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1. Introduction 

Since the seminal paper of Bakshi and Kapadia (2003a), the market variance risk 

premium has been reported to be negative, on average, during alternative sample periods.1 

Given that the payoff of a variance swap contract is the difference between the realized 

variance and the variance swap rate, negative returns to long positions on variance swap 

contracts for all time horizons mean that investors are willing to accept negative returns for 

purchasing realized variance. Equivalently, investors who are sellers of variance and are 

providing insurance to the market require positive returns. This could be rational, as the 

correlation between volatility shocks and market returns is known to be strongly negative 

and investors want protection against stock market crashes. Along these lines, Bakshi and 

Madan (2006) and Chabi-Yo (2012) show theoretically that the skewness and kurtosis of 

the underlying market index are key determinants of the market variance risk premium. 

Bakshi and Madan (2006), Bollerslev, Gibson, and Zhou (2011), Bekaert and Hoerova 

(2013), and Bekaert, Hoerova, and Lo Duca (2013) argue that the market variance risk 

premium is an indicator of aggregate risk aversion.2 Zhou (2010) shows that the market 

variance risk premium significantly predicts short-run equity returns, bond returns, and 

credit spreads. Consequently, the author argues that risk premia in major markets co-move 

in the short run and that such co-movement seems to be related to the market variance risk 

premia. Finally, Campbell, Giglio, Polk, and Turley (2014), using an intertemporal capital 

asset pricing model (ICAPM) framework, argue that co-variation with aggregate volatility 

                                                 
1 For additional empirical evidence of the negative variance risk premium on the market index, see Carr and 

Wu (2009) and the papers cited in their work. 
2 A related interpretation is due to Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011), 

who interpret the market variance risk premium as a proxy of macroeconomic risk (consumption uncertainty). 

They show that time-varying economic uncertainty and a preference for the early resolution of uncertainty are 

required to generate a negative market variance risk premium. 
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news has a negative premium. At this point, it is fair to argue that the behavior of the 

market variance risk premium and its implications for financial economics are understood.  

However, surprisingly little is known about the variance risk premium at the 

individual level. Bakshi and Kapadia (2003b) show that the variance risk premium is also 

negative in individual equity options. But, as Driessen, Maenhout, and Vilkov (2009) find, 

the variance risk premium for stock indices is systematically larger, that is, more negative, 

than for individual securities. They argue that the variance risk premium can, in fact, be 

interpreted as the price of time-varying correlation risk. They show that the market variance 

risk is negative only to the extent that the price of the correlation risk is negative. In a 

related paper, Buraschi, Trojani, and Vedolin (2014) argue that the wedge between index 

and volatility risk premia is explained by investor disagreement. Hence, the greater the 

differences in beliefs among investors, the larger the market volatility risk relative to the 

volatility risk premium of individual options. Even these papers are particularly concerned 

with the behavior of the market variance risk premium, despite employing data at the 

individual level.  

We argue that an analysis and understanding of the time series and cross-sectional 

behavior of the variance risk premium at the individual level is lacking in the previous 

literature. This paper partially covers this gap. Our main contribution is to analyze the 

cross-sectional variation of the volatility risk premium (VRP) at the portfolio level. We 

employ daily data from OptionMetrics for the Standard & Poor’s (S&P) 100 Index options 

and for individual options on 181 stocks included at some point in the S&P 100 Index 

during the sample period from January 1996 to February 2011. We calculate the VRP for 

each stock at the 30-day horizon as the difference between the corresponding realized 

volatility and the model-free implied volatility described by Jiang and Tian (2005). 
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Similarly, we estimate the market VRP using the S&P 100 Index as the underlying index. 

For each month, we construct 20 equally weighted portfolios ranking the individual VRP 

values according to their betas with respect to the market VRP. These volatility risk 

premium betas are estimated over the previous month with daily data. The main objective 

of the paper is to analyze the determinants of the cross-sectional variation of the VRP of our 

20 VRP beta-sorted portfolios.  

The betas of the VRP beta-sorted portfolios estimated with respect to the market VRP 

range from -0.95 to 3.89. The portfolio with the most negative beta has the highest average 

VRP, and the two portfolios with higher positive beta present the most negative average 

VRP. Therefore, we find both negative and positive average VRP values ranging from 0.103 

to -0.035 on an annual basis while the average market VRP is negative, as in previous 

literature. 

Regarding the cross-sectional variation of the VRP, we find that consumption risk 

under the recursive preferences of Epstein and Zin (1991) does not seem to explain the 

cross-sectional behavior of VRP. Factor asset pricing models seem to be more useful in 

explaining VRP at the cross section. The key factors explaining average VRP across our 20 

portfolios are the market VRP and, in addition, the default premium. The risk premia 

associated with the default premium betas are positive and statistically significant, even if 

we explicitly recognize the potential misspecification of the models. Moreover, we cannot 

reject the overall specification of the two-factor model, and the cross-sectional 2R  is equal 

to 0.514, with an asymptotic standard error of 0.211. Finally, our findings are related to 

credit risk and financial market stress conditions. The cross-sectional variations of volatility 
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risk premia reflects the different uses of volatility swaps to hedge default and the financial 

stress risks of the underlying components of our sample portfolios. 

This paper is organized as follows. Section 2 briefly describes variance swaps and 

volatility swap contracts and presents the alternative asset pricing models that we employ in 

the study of the cross-sectional variation of average VRP. Section 3 contains a description 

of the data. Section 4 discusses the model-free implied volatility and the estimation of VRP 

at the portfolio level. Section 5 presents the basic characteristics of the 20 VRP beta-sorted 

portfolios and empirical results using unconditional VRP beta estimates. Section 6 reports 

the main empirical findings of the paper and discusses the econometric strategy. Section 7 

relates our evidence to financial stress conditions. Section 8 concludes the paper. 

 

2. Theoretical framework 

In a variance swap, the buyer of this forward contract receives at expiration a payoff 

equal to the difference between the annualized variance of stock returns and the fixed swap 

rate. The swap rate is chosen such that the contract has zero present value, which implies 

that the variance swap rate represents the risk-neutral expected value of the realized return 

variance: 

  i

tt

i

tt

Q

t SWRVE 1,1,   ,                                                           (1) 

where  Q

tE  is the time t conditional expectation operator under a given risk-neutral 

measure Q, 
i

ttRV 1,   is the realized variance of asset (or portfolio) i between t and t + 1, and 

i

ttSW 1,   is the delivery price for the variance or the variance swap rate on the underlying 

asset i. The variance risk premium of asset i is defined as 
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   i
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tt RVERVEVARP 1,1,1,   .                                           (2) 

At expiration, a volatility swap pays the holder the difference between the annualized 

volatility and the volatility swap rate, 

 i

tt

i

ttvol SWVRVOLN 1,1,   ,                                                                                               (3) 

where i

ttRVOL 1,  is the realized volatility of asset i between t and t + 1, i

ttSWV 1,   is the fixed 

volatility swap rate, and volN  denotes the volatility notional. This paper analyzes the 

determinants of the cross-sectional variation of volatility risk premia. We therefore define 

the volatility risk premium of asset i as  

   i
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Q
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i
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P
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i

tt RVOLERVOLEVRP 1,1,1,   .                                                                            (4)   

Using the fundamental asset pricing equation, the risk premium of any asset i with rate of 

return i
tR  is given by 

 
 1,

1,1,

1,

,





 
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i
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P
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ME

RMCov
RP ,                                                                                               (5) 

where 1, ttM  is the stochastic discount factor (SDF). Therefore, given the definition of the 

volatility risk premium, the following expression holds: 

     
 1,

1,1,
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RVOLERVOLE .                                                       (6) 

Thus, using the payoff of a volatility swap, the fundamental pricing framework implies that 

      0      1,1,1,1,1,  

i

tttt

P

t

i

tt

i

tttt

P

t VRPMESWVRVOLME .                                                (7) 

The lack of empirical evidence explaining why the volatility risk premia are different in the 

cross section encourages a comprehensive analysis using as many models as possible and a 

full battery of SDFs. However, we should also be concerned with model proliferation. A 
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huge number of papers have analyzed the cross section of equity returns. Harvey, Liu, and 

Zhu (2014) catalog 315 aggregate risk factors proposed in this vast literature. Using a 

multiple testing framework, these authors argue that a newly proposed factor needs a higher 

hurdle, with a t-ratio clearly higher than 2.0 to be accepted as a trustworthy new risk factor. 

Their paper follows a clear trend that we observe in the most recently published papers on 

the cross-sectional variation of expected returns. Researchers are much more careful now in 

assessing their empirical findings. A relevant example is Lewellen, Nagel, and Shanken 

(2010), who critique the traditional use of cross-sectional 2R  values and point out the 

pitfalls in evaluating the cross-sectional fit in popular asset pricing statistical tests.  

In this paper, we equilibrate the potential danger of model proliferation with a 

parsimonious approach to present the most informative results about the cross-sectional 

variation of volatility risk premia.  

We analyze both consumption-based and factor-based model specifications. 

Regarding consumption risk, we know, at least from a time series point of view, that the 

available approaches to generating realistic market variance risk premium dynamics usually 

involve recursive preferences combined with alternative processes for consumption growth 

or volatility of consumption growth, or both. Hence, the first SDF used in this research is 

based on recursive preferences with either the consumption growth of nondurable goods 

and services or stockholder consumption growth. The non-observable continuation value is 

approximated by either the return on the market portfolio or the market volatility risk 

premium.  

We also employ linear SDF specifications based on state variables capable of 

explaining the cross-sectional variation of volatility swaps. The first factor-based model 
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assumes that the SDF is linear on both the market return and the squared return of 

aggregate wealth: 

2

111,   mtmttt cRbRaM .                                                                                                  (8) 

Recent empirical work has consistently shown that risk-neutral volatility is higher, on 

average, than physical return volatility. Little work has been done on characterizing 

theoretically the distance between both types of volatility, with Bakshi and Madan (2006) 

and Chabi-Yo (2012) being two exceptions. In both cases, the market variance risk 

premium is derived as a function of the standard deviation, skewness, and kurtosis of equity 

returns. Therefore, the magnitude and behavior over time of the market variance risk 

premium can also be empirically related to higher-order moments of the equity return 

distribution. This suggests that a potentially relevant model to explain the cross-sectional 

variation of volatility risk premia should explicitly recognize higher-order moments of the 

underlying market portfolio return. Bakshi and Madan (2006) show that when the SDF is a 

linear function on both the market return and the squared market return, as in expression 

(8), then the variance risk premium is a function of both the skewness and kurtosis of the 

market with 0 mRM  and  022  mRM . 

In the second factor-based model, the SDF is linear on the market volatility risk 

premium denoted by m

tVRP 1 : 

m

ttt bVRPaM 11,   .                                                                                                              (9) 

This could be justified by noting that Bali and Zhou (2015) show that the cross section of 

equity return portfolios is explained by the market, as well as by economic uncertainty 

proxied by the market variance risk premium. 
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The third factor-based model is a two-factor model in which the SDF is linear on the 

market volatility risk premium and the default premium is the difference between Moody’s 

yield on Baa corporate bonds and the ten-year government bond yield, denoted 1tDEF : 

111,   t

m

ttt cDEFbVRPaM .                                                                                            (10) 

The economic rationale of this model comes from the findings of Zhou (2010) and Wang, 

Zhou, and Zhou (2013), who show that the firm-level variance risk premium has significant 

explanatory power for credit default swap spreads over and above the market variance risk 

premium and the VIX (Chicago Board Options Exchange Market Volatility Index). The 

predictive ability increases as the credit quality of the credit default swap underlying 

companies deteriorates.  

 

3. Data  

We employ daily data from OptionMetrics for the S&P 100 Index options and for 

individual options on all stocks included in the S&P 100 Index at some point during the 

sample period from January 1996 to February 2011. This yields a total of 181 stocks used 

in our estimations. From the OptionMetrics database, we obtain all put and call options on 

the individual stocks and on the index with time to maturity τ between six days and 60 

days. Given that the options are American style, it is convenient to work with short-term 

maturity options, for which the early exercise premium tends to be negligible.3 We select 

the best bid and ask closing quotes to calculate the mid-quotes as the average of bid and ask 

prices, not actual transaction prices, to avoid the well-known bid-ask bounce problem 

described by Bakshi, Cao, and Chen (1997). In selecting our final option sample, we apply 

                                                 
3 See the evidence reported by Driessen, Maenhout, and Vilkov (2009), who employ a similar database.  
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the usual filters. We discard options with zero open interest, zero bid prices, missing delta 

or implied volatility, and negative implied volatility. Regarding the exercise level, we 

follow Jiang and Tian (2005) and Driessen, Maenhout, and Vilkov (2009) and exclude in-

the-money options. We employ calls with a delta lower than 0.5 and puts with a delta 

higher (less negative) than -0.5. In addition, we ignore options with extreme moneyness, 

that is, puts with a delta higher than -0.05 and calls with a delta lower than 0.05. 

It seems reasonable to expect that aggregate macroeconomic variables and market-

wide portfolios extensively used by researchers when explaining the time series and cross-

sectional behavior of excess equity returns should also be relevant factors in explaining 

variance risk premia across assets. This is the main criterion we follow when collecting our 

data. As our option data, the market return for the S&P 100 Index and individual stock 

returns and dividends are also obtained from OptionMetrics, and portfolio return data are 

from Kenneth French’s website.4 We collect monthly data on the value-weighted stock 

market portfolio return, the risk-free rate, the SMB (small minus big) and HML (high 

minus low) Fama and French risk factors, and the momentum factor (MOM).  

In addition, yields for ten-year government bonds, one-month T-bills, and Moody’s 

Baa corporate bonds are obtained from the Federal Reserve Statistical Release. The default 

premium (DEF) is the difference between Moody’s yield on Baa corporate bonds and the 

ten-year government bond yield.  

We obtain nominal consumption expenditures on nondurable goods and services, 

population data, and the price deflator with the year 2000 as its basis from the National 

Income and Product Accounts (NIPA), available at the Bureau of Economic Analysis. All 

this information is used to construct monthly rates of growth of seasonally adjusted real per 

                                                 
4 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 
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capita consumption expenditures on nondurable goods and services from January 1960 to 

February 2011. We also use aggregate per capita stockholder consumption growth rates 

from the reported estimated coefficients of Malloy, Moskowitz, and Vissing-Jorgensen 

(2011) to obtain the factor-mimicking portfolio for stockholder consumption from January 

1960 to February 2011. 

 

4. Model-free implied volatility and estimation of the volatility risk premia 

Britten-Jones and Neuberger (2000) first derived the model-free option implied 

volatility under diffusion assumptions. They obtain the risk-neutral expected integrated 

variance over the life of the option contract when prices are continuous and volatility is 

stochastic. Jiang and Tian (2005) extend their paper to show that their method is also valid 

in a jump-diffusion framework and, therefore, their methodology is considered to be a 

model-free procedure.  

We calculate the model-free implied variance denoted i
t,tMFIV   by the following 

integral over a continuum of strikes: 

      
dK

K

KttBSttBKC
MFIV

i

t

i

tti

tt 









0

2

,

,

0,,max,
2



 ,                                    (11)   

where  KC i

tt ,  is the price at time t of a τ-maturity call option on either an asset or an 

index i with strike K,  ttB ,  is the time t price of a zero-coupon bond that pays $1 at 

time t + τ, and i

tS  is the spot price of asset i at time t minus the present value of all 

expected future dividends to be paid before the option maturity. Expression (11) can be 

accurately approximated by the following sum over a finite number of strikes: 
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     KKgKgMFIV
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where  

 
KjKK

m
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
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minmax   ,   for mj ,,1,0                                                  (13) 

and 

 
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








 .                                           (14) 

For each time-to-maturity τ from six to 60 days, we calculate the model-free implied 

variance each day for each underlying asset that has at least three available options 

outstanding, using all the available options at time t.5 For the risk-free rate, we use the T-

bill rate of appropriate maturity (interpolated when necessary) from OptionMetrics, namely, 

the zero-coupon curve. For the dividend rate for the index, we employ the daily data on the 

index dividend yield from OptionMetrics. To infer the continuously compounded dividend 

rate for each individual asset, we combine the forward price with the spot rate used for the 

forward price calculations. We obtain the mean continuously compounded dividend rate by 

averaging the implied OptionMetrics dividends. Finally, we annualize the model-free 

implied variance using 252 trading days in a calendar day.  

The specific implementation follows the approach of Jiang and Tian (2005). It is well 

known that options are traded only over a limited number of strikes. In principle, 

expression (12) requires the prices of options with strikes jK  for mj ,,1,0  . However, 

the corresponding option prices are not observable because these options are not listed. We 

apply the curve-fitting method to the Black and Scholes implied volatilities instead of 

                                                 
5 The window from six days to 60 days corresponds to the maximum range of time to maturity we allow in the 

necessary interpolation to have enough options every day in the sample with 30 days to maturity. 
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applying the method to option prices. The prices of listed calls (and puts with different 

strikes) are first transformed into implied volatilities using the Black and Scholes model 

and a smooth function is fitted to the implied volatilities using cubic splines.6 Then, we 

extract implied volatilities at strikes jK  from the fitted function. Finally, we employ Eq. 

(12) to calculate the model-free implied variance using the extracted option prices.  

The range of available strikes sometimes is not sufficiently large. For option prices 

outside the range between the maximum and minimum available strikes, we also follow 

Jiang and Tian (2005) and use the endpoint implied volatility to extrapolate their option 

prices. This implies that the volatility function is assumed to be constant beyond the 

maximum and minimum strikes.7 Finally, discretization errors are unlikely to have any 

effect on the model-free implied variance if a sufficiently large m, beyond 20, is chosen. In 

our case, we employ an m that equals one hundred.  

At each time t, we focus on a τ = 30-day horizon maturity, interpolated when 

necessary using the nearest maturities 1   and 2   following the procedure of Carr and Wu 

(2009). The interpolation is linear in total variance: 

   
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













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

12

12,21,
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







i

tt

i

tti

tt

MFIVMFIV
MFIV .                                                 (15) 

We use the square root of the model-free implied variance to approximate the model-free 

annualized implied volatility as 

i

tt

i

tt MFIVMFIVOL    ,, .                                                                                                (16) 

                                                 
6 As pointed out by Jiang and Tian (2005), the curve-fitting procedure does not assume that the Black and 
Scholes model holds. It is a tool to provide a one-to-one mapping between prices and implied volatilities. 
7 Jiang and Tian (2005) discuss this approximation error and the (different) truncation error that arise when 

the tails of the distribution across strikes are ignored. In our case and to avoid the truncation error, we use 3.5 

standard deviations from the spot underlying price as truncation points.  
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For each day in the sample period, we also calculate the realized variance over the same 

period as that for which implied variance is obtained for that day, that is, for 30 days, 

requiring that no more than 14 returns be missing from the sample: 




 



 1

2

,

1
 

s

st

i

tt RRV ,                                                                                                             (17)  

where R denotes the rate of return adjusted by dividends and splits. As before, we 

annualized the realized variance and take the square root to obtain the realized volatility: 

i

tt

i

tt RVRVOL    ,, .                                                                                                         (18) 

Given that we always employ the same horizon in the analysis, we refer to this horizon as t 

+ 1 corresponding to the maturity date with the fixed chosen maturity that we use for the 

rest of the paper. Hence, for each asset and the index, we calculate the volatility risk 

premium, VRP, at the 30-day horizon as the difference between the corresponding realized 

and model-free implied volatility: 

i

tt

i

tt

i

tt MFIVOLRVOLVRP 1,1,1,   .                                                                                     (19) 

We next construct 20 VRP beta-sorted portfolios using the following procedure. We 

estimate rolling VRP betas for each month using daily data over the previous month on the 

individual VRP and the market VRP. Each month, we rank all VRP betas and construct 20 

equally weighted VRP beta-sorted portfolios. Portfolio 1 contains the volatility risk 

premium securities with the most negative VRP betas, and Portfolio 20 includes the most 

positive ones. The components of all portfolios are updated every month during the sample 

period. All portfolios have approximately the same number of securities, with an average of 

5.3 securities per portfolio, and the asset must have at least 15 daily observations to be 

included in the portfolios.  
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Fig. 1 displays the behavior of Portfolios 1, 10, and 20 sorted by VRP beta, as well as 

the market VRP. We display the VRP of the market using options written on the S&P 100 

Index, so that the series contained in Fig. 1 is not the cross-sectional average of the 

individual VRP. For the Portfolios P10B and P20B and the market, the positive peaks 

coincide with periods of high realized volatility. Portfolio P1B tends to have a positive VRP 

even during normal economic times, and Portfolio P20B presents a negative VRP during 

normal and expansion months and a positive VRP during bad economic times. As expected, 

given the positive and high average level of the VRP beta of Portfolio P20B, its behavior 

closely follows the market VRP, but with more extreme peaks. In any case, this figure 

suggests that the ranking procedure generates sufficiently different cross-sectional behavior 

to justify the analysis of the cross-sectional empirical results under this sorting 

characteristic.8 

[INSERT FIGURE 1 AROUND HERE] 

5. Volatility risk premium characteristics at the portfolio level 

This paper’s main contribution is to explain why the volatility risk premia are 

different across assets. Our cross-sectional analysis employs 20 VRP beta-sorted portfolios. 

Before discussing the determinants of the cross-sectional variation of volatility risk premia, 

we report in Table 1 the basic characteristics of our 20 VRP beta-sorted portfolios. The 

average volatility risk premia are 10.3% and -3.4% for Portfolios P1B and P20B, 

respectively. All of these figures are in annualized terms. As expected, given the well-

known evidence provided by, among others, Bakshi and Madan (2006) and Carr and Wu 

                                                 
8 We also construct an alternative set of 20 portfolios based on the VRP level. Using the VRP on the last day 

of the previous month, we rank all VRP values from the lowest (more negative) to the highest. Portfolio 1 

contains the assets with the lowest VRP, and Portfolio 20 has securities with the highest VRP. Our main 

empirical results and conclusions are checked employing this alternative ranking to analyze the robustness of 

our results. 
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(2009), the market VRP is, on average, negative and equal to -1.4%. The average 

annualized VRP obtained directly from daily data present a very similar pattern, ranging 

from 10.1% to -4.5%. The magnitude of the VRP cross-sectional differences is large and 

seems to justify the study of their determinants. These averages indicate that investors can 

have very different volatility investment vehicles, depending on whether they go long or 

short on volatility. We tend to identify the purchase of volatility as a hedging instrument 

against potentially large stock market declines. The evidence reported in Table 1 suggests 

that, on average, going long on volatility can also lead to substantial gains, depending on 

the portfolio for which investors buy volatility.9 The standard deviations of the VRP values 

of these portfolios suggest that portfolios with a higher average VRP and, especially, those 

with a more negative average VRP are the most volatile portfolios in terms of VRP payoffs. 

Fig. 1 also reflects the highly volatile behavior of the VRP of P20B, followed by the 

relatively smoother behavior of P1B. The patterns and the dispersion of the unconditional 

moments of the VRP across portfolios call for a better grasp of volatility risk premia at the 

cross section. 

[INSERT TABLE 1 AROUND HERE] 

The fifth column of Table 1 reports the VRP betas of each of the portfolios relative 

to the VRP of the market index. Using monthly data from January 1996 to February 2011, 

we estimate a market model type of ordinary least squares (OLS) regression of the 

following form: 

1,1,1,     tt

m

tt

p

tt VRPaVRP  ,                                                                                           (20) 

                                                 
9 As discussed by Carr and Lee (2007, 2009), due to the concavity’s price impact associated with Jensen’s 

inequality, the difference between the value of a variance swap and the value of a volatility swap depends on 

the volatility of the volatility of the underlying asset. If we recognize this potential bias and adjust our 

estimated volatility risk premia accordingly, the dispersion between the volatility risk premia across portfolios 

remains. See Burashi, Trojani, and Vedolin (2014) for a similar approximation. 
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where p

ttVRP 1,   is the volatility risk premium of each of the 20 portfolios and m

ttVRP 1,   is the 

volatility risk premium of the market index. The VRP betas reflect the construction 

criterion, with unconditional VRP betas of -0.95 for P1B and 3.89 for P20B. As in the case 

of average volatility risk premia, the cross-sectional differences in VRP betas are large.10  

Given that, for each month during the sample period, we can identify the underlying 

components of the 20 portfolios, we calculate the portfolio returns of the 20 VRP beta-

sorted portfolios. In Table 1, we also display the market betas of the 20 portfolios with 

respect to the US market portfolio index and the S&P 100 Index. As with the standard 

deviation, the cross-sectional behavior of market betas presents a U-shaped pattern, with 

market betas being especially high for portfolios with a more negative average VRP. 

Portfolio P20B has the highest return beta, with a value as high as 1.52 when measured 

relative to the S&P 100 Index return. 

Fig. 2 displays the rolling volatility risk premium betas and market return betas for the 

extreme and intermediate portfolios from the set of 20 VRP beta-sorted portfolios. The 

rolling estimation employs 60 past monthly observations in all cases. As expected, a direct 

comparison of Panels A and B of Fig. 2 shows that the volatility betas are more stable over 

time than the market betas are. This is true for all displayed portfolios. However, around the 

fall of 2008, a big positive jump is evident in the volatility betas of all five portfolios. 

Moreover, from that time onward, the cross-sectional differences in volatility betas across 

the five portfolios tend to decrease relative to the period before the financial crisis. The 

volatility sensitivity with respect to the market volatility risk premium becomes more 

                                                 
10 Table A1 in the Appendix reports the same descriptive statistics when we adjust for the mean in the 

estimation of the realized volatility and, therefore, in the estimation of the volatility risk premia. This follows 

the estimation by Bakshi and Madan (2006). Appendix Section A.1 also contains a brief discussion about the 

results. 
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similar across portfolios after the crisis. After the jump, the volatility betas of Portfolios 

P19B and P20B remain at the same level they were at before the jump occurred, but the 

volatility betas of Portfolios P1B and P2B remain at the same level they were at the peak of 

the jump. Meanwhile, return betas are clearly more volatile. The market beta of Portfolio 

P1B remains relatively low before the crisis but then starts rising until the beginning of 

2008. What is more interesting is that the return beta of Portfolio P1B starts dropping 

dramatically just before the peak of the crisis in the fall of 2008. Portfolio P20B shows the 

opposite behavior. Its market beta experiences an extremely high jump around the peak of 

the crisis.  

[INSERT FIGURE 2 AROUND HERE] 

Finally, the last column of Table 1 contains the average relative bid-ask spread of the 

options associated with the components of the 20 portfolios. The options traded on the 

components of portfolios with positive and high average VRP values can be extremely 

illiquid. If this is the case, the replicating strategy employed to obtain synthetic variance 

swaps associated with illiquid options can be more costly than in other cases. However, the 

average bid-ask spreads reflect precisely the opposite. The Portfolio P1B contains, on 

average, the most liquid options, and P20B presents the highest relative bid-ask spread 

across the 20 portfolios. Therefore, on average, market return betas and bid-ask spreads are 

higher for the two portfolios with the highest VRP betas. 

Table 2 contains the correlation coefficients between representative portfolios 

sorted by VRP betas and the market VRP. Panel A employs monthly data, and Panel B 

displays the results with daily data. As expected, given its highly negative VRP beta, 

Portfolio P1B’s correlation with the rest of the portfolios becomes increasingly negative. 

Not surprisingly, the correlation of these portfolios with the market VRP displays an 
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increasingly monotonic relation, going from a negative correlation of -0.366 for P1B to a 

positive correlation of 0.863 for P20B. A similar pattern is found when using daily data.11 

[INSERT TABLE 2 AROUND HERE] 

Panels A and B of Table 3 contain the full-sample VRP betas for five representative 

VRP beta-sorted portfolios, controlling for well-known aggregate risk factors. The 

robustness of the magnitudes of the VRP betas, reported again in the first column of Table 

3, is clear across all portfolios. Independently of the factors employed in the regressions, 

Portfolio P1B has a negative beta, and P20B has a very high but positive volatility risk 

premium beta. In all cases, we employ standard errors robust to heteroskedasticity-

autocorrelation (HAC). The relation between the VRP betas and the average volatility risk 

premia of all portfolios is maintained across all aggregate factors. We can conclude that, for 

VRP beta-sorted portfolios, the volatility risk premia are especially explained by the market 

VRP, the excess market return, the default premium, and consumption growth. However, 

VRP betas do not seem to be significantly different from zero when stockholder 

consumption growth is used. Overall, we conclude that the unconditional betas of these 

state variables are, in most cases, statistically different from zero, even when we employ all 

three explanatory variables simultaneously.  

[INSERT TABLE 3 AROUND HERE] 

6. Cross-sectional variation of portfolio volatility risk premia 

We tests all SDF specifications discussed in Section 2 using the two-pass cross-

sectional regression approach of Fama and MacBeth (1973). In addition, we test all models 

using a generalized method of moments (GMM) framework with the same weighting 

                                                 
11 The correlation coefficients for the financial and macroeconomic indicators employed in the paper are 

reported in Table A2 in the Appendix. 
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matrix across all test portfolios to compare the performance of the models by the Hansen 

and Jagannathan (1997) distance. To save space and given that the main empirical results 

are very similar, we report only the empirical results from the traditional two-pass cross-

sectional approach.12 

 

6.1. Two-pass cross-sectional estimation and tests 

We next describe the econometric strategy for testing the competing asset pricing 

models of the determinants of the cross section of volatility risk premia using the models’ 

beta specifications. We test the linear specifications using our 20 VRP beta-sorted 

portfolios. In all cases, 0  is the zero-beta rate and k  for k = 1,…,K are the risk premia 

associated with the K aggregate risk factors that drive the cross-sectional variation among 

volatility swap payoffs for our set of 20 portfolios, p = 1,…,20, as follows. 

Model 1. Recursive preferences with either market wealth or market volatility risk 

premium as the non-observable continuation value: 

  p

mm

p

cc

p

ttVRPE   01,                                                                                            (21) 

and 

  p

mvrp

m

vrp

p

cc

p

ttVRPE   01, ,                                                                                      (22) 

where c represents either the aggregate consumption growth of nondurable goods and 

services or stockholder consumption growth. 

Model 2. The Bakshi and Madan (2006) model with higher-order moments: 

  p

mskku

p

mm

p

ttVRPE 201,   .                                                                                      (23) 

                                                 
12 The results using the GMM estimation procedure are available upon request.  
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Model 3. The CAPM-type approach with the market volatility risk premium as the 

only risk factor: 

  p

mvrp

m

vrp

p

ttVRPE   01, .                                                                                                  (24) 

Model 4. A two-factor model with the market volatility risk premium and the default 

premium: 

  p

defdef

p

mvrp

m

vrp

p

ttVRPE   01, .                                                                                  (25) 

Model 5. A four-factor model with the market volatility risk premium, the default 

premium, the high minus low (HML) Fama and French factor, and market wealth: 

  p

mm

p

hmlhml

p

defdef

p

mvrp

m

vrp

p

ttVRPE   01, .13                                                   (26) 

Therefore, we test the linear versions of the models using the alternative K-factor beta 

specifications in which the volatility risk premia are linear in the volatility risk premium 

betas, that is,   XVRPE  , where  ,1NX   and   10 ,   is a vector consisting of 

the zero-beta rate, 0 , and the risk premia on the K factors, 1 . The pricing errors of the N 

portfolios are given by 

  XVRPEe  .                                                                                                               (27) 

As a goodness of fit measure of the competing models, we employ the cross-

sectional 2R  defined by Kan, Robotti, and Shanken (2013, KRS hereafter) as 

0

2 1
Q

Q
R  ,                                                                                                                       (28) 

where the Q statistic, given by 

                                                 
13 In our empirical strategy, we include several specifications based on the Fama and French (1993) three-

factor model and the four-factor model with momentum as suggested by Carhart (1997). The results show that 

neither the size nor the momentum factors explain the cross-sectional variation of volatility risk premia. The 

empirical results are available upon request. 
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         VRPEVXXVXXVVRPEVRPEVVRPEeVeQ 111111  





 ,                      (29) 

represents the aggregate pricing errors and 0

1

00 eVeQ   denotes the deviations of the mean 

returns from their cross-sectional average, with 

    VRPEVVIe NNNNN

111

0 1111                                                                                   (30) 

and V is the variance-covariance matrix of the portfolio volatility risk premia. As KRS 

point out, the 2R  statistic given by Eq. (28) is a relative measure of the goodness of fit as it 

compares the magnitude of the model’s expected return deviations with that of typical 

deviations from the average expected return. Moreover, 10 2  R  and 2R  is a decreasing 

function of the aggregate pricing errors Q. Thus, 2R  given by Eq. (28) is a reasonable and 

well-defined measure of goodness of fit. In fact, we employ 2R  for average returns instead 

of the average of monthly 2R  values. 

In addition, KRS show how to perform a test of whether the model has any 

explanatory power for pricing assets cross-sectionally. In other words, they test whether the 

null hypothesis of 02 R  can be rejected. The asymptotic test is given by 

i

K

i

i x
Q

TR 



1 0

A
2  


,                                                                                                               (31) 

where the ix ’s are independent  12  random variables and the i ’s are the K nonzero 

eigenvalues of 

    1

11111 ˆ1111  VarVVVV NNNN

  ,                                                                    (32) 
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where  1̂Var  is the expression adjusted by errors-in-variable and misspecification of the 

model.14 The asymptotic distribution of ̂  under the misspecified models is 

   )ˆ(,0ˆ
1  VarNT K

A

 ,                                                                                             (33) 

where    









 ttvvEVar ˆ  and 

   


 termadjustment variables-in-errorsbetas  when truevariance

   

cationmisspecifi

tttttt uzHv                                                         (34)               

with 

       )(u  ; ,  ; , 1

t10,1,0 VRPEVRPVeff ttttt 
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


 






 

  ,                      (35) 

    




 


   ,0   ; 11

1 ffzff tttt  ,                                                                     (36) 

and 

  11  XVXH ,                                                                                                                 (37) 

where   is the variance-covariance matrix of the factors denoted by tf . 

Finally, we present the test for comparing two competing models. Suppose 21 MM   

and 10 2

2

2

1  RR . Then 

   







 








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ddENRRT ,0ˆˆ 2
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1 ,                                                                                  (38) 

where   

 ttttttt MuuMuuQd 22

2

211

2

1

1

0 22                                                                                  (39) 

and 

                                                 
14 The p-values to test the null hypothesis R2 = 0 are calculated using the procedure first proposed by 

Jagannathan and Wang (1996). 
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 )(1

11 VRPEVRPVeu tt     and  )(1

22 VRPEVRPVeu tt                                              (40) 

 

6.2. Two-pass cross-sectional empirical results 

Panel A of Table 4 contains the results of the two-pass cross-sectional regressions 

using consumption-based factors, and Panel B displays the results concerning factor-based 

models. 

[INSERT TABLE 4 AROUND HERE] 

In all cases, we adapt the testing framework to the Fama and MacBeth (1973) two-

pass cross-sectional methodology, in which we estimate rolling betas using the first 60 

months of the sample as a fixed estimation period and then use a rolling window of 59 

months of past data plus the month in which we perform the cross-sectional regression with 

the 20 portfolios. Hence, for each month t, we always employ a beta estimated with 60 

observations. Moreover, below all risk premia estimators, we report in parentheses the p-

values associated with the traditional Fama and MacBeth standard error and in brackets the 

p-values for the standard error adjusted for errors in variables and the potential 

misspecification of the model as captured by expression (34). We also provide two 

measures of goodness of fit. We report the mean absolute pricing error (MAE), calculated 

as 





20

1

 ˆ 
20

1

p

peMAE ,                                                                                                             (41) 

where pê  is the mean pricing error associated with each of the 20 portfolios. The last 

column of Table 4 reports the 
2R̂  value given by Eq. (28), where in parentheses we display 
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the p-value for the test of the null hypothesis given by 02 R  from expression (31) and in 

brackets we report the standard error of 2R̂  under the assumption that 10 2  R . 

Regarding consumption models, the results suggest that the standard errors of the risk 

premia estimators are very sensitive to potential model misspecification. The risk premia 

associated with consumption growth, either aggregate consumption or stockholder 

consumption, are not statistically different from zero. Consumption risk does not seem to 

be priced in the cross section of the volatility risk premia. The only statistically significant 

risk premia are the market portfolio return in the case of the recursive preference model 

with aggregate consumption growth and that related to the market volatility risk premium 

when we approximate the continuation value with volatility swaps instead of with the 

market portfolio return. As theory suggests, the sign of the statistically significant risk 

premium associated with market wealth is positive and it becomes negative when the 

market VRP under recursive preferences is employed. Two additional results of Panel A of 

Table 4 are relevant. First, the MAE values reported in Panel A tend to be higher than those 

of Panel B. Second, for all models, we cannot reject the null hypothesis that 2R  is 

statistically equal to zero, because the standard errors of the 
2R̂  values suggest that all 

models are estimated with a great deal of noise.15  

Panel B of Table 4 shows that factor-based models explain the cross section of 

volatility risk premia much more accurately. In two cases, the asset pricing specification is 

not statistically rejected. These models always include the market VRP and the default 

premium. They are also the models with a lower MAE. It is also true that although the 

                                                 
15 Consumption-based models with either power or external habit preferences of Campbell and Cochrane 

(1999) do not help explain the cross-sectional variation of volatility risk premia. We reject all alternative 

specifications, and the associated risk premia are not statistically different from zero. The specific empirical 

results are available upon request. 
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model with HML and the excess market returns as additional factors is not rejected, the 

coefficients associated with either the excess market return or the HML factor are not 

statistically different from zero. However, in both cases, the market volatility risk premium 

beta is significantly priced, with the expected negative sign.16 Again, in both cases, the 

default risk premium beta is positive and statistically different from zero. Hence, 

controlling for the market volatility risk premium betas, the higher the default beta is, the 

higher the average payoff expected from volatility swaps in the cross section. Therefore, we 

find that, on average, both the market VRP and default risk are priced across portfolios. The 

two-factor model for volatility risk generates statistically significant risk premia of              

-0.6% and 1.2% for market volatility risk and default risk, respectively. The 2R̂  of the two-

factor model is equal to 0.514 and is statistically different from zero, with a standard error 

of 0.211.17  

We also check the sensitivity of the risk premia estimators to the business cycle by 

dividing the full sample into two nonoverlapping subperiods. We first estimate the two-

factor model from January 1996 to December 2006. The risk premia are -0.6% and 0.6% 

for the market volatility beta and default beta, respectively. The p-values of the adjusted 

KRS standard errors are 0.014 and 0.001 for both risk premia estimators. The second 

subperiod that goes from January 2007 to February 2011 analyzes the years around the 

financial crisis. The risk premia are -0.5% and 2.8% for the market volatility beta and 

default beta, respectively, with p-values of 0.564 and 0.018 for both risk premia estimators. 

                                                 
16 The negative sign reflects the fact that the market volatility risk premium tends to be positive for events of 

high marginal utility. 
17 Similar results are found when we estimate the two-pass cross-sectional regression using a constant beta 

throughout the sample period. Moreover, when we check all our empirical results using the alternative set of 

20 portfolios ranked according to the level of the volatility risk premium, the results are qualitatively the 

same, independent of using consumption-based models or factor-based specifications. The two-factor model, 

with the market volatility risk premium and the default premium, exhibits a better competing performance 

than the rest of the models analyzed in our research. All empirical results are available upon request. 
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The default risk premia beta remains significantly different from zero, and it increases 

during the Great Recession. The default beta risk is an important and key factor explaining 

the cross-sectional variation of volatility risk premia.18 

The estimated risk premia associated with the market volatility beta are very 

consistent across all specifications. They move from -0.7% to -0.6% on a monthly basis and 

across models. The same result applies to the risk premia of default beta, which change 

only from 1.4% to 1.2% across alternative specifications. The risk premia of the market 

volatility beta is also stable and equal to -0.7% in Panel A of Table 4 when either 

nondurable consumption or stockholder consumption is used in the recursive preference 

specification. This suggests that the risk premia of the two factor models are stable and 

robust across asset pricing models.  

Fig. 3 displays the average realized VRP against the fitted value for two representative 

asset pricing models. The two-factor model presents a better visual fit across all models 

and, in particular, it shows a better fit than the consumption-based model with recursive 

preferences. In any case, the difficulty of the theoretical two-factor model in explaining 

Portfolio P20B must be recognized. The model generates a negative payoff for this 

portfolio, which is too extreme (too highly negative) to obtain a more precise linear fit 

relative to actual data. 

[INSERT FIGURE 3 AROUND HERE] 

Finally, Table 5 reports the pairwise tests of equality of the two-pass cross-sectional 

regression 2R  values for alternative factor pricing models using the 20 VRP beta-sorted 

                                                 
18 In Table A1 in the Appendix, we report the descriptive statistics of our 20 VRP beta-sorted portfolios when 

we adjust for the mean in the estimation of the volatility risk premia. The two-pass cross-sectional regression 

using these new estimates generates statistically significant risk premia associated with market volatility and 

the default betas. The estimated coefficients for the full sample period are -0.7% and 1.1%, respectively. As 

before, the results seem to be robust to alternative specifications. 
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portfolios. It shows the results of the pairwise tests of equality of the two-pass cross-

sectional regression 2R  values for alternative factor pricing models. We report the 

difference between the sample cross-sectional 2R  values of the models in row i and column 

j, 22 ˆˆ
ji RR  , and the associated p-values in parentheses for the test of 22 ˆˆ

ji RR  . As before, 

these p-values allow for misspecifications of the models. The role of the default premium 

seems to be important for the cross-sectional pricing of volatility swaps, even under a 

statistical comparison of 2R  values. However, we cannot reject that the 2R̂  values between 

the two-factor model and the model extended with the HML factor and excess market 

returns are equal. The two-factor model performs relatively well when compared with 

competing models. In any case, the results highlight the difficulty of distinguishing between 

the models from a statistical point of view. For example, the power of the test seems to be 

low when we compare the two-factor model with the consumption-based specifications 

using aggregate consumption growth. These models are estimated with a considerable 

amount of noise. We should not simply compare the point estimates of the 
2R̂  values. As 

KRS say, it seems reasonable to focus on individual 
2R̂  values instead of on differences 

across models. 

[INSERT TABLE 5 AROUND HERE] 

7. Why does the default premium explain the cross-sectional variation of volatility risk 

premia? 

The default beta risk with respect to the volatility risk premia seems to be consistently 

priced in our cross section. We next provide an intuitive but rigorous explanation of this 

finding. We employ the underlying components of the 20 VRP beta-sorted portfolios to 

construct the corresponding 20 return portfolios. We estimate OLS regressions with HAC-
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robust standard errors of the return of each portfolio on the market return and the default 

premium. The first column of Table 6 reports the default return betas for a set of 

representative portfolios, which include the five portfolios with negative and the lowest 

VRP betas (P1B/P5B), the intermediate portfolio (P10B), and the five portfolios with the 

highest positive VRP betas (P16B/P20B). Similarly, the second column reports the financial 

stress return beta, controlling, as before, for the market return, but now with respect to the 

St. Louis Fed Financial Stress Index (STLFSI). The STLFSI measures the degree of 

financial stress in the market and is constructed from 18 series: seven interest rate series, 

six yield spreads, and five other indicators. Each of these variables captures some aspect of 

financial stress. In this regard, it is a broader measure of financial credit risk or financial 

stress than the default premium. As was learned from the Great Recession, financial stress 

can arise from dimensions other than the default spread. The serious difficulties of financial 

institutions in providing funding, especially to finance short-term liabilities, encourage the 

use of financial stress indicators that also employ funding liquidity-related aspects of the 

economic situation. Therefore, our idea is to complement the evidence associated with the 

default premium with another closely related index to further motivate the importance of 

financial or credit stress as the ultimate reason behind the cross-sectional differences of 

volatility risk premia. By construction, the average value of the index is equal to zero. 

Thus, zero reflects normal financial market conditions. Values below zero suggest below-

average financial stress, and values above zero indicate above-average financial stress.19 

Increasing values of this index can, therefore, be interpreted in the same way as increasing 

the values of the default premium. Both reflect dire financial situations. In fact, the 

                                                 
19 For further details, see http://www.stlouisfed.org/newsroom/financial-stress-index/. 
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correlation coefficient between the default premium and the STLFSI is 0.84 during our 

sample period. 

[INSERT TABLE 6 AROUND HERE] 

The empirical results from the first two columns of Table 6 suggest a similar 

interpretation. The behavior of the components of Portfolios P1B through P5B is very 

different from the behavior of the underlying components of Portfolios P16B through 

P20B. The first portfolios have, on average, positive volatility risk premia, and the last 

portfolios have negative average volatility risk premia. Using either the default premium or 

the STLFSI, the relation between the returns of the first five portfolios and financial stress 

is positive. When default or the financial stress index increases, the returns of these 

portfolios increase. These portfolios seem to be good hedgers relative to financial stress. 

However, Portfolios P16B through P20B are negative and significantly correlated with 

respect to financial stress. Even when the market return is controlled for, when measures of 

financial stress increase, their return significantly decreases.  

To further illustrate the different behavior of both sets of extreme portfolios, we 

regress the returns of the portfolios on the market return and on an interaction term defined 

as the product between either the default premium or the financial stress indicator and a 

dummy variable that takes the value of one for a bad economic state and zero otherwise: 

1,111,1,    tttttmtp DFSIRaR  ,                                                                      (42) 

where FSI is either the default premium or the STLFSI. As a way of measuring the 

economic situation, we employ two economic state indicators of the US economy. We first 

employ the National Bureau of Economic Research (NBER) recession official dates, and 

we complement this measure with the Leading Index for the US economy (USSLIND), 
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which is a forward-looking indicator also provided by the Federal Reserve Bank of St. 

Louis. This is a monthly seasonally adjusted index that includes variables recognized to be 

economic variables that lead the economy. The index includes housing permits, 

unemployment insurance claims, the interest rate spread between the ten-year Treasury 

bond and the three-month Treasury bill, and delivery times from the Institute for Supply 

Management’s Manufacturing Business Survey.20 This index takes either positive or 

negative values. Our dummy variable equals one when the USLIND takes a negative value 

and zero otherwise. The coefficient associated with the interaction term shows how 

important financial stress is for these portfolios during bad economic states. We expect a 

positive and significant coefficient for Portfolios P1B through P5B and a negative and 

significant coefficient for Portfolios P16B through P20B. The results reported in the third to 

sixth columns for the default and financial stress betas are consistent with our conjecture. 

The impact of financial and credit stress episodes during bad economic times affect 

alternative portfolios completely differently, depending upon the average level (and 

average volatility beta) of their volatility risk premia.  

Overall, these results suggest that investors can rationally hedge the credit and 

financial stress risk of these components by buying volatility swaps. For those assets 

negatively affected by financial stress, they are willing to pay a high volatility swap to 

cover that credit and financial risk stress. Therefore, on average, we can expect a negative 

payoff from holding long positions on volatility swaps associated with these assets and a 

positive average payoff from assets moving positively with default and financial stress risk. 

The behavior is expected to be more accentuated during bad economic states. This is 

exactly what we display in Table 6. It seems that the differences in the cross section of our 

                                                 
20 For further details, see http://research.stlouisfed.org/fred2/series/USSLIND.  
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VRP beta-sorted portfolios reflect a very different behavior of these assets with respect to 

credit and financial stress.  

To complete our argument, we should find evidence that the volatility risk premia of 

Portfolios P19B and P20B move positively with financial stress. In other words, the 

volatility payoff of these portfolios should cover increasing financial stress risk. This is 

again what we report in the last column of Table 6.  

 

8. Conclusions 

Most of the literature dealing with variance or volatility swaps is concerned with the 

variance risk premium at the market level. The empirical evidence shows that the market 

variance risk premium has very useful economic information content. Given this evidence, 

it is surprising how little research analyzes variance or volatility swaps at the individual or 

portfolio level. This paper discusses and tests the cross-sectional variation of the volatility 

risk premia for a set of 20 portfolios. We rank individual VRP values by their betas with 

respect to the market volatility risk premium. Accordingly, we employ a set of 20 VRP 

beta-sorted portfolios to analyze the determinants of their cross-sectional variation. We 

show that beta with respect to the market volatility risk premia and the default beta have 

statistically significant risk premia that help explain the cross-sectional variation of average 

volatility risk premia. This is especially the case for the default premium factor, and the 

empirical result holds even if we allow for potential misspecification of the models. Finally, 

we relate our findings to credit and financial stress risk. We show that the success of the 

default premium in the cross-sectional variation of the volatility risk premia seems to be 

explained by the very different behavior that the underlying components of our 20 VRP 

betas-sorted portfolios have with respect to financial stress risk.  
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Appendix 

We provide an additional analysis in which we estimate the realized variance adjusting for 

the mean portfolio returns, and show the correlation coefficients between the state variables 

employed in the empirical tests. 

A.1. Descriptive statistics and betas: portfolios sorted by volatility risk premium betas when 

the volatility risk premium estimates are adjusted by the mean 

When we estimate the realized variance for each asset in our sample, we employ the 

following equation: 




 



 1

2

,

1
 

s

st

i

tt RRV .                                                                                                             (43) 

When using daily data, this seems to be reasonable because the mean return is generally 

negligible. As Bakshi and Madan (2006) do, we can also estimate the realized variance 

adjusted for the mean return during the corresponding horizon: 

 


 



 1

2

,

1
 

s

st

i

tt RRRV .                                                                                                   (44) 

Table A1 contains the descriptive statistics and betas of the 20 VRP beta-sorted portfolios. 

Overall, the results are very similar with respect to Table 1. However, the average volatility 

risk premia of negative volatility beta portfolios and portfolios with low volatility betas 

(PB1/PB6) tend to be slightly lower. Portfolios with high positive volatility betas 

(P15B/P20B) show a more negative average volatility risk premia. Also, when we adjust 

for the mean, the average cross-sectional dispersion of volatility betas across portfolios 

goes from -0.88 to 3.81, where in Table 1 the range moves from -0.95 to 3.89. Therefore, 

the average dispersion is slightly reduced when we adjust for the mean in the realized 
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variance. Finally, the magnitudes of the market return betas are similar in both tables across 

portfolios. 

[INSERT TABLE A1 AROUND HERE] 

A.2. Correlation coefficients between state variables, January 1996 to February 2011 

Table A2 reports the correlation between the market VRP and several macroeconomic 

and financial indicators. The correlation between the excess market return and the market 

VRP is negative and equals -0.273. This is well known and implies a negative correlation 

between market returns and realized market volatilities. Thus, going long on the market 

volatility swap provides a hedging investment vehicle for moments of extremely high 

market volatility. However, the compensation for this hedging strategy is, on average, 

negative. The results also show a negative correlation of the market VRP with consumption 

growth, although the correlation is more negative for aggregate consumption than for 

stockholder consumption. The correlation with the HML and momentum factors is positive, 

and the correlation with the default premium is also positive and equals 0.075. As expected, 

the correlation between the default premium and either the excess market return or 

consumption growth is negative, being especially negative with respect to aggregate 

consumption growth. 

[INSERT TABLE A2 AROUND HERE] 
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Table 1 

Volatility risk premia: descriptive statistics and betas, portfolios sorted by volatility risk premium betas, 

January 1996 to February 2011 
The volatility risk premium (VRP) for each portfolio is defined as the difference between the realized volatility and the model-free 

risk-neutral integrated return volatility over the corresponding month. The risk-neutral volatility is obtained by the set of prices of options 

on each underlying individual security with one month to maturity. The numbers reported are the annualized volatility risk premia for 
both the 20 portfolios and the Standard & Poor’s (S&P) 100 Index. Portfolio 1 contains the securities with the lowest VRP betas, and 

Portfolio 20 has securities with the highest VRP betas. The portfolios are updated each month during the sample period. Both the 

volatility risk premium betas and the market betas are estimated with monthly observations. The VRP betas are the ordinary least squares 
(OLS) regression coefficients of the monthly VRP of each portfolio on the VRP of the S&P 100 market index. The market return betas 

are the OLS regression coefficients of the monthly return of each portfolio on the market return index given by either the S&P 100 Index 

or the overall US value-weighted market return of all Center for Research in Security Prices firms listed on the NYSE, Amex, or Nasdaq. 
The monthly data refer to the observation of each portfolio on the last day of each month. The betas are always estimated at the monthly 

frequency. The relative bid-ask spread is the average bid-ask spread for all traded options on the underlying stock that belong to a given 

portfolio calculated at the end of the last day of each month. 

 

 

VRP beta- 

sorted 

portfolio 

 

Average 

VRP 

(monthly) 

(1) 

 

Average 

VRP 

 (daily) 

(2) 

 

Standard 

deviation 

(monthly) 

(3) 

 

Standard 

deviation 

(daily) 

(4) 

 

VRP beta 

(S&P100 

market 

VRP)  

(5) 

 

Market 

return beta 

(overall US 

market) 

(6) 

Market 

return beta 

(S&P 100 

market) 

(7) 

 

Relative 

bid-ask 

spread 

(8) 

 

P1B 

 

0.103 

 

0.101 

 

 

0.179 

 

0.188 

 

 

-0.946 

 

 

1.164 

 

1.168 

 

0.257 
 

P2B 

 

0.040 

 

0.043 

 

 

0.092 

 

 

0.096 

 

 

-0.229 

 

 

1.042 

 

1.050 

 

0.256 
 

P3B 

 

0.024 

 

0.023 

 

 

0.082 

 

 

0.080 

 

 

0.056 

 

 

0.893 

 

0.922 

 

0.259 
 

P4B 

 

0.018 

 

 

0.014 

 

 

0.072 

 

 

0.067 

 

 

0.223 

 

 

1.017 

 

1.008 

 

0.265 
 

P5B 

 

0.009 

 

 

0.005 

 

 

0.066 

 

 

0.061 

 

 

0.307 

 

 

0.758 

 

0.771 

 

0.260 
 

P6B 

 

0.001 

 

 

-0.002 

 

 

0.062 

 

 

0.060 

 

 

0.368 

 

 

0.890 

 

0.897 

 

0.270 
 

P7B 

 

-0.002 

 

 

-0.006 

 

 

0.067 

 

 

0.063 

 

 

0.511 

 

 

0.884 

 

0.918 

 

0.268 
 

P8B 

 

-0.004 

 

 

-0.010 

 

 

0.067 

 

 

0.063 

 

 

0.558 

 

 

0.964 

 

0.987 

 

0.261 
 

P9B 

 

-0.010 

 

 

-0.016 

 

 

0.069 

 

 

0.065 

 

 

0.704 

 

 

0.850 

 

0.851 

 

0.270 
 

P10B 

 

-0.010 

 

 

-0.017 

 

 

0.077 

 

 

0.073 

 

 

0.819 

 

 

0.931 

 

0.977 

 

0.273 
 

P11B 

 

-0.019 

 

 

-0.023 

 

 

0.079 

 

 

0.076 

 

 

0.919 

 

 

0.867 

 

0.868 

 

0.269 
 

P12B 

 

-0.021 

 

 

-0.027 

 

 

0.086 

 

 

0.083 

 

 

1.011 

 

 

0.949 

 

0.958 

 

0.281 
 

P13B 

 

-0.026 

 

 

-0.030 

 

 

0.088 

 

 

0.090 

 

 

1.009 

 

 

0.823 

 

0.874 

 

 

0.275 
 

P14B 

 

-0.022 

 

 

-0.032 

 

 

0.099 

 

 

0.099 

 

 

1.219 

 

 

0.972 

 

1.013 

 

0.279 
 

P15B 

 

-0.028 

 

 

-0.034 

 

 

0.106 

 

 

0.111 

 

 

1.327 

 

 

1.012 

 

1.020 

 

0.278 
 

P16B 

 

-0.031 

 

 

-0.037 

 

 

0.119 

 

 

0.125 

 

 

1.444 

 

 

0.873 

 

0.935 

 

0.277 
 

P17B 

 

-0.029 

 

 

-0.039 

 

 

0.139 

 

 

0.139 

 

 

1.782 

 

 

1.138 

 

1.142 

 

0.283 
 

P18B 

 

-0.029 

 

 

-0.043 

 

 

0.165 

 

 

0.162 

 

 

2.068 

 

 

1.163 

 

1.164 

 

0.281 
 

P19B 

 

-0.035 

 

 

-0.046 

 

 

0.192 

 

 

0.193 

 

 

2.420 

 

 

1.233 

 

1.241 

 

0.286 
 

P20B 

 

-0.034 

 

 

-0.045 

 

 

0.312 

 

 

0.318 

 

 

3.891 

 

 

1.463 

 

1.521 

 

0.296 
  

Market VRP 

 

-0.014 

 

 

-0.014 

 

 

0.069 

 

 

0.069 

 

 

1.000 

 

0.929 

 

1.000 

 

‒ 
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Table 2 

Correlation coefficients between the volatility risk premia (VRP) for representative VRP beta-sorted 

portfolios, January 1996 to February 2011 
This table reports the correlation coefficients estimated for the overall sample period using monthly (daily) data for the volatility risk 

premia of the representative portfolios. The volatility risk premium for each portfolio is defined as the difference between the realized 

volatility and the model-free risk-neutral integrated return volatility over the corresponding month. The risk-neutral volatility is obtained 
by the set of prices of options on each underlying individual security with one month to maturity. Portfolio 1 contains the securities with 

the lowest VRP betas, and Portfolio 20 has securities with the highest VRP betas. The portfolios are updated each month during the 

sample period. 

Portfolio P5B P10B P15B P20B Market 

VRP 

Panel A: Monthly 

correlations 
     

P1B 

 

0.414 -0.152 -0.381 -0.452 -0.366 

P5B 

 

1 0.607 0.314 0.194 0.323 

P10B 

 

 1 0.834 0.726 0.736 

P15B 

 

  1 0.927 0.863 

P20B 

 

   1 0.863 

Panel B: Daily 

correlations 
     

P1B 

 

0.427 -0.183 -0.441 -0.538 -0.435 

P5B 

 

1 0.589 0.333 0.155 0.231 

P10B 

 

 1 0.865 0.685 0.733 

P15B 

 

  1 0.911  0.828 

P20B 

 

   1 0.841 
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Table 3 

Ordinary least squares (OLS) estimators of volatility betas relative to different combinations of volatility, 

market return, interest rate, and consumption factors for five representative portfolios sorted by the volatility 

risk premium (VRP) betas, January 1996 to February 2011  
This table reports the OLS risk premium volatility betas. The volatility risk premium for each portfolio is defined as the difference 

between the realized volatility and the model-free risk-neutral integrated return volatility over the corresponding month. The risk-neutral 
volatility is obtained by the set of prices of options on each underlying individual security with one month to maturity. Portfolio 1 

contains the securities with the lowest VRP betas, and Portfolio 20 has securities with the highest VRP betas. The portfolios are updated 

each month during the sample period. The VRP beta is the OLS regression coefficient from linear regressions of the monthly VRP of 
each portfolio on the VRP of the Standard & Poor’s (S&P) 100 market index, consumption growth, stockholder consumption growth, the 

US stock market return, and the default premium (DEF). The monthly data refer to the observation of each portfolio on the last day of 

each month. The betas are always estimated at the monthly frequency.  

Panel A: Market volatility, market return, and consumption volatility betas  

VRP beta-sorted 

portfolio 

Market VRP 

(1) 

Market 

VRP 
(2) 

Excess 

market return 
(3) 

Consumption 

growth  
(4) 

Market 

VRP 
(5) 

Excess 

market return 
(6) 

Stockholder 
consumption 

growth 

(7) 

P1B beta 

(t-statistic) 

[Adjusted R2] 

-0.946 

(-5.28) 

[0.129] 

-0.764 

(-4.18) 

[0.178] 

0.257 

(3.43) 

 

0.440 

(0.31) 

 

-0.757 

(-4.14) 

[0.178] 

0.307 

(2.65) 

 

-0.255 

(-0.51) 

 

P5B beta 
(t-statistic) 

[Adjusted R2] 

 

0.307 

(4.58) 

[0.100] 

 

0.402 

(6.04) 

[0.193] 

 

0.116 

(4.25) 

 

 

0.748 

(1.43) 

 

 

0.386 

(5.76) 

[0.184] 

 

0.113 

(2.66) 

 

 

0.054 

(0.30) 

 

P10B beta 
(t-statistic) 

[Adjusted R2] 

 

0.819 

(14.61) 

[0.540] 

 

0.873 

(15.37) 

[0.571] 

 

0.026 

(1.11) 

 

 

1.561 

(3.49) 

 

 

0.844 

(14.35) 

[0.542] 

 

0.033 

(0.89) 

 

 

0.037 

(0.23) 

 

P15B beta 
(t-statistic) 

[Adjusted R2] 

 

1.327 

(22.94) 

[0.744] 

 

1.327 

(22.45) 

[0.757] 

 

-0.050 

(-2.08) 

 

 

1.429 

(3.07) 

 

 

1.294 

(21.35) 

[0.745] 

 

-0.063 

(-1.63) 

 

 

0.138 

(0.84) 

 

P20B beta 
(t-statistic) 

[Adjusted R2] 

 

3.891 

(22.87) 

[0.743] 

 

3.769 

(21.58) 

[0.754] 

 

-0.227 

(-3.17) 

 

 

1.292 

(0.94) 

 

 

3.706 

(21.28) 

[0.756] 

 

-0.347 

(-3.15) 

 

 

0.732 

(1.55) 

 

Panel B: Panel A: Market volatility, market return, consumption, and default volatility betas  

VRP beta-sorted 

portfolio 

Market VRP 

(1) 

Market 

VRP 
(2) 

Excess 

market return 
(3) 

DEF 

(4) 

Market 

VRP 
(5) 

Consumption 

growth 
(6) 

DEF 

(7) 

P1B beta 

(t-statistic) 

[Adjusted R2] 

-0.946 

(-5.28) 

[0.129] 

-0.777 

(-4.30) 

[0.180] 

0.267 

(3.60) 

 

0.296 

(0.75) 

 

-0.917 

(-5.02) 

[0.126] 

1.648 

(1.06) 

 

0.290 

(0.67) 

 
 

P5B beta 
(t-statistic) 

[Adjusted R2] 

 

0.307 

(4.58) 

[0.100] 

 

0.393 

(5.98) 

[0.196] 

 

0.117 

(4.34) 

 

 

-0.242 

(-1.69) 

 

 

0.334 

(4.97) 

[0.122] 

 

0.834 

(1.45) 

 

 

-0.234 

(-1.47) 

 
 

P10B beta 
(t-statistic) 

[Adjusted R2] 

 

0.819 

(14.61) 

[0.540] 

 

0.856 

(15.48) 

[0.587] 

 

0.028 

(1.25) 

 

 

-0.531 

(-4.40) 

 

 

0.860 

(16.06) 

[0.596] 

 

1.088 

(2.38) 

 

 

-0.443 

(-3.50) 

 
 

P15B beta 
(t-statistic) 

[Adjusted R2] 

 

1.327 

(22.94) 

[0.744] 

 

1.309 

(22.37) 

[0.758] 

 

-0.046 

(-1.94) 

 

 

-0.402 

(-3.15) 

 

 

1.358 

(23.69) 

[0.757] 

 

0.903 

(1.85) 

 

 

-0.286 

(-2.11) 

 
 

P20B beta 
(t-statistic) 

[Adjusted R2] 

 

3.891 

(22.87) 

[0.743] 

 

3.747 

(21.60) 

[0.753] 

 

-0.217 

(-3.04) 

 

 

-0.053 

(-0.14) 

 

 

3.903 

(22.42) 

[0.740] 

 

0.739 

(0.50) 

 

 

0.152 

(0.37) 
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Table 4 

Two-pass cross-sectional Fama and MacBeth estimation for alternative volatility risk premium models, 

using portfolios sorted by the volatility risk premium betas, January 1996 to February 2011 
We report the parameter estimated from the two-pass cross-sectional regression with rolling betas for alternative asset pricing 

models. NDC and SHC denote nondurable consumption and stockholder consumption, respectively. MAE is the mean pricing errors 

associated with the 20 portfolios ranked by their volatility risk premium betas. The R2 value is the sample cross-sectional R2 as 
calculated by (Kan, Robotti, and Shanken, 2013). The numbers in parentheses are the p-values of traditional Fama and MacBeth 

standard errors of the alternative parameter estimates and the numbers in brackets are p-values associated with the Kan, Robotti, 

and Shanken standard errors adjusted by errors-in-the variables and potential misspecification of the models. Below the cross-
sectional R2 values, we report the p-value for the test of H0 : R

2 = 0 and in brackets we display the standard error of R2 under the 

assumption that 0 < R2 < 1. SDF refers to stochastic discount factor. 

 λ0 λndc λshc λm λm
2 λvrp

m λdef λhml MAE R2 

Panel A: 

Consumption-

based SDF 
          

Recursive Rm 

NDC 

 

-0.003 

(0.015) 

[0.356] 

0.003 

(0.000) 

[0.510] 

    ‒ 

0.064 

(0.000) 

[0.054] 

‒ ‒ ‒ ‒ 
 

0.0029 

0.0635 

(0.803) 

[0.369] 

Recursive Rm 

SHC 

 

-0.000 

(0.764) 
[0.763] 

 

‒ 
 

0.004 

(0.039) 
[0.507] 

0.031 

(0.000) 
[0.161] 

‒ ‒ ‒ ‒ 
 

0.0033 

0.0541 

(0.627) 
[0.163] 

Recursive VRPm 

NDC 

 

0.002 

(0.075) 

[0.509] 

0.002 

(0.003) 

[0.608] 

‒ ‒ ‒ 

-0.007 

(0.000) 

[0.027] 

‒ ‒ 
 

0.0028 

0.1290 

(0.417) 

[0.284] 

Recursive VRPm 

SHC 

 

0.002 
(0.103) 

[0.213] 

‒ 
0.001 

(0.749) 

[0.931] 

‒ ‒ 
-0.007 
(0.000) 

[0.153] 

‒ ‒ 
 

0.0031 

0.0873 
(0.462) 

[0.170] 

Panel B: 

Factor-based SDF           

Rm+Rm
2 

0.001 

(0.550) 

[0.648] 

‒ ‒ 

0.036 

(0.000) 

[0.014] 

0.001 

(0.041) 

[0.295] 

‒ ‒ ‒ 
 

0.0022 

0.1031 

(0.193) 

[0.148] 

VRPm 
0.005 

(0.000) 

[0.001] 

‒ ‒ ‒ ‒ 
-0.006 
(0.000) 

[0.109] 

‒ ‒ 
 

0.0035 

0.0879 
(0.148) 

[0.173] 

VRPm+DEF 

+HML+Rm 

0.009 

(0.000) 
[0.002] 

‒ ‒ 

-0.010 

(0.154) 
[0.658] 

 

‒ 

-0.007 

(0.000) 
[0.049] 

0.014 

(0.000) 
[0.000] 

0.019 

(0.006) 
[0.335] 

 

0.0016 

0.5341 

(0.017) 
[0.219] 

VRPm+DEF 
0.007 

(0.000) 

[0.006] 

‒ ‒ ‒ ‒ 

-0.006 

(0.000) 

[0.049] 

0.012 

(0.000) 

[0.000] 

‒ 
 

0.0019 

0.5139 

(0.001) 

[0.211] 
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Table 5 

Model comparison using the two-pass cross-sectional Fama and Macbeth estimation for portfolios sorted by 

the volatility risk premium betas: tests of the equality of the cross-sectional R2 values 
This table shows the results of pairwise tests of equality of the ordinary least squares two-pass cross-sectional R2 values for alternative 

asset pricing models. NDC and SHC denote nondurable consumption and stockholder consumption, respectively. We report the 

difference between the sample cross-sectional R2 values of the models in row i and column j, 22
ji R̂R̂  , and the associated p-values in 

parentheses for the test of 22
0 ji R̂R̂:H  . The p-values are computed under the assumption that the models are potentially misspecified. 

 

Model 

 

Recursive 

SHC 

Rm 

 

Recursive 

NDC 

VRPm 

 

Recursive  

SHC 

VRPm 

  

 Rm+Rm
2 

 

VRPm 

VRPm 

+DEF 

+HML 

+Rm 

 

VRPm 

+DEF 

Recursive 

NDC 

Rm 

 

0.0094 

(0.974) 

-0.0655 

(0.810) 

-0.0237 

(0.945) 

-0.0396 

(0.903) 

-0.0243 

(0.945) 

-0.4705 

(0.278) 

-0.4504 

(0.286) 

Recursive 

SHC 

Rm 

 

 
-0.0749 

(0.788) 

-0.0332 

(0.841) 

-0.0490 

(0.704) 

-0.0388 

(0.840) 

-0.4800 

(0.089) 

-0.4598 

(0.082) 

Recursive 

NDC 

VRPm 

  
0.0418 

(0.863) 

0.0259 

(0.923) 

0.0412 

(0.865) 

-0.4050 

(0.200) 

-0.3849 

(0.212) 

Recursive 

SHC 

VRPm 

   
-0.0158 

(0.923) 

-0.0006 

(0.995) 

-0.4468 

(0.036) 

-0.4266 

(0.039) 

Rm+Rm
2     

0.0152 

(0.926) 

-0.4310 

(0.076) 

-0.4108 

(0.070) 

VRPm 

   
     

-0.4462 

(0.043) 

-0.4108 

(0.044) 

VRPm 

+DEF 

+HML+Rm 

      
0.0202 

(0.860) 
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Table 6 

Portfolio return and volatility risk premium (VRP) sensitivities to the default premium and financial stress, 

January 1996 to February 2011 
This table employs the returns of the underlying components of representative VRP beta-sorted portfolios to estimate the default and 

financial stress betas controlling for market returns. The first column reports the return betas with respect to the default premium, and the 

second column reports the betas with respect to the St. Louis Fed Financial Stress Index (STLFSI). The STLFSI measures the degree of 
financial stress in the markets, where increasing values of the index represents higher financial stress risk. The last column displays the 

VRP betas of the 20 VRP beta-sorted portfolios with respect to STLFSI. NBER refers to the National Bureau of Economic Research, and 

USSLIND is the Leading Index for the US economy. t-statistics are reported in parentheses. 

 

VRP beta-

sorted 

portfolio 

 

Default  

return 

betas  

(1) 

 

Financial 

stress  

return betas  

(2) 

Default 

betas 

× 

NBER 

(3) 

Default 

betas 

× 

USSLIND 

(4) 

 

Stress betas 

× 

NBER 

(5) 

 

Stress betas 

× 

USSLIND 

(6) 

Financial 

stress 

volatility 

betas 

(7) 

P1B 
1.571 

(2.00) 

0.011 

(1.61) 

0.534 

(1.08) 

0.964 

(1.97) 

0.394 

(2.68) 

0.022 

(2.76) 

-0.0018 

(-0.49) 

P2B 
1.208 

(2.82) 

0.012 

(3.25) 

0.688 

(2.55) 

0.912 

(3.45) 

0.261 

(3.25) 

0.016 

(3.68) 

-0.0021 

(-1.17) 

P3B 
0.973 

(2.15) 

0.011 

(2.92) 

0.350 

(1.22) 

0.643 

(2.28) 

0.173 

(2.01) 

0.011 

(2.43) 

-0.0024 

(-1.50) 

P4B 
0.521 

(1.43) 

0.006 

(1.93) 

0.265 

(1.16) 

0.421 

(1.86) 

0.080 

(1.16) 

0.005 

(1.45) 

-0.0012 

(-0.85) 

P5B 
1.144 

(3.34) 

0.008 

(2.66) 

0.278 

(1.26) 

0.574 

(2.66) 

0.128 

(1.94) 

0.008 

(2.37) 

-0.0002 

(-0.15) 

P10B 
0.077 

(0.26) 

0.004 

(1.45) 

0.051 

(0.27) 

0.086 

(0.47) 

0.039 

(0.70) 

0.002 

(0.66) 

0.0008 

(0.50) 

P16B 
-0.192 

(-0.57) 

-0.001 

(-0.30) 

-0.036 

(-0.17) 

-0.096 

(-0.46) 

0.059 

(0.94) 

0.003 

(1.01) 

0.0046 

(1.96) 

P17B 
-0.536 

(-1.60) 

-0.004 

(-1.31) 

-0.370 

(-1.76) 

-0.285 

(-1.36) 

-0.037 

(-0.59) 

-0.003 

(-0.82) 

0.0060 

(2.20) 

P18B 
-0.160 

(-0.45) 

-0.001 

(-0.16) 

-0.190 

(-0.85) 

-0.220 

(-0.99) 

-0.022 

(-0.33) 

-0.002 

(-0.58) 

0.0056 

(1.73) 

P19B 
-0.720 

(-2.06) 

-0.006 

(-2.12) 

-0.320 

(-1.95) 

-0.514 

(-2.37) 

-0.157 

(-2.39) 

-0.010 

(-2.78) 

0.0098 

(2.61) 

P20B 
-0.999 

(-2.02) 

-0.007 

(-1.97) 

-0.430 

(-1.87) 

-0.706 

(-2.29) 

-0.150 

(-1.70) 

-0.010 

(-1.96) 

0.0172 

(2.91) 
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Table A1 

Volatility risk premia (VRP): descriptive statistics and betas, portfolios sorted by volatility risk premium betas 

when the volatility risk premium estimates are adjusted by the mean, January 1996 to February 2011 
The volatility risk premium for each portfolio is defined as the difference between the realized volatility and the model-free risk-

neutral integrated return volatility over the corresponding month. The risk-neutral volatility is obtained by the set of prices of options on 
each underlying individual security with one month to maturity. The numbers reported are the annualized volatility risk premia for both 

the 20 portfolios and the Standard & Poor’s (S&P) 100 Index. Portfolio 1 contains the securities with the lowest VRP betas, and Portfolio 

20 has securities with the highest VRP betas. The portfolios are updated each month during the sample period. The VRP beta is the 
ordinary least squares (OLS) regression coefficient from linear regressions of the monthly VRP of each portfolio on the VRP of the S&P 

100 market index. The market return betas are the OLS regression coefficients from linear regressions of the monthly return of each 

portfolio on the market return index given by either the S&P 100 Index or the overall US value-weight market return of all Center for 
Research in Security Prices firms listed on the NYSE, Amex, or Nasdaq. The monthly data refer to the observation of each portfolio on 

the last day of each month. The betas are always estimated at the monthly frequency. The relative bid-ask spread is the average bid-ask 

spread for all traded options on the underlying stock that belong to a given portfolio calculated at the end of the last day of each month. 

 

VRP beta- 

sorted 

portfolio  

 

Averag

e VRP 

(monthl

y) 

 

Average 

VRP 

 (daily) 

 

Standard 

deviation 

(monthly) 

 

Standard 

deviation 

(daily) 

 

 

 

VRP beta 

(S&P 100 

market 

VRP)  

 

Market 

return 

beta 

(overall 

US 

market) 

 

Market 

return beta 

(S&P 100 

market) 

Relative 

bid-ask 

spread 

 

P1B 

 

0.100 

 

0.100 

 

 

0.176 

 

0.185 

 

 

-0.880 

 

 

1.122 

 

1.127 

 

0.256 
 

P2B 

 

0.036 

 

0.037 

 

 

0.092 

 

 

0.094 

 

 

-0.225 

 

 

1.140 

 

1.138 

 

0.259 
 

P3B 

 

0.020 

 

0.020 

 

 

0.077 

 

 

0.075 

 

 

0.068 

 

 

0.830 

 

0.869 

 

0.260 
 

P4B 

 

0.014 

 

 

0.010 

 

 

0.068 

 

 

0.066 

 

 

0.227 

 

 

0.941 

 

0.941 

 

0.262 
 

P5B 

 

0.004 

 

 

0.002 

 

 

0.066 

 

 

0.062 

 

 

0.328 

 

 

0.800 

 

0.813 

 

0.263 
 

P6B 

 

0.000 

 

 

-0.005 

 

 

0.065 

 

 

0.058 

 

 

0.382 

 

 

0.863 

 

0.877 

 

0.269 
 

P7B 

 

-0.006 

 

 

-0.009 

 

 

0.069 

 

 

0.063 

 

 

0.506 

 

 

0.892 

 

0.919 

 

0.269 
 

P8B 

 

-0.008 

 

 

-0.014 

 

 

0.066 

 

 

0.063 

 

 

0.584 

 

 

0.976 

 

0.979 

 

0.265 
 

P9B 

 

-0.014 

 

 

-0.020 

 

 

0.068 

 

 

0.067 

 

 

0.665 

 

 

0.799 

 

0.825 

 

0.265 
 

P10B 

 

-0.017 

 

 

-0.024 

 

 

0.072 

 

 

0.070 

 

 

0.788 

 

 

0.948 

 

0.975 

 

0.271 
 

P11B 

 

-0.021 

 

 

-0.026 

 

 

0.079 

 

 

0.076 

 

 

0.949 

 

 

0.973 

 

0.989 

 

0.272 
 

P12B 

 

-0.023 

 

 

-0.030 

 

 

0.084 

 

 

0.083 

 

 

0.956 

 

 

0.902 

 

0.923 

 

0.268 
 

P13B 

 

-0.031 

 

 

-0.037 

 

 

0.088 

 

 

0.090 

 

 

1.026 

 

 

0.823 

 

0.850 

 

 

0.280 
 

P14B 

 

-0.031 

 

 

-0.038 

 

 

0.099 

 

 

0.098 

 

 

1.219 

 

 

1.004 

 

1.070 

 

0.280 
 

P15B 

 

-0.033 

 

 

-0.040 

 

 

0.104 

 

 

0.110 

 

 

1.250 

 

 

1.027 

 

1.019 

 

0.282 
 

P16B 

 

-0.036 

 

 

-0.044 

 

 

0.117 

 

 

0.122 

 

 

1.457 

 

 

0.893 

 

0.953 

 

0.276 
 

P17B 

 

-0.036 

 

 

-0.045 

 

 

0.134 

 

 

0.137 

 

 

1.723 

 

 

1.074 

 

1.088 

 

0.278 
 

P18B 

 

-0.035 

 

 

-0.050 

 

 

0.164 

 

 

0.160 

 

 

2.044 

 

 

1.218 

 

1.201 

 

0.284 
 

P19B 

 

-0.043 

 

 

-0.055 

 

 

0.188 

 

 

0.189 

 

 

2.385 

 

 

1.206 

 

1.219 

 

0.286 
 

P20B 

 

-0.047 

 

 

-0.057 

 

 

0.307 

 

 

0.313 

 

 

3.813 

 

 

1.467 

 

1.524 

 

0.298 

Market VRP 
 

-0.017 

 

 

-0.017 

 

 

0.069 

 

 

0.069 

 

 

1.000 

 

0.929 

 

1.000 

 
‒ 
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Table A2 

Correlation coefficients between state variables, January 1996 to February 2011 
This table reports the correlation coefficients estimated for the overall sample period using monthly data. The market 

volatility risk premium is defined as the difference between the realized volatility and the model-free risk-neutral integrated 

return volatility over the corresponding month. The risk-neutral volatility is obtained by the set of prices of options on the 
Standard & Poor’s (S&P) 100 Index with one month to maturity.  

Consumption growth is the monthly growth rate of seasonally adjusted real per capita consumption expenditures on 

nondurables goods and services; stockholder consumption growth is the Malloy, Moskowitz, and Vissing-Jorgensen (2011) 
measure of consumption growth from stockholders; DEF is the default premium calculated as the difference between Moody’s 

yield on Baa corporate bonds and the ten-year government bond yield; excess market return, SMB (small minus big), and HML 

(high minus low) are the Fama andFrench factors. Together with the momentum factor (MOM), they are obtained from the 
Kenneth French’s website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). 

 

Monthly  

correlation 

 

Excess  

market 

return 

 

Consumption 

growth 

 

Stockholder 

consumption 

growth 

 

DEF 

 

SMB 

 

HML 

 

MOM 

Market VRP -0.273 -0.189 -0.118 0.075 0.019 0.130 0.185 

Excess 

market 

return 

1 0.213 0.769 -0.132 0.242 -0.247 -0.296 

 

Consumption 

growth 

 1 0.131 -0.356 0.043 -0.125 -0.356 

Stockholder 

consumption 

growth 

  1 -0.149 0.449 0.237 -0.301 

DEF    1 0.058 -0.087 -0.198 

SMB     1 -0.372 0.091 

HML      1 -0.156 
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January 1996 February 1998 April 2000 June 2002 August 2004 October 2006 December 2008 February 2011
-0.5

0
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1

1.5

2

2.5

Volatility

risk

premia

 

 

P1B P10B P20B VRPm

 
Fig. 1. Volatility risk premia for extreme and intermediate volatility risk premium (VRP) beta-sorted 

portfolios and the market: January 1996–February 2011. This figure displays the temporal behavior of 

representative volatility risk premium beta-sorted portfolios and the market volatility risk premium. 
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Panel A: 

December 2000 December 2002 December 2004 January 2007 January 2009 February 2011
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Panel B: 

December 2000 December 2002 December 2004 January 2007 January 2009 February 2011
0
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Fig. 2. Rolling volatility risk premium betas and market return betas. Panel A displays the rolling volatility 

risk premium betas for extreme and intermediate VRP beta-sorted portfolios from January 1996 to February 

2011. Panel B shows the rolling market return betas for extreme and intermediate VRP beta-sorted portfolios 

from January 1996 to February 2011. For Panels A and B, the rolling estimation employs 59 past monthly 

observations. 
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Panel A: 
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Panel B: 
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Fig. 3. Average returns versus average returns from the estimated parameters of the Fama and MacBeth two-

pass cross-sectional regression, volatility risk premium beta-sorted portfolios. Panel A displays the cross 

section of volatility risk premia with recursive preferences with market volatility risk premium and aggregate 

consumption growth from January 1996 to February 2011. Panel B shows the cross section of volatility risk 

premia with linear stochastic discount factor (SDF) with market volatility risk premium and default from 

January 1996 to February 2011. 

 

 

 


