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Abstract. Curve-based monotonicity is one of the lately introduced re-
laxations of monotonicity. As directional monotonicity regards mono-
tonicity along fixed rays, which are given by real vectors, curve-based
monotonicity studies the increase of functions with respect to a general
curve «. In this work we study some theoretical properties of this type
of monotonicity and we relate this concept with previous relaxations of
monotonicity.
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1 Introduction

Aggregation operators are functions that aim at finding a single value to rep-
resent a collection of n numbers, and, since this is a desired feature in many
processes, they have been largely studied and applied [6, 8, 14].

Aggregation functions need to be increasing with respect to every argument.
However, according to various works in the literature [5, 19], that condition may
be too restrictive as it restricts some functions, that are fit to fuse informa-
tion, to enter the framework of aggregation functions. That is the reason why,
there is a trend towards relaxing the monotonicity constraint in the definition
of aggregation function [7,13].

In that attempt, some generalizations of monotonicity have been proposed.
For example, weak monotonicity [19] is a relaxed form of monotonicity, as it only
asks for the value of a function to increase in the case where all the arguments
have increased by the same amount. This notion can be seen as monotonicity
defined by the vector (1,...,1) and, considering any vector 7 € R", instead,
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directional monotonicity was defined [5]. Directional monotonicity is the require-
ment that is demanded to functions in order to be considered pre-aggregation
functions [11]. Lately, more different relaxations of monotonicity have appeared
[1,4,16, 18], some of which have been used to construct edge detectors [4,17]
and fuzzy ruled-based classification systems [10,12].

In this work, we discuss a generalization of directional monotonicity: curve-
based monotonicity [9]. Rather than directions given by vectors, curve-based
monotonicity studies the monotonicity of functions along general curves « :
[0,1] — R™. Clearly, lines are particular instances of curves and, hence, curve-
based monotonicity generalizes directional monotonicity.

We study some theoretical properties of curve-based monotonicity, including
the situation of functions that are monotone with respect to two curves o and
[, which are also monotone with respect to the combination of such curves.

This paper is organized in the following manner: first, we present some pre-
liminaries, including the definitions of various relaxations of monotonicity. In
Section 3, we recall the concept of curve-based monotonicity. In Section 4 we
show a collection of properties of curve-based monotone functions and, in Sec-
tion 5, we discuss the case of composition of two curves. Finally, we present some
concluding remarks and future perspectives.

2 Preliminaries

Let n € N such that n > 1. On the one hand, we use x = (1, ...,2,) to denote
points in [0,1]” and we set 0 = (0,...,0) and 1 = (1,...,1) € [0,1]™. On the
other hand, we use 7 € R™ to refer to vectors that denote directions in the real
space.

In this work, we consider curves on R" as functions defined on a closed real
interval, i.e., a : [0, 1] — R™. Note that the choice of the domain, [0, 1], could have
been any other closed real interval [a, b] C R, as any curve a defined on [0, 1] can
be re-parametrized to be defined on [a, b]. Additionally, we only consider curves
a such that a(0) = 0.

Given a curve « : [0,1] — R”, all the components aj,...,a, of a can be
seen as curves on R: ; : [0,1] > R for all 1 <14 <n.

The concept of monotonicity is intimately related to the notion of order. We
use the standard partial order in R™ (and, hence, in [0,1]"), i.e., given x,y €
[0,1]™, we say that x <y if 2; < y; for al 1 < i < n. Thus, we can define the
concept of standard monotonicity for a function f : [0,1]" — [0, 1].

Definition 1. A function f : [0,1]" — [0,1] 4s said to be increasing (resp.
decreasing) if for all x,y € [0,1]" such that x <y it holds that f(x) < f(y)
(resp. f(x) = f(y))-

Note that with the terms increasing and decreasing we do not refer to strict
monotonicity.

As stated in the Introduction, we aim at relaxing the monotonicity condition
of aggregation functions. An aggregation function is a function A : [0,1]" — [0, 1]
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such that A(0) =0, A(1) = 1 and A is increasing in the sense of Definition 1.
Let us now present some of relaxations of monotonicity.

Definition 2 ([19]). A function f : [0,1]" — [0,1] is said to be weakly in-
creasing (resp. weakly decreasing) if for all x € [0,1]" and ¢ > 0 such that
x+ ¢l € [0,1]"™ it holds that f(x) < f(x+cl) (resp. f(x) > f(x+c1)).

Note that, although robust estimators of location [15], which are used in
statistics, are generally not monotone, they are shift-invariant and shift-invariance
implies weak monotonicity.

Nevertheless, although monotonicity with respect to all arguments may be
too restrictive for certain applications, our expectation with respect to the be-
haviour of means requires that some monotonicity-like condition is satisfied, e.g.,
in the case of robust estimators of location shift-invariance is required

Remark 1. If a function f : [0,1]™ — [0, 1] is monotone, then it is also weakly
monotone, i.e., standard increasingness (resp. decreasingness) implies weak in-
creasingness (resp. decreasingness).

However, the converse does not hold. For example, the mode function, with
the convention of taking the minimum if all the inputs are different, is not
generally increasing. Indeed, (0,0.2,0.3,0.3,0.3) < (0.2,0.2,0.3,0.4,0.5) but

mode(0,0.2,0.3,0.3,0.3) = 0.3 > 0.2 = mode(0.2,0.2,0.3,0.4,0.5).

But, the mode function satisfies a certain kind of monotonicity, as its value
increases whenever all the inputs increase by the same amount, i.e., the mode is
a weakly increasing function.

Weak monotonicity can be seen as monotonicity along the ray (1,...,1).

When, we consider a general vector 0 # 7 eR® instead, we obtain the notion
of directional monotonicity.

Definition 3 ([5]). Let f 47 eR" and f:[0,1]" — [0,1]. We say that f
is T -increasing (resp. T -decreasing) if for all x € [0,1]" and ¢ > 0 such that
x+c7 € [0,1)", it holds that f(x) < f(x+cT) (resp. f(x) > f(x+¢T)).

A function f that is both 7-increasing and 7’ -decreasing for a certain ﬁ #
7 € R" is said to be 7’-constant.

A function that satisfies the boundary conditions of aggregation functions
and is directionally increasing with respect to some direction 0 # r € R” is
said to be a pre-aggregation function [10-12].

It is also interesting to study the directions for which a function is direction-
ally increasing. If the set of such directions forms a cone, we say that a func-
tion is cone increasing. This concept was originally defined for positive cones
C C (RT)™, but the generalization to any cone C' C R™ is straight. Recall that
a subset C' C R" is said to be a cone if for each x € C it holds that ax € C for
all a > 0.
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Definition 4 ([1]). Let 0 # C C R™ be a cone. A function f : [0,1]" — [0,1]
is said to be cone increasing with respect to C (resp. cone decreasing) if [ is
T -increasing (resp. 7—decreasmg) for all vectors 7 € C.

Clearly, increasing functions in the standard sense are cone increasing with
respect to the cone (RT)™.

The interested reader can find numerous examples of functions that satisfy
each of the monotonicity conditions in [1-3,5,19].

3 Curve-based monotonicity

In the same manner that directional monotonicity is a ggneralization of weak
monotonicity considering general directions 7 instead of 1, we can think of an
even more general concept by considering curves in the space.

Definition 5 ([9]). Let o : [0,1] — R™ be a curve such that «(0) = 0. A
function f : [0,1]" — [0,1] is said to be a-increasing (resp. a-decreasing) if
f(x) < f(x+alt)) (resp. f(x) > f(x+a(t))) forallx € [0,1]" and all0 < ¢ < 1
such that x + a(s) € [0,1]™ for all 0 < s < t.

From this point forward, we assume that all curves « : [0,1] — R™ satisfy
the condition a(0) = 0, unless otherwise stated.

If a function f is both a-increasing and a-decreasing for a given curve « :
[0,1] — R™, then f is said to be a-constant. For curves defined on an open
interval, see [9].

Note that, by Definition 5, for a function f to be a-increasing, once the
curve leaves the unit hypercube [0,1]", it has no influence in the property of
a-monotonicity of f. Indeed, the condition that must hold is f(x) < f(x+ «a(t))
provided that all the points x + a(s) € [0,1]™ for all 0 < s < t. Therefore, the
points x + «(t) € [0,1]", even in the case that the curve eventually returns to
take values within [0, 1]™, do not influence the condition of a-monotonicity. This
is shown in Figure 1.

Remark 2. Straight lines (or segments of straight lines) are a particular in-
stance of curve. Hence, curve-based monotonicity is a generalization of direc-
tional monotonicity. Indeed, let I # 7 € R"and f : [0,1]" — [0,1] be an
7 -increasing function. Then, if we set « : [0,1] = R™ to be the curve given by
at) = t7, we obtain that f is a-increasing. In particular, weak monotonicity
is also a particular case of curve-based monotonicity.

Further, we derive the following result from the definitions of curve-based
monotonicity and directional monotonicity.

Proposition 1. Let o : [0,1] — R™ be a curve such that, given to € [0,1],
a(t) = (rt,...,rat) for all t € [0,t], where ri,...,7, € R, which defines a
direction 7. If a function f : [0,1]" — [0,1] is a-increasing, then f is T -
INCreasing.
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Fig. 1. Example of points x 4+ «(¢) that have influence on the a-monotonicity of func-
tions (in solid blue) and points that do not (dashed blue).

Let us stress that the concept of curve-based montonicity, presented in Def-
inition 5, differs from monotonicity along a curve «. Namely, the fact that the
value of a function f increases along the graph of a certain curve a implies that
the function f is a-increasing, but the converse does not hold in general as the
next example shows.

Ezample 1. The arithmetic mean, defined in [0, 1]™ by

1 n
Ap(z1,... 20) = ﬁZx“
i=1

is an example of a-monotone function for a curve « that satisfies certain prop-
erties.

Specifically, the arithmetic mean is a-increasing for all curves « : [0, 1] — R™
such that

> ailt) =0, (1)
i=1

for all 0 < t < 1. Furthermore, the arithmetic mean is a-decreasing for all curves
« such that Z?:l a;(t) <0, for all 0 <t < 1. Consequently, A is a-constant for
every curve a such that > a;(t) =0, for all 0 <t < 1.

The arithmetic mean serves also to show that a-monotonicity does not coin-
cide with monotonicity along the graph of the curve a. Let « : [0,1] — R? be a
curve given by

(t,0), if0<t<0.5,
o(t) = { (05,05 — ), if05<¢< 1. (2)

Clearly, since « verifies condition (1), the arithmetic mean As is a-increasing.
However, the value of As does not increase along the graph of «. Indeed, consider
(0,0) € [0,1]? and let g : [0,1] — [0,1] be the function that represents the values
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of Ay along the graph of a. Thus, it is given by

g(t) = AQ(O + al(t),() + Oég(t))
i, if0<t<0.5,
5t fos<t<t,

and, clearly, g is decreasing for 0.5 <t < 1.

4 Properties of curve-based monotone functions

In this section we study some relevant properties of curve-based monotone func-
tions and we discuss how curve-based monotonicity relates to other relaxations
of monotonicity.

Proposition 2. Let f :[0,1]™ — [0,1] be a function, o : [0,1] — R™ be a curve
and ¢ : [0,1] — [0,1] be a strictly increasing one-to-one mapping. Then, f is
a-increasing (resp. a-decreasing) if and only if f is (« o ¢)-increasing (resp.
(a0 p)-decreasing).

The next result characterizes standard monotonicity in terms of curve-based
monotonicity.

Proposition 3. Let f :[0,1]™ — [0,1]. Then, f is increasing (resp. decreasing)
if and only if f is a-increasing (resp. a-decreasing) for all curves « : [0,1] — R™
such that a(t) >0 for all0 <t < 1.

Proof. Let f : [0,1]™ — [0,1] be an increasing (resp. decreasing) function, « :
[0,1] — R™ be a curve such that «a(t) > 0 for all 1 < ¢ < n and let x € [0,1]"
and t € [0, 1] such that x + «a(s) € [0,1]" for all 0 < s < ¢. Since «(t) > 0, then
x < x + «a(t). Therefore, since f is increasing (resp. decreasing), it holds that
F(x) < F(x + alt)) (resp. f(x) > fx + a(t))).

For the converse, assume that f is a-increasing (resp. a-decreasing) for every
curve « : [0,1] — R™ such that «(t) > 0 for all 1 <t < n. Now, let x,y € [0, 1]"
such that x <'y. We can set a curve « : [0,1] — R"™ given by a(t) =ty — tx for
all 0 <t < 1. Thus,

fx) < fx+a@) = f(1-t)x+ty)

(resp. f(x) = f(x+a(t)) = f((1 - )x +ty)).

In particular, for ¢ = 1, we conclude that f(x) < f(y) (resp. f(x) > f(y)) and
therefore f is increasing (resp. decreasing).

As a consequence, in the case where all the components of the curve « are
identical, we recover the notion of weak monotonicity.
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Corollary 1. Let f:[0,1]" — [0,1]. Then, f is weakly increasing (resp. weakly
decreasing) if and only if f is a-increasing (resp. a-decreasing) for all curves
a : [0,1] — R™ such that o;(t) = «a;(t) > 0 for all i,5 € {1,...,n} and all
0<t<1.

The following is an example of a function that is a-increasing for a curve « :

[0,1] — R? but fails to be directionally monotone with respect to any direction
7 e R2.

Example 2. Let f:[0,1]%> — [0, 1] given by

1,if x =y = 0.25,
0, otherwise;

f(x,y)={

and let « : [0,1] — R? be the curve given by

*) = (0.3,0),if 0 < t < 0.3,
1 (t,0), otherwise.

The function f is not 7—increasing for any direction 7 € R? since it has a
strict global maximum at the point (0.25,0.25) and the value of f goes from 1
to 0 from the point (0.25,0.25) in any direction.

However, f is a-increasing as, clearly, there does not exist any point (0.25,0.25) #
(x,y) € R? such that (z,y) + a(t) = (0.25,0.25) for all 0 < ¢ < 1.

Let us now present two examples of a-increasing functions for certain curves
a:[0,1] - R™

Ezample 3. (1) Let f:[0,1]2 — [0,1] be the function given by

14 3z — 92
fwy) = =
for all z,y € [0, 1].
It is not hard to check that this function is a-increasing for any curve « :
[0,1] — R? such that a; : [0,1] — R is increasing and as : [0,1] — R is

S 205 (t) + a3(t)

decreasing; or aq is increasing and aq(t) > forall 0 <t <1;

or the graph of « is located the fourth quadrant of the plane.
(2) Let f:[0,1]%2 — [0, 1] be given by

T

f(a:,y) = m7

for all z,y € [0,1]. This function is a-increasing for any curve « : [0, 1] — R?
whose graph is located on the fourth quadrant of the plane.

The following result characterizes the notion of a-monotonicity for a function
f:]0,1]™ — [0,1] in terms of the values that it takes in the proximity of each
point of the domain. Specifically, it shows an upper and a lower bound for each
point.
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Theorem 1. Let f : [0,1]" — [0,1] and o : [0,1] — R™ be a curve that is
continuous at t = 0. Then, f is a-increasing if and only if for all x € [0,1]™ and
all r;s € [0,1] such that

i) x —a(r) + a(t) € [0,1]™, for all0 <t <r, and
ii) x + a(t) € [0,1]", for all 0 <t < s;

it holds that
fx—a(r) < f(x) < f(x+a(s)). (3)

Proof. Given a curve « : [0,1] — R™, it is clear that if a function f : [0,1]" —
[0, 1] verifies (3) for all x € [0,1]™ and all r, s € [0, 1] that satisfy 4) and i), then
f is also a-increasing.

For the converse, let us suppose that f is a-increasing and let r,s € [0,1]
such that ) and 47) hold. From #7) and the fact that f is a-increasing, it is clear
that f(x) < f(x + a(s)). Similarly, from i), since x — a(r) + a(t) € [0,1]™, for
all 0 <t < r, in particular, for ¢ = 0, it holds that x — «(r) € [0, 1]"™. Thus, since
f is a-increasing, we obtain that

fx—a(r) +afr) = f(x = afr)).

Hence, f(x — a(r)) < f(x) and this completes the proof for the two inequalities
in (3).

5 Curve-based monotonicity with respect to the
composition of curves

In this section, we study the conditions of curve-based monotonicity of functions
with respect to the composition of two, or more, curves. By composition of two
curves, we refer to the curve whose graph goes through the first curve and, then,
through the second (see Figure 2), i.e., given two curves «, 8 : [0,1] — R", we
define their composition «f : [0,1] — R™ by

~ [a2), if0<t<0.5,
oB(t) = {a(l) +B8(2t—1), if0.5<t<1. )

The next result shows that if a function is curve-based monotone with respect
to two different curves, then it is also curve-based monotone with respect to the
combination of the two curves.

Theorem 2. Let « : [0,1] — R™ and S : [0,1] — R™ be two curves and let
f 0,1 — [0,1] be a function. If f is a-increasing (resp. «-decreasing) and
B-increasing (resp. S-decreasing), then f is af-increasing (resp. af-decreasing).

Proof. Let a, 8:[0,1] — R? be two curves and let f: [0,1]" — [0, 1] be a- and
B-increasing. Let x € [0,1]™ and ¢ € [0,1] such that x + af(s) € [0,1]™ for all
0 <s <t Ift <0.5, by a-increasingness of f it holds that

fx+aB(t) = f(x+ a2t) = f(x).
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Fig. 2. Graph of a composition curve a8, constructed from two curves o and [ as in

(4).

On the other hand, if ¢ > 0.5, it holds that

fx+ap(t)) = fx+a(l) + 52t 1)), (5)

and, since x + a(1) € [0,1]" and x + «(1) + (2t — 1) € [0,1]™, by the S-
increasingness of f we derive that

fx+a(l) + B2t = 1)) = f(x+ a(1)). (6)

Therefore, from (5), (6) and the fact that f is a-increasing we derive that f(x +
af(t)) = f(x).

6 Conclusion

We have discussed the concept of curve-based monotonicity, which is an exten-
sion of a recently introduced relaxation of monotonicity: directional monotonic-
ity. We have presented some remarks and clarifications regarding the notion of
a-monotonicity, for a certain curve «, as well as some theoretic properties. We
have also shown some examples of functions that satisfy curve-based monotonic-
ity for specific curves.

With respect to perspectives for future research, our aim is to investigate
how this concept could benefit some applied problems. In particular, we intend
to use curve-based monotone functions in the are of computer vision.
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