
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Field of View Evaluation in
Augmented Reality Games

Chess Game for HoloLens and Meta2 Devices

Supervisors
Prof. Andrea Sanna
Dr. Federico Manuri
Dr. Francesco de Pace Author

Sonia Elizondo Martínez

July 2019

Written in LATEX on July 22, 2019
This work is subject to the CC BY-NC-ND Licence

"That brain of mine is
something more than
merely mortal; as time
will show."

Ada Lovelace

Contents

Acknowledgements vii

Abstract viii

1 Introduction 1

2 Augmented Reality 3
2.1 Brief History . 3
2.2 AR Technologies and Architectures 5
2.3 AR Applications . 6

3 Augmented Reality Devices 9
3.1 HoloLens . 9

3.1.1 Specifications . 9
3.1.2 Main Gestures . 14
3.1.3 Composite Gestures . 15

3.2 Meta 2 . 17
3.2.1 Specifications . 17
3.2.2 Main Interaction Features . 19

4 Design 23
4.1 Useful Contextual Terms . 23

4.1.1 Virtual Reality . 23
4.1.2 Platforms . 24

4.2 Chess Game . 24
4.3 Game Interpretation . 26
4.4 Programming Characteristics . 29
4.5 Software Architecture . 31
4.6 Color Selection . 33

5 Implementation 37
5.1 Meta 2 Evaluation . 37

5.1.1 Meta 2 Tools . 37
5.1.2 Meta 2 Input Methods . 40
5.1.3 Holographic Display . 42

5.2 AR player vs. Chess Engine . 43

v

5.3 Meta 2 and HoloLens Development 45
5.3.1 Implementation Evolution . 45
5.3.2 Testing Features . 46
5.3.3 Client-Server for HoloLens . 50
5.3.4 Final Software Architecture 50

6 User Experience and Testing 53
6.1 Experiment Design . 53
6.2 Questionnaire . 54

6.2.1 General User Information . 54
6.2.2 SUS Questionnaire . 55

6.3 Results . 56
6.3.1 General User Information . 56
6.3.2 SUS Questionnaire . 58

6.4 User Tests Analysis . 68
6.4.1 General User Information . 69
6.4.2 SUS Questionnaire . 69
6.4.3 Lost Turns . 70

6.5 Conclusion . 71

7 Future Work 73

Acronyms 75

Appendices 77

A Chess in Computing History 79

List of Figures 83

List of Tables 87

Bibliography 89

vi

Acknowledgements

I would like to thank Prof. Andrea Sanna and Dr. Federico Manuri for the
great opportunity of developing my Master’s Thesis under their guidance and Dr.
Francesco De Pace for his daily support at the laboratory.

Thanks to my family and friends for giving me the strength to be able to
surpass my own expectations.

vii

Abstract

The aim of this Master’s Thesis is to compare the Fields of View of two
different Head-Mounted Displays: Microsoft’s HoloLens and Metavision’s Meta 2.

To accomplish this goal, an Augmented Reality table-top game has been
developed. After noticing its popularity and enhancement with computers through
decades, the popular board game chess was selected as game to be implemented.
This game has been redesigned, not only in a visual context, but in the way players
would interact with it, providing a new experience.

Once implemented for both mentioned devices, the chess game has been
evaluated by numerous users, giving their opinions about the usability of the head-
mounted displays in the form of a questionnaire.

The data obtained during these user tests has been analyzed to reach a con-
clusion to a main question: which device players prefer to utilize in order to properly
involve with an Augmented Reality game.

Moreover, future purposes in relation to this project have been presented in
the form of investigation proposals and improvements to the current work.

Keywords: Augmented Reality, Field of View, Meta 2, HoloLens, chess game.

viii

Chapter 1

Introduction

The upcoming market of not so rudimental wearable devices is making possi-
ble to develop and experience Augmented Reality (AR) applications as never before.
A deepest look into the backwards of AR games development will be taken at next
chapter.

In this past decade (2010’s), leaving behind the primitive Head-Worn Displays
(HWD) and Handheld Displays, Microsoft and Metavision gave a new perspective
with their Head Mounted Displays (HMD) - HoloLens and Meta 2, respectively.

The possible interactions with the virtual and real worlds multiplied due
primarily to the fact that these devices let the user free-handed. Despite of having
acquired this great advantage, AR devices keep failing to another very important
characteristic for players, but very difficult to improve for developers: their Field of
View (FOV).

FOV refers to an optic property. It is defined as the expansion of the appre-
ciable world at any precise moment.
The visual field of the human eye is generally 200 degrees horizontally and 135
degrees vertically. This wide range permits humans to see a great portion of the
landscape and at the same time, detect changes in motion in their surroundings.
This extraordinary mechanism is the biggest challenge AR must face: achieve a
FOV that can behave as widely and dynamically as human eyes. [1]

Due to the importance given to this aspect, it was decided to set it as main
goal of this Master’s Thesis: evaluate and compare both HoloLens and Meta2 FOV.

To do so, a table-top game scenario was brought up to be a good way to
confront both devices. Once the classical chess game was found to be an adequate
option, it had to be interpreted into a new AR design (refer to Chapter 4) and
implemented for the two mentioned AR devices.

In fact, it was also necessary to display the same exact UI, in order to make

1

1 – Introduction

the situation suitable for a comparison. To understand the technology behind these
two devices, both hardware and software details will be described in Chapter 3.

The development process consisted in implementing two chess games, one
for each device, counting on the games’ developing platform Unity. All this pro-
cedure, including essential phases of the project such as first thoughts, problems
found, changes in perspective and final scenarios, will be extensively described in
the implementation chapter, founding the core of this work.

Once finished, the project was evaluated by various users. Letting them play
both chess games during a limited amount of time, they could experience the feeling
of changing the FOV from one device to another and then express their opinions in
the SUS questionnaire.

As expected, the results concluded that players feel more comfortable with
the Meta 2 display, due to its wider FOV.
The full analysis of users’ feedback and final conclusion to this work will take place
at one of last chapters dedicated to the experimentation explanation.

Furthermore, improvements to this project in the form of future aims will
close this Thesis.

2

Chapter 2

Augmented Reality

Augmented Reality (AR) is not a strange term anymore, due to its various
applications and continuous development. But, the first time it was formalized,
it sure sounded rare. It was in 1994, when Milgram and Kishino established the
reality-virtuality continuum to explain the conceivable variations and configurations
of real and virtual objects. [2]

Figure 2.1: Simplified representation of a "virtuality continuum" [2]

Based on this definition, AR can be described as the interaction between
the real and the virtual worlds. This way, real and computer-generated objects can
coexist in real time and in the same environment. But not only in a visual way: it
can be applied to all senses, including smell. [3]

2.1 Brief History

Although its starting point dates in the 1960s, it is not until the 1990s that
AR was referred to as an actual research field: several important conferences and
symposiums landed and important organizations focused on the development of new
tools. [3] Nowadays, AR has hit its top development with brand-new devices that
are opening the path to what will come in the near future.

These decades are full of revealing moments that can be rapidly reviewed [4]:

3

2 – Augmented Reality

• In 1968, Ivan Sutherland developed the first HMD. This system used computer-
generated graphics to show simple wireframe drawings.

• In 1974, Myron Krueger built an ‘artificial reality’ laboratory: the Videoplace.
It combined projectors with video cameras to emit onscreen silhouettes, in-
volving users in an interactive environment.

• In 1990, the term “Augmented Reality” was coined for the first time by Tom
Caudell, a Boeing researcher.

• In 1992, Louis Rosenberg developed Virtual Fixtures - one of the initial work-
ing AR systems, built for the Air Force. The exoskeleton upper body let the
military control virtually guided machinery to perform tasks from a remote
operating space.

• In 1994, Julie Martin created the first AR Theater production: Dancing in
Cyberspace. It was composed of acrobats dancing within and around virtual
objects on their physical stage.

• In 1999, NASA X-38 spacecraft was flown using a Hybrid Synthetic Vision sys-
tem that used AR to overlay map data to provide enhanced visual navigation
during flight tests.

• In 2000, Hirokazu Kato created the ARToolKit, an open-source software li-
brary that utilized video tracking to overlay computer graphics on a video
camera. The kit is still used widely to compliment many AR experiences.

• In 2009, ARToolKit brought AR to web browsers.

• In 2013, Volkswagen MARTA app (Mobile Augmented Reality Technical As-
sistance) provided virtual step-by-step repair assistance, allowing service tech-
nicians to foresee how a repair process will look on the vehicle in front of them.

Figure 2.2: Volkswagen’s MARTA application [5]

• In 2014, Google announced shipment of Google Glass devices for consumers,

4

2.2 – AR Technologies and Architectures

thus starting the trend of wearable AR.

Figure 2.3: Google Glass [6]

• In 2016, Microsoft HoloLens Developer Kit and Meta 2 Developer Kit set to
ship this year.

2.2 AR Technologies and Architectures

There exist several ways to implement an AR application. It mostly depends
on the objectives set and the type of technology involved.
Based on this technology, AR can be divided into the following categories [7]:

• Marker Based or Image Recognition AR uses a camera from any device to
recognize a simple pattern marker, such as a QR code, that are quickly differ-
entiated and do not need much processing to be read. The idea is to produce a
result whenever this marker is identified by the camera. Generally, some kind
of content is displayed overlaying the marker.

• Markerless AR is the most broadly implemented application. It uses a device’s
GPS (digital compass, speedometer or accelerometer) to provide location in-
formation. The reason for it to be so spread, is the large number of avail-
able smartphones and their location detection features. Mapping directions or
nearby businesses search are the most widely used applications.

• Projection Based AR displays artificial light onto real world surfaces and senses
the human interaction on this light. This interaction detection is possible
by discerning a known projection from an altered projection (because of hu-
man interference). Another path to this category is the projection of three-
dimensional interactive holograms into mid-air using laser plasma technology.

5

2 – Augmented Reality

• Superimposition Based AR partially or fully replaces an original view of an
object with a newly augmented view of it. Certainly, the object recognition
plays a crucial role: the original view cannot be replaced if the object is not
differentiated by the application. A consumer-facing example is the display of
virtual objects extracted from a catalogue into the users’ environment.

Regarding the display of virtual objects, there are three defined paradigms.
They differ from one another in the way the technology is used to display correctly
these virtual objects into the users’ view.

See-trough The first paradigm is based in see-trough devices, which allow users
to see the real environment with their own eyes and virtual assets are overlapped by
on optical effect. This solution demands special devices such as AR glasses which
can be monocular or binocular (making possible to precisely perceive 3D display).
The virtual items can be projected over lenses or on semitransparent monitors placed
between the eyes and the lenses.

Hand-held The second paradigm is based on mobile devices such as smartphones
and tablets that include all the required hardware to implement an AR system: a
camera to record video of the real world, a display to show the augmented situation
and the computational power to compute the position and orientation necessary
for the camera and to combine the generated virtual assets with the video. This
approach was named Mobile AR (MAR).

Monitor-based is conceptually comparable to the hand-held paradigm, but the
camera, the display and the computational power are not encompassed in one unique
device. This option is used whenever a large display is needed, or the camera must
be independent. Obviously, this kind of display entangles several challenges.

Firstly, dealing with performance, primarily related to the camera’s position
and orientation computation. Another issue involves the precision of aligning the
virtual to the real world. The last problem would be the lack of a keyboard or
a mouse, which are the users’ most traditional ways to interact with the virtual
environment. [8]

2.3 AR Applications

The exploration of AR has led to a large variety of applications concern-
ing any daily-based activity: maintenance, repair, sports, marketing, construction,
education and other fields later discussed.

In Medicine, AR technologies were introduced as a tool to bring patients

6

2.3 – AR Applications

and their medical data into the same space. The first real AR application in this field
dates to 1986, when computer tomography data was integrated with an operating
microscope.
Nowadays, the advances in medical imaging have made possible to, for instance,
support diagnoses based on preoperative and intraoperative data. Yet still, this
field must face three main issues: tracking precision, misperception and interaction
with synthetic data.

Another remarkable field onto which AR has improved its experience is Ar-
chaeology. Showing computer-generated models of ruins, buildings and landscapes
gives the user (for example, a museum visitor or a researcher) a new perspective of
the archaeological site. An application of this kind can as well present additional
location-based information or display audio and 3D-enhanced narrations. [9]

Figure 2.4: Tourism application showing user’s location and nearby points of interest
[8]

For touristic purposes, AR can play a key role. Tourism can be enriched by
adding multimedia and personalized contents according to the tourists’ demands.
Since most tourists own a smartphone (and that these devices are already equipped
with GPS and network connections), location-based AR services can be used on
them. [8]

In addition to those serious investigation fields, AR is well-recognized because
of other mainstream applications: mobile apps and videogames.

A world-wide known AR mobile application is Google Translate. In this case,
AR is used to interpret signs and menus and display them in the desired language
as printed subtitles in front of the user.

7

2 – Augmented Reality

(a) Google Translate App
[10]

(b) Playing Eye Toy 3 [11]

(c) Pokémon Go Display [12]

Figure 2.5: AR popular applications examples

Examples of gaming experiences could be the EyeToy saga and Pokémon Go.

Eye Toy was first released in 2003. It used its camera to augment computer
graphics onto live footage.
In fact, these videogames used computer vision and gesture recognition to process
the images taken by the camera. Players could interact with the games using motion,
color detection and even sound. [11]

In the case of Pokémon Go, it was released in 2016. This game revolutionized
iOS and Android apps market, for being a free-to-play location-based AR game that
just needed the players’ mobile devices to display its potential. The game depended
on the mobile GPS to locate, capture, battle and train virtual Pokémon, which
would appear as they were in the player’s real-world location. [12]

8

Chapter 3

Augmented Reality Devices

Microsoft’s HoloLens and Metavision’s Meta 2 are two of the newest HMDs
available. As Microsoft released its headset, the first of this type, few years before
Metavision’s did so with its second generation, the comparison was inevitable. Meta
2 was considered the main rival to HoloLens (and for some it still is, even after
HoloLens 2 was released).

Not only their main features have been debated because of ergonomic issues,
development documentation or pricing, but for the vast difference in their FOV:
their specifications kept clear that HoloLens’ 35º made Meta 2’s 90º victorious in
this competition. [13]

Despite of the provided statistics, there was still an unanswered question to
which was the actual FOV perception of real users. And this question was para-
phrased into which device would be preferred to be used by players of an AR chess
game.

The hardware and software similarities and differences for these AR devices
set up the basis for this work.

3.1 HoloLens

Microsoft’s HoloLens was first released in 2016. It is the first fully untethered
holographic computer. Using breaking new optics and sensors, it is capable of
binding 3D holograms to the real world.

3.1.1 Specifications

It is necessary to remark some of this device’s specifications.

9

3 – Augmented Reality Devices

Figure 3.1: Microsoft HoloLens [14]

Hardware

First of all, HoloLens hardware specifications could be summarized in this
way [14]:

• Optics

– See-trough holographic lenses

– Two HD 16:9 light engines

– Automatic pupillary distance calibration

– Holographic resolution: 2.3M total light points

– Holographic density: more than 2.5k radiants (light points per radian)

• Sensors

– One IMU

– Four environment understanding cameras

– One depth camera

– 2 MP photo / HD video camera

– Mixed reality capture

– Four microphones

– One ambient light sensor

• Input/Output/Connectivity

– Built-in speakers

– Audio 3.5mm jack

10

3.1 – HoloLens

– Volume up/down

– Brightness up/down

– Power button

– Battery status LEDs

– Wi-Fi 802.11ac

– Micro USB 2.0

– Bluetooth 4.1 LE

• Power: Battery Life

– Two to three hours of active use

– Up to two weeks of standby time

– Entirely functional when charging

• Processors

– Intel 32-bit architecture with TPM 2.0 support

– Custom-built in Microsoft Holographic Processing Unit (HPU 1.0)

• Weight of 579g

• Memory

– 64GB Flash

– 2GB RAM

To be able to work with this kind of devices, it is common to fulfill some
specific requirements for the computer. In the case of desktop computers, as the
one used to develop this project, they need the following main features in order to
work properly with HoloLens [15]:

• Processor

– Minimum

∗ Intel Desktop i5 6th generation CPU

∗ Dual-Core with Hyper Threading OR AMD FX4350 4.2Ghz Quad-
Core equivalent

– Recommended

11

3 – Augmented Reality Devices

∗ Intel Desktop i7 6th generation (6 core) OR AMD Ryzen 5 1600 (6
core, 12 threads)

• GPU

– Minimum

∗ NVIDIA GTX 960/1050, AMD Radeon RX 460 (2GB) equivalent or
greater DX12 capable GPU

– Recommended

∗ NVIDIA GTX 980/1060, AMD Radeon RX 480 (2GB) equivalent or
greater DX12 capable GPU

• GPU driver WDDM version: 2.2 driver

• Thermal Design Power: 15W or greater

• Graphics display ports

– One for each graphics display port for headset

∗ HDMI 1.4 or Display Port 1.2 for 60Hz headsets

∗ HDMI 2.0 or Display Port 1.2 for 90Hz headsets

• Display resolution: SGVA (800x600) or greater Bit depth: 32 bits of color per
pixel

• Memory

– Minimum

∗ 8GB of RAM or greater

– Recommended

∗ 16GB of RAM or greater

• Storage: more than 10GB additional free space

• USB Ports: one per available USB port for headset (USB 3.0 Type-A)

• Bluetooth 4.0 (accessory connectivity)

As an extra hardware source, HoloLens can be paired with the Clicker. It is
just a peripheral device with a button and two LEDs inside it, which can exchange a
click for a hand gesture, but not all of them. It usually replaces the Air Tap gesture
(explained in detail in the subsequent section).

12

3.1 – HoloLens

This device connects to HoloLens via Bluetooth LE. To know about the
connection, it is enough to look at the white LED - blinking light means pairing -
and the amber LED - solid light means failure.

Figure 3.2: HoloLens Clicker [16]

The gaze movement is still
necessary to target an object when
using the Clicker. The advantage is
that it is not compulsory to point it
or orient it in an explicit way.

To, for example, scroll over
a menu, the Clicker just needs a
smooth wrist rotation to get to its
maximum speed.

Its battery can be expected
to last two weeks or more on a reg-

ular use on a full charge. To know its current battery situation, the white LED
indicates charging when solid and the amber LED reveals low battery when blink-
ing. [16]

Software

In addition, there are some software requirements to take into account. For
this device, it is preferable to install the most recent version of Windows 10. This
way, the computer’s operating system will match the platform for which the appli-
cations will be built.

Another possible installation is the HoloLens Emulator. It is not mandatory,
but it gives the possibility to run applications on a virtual machine image, when the
developer has no physical HoloLens available.

The Windows 10 SDK is enforced to be installed. It provides the latest
headers, libraries, metadata and tools for building Windows 10 applications on the
HoloLens device.

This SDK has several minimum system requirements depending on the de-
sired type of applications to be developed [17]:

• Universal Windows Platform (UWP) app development

– Windows 10 version 1507 or higher

∗ Home

∗ Professional

∗ Education

13

3 – Augmented Reality Devices

∗ Enterprise

– Windows Server 2019

– Windows Server 2016

– Windows Server 2012 R2 (Command line only)

• Win32 app development

– Windows 10 version 1507 or higher

– Windows Server 2016: Standard and Datacenter

– Windows 8.1

– Windows Server 2012 R2

– Windows 7 SP1

Moreover, some hardware requirements are necessary:

• 1.6 GHz or faster processor

• 1GB of RAM

• 4 GB of available hard disk space

Besides the SDK, developers can keep track of all the features offered by
HoloLens Development Kit via its Application Programming Interface (API).

Its documentation confers detailed information about the core building blocks
that set numerous development guidelines. Those mentioned blocks provide struc-
ture to the main functionalities: gaze, gestures, motion controllers, voice input,
spatial mapping, spatial sound, coordinate systems and spatial anchors [18].

Being the gestures the most frequent way to interact with the virtual world
in an AR application, they are being explained thoroughly.

3.1.2 Main Gestures

HoloLens permit some interesting inputs in order to make the user interact in
a comfortable and close-to-reality way. These inputs are commonly gestures, either
hand gestures or gaze movements.

In the case of hand gestures, they do not need to be done in a specific location
of the space. This makes the user start acting upon the virtual objects the same
instant they put HoloLens on, as an immediate interaction. To adjust the target to

14

3.1 – HoloLens

which the hand gesture is directed, the head gaze is used. The resulting situation is
a combination of looking at an object to target it and making a meaningful gesture
to act upon that target.

HoloLens can recognize two main component gestures: Air tap and Bloom.
These two interactions conform the lowest level of spatial input data that a developer
can access. In fact, they create a basis upon which it is possible to construct multiple
different user actions.

Figure 3.3: Air Tap gesture [19]

Air tap The Air tap gesture is inspired in a "click" on a mouse or a select routine.
To do so, the user just have to target the entity with Gaze and perform the gesture:
as simple as tapping with the hand held upright.
This "click" interaction can be used in any situation and it is easy to learn. It is
considered to be a discrete gesture, but is not the only one, as any developer can
create other gestures of this kind by putting together main components.

Bloom The Bloom gesture is also known as the home gesture. It is used to go
to the Start Menu. It is referred as a special system action due to its reserved
interaction.

3.1.3 Composite Gestures

After getting to know the core gestures for HoloLens, it is advisable to remark
that they are not the only possible gestures to interact with.
Combining several taps, holds and releases with hand movement, new and more
complex composite gestures can be performed.

Tap and Hold Hold simply implies maintaining the down-finger position of the
Air tap. The combination of both makes possible to generate "click and drag"

15

3 – Augmented Reality Devices

interactions (of course, it is necessary to make an arm movement too). This is
equivalent to show a context menu or picking up an object.

Manipulation A whole branch of movements can be addressed for manipulation
goals: to move, to re-size or to rotate a hologram. The perspective is to let the user
move the objects around like what would be a real interaction with them. As the
"click" interaction, there should be a gaze movement to target the object and then
the gestures should be performed.

Navigation Similar to a virtual joystick, it can be used to access and operate UI
widgets. It is commonly applied to velocity-based continuous scrolling or zooming
gestures. It tries to ensure a similar experience to the one of a user clicking the
middle mouse button and moving it up and down. [19]

16

3.2 – Meta 2

3.2 Meta 2

Metavision’s Meta 2 HMD was presented as a hard tether device. This feature
has been justified to be an advantage: it gives the device the computer’s resolution
capability to display detailed AR models and sharp text contents. [13]

Figure 3.4: Meta 2 Development Kit [20]

3.2.1 Specifications

Meta 2 was thought to be a new holographic experience for content creators,
artists and makers, as its principal goal was to re-define their workplace. [13] To
achieve this, the device was designed with the following features.

Hardware

The technical characteristics of the device are [21]:

• 2550 x 1440 resolution

• 60Hz refresh rate

• Four speaker near-ear audio system

• Unobstructed view of the eyes

• Nine-foot HDMI cable for video, data & power

• 720p front-facing camera

• Sensor array for hand interactions and positional tracking

• Sensors

– Two IMU

17

3 – Augmented Reality Devices

– IR emitter

– Cameras

∗ Depth Camera

∗ RGB Camera

∗ Two Monochrome Cameras

The required computer recommendations to work and develop for Meta 2
are [21]:

• Graphics

– NVIDIA GTX 960 or AMD R9 280

• CPU

– Intel Core i7 for Desktop computer

• Memory

– 8GB RAM

• Storage

– 10GB

• Video

– HDMI 1.4b

• Sound Card

– Intel HD-compatible

• USB Ports

– USB 3.0

• Operating System (OS)

– Windows 8.1 64-bit (minimum)

Software

Meta 2 Development Kit includes SDK to build and share tools. It offers
many built-in components and features for application development.

18

3.2 – Meta 2

As well as the SDK, Meta 2 API is available. It is considered a primary
source to understand its main characteristics implementation background.

Some of them are: the calibration stage, related to its tracking; the Meta
configuration, showing the features that can be customized; the palm state, concern-
ing the hands input; and the virtual key codes, keeping track of the Meta Mouse
interactions.

Some of the devices’ characteristics must be briefly explained in order to get
in touch with Meta’s mentioned technology.

3.2.2 Main Interaction Features

Camera and Sensor Features The most important part of the device are the
cameras themselves, because they make possible to display the holograms correctly
and keep track of the real environment where AR is happening.
To access and work with the varied cameras, some components and coding solutions
are included in the kit [22]:

• Meta Camera Rig is a set of graphical components that provide Meta inte-
gration for Unity applications.

• Tracking(SLAM) means Simultaneous Localization and Mapping and is de-
fined as the computational problem of constructing or updating an unexplored
environment’s map while, at the same time, keeping track of an agent’s loca-
tion within it. It represents Meta’s tracking system.

• The Surface Reconstruction builds a mesh representing the current envi-
ronment.

• Meta Locking is a script with the possibility of being integrated as a com-
ponent to a Game Object to permit positional and rotational locking relative
to the Meta Camera Rig.

• Meta Gaze is an interaction technique that lets users act upon objects in the
center of their view.

• Sensors Data leaves free access to raw data from the devices’ on-board sen-
sors for advanced scripting.

• Meta 2 Webcam is a virtual device that exposes two feeds: a composite
view enclosing both AR content (from Unity scene) and RGB camera feed, as
a way of simulating what the user is seeing; and an only RGB camera feed.

Display Features Metavisions’ device has different ways of communicating with
the computer it is tethered to. The possibilities are:

19

3 – Augmented Reality Devices

• Direct Mode: primary rendering mode. The idea behind it is to bypass
Window’s display management system and to connect directly to Meta 2.

• Extended View is an alternative to the previous mode which uses Windows
display management system as an intermediary to render to Meta 2.

• Meta Compositor controls rendering and enables advanced graphic func-
tionality.

In the case of the device’s audio, the main functionality can be found in
Meta Audio, which connects to Unity Audio Manager to set the optimal project
settings for playing audio on Meta 2.

In addition to the cameras already explained, a critical Meta 2 factor is the
interaction. To start with, the main permitted interaction features are:

Meta Hands is the system that allows the user to add a collection of hands
interactions to objects within their scene. This feature was thought as a way of
interacting with the holographic objects in a natural way.
Therefore, the hand gestures are not composed of specific restrictive movements,
but actually the device tries to understand the usual hand actions that a human
can make with the computer-generated objects displayed.

The SDK provides a bunch of different hand gestures to be used within the
scenes that provide distinct results to the objects. These called interactions are
actually scripts to be attached to the desired objects on a scene, so the moves can
be recognized. Adding more than one interaction to the same object, makes it
possible for a multiple-action hologram. [23]

• Standard interactions

– Two Hand Grab Scale Interaction to translate and scale an object
with two hands.

– Two Hand Grab Rotate Interaction to translate and rotate an object
with two hands.

• Supplementary interactions

– Orbit Rotate Interaction: touch to rotate in an orbital manner.

– Turn Table Interaction to rotate a carousel about the Y axis.

– Turn Table Swipe Interaction is a carousel interaction with discrete
steps.

– Two Hand Scale Interaction: grab with two hands to scale but not
allowing translation.

20

3.2 – Meta 2

– Two Hand Grab Switch Rotation Interaction: grab with two hands,
and depending on their orientation, rotation around either X o Y axis.

(a) Hand recognition (b) Possible hand action (c) Object is being grabbed

Figure 3.5: Meta Hands’ detection and information display

In case these already coded hand-gestures scripts are not sufficient for the
interactions required in a project, Meta SDK provides direct access to hand tracking
data. The Hands Provider system gives tracking information to support the imple-
mentation of custom hands-based interfaces. The information that can be managed
for both left and right hands are:

• A hand is detected

• Current position of the center of the hand

• Hand is in a closed position

• Hand is in an open position

• Current position of the top of the hand

Meta Mouse In addition to hand interaction, a new interpretation of the common
computer mouse is available and it is called Meta Mouse. It is an input method
that supports the use of the computer mouse in the 3D AR environment. When it
is activated, the Windows mouse position is locked and a special mouse cursor is
visible in the application window for the user to interact with the 3D display [24].

Figure 3.6: Meta Mouse prompt when it is activated

Meta Gaze Moreover, another possible feature is available to interact with ob-
jects placed in the center of view. It is composed of a ray cast from the center of

21

3 – Augmented Reality Devices

Meta Camera Rig in the look’s direction. It is usually used to change the colors,
highlighting and materials of the objects identified as the gaze interaction moves
and focuses on them [25].

22

Chapter 4

Design

The first idea for this Thesis was to implement a table-top game that could
confront a Virtual Reality player and an Augmented Reality player.

The scenario would be deployed as an AR user playing on top of a real chess
board with real pieces and seeing the virtual pieces of the opponent on top of that
same board; and a VR user playing in an immersive virtual environment representing
the full chess board experience.

This decision was based in a previous work concerning this kind of mixed
environment that used the Microsoft’s HoloLens as AR device and Oculus Rift as
VR device.

4.1 Useful Contextual Terms

4.1.1 Virtual Reality

To begin with, Virtual Reality (VR) refers to a simulated or immersive three-
dimensional computer-generated environment where the player becomes a part of it
and is able to explore their surroundings and interact with this virtual world.

The development of this type of technology is not only attached to the enter-
tainment industry, such as films and videogames, but to medicine and other serious
applications too. [26]

To experience VR, some devices are nowadays available. One of the most
well-known headsets is Oculus Rift.
It was released in 2016 as Oculus’ first-generation device. The whole VR experience
is obtained through the headset itself, two touch controllers and two sensors. [27]
The headset provides the display engine via its custom optics and achieves high

23

4 – Design

visual fidelity thanks to its wide field of view. The controllers confer an intuitive
hand presence in VR and the sensors track constellations of IR LEDs to transcribe
the player’s movements into VR.

4.1.2 Platforms

The project was developed in Unity, a cross-platform game engine with which
it is possible to create three-dimensional, two-dimensional, virtual reality and aug-
mented reality games [28].

In order to understand following references to Unity basic elements, they are
being reviewed:

• A Scene contains the environments and menus for a game. Usually, games
are built from several scenes, considering each scene a different level; but in
this case, there will be a unique scene: the chessboard display. [29]

• A Game Object is the most important concept in a Unity Editor. It can be
defined as any object, from characters and collectible items to lights, cameras
and special effects. It cannot do anything of its own. [30]

• A Script is a coding file that respond to input from the player and arrange
for events in the game to happen when they should. It gives faculties to the
Game Object it is attached to, for example, physical behaviour. [31]

• AnAsset is a representation of any item that can be used in a game or Project.
It might come from a file created outside of Unity such as a 3D Model, an audio
file, an image or any other supported file. [32]

• A Prefab is a stored Game Object with all its components, property values
and child Game Objects that can be configured and reused in any scene as an
Asset. [33]

The chosen coding language was C#, as it is a possible scripting option to
develop for Unity. The IDE paired with the project was Microsoft Visual Studio,
for its code editor supporting IntelliSense (code completion component) and code
re-factoring. [34]

4.2 Chess Game

Another important part of this work is the development of table-top games
- they can be simply recognized for being played on top of a table or any other
flat surface. They can be separated into different subgenres, such as board games

24

4.2 – Chess Game

(Monopoly,Risk), card games (Poker, Blackjack), dice games (Dungeons and Drag-
ons) and tile-based games (Dominoes, Mahjong).

Taking advantage of the fact that using an AR device, the user can play with
their bare hands, these kind of games can be re-experienced: classical games can
be merged with the virtual world to redefine the way the player participates in the
game.

But not only that: using virtual objects can make these games’ usual static
boards, pieces, dices or even cards come into life. Notice that this can be design for
both AR and VR environments. At the end, the selected board game was Chess
due to several reasons.

Firstly, because of the popularity the game enhances all over the world and
the fact that most of the population knows how to play in a basic way or, at least,
how the pieces should be moved on the board.

Secondly, because it was the board game chosen in various previous investi-
gations for Augmented Reality applications.
And finally, due to the large history involving computing and chess games. [For
more information about chess in computing history, refer to Appendix A].

A relevant part to understand this project’s development is to comprehend
the basic chess rules. They can be quickly reviewed via the pieces moves (they will
be better visualized in following pictures of the game):

• Pawns can open the game with a two-step straight-forward move. At any
other time, they can make one straight step. A diagonal one step move is
permitted if an opponent’s piece is placed one diagonal tile away from the
pawn (to capture it).

• Rooks can be freely moved (referring to number of tiles) while they always
move along their column or row directions.

• Knights have the peculiar L-movement. They can move wherever (forward,
backwards, rightwards or leftwards) if the move is composed of a two-tile same
direction move followed by a ninety-degree change of direction for a one-tile
final move.

• Bishops can be freely moved on the board (referring to number of tiles) while
they always stay in its diagonals.

• Queens can be freely moved on the board, either in number of tiles or in
directions.

• Kings can be freely moved referring to the board directions, but one step at
a time.

The way to determine the end of the game and the winner is to accomplish

25

4 – Design

a checkmate: the king cannot move anywhere to be save, because it is completely
surrounded by opponent’s pieces that can capture it anytime.

4.3 Game Interpretation

Based in an already mentioned previous work, the chess principal components
were designed to give a new interpretation to the classic chess. It can be seen in
the following images that the 3D interpretation of the pieces gives the game a fresh
look in comparison to the usual 2D interpretation.

(a) 2D interpretation (b) 3D interpretation

Figure 4.1: The Pawn

(a) 2D interpretation

(b) 3D interpretation

Figure 4.2: The Rook

26

4.3 – Game Interpretation

(a) 2D interpretation

(b) 3D interpretation

Figure 4.3: The Knight

(a) 2D interpretation

(b) 3D interpretation

Figure 4.4: The Bishop

27

4 – Design

(a) 2D interpretation

(b) 3D interpretation

Figure 4.5: The Queen

(a) 2D interpretation
(b) 3D interpretation

Figure 4.6: The King

The chess board was designed to allow the AR player to see the pieces in
their proper positions but without covering the real board. This makes the board a
simple green mat that serves as tile separator.

Keeping in mind that this is the first interpretation of the board, but not the
definitive, it is shown below.

28

4.4 – Programming Characteristics

(a) 2D interpretation

(b) 3D interpretation

Figure 4.7: The Chess Board

It is remarkable that to achieve a better experience for the players, the chess
game incorporates some animations for the pieces. These animations are based
on the pieces’ physical design, so each piece would move distinctly to the ones of
different type. Following this path, a piece can be animated in three different ways
depending on the action it is performing:

• Whenever the piece is moved to another position, the piece would make a
change of place animation, similar to sliding on top of the board.

• If the piece is going to capture an opponent’s piece, the piece would approach
that targeted piece’s position, turn to it and make an attack move such as a
sword movement. Then, it would arrive to the final position and turn around
(if necessary) to face the proper direction.

• If the piece has been killed, it explodes in several bits when the attacking piece
has performed an aggressive move and after few seconds, it disappears from
the board.

4.4 Programming Characteristics

First of all, the pieces for the game had to be well distributed: each of them
in its established initial position.
Hence, the board was considered an 8x8 matrix, as these are a chessboard actual
dimensions, and it would make the game run smoothly when, for instance, a search
for a piece in a certain position was required.

Knowing the matrix and the already shown 3D-interpretation for the scene,
it was essential to know which positions in Unity’s three-dimensional axes corre-
sponded to the two-dimensional matrix interpretation.
To achieve this, a couple of functions were implemented in order to quickly change

29

4 – Design

coordinates from one situation to the other. Obviously, not only the initial setup
needed this change of coordinates, but any other scene’s update too.

The primitive player-game interaction using the computer’s mouse was chosen
for this initial approach as the devices possible inputs had not been analyzed yet.
This meant taking the Unity coordinates of the mouse whenever it was clicked to
select a specific piece.

In fact, in the very beginning, a yellow tile followed any mouse movement to
help the user perceive the current position of the mouse cursor - thus, the conversion
between coordinates was even more frequent - but it was discarded in following
adaptations, so it will not be analyzed in detail.

Once the coordinates, where the click had happened, were known, they were
converted to 2D coordinates and used to search for the required piece. At this time,
some considerations had to be taken to ensure a proper game flow:

1. The game verifies if the coordinates correspond to an actual position of the
chessboard.

(a) If the coordinates are outside of the 8x8 possible positions, they are ig-
nored and the game waits for another click (back to step 1).

(b) If the coordinates correspond to a correct position, it continues.

2. The game verifies if that position contains a chess piece.

(a) If there is no piece in that position, the current coordinates are ignored
and the game waits for another click (back to step 1).

(b) If there is a piece in that position, it continues.

3. The game verifies if that piece belongs to the current player.

(a) If it is an opponent’s piece, the current coordinates are ignored and the
game waits for another click (back to step 1).

(b) If it belongs to the current player, the piece is selected.

When the piece is selected, the game waits for another input from the mouse:
this time to know where to move the piece. The procedure is like last one:

1. The game verifies if the coordinates correspond to an actual position of the
chessboard.

(a) If the coordinates are outside of the 8x8 possible positions, they are ig-
nored and the game waits for another click (back to step 1).

(b) If the coordinates correspond to a correct position, it continues.

30

4.5 – Software Architecture

2. The game verifies if that position contains a chess piece.

(a) If there is no piece in that position, it jumps to step 5.

(b) If there is a piece in that position, it continues.

3. The game verifies if the piece belongs to the current player.

(a) If it is an opponent’s piece, it continues.

(b) If it belongs to the current player, the current coordinates are ignored
and the game waits for another click (back to step 1)

4. Capture the opponent’s piece placed on top of the selected position (and it
continues).

5. Move the selected piece to that new position.

Of course, each time a piece is captured or moved, the game situation must
be updated. In the capture situation, that piece has to no longer appear available
(it is no more displayed on the scene). After a move, the previous piece position
must be freed and the new position must be occupied by this piece.

Plus, the turns were controlled, in order to disable the input for the user that
had already make a move until the other player moved a piece and so on.

4.5 Software Architecture

In order to achieve a well performed chess game, several scripts were coded.
These scripts contained the main functionalities for the game such as the ones previ-
ously mentioned: update the game state, consider the available moves for a specific
piece and alter the displayed hologram based on each current situation.

To understand the way all these methods work together to accomplish these
goals, it is advisable to present the applications’ software architecture. To do so,
the main functionalities for each script will be explained as follows:

• Game Manager: its main goal is to store the game logic. This means it keeps
track of, for instance, the allowed pieces’ moves and the initial chessboard
setup. It is the game’s core script and it is usually used by the other parts of
the game.

• Board: it monitors the holographic display of the pieces. The same way, it
handles the highlighting of individual pieces.

• Geometry: it is responsible for the coordinate’s conversions. It can convert

31

4 – Design

either 3D-coordinates into row-column notation for the matrix representation
or matrix coordinates to 3D ones.

• Piece: it defines enumerations for any instantiated piece, as well as contains
game logic to determine valid moves. For each piece it is defined a specific
script that inherits from this main script.

• Player: it makes possible to discern between the pieces from each player. It
also keeps track of the pieces available at the game and the ones that each
player has captured from the opponent. The permitted directions for the
pieces are as well revised.

• Tile Selector: it responds to the player interactions that correspond to the
selection of a piece to move. It interacts to other parts of the game to, for
instance, highlight the selected piece or check the possible moves for it.

• Move Selector: it is responsible for the proper move of a piece, analyzing if
the move is possible or if it entails the capture of a piece.

• PieceAnimation: each type of piece has its own script (substituting piece
by its type in the script’s name). It controls the animations that the pieces
have to perform in each given situation.

Knowing the core activities for each part of the application, it is remarkable
to put them together to form the appropriate game flow or script dependencies.

Figure 4.8: Interaction between Game Components

32

4.6 – Color Selection

4.6 Color Selection

During the explained implementation process, other customized features were
included.

It is worth noting that the initial pieces were white and black for being the
colors generally used in chess. But, for visualization issues during high presence of
light on the devices, they were changed to green and red, only for being opaque
colors and distinguishable from one another.

To each piece (Game Object) a behavior script was attached. These scripts’
core functionality is to determine which are all the possible moves for a specific
chosen piece.
This information was not only required to play accordingly to chess rules, but to
introduce color-based highlighting to the game, so that the player could receive a
slight support to decide their moves.

The already explained playing procedures can now be shortly disclose in terms
of colors:

1. Whenever a piece is chosen to be moved, it is completely displayed in yellow
so that the player realizes that the desired piece has been accurately selected
by the game.

2. Once the piece is highlighted, all its possible moves are shown by coloring in
blue the tiles where the piece can be moved to.

3. If in any case, one or various possible moves imply catching any opponent’s
piece, the tiles are then colored in red.

The best way to understand these color conditions - as well as the already
explained pieces moves - is to show them graphically.

Figure 4.9: Red highlighting represents possible capture of a piece

33

4 – Design

(a) Pawn Moves

(b) Rook Moves

(c) Knight Moves

(d) Bishop Moves

(e) Queen Moves

(f) King Moves

Figure 4.10: Blue highlighting represents possible moves

34

4.6 – Color Selection

The aforementioned colors to identify different game states were chosen based
on significant studies about the emotions that colors may evoke from players. Ini-
tially, Plutchik research [35] was revised in order to comprehend the basic emotions
that each color could arise in each person:

Figure 4.11: Plutchik’s Wheel of Emotions [35]

Moreover, an interesting investigation about colors in videogames, inspired
by Plutchik’s work, was found. Based on the created links between emotions and
colors, some experiments were taken to confirm the users’ reactions while playing in
different color environments.

The selected colors for this specific experimental work were:

Emotion Color
Surprise Light Blue
Fear Dark green
Joy Yellow

Anger Red

Table 4.1: Emotion-color associations as represented by Plutchik [36]

The investigation found relevant effects on players’ emotional responses with
the colors red and yellow. Indeed, the conclusion was that red evokes a highly
aroused, negative emotional response and that yellow evokes a positive emotional

35

4 – Design

response.
Furthermore, it was advised to game developers to utilize these specific colors to
manipulate player’s emotions. [36]

Going back to the chess game implementation, the decided tile-highlighting
colors were blue and red.

As shown before in the previous picture, blue can evoke pensiveness, a desired
emotion when the player should think calmly in its next move.

Following the experiments’ conclusion, red arouses the player, so it was de-
cided to be applied to remark the possibility of capturing a piece, as a way of calling
out the player to commit this action and no other.

Finally, the pieces’ materials changes to yellow when they are selected. This
color was chosen because it gives a positive emotional response. The idea was to
recall a joyful feeling in the players when they watch the wanted piece well selected.

36

Chapter 5

Implementation

By the time the basic chess game was implemented, a new AR device became
available: Meta 2. The most remarkable feature of this new HMD was its FOV: 90º
(it more than doubled the one of HoloLens).

As in a past chess game implementation, HoloLens had been already tested,
a new idea came along: instead of improving that work (the initial thoughts), it was
a better solution to implement this chess game for the new device, as it would be
the first AR chess game for Meta 2.

The first step to achieve the new goal was to understand how the new device
worked.

5.1 Meta 2 Evaluation

As for any initial work with a new device, the first task was to install all
the necessary software. Luckily, apart from the specific device’s software, it was not
needed to work with any other platforms than the already considered: Unity and
Visual Studio.

5.1.1 Meta 2 Tools

The device’s software required a simple installation and then, it provided the
main support features for the headset. Only the most used features are going to be
disclosed.

For starters, the software brings some utilities.

37

5 – Implementation

Setup Headset is a computer application that is only required to be run the first
time the device is plugged to a new computer.

This program guides the device’s developer or user through the connection
process and ensures everything is working as expected. Then, it starts an application
to adjust the visual elements of the display.

Headset Diagnostic evaluates the current situation of the device and alerts
the user if there is any problem with it, such as any sensor issue or any lacking
wire connection (evidently the headset has to be plugged in while the diagnostic is
running).

(a) Initial warnings (b) Drivers being checked

Figure 5.1: Headset Diagnostic

Calibration Besides these utilities, another crucial feature is the calibration com-
ponent. It consists in several eye tests displayed in the headset that will determine
individual features a user needs for a well visualization (distance between the eyes,
for instance).

The user must align some virtual objects in order to give the program enough
feedback for it to understand the looking necessities of that specific user. Then,
a calibration profile (with a custom name) is created, so that the user can use
it whenever is working with the device. This information translates into camera
configuration when, for example, a scene in Unity is played.

38

5.1 – Meta 2 Evaluation

(a) Name for the Calibration Profile (b) Suggestions to wear the Headset correctly

Figure 5.2: Calibration

Figure 5.3: Meta Home Prompt

Meta Home is the last piece of software worth mentioning. It is a Meta prompt
that contains three different activities or programs that can help a player or a
developer in different ways:

• Workspace Demo presents an interpretation on how Metavision’s developers
imagine the future of any work station. It displays a bunch of shelves with
different virtual objects, such as a brain or a bee. These objects are initially
small so they can be stored in the shelves and they can be taken, moved in
the space and re-sized - all of it using hands input.

• Hands Tutorial consists in several exercises to make the user understand how
to do recognizable hand gestures. As explained in previous chapters, Meta
2 does not include limited gestures but, instead, tries to interpret the usual
hand movements into already programmed actions.

• Developer Corner displays an AR game that tries to make developers aware

39

5 – Implementation

of the several input options and hand gestures that Meta 2 supports. And not
only that, some designing features are visualized too, such as Meta’s border
highlighting.

5.1.2 Meta 2 Input Methods

An interesting fact for developing with Meta 2 was the various input methods
that were included with its software. These possibilities had been already discussed
in a previous chapter, but they are needed to be recalled again.

The main input features were: Meta Hands, Meta Mouse and Meta Gaze.
This last one was the first to be considered.

Meta Gaze

One of the example scenes for the Meta Unity SDK showed that it was
possible to change some virtual objects color whenever they attracted the user’s
attention.

The gaze input was used to accomplish this task: whenever a gaze movement
ended up with the user looking to an object, the virtual object changed to a different
color; when the gaze was pointing somewhere else, the object changed to a third
color; and after some time without bringing looks to it, the object changed back to
its initial color.

The gaze input could have been used for any other task, but the switching
colors situation brought an idea for the chess game: follow the users’ head movements
to anticipate and detect which piece they will select to move. In this case, the yellow
piece display will be done based on a focused look instead of on a click.

As interesting as it might seem, the gaze input was discarded due to a lack
of information on how to change colors on a restricted part of a Game Object.
The whole chessboard reacted to the gaze gestures as the pieces were part of it and
there was no found solution to make a change of color in one piece at a time.

Also, the gaze input was forgot when the Meta Hands were contemplated as
a better approximation to an actual chess game.

Meta Hands

The player would be able to move the virtual pieces with usual hand moves
as grabbing and moving actions were already programmed features. And beyond
that, the user would be able to play with real pieces while the Meta would get these
normal hand moves and interpret them to update the position of invisible holograms.

40

5.1 – Meta 2 Evaluation

After extended tests with different scene setups, the conclusion was discarding
this input method too. The reality of the hand recognition was very different to the
one experienced in simple one-object situations. The key word for the hand input
was inaccuracy. Some proven faults were:

• The one-hand or two-hands interactions functioned correctly (most of the time)
but when the virtual objects started getting smaller, the efficiency dropped.
For the chess game, the movements had to be identifiable for the pieces, so
not having a secure event-reaction solution was not an option.

• The detection of hands around the device was another issue for the game. A
user can be taught how to make a grab movement and how to make a drop
movement - it is the same movement that anybody would do with a real object:
open one hand and close it around the object and the opposite to drop it.
But, as focused as a user can be, normally the hands get relaxed, instead
of staying in a completely open position. This casual hand placement was a
problem for the Meta perception: in some situations, it was interpreted as a
grab movement, so the pieces moved when they should not have.

• The objects around the display of the headset were few times misinterpreted
as possible hands making gestures, so, even keeping the real hands in the users
back, the pieces moved around with no user handling them.

After the decision to abandon the use of any type of hand input on the chess
game, when earlier it seemed the best and most promising approach, theMeta Mouse
was as well examined.

Meta Mouse

Similar to the gaze situation, the mouse interaction was analyzed in example
scenes. Obviously, it was a serious issue to develop for a device with incomplete
online documentation, but it seemed a good opportunity to let the user play in a
3D environment.

After familiarizing with the prefabs needed to make use of the mouse, they
were included in simple scenes to understand the moves permitted and which where
the necessary scripts to attach to a Game Object for it to react to the mouse inter-
action.

Virtual objects were found capable of being moved around with a basic mouse
control: one click meant a select action; click-and-hold was used to grab the selected
object and moving the mouse made the grabbed object move in a similar way.

The Meta Mouse was then included in the chess game and this carried several
implementation alterations.
To begin with, the required prefabs and scripts had to be added. Then, the tile

41

5 – Implementation

responses were redefined as the input information was no longer taken from the
actual computer’s mouse, but from the Meta Mouse.
It is worth remarking that the device’s mouse is a 3D mouse displayed in the headset,
so working with it is not the same as working with the usual mouse.

An issue found for the mouse was the strange sensation of moving it physically
on top of a plane surface (a table, usually) and at the same time, seeing it moving
before the eyes in a 3D environment.
This happened because the action of moving a three-dimensional object trough two
dimensions does not come with ease.

Although it would take some time for the user to get used to this new type
of mouse perception, the Meta Mouse continued being a part of the chess game
implementation.

5.1.3 Holographic Display

Apart from the difficulties found during the examination of the input meth-
ods, other concerns were related to the Meta 2 holographic display.

One of the characteristics of the prefabMetaCameraRig (the asset that repre-
sents and handles all the Meta 2 cameras in a Unity scene) was the depth occlusion.

This parameter could be checked, so that during the display the virtual ob-
jects were not occluded by those real objects interfering between the users’ eyes and
the virtual objects; or unchecked, so the virtual objects were partially or completely
occluded by the real objects depending on where they were placed.

Playing a scene where occlusion could happen made the chessboard disappear
almost completely, so a game could not be well performed, in the vast majority of
the attempts.

Discarding the occlusion, for the chessboard to show up properly, made the
user lose depth perception: the distances between the user and the virtual board and
the ones between pieces and the mouse, were not well observed and caused visual
confusion.
This found problem was finally worked out as it will be explained in subsequent
explanations.

An even more serious issue involved the holographic stability of the device.
This problem could be tackled into various points:

• Each time the virtual board was displayed, there was a high probability for
it to appear in a different location. The positions did not extremely differ
from one another, but they were indeed rapidly recognizable for not being well
located.

42

5.2 – AR player vs. Chess Engine

For example, instead of being displayed straight in front of the user, the chess-
board commonly showed up rotated around 30º left or right in the x-axis - it
was an obvious bad disposition to play.

• In few occasions, the chessboard completely lost track of the defined position
in the scene and appeared in rare placements, such as at the back of the player
or very high from the users’ eyes.

• The mentioned changes of display happened even after the first prompt of
the virtual board. Whenever the calibration engine of the Meta 2 asked for
the re-mapping of the current environment (too many times, even in controlled
situations), the user had to do some specific gaze movements to keep everything
on track.
But, as this calibration took place, instead of displaying the chessboard back
to a good position, it moved to one of the described ones.

These cases were a major problem for a project that was meant to be tested
on real users, because in addition to the lost time, the scene display must be exactly
the same for each individual test.

Trying to, at least, solve the calibration problem, one of the MetaCameraRig
aspect was revised and the effect to the scene was to not show the calibration UI
during the scene display. This way, if for any chance, the first virtual board prompt
happened to be well positioned, the calibration would not misplace the board after
that.

But this option brought a non-desired scenario: the Meta 2 cameras lost
the perception of its position and made the hologram follow the users’ head moves,
as it was attached to the users’ position. This was not desirable, as the best AR
experience should place the virtual content and let the user move around to see in
different perspectives. This alternative was finally discarded.

Knowing the holograms display issues, it was considered to change the chess
board for a full-surface one. Being so, the player will see a virtual chess board and
all the pieces involved in the game; no real pieces were involved in the game then,
so a miss-calibration would not mean an impossibility to play.
The board was thought to be helpful to the user in another way: the coordinates for
the row and columns were visible, so the player could tell quickly where each piece
was placed.

5.2 AR player vs. Chess Engine

As at this time, there was no found solution to the calibration issue, the
project was redefined in order to cope with all these obstacles. The first idea of a
game for virtual and augmented reality was then substituted for a game where the

43

5 – Implementation

Figure 5.4: New Design for Chess Board

AR player would play against a chess engine (AI). Of course, this decision meant
changes in the implementation.

The essential change to the implementation implied discarding any VR func-
tionality and finding a way to keep a great experience for the AR user even while
playing against a chess engine. Also, it had to be kept in mind that, implementing
an accurate chess AI or correlating an existing one with the Unity project, would
not have to mean giving up other more important features for the game.

Based on this, it was decided to develop a basic engine. It consisted in a
script with two main functions: one to determine the piece that had to be moved
and the other to choose a move from the possible ones. In both cases, the selection
was made randomly. As said before, the goal was to have a playable game, not a
perfect AI.

Being possible to play in an AR environment against a chess engine as any
two people could play in a real setup, a new possibility came up: instead of just
developing this game and test how real users will play, it was better to analyze how
this game could be played in two different situations. In this sense, one situation
was defined as playing an AR chess game with Meta 2 and the other situation meant
playing an AR chess game with HoloLens.

44

5.3 – Meta 2 and HoloLens Development

5.3 Meta 2 and HoloLens Development

It was found interesting to know which one of the devices would be better to
play with in a table-top game environment as the one created. There were important
reasons behind this decision.

In first place, that as the experience AR player vs. VR player had to be
discarded, the project could be led to something more than just the development of
a videogame.

Secondly, because at the beginning of the development, Meta 2 and HoloLens
were the most recently released devices of this kind and a comparison between them
was key for future AR development.

And finally, due to the fact that it was necessary to experimentally prove if
the difference between the given FOV for the devices, was noticeable for a player in
a board game display (commonly in this kind of games the player has to be able to
see the whole board and pieces situation).

Then, the project had to be rethought so that both Meta 2 and HoloLens
scenarios matched and made possible an accurate comparison between them. It is
remarkable to say that this meant a double work, as now there had to be developed
two different Unity projects for two different devices but with same UI.

5.3.1 Implementation Evolution

Following this path, the Meta Mouse input method was then discarded, as
there was not an exact equivalence for it among any of the available HoloLens inputs.
It was then developed an equal keyboard input method for both.

It consisted on the process of the information received via the computer’s
keyboard. For this matter, the player had to input the selected piece’s coordinates
and the ending tile coordinates (the tile where the piece wanted to be moved). The
coordinates were described as those of a normal chessboard, from A to H and from
1 to 8.

The game itself, each time some coordinates were introduced, translated them
into the game’s actual coordinates. This means that, as the chessboard was defined
as an 8x8 matrix, the coordinate A1 will imply the coordinate [0,0] for the game.
This conversion was done after the player had pressed the return key and verified
that the coordinates introduced were formed by two characters. This led to the
already explained situations to confirm if the coordinates belong to a possible tile
and so on.

To encourage the experimentation with real users for both devices, the main
priority was to be able to set a scene where the chessboard would be displayed in

45

5 – Implementation

an exact position at any given execution time and in any of the devices.

To accomplish this, Vuforia Engine was integrated in both Unity projects, as
it is an AR application development platform which counts on robust tracking and
performance on various devices. [37]

A commonly used image target was then used, so that each time the game
started and the camera of the wore device identified the image, the chessboard was
displayed on top of it.

For HoloLens this Vuforia implementation is common and there are plenty of
documentation about it. But, in the case of Meta 2, it was a brand-new approach
that had to be applied with no previous support.

In fact, even after obtaining a good result for this specific scene display, it is
thought that, for any other more complex situations, the Vuforia arrangement with
Meta 2 would have to be deeply explored in order to work as desired.

The already mentioned position of the chessboard was part of the require-
ments to make an equal UI for both projects, because to test the FOV in both
devices, all the distances concerning the game had to be the same, starting by the
distance between the player and the board.

5.3.2 Testing Features

Any other components for the game had to maintain this exact UI specifica-
tion. These components refer to some add-on features that were introduced in the
scene for a better understanding of the player’s comprehension of the game.

To start with, a timer was introduced. It was thought to be a countdown
from 30 seconds that signified the time left for the user to make an accepted move.
Also, it was expected to be a sign to keep the user aware of when it was their turn
and when it was the engine’s turn. If the FOV did not make possible for the user
to see this timer, it would of course make a difference in the user’s performance.

The timer’s color lettering changed when there were 5 seconds left to the end
of a turn’s time. While the timer was shown in blue, in that case it flipped to pink,
so it will call the player’s attention.

In addition, the number of times a user made the timer go down to 0 seconds
without making a move, was gathered in order to compare it for a same player in
each of the devices.

46

5.3 – Meta 2 and HoloLens Development

(a) Count down from 30 seconds (b) Pink lettering (< 5 seconds left)

Figure 5.5: Timer

For a similar purpose, a canvas was set to display a message whenever nec-
essary. In first place, when the timer showed 0 seconds left for the user, a message
remembered the user that even if they were out of time, the turn was still theirs, so
they had to make a move to keep the game going.

When the game was finished because a checkmate had occurred, a message
defining the winner of the game was also displayed.

Figure 5.6: Message as reminder for the player

The large turns counter was saved into a file each time a game ended. A
finished game was defined whenever a checkmate happened or when a time limit
was surpassed (for the tests to get fluent, this time was set in five minutes, enough
time to play and be able to realize the main facts about each device experience).

In fact, another message was displayed in the canvas when this situation
happened, in order to inform the users, they could no longer play.

Figure 5.7: Message for the End of the Game

At this point, it is advisable to know the ultimate chess game display. For
this, some pictures of the scene that would be displayed for the players are shown
below.

47

5 – Implementation

Figure 5.8: Initial Chess Game Setup

Figure 5.9: Chessboard and Timer Display

48

5.3 – Meta 2 and HoloLens Development

Figure 5.10: Full Board-Timer-Message Display

49

5 – Implementation

5.3.3 Client-Server for HoloLens

It is noticeable that for the HoloLens’ project, a client-server interaction was
needed. This situation only appears to this device, because it just needs to be
plugged in to the computer while deploying the application for the first time, but
Meta 2 is a tethered HMD.

For the communication between the server (computer) and the client (HoloLens)
the LiteNetLib library was used, as the sending information were simple strings easy
to interpret.

To achieve this communication, the HoloLens’ project had a script concerning
the main functions and some important characteristics such as the server IP and
port to connect to, and a new Unity project was needed to incorporate the server
script as well as important features of the game such as the keyboard input or the
file saving.

5.3.4 Final Software Architecture

In the previous chapter, the core Software Architecture was shown for the
chess game itself. But now, that all the implementation has been explained, it
is important to revise this architecture and complete it with the final scripts and
functionalities. The new scripts functionalities can be explained as shown below:

• Engine: it covers the chess AI functions for choosing pieces and moves when-
ever required.

• Timer: it controls the display of the counter and the messages for the player
to be aware of the time left for a move and the turns flow. It also sums the
number of turns lost during a game.

• Camera Rotation: it compiles the sum of the degrees made in each of the
three axes in terms of the player’s gaze movements during the game.

• Specific HoloLens’ Scripts

– Client: it contains the usual functionalities such as connecting to a
server, sending and receiving information. The script corresponds to the
HoloLens.

– Server: it defines functions to make possible the connection of clients
to it and to send and receive messages. This script corresponds to a
computer which has to communicate to the HoloLens so the holograms
keep updating correctly.

To understand the differences between the Meta 2 project and the HoloLens

50

5.3 – Meta 2 and HoloLens Development

project, it is better to refer to a visual diagram of the updated version of the afore-
mentioned Software Architecture:

(a) Meta2 Project

(b) HoloLens Project

Figure 5.11: Final Software Architecture

51

52

Chapter 6

User Experience and Testing

After the implementation of the projects, they had to be tested in real users
so the goal of the Thesis could be accomplished: compare the FOV of Meta 2 and
HoloLens devices.

6.1 Experiment Design

The experiments were thought to be as simple as a user playing while wearing
one of the mentioned devices at a time.

First, the image target was restricted to a certain position on top of a desk
for it to maintain the same distance from the player in all the done experiments.
For the same reason, the player was told to stay still while sitting on a chair in front
of the desk.

The chair was always found in the same place because the idea was that the
distance from the player to the table was equal for all testers. Plus, they were only
allowed to make head movements if some chess parts were not seen correctly, so that
they would not alter the distances my moving around.

After the camera would notice the image target, the chess game would setup
in that exact position (board and pieces in their initial arrangement on top of it).
To avoid a bad initialization or a large explanation about how to use the devices,
this step was done by the experimenter and then, the device would be handed over
to the player.

The player would put on the device in an adequate way so that they feel as
comfortable as possible (a bad positioning of the device could lead to fear in doing
gaze movements or the implication of the player’s hands to hold the HMD over the
eyes).

53

6 – User Experience and Testing

A brief explanation on how to play this particular chess game was given to
the player (the basic chess rules were taken for granted except when the player
demanded them).

A summary would be that they had to say out-loud the coordinates of the
tile underneath the selected piece and, then, the coordinates of the tile where the
piece wanted to me moved. The experimenter would write this data down so that
the game would update as expected.

6.2 Questionnaire

To evaluate each user’s experience, a test was then taken.

6.2.1 General User Information

Before playing, the user would have completed a general information ques-
tionnaire to know trivial data and select which one of the devices had been tried
first (the order in which the player would try the devices meant a lot to the data
gathering about their FOV):

• ID: identifies anonymously each user so that the file where the degrees and
lost turns information can be related to this questionnaire

• Name

• Age

• Sex

• How many times have you used an AR Application?

– Never

– Once or twice

– Sometimes (once a month)

– Frequently (twice or three times a week)

– Every day

• How many times have you used an AR Head Mounted Display (HMD)?

– Never

– Once or twice

54

6.2 – Questionnaire

– Sometimes (once a month)

– Frequently (twice or three times a week)

– Every day

• Which Interface did you try first?

– HoloLens

– Meta 2

6.2.2 SUS Questionnaire

After the general questions, the users had to fulfill the System Usability Scale
(SUS) test in order to evaluate each of the devices. The completion of the test was
made once for each device, right after playing with one and before playing with the
other. The SUS questionnaire consists in the following statements:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with system.

These comments had to be rated between a 1 and a 5. 1 was set whenever
the player strongly disagreed with the read statement and a 5 if they strongly agreed
with it. And, if the player’s opinion was not so polarized, any number between 1
and 5 was used to try and identified their opinion.

55

6 – User Experience and Testing

6.3 Results

6.3.1 General User Information

For the first part of the experimentation, the general user information, the
results were:

Figure 6.1: Users’ Age

Figure 6.2: Users’ Sex

56

6.3 – Results

Figure 6.3: Frequency for AR Applications

Figure 6.4: Frequency for HMD

57

6 – User Experience and Testing

Figure 6.5: First Device Tried

6.3.2 SUS Questionnaire

The SUS questionnaire responses can be expressed in the form of bar graphs
that summarize the different answers for each question. On the upper position, the
qualifications for the HoloLens can be found and the Meta 2 evaluations are placed
below them.

58

6.3 – Results

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.6: SUS Question 1

59

6 – User Experience and Testing

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.7: SUS Question 2

60

6.3 – Results

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.8: SUS Question 3

61

6 – User Experience and Testing

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.9: SUS Question 4

62

6.3 – Results

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.10: SUS Question 5

63

6 – User Experience and Testing

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.11: SUS Question 6

64

6.3 – Results

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.12: SUS Question 7

65

6 – User Experience and Testing

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.13: SUS Question 8

66

6.3 – Results

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.14: SUS Question 9

67

6 – User Experience and Testing

(a) HoloLens evaluation

(b) Meta 2 evaluation

Figure 6.15: SUS Question 10

6.4 User Tests Analysis

Up to ten users were tested to obtain quite significant feedback to compare
the FOV in a proper way. Once all the tests were fulfilled, the users’ answers were
interpreted.

68

6.4 – User Tests Analysis

6.4.1 General User Information

The ten users selected for the project’s experiment were between the ages of
20 and 28, being the average approximately 23 years old. The majority of them
identified themselves as male (70%) while the female presence was only of 3 people.

Most of the users had tried an AR Application once or twice before using
the AR chess game. It is remarkable that apart from this tendency, one of the
individuals had never tried an application of this type, another one exposed that it
sometimes used AR and a last one was using it on a daily basis.

For the utilization of a HMD, there was not a defined tendency, but a tied
40% had never tried one or had tried it only once or twice. A similar situation to the
AR Application was recorded here: a user was familiarized with the HMD because
of a daily use and another one used it about once a month.

It was established that each new user had to try first the device that their
predecessor had tried on a second place. This rule was followed strictly except for
one misplaced case.

6.4.2 SUS Questionnaire

The data used for the following calculations is based on the grouped results
below.

An H0 is proposed like µAR = µV R and an H1 of both means being different.
Considering µAR = 25.3 and σ2

AR = 86.9 for the HoloLens results and, for the Meta
2 experience, µV R = 34.5 and σ2

V R = 13.39.

Following an un-paired Student’s t-distribution, the probability obtained is
0,00038 (lower than 5%). This means that the null hypothesis can be rejected. In
other words, it can be claimed, for now and only based in these results, that the
Meta 2 device is noticeable preferred to play with than the HoloLens one.

User Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
1 1 2 1 4 3 3 3 1 2 4
2 1 4 3 4 1 4 2 0 1 4
3 0 4 3 2 4 3 4 0 1 4
4 0 4 4 1 3 4 2 1 1 4
5 1 2 1 3 1 3 1 0 1 4
6 2 3 2 4 3 3 3 2 2 4
7 0 3 2 2 2 3 1 2 0 3
8 3 4 3 3 3 4 3 2 1 3
9 3 3 2 4 3 3 3 0 3 4
10 3 4 3 4 4 4 4 2 4 4

69

6 – User Experience and Testing

Table 6.1: Results obtained by testing the HoloLens device

User Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
1 2 4 4 4 3 4 3 2 4 4
2 2 4 4 3 4 4 2 3 3 4
3 2 4 4 2 4 3 4 3 3 4
4 4 4 4 3 3 4 4 3 4 4
5 3 3 3 3 3 4 4 2 3 4
6 4 4 3 4 3 3 4 3 3 4
7 2 3 4 3 3 4 4 3 3 4
8 4 4 3 4 4 4 3 3 2 4
9 4 4 3 4 3 4 3 3 4 4
10 3 4 3 4 4 4 4 3 4 4

Table 6.2: Results obtained by testing the Meta 2 device

6.4.3 Lost Turns

The results for the turns that the players did not manage to play can be
summarize as follows:

User Turns HoloLens Turns Meta 2
1 3 2
2 3 1
3 2 0
4 2 0
5 2 3
6 2 0
7 2 2
8 2 0
9 2 2
10 2 1

Table 6.3: Turns lost during HoloLens and Meta 2 testing

Based on the data presented above, an H0 is proposed defining µAR = µV R

and an H1 proposing that both means are different. Grating that µAR = 2.2 and
σ2

AR = 0.18 for the HoloLens experience and µV R = 1.1 and σ2
V R = 1.21 for the Meta

2 results.

Following an un-paired Student’s t-distribution, the probability obtained is
0,013 (lower than 5%). This means that the null hypothesis can be declined. This
means that it can be confirmed, based on the turns data, that Meta 2 HMD is a
better option than HoloLens.

70

6.5 – Conclusion

6.5 Conclusion

The users’ marks for HoloLens were clearly lower than the ones given to Meta
2. Although before the tests were taken, it was considered that a wider field of view
will make the difference for a table-top game, it was not expected an obvious and
defined result like the one obtained.

During the experimentation, it was observed that the players who tried
HoloLens first, did manage to play by moving their heads quite much. When they
wore Meta 2, they felt surprised to see the complete board without even turning
their gaze. They seemed then relieved and played more fluently.

In fact, they usually talked about their first impressions and thoughts, and
the most repeated one was the fact that with HoloLens they had omitted some of
the features, for instance, the messages in the canvas, because they did not even
know they existed.

When the opposite situation happened - Meta 2 was experienced before
HoloLens - they played calmly at first, as in a usual chess game.

But when putting on the second mentioned device, they started to feel similar
to trapped, to do nervous movements and to claim that there had to be something
wrong with the display.
After explaining that the HMD was just like that, the users understood it was not
a mistake, but they kept feeling uncomfortable.

In addition to the questionnaire, a non-compulsory comment section was
available for the users to write down any thoughts about the experiences they had
with both devices. They were informal statements, so they have not been formally
analyzed, but they are worth mentioning.

Many of the comments referred to HoloLens for not making the whole chess
setup visible and for not being adapted to people wearing eyeglasses. The only
objection to Meta 2 was that it was a heavy device to wear on the head.

After all these informal data and, more importantly, observing the aforemen-
tioned statistical results, it can be concluded for this Master Thesis that the Meta
2 FOV is significantly preferred to the HoloLens FOV.

71

72

Chapter 7

Future Work

The project could be defined as complete and finished, but it is obvious
that a more detailed experimentation to compare the HoloLens and Meta2 FOV
could be designed. The users’ experiences could be registered not only via the SUS
questionnaire but by means of other respected tests such as the NASA-TLX. [38]

Other future aims that could arise from this project could be related to
previous ideas that were discarded during the implementation.

The first idea of developing an ARvs. VR chess game could finally find its
way counting on Meta 2 implementation with the Vuforia Engine for the AR and,
for example, the already considered Oculus Rift for the VR.

This development would follow the path of trying to improve the chess game
user experience by means of holographic superposition to a real board and pieces.
Common hand movements or natural voice commands could be a step forward this
searched experience.

On the other hand, an interesting assignment could be developing the AR
chess game for the HoloLens and Meta 2, but this time with the goal of playing
together. This way the real chessboard would be enriched with holographic displays
for both players.

One last purpose for a future investigation could be updating the actual
work by comparing the FOV of Meta 2 and HoloLens 2. When this project started
this last device had not been released yet, but now, it seems like a very appealing
comparison: HoloLens 2 FOV is rated in 70º. [39]

73

7 – Future Work

Figure 7.1: HoloLens 2 [40]

The FOV of Meta 2 is still larger than HoloLens 2, but it would be intriguing
to know if players would still favor Meta 2 over HoloLens 2 in an evident way as
they did with HoloLens in this project’s tests. A not so big difference between FOVs
could lead to a large variety of opinions to which device is better to play with.

To conclude, several works could be related to this one in a near future, from
improving this project to starting a new one based on ideas inspired by it. Even the
pieces and animations designs for the chess game or the use of another type of game
to compare the devices, could be topics of debate and evaluation.

74

Acronyms

AR Augmented Reality

HWD Head Worn Displays

HMD Head Mounted Displays

FOV Field of View

UI User Interface

SUS System Usability Scale

HD High Definition

MP Mega Pixel

IMU Inertial Measurement Unit

LED Light-Emitting Diode

TPM Total Productive Maintenance

LE Low Energy

RAM Random Access Memory

GPU Graphics Processing Unit

SDK Software Development Kit

UWP Universal Windows Platform

CPU Central Processing Unit

OS Operating System

IR Infrared

API Application Programming Interface

VR Virtual Reality

75

7 – Future Work

IDE Integrated Development Environment

AI Artificial Intelligence

TLX Task Load Index

76

Appendices

77

Appendix A

Chess in Computing History

Chess game possibly arrived at the Western world from India through Persia
in the sixth century. Its origins happened to be royal, as it was considered a test for
one’s intelligence and knowledge of the battlefield.

It is a two-player board game composed of several pieces that can be moved
only by some restrictive rules. These six tokens are: King, Queen, Rook, Knight,
Bishop and Pawn. Also, it is described as a zero-sum, perfect information game.

Zero-sum means that one player’s good move implies the other player’s detri-
ment; and perfect information signifies that the entire game, at each and every
single step, is entirely visible for both players. The game also involves the Markov
property: prior moves are not necessary to figure out what move should be played
next.

For computer scientists, chess is combinatorial: each move generates a com-
bination of possibilities. In fact, in terms of search, chess can be seen as a bounded
branch problem, where a large set of branching opportunities are constrained by
bad moves at the end of the branch and rich moves at the top of it. This constraint
can be pruned, due to the possibility of ignoring one branch after one has decided
that a particular path is not better than other.

The first attempt of a chess playing machine was the so called “Turk”. Wolf-
gang von Kempelen, a diplomat and inventor, self-proclaimed it in the year 1770.

It consisted of a board lying on top of a large box where the pieces moved,
supposedly by an enigmatic hidden machinery, in response to a human rival. The
fake was ultimately discovered, but it had already set up a building chess playing
machine competition.

Although a chess playing automaton was expected to land sooner or later,
the invention of the electronic computer in the twentieth century made a twist in
the chess automatization.

79

A – Chess in Computing History

Figure A.1: The Turk [41]

The well-known computer pioneers Alan Turing, in England, and John Von
Neumann and Claude Shannon, in the United States, put out the question of making
a machine think like a person. This same question was tied with making a machine
play chess.

In fact, Turing started an investigation on the topic with a paper-and-pencil
written system that was continued by Shannon. The actual aim for it was not
exactly the chess game itself, but to be able to build a brain.

In 1951, Turing’s colleague, Dietrich Prinz published the first automated
chess playing program. This program solved the “mate-in-two” problem: find the
best move knowing it is two moves from checkmate, but it could not make it to a
complete game due to memory and computational of the Ferranti Mark I computer
(Manchester University).

Seven years later, in 1958, an IBM researcher named Alex Bernstein wrote
the first complete program running on the IBM 704 mainframe.

Was then Von Neumann, who anticipated the MiniMax algorithm, so suc-
cessful in playing chess. It tries to maximize one player’s score while minimizing
the opponent’s one. By the end of the 1950s, this algorithm was improved with
heuristics after examining several tactics and strategies from human players.

After that, Allen Newell and Herbert Simon combined the MiniMax with
the alpha-beta technique: pruning (speeding up the search by ignoring known poor
moves) into the NSS program.

By the decade of the 1960s, there existed a real automated chess who could

80

A – Chess in Computing History

play against a human opponent. Indeed, by 1962, a MIT students’ program could
beat amateur chess players. By 1967, an improved MIT system achieved a 1400
score, comparable to a very good high school player.

During the 1970s, not only the already written chess programs were improved
by effective heuristics and newly designed searches, but hardware sped up and was
specially created for chess gaming purposes.
In 1978, after the ten years expressed in the famous International Master David
Levy’s bet, a match was scheduled to determine this bet outcome. Levy won to the
CHESS 4.7, the top program at that time.

The 1980s launched the era of personal computers. Being so, chess playing
games were sold in the public market and played everywhere.

Then came the World Microcomputer Chess Championships (WMCCC): the
first official computer-only chess competitions. It is remarkable to mention the
$100,000 award offered to any computer program that could defeat a current World
Chess Champion, the so called Fredkin Prize.

Carnegie Mellon researchers landed Deep Thought, the first program capable
of playing Grand Master level chess. By the end of the 80s, this system had already
won games against several human Grand Masters.

IBM purchased Deep Thought with the only goal of winning a game to Garry
Kasparov, the current world champion. The chess programming group was led by
Carnegie original team. But, in 1989, Kasparov won smoothly.

It was not until 1997, that the rematch materialized, this time with the
renamed Deep Blue, which could evaluate two hundred million chess positions per
second. The game was recorded in a television studio in order to broadcast the
event. The match lasted up to six games and ended up with Deep Blue victory.

(a) Kasparov before starting the game (b) Kasparov 7 steps into losing to Deep Blue

Figure A.2: Deep Blue vs. Garry Kasparov [42]

Nowadays, Deep Blue’s chess abilities are available on our laptops, smart-
phones and even, as this work discusses, in our HMD. And chess happens to be the
most popular board game. [43]

81

82

List of Figures

2.1 Simplified representation of a "virtuality continuum" [2] 3
2.2 Volkswagen’s MARTA application [5] 4
2.3 Google Glass [6] . 5
2.4 Tourism application showing user’s location and nearby points of in-

terest [8] . 7
2.5 AR popular applications examples . 8

2.5a Google Translate App [10] . 8
2.5b Playing Eye Toy 3 [11] . 8
2.5c Pokémon Go Display [12] . 8

3.1 Microsoft HoloLens [14] . 10
3.2 HoloLens Clicker [16] . 13
3.3 Air Tap gesture [19] . 15
3.4 Meta 2 Development Kit [20] . 17
3.5 Meta Hands’ detection and information display 21

3.5a Hand recognition . 21
3.5b Possible hand action . 21
3.5c Object is being grabbed . 21

3.6 Meta Mouse prompt when it is activated 21

4.1 The Pawn . 26
4.1a 2D interpretation . 26
4.1b 3D interpretation . 26

4.2 The Rook . 26
4.2a 2D interpretation . 26
4.2b 3D interpretation . 26

4.3 The Knight . 27
4.3a 2D interpretation . 27
4.3b 3D interpretation . 27

4.4 The Bishop . 27
4.4a 2D interpretation . 27
4.4b 3D interpretation . 27

4.5 The Queen . 28
4.5a 2D interpretation . 28
4.5b 3D interpretation . 28

83

List of Figures

4.6 The King . 28
4.6a 2D interpretation . 28
4.6b 3D interpretation . 28

4.7 The Chess Board . 29
4.7a 2D interpretation . 29
4.7b 3D interpretation . 29

4.8 Interaction between Game Components 32
4.9 Red highlighting represents possible capture of a piece 33
4.10 Blue highlighting represents possible moves 34

4.10a Pawn Moves . 34
4.10b Rook Moves . 34
4.10c Knight Moves . 34
4.10d Bishop Moves . 34
4.10e Queen Moves . 34
4.10f King Moves . 34

4.11 Plutchik’s Wheel of Emotions [35] . 35

5.1 Headset Diagnostic . 38
5.1a Initial warnings . 38
5.1b Drivers being checked . 38

5.2 Calibration . 39
5.2a Name for the Calibration Profile 39
5.2b Suggestions to wear the Headset correctly 39

5.3 Meta Home Prompt . 39
5.4 New Design for Chess Board . 44
5.5 Timer . 47

5.5a Count down from 30 seconds 47
5.5b Pink lettering (< 5 seconds left) 47

5.6 Message as reminder for the player 47
5.7 Message for the End of the Game . 47
5.8 Initial Chess Game Setup . 48
5.9 Chessboard and Timer Display . 48
5.10 Full Board-Timer-Message Display 49
5.11 Final Software Architecture . 51

5.11a Meta2 Project . 51
5.11b HoloLens Project . 51

6.1 Users’ Age . 56
6.2 Users’ Sex . 56
6.3 Frequency for AR Applications . 57
6.4 Frequency for HMD . 57
6.5 First Device Tried . 58
6.6 SUS Question 1 . 59

6.6a HoloLens evaluation . 59
6.6b Meta 2 evaluation . 59

6.7 SUS Question 2 . 60

84

List of Figures

6.7a HoloLens evaluation . 60
6.7b Meta 2 evaluation . 60

6.8 SUS Question 3 . 61
6.8a HoloLens evaluation . 61
6.8b Meta 2 evaluation . 61

6.9 SUS Question 4 . 62
6.9a HoloLens evaluation . 62
6.9b Meta 2 evaluation . 62

6.10 SUS Question 5 . 63
6.10a HoloLens evaluation . 63
6.10b Meta 2 evaluation . 63

6.11 SUS Question 6 . 64
6.11a HoloLens evaluation . 64
6.11b Meta 2 evaluation . 64

6.12 SUS Question 7 . 65
6.12a HoloLens evaluation . 65
6.12b Meta 2 evaluation . 65

6.13 SUS Question 8 . 66
6.13a HoloLens evaluation . 66
6.13b Meta 2 evaluation . 66

6.14 SUS Question 9 . 67
6.14a HoloLens evaluation . 67
6.14b Meta 2 evaluation . 67

6.15 SUS Question 10 . 68
6.15a HoloLens evaluation . 68
6.15b Meta 2 evaluation . 68

7.1 HoloLens 2 [40] . 74

A.1 The Turk [41] . 80
A.2 Deep Blue vs. Garry Kasparov [42] 81

A.2a Kasparov before starting the game 81
A.2b Kasparov 7 steps into losing to Deep Blue 81

85

86

List of Tables

4.1 Emotion-color associations as represented by Plutchik [36] 35

6.1 Results obtained by testing the HoloLens device 69
6.2 Results obtained by testing the Meta 2 device 70
6.3 Turns lost during HoloLens and Meta 2 testing 70

87

88

Bibliography

[1] Christian Crisostomo. Introduction to ar headsets technol-
ogy: The field of view. https://arpost.co/2018/09/27/
introduction-to-ar-headsets-technology-the-field-of-view/, 2018.

[2] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual dis-
plays. IEICE TRANSACTIONS on Information and Systems, 77(12):1321–
1329, 1994.

[3] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon
Julier, and Blair MacIntyre. Recent advances in augmented reality. IEEE
computer graphics and applications, 21(6):34–47, 2001.

[4] Huffington Post. The lengthy history of augmented reality. http:
//images.huffingtonpost.com/2016-05-13-1463155843-8474094-AR_
history_timeline.jpg, 2016.

[5] Volkswagen. Virtual technologies. https://www.volkswagenag.com/en/
group/research/virtual-technologies.html, 2019.

[6] John Minchillo. Google glass to go on sale to the u.s. public for
one day next week. https://business.financialpost.com/technology/
google-glass-public-sale, 2014.

[7] Reality. The ultimate guide to understanding augmented reality (ar) technol-
ogy. https://www.realitytechnologies.com/augmented-reality/, 2018.

[8] Andrea Sanna and Federico Manuri. A survey on applications of augmented
reality. Advances in Computer Science: an International Journal, 5(1):18–27,
2016.

[9] Vlasios Kasapakis, Damianos Gavalas, and Panagiotis Galatis. Augmented re-
ality in cultural heritage: Field of view awareness in an archaeological site mo-
bile guide. Journal of Ambient Intelligence and Smart Environments, 8(5):501–
514, 2016.

[10] Google Play. Google translate. https://play.google.com/store/apps/
details?id=com.google.android.apps.translate&hl=en, 2010.

[11] Martin Coxall. Eyetoy: Play 3. https://www.eurogamer.net/articles/r_
eyetoyplay3_ps2, 2006.

[12] Josep M. Berengueras. Pokémon go añadirá 80 nuevas criaturas
esta semana. https://www.elperiodico.com/es/tecnologia/20170215/
pokemon-go-nuevos-actualizacion-5839511, 2017.

[13] Michael Alba. First look: The meta 2 ar headset. https://www.engineering.
com/ARVR/ArticleID/16474/First-Look-The-Meta-2-AR-Headset.aspx,

89

https://arpost.co/2018/09/27/introduction-to-ar-headsets-technology-the-field-of-view/
https://arpost.co/2018/09/27/introduction-to-ar-headsets-technology-the-field-of-view/
http://images.huffingtonpost.com/2016-05-13-1463155843-8474094-AR_history_timeline.jpg
http://images.huffingtonpost.com/2016-05-13-1463155843-8474094-AR_history_timeline.jpg
http://images.huffingtonpost.com/2016-05-13-1463155843-8474094-AR_history_timeline.jpg
https://www.volkswagenag.com/en/group/research/virtual-technologies.html
https://www.volkswagenag.com/en/group/research/virtual-technologies.html
https://business.financialpost.com/technology/google-glass-public-sale
https://business.financialpost.com/technology/google-glass-public-sale
https://www.realitytechnologies.com/augmented-reality/
https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=en
https://www.eurogamer.net/articles/r_eyetoyplay3_ps2
https://www.eurogamer.net/articles/r_eyetoyplay3_ps2
https://www.elperiodico.com/es/tecnologia/20170215/pokemon-go-nuevos-actualizacion-5839511
https://www.elperiodico.com/es/tecnologia/20170215/pokemon-go-nuevos-actualizacion-5839511
https://www.engineering.com/ARVR/ArticleID/16474/First-Look-The-Meta-2-AR-Headset.aspx
https://www.engineering.com/ARVR/ArticleID/16474/First-Look-The-Meta-2-AR-Headset.aspx

Bibliography

2018.
[14] Microsoft. Hololens (1st gen) hardware details. https://docs.microsoft.

com/en-us/windows/mixed-reality/hololens-hardware-details, 2018.
[15] Install the tools. https://docs.microsoft.com/en-us/windows/

mixed-reality/install-the-tools#installation-checklist, 2019.
[16] Microsoft. Head-gaze and commit. https://docs.microsoft.com/en-us/

windows/mixed-reality/gaze-and-commit, 2019.
[17] Microsoft. Windows 10 sdk. https://developer.microsoft.com/en-us/

windows/downloads/windows-10-sdk, 2019.
[18] Microsoft. Mixed reality documentation. https://docs.microsoft.com/

en-us/windows/mixed-reality/, 2019.
[19] Microsoft. Gestures. https://docs.microsoft.com/en-us/windows/

mixed-reality/gestures, 2019.
[20] Kari Pulli. Immersive optical-see-through ar with meta 2.

http://on-demand.gputechconf.com/gtc/2017/presentation/
s7757-pulli-immersive-optical-see-through-vr.pdf, 2017.

[21] XinReality: Virtual Reality and Augmented Reality Wiki. Meta 2. https:
//xinreality.com/wiki/Meta_2, 2017.

[22] Metavision. Sdk features. https://docs.metavision.com/external/doc/
latest/sdk_features.html, 2018.

[23] Metavision. Meta hands. https://docs.metavision.com/external/doc/
latest/meta_hands, 2018.

[24] Metavision. Meta mouse. https://docs.metavision.com/external/doc/
latest/meta_mouse, 2018.

[25] Metavision. Meta gaze. https://docs.metavision.com/external/doc/
latest/meta_gaze.html, 2018.

[26] Virtual Reality Society. What is virtual reality? https://www.vrs.org.uk/
virtual-reality/what-is-virtual-reality.html, 2017.

[27] Oculus. What’s in the box. https://www.oculus.com/rift/
#oui-csl-rift-games=robo-recall, 2016.

[28] Wikipedia. Unity (game engine). https://en.wikipedia.org/wiki/Unity_
(game_engine), 2019.

[29] Unity. Scenes. https://docs.unity3d.com/Manual/CreatingScenes.html,
2019.

[30] Unity. Gameobjects. https://docs.unity3d.com/Manual/GameObjects.
html, 2019.

[31] Unity. Scripting. https://docs.unity3d.com/Manual/ScriptingSection.
html, 2019.

[32] Unity. Asset workflow. https://docs.unity3d.com/Manual/
AssetWorkflow.html, 2019.

[33] Unity. Prefabs. https://docs.unity3d.com/es/current/Manual/Prefabs.
html, 2018.

[34] Wikipedia. Microsoft visual studio. https://en.wikipedia.org/wiki/
Microsoft_Visual_Studio, 2019.

90

https://docs.microsoft.com/en-us/windows/mixed-reality/hololens-hardware-details
https://docs.microsoft.com/en-us/windows/mixed-reality/hololens-hardware-details
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools#installation-checklist
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools#installation-checklist
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze-and-commit
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze-and-commit
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows/mixed-reality/
https://docs.microsoft.com/en-us/windows/mixed-reality/
https://docs.microsoft.com/en-us/windows/mixed-reality/gestures
https://docs.microsoft.com/en-us/windows/mixed-reality/gestures
http://on-demand.gputechconf.com/gtc/2017/presentation/s7757-pulli-immersive-optical-see-through-vr.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7757-pulli-immersive-optical-see-through-vr.pdf
https://xinreality.com/wiki/Meta_2
https://xinreality.com/wiki/Meta_2
https://docs.metavision.com/external/doc/latest/sdk_features.html
https://docs.metavision.com/external/doc/latest/sdk_features.html
https://docs.metavision.com/external/doc/latest/meta_hands
https://docs.metavision.com/external/doc/latest/meta_hands
https://docs.metavision.com/external/doc/latest/meta_mouse
https://docs.metavision.com/external/doc/latest/meta_mouse
https://docs.metavision.com/external/doc/latest/meta_gaze.html
https://docs.metavision.com/external/doc/latest/meta_gaze.html
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.oculus.com/rift/#oui-csl-rift-games=robo-recall
https://www.oculus.com/rift/#oui-csl-rift-games=robo-recall
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/AssetWorkflow.html
https://docs.unity3d.com/Manual/AssetWorkflow.html
https://docs.unity3d.com/es/current/Manual/Prefabs.html
https://docs.unity3d.com/es/current/Manual/Prefabs.html
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

Bibliography

[35] Robert Plutchik. The nature of emotions: Human emotions have deep evolu-
tionary roots, a fact that may explain their complexity and provide tools for
clinical practice. American scientist, 89(4):344–350, 2001.

[36] Evi Joosten, Giel Van Lankveld, and Pieter Spronck. Colors and emotions
in video games. In 11th International Conference on Intelligent Games and
Simulation GAME-ON, pages 61–65, 2010.

[37] Unity. Vuforia. https://docs.unity3d.com/Manual/
vuforia-sdk-overview.html, 2019.

[38] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load in-
dex): Results of empirical and theoretical research. In Advances in psychology,
volume 52, pages 139–183. Elsevier, 1988.

[39] Ben Lang. Microsoft reveals hololens 2 with more than 2x field
of view & 47 pixels per-degree. https://www.roadtovr.com/
microsoft-hololens-2-announcement-2x-fov-47-pixels-per-degree/,
2019.

[40] Microsoft. Hololens2 - a new vision for computing. https://www.microsoft.
com/en-us/hololens/hardware, 2019.

[41] BBC News. A point of view: Chess and 18th century artificial intelligence.
https://www.bbc.com/news/magazine-21876120, 2013.

[42] Leontxo García. Los trucos de ibm contra kaspárov. https://elpais.
com/deportes/2017/06/08/la_bitacora_de_leontxo/1496908568_067804.
html, 2017.

[43] Erik J. Larson. A brief history of computer chess. https://thebestschools.
org/magazine/brief-history-of-computer-chess/, 2015.

91

https://docs.unity3d.com/Manual/vuforia-sdk-overview.html
https://docs.unity3d.com/Manual/vuforia-sdk-overview.html
https://www.roadtovr.com/microsoft-hololens-2-announcement-2x-fov-47-pixels-per-degree/
https://www.roadtovr.com/microsoft-hololens-2-announcement-2x-fov-47-pixels-per-degree/
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
https://www.bbc.com/news/magazine-21876120
https://elpais.com/deportes/2017/06/08/la_bitacora_de_leontxo/1496908568_067804.html
https://elpais.com/deportes/2017/06/08/la_bitacora_de_leontxo/1496908568_067804.html
https://elpais.com/deportes/2017/06/08/la_bitacora_de_leontxo/1496908568_067804.html
https://thebestschools.org/magazine/brief-history-of-computer-chess/
https://thebestschools.org/magazine/brief-history-of-computer-chess/

	Acknowledgements
	Abstract
	Introduction
	Augmented Reality
	Brief History
	AR Technologies and Architectures
	AR Applications

	Augmented Reality Devices
	HoloLens
	Specifications
	Main Gestures
	Composite Gestures

	Meta 2
	Specifications
	Main Interaction Features

	Design
	Useful Contextual Terms
	Virtual Reality
	Platforms

	Chess Game
	Game Interpretation
	Programming Characteristics
	Software Architecture
	Color Selection

	Implementation
	Meta 2 Evaluation
	Meta 2 Tools
	Meta 2 Input Methods
	Holographic Display

	AR player vs. Chess Engine
	Meta 2 and HoloLens Development
	Implementation Evolution
	Testing Features
	Client-Server for HoloLens
	Final Software Architecture

	User Experience and Testing
	Experiment Design
	Questionnaire
	General User Information
	SUS Questionnaire

	Results
	General User Information
	SUS Questionnaire

	User Tests Analysis
	General User Information
	SUS Questionnaire
	Lost Turns

	Conclusion

	Future Work
	Acronyms
	Appendices
	Chess in Computing History
	List of Figures
	List of Tables
	Bibliography

