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Modification of the Thomas model for predicting

unsymmetrical breakthrough curves using an adaptive

neural-based fuzzy inference system

Mohammad Javad Amiri, Maryam Khozaei and Antonio Gil
ABSTRACT
The Thomas equation is a popular model that has been widely used to predict breakthrough curves

(BTCs) when describing the dynamic adsorption of different pollutants in a fixed-bed column system.

However, BTCs commonly exhibit unsymmetrical patterns that cannot be predicted using empirical

equations such as the Thomas model. Fortunately, adaptive neural-based fuzzy inference systems

(ANFISs) can be used to model complex patterns found in adsorption processes in a fixed-bed

column system. Consequently, a new hybrid model merging Thomas and an ANFIS was introduced to

estimate the performance of BTCs, which were obtained for Cd(II) ion adsorption on ostrich bone

ash-supported nanoscale zero-valent iron (nZVI). The results obtained showed that the fair

performance of the Thomas model (NRMSE¼ 27.6% and Ef¼ 64.6%) improved to excellent

(NRMSE¼ 3.8% and Ef¼ 93.8%) due to the unique strength of ANFISs in nonlinear modeling. The

sensitivity analysis indicated that the initial solution pH was a more significant input variable

influencing the hybrid model than the other operational factors. This approach proves the potential of

this hybrid method to predict BTCs for the dynamic adsorption of Cd(II) ions by ostrich bone ash-

supported nZVI particles.
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INTRODUCTION
Cadmium compounds are extensively applied in many

industries such as metal plating facilities, paint pigments,

mining operations, stabilizers and silver-cadmium batteries

(Boparai et al. ). The release of these compounds into

the environment can cause adverse health effects for

humans such as kidneys disease, high blood pressure, lung

insufficiency and bone defects (Boparai et al. ). As a

result, cadmium is considered as priority pollutant by the

Agency for Toxic Substances and Disease Registry of the

USA (www.atsdr.cdc.gov). The maximum concentration
level of cadmium in drinking water is 0.005 mg L–1 as set

by the Council of the European Communities in .

Adsorption has been considered to be an alternative

method to conventional and modern wastewater treatments

for the removal of Cd(II) from wastewater due to its high

efficiency, simplicity, low-cost and adaptability (Boparai

et al. ; Boparai et al. ). A great deal of attention

has recently focused on the application of nanoscale zero-

valent iron (nZVI) for the elimination of heavy metals

(Zhang et al. ; Soleymanzadeh et al. ; Gil et al.

). However, nZVI has limited applications in waste-

water treatment due to its tendency to aggregate and

oxidize (Zhang et al. ; Gil et al. ). To resolve this

problem, porous materials such as ostrich bone ash has

been employed to support nZVI (Arshadi et al. ; Gil
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et al. ), which can subsequently be separated using an

external magnetic field without the need for filtration and

centrifugation. Although several researchers (Boparai et al.

; Boparai et al. ; Zhang et al. ; Soleymanzadeh

et al. ) have shown the potential of stabilized nZVI as

an adsorbent for Cd(II) removal under laboratory batch con-

ditions, the performance of nZVI supported on porous

materials for Cd(II) ion removal in a fixed-bed column has

not been investigated.

The performance of fixed-bed adsorption is assessed by

plotting an effluent concentration-time profile or break-

through curve (BTC). However, as fixed-bed adsorption

experiments are costly, difficult and time-consuming, an

ability to predict BTCs could be a good and speedy alterna-

tive to the measurable column experiments for describing

the adsorption process in fixed-bed systems. Therefore, a

variety of mathematical empirical equations such as

Bohart–Adams (Bohart & Adams ), Thomas (Thomas

), bed-depth service time (BDST) (Hutchins ) and

Yoon–Nelson (Yoon & Nelson ) have been widely

used to describe BTCs. Of these, the Thomas model is the

most widely used due to its simplicity and applicability for

different pollutants. This model is appropriate to predict the

adsorption process when internal and external diffusion resist-

ances can be ignored. Furthermore, this model supposes that

the adsorption process is described by pseudo-second-order

reversible reaction kinetics and Langmuir isotherm at equili-

brium (Han et al. ; Hasan et al. ; Chowdhury &

Saha ). This model considered that the adsorption process

is not limited by the chemical reaction but controlled by the

mass transfer at the interface (Hasan et al. ; Chowdhury

& Saha ). Although these traditional methods, particularly

the Thomas model, are able to well predict symmetrical

BTCs, they are not particularly suitable for data fitting with

unsymmetrical BTCs (Tovar-Gomez et al. ).

In recent years, artificial neural networks (ANNs) have

been successfully used to estimate the performance of BTCs

(Cavas et al. ; Chowdhury & Saha ; Tovar-Gomez

et al. ; Oguz & Ersoy ; Masomi et al. ; Oguz

). To date, no studies have considered the adaptive

neural-based fuzzy inference system (ANFIS) even though

this model can be employed as an alternative when modeling

complex input–output dependencies, like estimation of the

elastic constant of rocks (Singh et al. ), evapotranspiration
om https://iwaponline.com/jwh/article-pdf/17/1/25/564884/jwh0170025.pdf
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estimation (Kisi & Ozturk ), prediction of nitrate (Mou-

savi & Amiri ), predicting lead removal from aqueous

media (Amiri et al. ), leaf area prediction (Amiri & Sha-

bani ), etc. The ANFIS can model the complex patterns

seen in adsorption processes in a fixed-bed column system.

In the present work, a new hybrid approach that combines

both the Thomas and ANFIS models to estimate the perform-

ance of BTCs for the adsorption of Cd(II) ions by ostrich bone

ash-supported nZVI is presented. The normalized root mean

square error (NRMSE), efficiency (Ef) and linear regression

were calculated for both observed and estimated data in

order to evaluate the performance of this hybrid approach.
MATERIALS AND METHODS

Materials

Chemicals purchased from Aldrich Co. (Germany), includ-

ing Cd(NO3)2 4H2O, FeCl2 4H2O, NaBH4, HCl and

NaOH, were of analytical grade. Different concentrations

of cadmium(II) were prepared by diluting a stock solution

(1,000 mg L�1).

Preparation of the adsorbent

The ostrich bone waste used in these experiments was

obtained from a local butcher’s store. The following pro-

cedure was used to prepare ostrich bone ash (OBA):

Ostrich bone waste
Boiling in water=2h
Dried at 70�C for 24h

Solid wastes
Burning in air at 550�C for 24h

Pulverized with a 45� 80 range mesh
OBA

Ostrich bone ash-supported nZVI was prepared by redu-

cing FeCl3.6H2O using NaBH4 as a reducing agent and

ostrich bone ash as a support material, following the pro-

cedure reported by Zhang et al. (). Briefly, 10 g of

FeCl3.6H2O and 4 g of ostrich bone ash were mixed in

100 mL of ethanol/water mixture (30%, v/v) and shaken

for 30 min at room temperature. A sodium borohydride sol-

ution containing 1.8 g of NaBH4 in 100 mL deionized water

was then added dropwise while stirring under an N2 atmos-

phere. The resulting black particles were allowed to settle
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and filtered using a vacuum filtration funnel. The average

pore diameter and pore volume of the adsorbent obtained,

which displayed a mesoporous structure, were 11 nm and

0.31 cm3 g�1, respectively. The specific surface area was

108.9 m2 g�1, thus indicating the high adsorption capacity

for Cd(II) ions. Ca, P and Fe were found to be present in

24.2, 14.1 and 18.9 wt.%, respectively, thus showing the suc-

cessful stabilization of nZVI. This adsorbent is fully

characterized in the supplementary data (available with

the online version of this paper) and explained by detail in

a previous study from our group (Amiri et al. ).

Column experiments

Continuous flow experiments were conducted in a glass

column with an i.d. of 2 cm and a height of 25 cm. A sche-

matic diagram of the laboratory column study is presented

in Figure S5 (available online). Cadmium(II) solution was

fed upward into the columns using a peristaltic pump to

maintain a constant flow rate. Cadmium(II) BTC was deter-

mined using different influent concentrations (50, 100 and

150 mg L–1), bed heights (8, 12 and 16 cm), feed flow rates

(0.5, 1, 1.5, 10, 20 and 30 mLmin�1) and pH (2, 5, 7 and 9).

The effluent samples were collected at pre-defined time inter-

vals and the Cd(II) concentration determined using atomic

absorption spectroscopy. The following equations were

employed to investigate the column data (Cavas et al. ):

Effluent volume ¼ Q � te (1)

Total amount of metal ions sent through the column

(mtotal, mg) ¼ CO �Q � te
1000

(2)

Total quantity of metal ions adsorbed in the column

(mads, mg) ¼ Q �
ð

t¼te

t¼0
Cad dt (3)

Removal percentage ¼ mads

mtotal
�100 (4)

qads ¼ mads

M
(5)

where Co, Ce and Cad are inlet, outlet and adsorbed metal ion

concentrations, respectively,Q is the flow rate (mL min–1), te is

the bed exhaustion time (min), andM is the mass of the adsor-

bent in the column.
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Modeling approach

The ANFIS model used was a five-layer ANN-FIS system.

Further details of the five-layer ANFIS architecture are pre-

sented in the supplementary data. The ANFIS structure with

two inputs, two rules based on Sugeno fuzzy rules and one

output are presented in Figure S6 (available online) (Singh

et al. ). Determination of the number and type of member-

ship functions for input parameters, and definition of the type

of membership functions for output data, are the most impor-

tant steps for modeling by ANFIS. In this regard, the optimal

ANFIS construction was selected using trial and error. Of

the eight membership functions (i.e. trimf, dsigmf, psigmf,

gbellmf, pimf, trapmf, gaussmf and gauss2mf) Gaussian has

the best performance in terms of the mean square error

(MSE) due to its smoothness, concise notation and non-zero

at each point. Furthermore, a hybrid algorithm combining gra-

dient descent and least-squares method was employed when

learning the model. The complexity of the ANFIS model is

determined using the number of membership functions for

each input value. The results showed that the errorwas not sig-

nificantly changed when the membership function was

increased from three to four. Thus, three membership func-

tions were selected for each input value for the rest of the

modeling. Finally, the linear membership functions were

chosen for the output parameters to increase the model accu-

racy. The performance of the ANFIS model should be

controlled using an individual dataset as this model is based

on trial and error. In this regard, the experimental data gath-

ered from dynamic adsorption of Cd(II) in a packed bed

column were divided into two groups: 200 of the available

data points (70% of the observations) were randomly selected

for training and the remaining 85 (30% of the observations)

were used for testing. A hybrid model combining ANFIS and

the Thomas equation was employed in MATLAB software

Version 8.1. In this hybrid model, four operational parameters

including inflow rate (Q), initial Cd(II) concentration (Co), bed

height (H ), and initial solutionpH,were taken as input data for

the ANFIS model and the qads and kTh for the Thomas

equation was taken as output (see Figure 1). Subsequently,

qads and kTh which were calculated initially, were used as

input data the for Thomas equation and
Ct

Co
was calculated as

the final output. The flowchart of computations in the

ANFIS–Thomas model is presented in Figure 2.
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Evaluation criteria

The performance of the hybrid model for predicting BTC

was evaluated using different statistical criteria including

the determination coefficient (R2), efficiency (Ef) and

NRMSE.

R2 ¼

Pn
i¼1

Ct

Co

� �
pre

� Ct

Co

 !
pre

2
4

3
5 Ct

Co

� �
mea

� Ct

Co

� �
mea

� �2
4

3
5

Pn
i¼1

Ct

Co

� �
mea

� Ct

Co

 !
mea

" #2Pn
i¼1

Ct

Co

� �
pre

� Ct

Co

 !
pre

2
4

3
5
2

(6)

Ef ¼

Pn
i¼1

Ct

Co

� �
mea

� Ct

Co

 !
mea

" #2
�Pn

i¼1

Ct

Co

� �
mea

� Ct

Co

� �
pre

" #2

Pn
i¼1

Ct

Co

� �
mea

� Ct

Co

 !
mea

" #2

�100 (7)

NRMSE ¼

Pn
i¼1

Ct

Co

� �
pre

� Ct

Co

� �
mea

" #2

n
Ct

Co

 !
mea

" #2

2
666664

3
777775

0:5

�100 (8)

where
Ct

Co

� �
mea

and
Ct

Co

� �
pre

are the measured and predicted

data, respectively.
Ct

Co

 !
mea

and
Ct

Co

 !
pre

are the average of

Ct

Co

� �
mea

and
Ct

Co

� �
pre
, respectively, and n is the total number

of data points.Ef andR2 values close to 100 and 1, respectively,

indicate that the accuracyof themodel is higher. Theprediction

of the hybridmodel is considered to be excellent, good, fair and

poor, when 0<NRMSE< 10, 10%<NRMSE< 20%, 20%<

NRMSE< 30% and NRMSE> 30%, respectively. The linear

regression was also fitted for
Ct

Co

� �
mea

and
Ct

Co

� �
pre

as follows:

Ct

Co

� �
mea

¼ m
Ct

Co

� �
pre
þn (9)

where m and n are the regression coefficients.
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Thomas model

The Thomas equation in linearized form is as follows

(Thomas ):

ln
Co

Ct
� 1

� �
¼ kThqadsm

Q
� kThCot (10)

where Co (mg L–1) and Ct (mg L–1) are the influent Cd(II)

concentration and effluent Cd(II) concentration at time t,

respectively,m is the mass of the adsorbent (g),Q is the volu-

metric flow rate (mL min–1), kTh (mL min–1 mg–1) is the

Thomas rate constant and qads (mg g–1) is the equilibrium

Cd(II) uptake per g of the stabilized nZVI.

Sensitivity analysis for the hybrid model

Identification of the most important parameters for model-

ing BTCs is one of the key goals of this research. In this

regard, the sensitivity analysis can provide important infor-

mation regarding the modeling. As such, the influence

index was calculated for each parameter as follows

(Gontarski et al. ):

Influence index ¼ II ¼ 100 1� Ri

RCB

� �
(11)

where Ri is the correlation index between
Ct

Co

� �
mea

and

Ct

Co

� �
pre

for the hybrid model when one input factor is elimi-

nated and RCB is the correlation index between
Ct

Co

� �
mea

and
Ct

Co

� �
pre

for the hybrid model.
RESULTS AND DISCUSSION

A hybrid model (Thomas equation þ ANFIS model)

The values of qads and kTh in the Thomas equation can be

determined using the linear regression approach, which may

give unreliable results for unsymmetrical BTCs. As such, a

new hybrid Thomas–ANFIS model has been developed

for the dynamic adsorption of Cd(II) ions by ostrich bone



Figure 1 | ANFIS architecture applied for predicting the
Ct

Co
using ostrich bone ash supported-nZVI composite.
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ash-supported nZVI (see Figure 1). The Thomas–ANFIS

model combines the best characteristics of the Thomas

equation and ANFIS model in linear and non-linear predic-

tion for data fitting of Cd(II). It is clear that some of the

input variables have more statistical influence than others

for the modeling of BTC. Thus, it is notable that only the sub-

stantial parameters are employed as inputs to the hybrid

model. To select an appropriate ANFIS architecture, several

configurations of input variables were analyzed using a trial

and error procedure. Thus, one structure was evaluated for

four input variables, four structures for three input variables,

six structures for two input variables, and four structures for

one input variables. The ANFIS structure with the highest Ef

and smallest NRMSE was nominated as the best (Table S1,

available with the online version of this paper), with four sep-

arate ANFIS models being found. The Ef, NRMSE and R2

statistics for each ANFIS structure used to model the Cd(II)

adsorption BTC in the testing period are presented in

Table 1. It is obvious that the inclusion of all input variables

in the ANFIS structure improves the accuracy of the

Thomas parameters predicted. ANFIS4, the input variables

for which are pH, Q,H and Co, displays the best performance
s://iwaponline.com/jwh/article-pdf/17/1/25/564884/jwh0170025.pdf
(Ef¼ 93.8%, R2¼ 0.996, NRMSE¼ 3.81%), followed by

ANFIS3 (Ef¼ 84.28%, R2¼ 0.923, NRMSE¼ 13.49%),

ANFIS2 (Ef¼ 52.18%, R2¼ 0.7289, NRMSE¼ 28.36%) and

ANFIS1 (Ef¼ 38.46%, R2¼ 0.6463, NRMSE¼ 47.26%). Use

of pH alone as the input variable gave the poorest qads and

kTh values. The poor performance of the hybrid model

improved to fair upon increasing the input variables from

pH alone to pHþQ. Similarly, a good performance of the

hybridmodel was achievedwith pH,Q andH as the input vari-

ables. Finally, a hybrid architecture with pH, Q, H and Co as

inputs exhibited an excellent performance as regards predict-

ing the Cd(II) adsorption BTC. The training process of the

hybrid model for ANFIS4, ANFIS3, Structure1, Structure2

and Structure3 with time can be seen in Figure S7 (available

online), which shows that NRMSE decreased with increasing

number of epochs, remaining constant after 250. Clearly, the

NRMSE calculates the differences between the estimated
Ct

Co

by hybrid model and the measured
Ct

Co
in the training dataset.

Consequently, 250 epochs were adequate to train the hybrid

model because value of error was fixed after this point,

although the number of epochs depends on the problem



Table 1 | Statistical performance evaluation criteria for the final models

Model Input Ef R2 NRMSE Performance Rank

ANFIS4 pH, Q, H, Co 93.8 0.9959 3.81 Excellent 1

ANFIS3 pH, Q, H 84.28 0.9231 13.49 Good 2

Structure3 pH, Q, Co 71.66 0.8153 20.8 Fair 3

Structure2 pH, H, Co 67.93 0.7461 22.34 Fair 4

Structure1 Co, Q, H 44.87 0.6819 34.43 Poor 6

ANFIS2 pH, Q 52.18 0.7289 28.36 Fair 5

ANFIS1 pH 38.46 0.6463 47.26 Poor 7

Figure 2 | Flowchart of computations in ANFIS–Thomas model.
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Figure 3 | Measured and predicted BTC of Cd(II) ions acquired by Thomas and hybrid models: (a) temperature, 25± 1 �C; influent concentration, 100 mg L–1; bed height, 12 cm; influent

flow rate, 1.5 mL min–1; (b) temperature, 25± 1 �C; influent concentration, 100 mg L–1; bed height, 12 cm; pH, 7.
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(30 epochs by Singh et al. (); 100 epochs by Ho & Tsai

(); 1,000 epochs by Amiri et al. ()). Using a small

number of epochs causes poor learning and leads to underfit-

ting, whereas a high number of epochs takes a long time to

converge and leads to overfitting (Kisi & Ozturk ; Singh

et al. ). However, the performance of all structures was

excellent because the NRMSE values of them were lower

than 10% in training phase.

Dynamic adsorption of Cd(II) under operating factors

Column experiments were performed under different key

operating conditions varying the pH (see Figure 3(a)), Q

(see Figure 3(b)), H (see Figure 4(a)), and Co (see Figure

4(b)). The pH of the solution is a key factor affecting the

adsorption process due to ionization of the functional
s://iwaponline.com/jwh/article-pdf/17/1/25/564884/jwh0170025.pdf
groups in the structure of the adsorbent. In this experiment,

the pH was changed from 2 to 9, while maintaining the

other key operating conditions constant. This increase in

pH increased the adsorption capacity, thus extending the

BTC. The
Ct

Co
values were 0.06 and 0.85 at a pH of 9 and

2, respectively, in the interval of 4 h (see Figure 3(a)).

Consequently, the removal efficiency of Cd(II) by ostrich

bone ash-supported nZVI increases upon increasing the

pH from 2 to 9. This could be due to the point of zero

charge (pHPZC) and the degree of ionization of Cd(II)

(Amiri et al. ). The pHPZC of the adsorbent was about

5.87 and the pH at the ostrich bone ash-supported nZVI sur-

face is neutral. However, the surface charge of the adsorbent

is positive at a pH below 5.87 and is negative at any pH

above 5.87 (Gil et al. ). The lowest Cd(II) uptake was



Figure 4 | Measured and predicted BTC of Cd(II) ions acquired by Thomas and hybrid models: (a) temperature, 25± 1 �C; influent concentration, 100 mg L–1; influent flow rate, 1.5 mL min–1;

pH, 7; (b) temperature, 25± 1 �C; bed height, 12 cm; influent flow rate, 1.5 mL min–1; pH, 7.
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observed at pH 2 as a result of competition between hydro-

gen ions and Cd2þ for binding sites on the adsorbent.

In addition, a higher electrostatic repulsion between the

Cd(II) ions and sorbent surface is observed at pH< 5.87.

At pH> 5.87, increased deprotonation of the ostrich bone

ash-supported nZVI surface causes a significant increase in

the negatively charged sites, thus resulting in a higher elec-

trostatic attraction between the adsorbent surface and

Cd(II) ions (Soleymanzadeh et al. ; Amiri et al. ).

Moreover, the higher removal efficiency of Cd(II) ions at pH

9 may be due to the precipitation of cadmium(II) as Cd(OH)2.

Another key factor for dynamic Cd(II) adsorption in a

fixed-bed column is related to the influent flow rate. As

such, the BTC at six different Q (0.5, 1, 1.5, 10, 20 and

30 mL min�1) was examined, while maintaining the Co, H
om https://iwaponline.com/jwh/article-pdf/17/1/25/564884/jwh0170025.pdf

er 2019
and pH. An increase in Q from 0.5 to 30 mL min�1 shifted

the BT time and te to lower values, thus resulting in a

lower adsorption capacity (Chowdhury & Saha ; Oguz

). The removal efficiency of Cd(II) by ostrich bone ash-

supported nZVI increased in the order Q¼ 30<Q¼ 20<

Q¼ 10<Q¼ 1.5<Q¼ 1<Q¼ 0.5 mL min�1. The increase

in Cd(II) removal as the Q decreased can be related to the

longer mass transfer time for the sorption of Cd(II) by the

binding sites (Cavas et al. ). Furthermore, a decrease in

external film mass resistance on the ostrich bone ash-sup-

ported surface was observed at higher Q (Cavas et al.

). Thus,
Ct

Co
values of 0 and 1 were observed for Q of

0.5 and 30 mL min�1, respectively, obtained in the interval

of 4 h (see Figure 3(b)).
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Given that the mass of adsorbent particles accumulated

in the column and the pressure drop are more significant

(Oguz ), the different adsorbent H studied ranged from

8 to 16 cm. The slope of the BTC decreased with rising H,

thus resulting in a widened mass transfer zone. At H¼
8 cm, an axial dispersion phenomenon is predominant,

which results in a decrease in the diffusion of Cd(II) ions

from solution into the pores of the adsorbent. The removal

efficiency of Cd(II) ions by ostrich bone ash-supported

nZVI was also found to increase upon increasing the H

from 8 to 16 cm. This is due to the fact that the increase in

H in the columnprobably increases the surface area, thus pro-

vidingmore binding sites for adsorption (Oguz&Ersoy ).

The
Ct

Co
values were 0 and 0.48 for H of 16 and 8 cm, respect-

ively, in the interval of 4 h (see Figure 4(a)).

The column BTC performance of ostrich bone ash-sup-

ported nZVI was studied using different Co ranging from

50 to 150 mg L–1 (see Figure 4(b)), with te and BT time

decreasing as the Co increased. This is due to the fact that

the mass transfer of Cd(II) ions from solution into the

pores of the ostrich bone ash-supported nZVI occurs more

rapidly at higher Co. It was also found that the removal effi-

ciency of Cd(II) by ostrich bone ash-supported nZVI increased

in the order of Co¼ 150<Co¼ 100<Co¼ 50 mg L–1. The
Ct

Co

values were 0 and 0.39 for Co of 50 and 150 mg L–1, respect-

ively, in the interval of 4 h (see Figure 4(b)). This

phenomenon can be explained by the faster saturation of the

adsorbent active sites at higher Co, which results in a decrease

in BT time (Oguz & Ersoy ; Oguz ).
Comparison between the Thomas and hybrid models

The BTCs acquired upon dynamic adsorption of Cd(II)

ions by ostrich bone ash-supported nZVI were predicted
Table 2 | The performance of Thomas and Thomas–ANFIS models to predict BTC

Model Equation

Thomas–ANFIS
Ct

Co

� �
mea

¼ 1:002
Ct

Co

� �
pre

þ0:0014

Thomas
Ct

Co

� �
mea

¼ 1:12
Ct

Co

� �
pre

þ3:65
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using the Thomas and hybrid models (see Figures 3(a),

3(b), 4(a) and 4(b)). To assess the goodness of fit,

NRMSE, Ef, linear regression and R2 were calculated

using measured and estimated data (see Table 2). As can

be seen from Figures 3(a) to 4(b), the Thomas model can

describe the experimental data for symmetrical BTCs

under various operational parameters (pH¼ 9 in Figure

3(a); Q¼ 0.5 mL min�1 in Figure 3(b); H¼ 16 cm in

Figure 4(a); Co¼ 50 mg L–1 in Figure 4(b)). However, the

performance of this model worsens for unsymmetrical

BTCs (pH¼ 2 in Figure 3(a); Q¼ 30 mL min�1 in Figure

3(b); H¼ 8 cm in Figure 4(a); Co¼ 150 mg L–1 in Figure

4(b)) and the difference between the experimental data

and data estimated using the model increases. As can be

seen from Figures 3(a) to 4(b), the new hybrid model is

able to predict both the symmetric and asymmetric exper-

imental BTCs under various key operating conditions.

Indeed, higher R2 and Ef values and smaller values of

NRMSE are obtained when using the hybrid model com-

pared to the Thomas model, thus indicating the higher

accuracy of the hybrid model (see Table 2). Indeed, the

fair performance of the Thomas model (NRMSE¼ 27.6%

and Ef¼ 64.6%) improved to excellent (NRMSE¼ 3.8%

and Ef¼ 93.8%) when combining this model with the

ANFIS model to take advantage of the latter’s unique

advantages for nonlinear modeling. These findings are in

a good agreement with those of Han et al. (), who

reported that a nonlinear method is more effective than a

linear method for predicting the parameters of the

Thomas model. A comparison of the BTC estimated using

the hybrid model and experimental data is depicted in

Figure 5. The 95% prediction intervals, based on the distri-

bution of points around the fitted line, exhibit an excellent

reliability for the fitting and prediction of BTCs (see

Figure 5). The error histogram of the BTC for the hybrid

model is presented in Figure 6. As can be seen, the error
Ef (%) R2 NRMSE (%) Performance

93.8 0.9959 3.8 Excellent

64.6 0.8443 27.6 Fair



Table 3 | The sensitivity of hybrid model to each input variable

Model Input
Eliminated
parameter

Influence
index (%)

Hybrid model pH, Q, H, Co – –

Structure1 Q, H, Co pH 17.082

Structure2 pH, H, Co Q 13.26

Structure3 pH, Q, Co H 9.33

ANFIS3 pH, Q, H Co 3.52

Figure 5 | Comparison of the BTC predicted by hybrid model and experimental data.
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distribution is very close to zero and is almost symmetri-

cally bell-shaped, thus indicating that hybrid model

satisfies the suppositions of normality. As such, this

hybrid model can be a fast and accurate alternative to the

mathematical empirical equations currently available.
Sensitivity analysis

The sensitivity of the hybrid model to input variables is pre-

sented in Table 3. The changes in influence index (%) upon

elimination of each input parameter from the hybrid model

are presented in Table 3. It is obvious that initial solution pH

is the most sensitive parameter, followed by Q,H and Co. All
Figure 6 | Error histogram of the hybrid model.
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four operating parameters in Table 3 are considered to be

important for the hybrid model as the lowest value of the

influence index was significant. Thus, Table 3 shows that

an increase in pH, Q, H and Co is significant at 17.082,

13.26, 9.33 and 3.52, respectively.

Calculation of kTh and qads using the Thomas and hybrid

models

The qads values for Cd(II) dynamic adsorption using exper-

imental data are compared with those calculated using the

Thomas and hybrid models in Table 4. The qads calculated

using the linear regression of the Thomas model is accepta-

ble at the greatest H and lowest Q and Co (see Table 4).

However, the linear regression of the Thomas model,

which is the most widely used approach for modeling

BTCs, provides a poor estimate of qads at higher Q and Co

(see Table 4). Thus, although the Thomas model is suitable

for data modeling in the case of symmetrical BTCs, it may

fail to correctly describe the performance of unsymmetrical

BTCs. However, the hybrid model is able to predict both

symmetrical and asymmetrical experimental BTCs. For

instance, the qads values obtained using experimental data,

and the Thomas and hybrid models were found to be

5.24, 5.39 and 5.31 mg g–1, respectively, at pH¼ 7; Q¼
1 mL min–1; H¼ 16 cm and Co¼ 50 mg L–1. Similarly, qads
values of 3.03, 4.02 and 2.98 mg g–1 were obtained using

experimental data, and the Thomas and hybrid models,

respectively, at pH¼ 7; Q¼ 10 mL min–1; H¼ 8 cm and

Co¼ 150 mg L–1. Similar results have been observed for

kTh with values ranging from 0.24 to 1.56 mL min–1 mg–1

for the Thomas model and 0.21–1.42 mL min–1 mg–1 for

the hybrid model. Clearly, the obtained values of qads and

kTh by Thomas and hybrid models vary dramatically under



Table 4 | Calculated design parameters using Thomas and hybrid models for dynamic adsorption of Cd(II) ions by OBA/nZVI

Flow rate (mL min–1) Bed depth (cm) Cd(II) concentration (mg L–1)

Results of design parameter

qads (mg g–1) kTh (mL min–1 mg–1)

Experimental Thomas model Hybrid model Thomas model Hybrid model

1 8 50 4.64 4.86 4.69 0.72 0.68

1 8 150 3.52 3.81 3.47 1.19 1.08

10 8 50 4.04 4.62 3.98 1.05 0.79

10 8 150 3.03 4.02 2.98 1.56 1.42

1 16 50 5.24 5.39 5.31 0.24 0.21

1 16 150 3.96 4.18 3.85 0.47 0.42

10 16 50 4.52 4.94 4.41 0.43 0.36

10 16 150 3.32 4.34 3.41 0.61 0.54

35 M. J. Amiri et al. | Modification of Thomas model by ANFIS Journal of Water and Health | 17.1 | 2019

Downloaded from http
by guest
on 04 November 2019
experimental conditions (see Table 4). In addition, the rela-

tive differences between the calculated qads of hybrid model

were smaller than those in the Thomas model for each oper-

ating condition. As a result, the hybrid model provides the

flexibility of reliably estimating the performance of fixed

bed column at various operational conditions. Similar

results were reported by Tovar-Gomez et al. (). Further-

more, the estimated kTh by Thomas and hybrid models

increased with increasing the influent Cd(II) concentration

and inlet flow rates demonstrating that the driving force of

Cd(II) mass transfer is also raised. Similar trends were also

observed by Cavas et al. () for adsorption of methylene

blue by a beach waste dead leaves.
CONCLUSIONS

The present study reveals a novel hybrid model that com-

bines both Thomas and ANFIS models, to predict BTCs

for Cd(II) ions in a fixed-bed column. The dynamic adsorp-

tion of Cd(II) ions on ostrich bone ash-supported nZVI was

studied as a function of initial solution pH, influent flow

rate, bed height and initial Cd(II) concentration. The results

indicate the following:

1. The fair performance of the Thomas model (NRMSE¼
27.6% and Ef¼ 64.6%) improves to excellent (NRMSE¼
3.8% and Ef¼ 93.8%) when combining this model with

ANFIS.
s://iwaponline.com/jwh/article-pdf/17/1/25/564884/jwh0170025.pdf
2. The hybrid model provides more reliable results as

regards predicting the performance of BTC compared

to the Thomas model.

3. The sensitivity analysis indicates that initial solution pH

is a more significant input variable for the hybrid model

than the other operational factors.

4. This hybrid model can be employed for data modeling of

any unsymmetrical BTC or natural surface and ground-

water, as it provides a powerful tool for accurate

nonlinear modeling and is also capable of learning from

the environment.

5. The suggested adsorbent is a versatile and eco-friendly

material for attenuating cadmium ions in a fixed-bed

column.
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