
Learning fuzzy measures for aggregation in fuzzy
rule-based models

Emran Saleh1, Aida Valls1, Antonio Moreno1,
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4 Departamento de Automàtica y Computación, Universidad Pública de Navarra,

Institute of Smart Cities, Universidad Pública de Navarra
bustince@unavarra.es

Abstract. Fuzzy measures are used to express background knowledge
of the information sources. In fuzzy rule-based models, the rule confi-
dence gives an important information about the final classes and their
relevance. This work proposes to use fuzzy measures and integrals to
combine rules confidences when making a decision. A Sugeno λ-measure
and a distorted probability have been used in this process. A clinical de-
cision support system (CDSS) has been built by applying this approach
to a medical dataset. Then we use our system to estimate the risk of de-
veloping diabetic retinopathy. We show performance results comparing
our system with others in the literature.

Keywords: Fuzzy Measures, Aggregation functions, Choquet Integral,
Sugeno Integral, Fuzzy rule-based Systems, Diabetic Retinopathy.

1 Introduction

Aggregation operators are mathematical functions to merge a set of numerical
arguments into a single one that summarizes them. They are widely used in
many knowledge fields, such as sensor data fusion and decision making [16].

Among the vast number of aggregation operators found in the literature,
fuzzy integrals are one of the most general onces. Due to their parametrisation,
fuzzy integrals as Choquet and Sugeno show a great flexibility in aggregating the
inputs. Choquet integral generalizes both the weighted mean and the OWA oper-
ator [2] and Sugeno integral generalizes weighted maximum, weighted minimum
and the median operators [4],[16].

Fuzzy integrals rely on a fuzzy measure (or capacity), which is a set function
that indicates the importance of the information sources (i.e., of each of possible



groups of input sources). Defining a proper fuzzy measure for each problem is a
crucial point in order to make a suitable aggregation of the inputs and obtain
the correct corresponding outputs.

In this paper we will focus on solving a classification problem in the medical
field. We have been working on the definition and construction of a clinical de-
cision support system for improving the diagnosis of diabetic retinopathy (DR).
This disease is one of the major complications of diabetes and one of the most
important causes of loss vision in young diabetic people all over the world. The
effects of this disease can be controlled if it is detected at an early stage. With
the collaboration of experts from difference medical centers in Catalonia we have
collected a dataset of information of 3,000 diabetic patients. This data has been
used to train and test a binary DR classification model using Fuzzy Random
Forests (FRF) [12].

One of the characteristics of FRF is that a large number of classification
rules are generated using different samples of the data. In our case, we have 100
trees with about 100 rules each one. When a new patient has to be classified,
his data is introduced into the system and all rules are fired at different levels
of satisfaction. Merging the outcome of all these rules is usually done with the
Winner strategy, which consists on taking as answer the output of the rule with
maximum activation [11]. However, the information provided by the rest of rules
is lost.

In this paper we propose to use other aggregation methods in order to merge
the contribution of the different rules that are activated by a certain patient’s
data. In particular, we study the use of fuzzy integrals and a new way of con-
structing the fuzzy measure is proposed, based on the confidence score of each
of the contributing rules.

The rest of the paper is organized as follows. Section 2 presents the main
concepts used in this work. In section 3, we introduce the induction algorithms of
fuzzy decision trees (FDT) and fuzzy random forest (FRF) models, the proposed
fuzzy measures and aggregation process. In Section 4, we describe the dataset
and discuss the experimental results. Finally, section 5 shows the conclusion and
future work.

2 Preliminaries

In this section, we define the basic concepts that are used in this work. We follow
[16] for the definitions.

Definition 1 A function agg : [0, 1]η → [0, 1] is an aggregation function if and
only if it fulfills the following properties:

– agg(x, ..., x) = x (Identity)
– agg(0, ..., 0) = 0 and agg(1, ..., 1) = 1 (Boundary conditions)
– If (x1, ..., xη) ≤ (y1, ..., yη) then agg(x1, ..., xη) ≤ agg(y1, ..., yη) (Non de-

creasing)



Note that some authors use identity only in 0 and 1 as eg. [1] and [6].

Definition 2 A function T : [0, 1]2 → [0, 1] is a t-norm function if and only if
it fulfills the following properties:

– T (x, y) = T (y, x) (Commutativity)
– T (x, y) ≤ T (u, v) if (x ≤ u) and (y ≤ v) (Increasing monotonicity)
– T (x, T (y, z)) = T (T (x, y), z) (Associativity)
– T (x, 1) = x (Neutral element)

Examples of T-norms include minimum and product.

Definition 3 A fuzzy measure (also known as non-additive measure) m on a
set X with cardinality η is a set function m : 2X → [0, 1] fulfilling the following
properties:

– m(∅) = 0,m(X) = 1, (Boundary condition)
– A ⊆ B implies m(A) 6 m(B), for all A,B ⊂ X (Monotonicity)

Fuzzy measures are a way to represent background knowledge about the
importance of the sources of some values. In that way, they are used to weight the
arguments in some aggregation operators like the Choquet and Sugeno integrals.
The fuzzy measure can be defined manually or it can be obtained from some
domain data.

In [6], it is proposed a fuzzy measure obtained as the power mean of the
cardinality of the set of values aggregated. This fuzzy measure mPM : 2X → [0, 1]
is defined as follows:

mPM (A) =

(
|A|
η

)q
with q > 0 (1)

For classification problems, the value of q can be optimized for each of the
classes considered [1].

In this work, we use Choquet and Sugeno integrals in order to aggregate the
input data. The discrete Choquet integral is defined as:

Definition 4 Let X be a reference set with cardinality η and let m be a fuzzy
measure on X; then, the Choquet integral of a function f : X → R+ with respect
to the fuzzy measure m is defined by

Choquet(f) =

η∑
i=1

[f(xs(i))− f(xs(i−1))] ·m(As(i)), (2)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤ f(xs(1)) ≤
· · · ≤ f(xs(η)) ≤ 1, and where f(xs(0)) = 0 and As(i) = {xs(i), . . . , xs(η)}.

For the sake of simplicity, we will use Choquet(x1, . . . , xη).
In [6] the Choquet-like Copula-based fuzzy integral (CC-integral) is defined.

It uses a copula as main operator • instead of the product · as usual in the
Choquet integral. I. e., when • = · the CC-integral is Choquet integral The
properties of this extended fuzzy integral have been studied in [5] and [7].



Definition 5 Let X be a reference set with cardinality η and let m be a fuzzy
measure on X; then, the CC-integral of a function f : X → R+ with respect to
the fuzzy measure m is defined by

CC-integral(f) =

η∑
i=1

[f(xs(i)) •m(As(i))− f(xs(i−1)) •m(As(i))], (3)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤ f(xs(1)) ≤
· · · ≤ f(xs(η)) ≤ 1, and where f(xs(0)) = 0 and As(i) = {xs(i), . . . , xs(η)}.

For the sake of simplicity, we will use CC-integral(x1, . . . , xη).

Definition 6 Let m be a fuzzy measure on X with cardinality η; then, the
Sugeno integral of a function f : X → [0, 1] with respect to m is defined by

Sugeno(f) = max
i=1,η

min(f(xs(i)),m(As(i))), (4)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤ f(xs(1)) ≤
... ≤ f(xs(η)) ≤ 1 and As(i) = {xs(i), ..., xs(η)}.

For the sake of simplicity, we will use Sugeno(x1, . . . , xη).

3 Methodology

In this section, we explain how to build a fuzzy decision tree (FDT) and fuzzy
random forest (FRF) and then we propose how to use fuzzy integrals to merge
the conclusions of the rules when the FDT or FRF is used to classify a new
instance.

3.1 Fuzzy rule-based models construction

There are many techniques to build fuzzy rule-based models. In this section,
we describe the main steps of constructing them based on Yuan and Shaw [17].
That is, an induction method is used to build a fuzzy decision tree (FDT), and
a bag of FDTs is used to build a fuzzy random forest (FRF). The following is
the notation which is used in the induction procedure.

Let us consider a set of labeled examples U = {u1, u2, ..., um}. Each ui is an
example described by attributes A = {a1, ..., an}.

Each attribute a ∈ A takes values on a linguistic fuzzy partition [3] Ta =
{t1, ..., ts} with membership functions µti . The membership values on the uni-
verse can be understood as a possibility distribution.

The U-uncertainty (or non-specificity measure) of a possibility distribution
π on any set with cardinality d is defined in [17] as:

g(π) =

d∑
i=1

(π∗i − π∗i+1) ln i (5)

where π∗ = {π∗1 , π∗2 , ..., π∗d} is a permutation of π = {π(1), π(2), ..., π(d)} such
that π∗i ≥ π∗i+1, for i = 1, ..., d, and π∗d+1 = 0.



Fuzzy Decision Tree Induction The induction algorithm proposed in [17]
is an extension of the classic ID3 method for crisp data. It incorporates two
parameters to manage the uncertainty:

– The significance level (α) is used to ignore insignificant evidences. If the
fuzzy evidence membership value is lower than α then turns it to 0.

– The truth level threshold (β) controls the growth of the tree. Very high β may
lead to overfitting and very low β may lead to low classification accuracy.

The main steps of the fuzzy decision tree induction process are the following
ones:

1. Choose the attribute with the smallest ambiguity (see the expression be-
low) for the root node.

2. For each value of the attribute, create a branch if it has examples with
support higher than α.

3. For each branch, calculate the truth level of classification to each class.
4. If the truth level of classification (see the expression below) is higher

than β then end the branch with the class label which has the highest truth
level of classification.

5. If no then check if an additional attribute will reduce the classification am-
biguity.

6. If so, choose the attribute with smallest classification ambiguity with
the accumulated evidence (see the expression below) for the new node,
and repeat from step 2 to 6 until no more tree growth is possible.

7. If no, end the branch with the label of the class that has the highest truth
level of classification.

The ambiguity of an attribute is calculated as an average of the uncertainty
of this attribute for an example using the following equation:

Ambiguity(a) =
1

m

m∑
j=1

g(πj),

where

πj = {µ
′

t1(uj), ..., µ
′

ts(uj)}

(6)

and µ
′

ti(uj) is the normalized possibility distribution of µti(uj) :

µ
′

ti(uj) = µti(uj)/max1≤k≤s{µtk(uj)} (7)

The truth level of classification defines the possibility of classifying an object
ui into a class Ck ∈ C where C = {C1, ..., Cp} given the fuzzy evidence E .

Truth(Ck|E) = S(E,Ck)/max1≤j≤p{S(E,Cj)} (8)



where S is the subsethood of the fuzzy set X on the fuzzy set Y

S(X,Y ) =
M(X ∩ Y )

M(X)
=

∑m
i=1min(µX(ui), µY (ui))∑m

i=1 µX(ui)
(9)

and M(X) is the cardinality or sigma count of the fuzzy set X. The truth level
of classification can be understood as the possibility distribution on the set U .
π(C|E) is the normalisation of the truth level. It has been defined above to be
used in the calculation of Classification ambiguity.

Classification ambiguity: Suppose we have a fuzzy partition P = {E1, ..., Ek}
on a fuzzy evidence F , the following equation is used to calculate the classifica-
tion ambiguity of a fuzzy partition on a fuzzy evidence denoted by G(P |F ).

G(P |F ) =

k∑
i=1

W (Ei|F )g(π(C|Ei ∩ F )) (10)

where W (Ei|F ) is the weight. The weight is calculated using the following equa-

tion: W (Ei|F ) = M(Ei ∩ F )/
∑k
i=1M(Ei ∩ F )).

Fuzzy Random Forests construction :
The main steps to build a fuzzy random forest are as follows:

1. Randomly, select a subset of the training examples (bootstrap) for train-
ing. It has to have a balanced distribution of each class. It is recommended
that the size of each dataset (bootstrap) has to be 2/3 of the total training
dataset size. The repetition of examples is acceptable. Use each bootstrap
to construct a fuzzy decision tree (see 3.1).

2. While constructing the FDT, a random subset of the remaining attributes
with size γ will be used when deciding for next tree node.

3. Repeat steps 1 and 2 until the number of the FDTs n is reached.

3.2 Fuzzy measure based on the rule confidence

Fuzzy measures are used to give background knowledge in relation to the ele-
ments which are going be aggregated. In our context, we aggregate data from
a set of rules and we have a degree of support for each rule (rule confidence).
These degrees define a possibility distribution of the data. These values give an
important information about the system. Taking them into account while we are
giving the decision of the model is valuable. In this paper we propose the use of
two fuzzy measures that will be built from these rule confidence values. The first
measure is a distorted probability. The second measure is a Sugeno λ-measure.

Let us define the notation used in the following equations: R= the total set of
all rules, RCi= Rule Confidence of the ith rule and n = the total number of rules.



Distorted probability based fuzzy measures :
The proposed distorted probability is defined using the following equation:

mDP (A) =

(∑
RCj∈A

RCj∑
RCi∈R

RCi

)q
, with q > 0 (11)

where the value q needs to be optimised. Different methods can be used to
optimize q like evolutionary algorithms [6],[1]. We use here a gradient descent
and wide search. Note that this fuzzy measure is a distorted probability because
m = f � P with

Pj =
RCj∑

RCi∈R
RCi

, and f(x) = xq (12)

Sugeno λ-measures based fuzzy measures :
Another way of using domain knowledge to construct a fuzzy measure is by

means of the defintion of a Sugeno λ-measure as proposed in [16].

Definition 7 Let v : X → [0, 1] and λ > −1 be such that

– (1/λ)(
∏
xi∈X [1 + λv(xi)]− 1) = 1 if λ 6= 0

–
∑
xi∈X v(xi) = 1 if λ = 0

then, the fuzzy measure defined by

mSL(A) =


v(xi) if A = {xi}
(1/λ)(

∏
xi∈A[1 + λv(xi)]− 1) if |A| 6= 1 and λ 6= 0∑

xi∈A v(xi) if |A| 6= 1 and λ = 0

(13)
is a Sugeno λ-measure. In our proposal, the weights v(xi) = RCi are the rule
confidence values. Therefore, first the rule confidence values are used to build
the Sugeno λ-measures finding an appropriate λ and then this fuzzy measure is
used in the aggregation process.

3.3 Classification using the fuzzy rules

A binary classification is done using the Mamdani inference procedure. Class
0 represents that patients do not suffer from DR and class 1 that they suffer.
All rules are applied and the rule membership degree to the conclusion class
(RMCC) values of the same class are aggregated to obtain the final decision.
The proposed procedure is the following:

1. Use a t-norm function to calculate the satisfaction degree of each rule µR(u).



2. Use the product between the satisfaction degree of each rule µR(u) and the
degree of support of the rule (rule confidence) to obtain the membership
degree to the conclusion class (RMCC).

3. Calculate a fuzzy measure (distorted probability mDP (A) or Sugeno λ-
measure mSL(A) ) using the degree of support of the rule (rule confidence).

4. Aggregate the final value of each class using a fuzzy integral (CC-integral
(equation 3) or Sugeno integral(equation 4)). In the aggregation process, the
obtained RMCCs from the same class are weighted using fuzzy measures as
explained above.

5. Compare the aggregation values, the final decision is the class label which
has the maximum aggregation value.

4 Experimental results

In this section, we describe the data used to train and validate the proposed
models. The results achieved by these models are discussed in 4.2.

4.1 The diabetic retinopathy problem and dataset

An early diagnosis of DR is crucial to improve the quality of life of these patients.
At the moment, the detection of DR is done by screening of the eye fundus
with a non-midriatic camera. This technique requires a lot of resources from the
medical centers both in terms of cost, specialized personnel and time [9]. Due to
the large amount of diabetic people it is not possible to perform this test early
as recommended by the medical guidelines. Therefore, tests are done every two
or three years. For some patients, the detection arrives too late.

The clinical decision support system that we are developing may significantly
decrease these costs because it will be used by the family physicians during the
regular visits that diabetic people have. The incidence of DR is scarce, which
means that most of the people do not need an eye fundus screening. Therefore,
the resources could be used to the patients that really need it, facilitating the
detection of DR in its first signs.

Sant Joan de Reus University Hospital (SJRUH) in Catalonia (Spain) has
been systematically collecting the data of the diabetic patients of many years.
These data include demographic, metabolic and analytical information which is
stored in the Electronic Health Records (EHR) of the people who has diabetes.
The dataset used in the work has the information of 3346 diabetic patients and it
is labeled regarding to diabetic retinopathy presence. This dataset has been split
into a training dataset with 2243 diabetic patients (1605 not suffering from RD
and 638 who suffer from DR) and a testing dataset with 1103 examples (863 not
suffering from RD and 240 who suffer from DR). The datasets are imbalanced
because the patients with DR are less than healthy people. This imbalance distri-
bution hampers the performance of some machine learning techniques. To solve
this problem with FDT model, random over sampling technique has been done
to the minor class until both classes have the same number of examples. FRF



model internally does random under sampling technique which is a technique to
deal with imbalanced datasets.

A statistical analysis on the data was done by the ophthalmologists in SJRUH
[8]. Out of that study, nine attributes were identified as the important ones to
detect the risk of RD development. Most of the attributes are numerical but
there are some categorical ones too. With the collaboration of the experts, the
numerical attributes have been fuzzified into linguistic variables according to the
medical knowledge.

4.2 Tests, results and discussion

In this section, we study the results achieved by using the proposed aggregators
with FRF and FDT models on the testing dataset. A comparison between the
different aggregation proposals and the traditional methods is done as well. The
aim is to improve the performance of the models and achieve a good performance
that is acceptable in the medical treatments.

To evaluate the performance of the models on such kind of problems, we use
specificity and sensitivity (recall). They are usually used in the medical field.
To make it easier to the reader to follow the performance results, the harmonic
mean (HM) of specificity and sensitivity is calculated as well (Equation 14).

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
,

HM = 2 ∗ Sensitivity ∗ Specificity
Sensitivity + Specificity

(14)

The parameters of FDT and FRF were studied in previous works [14], [11]
and the best values have been used in this paper.

In FRF two ways of aggregating the outcome of the trees have been tested.
On the one hand, the direct aggregation of all the rules of all the trees into a
unique result (one-step). On the other hand, the aggregation first of the rules of
each tree and in a second step the aggregation of the outcome of each tree (two-
steps). To avoid effect of randomness, all one-step and two-steps FRF models
are experimented with the same parameters 10 times then we take as result the
ones of the model with the median HM performance. The median is more robust
to outliers than the arithmetic mean.

The different methods tested are shown in Table 1. The basic winner rule
(WR) for making decisions is well-known in rule-based models, it uses max
t-conorm to aggregate the outputs of the rules. To verify the quality of the
aggregation methods proposed in this work in comparison with the state of art,
first the aggregation method based on Choquet-like Copula-based integral is
used with the power mean as fuzzy measure (equation 1) as proposed in [6].
The rest of methods correspond to the different versions of Choquet and Sugeno
integrals using the Rule Confidence (RC) for the fuzzy measure construction.
Table 1 indicates the t-norm operator used in the fuzzy integral and the t-norm
used in to calculate the degree of activation of each rule.



Short
name

Aggregation method name
Aggregator

T-norm
Rules

T-norm

WR max - min
CCPM CC-integral with power mean min min
ICMM RC based CC-integral, distorted probability min min
ICMMS RC based CC-integral, Sugeno λ-measures min min
ICPM RC based CC-integral, distorted probability product min
ICPMS RC based CC-integral, Sugeno λ-measures product min
ISM RC based Sugeno, distorted probability min min
ISMS RC based Sugeno, Sugeno λ-measures min min

Table 1: Notation of the aggregation methods used in this work

q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 76.51 76.67 76.36 76.34 184 56 204 659 WR
1 77.15 76.67 77.64 77.43 184 56 193 670 CCPM
2 76.85 75.42 78.33 77.70 181 59 187 676 ICMM
2 76.89 76.67 76.31 76.38 187 53 208 655 ICMMS
3 77.65 80.00 75.43 76.43 192 48 212 651 ICPM
2 71.63 86.67 63.41 68.48 210 48 311 552 ICPMS
2 77.98 78.33 77.64 77.79 188 52 193 670 ISM
2 76.37 76.67 76.07 76.20 185 55 210 653 ISMS

Table 2: Classification results of Fuzzy Decision Tree with β = 0.70 and α = 0.30

With each fuzzy measure, several q values were tested to find the optimal
value. Notice that if q = 1, then the aggregation (Choquet or Sugeno integral)
corresponds to the weighted mean. When q value increases, the performance of
the models decreases. Low q values always showed better results, being the best
ones q = 2, q = 3 for most of FRF and FDT models. The models with the best
performance are highlighted in Tables 2, 3 and 4.

Observing the basic method WR (winning rule), in FRFs this aggregation
method shows high specificity (around 81%) but it shows low sensitivity as
well (between 71% and 73%) and HM value is around 76%. The FDT model
with WR achieved specificity=76.36%, sensitivity=76.67% and HM=76.51%. By
checking the models’ performance in Tables 2, 3 and 4, the first conclusion is
that the models based on Choquet and Sugeno integrals offer better results than
WR. Method ICPMS is an exception (low HM) because it achieves a very good
sensitivity but then specificity is too low to be acceptable for medical diagnosis.

Two different methods of calculating fuzzy measures have been proposed in
this work. The first one is distorted probability and the second one is a Sugeno
λ-measure. The results of FDTs models are presented in table 2. ISM has the
best performance with a very good HM, near 78%, and has the highest sensitivity
value (78.33%). We can see that models based on distorted probability improve
the ones based on λ-Sugeno measures.



q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 76.05 71.67 81.00 78.97 172 68 164 699 WR
2 78.31 78.75 77.87 78.06 189 51 191 672 CCPM
3 79.77 80.42 79.14 79.42 193 47 180 683 ICMM
2 76.89 77.92 75.90 76.34 187 53 208 655 ICMMS
3 78.61 76.67 80.65 79.78 184 56 167 696 ICPM
2 71.63 81.40 63.96 67.98 210 48 311 552 ICPMS
2 79.74 78.75 80.76 80.33 189 51 166 697 ISM
2 76.37 77.08 75.67 75.97 185 55 210 653 ISMS

Table 3: Classification results of two-steps Fuzzy Random Forest with α = 0.40,
β = 0.80

q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 77.11 72.92 81.81 79.87 175 65 157 706 WR
2 76.96 75.00 79.03 78.15 180 60 181 682 CCPM
2 79.31 78.33 80.30 79.87 188 52 170 693 ICMM
2 76.59 76.25 76.94 76.79 183 57 199 664 ICMMS
2 78.10 77.08 79.14 78.69 185 55 180 683 ICPM
3 73.27 83.75 65.12 69.17 201 39 301 562 ICPMS
3 79.73 79.17 80.30 80.05 190 50 170 693 ISM
2 78.00 79.58 76.48 77.15 191 49 203 660 ISMS

Table 4: Classification results of one-step Fuzzy Random Forest with α = 0.40,
β = 0.80

In Table 3 when using FRF with two-steps aggregation, CCPM method ob-
tained HM=77.38%, sensitivity=76.67% and specificity=78.10%. Whereas, all
the distorted probability measures based on the rule confidence values (ICMM,
ICPM and ISM) obtain HM greater than 79%. ICMM achieved the highest
performance (HM around 80%). In table 4, the results of one-step FRF are pre-
sented. ICMM, ICPM achieved HM higher than 78% while and ISM has HM
around 80%. Methods based on the λ-Sugeno fuzzy measure obtain quite good
performance in sensitivity( see ICPMS) but the specificity decrases too much.
These results clearly show that the aggregator that uses a fuzzy measure with
distorted probability based on the rule confidence values outperforms the one
using the number of the rules in the fuzzy measure (CCPM). We see a difference
in the best method when using one or two steps in the aggregation of the rules
of the set of trees. However, both ICMM and ISM achive quite similar HM with
values of sensitivity and specificity close to 80%.

By looking to the results presented in Tables 2,3 and 4, FRF models usu-
ally offer better performance than FDTs with every aggregation method. In
FDT model with (ICPM) aggregation method, the model obtains specificity =
80%, which is higher than FRFs models results. The same model shows sensi-
tivity=75.43% which is lower than the sensitivity obtained by FRF models. In
general, FRF models show more balance in sensitivity and specificity values.



5 Conclusion and future work

The use of fuzzy measures in aggregation operators shows good performance.
Rule confidence values showed that it can play an important role in the aggre-
gation process.

In this work, a Sugeno λ-measure and a distorted probability are used with
Choquet and Sugeno integrals. These new aggregation approaches are used
within fuzzy random forests (FRF) and Fuzzy decision trees (FDT). The models
with these new aggregation approaches outperforms the same models with max
t-conorm aggregation operator.

In comparison with the models that use the same Choquet and Sugeno inte-
grals with fuzzy measures based only on the number of rules, the new approach
obtains better performance results as well. Experiments also showed that one-
step and two-steps FRFs have better performance results than FDTs. Moreover,
two-steps FRF is recommended because it offers better results than one-step
FRF, with 80% of sensitivity and 79% of specificity on the testing dataset. With
these results, we conclude that the new aggregation operators based on the pro-
posed fuzzy measures improve the performance of our previous works [14], [12],
[13] and [10].

This work is oriented to build a clinical decision support system (CDSS).
The CDSS will be used in the medical centers by family physicians who are not
expert ophthalmologist. The goal is to help the physicians to estimate the risk
of developing DR with the new patients. The proposed methods can be easily
integrated into the CDSS in order to merge the rule’s predictions made with the
data of each patient.

Future work includes studying how to improve the performance of current
fuzzy measures. Sugeno λ-measures and distorted probabilities do not permit
to structure the information sources. As the data to be aggregated is highly
dimensional, other families of measures as the hierarchically decomposable ones
can be useful [15]. We plan to work in this line. The current approach is going to
be validated using other datasets in order to see if the same conclusions about
the performance different proposals depend on the problem data or not.
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