects of glyphosate on both 

populations will facilitate the comprehensive elucidation of the phenotypic 

manifestations of evolved glyphosate resistance. For this purpose, biomass, 

shikimate accumulation, EPSPS expression and activity, free amino acid 

profile, carbohydrate content, and ethanol fermentation were compared in two 

populations of A. palmeri (one susceptible and the other glyphosate-resistant 

due to gene amplification).
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1.2 MATERIALS AND METHODS 

 

1.2.1 Plant material and treatment application 

The seeds of the A. palmeri biotypes (GR and GS) were kindly provided by Dr. 

Gaines (Colorado State University, Fort Collins, CO, USA) and were originally 

collected from North Carolina (USA) (Chandi et al. 2012). Seeds were surface 

sterilized prior to germination (Labhilili et al. 1995). For germination, seeds were 

incubated for 7 days at 4 °C in darkness and then maintained for 48 h in a 

light/darkness cycle of 16 h/8h at temperature of 30 °C in light and 8 h at 18 °C 

in darkness. The seeds were then transferred to aerated 2.7 L hydroponic tanks 

in a phytotron (day/night, 16 h/8 h; light intensity, 500 μmol s−1 m−2 PAR; 

temperature, 22/18 °C; relative humidity of the air, 60/70%). Throughout the 

course of the experiment, the plants remained in the vegetative phenological 

stage. The nutrient solution (Hoagland and Arnon 1950) was supplemented 

with 15 mM KNO3. 

 

1.2.2 In vivo shikimate assay 

Shikimate accumulation following glyphosate treatment was compared 

between GR and GS as described previously (Koger et al. 2005b). Leaf disks 

4 mm in diameter (6−10 disks) were excised from the youngest leaf of three to 

six plants of each biotype using a Harris Uni-Core (Healthcore, Bucks, UK). 

Briefly, one disk was placed in a well of a 96-well microtiter plate. Each 

well contained 100 μL of a solution containing 169, 84.5, 42.3, 21.1, 10.6, 5.3, 

2.6, 1.3, or 0 mg glyphosate L−1. Glyphosate was diluted from commercial 

formula (Glyfos, BayerGarden, Valencia, Spain). Each row of the microtiter 

plate contained a different glyphosate concentration. The plates were incubated 

at 22 °C under continuous light for 16 h. After incubation, the plants were placed 

in a freezer (−20 °C). 

The concentration of shikimate in each cell was measured according to 

the procedure of Cromartie and Polge (Cromartie and Polge 2000). Shikimate 

was extracted from the frozen−thawed leaf disks by adding 25 μL of 1.25 N HCl 

and incubating the plates at 60 °C for 15 min. Two 25 μL aliquots from each 

well were transferred to a new plate, and 100 μL of 0.25%periodic acid/0.25% 
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metaperiodate was added to each well. After the periodic acid−metaperiodate 

incubation (60 min in the dark), 25 ml of 0.6 M sodium hydroxide with 0.22 M 

sodium sulfite solution was added. The optical density of the solution at 380 nm 

was determined spectrophotometrically. A shikimate standard curve was 

developed by adding known amounts of shikimate to wells containing leaf disks 

not exposed to glyphosate (3, 6, 12, 25, 50, and 100 μg mL−1). One microtiter 

plate was used for each population. The study was repeated twice. 

 

1.2.3 Dose−response studies 

A dose−response study was performed to verify the previously reported 

resistance. The dose−response relationship was established according to the 

method of Seefeld et al (Seefeldt et al. 1995). For each population, plants of 

uniform size and appearance were selected, and three tanks with four to five 

plants each were treated with each glyphosate dose. Both populations were 

treated when plants were approximately 20 days old, after reaching the growth 

stage defined as BBCH 14.35. The experiment was repeated twice. 

Glyphosate is recommended at 0.84 kg ha−1 for the control of 

Amaranthus sp. up to 46 cm in height (Culpepper et al. 2006). Glyphosate 

herbicide (commercial formula, Glyfos, BayerGarden, Valencia, Spain) was 

applied using an aerograph (model Definik; Sagola) connected to a compressor 

(model Werther one, Breverrato, 60 W; 10 L m−1; 2.5bar). The herbicide was 

sprayed at a rate of 500 L ha−1, and thus there commended field dose resulted 

in 1.68 g glyphosate L−1. The effect of increasing doses of glyphosate up to 3 

times the recommended dose (0.0, 0.042 (only for GS), 0.084, 0.21, 0.42, 0.84, 

1.68 and 2.52 kg ha−1) was evaluated in terms of biomass and shikimate 

content, an adequate indicator of glyphosate-mediated plant injury. The control 

plants were treated with water because the inert proprietary ingredients could 

not be obtained. 

For biomass evaluation, the shoot and root fresh weights of each plant 

were determined 5 days after treatment. The material was dried for 48 h at 75−

80 °C to obtain the dry weight. 
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Shikimate content was evaluated at 5 days after treatment. Three to six 

leaf disks (4 mm diameter) were excised from the youngest leaf of each plant. 

Leaf disks were placed in a screw-top 2 mL epitube, frozen, and stored at -80 

°C until analysis. For shikimate determination, the vials were removed from the 

freezer, and shikimate was extracted as described by Koger et al (Koger et al. 

2005b). First, 100 μL of 0.25 N HCl per disk was added to each vial. The vials 

were incubated at 22 °C for 1.5 h and mixed by vortexing several times. The 

shikimate content was analyzed spectrophotometrically (Cromartie and Polge 

2000). 

 

1.2.4 Analytical determinations 

After the dose−response study, a physiological study was performed by 

comparing the effect of the 0.84 and 2.52 kg ha−1 doses on each population to 

untreated plants. The experiment for the physiological study was repeated twice 

in time, and both populations were treated when plants were approximately 20 

days old. Leaf and root samples were obtained 3 days after treatment, 4h after 

the beginning of the photoperiod, for analytical determinations. Plant material 

was immediately frozen in liquid nitrogen and stored at −80 °C. A. palmeri frozen 

samples were ground to a fine powder under liquid N2 using a Retsch mixer mill 

(MM200, Retsch, Haan, Germany) maintaining separately individual plants as 

biological repeats. The amount of tissue needed for each analysis was 

separated and stored at −80 °C. 

 

 Relative Genomic EPSPS Gene Copy Number  

Quantitative realtime PCR was performed to determine the genomic copy 

number relative to acetolactate synthase (ALS) in untreated GS and GR plants. 

Genomic DNA was extracted from approximately 0.1 g of previously ground A. 

palmeri leaves. The plant material was homogenized in 375 μL of 2× lysis buffer 

(0.6 M NaCl, 0.1 M Tris-HCl (pH 8.0), 40 mM EDTA (pH 8.0), 4% sarcosyl, and 

1% SDS) and 375 μL of 2 M urea. One volume (750 μL) of 

phenol/chloroform/isoamyl alcohol (25:24:1) was added to the mixture and 

mixed briefly. The homogenates were centrifuged at 20,000 g for 10 min at 

room temperature. To precipitate the DNA, 0.7 volume (525 μL) of cold 
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isopropanol was added to the supernatants, and the tubes were centrifuged at 

20,000g for 15 min at 4 °C. The DNA pellet was washed twice with 1 mL of 70% 

ethanol, air-dried, and resuspended in 25 μL of resuspension buffer (10 

mMTris-HCl (pH 8.0), containing 30 μgmL−1 RNase A). Samples were briefly 

incubated at 37 °C for 5 min to degrade contaminating RNAs. 

The extracted DNA was subsequently quantified and analyzed using a 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA). OD 260 and 280 nm were read for every sample. The DNA quality 

was also checked using a 1% agarose gel. Ten-fold diluted DNA samples were 

loaded onto a 1% agarose gel and run at 75mA for 35 min. The gels were 

visualized using a Gel Doc 2000 system (Bio-Rad Laboratories Inc., Hercules, 

CA, USA). DNA concentrations were adjusted to 5 ng μL−1. 

Quantitative real-time PCR was used to measure EPSPS genomic copy 

number relative to ALS as described by Gaines et al. (Gaines et al. 2010) with 

some modifications. The following primer sets were used: EPSPS forward (5′

-atgttggacgctctcagaactcttggt-3′) and EPSPS reverse (5′ -

tgaatttcctccagcaacggcaa-3′); ALS forward (5′-gctgctgaaggctacgct-3′) and 

ALS reverse (5′-gcgggactgagtcaagaagtg-3′) (Gaines et al. 2010). To 

determine the efficiency of the primers, a standard curve using a 1×, 1/5×, 

1/25×, 1/125×, and1/500× dilution series of genomic DNA from GR was 

conducted. 

Real-time PCR amplifications were performed in an optical 96-wellplate 

using an ABI PRISM 7900 HT Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA). Each reaction was performed using 10 ng 

of genomic DNA in a total volume of 20 μL containing 1× SYBR Premix Ex Taq 

(Takara Bio Inc., Otsu, Shiga, Japan), 300 nM specific forward primer, and 300 

nM specific reverse primer. The following thermal profile was used for all PCRs: 

50 °C for 2 min, 95 °C for 1 min, and 40 cycles of (95 °C for 30 s and 60 °C for 

1 min). Melt-curve analysis was conducted with a final denaturation step of 95 

°C for 30 s, 60 °C for 15 s, and 95 °C for 15 s. 

To calculate the final Ct values, 10 biological replicates were performed, 

and each individual sample was run in triplicate. The average increase in 

EPSPS copy number relative to ALS and the standard deviation were 
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calculated for each sample. The increase in EPSPS copy number was 

expressed as 2ΔCt, where ΔCt = (Ct, ALS −Ct, EPSPS) (Gaines et al. 2010). 

 

 EPSPS Extraction and Activity Assay  

The EPSPS extraction and assay were conducted following the procedures of 

Gaines et al. (2010). Briefly, 1 g of leaf tissue was ground to a fine powder in a 

chilled mortar and mixed with 10 mL of cold extraction buffer. After 

centrifugation, the supernatant was precipitated with ammonium sulfate (45−

70%) and desalted (Zeba desalt spin columns, Pierce Biotechnology, Rockford, 

IL, USA). A phosphate detection kit (Molecular Probes, Eugene, OR, USA) was 

used for the continuous measurement of inorganic phosphate release for 

EPSPS activity. The total soluble protein in the reaction mixture was 12.5 μg 

mL-1 for the GS population and 1.25 μg mL-1 for the GR population. After 

obtaining a background phosphate release level (10 min), the final step was the 

addition of shikimate-3-phosphate (up to 0.5 mM). Phosphate release was 

measured for an additional 10 min. 

 

 Immunoblotting of EPSPS  

Extraction and electrophoresis were performed as described previously 

(Hoagland et al. 2013). First, 0.05 g of leaf tissue was ground with 0.2 mL of 

extraction buffer. Proteins were separated by 12.5% SDS-PAGE. Western blots 

were produced according to standard techniques. The EPSPS antibody was 

produced by a custom peptide facility (Agrisera AB, Vännäs, Sweden) against 

a sequence of residues (numbers 193−206) of Palmer amaranth EPSPS 

(GenBankaccession no. FJ861242). The antibody was raised in rabbits using 

the manufacturer’s standard protocols. The primary antibody dilution was 

1:2000. Anti-rabbit IgG peroxidase (Agrisera AB, Vännäs, Sweden) was used 

as a secondary antibody at a dilution of 1:75000. Bands were identified using 

an Advanced ECL chemiluminescence detection kit (Amersham Life Science, 

Arlington Heights, IL, USA). Immunoblots were scanned using a GS-800 

densitometer, and protein bands were quantified using Quantity One software 

(Bio-Rad Laboratories). Membrane signals were normalized according to total 

soluble protein loading quantity.
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 Metabolite Analysis and Fermentative Enzymes  

Ground leaf and root samples (0.1 g) were homogenized in 1 M HCl for amino 

acid extraction. After protein precipitation, the amino acid concentrations in the 

supernatant were analyzed. After derivatization with FITC, amino acid content 

was measured by capillary electrophoresis and a laser-induced fluorescence 

detector as described elsewhere (Zulet et al. 2013b). Cysteine content was 

determined from the same acid extracts derivatized with 5-iodoacetamide 

fluorescein and reduced with tributylphosphine, as described previously (Zinellu 

et al. 2005). 

The soluble carbohydrate (glucose, fructose, and sucrose) content was 

determined in ethanol-soluble extracts, and the ethanol-insoluble residue was 

extracted for starch analysis (Zinellu et al. 2005). The starch and soluble sugar 

concentrations were determined by capillary electrophoresis as described by 

Zabalza et al. (Zabalza et al. 2004). 

Pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) 

activities were assayed in desalted extracts as described previously (Gaston et 

al. 2002). 

 

1.2.5 Statistical analysis 

Dose−response curves based on fresh/dry weight were constructed using the 

program Sigma Plot 12.0 to calculate the four-parameter sigmoidal log−logistic 

dose−response model. The doses that resulted in a 50% reduction of the fresh 

and dry weights were calculated for each population. 

In the analytical determinations, each mean value was calculated using 

samples from different individual plants from the two performed experiments as 

replicates. The difference between untreated plants of each population was 

evaluated using Student’s t test and confirmed as significant when p < 0.05. 

The results of each population were subjected to separate one-way ANOVA 

analysis (SPSS 18.0), and the means were separated using the least significant 

difference method (p< 0.05). For each population, significant differences are 

highlighted in the figures by different letters.
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1.3 RESULTS AND DISCUSSION 

 

1.3.1 Population dose response to glyphosate 

The dose−response experiments confirmed glyphosate resistance in the GR 

population. Figure 1.1A presents the effect of different doses of glyphosate on 

shoot dry weigh accumulation 5 days after glyphosate application, expressed 

as a percentage of untreated plants. Although the increase in shoot dry weight 

was highly variable within each dose, the effect on each population was 

described by a significant four-parameter log−logistic dose−response curve. 

The root dry weight of GS plants did not exhibit a dose-dependent 

change over the range of concentrations of glyphosate used (data not shown), 

so it was not possible to use this biomass parameter in the resistance 

characterization. 

No difference in shoot dry weight accumulation was observed between 

the populations in the absence of glyphosate (data not shown). The glyphosate 

concentration that reduced the shoot dry weight accumulation over 5 days by 

50% (EC50) was 0.0897 kg ha−1 for GS and 0.3310 kg ha−1 for GR, 3.7-fold 

greater. This difference in the EC50 is not really a resistance factor. When 

percent survival or percent reduction in fresh weight after 21 days was used, 

the EC50 estimates were 18−20-fold higher for the GR biotype compared with 

the GS biotype (Chandi et al. 2012; Whitaker et al. 2013). These differences in 

values reflect differences in methodology, in the parameter evaluated (i.e., 

percent survival versus inhibition of biomass growth), and in the time point of 

assessment (time since treatment). However, glyphosate resistant biotypes 

from North Carolina have been reported to exhibit levels of resistance ranging 

from 3- to 22-fold (Culpepper et al. 2008). 

The accumulation of shikimate in plant tissue can be used to distinguish 

resistant and susceptible plants. Shikimate accumulation was observed in leaf 

disk tissue from GS plants after 5 days of treatment with glyphosate 

concentrations >0.21 kg ha−1 (Fig. 1.1B). The shikimate accumulation was 

maximized when the plants were sprayed with 0.84 kg ha−1 glyphosate, 

whereas accumulation was lower but still very noticeable at 1.68 and 2.52 kg 

ha−1. No significant shikimate accumulation was observed in the glyphosate-
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resistant biotype GR at any of the doses tested and, on an expanded scale, 

there was an effect, although much less than with the GS. Previous studies of 

the same populations have indicated that shikimate increases in both biotypes 

as the glyphosate concentration increases, with a greater increase in shikimate 

in the GS biotype (Whitaker et al. 2013). At glyphosate doses of ≥100 g ha−1, 

the shikimate concentration is always greater in the susceptible biotype 

(Whitaker et al. 2013). Due to the increased EPSPS copy number, shikimate 

should not accumulate or may accumulate at lower levels compared to the 

susceptible biotype. 

 
Figure 1.1 (A) Dose−response of the shoot dry weight accumulation in glyphosate-susceptible (GS) 
and -resistant (GR) Amaranthus palmeri plants over the 5 days following glyphosate application, as 
a percentage of the untreated plants (log−logistic dose−response curves). (B) Shikimate content in 
the leaves of glyphosate-susceptible(GS) and -resistant (GR) A. palmeri plants 5 days after 
spraying with glyphosate (mean ± SE; n = 4−7). 
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This study established the doses employed in the physiological 

characterization: 0.84 and 2.52 kg ha−1. The 0.84 kg ha−1 dose was chosen 

because the highest shikimate accumulation in GS was observed at this dose, 

and thus the physiological status is expected to be strongly affected. The 2.52 

kg ha−1 dose was chosen because it was the highest dose used and did not 

result in shikimate accumulation in GR plants. 

 

1.3.2 In vivo shikimate accumulation in leaf disks 

In addition to shikimate quantification in the leaves of plants 5 days after 

spraying with different glyphosate concentrations (Fig. 1.1B), plant sensitivity to 

glyphosate was evaluated by incubating excised leaf disk tissue for 24 h with 

0.1−170 mgL−1, glyphosate; shikimate accumulation in the leaf disks submerged 

in different glyphosate concentrations was analyzed in both populations. This 

second assay has been reported to differentiate resistant from susceptible 

biotypes in different species (Koger et al. 2005a). 

 

 
Figure 1.2 Effect of glyphosate concentration on shikimate levels in excised leaf disks from 
glyphosate-susceptible ((GS) and –resistant (GR) Amaranthus palmeri biotypes (mean ± SE; n = 
16). 
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The leaf disks from the resistant biotype had less shikimate 

accumulation than the susceptible biotype (Fig. 1.2). Shikimate accumulation 

was similar in leaf disks of GS plants incubated with 5 mg L−1 glyphosate and 

GR plants incubated with 170 mg L−1 glyphosate, the highest dose of 

glyphosate. These results confirm the resistance of the GR population and are 

consistent with previous research and with figure 1.1. 

 

1.3.3 EPSPS gene copy number and effects of glyphosate on 

protein content and enzymatic activity 

Gene amplification was first reported as a glyphosate resistance mechanism in 

an A. palmeri population from Georgia (Gaines et al. 2010). A North Carolina 

glyphosate-resistant population of A. palmeri with gene amplification of 22−63-

fold was subsequently reported. Additional populations have since been 

identified in New Mexico and Mississippi (Mohseni-Moghadam et al. 2013; 

Ribeiro et al. 2014). In this study, seeds from the North Carolina population 

were used. To confirm the resistance mechanism, the EPSPS relative genomic 

copy number was calculated by quantitative real-time PCR using ALS as an 

internal standard. Consistent with previous studies, the genomes of the GR 

plants exhibited a mean 47.5-fold increase in the number of copies of the 

EPSPS gene compared to the genomes of GS plants (Fig. 1.3A). 

An increased EPSPS copy number results in elevated EPSPS 

expression at RNA transcript levels in A. palmeri (Gaines et al. 2010, 2011; 

Ribeiro et al. 2014), A. tuberculatus (Chatham et al. 2015), and K. scoparia 

(Wiersma et al. 2015) but not B. diandrus (Malone et al. 2015). In addition to 

EPSPS expression, resistant plants with a greater EPSPS copy number have 

been reported to have a higher quantity of the EPSPS protein (Gaines et al. 

2010, 2011; Ribeiro et al. 2014; Wiersma et al. 2015) and higher EPSPS 

enzyme activity (Gaines et al. 2010, 2011; Salas et al. 2012; Ribeiro et al. 2014; 

Chatham et al. 2015). In this study, the EPSPS protein was quantified. 

Immunoblotting with an antibody for EPSPS resulted in a single reaction band 

at approximately 50 kDa (Fig. 1.3B, top). Greater EPSPS protein abundance 

was detected in GR plants; the normalized signal for EPSPS was 25-fold higher 

in untreated GR plants than in GS plants (Fig. 1.3B, bottom). As expected, 
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untreated GR plants exhibited higher specific EPSPS activity than GS plants 

(Fig. 1.3C) due to the increased levels of EPSPS protein in the total soluble 

protein. Interestingly, the activity in GR plants was increased 26.5-fold 

compared to GS plants, nearly identical to the 25-fold change in EPSPS protein 

levels. 

As widely reported, the glyphosate resistance level appears to increase 

with higher EPSPS genomic copy number (Gaines et al. 2010; Ribeiro et al. 

2014; Vila-Aiub et al. 2014; Salas et al. 2015), increased EPSPS expression 

(Gaines et al. 2010; Salas et al. 2012), protein content (Gaines et al. 2010), and 

specificactivity (Gaines et al. 2010). Two exceptions have been reported: 

cloned resistant plants of A. palmeri from Mississippi (Teaster and Hoagland 

2014) that did not exhibit a correlation between resistance and copy number 

and a line of Echinochloa colona in which resistance could not be explained 

solely by higher EPSPS basal activity (Alarcón-Reverte et al. 2015). 

In this study, the effect of glyphosate on the EPSPS protein content 

(Fig. 1.3B) of GS and GR plant was assessed. In both populations, plants 

treated with the higher dose exhibited an increase in EPSPS protein levels (Fig. 

1.3B top, bottom).These results suggest transcriptional/translational regulation 

triggered only by a high dose of glyphosate. This study is the first to report an 

increase in EPSPS protein levels after glyphosate treatment. Increases in 

EPSPS mRNA levels after glyphosate have been reported previously, 

suggesting transcriptional regulation, in resistant and sensitive biotypes of 

Eleusine indica (Baerson et al. 2002b), Lolium rigidum (Baerson et al. 2002a), 

and tobacco (Garg et al. 2014). By contrast, in A. tuberculatus with multiple 

EPSPS copies, no increase in EPSPS expression was detected after 

glyphosate application (Chatham et al. 2015). 

The effect of glyphosate on the specific activity of EPSPS differed 

between the two populations (Fig. 1.3C). GR plants exhibited a dose-dependent 

increase in enzymatic activity with glyphosate treatment, whereas GS exhibited 

a tendency toward decreased EPSPS activity as the applied dose of glyphosate 

increased. The increase in the amount of protein in the GR population at the 

highest dose of herbicide was sufficient for the concomitant increase in EPSPS 

activity to alleviate the toxicity of the herbicide. Indeed, concomitant increases 

in EPSPS mRNA and activity have been reported previously (Baerson et al. 
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2002a, b). EPSPS activity in GS plants decreased with glyphosate treatment 

(Fig. 1.3C). This response differed from that observed in GR plants and 

demonstrates that although the amount of EPSPS protein was higher in the 

susceptible population, the increase was not sufficient to counteract the amount 

of the enzyme inhibitor (herbicide) present. 

 
Figure 1.3 (A) Amaranthus palmeri genomic copy number of 5-enolpyruvylshikimate-3-phosphate 
synthase (EPSPS) relative to acetolactate synthase (ALS) in glyphosate-susceptible (GS) and -
resistant (GR) biotypes (mean ± SE; n = 9). (B) EPSPS protein levels in the leaves of glyphosate 
susceptible (GS) and -resistant (GR) A. palmeri populations untreated (0) or treated with 0.84 or 
2.52 kg ha−1 glyphosate, 3 days after application (top, representative sample blot with μg protein 
loaded/well indicated; bottom, normalized EPSPS quantity (mean ± SE; n = 3)). (C) Effect of 
glyphosate on EPSPS activity in leaves of glyphosate-susceptible (GS) and -resistant (GR) A. 
palmeri populations (3 days after application) (mean ± SE; n = 4). 
 

1.3.4 Free amino acid profile in untreated susceptible and 

resistant plants.  

 

If EPSPS is a bottleneck in the carbon flow through the shikimate 

pathway, GR plants should possess higher AAAs biosynthetic capacity. To test 

this hypothesis, the free amino acid profiles of GR and GS plants were 
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compared before the herbicide was applied. The total free amino acid (Fig. 

1.4A,C) and AAA contents (Fig. 1.5A,C) in leaves and roots were compared. 

Moreover, the content of each individual amino acid in the leaves 

(Supplemental Fig. 1.1) and roots (Supplemental Fig. 1.2) was determined, 

including other groups of amino acids previously reported to be affected by 

glyphosate (Orcaray et al. 2010): branched-chain (Val, Leu, Ile), acidic (Glu, 

Asp), and amide (Gln, Asn) amino acids. 

The total free amino acid content was similar in the two populations 

(Fig. 1.4A,C). Interestingly, no differences were detected in the AAA contents 

between untreated GR plants and GS plants (nor in the leaves or in the roots) 

(Fig.1.5A,C; Supplemental Fig. 1.1 and 1.2), as reported recently  for two other 

populations of the same species (Maroli et al. 2015). The contents of nearly all 

individual amino acids in the leaves and roots (shown in Supplemental Figs. 1.1 

and 1.2) were similar for untreated plants of the two populations, except Val, 

Leu, Ala, and Glu in leaves and Tyr, Val, and Asp in roots. GR plants exhibited 

increases in EPSPS copy number, protein amount, and activity of 47.5-, 23.6-, 

and 26.5-fold, respectively, compared to GS plants. However, the AAA content 

was the same in untreated plants of the two populations, indicating that the 

amount of AAA is independent of the expression of EPSPS and suggesting 

regulation of EPSPS activity at protein level. Plants regulate carbon flux toward 

AAA biosynthesis at the transcriptional and post-transcriptional levels (Maeda 

and Dudareva 2012). Although all shikimate pathway genes have been 

characterized in model plants (Tohge et al. 2013b), information on the effect of 

AAA levels on the expression of these genes in plants remains limited (Maeda 

and Dudareva 2012). In vitro studies of allosteric regulation have implied that 

the shikimate pathway in plants is mostly regulated at the gene expression level 

rather than the post-translational level (Tzin and Galili 2010b). 

Some evidence indicates that in plants, the expression of the shikimate 

pathway and the downstream pathway are coordinately regulated, often by the 

same transcription factor (Maeda and Dudareva 2012). The transcription factor 

EPF1 directly binds the EPSPS promoter and controls its spatial and 

developmental expression (Takatsuji et al. 1992). 
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Figure 1.4 Total amino acid content in leaves (A) and roots (C) of untreated plants of glyphosate-
susceptible (GS) and -resistant (GR) Amaranthus palmeri populations and effect of glyphosate on 
total amino acid content in leaves (B) and roots (D) 3 days after treatment (mean ± SE; n = 6−9). 
The asterisk (∗) indicates significant differences between control plants (without herbicide) of each 
population. Different capital letters in the GR population and different lower case letters in the GS 
population indicate significant differences between treatments (p value ≤ 0.05). 

 

Although EPSPS has been extensively studied in plants due to its 

association with glyphosate, the significance of EPSPS activity in the synthesis 

of AAA has not been sufficiently addressed (Galili and Hofgen 2002). This study 

of GR plants provides insights into the tight control of the biosynthesis of AAAs 

by EPSPS activity in vivo, in which regulations at levels of gene expression and 

protein are coordinated.   
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1.3.5 Free amino acid profile after glyphosate treatment 

Changes in the free amino acid profile after glyphosate treatment have been 

reported (Orcaray et al. 2010, 2012; Zulet et al. 2015), and thus this parameter 

can also be used as a physiological marker of herbicide activity. The total free 

amino acid content was higher in GS plants treated with glyphosate than in 

untreated plants (Fig.1.4B,D). 

In both roots and leaves, the increases after treatment with 0.84 or 2.52 

kg ha−1 glyphosate were similar. Total free amino acid accumulation after 

glyphosate treatment has been reported previously in several species, including 

pea (Orcaray et al. 2010; Zulet et al. 2013a), Arabidopsis thaliana (Zulet et al. 

2015), maize (Liu et al. 2015), and soybean (Moldes et al. 2008; Vivancos et 

al. 2011). Glyphosate also increased the total free amino acid content in the 

leaves and roots of GR plants in a dose-dependent manner (Fig. 1.4B,D), 

although the detected increase in leaves was much lower than that in treated 

GS leaves. Previous studies have observed small or no effects on this 

parameter in resistant soybean treated with glyphosate (Moldes et al. 2008; 

Vivancos et al. 2011). The observed accumulation of free amino acids in treated 

plants has been attributed to increased protein turnover (Zulet et al. 2013a) and, 

indeed, a decrease in the content of total soluble protein was recently reported 

in glyphosate-treated A. palmeri populations (Maroli et al. 2015). However, an 

evaluation of the effects of glyphosate on the main proteolytic systems in pea 

revealed that not all proteolytic systems increased (Zulet et al. 2013a). 

The free amino acid profile in GS revealed an important increase in the content 

of each individual amino acid after 3 days of glyphosate treatment 

(Supplemental Figs.1.1 and 1.2). In leaves, Val, Leu, Ile, Ala, Asn, Gln, Gly, 

Asp, Thr, Lys, Ser, Arg, His, Pro, and Cys contents were higher after glyphosate 

treatment in a dose-dependent pattern (Supplemental Figure 1.1). In roots, Val, 

Leu, Ile, Ala, Gly, Glu, Thr, Lys, Ser, Arg, and His contents were increased, and 

in most cases the highest content was detected after treatment with 0.84kg ha-

1 of glyphosate (Supplemental Fig. 1.2). 

Branched-chain amino acid content was greatly increased in the leaves 

and roots of GS plants after glyphosate treatment, as reported recently (Maroli 

et al. 2015). The effect of the herbicide on the amide group of amino acids (Gln, 

Asn) in GS plants varied depending on the organ, increasing and decreasing in 
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leaves and roots, respectively. γ-Aminobutyric acid (GABA) is a nonprotein 

amino acid that usually accumulates under stress situations. GABA did not 

accumulate in glyphosate-treated GS plants. In GR plants, the contents of Val, 

Leu, Ile, Ala, Asn, Gln, Asp, Thr, Lys, Arg, His and Pro in leaves and roots and 

the contents of Gly and Cys only in leaves were increased 3 days after the 

application of the highest concentration of glyphosate. However, the 

accumulations were not as striking as in the GS biotype (Supplemental Figs. 

1.1 and 1.2). 

The general increase in the content of each free amino acid due to 

protein turnover could mask the specific change in each AAA. Thus, each 

individual AAA and their sum are presented as a percentage of the total free 

amino acids instead of as absolute values (Fig. 1.5B,D). In general, in the GS 

population, the relative content of each AAA, and the sum of the three AAA 

contents were increased after glyphosate application. The detected increase 

was more striking at the highest dose of glyphosate, following the same pattern 

as other free amino acids. The absolute contents of Trp, Tyr, and Phe were 

increased in the leaves and roots of the susceptible plants after glyphosate 

application (Supplemental Figs. 1.1 and 1.2). Other studies have shown no 

clear pattern in AAA content in response to glyphosate exposure. In sensitive 

A. palmeri and soybean, only Trp accumulated after glyphosate treatment 

(Vivancos et al. 2011; Maroli et al. 2015) whereas rapeseed exhibited an 

increase in Phe concentration in response to low glyphosate concentrations 

and no change in response to higher glyphosate concentrations (Petersen et 

al. 2007). The AAA content in GR plants was largely unaffected by glyphosate 

treatment: it was not affected in roots and was increased in leaves only at a 

dose of 2.52 kg ha−1. By contrast, metabolic profiling of a resistant biotype of A. 

palmeri revealed perturbations in AAA levels after glyphosate treatment (Maroli 

et al. 2015). 

It is difficult to predict how greatly an increase in one enzyme of the 

shikimate pathway may affect the AAA content. Transgenic Arabidopsis plants 

expressing a feedback-insensitive bacterial DHAPS exhibit higher Phe and Trp 

contents (Tzin et al. 2012). Thus, the in vivo roles of two enzymes of the 

shikimate pathway that are feedback regulated by AAA, chorismate mutase and 

anthranilate synthase, remain unclear (Tzin and Galili 2010b). In our study, the 
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comparison of untreated plants of both populations demonstrated that resistant 

plants with much higher EPSPS protein levels and activity exhibited the same 

AAA content as susceptible plants. This result suggests a regulatory 

mechanism after EPSPS expression that controls AAA content. The free amino 

acid content reflects the biosynthesis, catabolism, use rate in protein synthesis, 

and proteolysis of amino acids. AAAs are used not only in protein synthesis but 

also in the biosynthesis of many aromatic metabolites, such as 

phenylpropanoids. 

 
Figure 1.5 Aromatic amino acid (Phe, Tyr, and Trp) content in leaves (A) and roots (C) of untreated 
plants of glyphosate-susceptible (GS) and-resistant (GR) Amaranthus palmeri populations; effect 
of glyphosate on aromatic amino acid (Phe, Tyr, Trp) content with respect to the total free amino 
acids (percent of the total free amino acids) in leaves (B) and roots (D) 3 days after treatment (mean 
± SE; n = 6−9). Different capital letters for the GR population and different lower case letters for the 
GS population indicate significant differences between treatments (p value ≤0.05). The letters 
embedded in the columns indicate differences for each individual amino acid, and letters above the 
columns indicate difference sbetween the sums of aromatic amino acids. 
 

Glyphosate treatment of the GR population revealed that inhibition of 

EPSPS activity by the herbicide (even a small amount, as resistant plants 

possess a large amount of EPSPS protein) induces an increase in EPSPS 
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protein levels (Fig.1.3B), demonstrating control of gene expression of EPSPS. 

In these resistant glyphosate-treated plants, with higher EPSPS protein 

amount, the AAA content was largely unaffected (Fig. 1.5B,D), supplemental 

the interplay of mechanisms at gene expression and protein levels to control 

EPSPS in vivo. 

Although the signal eliciting the increase in EPSPS protein synthesis 

has not been elucidated, our results indicate that AAA content is not involved 

because AAA levels remained nearly constant after glyphosate treatment. The 

response-triggering signal is proposed to be related to minor changes in other 

intermediate metabolites, such as shikimate or chorismate. 

The results obtained after glyphosate treatment of the susceptible 

population confirmed the physiological effects described above for the resistant 

plants (an increase in EPSPS protein). However, the increase in EPSPS protein 

in susceptible plants (Fig. 1.3B) was insufficient to overcome the effect of the 

herbicide, as free amino acid content was clearly increased (Fig. 1.4). Indeed, 

the AAA content was also increased, most likely due to increased protein 

turnover, thus confirming that AAA levels are not the signal triggering the 

increase in EPSPS synthesis. 

 

1.3.6 Carbon allocation and ethanol fermentation after 

glyphosate treatment 

Carbohydrate accumulation is induced by the application of glyphosate 

(Orcaray et al. 2012; Zulet et al. 2015; Maroli et al. 2015) and thus can be used 

as a physiological marker of herbicide toxicity. Total soluble sugars (the sum of 

glucose, fructose, and sucrose) and starch contents were measured in the roots 

and leaves of both populations of A. palmeri 3 days after treatment with 

glyphosate (Fig. 1.6). Comparison of the control plants (untreated) of the two 

populations revealed similar carbohydrate levels, although several differences 

were detected: the control leaves and roots of the resistant biotype exhibited 

significantly higher contents of starch and total soluble sugars, respectively, 

than the susceptible plants. In GS plants treated with the lowest concentration 

of glyphosate, accumulation of total soluble sugars and starch in the leaves and 

of starch in roots was detected. Sugar accumulation in GS plants exhibited a 
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trend to decline to control values at the highest concentration, but this behavior 

does not indicate recovery. On the contrary, the severity of the treatment of 

these plants makes it difficult to maintain carbohydrate accumulation, 

corresponding to a possible decline in carbon assimilation (Zabalza et al. 2004; 

Orcaray et al. 2010). This pattern was not detected in GR plants, where a 

general increase in carbohydrate content was detected after both 

concentrations were applied. Carbohydrate accumulation in the leaves and 

roots of pea and A. thaliana plants supplied with glyphosate through the nutrient 

solution has been described (Orcaray et al. 2012; Zulet et al. 2015). Moreover, 

the same pattern has been described recently when glyphosate was sprayed 

onto the leaves, proving that the plant response was similar after foliar or 

residual applications (Armendáriz et al. 2016). 

 
Figure 1.6 Effect of glyphosate on total soluble sugar (fructose, glucose, and sucrose) and starch 
contents in leaves and roots of glyphosate-susceptible (GS) and -resistant (GR) Amaranthus 
palmeri populations (3 days after application) (mean ± SE; n = 6−9). The asterisk (∗) indicates 
significant differences between control plants (without herbicide) of each population. Different 
capital letters for the GR population and different lower case letters for the GS population indicate 
significant differences between treatments (p value ≤ 0.05). 
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Glyphosate is a systemic herbicide that is translocated through all the 

plant body independently of the site of application, and the detected 

physiological effects were similar. In these studies, accumulation in sinks and 

sources was attributed to growth arrest. The accumulation of unused 

carbohydrates in sinks suggests that sucrose is transported from the leaves to 

the roots at a higher rate than is used in the sinks. Under these conditions, the 

sugar gradient required for long-distance transport is abolished, and 

carbohydrates accumulate in the leaves of treated plants because of a 

decrease in sink strength (Orcaray et al. 2012). 

To evaluate another key parameter of carbon metabolism in the roots, 

ethanol fermentation was assessed in both populations (Fig. 1.7). Previous 

studies have reported the induction of aerobic fermentation after EPSPS 

inhibition in pea and A. thaliana (Orcaray et al. 2012; Zulet et al. 2015). 

 
Figure 1.7 Effect of glyphosate on pyruvate decarboxylase and alcohol dehydrogenase enzymatic 
activities in roots of glyphosate-susceptible (GS) and -resistant (GR) Amaranthus palmeri 
populations (3 days after application) (mean ± SE; n = 6−9). The asterisk (∗) highlights significant 
differences between control plants (without herbicide) of each population. Different capital letters 
for the GR population and different lower case letters for the GS population indicate significant 
differences between treatments (p value ≤ 0.05). 
 

The roots of untreated plants of both populations exhibited similar PDC 

activity, whereas ADH activity was higher in GR roots. The roots of the GS 

plants exhibited an increase in PDC and ADH activities after treatment with 0.84 

kg ha−1 and a trend to decline to the control values when the highest dose of 

glyphosate was applied. Resistant plants exhibited induction of ADH activity 

only at the highest treatment. Fermentative induction after treatment with 

glyphosate cannot be easily explained, and the fermentative response can 
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likely be considered a physiological effect induced under stress (Orcaray et al. 

2012). 

Collectively, these results indicate that A. palmeri exhibits the 

physiological markers typical of the toxic consequences of glyphosate and 

reported previously in other species (with some deviations): total free amino 

acid accumulation, carbohydrate accumulation, and ethanol fermentation 

induction (only at the lowest dose applied). Although both populations exhibited 

these symptoms, the pattern was not similar for all effects detected. 

Carbohydrate accumulation and ethanol fermentation were detected in GS and 

GR plants to a similar extent, although a trend to decline to control values was 

detected in GS plants treated with 2.52 kg ha−1, most likely due to the severity 

of the dose. By contrast, individual and total free amino acid accumulation were 

less pronounced in GR plants than in GS plants. Free amino acid accumulation 

induced by glyphosate was alleviated in the resistant plants due to the reduced 

susceptibility to herbicide phytotoxicity, and thus this physiological marker was 

more directly related to the severity of the treatment and lethality. One important 

exception in the free amino acid content is that AAA content remained constant 

after glyphosate treatment, suggesting tight control of EPSPS activity in vivo. 

Different physiological patterns of sensitive and resistant biotypes after 

glyphosate treatment have recently been described by metabolic profiling 

(Maroli et al. 2015). As proposed in that study, resistance to glyphosate in GR 

plants, although primarily conferred by the EPSPS gene amplification, may be 

complemented by other physiological responses, such as an antioxidative 

protective mechanism (detected in Maroli et al. 2015) or the maintenance of a 

constant AAA content level detected in our study. 

In conclusion, this study shows a complex regulation of EPSPS activity 

by mechanisms at transcriptional/translational and protein levels. In both 

populations, the herbicide induced increase of the EPSPS protein, indicating a 

regulation in gene expression that can be useful in the new weed management 

strategy based on RNA interference technology (branded BioDirect) to 

overcome glyphosate resistance in weeds (Shaner and Beckie 2014). There 

was no inherent differences in AAA content between the biotypes in the 

absence of glyphosate, despite the massive amount of EPSPS enzyme 
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detected in GR plants. Moreover, AAA content was maintained constant in 

resistant plants, even with the glyphosate-induced increase of EPSPS enzyme. 

These results indicate a regulation at the level of EPSPS protein, the 

signal of which remains unknown but cannot be AAA content. On the other 

hand, it has been possible to describe new insights of the physiological 

manifestations of the evolved glyphosate resistance. The physiological markers 

that have been reported before after glyphosate treatment were detected in 

susceptible and resistant plants: carbohydrate accumulation, induction of 

ethanol fermentation, and free amino acid accumulation. Resistant plants 

accumulate less amino acids than susceptible plants, and the effect of 

glyphosate on AAA content was almost abolished in resistant plants, 

suggesting that a constant free amino acid pool and AAA content are key 

parameters in complementing the resistance in GR population. 
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SUPPORTING INFORMATION OF CHAPTER 1 

 
Supplemental Figure 1.1: effect of glyphosate on free amino acid content in leaves of glyphosate-
resistant (GR) and -susceptible (GS) A. palmeri populations (3 days after application)  
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Supplemental Figure 1.2: effect of glyphosate on free amino acid content in roots of glyphosate-
resistant (GR) and -susceptible (GS) A. palmeri populations (3 days after application)..
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ABSTRACT 

 

A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS; EC 2.5.1.19), is the known target of the widely used 

herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the 

most troublesome weeds in agriculture, has evolved through increased EPSPS 

gene copy number. The aim of this work was to study the pleiotropic effects of 

(i) EPSPS increased transcript abundance due to gene copy number variation 

(CNV) and of (ii) glyphosate application on the aromatic amino acid (AAA) and 

branched chain amino acid (BCAA) synthesis pathways. Hydroponically grown 

glyphosate sensitive (GS) and glyphosate resistant (GR) plants were treated 

with glyphosate 3 days after treatment. In absence of glyphosate treatment, 

high EPSPS gene copy number had only a subtle effect on transcriptional 

regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment 

provoked a general accumulation of the transcripts corresponding to genes of 

the AAA pathway leading to synthesis of chorismate in both GS and GR. After 

chorismate, anthranilate synthase transcript abundance was higher while 

chorismate mutase transcription showed a small decrease in GR and remained 

stable in GS, suggesting a regulatory branch point in the pathway that favors 

synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate 

treatment. This was confirmed by studying enzyme activities in vitro and amino 

acid analysis. Importantly, this upregulation was glyphosate dose dependent 

and was observed similarly in both GS and GR populations. Glyphosate 

treatment also had a slight effect on the expression of BCAA genes but no 

general effect on the pathway could be observed. Taken together, our 

observations suggest that the high CNV of EPSPS in A. palmeri GR populations 

has no major pleiotropic effect on the expression of AAA biosynthetic genes, 

even in response to glyphosate treatment. This finding supports the idea that 

the fitness cost associated with EPSPS CNV in A. palmeri may be limited. 

 

KEYWORDS: glyphosate, aromatic amino acid pathway, branched chain amino 

acid pathway, mRNA relative expression, EPSPS, CM, AS, Amaranthus 

palmeri
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2.1 INTRODUCTION 

 

The shikimate pathway uses carbon from primary metabolism to form 

chorismate, a precursor of the essential aromatic amino acids (AAAs) 

phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) (Tzin and Galili 

2010b). These AAAs are not only essential components of protein synthesis 

but also serve as precursors for a wide range of secondary metabolites with 

multiple biological functions in plants, including plant stress tolerance (Dyer et 

al. 1989; Keith et al. 1991; Gorlach et al. 1995; Janzik et al. 2005; Maeda and 

Dudareva 2012). The AAA synthesis pathway can be subdivided into two steps: 

(i) the pre-chorismate (shikimate) pathway which provides the precursor 

chorismate used for synthesis of all AAAs and (ii) the post-chorismate pathway 

which can lead to either synthesis of Phe and Tyr, or Trp, via different routes 

(Fig. 2.1) (Maeda and Dudareva 2012). Synthesis of chorismate is catalyzed by 

seven enzymes acting sequentially (Fig. 2.1): D-arabino-heptulosonate 7-

phosphate synthase (DAHPS), dehydroquinate synthase (DHQS), 3-

dehydroquinate dehydratase/shikimate dehydrogenase (DQSD), shikimate 

kinase (SK), 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), and 

chorismate synthase (CS). After formation of chorismate, synthesis of Trp is 

catalyzed by anthranilate synthase (AS) while synthesis of Phe and Tyr is 

catalyzed by chorismate mutase (CM) (Tohge et al. 2013b). 

Due to its importance for plant biology, the synthesis of AAA is a tightly 

regulated process controlled by many inputs (Bentley and Haslam 1990; Tzin 

and Galili 2010b; Tohge et al. 2013b; Galili et al. 2016). Four points appear as 

checkpoints: the entrance of the pathway with the enzyme DAHPS (Sato et al. 

2006), an exit of major importance with the phenylalanine ammonialyase (PAL) 

(Hahlbrock and Scheel 1989), the branch point in the post-chorismate pathway 

(Maeda and Dudareva 2012) and the enzyme EPSPS. The enzyme EPSPS is 

the target of the herbicide glyphosate (Steinrücken and Amrhein 1980) and 

therefore a key step in the shikimate pathway. 

The intensive and continuous use of glyphosate has led to the 

emergence of glyphosate resistant (GR) weed populations (Powles 2008). The 

global issue of herbicide resistance for weed management is a serious 

challenge for global food security (Délye et al. 2013). One of the most damaging 
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glyphosate-resistant weed species is Amaranthus palmeri S. Wats (Culpepper 

et al. 2006; Powles and Yu 2010). Glyphosate resistance is conferred by gene 

amplification of EPSPS, which leads to a massive production of the enzyme 

EPSPS (Gaines et al. 2010). The recommended field dose is not sufficient to 

inhibit EPSPS activity, and plants survive. Copy number variation (CNV) of 

EPSPS is now reported to confer glyphosate resistance in several weed 

species including Lolium multiflorum (Salas et al. 2012) and Kochia scoparia 

(Wiersma et al. 2015) and particularly in Amaranthus species such as 

Amaranthus tuberculatus (Lorentz et al. 2014) and Amaranthus spinosus 

(Nandula et al. 2014). 

 

Figure 2.1 Biosynthetic pathway of aromatic amino acids (AAAs). Consecutive enzymatic steps of 
pre-chorismate pathway: D-arabino-heptulosonate 7-phosphate synthase (DAHPS), 
dehydroquinatesynthase (DHQS), 3-dehydroquinate dehydratase/shikimate dehydrogenase 
(DQSD), shikimate kinase (SK), 5-enolpyruvylshikimate 3-phosphatesynthase (EPSPS), and 
chorismate synthase (CS); and post-chorismate pathway: anthranilate synthase (AS) chorismate 
mutase (CM) leading to the synthesis of tyrosine (TYR), phenylalanine (PHE), and tryptophan 
(TRP). 
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To date, how the AAA pathway is regulated and how glyphosate may 

affect this regulation is not clearly understood. In particular, it is unknown 

whether there are pleiotropic effects associated with EPSPS CNV, particularly 

at the AAA synthesis pathway. Notably, no fitness cost has been associated 

with massive increase of EPSPS activity in GR populations (Giacomini et al. 

2014; Vila-Aiub et al. 2014). However, the gene amplification resistance 

mechanism found in A. palmeri offers us the opportunity to study the regulation 

of the shikimate pathway, the effect of EPSPS overexpression due to extra 

EPSPS gene copies, and the effect of glyphosate application. In addition to the 

feedback regulation of AAA biosynthetic pathway, the hypothesis of the 

existence of cross regulation of amino acid metabolic pathways at the 

transcriptional level has been revised (Pratelli and Pilot 2014). There was a 

close correlation between AAA and branched chain amino acids (BCAAs) 

(Noctor et al. 2002). 

In this study, the main objective was to evaluate the impact of EPSPS 

overexpression by gene amplification and of glyphosate treatment on the 

regulation of the AAA pathway and free AAA content. To this aim, the response 

of glyphosate sensitive (GS) and GR populations of A. palmeri to glyphosate 

were evaluated at the molecular and biochemical levels. Additionally, mRNA 

relative expression of the main enzymes from the BCAA pathway was 

developed to test whether there is any variation in their levels because of the 

overexpression of EPSPS or glyphosate treatment.
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2.2 MATERIALS AND METHODS 

 

2.2.1 Plant material and herbicide application  

Seeds of A. palmeri GS and GR biotypes were originally collected from North 

Carolina (United States) (Chandi et al. 2012; Fernández-Escalada et al. 2016). 

The resistance mechanism of the GR biotype is EPSPS gene amplification 

(Chandi et al. 2012), with 47.5 more gene copies in GR than in GS plants 

(Fernández-Escalada et al. 2016). Plants were germinated and grown in 

aerated hydroponic culture under controlled conditions according to procedures 

described in Fernández-Escalada et al. (2016). Three week-old plants [after 

reaching the growth stage defined as BBCH 14 (Hess et al. 1997)] were treated 

with glyphosate (commercial formula, Glyfos, 360 g a.e. L-1, isopropylamine 

salt, BayerGarden, Valencia, Spain) at both recommended field rate (1 X= 0.84 

kgha-1) and three times that rate (3 X= 2.52 kg ha-1), according to Culpepper et 

al. (2006). Glyphosate treatment was performed using an aerograph (Junior 

Start model; Definik; Sagola). Control plants were treated with water. At 3 days 

after treatment, leaves were collected, frozen, and ground to a fine power as 

previously described (Fernández-Escalada et al. 2016). The experiment was 

conducted twice. 

 

2.2.2 Quantitative reverse transcription-PCR 

RNA was extracted from leaf tissues using the Macherey-Nagel NucleoSpinR 

RNA Plant kit following manufacturer’s instructions. Total RNA concentration 

was measured with Gen5.1.11 (Biotek Instruments, Inc., Winooski, VT, United 

States) and RNA quality was assessed using RNA gel electrophoresis. The gels 

were visualized using a Gel Doc 2000 system (BIORAD Laboratories, Inc., 

Hercules, CA, United States). 

cDNA synthesis was performed using BIORAD iScriptTMcDNA 

Synthesis Kit with 1 mg of total RNA following manufacturer’s instructions. 

Quantitative RT-PCR (qRT-PCR) was performed using a Thermocycler 

BIORAD CFX Connect TM Real-Time System. The reaction kit used for qPCR 

was PerfeCTa SYBRR GreenSuperMix (Quantabio, Beverly, MA, United 

States). Each reaction was performed using 1 mL of cDNA template. The 
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following thermal profile was used for all PCRs: denaturation at 95ºC for 2 min, 

40 cycles of 95ºC for 15 s and 52–61ºC for annealing and extension for 20 s. 

Optimal annealing temperature for each primer was determined using gradient 

PCR. All primers and annealing temperatures are listed in Supplementary Table 

2.1. EPSPS primer was modified from Gaines et al. (2010). Melting curve 

analysis was conducted to verify amplification of single PCR products. Gene 

expression was monitored in five biological replicates. Primer efficiency (E) for 

each primer is presented in Supplementary Table 2.1 and was calculated 

according to E = 10[-1/slope] (Pfaffl 2001). Relative transcript level was 

calculated as EGOI
CPGOI control-CPGOItreated/EREF

CPREF control-CPREF treated (Pfaffl 2001), 

where GOI = gene of interest, REF = reference gene (beta tubulin was used as 

normalization gene), and CP = crossing point, the cycle at which fluorescence 

from amplification exceeded the background fluorescence. Relative transcript 

level was calculated for all genes of the AAA synthesis pathway, corresponding 

to eight enzymes and four genes of the BCAA synthesis pathway. 

 

2.2.3 EPSPS, DAHPS, and PAL immunoblotting 

Protein extraction was performed using 0.1 g of ground leaf tissue in 0.2 mL of 

extraction buffer (MOPS 100 mM, EDTA 5 mM, Triton-X 100 1%, glycerin 10%, 

KCl 50 mM, benzamidine 1 mM, iodoacetamide 100 mM, PVP 5% and PMSF 

1 mM). Proteins were separated by 12.5% SDS-PAGE and immunoblots were 

produced according to standard techniques. The protein amount loaded per 

well for each antibody used is specified in the fig. legends. EPSPS and DAHPS 

antibody dilutions were 1:2000 (Fernández-Escalada et al. 2016) and 1:1000 

(Orcaray et al. 2011), respectively. PAL antibody was produced by a custom 

peptide facility (Biogenes, Berlin, Germany) using a short, conjugated peptide 

as an antigen (C-GATSHRRTKQGGA). The antibody was raised in rabbits 

using standard protocols from the manufacturer, and the primary antibody 

dilution was 1:500. An anti-rabbit AP conjugated antibody (Sigma Chemical, 

Co., St. Louis, MO, United States) was used as a secondary antibody at a 

dilution of 1:20,000. Bands were identified using a BCIP/NBT kit which was 

Amplified alkaline phosphatase immunoblot assay kit (BIORAD 170, BIORAD 

Laboratories, Inc., Hercules, CA, United States). Immunoblots were scanned 

using a GS-800 densitometer, and protein bands were quantified using 
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QuantityOne software (BIORAD Laboratories, Inc., Hercules, CA, United 

States). In the case of EPSPS protein, membrane signals were normalized 

according to total soluble protein loading quantity. In the case of DAHPS and 

PAL, absolute signals were used. 

 

2.2.4 Enzymatic activities 

5-Enolpyruvylshikimate-3-phosphate synthase activity was performed using the 

procedure described in Gaines et al. (2010). PAL activity was carried out 

according to Orcaray et al. (2011) with the following modifications. Samples 

were immediately centrifuged after extraction (12,000 g, 5 min). The reaction 

was started by the addition of 25 mM L-phenylalanine (Maroli et al. 2015). 

Controls (without L-phenylalanine) were prepared to determine endogenous 

levels of transcinnamic acid (t-CA). Incubation was performed for 1 h at 37 ºC 

(Sarma et al. 1998; Wang et al. 2007). 

Protein extraction for CM and AS activity assays was developed as 

described in Singh and Widholm (1974) with addition of 1 mM PMSF (Goers 

and Jensen 1984). Samples were desalted using PD-10 columns (Ishimoto et 

al. 2010). 

CM enzymatic activity was measured as described in Goers and 

Jensen (1984). Control for each sample was carried out using enzymatic 

extracts previously inactivated with 1 N HCl. AS activity was quantified as 

described in Ishimoto et al. (2010). Controls were performed using boiled 

enzymatic extract (Matsukawa et al. 2002). 

 

2.2.5 Shikimate determination 

For shikimate content determination, three leaf disks (4 mm diameter) were 

excised from the youngest leaf of each plant. Leaf disks were placed in a screw-

top 2 mL epitube, frozen, and stored at -80 ºC until analysis. Shikimate was 

extracted as described in Koger et al. (2005b). After addition of 100 mL of 0.25 

N HCl per disk to each vial, samples were incubated at 22 ºC for 1.5 h and 

mixed by vortexing. Shikimate content was quantified spectrophotometrically 

(Cromartie and Polge 2000). 
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2.2.6 Aromatic amino acid content determination  

Ground leaf (0.1 g) was homogenized in 1 M HCl for amino acid extraction. 

Protein precipitation was performed after incubation on ice and centrifugation 

(Orcaray et al. 2010). After derivatization with fluorescein isothiocyanate, AAA 

content was measured by capillary electrophoresis coupled to a laser induced 

fluorescence detector, as described in Zulet et al. (2013b). Analyses were 

performed at 20 ºC and at a voltage of + 30 kV. For tryptophan determination, 

the voltage was reduced to + 20 kV in order to improve separation. 

 

2.2.7 Statistical analysis 

Transcript level analyses were performed using five biological replicates. For 

immunoblot, enzyme activity, shikimate and AAA quantification, four biological 

replicates were used. One-way ANOVA with a multiple-comparison adjustment 

for least significant difference (LSD) at p<0.05 was used. Statistical analyses 

were performed using SPSS Statistics 24.0 (IBM, Corp., Armonk, NY, United 

States). 



RESULTS  

101 
 

2.3 RESULTS 

 

The number of EPSPS copies in the studied GR biotype was 47.5 fold when 

compared to the corresponding GS biotype (Fernández-Escalada et al. 2016). 

In the absence of glyphosate, protein level was increased by 25 fold (Figs. 2.2A, 

B) and EPSPS activity was 26 fold higher (Fig. 2.2C). In response to 

glyphosate, only a mild increase of the abundance of EPSPS protein was 

observed in the GR biotype at the highest glyphosate dose (Figs. 2. 2A, B). 

EPSPS activity was not affected by glyphosate in the GR biotype, regardless of 

the dose, while it was slightly decreased in the GS biotype with the highest dose 

applied (Fig. 2.2C). While shikimate content was almost negligible in untreated 

plants of both populations, it was accumulated after glyphosate treatment in GS 

and in GR only at the highest glyphosate dose. Shikimate accumulated 

significantly more in GS than in GR at each glyphosate dose (Fig. 2.2D), 

confirming the inhibition of EPSPS by glyphosate observed in GS (Fig. 2.2C). 

To study the impact of the high EPSPS copy number on the regulation 

of the AAA biosynthetic pathway, transcript levels for seven enzymes were 

analyzed by qRT-PCR. In absence of glyphosate treatment, EPSPS transcript 

level was increased by 55 fold in GR (Fig. 2.3A), confirming the results of 

Fernández-Escalada et al. (2016). For other enzymes, particularly CS and CM, 

only marginal changes were observed (1.68 and 2.33 fold, respectively) (Fig. 

2.3A). 

Glyphosate provoked an induction of the expression of all the genes of 

the shikimate pathway, with the exception of CM (Fig. 2.3B). The change in 

gene expression was dose dependent. The same effect was observed in both 

GS and GR populations. CM showed the opposite behavior, with no change 

(GS) or a slight decrease (GR) in CM transcript accumulation after treatment 

with glyphosate (Fig. 2.3B). The most responsive gene was AS with 

upregulation over 15 fold in GR with the highest dose (Fig. 2.3B). This may 

suggest a preferential flux to the Trp biosynthesis branch rather than to the Phe 

and Tyr branch in response to glyphosate treatment.  
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Figure 2.2 Characterization of resistance in Amaranthus palmeri populations. Glyphosate sensitive 
(white bars; GS) and glyphosate resistant (black bars; GR) populations were untreated (Ø) or 
treated with glyphosate and measured3 days after treatment with one (1X) or three times (3X) field 
dose. (A) Representative immunoblots for EPSPS. Total soluble proteins (60 mg for GS or 5 mg 
for GR) were fractioned by 12.5% SDS-PAGE and blotted. (B) Normalization of the intensity of the 
EPSPS bands expressed as optical density for unit of area per mg of protein (Mean ± SE; n = 3). 
(C) EPSPS in vitro enzymatic activity measured spectrophotometrically in semicrude leaf extracts 
(Mean ± SE; n = 4). (D) Shikimate content was measured spectrophotometrically after extraction 
from leaf disks of treated plants (Mean ± SE; n = 4). Different letters indicate significant differences 
between treatments and/or populations (p-value ≤ 0.05, LSD test). 
 

To pursue this hypothesis, the activity of CM and AS enzymes was 

studied. In the absence of glyphosate, AS (Fig. 2.4A) and CM (Fig. 2.4B) 

activities were similar in both biotypes. Changes in the activity of AS and CM 

confirmed the trend observed at the transcript level, suggesting a preferential 

synthesis toward Trp after glyphosate treatment. AS expression induction was 

concomitant with an increase in the enzyme activity while CM activity was 

unchanged. 
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Figure 2.3 Transcript abundance of genes in the aromatic amino acid (AAA) biosynthetic pathway. 
Glyphosate sensitive (white bars; GS) and glyphosate resistant (black bars; GR) populations were 
untreated (Ø) or 3 days after treatment with glyphosate at one (1X) or three times (3X) field dose. 
Enzyme abbreviations as described in Figure 1. (A) Ratio of GR to GS relative transcript abundance 
measured with qRT-PCR normalized using the normalization gene beta tubulin.(B) Relative 
transcript abundance normalized using the normalization gene beta tubulin, relative to GS 
untreated plants (Mean ± SE; n = 5). Different letters indicate significant differences between 
treatments and/or populations (p-value≤0.05, LSD test). 
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Next, AAA levels were measured (Fig. 2.5). Before treatment with 

glyphosate, levels of Trp (Fig. 2.5A), Tyr (Fig. 2.5B), and Phe (Fig. 2.5C) were 

similar in both GS and GR biotypes. This result confirms that the striking change 

in EPSPS expression due to CNV does not have a major effect on AAA levels. 

 

 
Figures 2.4 Anthranilate synthase (AS) and chorismate mutase (CM) enzymatic activities. 
Glyphosate sensitive (white bars; GS) and glyphosate resistant (black bars; GR) populations were 
untreated (Ø) or 3 days after treatment with glyphosate at one (1X) or three times (3X) field dose. 
(A) AS was measured in desalted leaf extracts by measuring the fluorescence of the produced 
anthranilate. (B) CM was measured in desalted leaf extracts by measuring prephenate production 
spectrophotometrically (Mean ± SE; n = 4). Different letters indicate significant differences between 
treatments and/or populations (p-value ≤0.05, LSD test). 
  
 

After glyphosate treatment, the level of all AAA increased (Figs. 2.5A–

C). However, significant changes were detected only in GS. In GR, the highest 

increase was detected for Trp.  

Previous studies with the same populations and the same time of study 

and concentration of glyphosate provoked a threefold increase of total free 

amino acid content and a 12 fold increase of BCAA content (Fernández-

Escalada et al. 2016). The higher effect of glyphosate on BCAA content than 

on other amino acid types suggests a possible effect of the herbicide on the 

BCAA biosynthetic pathway. Based on this, the expression pattern of four 
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enzymes of BCAA biosynthetic pathway was also measured: acetohydroxyacid 

synthase (AHAS), ketol-acid reductoisomerase (AHAIR), dihydroxyacid 

dehydratase (DHAD) and branched chain amino acid transaminase (TA) (Fig. 

2.6). 

 
Figures 2.5 Aromatic amino acid content. Glyphosate sensitive (white bars; GS) and glyphosate 
resistant (black bars; GR) populations were untreated (Ø) or 3 days after treatment with glyphosate 
at one (1X) or three times (3X) field dose. Tryptophan (Trp; A), tyrosine (Tyr; B), and phenylalanine 
(Phe; C) were measured by capillary electrophoresis in leaf acidic extracts (Mean ± SE; n = 4). 
Different letters indicate significant differences between treatments and/or populations (p-value ≤ 
0.05, LSD test). 
 

Transcript abundance of the BCAA biosynthetic pathway was not 

different between the untreated plants of both populations, suggesting that 

EPSPS overexpression does not affect BCAA pathway expression. After 
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glyphosate treatment, AHAS, DHAD, and TA showed no change at either dose 

in GS or in GR. AHAIR transcript abundance was increased in GS at the highest 

glyphosate dose, while it did not change in GR after glyphosate treatment. 

 
Figure 2.6 Transcript abundance of genes in the branched chain amino acid (BCAA) biosynthetic 
pathway. Glyphosate sensitive (white bars; GS) and glyphosate resistant (black bars; GR) 
populations were untreated (Ø) or 3 days after treatment with glyphosate at one (1X) or three times 
(3X) field dose. Relative expression of acetohydroxyacid synthase (AHAS; A) ketol-acid 
reductoisomerase (AHAIR; B), dihydroxyacid dehydratase (DHAD; C) and branched-chain amino 
acid transaminase (TA; D) normalized with the normalization gene beta tubulin, and relative to 
untreated GS plants (Mean ± SE; n = 5). Different letters indicate significant differences between 
treatments and/or populations (p-value ≤ 0.05, LSD test). 
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2.4 DISCUSSION 

 

2.4.1 Characterization of resistance in A. palmeri populations 

In the GR population of A. palmeri an EPSPS gene amplification (Fernández-

Escalada et al. 2016) results in a massive increase of the accumulation of 

corresponding transcript (Fig. 2.3A) and of the protein level and activity (Figs. 

2B, C). Our data validate results previously reported in other populations of A. 

palmeri (Gaines et al. 2010, 2011; Ribeiro et al. 2014), and other weedy plant 

species such as A. tuberculatus (Lorentz et al. 2014; Chatham et al. 2015), 

Loliumperenne ssp. Multiflorum (Salas et al. 2012), Eleusine indica (Chen et al. 

2015), and Kochia scoparia (Wiersma et al. 2015). Additionally our data 

confirmed the accumulation of shikimate following treatment with glyphosate, 

mostly in the GS population (Fig. 2.2D). Shikimate is a known stress marker 

which accumulates following EPSPS inhibition in GS populations (Dyer et al. 

1988; Baerson et al. 2002a; Zhu et al. 2008; Doğramacı et al. 2015; Whitaker 

et al. 2013; Fernández-Escalada et al. 2016; Dillon et al. 2017). 

 

2.4.2 Gene amplification of EPSPS in A. palmeri GR 

populations has no major pleiotropic effect on the expression 

of AAA biosynthetic genes 

Despite all these traits that characterize a GR population at molecular and 

biochemical levels, our work revealed that gene amplification of EPSPS had no 

major effect on the overall AAA pathway (Figs. 2.2–2.5). In particular, in 

untreated plants, the level of free AAA content was similar in GR and GS 

populations (Fig. 2.5). Similar AAA content in glyphosate resistant/sensitive 

biotypes has been previously described (Maroli et al. 2015). This is consistent 

with previous reports suggesting that the overexpression of EPSPS may have 

no fitness cost in A. palmeri (Giacomini et al. 2014; Vila-Aiub et al. 2014). 

The entrance of the primary metabolism to AAA pathway is through 

DAHPS enzyme (Tohge et al. 2013b). Plants control the carbon flux into the 

pathway by controlling DAHPS transcription and protein abundance (Herrmann 

and Weaver 1999). However, it was previously unknown whether GR 

populations with increased EPSPS expression would have altered DAHPS 
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regulation. Higher levels of DAHPS activity were described in GR populations 

compared to sensitive populations in Nicotiana tabacum L. (Dyer et al. 1988) 

and Convolvulus arvensis (Westwood and Weller 1997). In Lolium rigidum GR 

populations with higher EPSPS expression, levels of DAHPS transcripts were 

similar to sensitive population (Baerson et al. 2002a). In this study, while 

DAHPS mRNA relative expression was similar in both populations (Fig. 2.3B), 

the DAHPS protein level in GR was more than twofold higher than in GS 

(Supplementary Figs. 2.1A, B). It could implicate a translational regulation (or 

at least post-transcriptional mechanism) that controls DAHPS, and this may be 

related to EPSPS gene overexpression.  

 

2.4.3 In sensitive and resistant plants glyphosate treatment 

provokes increased transcript abundance leading to 

synthesis of chorismate, and after this regulatory point, 

tryptophan 

Our study shows that glyphosate treatment provoked an accumulation of the 

transcripts encoding virtually all the enzymes of the shikimate pathway, 

including EPSPS, in a dose-dependent manner (Fig. 2.3B). This trend is 

specific for enzymes of the AAA pathway and was not observed for the 

enzymes of the BCAA pathway (Fig. 6). Although increases in some enzymes 

of the shikimate pathway such as EPSPS (Baerson et al. 2002a; Yuan et al. 

2002; Chen et al. 2015; Mao et al. 2016) and DAHPS (Baerson et al. 2002a) 

have been previously described, this is the first report suggesting a potential 

coordinated transcriptional regulation of the shikimate pathway after glyphosate 

treatment. Because this regulation is observed in both GS and GR populations 

(Fig. 2.3B), it suggests that this gene upregulation does not occur in response 

to the level of inhibition of EPSPS activity. Instead, it can be hypothesized that 

glyphosate itself, or indirectly, may affect plant amino acid metabolism, in 

addition to its known impact on EPSPS. Future research is needed to determine 

if glyphosate has unreported effects on plants and what signal causes this 

general gene induction of the pre-chorismate pathway. 

This general upregulation of the expression of genes participating in the 

pre chorismate pathway is accompanied with an increase of the accumulation 
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of free AAAs, which is more pronounced in the GS population (Fig. 2.5). 

Although already reported (Vivancos et al. 2011; Maroli et al. 2015; Fernández-

Escalada et al. 2016), this might appear counterintuitive at first glance because 

glyphosate is inhibiting the entry of carbon in this biosynthetic pathway, and 

therefore is expected to prevent synthesis of AAA. It is possible that the 

accumulation of free AAA comes from an increase in protein turnover in the 

plant following glyphosate treatment (Zabalza et al. 2006; Zulet et al. 2013a; 

Fernández-Escalada et al. 2016). Isotopic studies in A. palmeri revealed that 

both de novo synthesis of amino acids and protein turnover contribute to AAA 

accumulation in response to glyphosate (Maroli et al. 2016). While gene 

expression induction after glyphosate was similar in GR and GS populations 

(Fig. 2.3B), the accumulation of AAA was mainly observed in GS plants (Fig. 

2.5). That observation may suggest that AAA accumulation following 

glyphosate treatment is rather related to the level of stress experienced by the 

plant.  

After chorismate, AS increase in transcript abundance was higher than 

any other enzyme in the pathway in response to glyphosate treatment (Fig. 

2.3B). AS expression was induced while CM expression was repressed, 

suggesting a regulatory branch point in the pathway (Fig. 2.1) for a preferential 

flux of carbon toward Trp biosynthesis over Phe and Tyr biosynthesis. This 

potential stream toward Trp was confirmed by studying AS and CM enzyme 

activities in vitro (Fig. 2.4). Data obtained in Arabidopsis thaliana (Sasaki-

Sekimoto et al. 2005) and other plant species (Galili et al. 2016) also support 

this hypothesis. 

However, measurements of free AAA in treated plants did not reveal 

any specific accumulation of Trp. Instead all three AAA were accumulated to a 

similar extent in GS plants (Fig. 2.5). Yet, a slight difference was detected in 

the GR plants, which may suggest that under “mild” stress (3x dose in GR), 

synthesis of Trp is prioritized over the synthesis of Phe and Tyr. It is possible 

that this regulation is related to the inhibition of DAHPS by arogenate (Siehl 

1997), an intermediate product of the CM pathway. DAHPS may be key to the 

regulation of shikimate synthesis because it represents the entry point in this 

pathway (Maeda and Dudareva 2012). Interestingly, DAHPS gene expression 

was induced by glyphosate in both populations (Fig. 2.3B) while the increase in 
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DAHPS protein was only detected in GS population (Supplementary Figs. 

1A,B). This might indicate that other layers of regulation (post-transcriptional) 

might fine-tune the regulation of this pathway. PAL protein level and enzyme 

activity have also been studied, because it represents the most important output 

from the AAA pathway (Hahlbrock and Scheel 1989). No differences were 

found between populations for PAL protein abundance or activity level in 

untreated and treated plants (Supplementary Figs. 1C–E). While other studies 

with other species show important effects of glyphosate on PAL (Hoagland et 

al. 1979; Zabalza et al. 2017), our results show that PAL abundance and 

enzyme activity are not affected in A. palmeri.  

The results obtained after glyphosate treatment suggest that a stress-

induced response to glyphosate increases the enzyme expression in the AAA 

pathway, which may require a substantial increase in energy consumption 

(Benevenuto et al. 2017). Trying to increase the carbon flux, which could further 

increase shikimate accumulation upon glyphosate treatment, could lead to the 

loss of feedback control in the pathway (Marchiosi et al. 2009). Reduction in 

AAA levels does not appear to elicit the increased expression of AAA pathway 

genes, because the AAA concentrations increase with glyphosate dose. Further 

research is needed to understand the signal(s) that upregulates the AAA 

pathway following glyphosate treatment.  

 

2.4.4 No cross regulation between AAA and BCAA pathway 

was detected  

In general, the free amino acid pool increases after glyphosate treatment 

(Orcaray et al. 2010; Vivancos et al. 2011; Zulet et al. 2013a; Liu et al. 2015) 

but the higher relative increase is in BCAA levels (Orcaray et al. 2010). The 

higher effect of glyphosate on BCAA than on other amino acid types suggests 

a possible effect of the herbicide on the BCAA biosynthetic pathway. The 

expression pattern of the BCAA biosynthetic pathway was measured (Fig. 2.6) 

and no clear patterns for expression changes of the BCAA enzymes in plants 

treated with glyphosate were identified (Fig. 2.6), while an induction of 

expression of AAA enzymes was detected (Fig. 2.3B). Although some authors 

(Guyer et al. 1995; Noctor et al. 2002; Pratelli and Pilot 2014) have proposed 
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cross regulation between the levels of AAA and BCAA, and close correlation 

was observed between the AAA pathway and the BCAA pathway (Noctor et al. 

2002), no cross regulation at the transcriptional level was found in this study.
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2.6 CONCLUSIONS 

 

No differences were found (other than EPSPS) in transcriptional regulation of 

the shikimate pathway between A. palmeri GR and GS untreated plant, which 

implies that pleiotropic effects due to shikimate pathway perturbation are not 

apparent. Transcriptional induction of the AAA pathway was detected following 

glyphosate treatment in both GR and GS plants, suggesting a potential 

coordinated transcriptional regulation. AAA content was not the signal causing 

this response, because AAA accumulation was detected only in GS plants and 

further research will be needed to determine the signal. Glyphosate treatment 

resulted in an upregulation of the Trp biosynthesis branch instead of the Phe 

and Tyr branch, indicating that this branch point may be a regulatory point in 

the pathway. With respect to cross regulation between the AAA and BCAA 

pathways, no differences in BCAA transcriptional regulation was observed due 

to either EPSPS gene amplification or to glyphosate treatment. 
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SUPPORTING INFORMATION OF CHAPTER 2 

GENE  FORWARD  REVERSE 
Annealing 

temperature 
Efficiency 

Aromatic amino acid biosynthetic pathway   

DAHPS  cctcataggatgataagggc  ctttgcatggcagcataacc  55 ºC  96 % 

DHQS  gcattgttggctagggatcc  aacctcggccttgttttcac  61 ºC  91 % 

DQSD  ggtgtactcaagcaaggagc  tgtggactcttactatggcc  57 ºC  84 % 

SK  gattctgaagcacaaagcagc  cagttgttttcccagagccc  55 ºC  91 % 

EPSPS  aatgctaaaggaggccttcc  tcaatctccacgtctccaag  61 ºC  93 % 

CS  cttgatagaaggaggcctgg  gtttctttcctaggagtagtg  57 ºC  90 % 

CM  gaatacattatggcaagtatgt  gtcataagtcgctccttgtc  52ºC  97 % 

AS  tttggagggaaggttgtgcg  ctggtgagctttttccatgc  57 ºC  88 % 

Branched chain amino acid biosynthetic pathway   

AHAS  cttcctcgacatgaacaagg  attagtagcacctggacccg  57 ºC  84 % 

AHAIR  atggctcagattgagatcttg  ccacggcttcaatcacactc  52 ºC  90 % 

DHAD  taccatggcatcagctatcg  ggtgttgacgagctgtaagg  55 ºC  96 % 

TA  gtgaagatgatcttcgtcggc  tcacaatcagacttgaaagatg  52 ºC  99 % 

Normalization gene       

Beta 

tubulin 
gatgccaagaacatgatgtg  tccacaaagtaggaagagttc 

55 ºC  90 % 

 
Supplemental Table 2.1 Primers (5’-3’) used in the quantitative RT-PCRs. 
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Supplemental Figure 2.1: Income and outcome of the aromatic amino acid pathway. Sensitive 
(white bars; GS) and glyphosate-resistant (black bars; GR) populations were untreated (Ø) or 
treated with glyphosate for 3 days with one (1X) or three times (3X) field dose. (A) Representative 
immunoblot for of D-arabino-heptulosonate 7-phosphate synthase (DAHPS). Total soluble proteins 
(40 μg) were fractioned by 12.5% SDS-PAGE and blotted. (B)  DAHPS band intensity expressed 
as optical density for unit of area (Mean ± SE; n = 3). (C) Representative immunoblots for 
phenylalanine ammonia-lyase (PAL). Total soluble proteins (90 μg) were fractioned by 12.5% SDS-
PAGE and blotted. (D) PAL band intensity bands expressed as optical density for unit of area (Mean 
± SE; n = 3). (E) PAL activity measured spectrophotometrically as cinnamic acid production rate in 
leaf extracts (Mean ± SE; n = 4). Different letters indicate significant differences between treatments 
and/or populations (p value ≤0.05, LSD test). 
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ABSTRACT 

 

BACKGROUND: The herbicides glyphosate and imazamox inhibit the 

biosynthetic pathway of aromatic amino acids (AAAs) and branched-chain 

amino acids (BCAAs), respectively. Common physiological effects of both 

herbicides have been reported, and mixtures of both herbicides are being used 

to improve weed control. The aim of this study was to evaluate if there was a 

synergistic, antagonistic or additive physiological effect in the mixture of 

glyphosate and imazamox and if the effect was different in glyphosate-sensitive 

and -resistant populations of the troublesome weed Amaranthus palmeri. 

  

RESULTS: Both herbicides applied individually induced the previously known 

physiological effects in both populations: shikimate, amino acid and 

carbohydrate accumulation. The herbicide mixture induced the same 

accumulations as the individual herbicides. Both populations exhibited similar 

effects to mixtures with the exception of the transcript levels of the AAA 

pathway, which were detected as an additive interaction in the sensitive 

population and as an antagonistic one in the resistant population.  

CONCLUSIONS: The study of the physiological effects of the mixture of both 

herbicides in the two populations of Amaranthus palmeri provided evidence of 

a general physiological antagonism. At the transcriptional level, no cross 

regulation exists between AAA and BCAA inhibitors.  

Keywords: glyphosate, aromatic amino acid pathway, branched-chain amino 
acid pathway, mRNA relative expression, EPSPS, AHAS, Amaranthus palmeri
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3.1 INTRODUCTION 

 

The aromatic amino acid (AAA) biosynthesis pathway transforms the inputs of 

carbon into the essential amino acids phenylalanine (Phe), tyrosine (Tyr) and 

tryptophan (Trp) (Tzin and Galili 2010b) with several successive enzymatic 

reactions. These AAAs are used by the plant to form proteins; in addition, they 

are precursors for secondary metabolites, and some of them are involved in 

plant stress tolerance (Janzik et al. 2005; Maeda and Dudareva 2012).The 

target of the herbicide glyphosate is the 5-enolpyruvylshikimate 3-phosphate 

synthase (EPSPS) enzyme (Steinrücken and Amrhein 1980) of the AAA 

pathway, which makes this step greatly important from an agronomic 

management standpoint.  

The branched chain amino acid (BCAA) biosynthesis pathway leads to 

the formation of valine (Val), leucine (Leu) and isoleucine (Ile) (Galili et al. 

2016). Acetohydroxy acid synthase (AHAS) has a key position in the pathway, 

since the enzyme catalyzes not only the synthesis of acetolactate, the valine 

and leucine precursor from pyruvate, but also that of acetohydroxybutyrate, the 

isoleucine precursor from alpha-ketobutyrate and pyruvate (Binder 2010). Due 

to its relevance in the BCAA biosynthesis pathway, AHAS has been widely used 

as target point for herbicides (Tan et al. 2006). There are five different chemical 

classes of AHAS-inhibitors: sulfonylureas, imidazolinones, triazolopyrimidines, 

sulfonylaminocarbonyl triazolinones and pyrimidinyl-oxy-benzoates (Powles 

and Yu 2010).  

Although the target enzymes of the herbicides in the BCAA and AAA 

biosynthesis pathways are known, it is still unclear how exactly the inactivation 

of AHAS or EPSPS results in plant death. Previous findings showed that both 

AHAS and EPSPS inhibitors cause growth arrest followed by a slow plant death 

of the herbicide-treated plants although they act upon different pathways (Gruys 

and Sikorski 1999; Wittenbach and Abell 1999). Both types of herbicides 

provoke an accumulation of free amino acids (Orcaray et al. 2010; Maroli et al. 

2015; Zulet et al. 2015; Fernández-Escalada et al. 2016; Zabalza et al. 2017), 

a decrease in the soluble protein content (Zulet et al. 2013a; Maroli et al. 2015, 

2016) and accumulation of carbohydrates (Orcaray et al. 2012; Maroli et al. 

2015; Zulet et al. 2015; Fernández-Escalada et al. 2016). Although they target 
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different enzymes, these common physiological effects suggest that these 

herbicides kill plants by similar mechanisms.  

In addition to the similar physiological effects provoked by EPSPS and 

AHAS-inhibitors, other studies suggest a cross relationship between AAA and 

BCAA biosynthesis pathways. The hypothesis of the existence of cross 

regulation of amino acid metabolic pathways has been proposed (Guyer et al. 

1995; Mohapatra et al. 2010; Pratelli and Pilot 2014). The contents of many 

minor amino acids vary in concert with different amino acid biosynthetic families 

(Noctor et al. 2002), and the closest correlation in these variations occurs 

between AAA and BCAA (Noctor et al. 2002; Orcaray et al. 2010). Moreover, 

there was some specific interactions between AHAS-inhibitors involved in Leu 

synthesis and the levels of Tyr and Phe (Wittenbach et al. 1994).  

The repeated use of glyphosate and AHAS-inhibitors selects for the 

corresponding resistances in weed populations (Powles 2008). Now there are 

159 weed species with at least one population with resistance to AHAS-

inhibitors (Heap 2018; Délye et al. 2016). The most important cause of 

resistance is the mutations in the AHAS protein (Powles and Yu 2010). To date, 

41 weed species with at least one population with resistance to glyphosate have 

been reported. One of the most problematic weed species resistant to 

glyphosate is Amaranthus palmeri S. Wats. (Culpepper et al. 2006; Powles and 

Yu 2010), whose mechanism of resistance to glyphosate is the amplification of 

the EPSPS gene (Gaines et al. 2010; Chandi et al. 2012). The recommended 

field dose is not sufficient to inhibit EPSPS activity when this gene is 

overexpressed; consequently, the EPSPS enzyme accumulates and the plants 

survive.  

One of the most used practices to control glyphosate-resistant weeds 

is to mix glyphosate with AHAS-inhibitors (Hydrick and Shaw 1994; 

VanLieshout et al. 1996; Lich et al. 1997; Starke and Oliver 1998; Johnson, 

W.G. et al. 1999; Li et al. 2002; Nelson and Renner 2002; Shaw and Arnold 

2002). Herbicide mixtures can interact in three different ways: antagonistically, 

additively, and synergistically (Barrett 1993). Previous studies evaluating the 

effects of AHAS-inhibitors and glyphosate mixtures application showed no 

conclusive results, so more studies are needed to better understand what kind 

of effects such mixtures could produce and to optimize their composition. The 
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use of effective mixtures is important for reducing selection pressure on 

individual target sites, which causes the selection of favorable mutations to 

resist the herbicide and the appearance of resistances. In the case of A. 

palmeri, it is of particular importance because populations of this species have 

developed multiple resistances meaning that they are not only resistant to 

glyphosate but also to AHAS-inhibitors (Gaedert et al. 2017; Küpper et al. 

2017). The close relationship between AAA and BCAA biosynthetic pathways 

and the common physiological effects provoked by EPSPS and AHAS-

inhibitors (as they have been introduced above) may cause noteworthy 

synergistic effects by the joint application of glyphosate and AHAS-inhibitors, 

which makes it interesting to study the physiological effects of the herbicide 

mixture in plants, although at the same time, the similar response of plants to 

both families of herbicides could question the efficacy of these mixtures. 

The main objective in this study was to evaluate if there was a 

synergistic, antagonistic or additive physiological effect between glyphosate 

and the AHAS-inhibitor imazamox and if the effect was different if the treated 

plant was resistant to glyphosate. To this end, the effects of both herbicides 

applied individually and their mixtures on known physiological markers were 

evaluated (shikimate, free amino acid and carbohydrate) on two populations of 

A. Palmeri that were sensitive (GS) and resistant (GR) to glyphosate. 

Additionally, in order to clarify the global regulatory mechanisms of the AAA 

pathway and if there is a cross regulation between AAA and BCAA biosynthetic 

pathways, the relative expression of the genes of AAA and BCAA pathways 

based on mRNA levels and the protein content of key enzymes in the AAA 

pathway were tested. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Plant material and treatment application 

Seeds from the two biotypes of A. palmeri, i.e., sensitive (GS) and resistant 

(GR) to glyphosate, were originally collected from North Carolina (USA) 

(Chandi et al. 2012; Fernández-Escalada et al. 2016). The resistance 

mechanism of the GR biotype is EPSPS gene amplification (Chandi et al. 2012), 

with 47.5 more gene copies in GR than in GS plants (Fernández-Escalada et 

al. 2016). Germination and plant growth were performed according to 

procedures described in Fernández-Escalada et al. (2016), and all treatments 

were applied to three week-old plants. Glyphosate, (commercial formula, 

Glyfos, BayerGarden, Valencia, Spain) was applied at both 0.25 times 

recommended field rate (0.25G=0.21 kg ha-1) and recommended field rate 

(1G=0.84 kg ha−1), according to Culpepper et al. (2006). The AHAS inhibitor 

imazamox (commercial formula, 4% P/V (Pulsar 40®, BASF, Barcelona, 

Spain)) was applied at 1.5 mg active ingredient L-1 (Gil-Monreal et al. 2017) 

after conducting preliminary dose-responses studies to select imazamox dose. 

The mixtures of imazamox with the two doses of glyphosate were also applied 

(0.25G+I and 1G+I). Glyphosate treatment was performed using an aerograph 

(Definik; Sagola, Vitoria-Gasteiz, Spain) connected to a compressor (Werther 

one, Breverrato) with the following settings: 60 W; 10 L m−1; 2.5 bar at a rate of 

500 L ha−1. Imazamox was added to the nutrient solution. Another set of plants 

sprayed with water was used as the control reference. The leaves of both 

populations of A. palmeri were collected 3 days after treatment, frozen, and 

ground to a fine powder as previously described (Fernández-Escalada et al. 

2016). 

3.2.2 Quantitative reverse transcription-PCR  

The relative transcript level was measured for all genes of the AAA synthesis 

pathway, corresponding to eight enzymes; and four genes of the BCAA 

synthesis pathway. RNA extraction and the subsequent cDNA extraction were 

performed as described in Fernández-Escalada et al. (2017). Gene expression 

was measured in two different experiments and the mean of both experiments 

was calculated as described in Fernández-Escalada et al. (2017). Quantitative 
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RT-PCR (qRT-PCR) was conducted by using techniques and primers detailed 

in Fernández-Escalada et al. (2017). Relative transcript levels were calculated 

as EGOI
CP

GOI
 control−CP

GOI 
treated /EREF

CP
REF

 control−CP
REF 

treated (Fernández-Escalada et 

al. 2017), where the control of GS was used to calculate all GS values and the 

control of GR was used to calculate all GR values. 

 

3.2.3 EPSPS and DAHPS immunoblotting 

Protein extraction and immunoblotting were performed according to standard 

techniques and as described previously (Fernández-Escalada et al. 2017). In 

the case of EPSPS, the protein amount loaded per well in each population was 

different and is specified in the figure legends. Membrane signals were 

normalized according to total soluble protein loaded.  

 

3.2.4 Shikimate content determination  

Three leaf disks (4 mm diameter) were excised from the youngest leaf of each 

plant for shikimate content determination. Leaf disks were placed in 2 mL 

Eppendorf tubes and stored at −80 °C until analysis. Shikimate was extracted 

as described in Shanner et al. (2005). Shikimate content was quantified 

spectrophotometrically (Cromartie and Polge 2000). 

 

3.2.5 Amino acid content determination 

Ground leaf samples (0.1 g) were homogenized in 1 M HCl for amino acid 

extraction. Protein precipitation was performed after incubation on ice and 

centrifugation (Orcaray et al. 2010). After derivatization with fluorescein 

isothiocyanate, the amino acid content was measured by capillary 

electrophoresis coupled to a laser-induced fluorescence detector, as described 

in Orcaray et al. (2010). Analyses were performed at 20 ºC and at a voltage of 

+30 kV. 
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3.2.6 Carbohydrate content determination 

The total soluble sugar (glucose, fructose, and sucrose) content (TSS content) 

was determined in ethanol-soluble extracts, and the ethanol-insoluble residue 

was extracted for starch analysis as in Zabalza et al. 2004. The starch and TSS 

contents were determined by ion chromatography (930 Compact IC Flex, 

Metrohm AG Ionenstrasse CH-9100 Herisau, Switzerland), following the 

manufacturer’s instructions (Gomensoro scientific instrumentation, Madrid, 

Spain). The sample dilutions used for soluble carbohydrates and starch were 

1:10 and 1:50, respectively. To prepare the samples, the eluent used was 300 

mM NaOH/1 mM sodic acetate in mili q water solution. The applied current was 

200-500 mA, with pressure of 1000-1200 psi and temperature between 30 and 

35 ºC.  

3.2.7 Statistical analysis 

Statistical analyses were performed using IBM SPSS statistics 24.0 (IBM, 

Corp., Armonk, NY, United States). All analyses were performed using 4 

biological replicates from two independent experiments. For all parameters 

tested, the difference between untreated plants of each population was 

evaluated using Student’s t-test, which found no significant differences; thus, 

this result is not mentioned in the text. One-way ANOVA with a multiple-

comparison adjustment for least significant difference (LSD) at p≤0.05 was 

used to determine significant differences in the results of each population. For 

each population, significant differences are highlighted in the figures using 

different letters. 
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3.3 RESULTS 

 

Glyphosate treatment resulted in a dose-related increase of shikimate content 

in the GS population at levels 5-fold greater than in the GR population (Fig. 1), 

confirming the resistance to glyphosate of GR plants. Imazamox applied 

individually did not modify shikimate content in any of the populations, as could 

be expected because this metabolite is not directly related to the BCAA 

biosynthetic pathway. In the GR population, mixtures of glyphosate and 

imazamox did not exacerbate shikimate accumulation more than glyphosate 

applied individually, which means a slight antagonism had occurred (Fig. 1). 

Interestingly, significantly less shikimate accumulation was detected in the GS 

population when 0.25G glyphosate treatment was applied with imazamox, 

which also means a significant level of antagonism was present.  

 

Figure 3.1 Shikimate content in the leaves of glyphosate sensitive (GS) and resistant (GR) 
Amaranthus palmeri plants 3 days after treatment. Untreated plants were sprayed with water 
(Control; C). Plants were treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate 
(1G), 1.5 mg L-1 of imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different 
letters indicate significant differences between treatments (p-value ≤0.05, LSD test). 
 

A general dose-dependent induction in the expression of all the genes 

of the AAA pathway (Fig. 2 and 3B) with the exception of CM (Fig. 3A) in the 

GS and GR populations was caused by glyphosate treatment. There was a high 

level of induction in the expression of the post-chorismate AS enzyme (Fig. 3B) 

and a repression of CM in the other post-chorismate branch of the AAA pathway 

(Fig. 3A). Imazamox applied individually did not induce any general pattern in 

the relative expression of the genes of the AAA pathway in any of the 

populations (Figs. 2 and 3) with few exceptions. Interestingly, an opposite 

pattern in the relative gene expression in response to mixtures was detected 

between the populations.  
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Figure 3.2 Transcript abundance in genes in pre-chorismate aromatic amino acid (AAA) pathway 
enzymes. Relative transcript abundance was normalized using the normalization gene beta tubulin 
and each population to its own control in Amaranthus palmeri plants 3 days after herbicide 
treatment in sensitive (GS) and resistant (GR) populations of: A) D-arabino-heptulosonate 7-
phosphate synthase (DAHPS), B) dehydroquinate synthase (DHQS), C) 3-dehydroquinate 
dehydratase/shikimate dehydrogenase (DQ/SD), D) shikimate kinase (SK), E) 5-
enolypyruvylshikimate 3-phosphate synthase (EPSPS) and F) chorismate synthase (CS). 
Untreated plants were sprayed with water (Control; C). Plants were treated with 0.21 kg ha-1 of 
glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 mg L-1 of imazamox (I) or their mixtures 
(0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters indicate significant differences between 
treatments (p-value ≤0.05, LSD test). 

 

There was a general induction in the GS population after mixtures 

treatments; in contrast, in the GR population, there was no induction in the AAA 

pathway enzyme transcripts with mixtures, showing even a slight repression in 

DAHPS, DHQS, DQSD, and CM (Figs. 2 and 3).  

 

Figure 3.3 Transcript abundance in genes in post-chorismate aromatic amino acid (AAA) pathway 
enzymes. Relative transcript abundance was normalized using the normalization gene beta tubulin 
and each population to its own control in Amaranthus palmeri plants 3 days after herbicide 
treatment in sensitive (GS) and resistant (GR) populations of: A) chorismate mutase (CM) and B) 
anthranilate synthase (AS). Untreated plants were sprayed with water (Control; C). Plants were 
treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 mg L-1 of 
imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters indicate 
significant differences between treatments (p-value ≤0.05, LSD test). 
 

The expression pattern of the genes involved in the BCAA pathway was 

also evaluated (Fig. 4). When glyphosate was applied individually, there were 

significantly higher levels of expression compared to the control with the 1G 

treatment in AHAS and 0.25G in AHAIR in the GR population (Fig. 4A-B). No 
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significant changes in gene expression were detected after the inhibition of one 

of the enzymes of the BCAA pathway, AHAS, by imazamox applied individually. 

The herbicide mixtures did not induce any remarkable change in the relative 

expression of the enzymes in this pathway (Fig. 4).  

 

Figure 3.4 Transcript abundance in genes in the branched chain amino acid (BCAA) pathway 
enzymes. Relative transcript abundance was normalized using the normalization gene beta tubulin 
and each population to its own control in Amaranthus palmeri plants 3 days after herbicide 
treatment in sensitive (GS) and resistant (GR) populations of: A) acetohydroxy acid synthase 
(AHAS), B) acetohydroxy acid isomer reductase (AHAIR) C) dihydroxy acid dehydratase (DHAD) 
and D) BCAA transaminase (TA). Untreated plants were sprayed with water (Control; C). Plants 
were treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 mg L-1 of 
imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters indicate 
significant differences between treatments (p-value ≤0.05, LSD test). 
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The protein contents of two important proteins of AAA pathway 

(DAHPS and EPSPS) were measured. In the GS population, only in the 1G+I 

treatment were we able to detect a significant increase of the DAHPS protein 

with respect to control; and in the GR population, there were no significant 

differences between treatments (Fig. 5A). Both populations showed no effect in 

response to imazamox applied individually, and there were no significant 

differences between glyphosate treatments and their mixtures with imazamox 

(Fig. 5A). The EPSPS protein content in non-treated plants was 10-fold higher 

in the A. palmeri GR population than in the GS population (Fig. 5B).  

 

Figure 3.5 DAHPS and EPSPS protein levels. Protein level in the leaves of A) DAHPS glyphosate 
sensitive (GS) and resistant (GR) and B) protein level in the leaves of EPSPS glyphosate sensitive 
(GS) and D) resistant (GR) of Amaranthus palmeri plants 3 days after herbicide treatment. Total 
soluble protein (40 g per well in A, 80 g per well in B (GS) and 15 g per well in B (GR)) were 
fractioned by 12.5% SDS-PAGE and blotted. In all cases results are accompanied with a 
representative picture of the immunoblot. Untreated plants were sprayed with water (Control; C). 
Plants were treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 
mg L-1 of imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters 
indicate significant differences between treatments (p-value ≤0.05, LSD test). 
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There were significant increases in EPSPS protein levels in the GS 

population after both glyphosate treatments and after the 1G glyphosate 

treatment dose in the GR population (Fig. 5B). Imazamox applied individually 

did not change the EPSPS content in either of the populations. Mixtures caused 

no effects in the EPSPS content in the GS population with respect to glyphosate 

applied individually, and slight non-significant increases in the GR population 

were observed (Fig. 5B). 

 

Figure 3.6 Aromatic amino acid content. Content of A) tryptophan, B) tyrosine, C) phenylalanine, 
and D) aromatic amino acid percentage of the total free amino acid pool, in the leaves of glyphosate 
sensitive (GS) and resistant (GR) Amaranthus palmeri plants 3 days after herbicide treatment 
measured by capillary electrophoresis in leaf acidic extracts. Untreated plants were sprayed with 
water (Control; C). Plants were treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of 
glyphosate (1G), 1.5 mg L-1 of imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; 
n=4). Different letters indicate significant differences between treatments (p-value ≤0.05, LSD test). 
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Figure 3.7 Branched chain amino acid content. Content of A) leucine (Leu), B) valine (Val), C) 
phenylalanine (Ile), and D) branched chain amino acid percentage of the total free amino acid pool, 
in the leaves of glyphosate sensitive (GS) and resistant (GR) Amaranthus palmeri plants 3 days 
after herbicide treatment measured by capillary electrophoresis in leaf acidic extracts. Untreated 
plants were sprayed with water (Control; C). Plants were treated with 0.21 kg ha-1 of glyphosate 
(0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 mg L-1 of imazamox (I) or their mixtures (0.25G+I and 
1G+I).  (Mean ± SE; n=4). Different letters indicate significant differences between treatments (p-
value ≤0.05, LSD test).  
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The free amino acid profiles of GS and GR plants were also evaluated. 

The AAA content in GS population increased significantly with both doses of 

glyphosate compared to the control, as shown in the Tyr and Phe contents (Fig. 

6A-C). Although the content of Tyr and Phe increased after 0.25G treatment in 

GR, the effect of glyphosate on this population was milder than its effect on the 

GS population. We only detected a significant increase in the contents of Trp, 

Tyr and Phe after imazamox treatment in the GR population but not in the GS 

(Fig. 6A-C). The general increase in the content of free amino acids could mask 

the specific changes in each absolute value of AAA and BCAA (Fernández-

Escalada et al. 2016); therefore, the relative contents of AAA and BCAA are 

represented in terms of percentage of total free amino acid (Figs 6 D and 7D) 

in response to all treatments. In the GS population, the relative AAA content 

(Fig. 6D) showed the same pattern as that of each amino acid, while in GR 

plants, the increase in each individual AAA was not observed when viewed in 

terms of relative AAA content. Mixtures had a similar or less effect on the 

content of the three AAA than glyphosate or imazamox applied individually (Fig. 

6A-C).  

The specific content of the BCAAs was also evaluated. In the GS 

population, there was a significant increase (in terms of both absolute and 

relative contents) of BCAAs after both doses of glyphosate compared to control, 

which was not observed in the GR population (Fig. 7A-C). Imazamox did not 

affect the BCAA content in the GS population while in the GR, Leu and Ile 

content increases were detected (Fig. 7A-C). A decrease in the relative content 

of BCAA (as a percentage of the total free amino acid content) after imazamox 

treatment was detected in both populations (Fig. 7D). In the GS population, 

there was a general antagonistic behavior with the exception of the mixture of 

1G+I on Leu, where an additive behavior can be seen.  

In the GS population, both glyphosate doses produced a significant 

increase in total free amino acid content with respect to control (Fig. 8A), while 

the free amino acid accumulation detected in the GR population after any of the 

glyphosate doses was much lower. Imazamox applied individually induced free 

amino acid accumulation in both populations. In the GS population, the level of 

free amino acid accumulation was the same for the mixtures and for the 
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individual herbicide applications, while in the GR population, the level was lower 

for the mixtures. Acidic and amide amino acids displayed similar behavior in 

both populations and after both herbicides were applied individually, with a 

general and significant decrease in acidic amino acids and significant increases 

in amide amino acids (Fig. 8B-C). In all cases, the behavior was antagonistic. 

 

Figure 3.8 Total free, acidic and amide amino acid content. A) total free amino acid content, B) 
acidic amino acids (glutamic acid (Glu) + aspartate (Asp)) as percentage of the total free amino 
acid pool and C) amide amino acids (glutamine (Gln) + asparagine (Asn)) as percentage of the total 
free amino acid pool, in the leaves of glyphosate sensitive (GS) and resistant (GR) Amaranthus 
palmeri plants 3 days after herbicide treatment measured by capillary electrophoresis in leaf acidic 
extracts Untreated plants were sprayed with water (Control; C). Plants were treated with 0.21 kg 
ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 1.5 mg L-1 of imazamox (I) or their 
mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters indicate significant differences 
between treatments (p-value ≤0.05, LSD test). 
 

Total soluble sugars (the sum of glucose, fructose, and sucrose) and 

starch contents were measured in the leaves of both populations. We observed 

a general increase in TSS and starch content in the GS and GR populations 

after the application of both herbicides and there were no significant differences 
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between glyphosate and imazamox applied individually or as mixtures (Fig. 9A-

B). 

 

Figure 3.9 Carbohydrate content. A) total soluble sugar (fructose, glucose and sucrose) content in 
glyphosate sensitive (GS) and resistant (GR) populations of Amaranthus palmeri and B) starch 
content in the leaves of C) glyphosate sensitive (GS) and resistant (GR) populations of Amaranthus 
palmeri plants 3 days after herbicide treatment. Untreated plants were sprayed with water (Control; 
C). Plants were treated with 0.21 kg ha-1 of glyphosate (0.25G), 0.84 kg ha-1 of glyphosate (1G), 
1.5 mg L-1 of imazamox (I) or their mixtures (0.25G+I and 1G+I).  (Mean ± SE; n=4). Different letters 
indicate significant differences between treatments (p-value ≤0.05, LSD test).
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3.4 DISCUSSION 

 

3.4.1 Physiological effects of treatments in A. palmeri plants 

Shikimate content is a well-known stress marker: it accumulates when the 

EPSPS enzyme is inhibited by glyphosate (Baerson et al. 2002a; Zhu et al. 

2008; Orcaray et al. 2010; Gaines et al. 2011; Whitaker et al. 2013; Lorentz et 

al. 2014; Doğramacı et al. 2015; Fernández-Escalada et al. 2016, 2017; Dillon 

et al. 2017). We observed that it accumulated more in sensitive than in resistant 

plants (Fig. 1). While imazamox applied individually did not affect shikimate 

content, its mixture with 0.25G alleviated the shikimate accumulation induced 

by glyphosate applied individually, suggesting an antagonistic effect in the 

mixture.   

An increase in the protein turnover rate after herbicide treatment 

(Rhodes et al. 1987) was proposed to explain the increase in the size of the 

free amino acid pool and the general decrease in total soluble proteins induced 

by amino acid biosynthesis-inhibiting herbicides. Isotopic studies in A. palmeri 

revealed that both de novo synthesis of amino acids and protein turnover 

contribute to AAA accumulation in response to glyphosate (Maroli et al. 2016). 

 Total free amino acid content was determined as a physiological 

marker of the effect of the herbicides (Fig. 8A). In the GS population, both 

glyphosate doses produced a significant increase in total free AA content with 

respect to control, as it has been reported before (Moldes et al. 2008; Orcaray 

et al. 2010, 2012; Vivancos et al. 2011; Zulet et al. 2013a, 2015; Liu et al. 2015; 

Fernández-Escalada et al. 2016). Due to the resistance to glyphosate, a smaller 

amount of free amino acids accumulated in the GR population after glyphosate 

treatment. Imazamox applied individually induced free amino acid accumulation 

in both populations, as has been previously reported (Zulet et al. 2013a). In the 

GS population, the amounts of free amino acid accumulation were the same 

after the application of the mixtures and after individual herbicide application; in 

the GR population, the mixtures yielded lower amounts of free amino acids, 

evidencing again an antagonistic behavior.   

The contents of two other groups of amino acids with known behaviors 

(acidic amino acids (Glu and Asp) and amide amino acids (Gln and Asn)) 

(Orcaray et al. 2010; Zulet et al. 2015), was also determined after treatment 
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with amino acid biosynthesis inhibitors (Fig. 8B-C). The general and significant 

decreases in acidic amino acid contents and the significant increases in amide 

amino acid contents detected in both populations had been previously reported 

(Orcaray et al. 2010; Zulet et al. 2015). In both groups of amino acids in the GS 

and GR populations, there was a general antagonistic behavior in the mixtures.  

AAA accumulation after glyphosate treatment was reported as a 

physiological marker of damage (Orcaray et al. 2010; Zulet et al. 2015; 

Fernández-Escalada et al. 2016, 2017), thus the higher increase of AAA in the 

GS population compared with the GR population (Fig. 6A-C) suggests a higher 

level of damage on the GS due to its higher sensitivity to the herbicide. A 

general increase of the AAA content after AHAS inhibitors has also been 

previously described (Orcaray et al. 2010; Zabalza et al. 2013) but in our study, 

that significant increase was detected in the GR population and not in the GS 

(Fig. 6A-C). As AAA accumulation after glyphosate treatment implies higher 

damage, the maintenance of AAA levels with glyphosate and mixtures indicates 

an antagonistic behavior. On the other hand, the dose of glyphosate treatment 

was too low to see a significant increase in Leu, Val and Ile (BCAA) contents in 

the GR population, but in the GS population, there was a significant increase in 

the BCAA level with both doses of glyphosate compared to control (Fig. 7A-C), 

which is consistent with previous reports (Orcaray et al. 2010; Zabalza et al. 

2013) and with the AAA results (Fig. 6A-C). Interestingly, it was possible to 

detect a decrease in the relative content of BCAA after imazamox treatment in 

both populations (Fig. 7D). Previous studies reported transient decreases in the 

proportion of amino acids whose pathways were specifically inhibited by AHAS-

inhibitors (Trenkamp et al. 2009; Orcaray et al. 2010).  

Carbohydrates accumulate in response to the application of glyphosate 

(Orcaray et al. 2012; Maroli et al. 2015; Zulet et al. 2015; Fernández-Escalada 

et al. 2016) and AHAS-inhibitors (Zabalza et al. 2004, 2017; Zulet et al. 2015), 

which can be a physiological marker of herbicide toxicity. Total soluble sugars 

and starch contents were measured in the leaves of both populations (Fig. 9A-

B). The carbohydrate accumulation detected in leaves after herbicide treatment 

(Fig. 9A-B) has been previously attributed to growth arrest. The accumulation 

of unused carbohydrates in sinks abolishes the sugar gradient required for long-

distance transport, and carbohydrates accumulate in the leaves of treated 
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plants because of a decrease in sink strength (Orcaray et al. 2012). If 

carbohydrates are used as a physiological marker of stress, then the absence 

of differences between mixtures and individual herbicides could be interpreted 

as an antagonistic interaction.  

In general, the changes detected in amino acid and carbohydrate 

contents in response to herbicide mixtures were similar to the changes detected 

after individual treatments and less than the sum of the individual effects; thus, 

the mixtures display a general antagonistic behavior.  

 

3.4.2 Coordinated expression response was only detected 

after EPSPS inhibition and not after AHAS inhibition  

A general dose-dependent induction in the expression of all the genes of the 

AAA pathway (Fig. 2 and 3B), with the exception of CM (Fig. 3A), was observed 

in the GS and GR populations and was caused by glyphosate treatment, as 

described in Fernández Escalada et al. (2017). A higher degree of induction 

occurred in the AS gene (Fig. 3B), and CM repression in the post-chorismate 

branches of the AAA pathway (Fig. 3A) indicate a priority flux of carbon towards 

Trp biosynthesis instead of Phe and Tyr under herbicide stress conditions 

(Fernández-Escalada et al. 2017). The transcriptional responses of the AAA 

pathway (specifically in AS) to a wide range of stress conditions have been 

proposed (Less and Galili 2008; Pratelli and Pilot 2014).  

The expression pattern of the genes of the BCAA pathway was also 

evaluated (Fig. 4). With few exceptions, both of the populations generally 

showed no significant change in gene expression after glyphosate treatment, 

as previously reported (Fernández-Escalada et al. 2017). No significant 

changes in gene expression were detected after the inhibition of one of the 

enzymes of the pathway, AHAS, by imazamox applied individually. It was 

previously reported that the BCAA enzyme transcript levels increased after 

treatment with pyroxsulam (Délye et al. 2015) (another AHAS inhibitor) within a 

short period of time (less than 48 h). However, in agreement with our results, 

the slight change of BCAA enzyme gene expression level induced by another 

AHAS-inhibitor (imazapyr) provided evidence that transcriptional regulation 

may not be a major regulatory mechanism of the synthesis of branched-chain 
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amino acids (Manabe et al. 2007). Herbicide mixtures did not induce any 

remarkable change in the relative expression of the enzymes in this pathway 

(Fig. 4).  

A similar regulatory program, combining transcriptional and post-

translational controls in response to abiotic stresses, was proposed to the 

metabolic pathways of 11 amino acids, including AAA and BCAA biosynthesis 

(Less and Galili 2008). Specifically, it was proposed that allosteric biosynthetic 

enzymes respond post-translationally to changes in the level of the amino acids 

(Less and Galili 2008). Nevertheless, our results show an opposite 

transcriptional behavior between the BCAA and AAA pathways. The 

inactivation of the BCAA biosynthetic pathway at the level of AHAS by 

imazamox did not provoke any significant or common pattern in the relative 

expression level of the other genes. In contrast, after glyphosate treatment, a 

general increase in the transcript levels of the enzymes of the shikimate 

pathway and AS was detected in both populations. This different pattern cannot 

be explained by any specific pattern in the content of amino acids whose 

specific biosynthesis is inhibited because decreases, increases and no 

changes have all been reported.  

As previously reported (Fernández-Escalada et al. 2017), glyphosate 

did not provoke any significant change in the transcriptional levels of the genes 

of the BCAA pathway, supporting the lack of cross regulation between the 

pathways. The lack of effect of imazamox on the transcript levels of the genes 

of the AAA pathway confirms this result.  

To evaluate if the changes in gene transcription of the enzymes of the 

AAA pathway (Fig. 3) were reflected by the protein levels, EPSPS and DAHPS 

enzyme amounts were studied. The importance of the DAHPS protein is based 

on its control of the entrance of carbon flux to AAA pathway (Tohge et al. 

2013b). In the GS population, only in the 1G+I treatment was a significant 

increase of the protein detected with respect to the control and in the resistant 

population; there were no significant differences between treatments (Fig. 5A), 

as has been reported previously (Fernández-Escalada et al. 2017). The EPSPS 

protein content in the absence of herbicides was 10-fold higher in A. palmeri 

GR population than in GS (Fig. 5B) due to the amplification of EPSPS, as has 

been previously reported (Gaines et al. 2010, 2011; Ribeiro et al. 2014; 
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Fernández-Escalada et al. 2016, 2017). There were significant increases in the 

EPSPS protein levels in the GS population after glyphosate treatment and with 

1G glyphosate in the GR population (Fig. 5B), as previously reported 

(Fernández-Escalada et al. 2016, 2017). The significant increases in EPSPS 

protein after glyphosate treatment suggest that this protein is under strong 

transcriptional control with a tight concordance between the increases in gene 

expression and in the protein content. In contrast, the induction of DAHPS gene 

expression after glyphosate treatment (Fig. 2A) had no clear relation with 

DAHPS protein level (Fig. 5A), which suggests that the presence of post-

transcriptional factors added to the transcriptional regulation, as has been 

suggested before (Fernández-Escalada et al. 2017). 

Both populations showed no effect in response to imazamox applied 

individually and no significant differences between glyphosate treatments and 

their mixtures with imazamox in DAHPS and EPSPS content (Fig. 5A), which 

suggest the absence of a relevant effect of imazamox on this parameter, while 

glyphosate elicited an effect.  

 

3.4.3 In both populations, antagonism was the main type of 

interaction between glyphosate and imazamox when 

physiological effects were evaluated  

We used physiological parameters as indicators of additivity, synergism and 

antagonism in the mixtures of glyphosate and AHAS-inhibitors. The mixture of 

glyphosate and imazamox resulted in a generalized antagonistic effect on the 

main indicator parameters: shikimate content (Fig. 1), amino acid levels (Figs. 

6-8), and carbohydrate levels (Fig. 9). This conclusion is based on finding the 

mixture effects to be mostly less than the sum of the individual effects. Although 

some additive results have been reported before (Starke and Oliver 1998; Li et 

al. 2002; Nelson and Renner 2002), antagonism between AHAS-inhibitors 

(specifically imidazolinones) and glyphosate has been previously reported in 

dose-response studies (Hydrick and Shaw 1994; VanLieshout et al. 1996; Lich 

et al. 1997; Johnson, W.G. et al. 1999; Shaw and Arnold 2002), although their 

effect in physiological parameters was not tested. 
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Antagonism was the general behavior detected in all parameters and 

in both populations. Nevertheless, at the transcriptional level, in AAA pathway 

enzymes, we observed a clearly different pattern in the GS population 

compared to the GR population when they were treated with mixtures. The GS 

population showed an additively slight synergic effect and the GR population 

showed a strong antagonism that even brought down transcript levels below 

control levels in the mixtures. This particular transcriptional pattern detected in 

GR plants could be related to EPSPS gene amplification and overexpression. 

Further investigations to clarify the molecular mechanism underlying this 

specific transcriptional response of GR would be very useful.  

Considering the general pattern, it can be concluded that glyphosate and 

imazamox applied together are physiologically antagonistic; the evidence for 

this is that toxicity markers are affected in the mixture to the same extent or 

even less than with one herbicide acting individually. This behavior means that 

when the herbicides are applied in the field the recommended doses cannot be 

lowered and that both herbicides have to be applied at the recommended rate 

to be effective on all desired target plants. 
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3.5 CONCLUSIONS 

 

The study of physiological effects as parameters to evaluate the interaction 

between glyphosate and imazamox when mixed together shows a general 

physiological antagonism. This type of interaction was detected in shikimate, 

protein, amino acid and carbohydrate content, and it was independent of the 

EPSPS copy number, as it was detected in both populations. In the case of the 

transcriptional activation of the AAA pathway induced by glyphosate, interesting 

and contrary interactions were detected for both populations; the effect was 

additive in the GS population and antagonistic in the GR population.  

We confirmed that no cross regulation exists between AAA and BCAA 

pathways, in spite of similar patterns in the content of free amino acids and 

carbohydrates after imazamox or glyphosate treatment. 
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Glyphosate inhibits the biosynthesis of AAAs by the specific inhibition of 

EPSPS, an enzyme that converts shikimate-3-phosphate and 

phosphoenolpyruvate to 5-enolpyruvylshikimate-3-phosphate in plastids. The 

toxic effect of this herbicide goes beyond the interaction with the target site and 

provokes a physiological roadblock that leads to plant death. The precise 

physiological processes by which glyphosate kills plants have not been 

completely elucidated. The main aim of this study was to continue unravelling 

the precise physiological mechanisms that are related to glyphosate toxicity.  

The intensive use of glyphosate has resulted in the evolution of 

resistance to this herbicide. Amaranthus palmeri is a troublesome weed that 

has become a major glyphosate-resistant weed and whose mechanism of 

resistance is EPSPS gene amplification, as first reported by Gaines et al. 

(2010). The availability of a biotype with overexpression of the EPSPS enzyme 

provided an opportunity to analyse how overexpression of EPSPS affects AAA 

synthesis and other physiological effects by comparison with a sensitive 

population. In addition, comparison of the different effects of glyphosate or 

glyphosate mixed with other herbicides on both populations will facilitate the 

comprehensive elucidation of a possible different mode of action in sensitive 

and resistant plants. In this study, two types of comparisons have been used, 

one taking into account comparison between untreated plants of sensitive or 

resistant populations and another focusing on the variation of different 

parameters in the plant after glyphosate treatment in each population. This 

structure was maintained throughout the three chapters of this work, although 

in the last chapter imazamox and its mixtures with glyphosate were included as 

well.  

In the first chapter, it was confirmed that GR population originally 

collected in North Carolina was resistant to glyphosate and EPSPS gene 

amplification as mechanism of resistance as described in Chandi et al. (2012) 

for that population was confirmed.  

In vivo shikimate assay (Fig. 1.2) and glyphosate dose-response study 

confirmed the resistance of GR population (Fig. 1.1A). Accumulation of 

shikimate content (Fig. 1.1B)  was the parameter used to establish the doses 

employed in the following physiological characterizations: 0.84 and 2.52 kg ha

−1. The 0.84 kg ha−1 dose was selected because at this dose the highest 
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shikimate accumulation in GS was observed, and thus the physiological status 

is expected to be strongly affected. The 2.52 kg ha−1 dose was selected 

because it was the highest dose used and did not result in shikimate 

accumulation in GR plants.  

It was confirmed that the glyphosate resistance level was related to 

higher EPSPS genomic copy number (Fig. 1.3A), as the EPSPS copy number 

of GR plants was 47.5 fold the copy number of GS plants, as was reported 

before for other populations or species  (Gaines et al. 2010; Ribeiro et al. 2014; 

Vila-Aiub et al. 2014; Salas et al. 2015), moreover, it was confirmed that the 

levels of EPSPS protein (Fig. 1.3B)  and EPSPS activity (Fig. 1.3C) were higher 

in GR than in GS individuals as in previous reports (Gaines et al. 2010, 2011; 

Ribeiro et al. 2014). Comparing GS and GR plants under control conditions, 

amino acid content was similar in the two populations (Fig. 1.4A,C), thus, the 

levels of free amino acid contents were not affected by the overexpression of 

EPSPS supporting the idea that no fitness costs were associated with EPSPS 

overexpression (Vila-Aiub et al. 2014). 

Protein levels were higher in glyphosate treated plant than in untreated 

plants in both populations. EPSPS activity only increased after glyphosate 

treatment in GR population, which was probably a reflection of the less EPSPS 

transcript levels of GS population that prevented from increasing the EPSPS 

protein content. The relative low levels of protein were not enough for GS 

individuals to overcome the glyphosate treatment effects when was applied, 

while in GR it was possible, which is the cause of resistance in this A. palmeri 

population (Gaines et al. 2010).   

In addition, other physiological responses that are usually affected by 

glyphosate treatment, such as free amino acid content, carbohydrate content 

and ethanol fermentation, could be different between populations and could be 

affected in a different way by the herbicide in sensitive and resistant plants, so 

they were studied to describe new insights of the physiological manifestations 

of the evolved glyphosate resistance.  

Free amino acid levels were increased by glyphosate treatment in the 

leaves and roots of GS and GR plants in a dose-dependent manner (Fig. 1.4B 

and D) althought the detected increase in leaves was much lower in GR. Total 

free amino acid accumulation after glyphosate treatment was reported 
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previously in several species, including pea (Orcaray et al. 2010; Zulet et al. 

2013a), Arabidopsis thaliana (Zulet et al. 2015), maize (Liu et al. 2015), and 

soybean (Moldes et al. 2008; Vivancos et al. 2011).  

AAA content was greatly increased in the leaves and roots of GS plants 

after glyphosate treatment, as previously described (Orcaray et al. 2010; Zulet 

et al. 2015), but in GR plants, only a mild increase was detected in leaves. (Fig. 

1.5).  

Sugar accumulation was clearly produced in GS and GR population 

with recommended field dose as previously reported (Orcaray et al. 2012; Zulet 

et al. 2015; Maroli et al. 2015), although in sensitive plants it was a tendency to 

decline with the highest glyphosate dose. It was propossed that the severity of 

this treatment on sensitive plants makes it difficult to maintain carbohydrate 

accumulation, corresponding to a possible decline in carbon assimilation 

(Zabalza et al. 2004). Ethanol fermentation was assessed in roots of both 

populations (Fig. 1.7). In all cases there were an induction of activity PDC and 

ADH with the lowest dose of glyphosate individuals it was a tendency to decline 

with the highest glyphosate dose. So, these two physiological markers that 

have been reported after glyphosate treatment were detected in sensitive and 

resistant plants in this study.  

The first chapter showed a complex regulation of EPSPS activity by 

mechanisms at transcriptional/translational and protein levels as EPSPS 

protein amount was incrased in both populations by the herbicide while AAA 

content was incresed only in GS population. These results indicate a regulation 

at the level of EPSPS protein, the signal of which remains unknown. In order to 

obtain new insights in the specific effects of glyphosate on AAA biosyntetic 

pathway a full transcriptional study of the pathway was performed, as it is 

presented in chapter two.  

In the second chapter, the main objective was to evaluate the impact 

of EPSPS overexpression and of glyphosate on the regulation of the AAA 

pathway and free AAA content. Protein and activity of some important enzymes 

of AAA pathway were measured. These enzymes are the key points of the 

pathway, the entrance (DAHPS enzyme) and the enzyme inhibited by 

glyphosate.  
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In GR population of A. palmeri an EPSPS gene amplification described 

in chapter 1, resulted in a massive increase of the corresponding transcript (Fig. 

2.3A) and of the protein content and activity (Figs. 2B,C, GD.1). Our data 

validate results previously reported in other populations of A. palmeri (Gaines 

et al. 2010, 2011; Ribeiro et al. 2014), and other weedy plant species such as 

A. tuberculatus (Lorentz et al. 2014; Chatham et al. 2015), Lolium perenne ssp. 

multiflorum (Salas et al. 2012), Eleusine indica (Chen et al. 2015), and Kochia 

scoparia (Wiersma et al. 2015). 

Gene amplification of EPSPS had no major effect on the overall AAA 

pathway (Figs. 2.2–2.5). In untreated plants, free AAA contents were similar in 

GR and GS populations (Fig. 2.5) as previously described (Maroli et al. 2015). 

This is consistent with previous reports suggesting that the overexpression of 

EPSPS may have no fitness cost in A. palmeri (Giacomini et al. 2014; Vila-Aiub 

et al. 2014). 

 
Figure GD.1 Overview of the effects of three times glyphosate field dose (2.52 kg ha−1) on mRNA, 
protein, activity and aromatic amino acid content of the enzymes of aromatic amino acid synthesis 
pathway in sensitive population (GS) (left) and in resistant population (GR) (right). The color of the 
circles shows the value of the ratio of the parameter after referring glyphosate-treated value to 
control (untreated) values. Sensitive population is represented by white bars and resistant 
population with black bars in amino acid content grephics, and treatments are control (C), 0.84 kg 
ha-1 of glyphosate (G1) and 2.52 kg ha-1 of glyphosate (G3). 
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Glyphosate treatment provoked an accumulation of the transcripts 

encoding almost all the enzymes of the shikimate pathway, including EPSPS, 

in a dose-dependent manner (Fig. 2.3B). Although increases in some enzymes 

of the shikimate pathway such as EPSPS (Baerson et al. 2002a; Yuan et al. 

2002; Chen et al. 2015; Mao et al. 2016) and DAHPS (Baerson et al. 2002a) 

have been previously described, this was the first study suggesting a potential 

coordinated transcriptional regulation of the shikimate pathway after glyphosate 

treatment (Fig. GD.1). Because this regulation is observed in both GS and GR 

populations (Fig. 2.3B and GD.1), it suggests that this gene upregulation does 

not occur in response to the level of inhibition of EPSPS activity. Instead, it can 

be hypothesized that glyphosate itself, or indirectly, may affect plant amino acid 

metabolism, in addition to its known impact on EPSPS. 

Glyphosate provoked a general upregulation of the expression of genes 

participating in the pre chorismate pathway but downstream chorismate, AS 

increased in transcript abundance more than any other enzyme in the pathway 

(Fig. 2.3B and GD.1). AS expression was induced while CM expression was 

repressed, suggesting a regulatory branch point in the pathway (Fig. 2.1) for a 

preferential flux of carbon toward Trp biosynthesis over Phe and Tyr 

biosynthesis. This potential stream toward Trp was confirmed by studying AS 

and CM enzyme activities in vitro (Fig. 2.4). Data obtained in Arabidopsis 

thaliana (Sasaki-Sekimoto et al. 2005) and other plant species (Galili et al. 

2016) also support this hypothesis.  

The general upregulation of the expression of genes participating in the 

pre chorismate pathway is accompanied with an increase of the accumulation 

of free AAAs (Fig.GD.1), which is more pronounced in the GS population (Fig. 

2.5) as it was already described in chapter 1 and reported in other studies 

(Vivancos et al. 2011; Maroli et al. 2015). It is possible that the accumulation of 

free AAA came from an increase in protein turnover in the plant following 

glyphosate treatment (Zabalza et al. 2006; Zulet et al. 2013a; Fernández-

Escalada et al. 2016). Isotopic studies in A. palmeri revealed that both de novo 

synthesis of amino acids and protein turnover contribute to AAA accumulation 

in response to glyphosate (Maroli et al. 2016). Reduction in AAA levels does 

not appear to elicit the increased expression of AAA pathway genes (Fig. 2.3), 

because the AAA concentrations increase with glyphosate dose (Fig. 2.5). 
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Further research is needed to understand the signal(s) that upregulates the 

AAA pathway following glyphosate treatment. 

Previous researches showed that an interaction between the AAA 

pathway and other amino acid synthesis pathways was probable (Noctor et al. 

2002), and the nearest pathway could be the BCAA pathway (Fernández-

Escalada et al. 2016; Maroli et al. 2015; Orcaray et al. 2010). The effect of 

glyphosate on the transcript levels of the genes of the BCAA pathway was 

evaluated in both populations (Fig. 3.4 and GD1). Transcript abundance was 

similar in the untreated plants of both populations, suggesting that EPSPS 

overexpression does not affect BCAA pathway expression. Moreover 

glyphosate did not affect BCAA pathway expression (Fig. 3.4) no-cross 

regulation at transcriptional level was observed.  

AHAS inhibitors are herbicides that inhibit the BCAA biosynthesis 

pathway. Previous findings showed that both AHAS and EPSPS inhibitors 

provoke similar physiological effects on treated plants: an accumulation of free 

amino acids (Orcaray et al. 2010; Maroli et al. 2015; Zulet et al. 2015; 

Fernández-Escalada et al. 2016; Zabalza et al. 2017), a decrease in the soluble 

protein content (Zulet et al. 2013a; Maroli et al. 2015, 2016), and accumulation 

of carbohydrates (Orcaray et al. 2010; Maroli et al. 2015; Zulet et al. 2015; 

Fernández-Escalada et al. 2016). This suggests that, although they target 

different enzymes, they kill plants by similar mechanisms. Beside this, one of 

the most used practice to control glyphosate-resistant weeds is to mix 

glyphosate with AHAS-inhibitors. The close relationship between AAA and 

BCAA biosynthetic pathways and the common physiological effects provoked 

by EPSPS and AHAS-inhibitors may cause noteworthy synergistic effects by 

the joint application of glyphosate and AHAS-inhibitors, which makes 

interesting the physiological study of the herbicide mixture in plants, although 

at the same time, the similar response of plants to both families of herbicides 

could question the efficacy of these mixtures. 

In the third chapter, the physiological and transcriptional effects of 

herbicide mixtures of glyphosate and imazamox in A. palmeri resistant and 

sensitive plants were studied. The AHAS inhibitor imazamox was selected for 

investigation. The plants were treated with two doses of glyphosate applied 
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individually; imazamox and two mixtures of both herbicides with the same 

doses as the individually applied herbicide were used.  

In both the GS and GR populations, a general dose-dependent 

induction of all the genes of the AAA pathway (Figs. 3.2, 3.3B and GD. 2), with 

the exception of CM (Figs. 3A and GD. 2), was caused by glyphosate treatment, 

as described in the experiments of chapter 2 (Fig. 2.3B and GD.1) and 

published in Fernández-Escalada et al. (2017). A higher induction occurred for 

the AS gene (Figs. 3.3B and GD. 2), and a CM repression in the post-

chorismate pathway of the AAA pathway (Figs. 3.3A and GD. 2) indicated a 

priority flux of carbon towards the branch of Trp biosynthesis instead of Phe 

and Tyr under herbicide stress conditions (Fernández-Escalada et al. 2017). 

 

Figure GD.2 Overview of the effects of glyphosate field dose (0.84 kg ha−1), imazamox and a 
mixture with glyphosate and imazamox doses, on mRNA in sensitive population (GS) (left) and in 
resistant population (GR) (right). The color of the circles shows the value of the the ratio of the 
parameter after referring glyphosate-treated value to control (untreated) values.  

  

Imazamox applied individually did not induce a general significant 

change in the AAA pathway expression (Figs. 3.3 and GD. 2). At the 

transcriptional level in the AAA pathway enzymes, a clear differential pattern in 

the GS population compared to the GR population was observed when they 

were treated with mixtures (Fig. GD.2). The GS population showed a slight 
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additive synergic effect, and the GR population showed a strong antagonism 

that reduced transcript levels to below those of the control in the mixtures. The 

particular transcriptional pattern detected in GR plants could be related to 

EPSPS gene amplification and overexpression. Further investigation to clarify 

the molecular mechanism underlying this specific transcriptional response of 

GR would be useful.  

The expression pattern was also evaluated in genes of the BCAA 

pathway (Figs. 3.4). With few exceptions, generally, neither of the populations 

exhibited a significant gene expression change after glyphosate treatment, as 

was previously reported (Fernández-Escalada et al. 2017). After imazamox 

treatment, the slight change of BCAA enzyme gene expression showed that 

transcriptional regulation may not be a major regulatory mechanism in the 

synthesis of BCAAs (Manabe et al. 2007). As shown in the experiments of 

chapter 2 (Fig. 2.6) and published in Fernández-Escalada et al. (2017), 

glyphosate did not provoke any significant change in the transcriptional levels 

of genes in the BCAA pathway, supporting a lack of cross-regulation between 

the pathways. The lack of effect of imazamox on gene transcripts in the AAA 

pathway (Figs. 3.3 and GD. 2) confirmed this result.  

Glyphosate applied individually induced the previously described 

effects, including accumulation of shikimate, AAAs, total free amino acid 

content and carbohydrates (Fig. 3.1, 3.6, 3.7, 3.8 and 3.9), as was described in 

the other chapters (Fig. 1.1, 1.4, 1.5, 1.6, 2.2 and 2.5).  

Similar physiological responses were detected when imazamox was 

applied individually as were seen when glyphosate was applied, with the 

exception of shikimate accumulation. Specific AAA and total free amino acid 

content increased (Fig. 3.6 and 3.8), and carbohydrates accumulated in the 

leaves of treated plants (Fig. 3.9), as was described previously for other species 

(Zabalza et al. 2004; Zulet et al. 2013, 2015).  

In the last chapter, physiological parameters were used as indicators of 

additivity, synergism or antagonism in the mixtures of glyphosate and AHAS 

inhibitors. The mixture of glyphosate and imazamox resulted in a general 

antagonistic effect in the main indicator parameters (shikimate content (Fig. 

3.1), amino acid levels (Figures 3.6-3.8), and carbohydrate levels (Fig. 3.9)) 

because the detected effects upon application of the mixtures were mostly 
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lower than the addition of the individual effects. Although some additive results 

have been previously reported (Starke and Oliver 1998; Li et al. 2002; Nelson 

and Renner 2002), antagonism between AHAS inhibitors (imidazolinones) and 

glyphosate has been previously reported in dose-response studies, (Hydrick 

and Shaw 1994; VanLieshout et al. 1996; Lich et al. 1997; Johnson, W.G. et al. 

1999; Shaw and Arnold 2002), although their effect on physiological parameters 

had not been tested. Considering this general pattern, it can be established that 

when the herbicides are applied in the field, the recommended doses cannot 

be lowered and that both herbicides must be applied at the recommended rate 

to be effective on all desired target plants.  

In this study, the high CNV of EPSPS in A. palmeri has no major 

pleiotropic effect on the expression of the AAA and BCAA biosynthetic genes, 

the free amino acid profile or the carbohydrate content. Moreover, new insights 

of the physiological response of A. palmeri to glyphosate treatment in GS and 

GR populations are presented. Glyphosate provoked similar increases of 

EPSPS protein content and of transcripts corresponding to genes in the AAA 

pathway in both GS and GR, the signal of which remains unknown but cannot 

be AAA content, as this was increased only in GS. The expression of BCAA 

genes was not significantly affected by glyphosate, and expression of AAA 

genes was not significantly affected by imazamox, evidencing that no cross-

regulation exists between the AAA and BCAA pathways. Finally, interactions 

between mixtures of two different doses of glyphosate and one of imazamox 

were tested in A. palmeri, and a general antagonism was reported. 
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 A correlation was confirmed between EPSPS CNV, EPSPS protein 

content and EPSPS activity with the level of resistance of A. palmeri 

GR plants.  

 A. palmeri GR and GS untreated plants showed a similar expression of 

AAA and BCAA biosynthetic genes. Likewise, the free amino acid 

profile and carbohydrate content were similar in GS and GR plants, 

suggesting that the high CNV of EPSPS in the GR population has no 

major pleiotropic effects on the physiology of the resistant plants.  

 Glyphosate provoked an increase in total free amino acids and in AAAs 

that was lower in the GR population than in the GS population, and 

shikimate accumulation was only observed in the GS population, which 

is related to the higher level of damage seen in the GS population.  

 Transcriptional induction of the AAA pathway was detected following 

glyphosate treatment in both GR and GS plants, suggesting a 

potentially coordinated transcriptional regulation. The AAA content was 

not the signal causing this response, because AAA accumulation was 

detected only in GS plants. 

 In both populations, glyphosate treatment resulted in an upregulation 

of the Trp biosynthesis branch compared to the Phe and Tyr branch, 

indicating that this branch point may be a regulatory point in the 

pathway.  

 Despite similar patterns in the content of free amino acids and 

carbohydrates after imazamox or glyphosate treatments, it was 

confirmed that no cross-regulation exists between the AAA and BCAA 

pathways at the expression level.  

 The study of physiological effects as parameters to evaluate the 

interaction between glyphosate and imazamox in their mixtures 

evidence a general physiological antagonism. This type of interaction 

was detected in the shikimate, protein, amino acid and carbohydrate 

content in GS and in GR populations of A. palmeri, suggesting that it is 

independent of the EPSPS copy number. 
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