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Impact of Body Wearable Sensor Positions on
UWB Ranging

Timothy Otim, Alfonso Bahillo, Luis E. Díez, Peio Lopez-Iturri, and Francisco Falcone

Abstract—In recent years, Ultrawideband (UWB) has become
a very popular technology for time of flight (TOF) based localiza-
tion and tracking applications but its human body interactions
have not been studied yet extensively. Most UWB systems already
proposed for pedestrian ranging have only been individually
evaluated for a particular wearable sensor position. It is observed
that wearable sensors mounted on or close to the human body
can raise line-of-sight (LOS), quasi-line-of-sight (QLOS), and
non-line-of-sight (NLOS) scenarios leading to significant ranging
errors depending on the relative heading angle (RHA) between
the pedestrian, wearable sensor, and anchors. In this paper, it
is presented that not only does the ranging error depend on
the RHA, but on the position of the wearable sensors on the
pedestrian. Seven wearable sensor locations namely, fore-head,
hand, chest, wrist, arm, thigh and ankle are evaluated and a
fair comparison is made through extensive measurements and
experiments in a multipath environment. Using the direction in
which the pedestrian is facing, the RHA between the pedestrian,
wearable sensor, and anchors is computed. For each wearable
sensor location, an UWB ranging error model with respect to
the human body shadowing effect is proposed. A final conclusion
is drawn that among the aforementioned wearable locations, the
fore-head provides the best range estimate because it is able to set
low mean range errors of about 20 cm in multipath conditions.
The fore-head’s performance is followed by the hand, wrist,
ankle, arm, thigh, and chest in that order.

Index Terms—UWB, TOF Ranging, Human body shadowing,
Wearable Sensors

I. INTRODUCTION

WEARABLE technology, which is part of the Internet
of Things (IoT) is seen as the next big thing in the

electronics industry. With an already integrated electronic
functionality in a variety of products, ranging from glasses,
headphones, foot wear, etc the wearable device industry is
already large, with a market expected to grow to $ 70 billion
in 2025 [1]. Consumer electronics, defense, and healthcare are
expected to remain the major sectors in this market.

The position of a wearable on the body is often determined
by the market sector that it aims to address. According to the
data acquired from Vandrico Wearable Database in [2], wrist
worn devices such as smart-watches and smart bands are most
popular wearables in the market as illustrated in Fig. 1. The
use of wearables on other body locations such as the feet,
arms, fore-head, chest, etc are slowly emerging.
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Fig. 1: Market representation for wearables according to the
Vandrico Wearable Database [2].

A key application of wearables is the tracking of pedestrians
[3]–[5]. Nowadays, it is common knowledge that Global
Navigation Satellite System (GNSS) is the most widely spread
localization technology for outdoor areas, but can not work
properly indoors due to poor coverage of satellite signal.
In indoor areas, a large category of traditional positioning
technologies is beacon based–where pre-installed infrastruc-
ture at known positions are used to transmit signals whose
measurements of received strength, time of flight (TOF), and
angle of arrival are used in estimating the position of a moving
object. This kind of localization technique still remains an
open problem because of the inability to adequately overcome
the combined effects of pathloss, multipath fading, and human
body shadowing [6]. Multiple wireless technologies, such as
Wi-Fi, RFID, Bluetooth, Ultrawideband (UWB), or Ultra-
sound, and advanced processing techniques, such as Kalman
and Particle Filters, have been proposed to cope with the
deterioration in performance in challenging scenarios [7]–[9].

Over the years, UWB technology has gained a lot of interest
in research thanks to properties such as high bandwidth, ability
to have extremely accurate location estimates, immunity to
fading, low power transmission and low-cost implementation
[10], [11]. Despite of its ability to provide centimeter ranging
accuracies, in pedestrian tracking context, it is still a challenge
to use UWB with enough accuracy and coverage. In non-line-
of-sight (NLOS) situations, the pedestrian’s body blocks the
direct path between the wearable sensor and the anchors, re-
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ferred to as TAG and ANC throughout this paper, respectively,
generating biases in TOF measurements.

Investigations of human body effects on UWB have some-
what been covered in the literature especially in [12]–[18], but
most of the works focus on UWB ranging error introduced
by human body due to the relative heading angle (RHA)
between the user, wearable sensor, and anchors, leaving aside
the impact of body wearable sensor positions on the ranging
error. The RHA is defined as the azimuth of the direction in
which the user of the wearable is facing with reference to an
anchor and wearable sensor.

In this paper, not only do we present novel UWB ranging
error results for seven body TAG locations taking in account
the RHA, but also UWB ranging error models based on mea-
surement data addressing the human body shadowing effect.
The ranging error models are necessary in order to adequately
compensate for biased ranging, especially in NLOS. Therefore,
the specific contribution of this paper is two fold:

1) The impact of seven different body TAG locations
namely, fore-head, hand, chest, wrist, arm, thigh and
ankle on UWB ranging result is analyzed.

2) An UWB ranging error model for each body TAG loca-
tion is built taking in to account the RHA between the
user, TAG and ANC.

The structure of the remainder of this paper is as follows.
Section II presents existing works related to the impact of
wearable sensor position on UWB ranging and positioning.
The UWB range performance is analyzed in section III for
different body TAG positions. The description of the proposed
UWB ranging error model for each body TAG location is
presented in section IV. Finally, in the last section, we give
some conclusions and future work.

II. RELATED WORK

The sources of UWB ranging error are often attributed
to clock drifts in nodes, interference with other external
radio sources, and propagation effects – due to multipath
and blockage of the direct signal path by materials. And so,
the majority of the works in the scientific literature such as
in [19]–[21] focus on the ranging scenarios where NLOS is
mainly created by infrastructure layout.

However, in tracking of pedestrians, the human body is the
only obstacle that we know for-sure will be present regardless
of the environment. Therefore, the error caused by wave
propagation through the body is in many cases so important
as the range errors caused by infrastructure obstruction as
errors of several meters can be detected. In fact in [12]–[18],
these errors have some what been addressed but for particular
wearable sensor positions and a limited set of RHA values.
For instance, in [12], the authors explore the human body
and UWB radiation interaction on TOF ranging using finite
difference time domain and empirical techniques for the hand
position. In [13], the authors use ray-tracing and empirical
techniques to study the effect of the human body on the time
of arrival of an UWB signal for a wearable located at the chest
position. Other studies of the human body shadowing effect on
UWB-based ranging system are covered in [14], [15] for the
wrist , [15], [16] for the chest and [17] for the hand positions.

Modeling of UWB ranging error is of great importance in
order to compensate or mitigate biased ranging due to NLOS.
Several UWB ranging error models that are available in the
literature [22]–[24] focus on NLOS blocked by walls [22],
fire door, wall [23] and whiteboard [24]. A few works build
ranging error models with respect to human body obstruction.
For those that do, they build ranging error models focusing
on a particular wearable position and set of RHA values.
In [12] and [17], the authors consider the ranging error as
Gaussian for LOS and Gamma distribution for NLOS but for
the hand location. In [14]–[16], the authors propose a Gaussian
model for LOS and NLOS range errors for the wrist and chest
locations.

Basing on the related work, we observe that there are
limited works in scientific literature which provide a detailed
analysis of performance of several body locations on the
ranging result using the TOF as the ranging metric with UWB
technology at 3.9 GHz. Research gaps which this work seeks
to address include: exploring the effect of body shadowing on
UWB-based ranging system and building ranging error models
for wearables positioned at the fore-head, ankle, thigh, arm,
chest, hand, and wrist for RHA values of 0◦-360◦. This work
would be very useful for the research community to compare
the ranging performance of different body wearable sensor
positions under a commom framework and test conditions.

III. UWB RANGING PERFORMANCE

This section presents the ranging performance of seven
wearable sensor locations. Firstly, we carry out preliminary
studies by considering a simple experiment along a straight-
path. Secondly, we perform extensive measurements along a
path in a realistic indoor scenario.

A. Experimental Methodology

Throughout this paper, several TREK1000 development kits
manufactured by Decawave were used. According to [25],
TREK1000 development kits are the best UWB commercial
products for ranging. The nodes are fully compliant with the
IEEE 802.15.4-2011 UWB standard and make it possible to
achieve ranging measurements using two-way ranging mea-
surements at a rate of 3.57 Hz. For the purpose of these
measurement campaigns, TREK1000 nodes were configured
as a TAG and as ANC(s) to work with a 110 kb/s data rate
and in the channel 2 (3990 MHz).

The experiments were carried out inside the Luis Mercader
Lab at the department of Electric, Electronic and Communica-
tion engineering at the Public University of Navarra in Spain.
The Lab had the following dimensions: 6 m wide, 13 m long,
and 4 m high. The floor and ceiling were made of concrete
[see – Fig. 2].

While in the considered environment, majority of the shad-
owing of the direct propagation is caused by the body. The
body obstructs the propagation path between the ANC and
TAG for particular RHA values. Therefore, with respect to the
RHA-dependent body shadowing, three propagation scenarios
are considered in this paper i.e., LOS, quasi-line-of-sight
(QLOS), and NLOS.
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Fig. 2: Details of the Luis Mercader Lab environment. Di-
mensions: 13 m × 6 m × 4 m. The Lab contains computers,
monitors, chairs, desks, and closets which contribute in creat-
ing multipath components.

Though the work in [6] develops statistical models for off-
body channels based on the received signal strength technique,
in this paper, a similar definition of the angular thresholds of
the RHA is used to differentiate LOS, QLOS, and NLOS for
sensors placed on the frontal plane of the user i.e., fore-head,
chest and hand. However, for the sensors which are located
on the side plane of the user i.e., ankle, wrist, thigh, and arm,
an offset of −90◦ is applied to thresholds due to the sideways
position of the TAG with respect to the direction in which
the pedestrian is facing. In Fig. 3, an illustration of the three
propagation conditions with respect to their RHA thresholds
is showed. Additionally, the mapping between RHA and the
propagation scenario suggested in [6] is showed in (1) as:

S =


LOS, RHA ∈ [0◦, 67.5◦]

⋃
[292.5◦, 360◦]

QLOS, RHA ∈ (67.5◦, 112.5◦)
⋃

(247.5◦, 292.5◦)

NLOS, RHA ∈ [112.5◦, 247.5◦]
(1)

In LOS, the transmitter is directed towards the receiver
such that there is direct line-of-sight between the TAG and
the ANC. In NLOS, the body fully obstructs the direct
propagation path such that significant delays are caused in
the TOF estimation. In Fig. 3a, this scenario is created when
the pedestrian makes a U-turn so that pedestrian’s body is
between the TAG and the ANC. The QLOS is obtained when
TAG is oriented orthogonally to the ANC so that the direct
propagation path between the TAG and ANC is either clear or
partially shadowed by the body.

In computing the RHA, the difference between the azimuth
generated by (2) from the azimuth of the direction in which
the pedestrian is facing is considered.

O = atan2

(
ANCy − TAGy
ANCx − TAGx

)
(2)

00

1800

ANC

Pedestrian TAG Facing Direction

LOS
QLOS
NLOS

900

2700

(a)

00

1800

ANC

Pedestrian TAG Facing Direction

LOS
QLOS
NLOS

900

2700

(b)

Fig. 3: An illustration of LOS, QLOS, and NLOS thresholds
when the TAG is located on: (a) front and (b) side of the
pedestrian.

The x and y subscript indicate the corresponding ANC and
TAG x and y coordinates. O is the azimuth obtained from the
line connecting the coordinates of TAG and the ANC with the
horizontal axis.

B. Ranging along a straight path

In the error profiling experiments, an ANC was mounted
on a mast 1.72 m high at a fixed position while the TAG
was mounted on a subject at different body TAG locations
as illustrated in Fig. 4. A male subject, 1.80 m height and
77 kg mass was considered for the measurements. The TAG
was mounted on a subject with the help of Velcro straps at the
right-ankle, right-thigh, fore-head, right-hand, right-arm, chest,
and right-wrist. The heights at which the TAG was mounted
is showed in Table I.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4: TAG mounted on a subject at (a) ankle, (b) thigh, (c)
fore-head, (d) hand, (e) arm, (f) chest, and (g) wrist. At the
hand, the TAG was 20 cm from the chest since this is a usual
place for texting or looking at the screen of a smart phone
when locating your position in a real world scenario.

To verify that ranging error is impacted by both RHA and
the body TAG location, a preliminary experiment along a
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straight path is performed. Due to the dimensions and the
layout of the room, five distances between an ANC and a TAG
were investigated, from 2 to 10 m, with a 2-m step along a
straight-path. A first measurement campaign was carried out
to obtain the TOF estimate without the influence of the body
as a reference.

In a second campaign, for each body TAG location, and
at each distance, the subject was made to turn through a
particular set of RHA chosen from (1) i.e., 0◦, 90◦, 270◦ and
180◦.

A laptop was connected to the ANC to store all measure-
ments. At a rate of 3.57 Hz, measurements were recorded over
a period of 30 s, generating at-least 100 TOF estimations for
each distance and RHA. We did not capture data for all TAGs
simultaneously because we wanted to minimise any possible
interference that would arise.

TABLE I: Height (H) in centimetres at which the TAGs are
mounted on the body.

Ankle Thigh Fore-head Hand Arm Chest Wrist

H 15 70 177 120 130 130 90

Using the test setup described above, the range error is
defined as the difference between the measured distance and
the true distance. The measured range errors by each body
TAG location are grouped by LOS, QLOS, and NLOS scenar-
ios. With these groups, the mean absolute error (MAE) and
standard deviation (SD) was computed, and a summary of the
results for each body TAG location is made in Fig. 5.

Ideally, the errors obtained in the presence of a human
body are a combination of: i) the multipath error, and ii)
the undetectable direct path error created by body shadowing
[13]–[16]. However, the work in Jiménez et al [20] shows that
the multipath error, which is equivalent to the error obtained
without the presence of the human body is almost zero with
(±0.1 m) SD for i) a lab size of almost 80 square meters,
and ii) for TREK1000 development kits manufactured by
Decawave. And so, the significant errors observed especially in
NLOS are entirely as a result of the user acting as an obstacle
between the TAG and an ANC.

Preliminary studies show that under LOS and QLOS, the
chest is the best possible location for ranging while in NLOS,
the chest location performs very poorly with a MAE of about
2.2m [see – Fig. 5a]. A possible reason for this behaviour
lies in the size of trunk. Because the chest has a large surface
area, in LOS and QLOS, small power gains are realized which
translates in to smaller range errors. However in NLOS, the
large size of the chest becomes a disadvantage as much of the
power gets absorbed by the body, hence the extremely large
errors. Under LOS, and QLOS, the hand location performs
quite similar to the chest position, and even out performs
the chest location under NLOS. The hand performs better in
NLOS because the space of 20 cm from the chest as illustrated
in Fig. 4d allows the wave to reach the TAG easily through
creeping wave propagation [26].

Over all, the fore-head is the best location to put the UWB
TAG as it guarantees low mean range errors of about 20 cm in
all conditions. This performance can be attributed to the shape,

Ankle Thigh Fore-head Hand Arm Chest Wrist

Body Sensor Location
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(b)

Fig. 5: Impact of Wearable Sensor Positions on Ranging: (a)
MAE, and (b) SD.
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Fig. 6: Measured versus actual distances, for (a) wrist, (b)
thigh and (c) arm, (d) chest body TAG locations.

size, and height at which the fore-head is located. The fore-
head position makes it easier for the UWB wave to propagate
to the TAG especially in NLOS, as opposed to when the TAG
is located at the chest or hand.

With regard to the sensors located on the side plane of the
user, it is observed that the ankle generates unexpected trend
of results as the QLOS performs worse than NLOS. The arm,
wrist, and thigh TAG locations have quite similar but also
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Fig. 7: Map of the room and the installation in Luis Mercader
Lab. A total of 26 test points (numbered crosses) were selected.
Also shown are the 4 ANCs at the corners of the Lab.

significant range errors as a MAE of at-least 1 m is observed
in NLOS.

In Fig. 5b, a high variance in the ranging error is observed
when the TAG is located at the thigh, arm, chest, and wrist
locations in NLOS. It is not surprising that these are the
same locations with the highest range error values in Fig. 5a.
Additionally, it is observed that for the aforementioned body
sensor locations, beyond 4 m, effect of body shadowing
becomes more pronounced as the range error increases with
distance [see – Fig. 6]. On the contrary, the fore-head, ankle,
and hand body TAG locations, the range error is stable across
all the distances.

C. Ranging in a realistic indoor scenario

In order to test the UWB systems for pedestrian tracking
applications, we installed 4 UWB ANCs at fixed positions in
the Lab and the user moved along a path of 26 ground-truth
positions.

The lab environment where the tests were performed is
shown in Fig. 2. In Fig. 7, we show the floor plan with
detailed ANC positions and 26 test points with each point
approximately 1 m from the other. There are several interfering
objects such as pieces of furniture, metallic cabinet and on top
of furniture are desktop computers. The origin of the reference
system is defined at the bottom left corner.

TABLE II: Coordinates of UWB ANCs, where n is the anchor
identity number defined as n = 0, 1, 2, 3

ANC (n) X (cm) Y (cm) Z (cm)
ANC 0 1240 70 170
ANC 1 1240 571 173
ANC 2 21 548 172
ANC 3 33 68 172

The UWB ANCs were mounted on tripods in the positions
indicated in Table II. The small difference in height is due to
the use of different tripod models. By height of the nodes we
refer to the height of the tripod plus the height of the node’s
antenna. The coordinates of the tripods and ground marks were
measured using a laser rangefinder.

Fig. 8: A 3-D histogram of the measured distances versus the
computed RHA.

In the error profiling experiments, similar to the previous
section, a male subject, was made to wear the TAG at seven
body TAG locations and move along all the test points. At
each test point, the subject was made to face three directions
whose azimuths are 0◦, 90◦, 180◦ following the right hand
rule, with the 0◦ facing to the right/East of Fig. 7. This set up
generated 312 different setup configurations and RHAs i.e.,(3
directions × 26 ground truth points × 4 ANCs = 312). In
computing the RHA values, for each ANC and at each test
point, we subtracted the azimuths of the 3 directions from
O worked out from (2). The RHA values computed returned
values anywhere between -180◦ to +180◦. Therefore, to obtain
angles between 0◦-360◦ we corrected the results that were less
than 0◦. In Figure 8, we show the measured distances and the
computed RHA for each of the 26 test points for a single TAG
location. For each test point and direction, measurements were
recorded for a period of 30 s. Consequently, for every TAG
mounted on the body, the tests lasted about 39 minutes (3
directions × 30 seconds × 26 ground truth points = 2340 s).
In total, the experiments took approximately 5 hrs (7 body
TAG locations × 39 minutes per TAG = 273 minutes) for all
TAG locations.

The switch from one ground truth point to another was done
manually, and we recorded the TOFs only when the subject
had moved to the correct ground truth point. A laptop was
connected to the TAG to record the TOFs from each of the 4
ANCs.

In Figure 8, a clear observation is that plenty of measure-
ments have been performed covering the distances between
2 to 14 m, and RHA values that cover a span between 0◦ -
360◦. The maximum range covered in this experiment is 14
m arising from the diagonal of the lab. Therefore, we can
infer that the experiment results are fair and not limited to a
particular RHA values.

Similar to previous section, we compute the range error but
from approximately 31200 distance readings (3 directions ×
100 distance readings × 26 ground truth points × 4 ANCs)
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Fig. 9: Impact of Wearable Sensor Positions on Pedestrian
Ranging under significant Multipath conditions: (a) MAE, and
(b) SD.

for every body TAG location. The MAE and SD results are
plotted in Figure 9.

In Figure 9a, a relatively good agreement is observed be-
tween the results from experiments performed along a straight
path and in a realistic indoor scenario. Therefore, we can
explicitly group the performance of the body TAG locations
into 3 categories:

• The fore-head location has proven to be essential in
setting low range errors of less than 20 cm. Among the
locations analyzed in this paper, it can now be concluded
that the fore-head provides the best location to put an
UWB sensor when tracking pedestrians. This result is
somehow logical since the height, size and the shape of
fore-head makes it easier for UWB waves to propagate
to the TAG, even in NLOS.

• The hand and chest locations achieve accuracy results
similar to the fore-head position in LOS and QLOS
scenarios, but are weaker in NLOS conditions. Especially
the chest location generates mean range errors of over 2
m in NLOS. Therefore, these TAG locations can be used
if it is possible to install enough ANCs to minimize the
risk of NLOS.

• The ankle, thigh, arm, and wrist TAG locations provide
almost similar range error results. The small differences
in the range errors among these three locations can be
attributed to the differences in the height and size of the
limb on which the TAG is attached. However, looking at
Figure 9a, the order of performance is such that the wrist
performs better, followed by ankle, arm, and the thigh.

On the contrary to Figure 5b where the high variance is

attributed majorly to human body shadowing, in Figure 9b
the high variance can attributed to a combination of NLOS
because of human body shadowing as well as infrastructure
obstruction such as furniture.

IV. RANGING ERROR MODELS

In order to adequately compensate for biased ranging,
especially in NLOS, in this section we develop ranging error
models based on data from the extensive measurements. The
measured data is fitted to well-known statistical distributions
for every body TAG location. Additionally, in extracting the
parameters for each statistical distribution, we use a distri-
bution fitting function in MATLAB called fitdist which is
based on a maximum-likelihood parameter estimation to fit
the measurement data to the corresponding histograms.

The graphical representation of the obtained results is
displayed in Figure 10. In Figure 10a, a Gamma distribution
is observed for the wrist TAG location under LOS, QLOS and
NLOS. This behaviour is similar for the ankle, thigh and arm
locations. For this reason, their figures have not been included.
On the contrary, as seen in Figure 10b, a Gaussian distribution
is observed for the fore-head body TAG location.

As for the chest and hand body TAG locations in Fig-
ure 10c, and Figure 10d, respectively a Gaussian distribution
is observed for the LOS and QLOS. However, for the NLOS
condition a Gamma distribution is observed. The long tail
observed in the Gamma distributions is because of the presence
of multipaths in indoor environments.

The negative range errors to the left half in some of the
histograms are outliers as they show shorter distances than
straight or LOS. This unexpected behaviour could be due
to a number of reasons such as multiple-access interference,
or filtering problem in the software libraries or even some
centimeter inaccuracies in the mapping of the floor plan.

In LOS, the RHA has a little effect on the ranging error as
a mean error less than 20 cm is quite similar to the mean error
obtained without the presence of the human body. However, as
observed in Figure 5 and Figure 9, the RHA has a significant
effect on the ranging error in QLOS and NLOS. Therefore,
based on the measurement data obtained from the extensive
experiments, we propose a ranging error model for each body
TAG location.

So far experiment results show that the range error is stable
across all the conditions for the fore-head. Therefore, when
the TAG is located on the fore-head, the ranging error model
proposed is defined by the Gaussian PDF in (3), where ε is
the range measurement error, µ is the mean range error, and
σ is the SD of the distribution.

f(ε) =
1

σ
√

2π
e−

(ε−µ)2

2σ2 (3)

To work out the parameters for the proposed model, a com-
bined distribution is obtained by gathering all data sampled in
all LOS, QLOS and NLOS conditions. And so, using 31200
samples in total and the fitdist function, µ and σ are set to 13
cm and 8 cm, respectively.

As for the hand, chest, wrist, arm, thigh, and ankle locations
there is a clear distinction between LOS, QLOS on one hand
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Fig. 10: Histogram of range errors for bin number equals 100 for : (a) wrist, (b) fore-head, (c) chest, and (d) hand body TAG
locations. The number of measurements is equal for all TAG locations, however, the number of measurements for LOS, QLOS,
NLOS is different since it depends on the number of RHA attributed to the aforementioned propagation scenarios.

and NLOS on the other hand. The PDF in (4) which combines
a Gaussian distribution (for LOS + QLOS measurements) and
a Gamma distribution with a long tail on the positive for the
NLOS is proposed as the ranging error model when the TAG
is at the chest and hand.

(4)
f(ε) = δ(RHA).

(
1

σ
√

2π
e−

(ε−µ)2

2σ2

)
+ (1− δ(RHA)).

(
λ.e−λε.

(λε)k−1

Γ(k)
+ c

)
where δ(RHA) is the unit impulse function defined in (5).

δ(RHA) =

{
0, RHA ∈ [0◦, 112.5◦)

⋃
(292.5◦, 360◦]

1, RHA ∈ [112.5◦, 247.5◦]
(5)

In working out the parameters for the proposed model
for the hand TAG position, we examine how the the mean
error relates with the RHA for the combined distribution.
Consequently, the coefficient of correlation in Figure 11a

has been computed as -0.02, which means that there is no
linear relationship between µ and RHA for the hand location.
Therefore, using 24500 samples in total, the parameters for the
proposed LOS + QLOS model are set to 11 cm and 7 cm, for
µ and σ, respectively. The parameters in Gamma distribution
are obtained by fitting the NLOS histogram with λ = 0.3 and
k = 1.5, with 6700 samples in total.

In contrast to the hand, for the chest [see – Fig. 11b], the
coefficient of correlation has been computed as -0.69, which
indicates that the linear relationship is moderately strong, but
not perfect, since it is observed that µ varies somewhat even
among the same RHA values. Therefore, using 24500 samples
in total, the parameters for the LOS + QLOS model for the
chest are set to 11.5 cm and 11.2 cm, for µ and σ, respectively.
The parameters in Gamma distribution are obtained by fitting
the NLOS histogram with λ = 1.3 and k = 1.5 with 6700
samples in total.

The PDF in (6) which combines a Gamma distribution with
a long tail on the positive for (LOS + QLOS measurements)

Page 7 of 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

and NLOS is proposed as the ranging error model when the
TAG is at the wrist, arm, thigh, and ankle.

Parameters in the Gamma distributions are obtained by
fitting the LOS+QLOS histogram having 24393 samples in
total with shape a and scale b parameters, and the NLOS
histogram having 6807 samples in total with shape λ and scale
k showed in Table III.
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(b) Chest

Fig. 11: Mean error versus RHA for LOS + QLOS measure-
ments.

(6)
f(ε) = δ(RHA).

(
b.e−bε.

(bε)a−1

Γ(a)

)
+ (1− δ(RHA)).

(
λ.e−λε.

(λε)k−1

Γ(k)

)
+ c

where δ(RHA) is defined by (5), however, a heading offset
has to applied to the RHA values.

TABLE III: Fitted parameters for the Gamma distributions.

Body TAG location LOS + QLOS NLOS
Wrist a = 1.34, b = 0.14 k = 3.00, λ = 0.30
Thigh a = 1.03, b = 0.30 k = 2.89, λ = 0.60
Arm a = 1.43, b = 0.15 k = 2.15, λ = 0.59

Ankle a = 1.45, b = 0.20 k = 1.97, λ = 0.47

Similar to [17] and [12], the constant term c in (4) and (6) is
equal to a 3% of the model’s peak to cater for the uncertainty
in the measurements.

V. CONCLUSION

We have presented an experimental evaluation of impact of
seven body TAG locations on UWB Ranging for pedestrian
tracking. The evaluation has been done in a multipath envi-
ronment with diverse objects which perturbate the UWB radio
signal propagation. For each body TAG location, studies of
effect of the RHA between the pedestrian, TAG and an ANC
on the range error have been made.

After analyzing the performances of the different TAG
locations, we demonstrate that in addition to the RHA between
the pedestrian, ANC, and TAG, the position of the TAG on
the human body influences the accuracy of UWB ranging.
Therefore, due to the ranging performance of the different
TAG locations, three categorizes can be highlighted:

• Among the aforementioned wearable locations, the fore-
head performs exceptionally well, therefore provides the

best location to put a wearable sensor for ranging applica-
tions. Additionally, a Gaussian variable is used to model
the range error in LOS, QLOS, and NLOS conditions.

• The hand and chest body TAG locations perform similar
to the fore-head in LOS and QLOS conditions, but their
performance deteriorates in NLOS conditions. In model-
ing the range error, both LOS and QLOS are modeled as
a Gaussian, and NLOS as a Gamma variable.

• The ankle, arm, wrist, and thigh locations generate quite
similar ranging results. In this category, the range errors
in LOS, QLOS, and NLOS are modeled by a Gamma
variable.

Therefore, in this paper, it has been showed that for human
ranging applications, the fore-head is the best performing
wearable position, and its performance is followed by the
hand, wrist, ankle, arm, thigh, and chest in that order.

Interesting topics for further investigation, which are beyond
the scope of this paper include: i) studying the impact of
body wearable sensor positions on UWB ranging in a larger
industrial environment, and ii) to make use of error models
in a pedestrian tracking application in order to improve its
performance.
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Impact of Body Wearable Sensor Positions on
UWB Ranging

Timothy Otim, Alfonso Bahillo, Luis E. Díez, Peio Lopez-Iturri, and Francisco Falcone

Abstract—In recent years, Ultrawideband (UWB) has become
a very popular technology for time of flight (TOF) based localiza-
tion and tracking applications but its human body interactions
have not been studied yet extensively. Most UWB location
systems already proposed for pedestrian ranging have only been
individually evaluated for a particular wearable sensor position.
It is observed that wearable sensors mounted on or close to
the human body can raise line-of-sight (LOS), quasi-line-of-
sight (QLOS), and non-line-of-sight (NLOS) scenarios leading to
significant ranging errors depending on the relative heading angle
(RHA) between the pedestrian and each fixed anchors. In this
paper, it is presented that not only does the ranging error depend
on the RHA, but on the position of the wearable sensors on
the pedestrian. Seven different wearable sensor locations namely,
fore-head, hand, chest, wrist, arm, thigh and ankle are evaluated
and a fair comparison is made through extensive measurements
and experiments in a complex multipath environment. Using the
direction in which the pedestrian is facing, the RHA between
the pedestrian, wearable sensor, and anchors is computed. For
each wearable sensor location, an UWB ranging error model
with respect to the human body shadowing effect is proposed
and evaluated. A final conclusion is drawn that the fore-head is
the best body sensor location to put a wearable sensor under
severe multipath conditions because it is able to set low mean
range errors of about 20 cm in all propagation conditions. A final
conclusion is drawn that among the aforementioned wearable
locations, the fore-head provides the best range estimate because
it is able to set low mean range errors of about 20 cm in multipath
conditions. The fore-head’s performance is followed by the hand,
wrist, ankle, arm, thigh, and chest in that order.

Index Terms—UWB, TOF Ranging, Human body shadowing,
Wearable Sensors

I. INTRODUCTION

WEARABLE technology, which is part of the Internet
of Things (IoT) is seen as the next big thing in the

electronics industry. With an already integrated electronic
functionality in a variety of products, ranging from glasses,
headphones, foot wear, etc the wearable device industry is
already large, with a market expected to grow to $ 70 billion
in 2025 [1]. Consumer electronics, defense, and healthcare are
expected to remain the major sectors in this market [2].

The position of a wearable on the body is often determined
by the market sector that it aims to address. According to the
data acquired from Vandrico Wearable Database in [3], wrist
worn devices such as smart-watches and smart bands are most

T. Otim, A. Bahillo, L. E. Díez are with the Faculty of Engineering,
University of Deusto, Av. Universidades, 24, 48007, Bilbao, Spain, e-mail:
{otim.timothy, alfonso.bahillo, luis.enrique.diez}@deusto.es.

P. Lopez-Iturri, F. Falcone are with the Department of Electric, Electronic
and Communication Engineering and with the Institute for Smart Cities,
Public University of Navarra, 31006, Pamplona, Spain, e-mail: {peio.lopez,
francisco.falcone}@unavarra.es.

popular wearables in the market as illustrated in Fig. 1. The
use of wearables on other body locations such as the feet,
arms, fore-head, chest, etc are slowly emerging.

Head: 24%

Wrist-worn: 54%

Chest: 6%

Feet: 4%

Hand-held: 3%

Arm: 3%

Waist: 3%

Legs: 4%

Fig. 1: Market representation for wearables of a particular
location on the body, according to the Vandrico Wearable
Database [3].

A key application of wearables is the tracking of pedestrians
[4]–[6]. Nowadays, it is common knowledge that Global

Navigation Satellite System (GNSS) is the most widely spread
localization technology for outdoor areas, but can not work
properly indoors due to poor coverage of satellite signal.
In indoor areas, a large category of traditional positioning
technologies is beacon based–where pre-installed infrastruc-
ture at known positions are used to transmit signals whose
measurements of received strength, time of flight (TOF), and
angle of arrival are used in estimating the position of a user’s
device. This kind of localization technique still remains an
open problem because of the inability to adequately overcome
the combined effects of pathloss, multipath fading, and human
body shadowing [7]. Multiple wireless technologies, such as
Wi-Fi, RFID, Bluetooth, Ultrawideband (UWB), or Ultra-
sound, and advanced processing techniques, such as Kalman
and Particle Filters, have been proposed to cope with the
deterioration in performance in challenging scenarios [8]–[12].

Over the years, UWB technology has gained a lot of interest
in research thanks to properties such as high bandwidth, ability
to have extremely accurate location estimates, immunity to
fading, low power transmission and low-cost implementation
[13], [14]. Despite of its ability to provide centimeter ranging
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2

accuracies even in severe multipath environments, in pedes-
trian tracking context, it is still a challenge to use UWB with
enough accuracy and coverage. In non-line-of-sight (NLOS)
situations, the pedestrian’s body blocks the direct path between
the wearable sensor and the anchors, referred to as TAG and
ANC throughout this paper, respectively, generating biases in
TOF measurements [15].

Investigations of human body effects on UWB have some-
what been covered in the literature especially in [16]–[19]
[16]–[22], but most of the works focus on UWB ranging

error introduced by human body due to the relative heading
angle (RHA) between the user and the anchors, leaving aside
the impact of body wearable sensor positions on the ranging
error. The RHA is defined as the azimuth of the direction in
which the user of the TAG is facing with reference to an ANC.

In this paper, not only do we present novel UWB ranging
error results for seven body TAG locations taking in account
the RHA, but also UWB ranging error models based on mea-
surement data addressing the human body shadowing effect.
The ranging error models are necessary in order to adequately
compensate for biased ranging, especially in NLOS. Therefore,
the specific contribution of this paper is two fold:

1) The impact of seven different body TAG locations
namely, fore-head, hand, chest, wrist, arm, thigh and
ankle on UWB ranging result is analyzed.

2) An UWB ranging error model for each body TAG loca-
tion is built taking in to account the RHA between TAG
and ANC.

The structure of the remainder of this paper is as follows.
Section II presents existing works related to the impact of
wearable sensor position on UWB ranging and positioning.
The UWB range performance is analyzed in section III for
different body TAG positions. The description of the proposed
UWB ranging error model for each body TAG location is
presented in section IV. Finally, in the last section, we give
some conclusions and future work.

II. RELATED WORK

The sources of UWB ranging error are often attributed to
clock drifts in nodes, interference with other external radio
sources, and propagation effects – due to severe multipath and
blockage of the direct signal path by materials [23]. And
so, the majority of the works in the scientific literature focus
on the ranging scenarios where NLOS is mainly created by
infrastructure layout, and has been addressed in a number of
previous works such as in [24] and [25]. And so, the majority
of the works in the scientific literature such as in [26]–[28]
focus on the ranging scenarios where NLOS is mainly created
by infrastructure layout.

However, in tracking of pedestrians, the human body is the
only obstacle that we know for-sure will be present regardless
of the environment. Therefore, the error caused by wave
propagation through the body is in many cases so important as
the range errors caused by infrastructure obstruction as errors
of several meters can be detected, and has some what been
addressed in [16]–[19]. In [16], the authors investigate the
range error by positioning the human body between the ANC

and TAG. In addition to studying the impact of RHA on a
particular body TAG location, the work in [17]–[19] build
ranging error models with respect to human body obstruction
for the wrist, chest and hand body TAG positions, respectively.
In [17] and [18], the authors propose a Gaussian model
for LOS and NLOS range erros, while the work in [19]
considers the ranging error as a Gaussian for LOS and Gamma
distribution for NLOS.

Therefore, the error caused by wave propagation through the
body is in many cases so important as the range errors caused
by infrastructure obstruction as errors of several meters can be
detected. In fact in [16]–[22], these errors have somewhat been
addressed but for particular wearable sensor positions and a
limited set of RHA values. For instance, in [20], the authors
explore the human body and UWB radiation interaction on
TOF ranging using finite difference time domain and empirical
techniques for the hand position. In [21], the authors use ray-
tracing and empirical techniques to study the effect of the
human body on the time of arrival of an UWB signal for a
wearable located at the chest position. Other studies of the
human body shadowing effect on UWB-based ranging system
are covered in [17], [22] for the wrist , [18], [22] for the chest
and [19] for the hand positions.

Despite all these promising body TAG locations addressed
by the aforementioned works, position estimation of pedes-
trians continues to be quite challenging as there are limited
works in scientific literature which provide a detailed analysis
of performance of several body TAG locations on the ranging
result. Consequently, it would be very useful for the research
community to compare the different body TAG positions under
a commom framework and test conditions.

Modeling of UWB ranging error is of great importance
in order to compensate or mitigate biased ranging due to
NLOS. Several UWB ranging error models that are available
in the literature [25], [29], [30] focus on NLOS blocked by
walls [29], fire door, wall [30] and whiteboard [25]. A few
works build ranging error models with respect to human body
obstruction. For those that do, they build ranging error models
focusing on a particular wearable position and set of RHA
values. In [20] and [19], the authors consider the ranging error
as Gaussian for LOS and Gamma distribution for NLOS but
for the hand location. In [17], [18], [22], the authors propose a
Gaussian model for LOS and NLOS range errors for the wrist
and chest locations.

Basing on the related work, we observe that there are
limited works in scientific literature which provide a detailed
analysis of performance of several body locations on the
ranging result using the TOF as the ranging metric with UWB
technology at 3.9 GHz. Research gaps which this work seeks
to address include: exploring the effect of body shadowing on
UWB-based ranging system and building ranging error models
for wearables positioned at the fore-head, ankle, thigh, arm,
chest, hand, and wrist for RHA values of 0◦-360◦. This work
would be very useful for the research community to compare
the ranging performance of different body wearable sensor
positions under a commom framework and test conditions.
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3

III. UWB RANGING PERFORMANCE

This section presents the ranging performance of seven
wearable sensor locations. Firstly, we carry out preliminary
studies by considering a simple experiment along a straight-
path. Secondly, we perform extensive measurements along a
path in a realistic indoor scenario.

A. Experimental Methodology

Throughout this paper, several TREK1000 development kits
manufactured by Decawave were used. According to [31],
TREK1000 development kits are the best UWB commercial
products for ranging. The nodes are fully compliant with the
IEEE 802.15.4-2011 UWB standard and make it possible to
achieve ranging measurements using two-way ranging mea-
surements at a rate of 3.57 Hz. For the purpose of these
measurement campaigns, TREK1000 nodes were configured
as a TAG and as ANC(s) to work with a 110 kb/s data rate
and in the channel 2 (3990 MHz).

The experiments were carried out inside the Luis Mercader
Lab at the department of Electric, Electronic and Commu-
nication engineering at the Public University of Navarre in
Spain. The Lab had the following dimensions: 6 m wide, 13
m long, and 4 m high, and contained a number of computers,
monitors, chairs, desks, closets and working people. The floor
and ceiling were made of concrete – (see Fig. 3). The Lab
had the following dimensions: 6 m wide, 13 m long, and 4
m high. The floor and ceiling were made of concrete [see –
Fig. 3]

ANC 0
ANC 2ANC 3

(a)

ANC 1

(b)

Fig. 2: Details of the Luis Mercader Lab environment. Di-
mensions: 13 m × 6 m. Four UWB ANCs marked in yellow
circles.

In order to investigate the human body shadowing of UWB
signals while taking in to account the RHA, we adopted
the relationship between RHA and the physical scenario (S)
defined in (1) as

S =


LOS, RHA ∈ [0◦, 67.5◦]

⋃
[292.5◦, 360◦]

QLOS, RHA ∈ (67.5◦, 112.5◦)
⋃

(247.5◦, 292.5◦)

NLOS, RHA ∈ [112.5◦, 247.5◦]
(1)

Where line-of-sight (LOS) is obtained when there is direct
line-of-sight, quasi-line-ofsight (QLOS) when part of human
body is located between the TAG and ANC, and NLOS

Fig. 3: Details of the Luis Mercader Lab environment. Di-
mensions: 13 m × 6 m × 4 m. The Lab contains computers,
monitors, chairs, desks, and closets which contribute in creat-
ing multipath components.

obtained when the whole body is completely blocking the
direct LOS between the TAG and ANC.

Df 

TAG

Ped

ANC

RHA 

Y

X

(a) LOS

DfTAG

Ped

ANC

RHA 

(b) QLOS

Df 

TAG

Ped

ANC

RHA 

(c) NLOS

Fig. 4: RHA between an ANC and a pedestrian (Ped) who
is wearing a TAG and facing in the direction Df . The
triangle, rectangle and circle denote an ANC, Ped, and a TAG,
respectively.

The RHA is computed as the azimuth of the direction in
which the pedestrian is facing with reference to ANC. This
means that we can take the difference between the azimuth
generated by (2) from the azimuth of the direction in which
the pedestrian is facing.

While in the considered environment, majority of the shad-
owing of the direct propagation is caused by the body. The
body obstructs the propagation path between the ANC and
TAG for particular RHA values. Therefore, with respect to the
RHA-dependent body shadowing, three propagation scenarios
are considered in this paper i.e., LOS, quasi-line-of-sight
(QLOS), and NLOS.

Though the work in [7] develops statistical models for off-
body channels based on the received signal strength technique,
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00

1800

ANC

Pedestrian TAG Facing Direction

LOS
QLOS
NLOS

900

2700

(a)

00

1800

ANC

Pedestrian TAG Facing Direction

LOS
QLOS
NLOS

900

2700

(b)

Fig. 5: An illustration of LOS, QLOS, and NLOS thresholds
when the TAG is located on: (a) front and (b) side of the
pedestrian.

in this paper, a similar definition of the angular thresholds of
the RHA is used to differentiate LOS, QLOS, and NLOS for
sensors placed on the frontal plane of the user i.e., fore-head,
chest and hand. However, for the sensors which are located
on the side plane of the user i.e., ankle, wrist, thigh, and arm,
an offset of −90◦ is applied to thresholds due to the sideways
position of the TAG with respect to the direction in which
the pedestrian is facing. In Fig. 5, an illustration of the three
propagation conditions with respect to their RHA thresholds
is showed. Additionally, the mapping between RHA and the
propagation scenario suggested in [7] is showed in (1)

In LOS, the transmitter is directed towards the receiver
such that there is direct line-of-sight between the TAG and
the ANC. In NLOS, the body fully obstructs the direct
propagation path such that significant delays are caused in
the TOF estimation. In Fig. 5a, this scenario is created when
the pedestrian makes a U-turn so that pedestrian’s body is
between the TAG and the ANC. The QLOS is obtained when
TAG is oriented orthogonally to the ANC so that the direct
propagation path between the TAG and ANC is either clear or
partially shadowed by the body.

In computing the RHA, the difference between the azimuth
generated by (2) from the azimuth of the direction in which
the pedestrian is facing is considered.

O = atan2

(
ANCy − TAGy
ANCx − TAGx

)
(2)

The x and y subscript indicate the corresponding ANC and
TAG x and y coordinates. O is the azimuth obtained from the
line connecting the coordinates of TAG and the ANC with the
horizontal axis. As seen in various examples in Fig. 4, RHA
is approximately 30◦, 120◦, and 210◦ in Fig. 4a, Fig. 4b, and
Fig. 4c, respectively.

The definition in (1) is valid for sensors placed on the frontal
plane of the user (fore-head, chest and hand). Other sensor
body locations will need to apply an offset to the pedestrian’s
facing direction, for instance for the case of ankle, thigh, arm
and wrist are −90o◦ ( +270◦) is applied.

B. Ranging along a straight path

In the error profiling experiments, an ANC was mounted
on a mast 1.72 m high at a fixed position while the TAG

was mounted on a subject at different body TAG locations
as illustrated in Fig. 6. A male subject, 1.80 m height and
77 kg mass was considered for the measurements. The TAG
was mounted on a subject with the help of Velcro straps at
the right-ankle, right-thigh, fore-head, right-hand, right-arm,
chest, and right- wrist. The heights at which the TAG was
mounted is showed in Table I.

To verify that ranging error is impacted by both RHA and
the body TAG location, a preliminary experiment along a
straight path is performed. Due to the dimensions and the
layout of the room, five distances between an ANC and a TAG
were investigated, from 2 to 10 m, with a 2-m step along a
straight-path.

For each body TAG location, and at each distance the
subject was made to turn through a particular set of RHA
in (1) i.e., 0◦ for LOS, 90◦ and 180◦ for QLOS or NLOS
depending on the location of the TAG on the body.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 6: TAG mounted on a subject at (a) ankle, (b) thigh, (c)
fore-head, (d) hand, (e) arm, (f) chest, and (g) wrist. At the
hand, the TAG was 20 cm from the chest since this is a usual
place for texting or looking at the screen of a smart phone
when locating your position in a real world scenario.

A laptop was connected to the ANC to store all measure-
ments. At a rate of 3.57 Hz, measurements were recorded over
a period of 30 s, generating at-least 100 TOF estimations for
each distance and RHA. We did not capture data for all TAGS
simultaneously because we wanted to minimise any possible
interference that would arise.

TABLE I: Height at which the TAGs were mounted

Location Ankle Thigh Fore-head Hand Arm Chest Wrist
H (m) 0.15 0.7 1.77 1.2 1.3 1.3 0.9

Using the test setup described above, the range error is
defined as the difference between the measured distance and
the true distance. Then, we grouped the measured range errors
by body TAG location and LOS, QLOS, and NLOS scenarios.
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Fig. 7: Impact of Wearable Sensor Positions on Ranging: (a)
MAE, and (b) SD.

The mean absolute error (MAE) and standard deviation (SD)
was computed, and a summary of the results for each body
TAG location is made in Fig. 7.

Ideally, the errors obtained in the presence of a human
body are a combination of: i) the multipath error, and ii)
the undetectable direct path error created by body shadowing
[17], [18], [21], [22]. However, the work in Jiménez et al
[27] shows that the multipath error, which is equivalent to
the error obtained without the presence of the human body
is almost zero with (±0.1 m) SD for i) a lab size of almost
80 square meters, and ii) for TREK1000 development kits
manufactured by Decawave. And so, the significant errors
observed especially in NLOS are entirely as a result of the
user acting as an obstacle between the TAG and an ANC.

Preliminary studies show that under LOS and QLOS, the
chest is the best possible location for ranging while in NLOS,
the chest location performs very poorly with a MAE of about
2.2m [see – Fig. 7a]. A possible reason for this behaviour
lies in the size of trunk. Because the chest has a large surface
area, in LOS and QLOS, small power gains are realized which
translates in to smaller range errors. However in NLOS, the
large size of the chest becomes a disadvantage as much of the
power gets absorbed by the body, hence the extremely large
errors. Under LOS, and QLOS, the hand location performs
quite similar to the chest position, and even out performs
the chest location under NLOS. The hand performs better in
NLOS because the space of 20 cm from the chest as illustrated
in Fig. 6d allows the wave to reach the TAG easily through
creeping wave propagation [32].

Over all, the fore-head is the best location to put the UWB
TAG as it guarantees low mean range errors of about 20 cm

in all conditions. If we consider the shape, size and height at
which the fore-head is located, we see that it is much easier
for the UWB wave to turn around and reach the TAG even in
NLOS, as opposed to when the TAG is located at the chest or
hand.

Though the ankle generates quite similar range errors across
all conditions, its results are a little different from the expected
trend as the QLOS performs worse than NLOS. This has a lot
to do with the height at which TAG is located. Since the TAG
is closer to the ground, there is a high possibility of LOS and
QLOS connections often shadowed by interfering objects in
the environment. In addition, the fact that the TAG is so close
to the floor means that it suffers from multipaths more than
any other body TAG location.

With regard to the sensors located on the side plane of the
user, it is observed that the ankle generates unexpected trend
of results as the QLOS performs worse than NLOS. The arm,
wrist, and thigh TAG locations have quite similar but also
significant range errors as a MAE of at-least 1 m is observed
in NLOS.
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Fig. 8: Measured versus actual distances, for (a) wrist, (b)
thigh and (c) arm, (d) chest body TAG locations.

The arm, wrist, and thigh TAG locations have quite similar
but also significant range errors. In NLOS, a MAE of at-least 1
m is observed. In Fig. 7b, a high variance in the ranging error
is observed when the TAG is located at the thigh, arm, chest,
and wrist locations in NLOS. It is not surprising that these
are the same locations with the highest range error values in
Fig. 7a. It is observed that beyond 4 m the range error increases
with distance as seen in Fig. 8. On the contrary, the fore-head,
ankle, and hand body TAG locations, the range error is stable
across all the distances.

C. Ranging in a realistic indoor scenario

In order to test the UWB systems for pedestrian tracking
under significant multipath, we installed 4 UWB ANCs at fixed
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6

positions in the Lab and the user moved along a path of 26
ground-truth positions.

The lab environment where the tests were performed is
shown in Fig. 3. In Fig. 9, we show the floor plan with
detailed ANC positions and 26 test points with each point
approximately 1 m from the other. There are several interfering
objects such as pieces of furniture (gray boxes), metallic
cabinet (orange box) and on top of furniture are desktop
computers.

The origin of the reference system is defined at the bottom
left corner.

TABLE II: Coordinates of UWB ANCs, where n is the ANC
identity number defined as n = 0, 1, 2, 3

ANC (n) X (cm) Y (cm) Z (cm)
ANC 0 1240 70 170
ANC 1 1240 571 173
ANC 2 21 548 172
ANC 3 33 68 172

1

2345
6

7

8 9 10 11 12

13 14 15
16

17

18

19
20 21 22

23

242526

ANC 0

ANC 1
ANC 2

ANC 3

Fig. 9: Map of the room and the installation in Luis Mercader
Lab. A total of 26 test points (numbered crosses) were selected.
Also shown are the 4 ANCs at the corners of the Lab.

The UWB ANCs were mounted on tripods in the positions
indicated in Table II. The small difference in height is due to
the use of different tripod models. By height of the nodes we
refer to the height of the tripod plus the height of the node’s
antenna. The coordinates of the tripods and ground marks were
measured using a laser rangefinder.

In the error profiling experiments, similar to the previous
section, a male subject, was made to wear the TAG at seven
body TAG locations and move along all the test points. At
each test point, the subject was made to face three directions
whose azimuths are 0◦, 90◦, 180◦ following the right hand
rule, with the 0◦ facing to the right/East of Fig. 9. This set up
generated 312 different setup configurations and RHAs i.e.,(3
directions × 26 ground truth points × 4 ANCs = 312). In
computing the RHA values, for each ANC and at each test
point, we subtracted the azimuths of the 3 directions from
O worked out from (2). The RHA values computed returned
values anywhere between -180◦ to +180◦. Therefore, to obtain
angles between 0◦-360◦ we corrected the results that were less
than 0◦. In Figure 10, we show the measured distances and
the computed RHA for each of the 26 test points for a single
TAG location. For each test point and direction, measurements
were recorded for a period of 30 s. Consequently, for every

TAG mounted on the body, the tests lasted about 39 minutes
(3 directions × 30 seconds × 26 ground truth points = 2340
s). In total, the experiments took approximately 5 hrs (7 body
TAG locations × 39 minutes per TAG = 273 minutes) for all
TAG locations.

The switch from one ground truth point to another was done
manually, and we recorded the TOFs only when the subject
had moved to the correct ground truth point. A laptop was
connected to the TAG to record the TOFs from each of the 4
ANCs.

Fig. 10: A 3-D histogram of the measured distances versus
the computed RHA.

In Figure 10, a clear observation is that plenty of measure-
ments have been performed covering the distances between
2 to 14 m, and RHA values that cover a span between 0◦ -
360◦. The maximum range covered in this experiment is 14
m arising from the diagonal of the lab. Therefore, we can
infer that the experiment results are fair and not limited to a
particular RHA values.

Similar to previous section, we compute the range error but
from approximately 31200 distance readings (3 directions ×
100 distance readings × 26 ground truth points × 4 ANCs)
for every body TAG location. The MAE and SD results are
plotted in Figure 12.

In Figure 12a, a good agreement is observed between the
results from experiments performed along a straight path and
in a realistic indoor scenario. Therefore, we can explicitly
group the performance of the body TAG locations into 4 3
categories:

• The fore-head location has proven to be essential in
setting low range errors of less than 20 cm. Among the
locations analyzed in this paper, it can now be concluded
that the fore-head provides the best place to put an UWB
sensor when tracking pedestrians. This result is somehow
logical since the size and the shape of fore-head makes it
easier for UWB waves to reach the TAG, even in NLOS.

• The hand and chest locations achieve accuracy results
similar to the fore-head position in LOS and QLOS
scenarios, but are weaker in NLOS conditions. Especially
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Fig. 11: Impact of Wearable Sensor Positions on Pedestrian
Ranging under significant and severe Multipath: (a) MAE, and
(b) SD.
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Fig. 12: Impact of Wearable Sensor Positions on Pedestrian
Ranging under significant and severe Multipath: (a) MAE, and
(b) SD.

the chest location generates mean range errors of over 2
m in NLOS. Therefore, these TAG locations can be used
if it is possible to install enough ANCs to minimize the
risk of NLOS.

• The thigh, arm, and wrist TAG locations provide almost
similar range error results. The small differences in the
range errors among these three locations can be attributed
to the differences in the height and size of the limb on
which the TAG is attached.

• The ankle generates range errors of less than 1 m in
all conditions, but the ranging errors are in consistent
as some times the QLOS provides better accuracies than
LOS. These results are unique, but can be attributed to
the fact that since the TAG is closer to the ground, there
is a high possibility of LOS connections often shadowed
by interfering objects in the environment.

• The ankle, thigh, arm, and wrist TAG locations provide
almost similar range error results. The small differences
in the range errors among these three locations can be
attributed to the differences in the height and size of the
limb on which the TAG is attached. However, looking
at Figure 12a, the order of performance is such that the
wrist performs better, followed by ankle, arm, and the
thigh.

On the contrary to Figure 7b where the high variance is
attributed majorly to human body shadowing, in Figure 12b
the high variance is due to a combination of NLOS because of
human body shadowing as well as infrastructure obstruction.

IV. RANGING ERROR MODELS

In order to adequately compensate for biased ranging,
especially in NLOS, in this section we develop ranging error
models based on data from the extensive measurements. The
measured data is fitted to well-known statistical distributions
for every body TAG location. Additionally, in extracting the
parameters for each statistical distribution, we use a distri-
bution fitting function in MATLAB called fitdist which is
based on a maximum-likelihood parameter estimation to fit
the measurement data to the corresponding histograms.

The graphical representation of the obtained results is
displayed in Figure 14. In Figure 14a, under LOS, QLOS and
NLOS a Gamma distribution is observed for the wrist TAG
location. This behaviour is similar for the ankle, thigh and arm
locations. For this reason, their figures have not been included.
On the contrary, as seen in Figure 14b, a Gaussian distribution
is observed for the fore-head body TAG location.

As for the chest and hand body TAG locations in Fig-
ure 14c, and Figure 14d, respectively a Gaussian distribution
is observed for the LOS and QLOS. However, for the NLOS
condition a Gamma distribution is observed. The long tail
observed in the Gamma distributions is because of the presence
of severe multipath in indoor environments.

The negative range errors to the left half in some of the
histograms are outliers as they show shorter distances than
straight or LOS. This unexpected behaviour could be due
to a number of reasons such as multiple-access interference,
or filtering problem in the software libraries or even some
centimeter inaccuracies in the mapping of the floor plan.
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8

Except for the ankle, in LOS, the RHA has a little effect
on the ranging error as a mean error less than 20 cm is quite
similar to the mean error obtained without the presence of the
human body. Based on the measurement data obtained from
the extensive experiments, we propose ranging error model for
each body TAG location.

So far experiment results show that the range error is stable
across all the conditions for the fore-head. Therefore, when
the TAG is located on the fore-head, the ranging error model
proposed is defined by the Gaussian PDF in (3), where ε is
the range measurement error, µ is the mean range error, and
σ is the SD of the distribution.

f(ε) =
1

σ
√

2π
e−

(ε−µ)2

2σ2 (3)

To work out the parameters for the proposed model, a com-
bined distribution is obtained by gathering all data sampled
in all LOS, QLOS and NLOS conditions. And so, µ and σ
is set to 13 cm and 8 cm, respectively. And so, using 31200
samples, µ and σ is set to 13 cm and 8 cm, respectively.

As for the hand, chest, wrist, arm, thigh, and ankle locations
there is a clear distinction between LOS, QLOS on one hand
and NLOS on the other hand. The PDF in (4) which combines
a Gaussian distribution (for LOS + QLOS measurements) and
a Gamma distribution with a long tail on the positive for the
NLOS is proposed as the ranging error model when the TAG
is at the chest and hand.

(4)
f(ε) = δ(RHA).

(
1

σ
√

2π
e−

(ε−µ)2

2σ2

)
+ (1− δ(RHA)).

(
λ.e−λε.

(λε)k−1

Γ(k)
+ c

)
where δ(RHA) is the unit impulse function defined in (5)

δ(RHA) =

{
0, RHA ∈ [0◦, 112.5◦)

⋃
(292.5◦, 360◦]

1, RHA ∈ [112.5◦, 247.5◦]
(5)

In working out the parameters for the proposed model
for the hand TAG position, we examine how the the mean
error varies across the RHA for the combined distribution.
As seen in Figure 16a, the mean error is stable, therefore,
the parameters for the proposed model are set to 11 cm and
7 cm, for µ and σ, respectively. The parameters in Gamma
distribution are obtained by fitting the NLOS histogram with
λ = 0.3 and k = 1.5.

In working out the parameters for the proposed model
for the hand TAG position, we examine how the the mean
error relates with the RHA for the combined distribution.
Consequently, the coefficient of correlation in Figure 16a has
been computed as -0.02, which means that there is no linear
relationship between µ and RHA for the hand location. There-
fore, using 24500 samples, the parameters for the proposed
LOS + QLOS model are set to 11 cm and 7 cm, for µ and
σ, respectively. The parameters in Gamma distribution are
obtained by fitting the NLOS histogram with λ = 0.3 and
k = 1.5, with 6700 samples.

In contrast to the hand, for the chest, we study the linear
relationship between µ and RHA for LOS + QLOS measure-
ments [see – Figure 16b]. And so, using linear regression, the
relation between µ and RHA is defined in (6) as

µ = 0.20− 0.17. cos(RHA) (6)

In (4), the σ is set to 11 cm. The parameters in Gamma
distribution are obtained by fitting the NLOS histogram with
λ = 1.3 and k = 1.5.

In contrast to the hand, for the chest [see – Fig. 16b], the
coefficient of correlation has been computed as -0.69, which
indicates that the linear relationship is moderately strong, but
not perfect, since it is observed that µ varies somewhat even
among the same RHA values. Therefore, using 24500 samples,
the parameters for the LOS + QLOS model for the chest are
set to 11.5 cm and 11.2 cm, for µ and σ, respectively. The
parameters in Gamma distribution are obtained by fitting the
NLOS histogram with λ = 1.3 and k = 1.5 with 6700 samples.

The PDF in (7) which combines a Gamma distribution with
a long tail on the positive for (LOS + QLOS measurements)
and NLOS is proposed as the ranging error model when the
TAG is at the wrist, arm, thigh, and ankle.

(7)
f(ε) = δ(RHA).

(
b.e−bε.

(bε)a−1

Γ(a)

)
+ (1− δ(RHA)).

(
λ.e−λε.

(λε)k−1

Γ(k)

)
+ c

where δ(RHA) is defined by (5), however, a heading offset
has to applied to the RHA values.

Parameters in the Gamma distributions are obtained by
fitting the LOS+QLOS histogram with shape a and scale b
parameters, and the NLOS histogram with shape λ and scale
k showed in Table IV .

TABLE III: Fitted parameters for the Gamma distributions.

Body TAG location LOS + QLOS NLOS
Wrist a = 1.85, b = 0.12 k = 0.90, λ = 0.70
Thigh a = 1.05, b = 0.31 k = 1.52, λ = 0.69
Arm a = 1.51, b = 0.15 k = 0.70, λ = 1.09

Ankle a = 1.43, b = 0.21 k = 0.55, λ = 1.02

TABLE IV: Fitted parameters for the Gamma distributions.

Body TAG location LOS + QLOS NLOS
Wrist a = 1.34, b = 0.14 k = 3.00, λ = 0.30
Thigh a = 1.03, b = 0.30 k = 2.89, λ = 0.60
Arm a = 1.43, b = 0.15 k = 2.15, λ = 0.59

Ankle a = 1.45, b = 0.20 k = 1.97, λ = 0.47

Similar to [31] and [19], the constant term c in (4) and (7) is
equal to a 3% of the model’s peak to cater for the uncertainty
in the measurements.

V. CONCLUSION

We have presented an experimental evaluation of impact of
seven body TAG locations on UWB Ranging for pedestrian
tracking. The evaluation has been done in a complex multipath
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Fig. 13: Histogram of range errors for bin number equals 100 for : (a) wrist, (b) fore-head, (c) chest, and (d) hand body TAG
locations. The number of measurements is equal for all TAG locations, however, the number of measurements for LOS, QLOS,
NLOS is different since it depends on the number of RHA attributed to the aforementioned scenarios. RHA between an ANC
and a pedestrian (Ped) who is wearing a TAG and facing in the direction Df . The triangle, rectangle and circle denote an
ANC, Ped, and a TAG, respectively. The small size of the bars for some of the distributions is due to need to have uniformity
in the scales for the x and y axes. The chest location has a different scale on the x axis for NLOS since its range errors are
larger than the rest of the TAG locations.

environment with diverse objects which perturbate the UWB
radio signal propagation. For each body TAG location, studies
of effect of the relative heading angle between the pedestrian
and an ANC n the range error have been made.

After analyzing the performances of the different TAG
locations, we demonstrate that in addition to the RHA between
the pedestrian, ANC, and TAG, the position of the TAG on
the human body influences the accuracy of UWB ranging.
Therefore, due to the ranging performance of the different
TAG locations, four categorizes can be highlighted:

• The fore-head performs exceptionally well even in en-
vironments with severe multipath, therefore provides the
best location to put a TAG during pedestrian tracking.

•

• Among the aforementioned wearable locations, the fore-
head performs exceptionally well, therefore provides the
best location to put a wearable sensor for ranging applica-
tions. Additionally, a Gaussian variable is used to model
the range error in LOS, QLOS, and NLOS conditions.

• The hand and chest body TAG locations perform better
than the rest except for the head.

• The hand and chest body TAG locations perform similar
to the fore-head in LOS and QLOS conditions, but
their performance deteriorates in NLOS conditions. In
modeling the range error, both LOS and QLOS are be
modeled as a Gaussian, and NLOS as a Gamma variable.
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Fig. 14: Histogram of range errors for bin number equals 100 for : (a) wrist, (b) fore-head, (c) chest, and (d) hand body TAG
locations. The number of measurements is equal for all TAG locations, however, the number of measurements for LOS, QLOS,
NLOS is different since it depends on the number of RHA attributed to the aforementioned scenarios.
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Fig. 15: Mean error versus RHA for LOS + QLOS measure-
ments where: (a) hand, and (b) chest.

• The ankle, arm, wrist, and thigh locations generate quite
similar ranging results.
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Fig. 16: Mean error versus RHA for LOS + QLOS measure-
ments.

• The ankle, arm, wrist, and thigh locations generate quite
similar ranging results. In this category, the range errors
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in LOS, QLOS, and NLOS are modeled by a Gamma
variable.

Additionally, empirical measurement result shows that for
the fore-head, LOS, QLOS, and NLOS conditions can be
modeled as a Gaussian variable. As for the hand and chest
TAG locations, both LOS and QLOS can be modeled as a
Gaussian, and NLOS as a Gamma variable. Furthermore, for
the ankle, wrist, thigh, and arm locations, the LOS, QLOS,
and NLOS can be modeled by a Gamma variable.

An interesting topic for further investigation, which is
beyond the scope of this paper is to make use of these error
models in a pedestrian tracking application in order to improve
its performance.

Therefore, in this paper, it has been showed that for human
ranging applications, the fore-head is the best performing
wearable position, and is followed by the hand, wrist, ankle,
arm, thigh, and chest in that order.

Interesting topics for further investigation, which are beyond
the scope of this paper include: i) studying the impact of
body wearable sensor positions on UWB ranging in a larger
industrial environment, and ii) to make use of error models
in a pedestrian tracking application in order to improve its
performance.
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Reviewer: 1  

Recommendation: Reject (Paper is not acceptable for the Sensors Journal. Author should 

be encouraged to submit to another journal.)  

 

We thank the reviewer for all of the comments and suggestions provided, which indeed 

help to provide adequate insight and improve the manuscript tremendously. We now 

detail the answers to all of the comments and reviewer suggestions.  

 

Additionally, due to a slight mistake that we discovered in the computation of the 

thresholds for LOS, QLOS, and NLOS for the ankle, arm, wrist, and thigh wearable 

locations [thanks to the reviewers 1 comment on the LOS, QLOS, NLOS thresholds], 

some values (mean and standard deviations) in Figure 9 and Table III have somewhat 

changed. However, this correction has not changed the final conclusions of this work, but 

rather reinforced them. Figure 9 can be found in the Section III called UWB Ranging 

Performance, on Page 6, Column 1, starting from Line 1. Table III can be found in Section 

IV called Ranging Error Models Performance, on Page 8, Column 1, starting from Line 

31. 

 

Fig. 2 is vague, please change it with a proper size image.  

We thank the reviewer for this comment; indeed, the image requires improvement. In the 

new version of the paper, we provide a better photo of Fig. 2. In this photo, we show the 

Lab environment in which the experiments were performed. It contains several interfering 

objects such as computers, chairs, and furniture which contribute towards creating a 

multipath environment.  

This photo can be found in the Section III called UWB Ranging Performance, on Page 3, 

Column 1, starting from Line 2.  

 

Please describe LOS, QLOS, and NLOS. In this paper, these important parameters 

are confusing in the beginning of your methodology.  

We thank the reviewer for this comment. In the new version of the paper, we provide the 

reader with a much better description of these terms. This information can be found in the 
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Section III called UWB Ranging Performance, on Page 2, Column 11, starting from Line 

53.  

Nevertheless, in this letter, we provide you with a full description of LOS, QLOS, and 

NLOS scenarios. While in the considered environment, majority of the shadowing of the 

direct propagation is caused by the body. The body obstructs the propagation path 

between the ANC and TAG for particular RHA values. Therefore, with respect to the 

RHA-dependent body shadowing, three propagation scenarios are considered in this 

paper i.e., LOS, quasi-line-of-sight (QLOS), and NLOS. 

 

00
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(a)                                                                          (b) 

Figure 1: An illustration of LOS, QLOS, and NLOS thresholds when the TAG is located on: (a) front and 

(b) side of the pedestrian. [appears as Fig.3 in the new version of the paper] 

 

 

In LOS, the transmitter is directed towards the receiver such that there is direct line-of-

sight between the TAG and the ANC.  In NLOS, the body fully obstructs the direct 

propagation path such that significant delays are caused in the TOF estimation. In 

Figure.1, this scenario is created when the pedestrian makes a U-turn so that pedestrian's 

body is between the TAG and the ANC. The QLOS is obtained when TAG is oriented 

orthogonally to the ANC so that the direct propagation path between the TAG and ANC 

is either clear or partially shadowed by the body. 

 

According to equation 1, what is the reason for thresholds? How did you calculate 

them? In addition, there is no good reference in this part of your paper? However, 

in [4], these parameters were used.  

We thank the reviewer comment and completely agree that we do not provide information 

of how we arrived at these RHA thresholds. The idea of the thresholds is used to 

differentiate LOS, QLOS, and NLOS propagation conditions, and is obtained from 

reference [4] (now [6]).  In the new version of paper, we have added this reference to the 
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definitions and thresholds. This information can be found in the Section III called UWB 

Ranging Performance, on Page 3, Column 1, on Line 36.  

However, angular thresholds of the RHA obtained from reference [4] (now [6]) is only 

used to differentiate LOS, QLOS, and NLOS for sensors placed on the frontal plane of 

the pedestrian i.e., fore-head, chest and hand. Because this study also involves sensors 

which are located on the side plane of the user i.e., ankle, wrist, thigh, and arm, an offset 

of -90◦ is applied to thresholds due to the sideways position of the TAG with respect to 

the direction in which the pedestrian is facing [see – Figure. 1b] (appears as Fig 3b in the 

new version of the paper). 

 

In [4], the statistical models are more complete than your paper. Not only you 

compare your methodology with [4], but also define your benefits.  

We thank the reviewer for this comment about the statistical models. We fully agree with 

the fact that the statistical models in [4] (now [6]) are complete. While the work in [4] 

(now [6]) aims at developing models for off-body channels based on the received signal 

strength (RSS) techniques, in our work, we aim at developing statistical models for off-

body wearable sensors based on the time of flight (TOF) techniques for ranging 

applications.  

Though the methodology is a little similar in the definition of the angular thresholds 

(RHA values) , the purpose of our work is completely different from the work in [4] (now 

[6]) , and so are the parameters for statistical models, i.e. in our work we measure the time 

of the signal while in [4] (now [6]), the signal power is measured. In our work, we 

consider, 1 subject with 7 different body TAG locations walking in a fixed place, in [4] 

(now [6]), the authors consider 2 subjects with 1 body tag location with 3 body positions 

(standing, sitting, walking). Additionally, the frequency is also different. Because of the 

aforementioned differences between both works, the parameters that have been used in 

the statistical models are somewhat different.  

In the new version of paper, we highlighted some of the differences between [4] (now 

[6]) and the work in this paper. This information can be found in the Section III called 

UWB Ranging Performance, on Page 3, Column 1, starting from Line 24.  

Furthermore, we know for sure that localization is the main application for ranging, 

therefore, the statistical models in our work are complete for mitigating the ranging errors 

due to NLOS created by the human body. This has been indicated in the revised version 

of the manuscript in order to provide clear insight, following reviewer suggestion. This 
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information can be found in the Section I called Introduction, on Page 2, Column 1, 

starting from Line 17.  

 

According to equation 3, how did you find μ and σ?  

We thank the reviewer comment, indeed the details of how μ and σ are calculated are not 

described anywhere in the paper. In the new version of the paper, we provide information 

that a distribution fitting function called fitdist in MATLAB has been used to fit the 

corresponding histograms. This function is based on a maximum-likelihood parameter 

estimation and returns μ and σ as the mean, and standard deviations, respectively for 

Gaussian distributions.  

This information can be found in the Section IV called Ranging Error Models, on Page 

6, Column 1I, starting from Line 12.  

Therefore, to work out the parameters for equation 3 (for the fore-head position), we 

combine all the data sampled in LOS, QLOS and NLOS conditions (31200 samples in 

total), then use the fitdist function, which returns a Gaussian distribution with a μ = 13 

cm, and σ = 8 cm.  

This information can be found in the Section IV called Ranging Error Models, on Page 

6, Column 1I, starting from Line 53.  

 

In references, [2-3] are inaccessible. Moreover, [1] is not suitable. I found some 

related papers after 11th. Please check out more papers in this scope. In this paper, 

the number of papers that are referenced to your work is low.  

We want to thank the reviewer for comments regarding the bibliography. In the new 

version of the paper, we have made reference [3] (now [2]) accessible by adjusting the 

url of the website because the website’s security certificate has expired.  

This information can be found in the Section VI called References, on Page 8, Column 1I, 

starting from Line 28.  

However, we retain reference [1] because it is a highly cited source for forecasting 

wearable market trends and players. The work performed by IDTechEx (reference [1]) 

involves an extensive analysis of 800 active players in the wearable technology space. 

This information can be found in the Section VI called References, on Page 8, Column 1I, 

starting from Line 26.  

Additionally, the reviewer is right about the number of papers that are referenced to the 

core of our work being low. Currently, there are a few works that study the effects of the 
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human body on UWB ranging in the literature, and most of them are cited in this paper 

[12-18]. Incidentally, the same papers are also cited when modeling the effects of human 

body on UWB ranging.  

Because of the limited works in this field, this paper aims to address some of the research 

gaps that exist. This information can be found in the Section II called Related works, on 

Page 2, Column 1, starting from Line 48.  

Page 27 of 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Reviewer: 2  

The paper presents extensive experimental investigations in the accuracy of an UWB 

positioning system for a number of tag positions over the human body and orientations 

with respect to anchor readers, as measured in an indoor environment. The objectives of 

the paper are clearly stated and the case for the new measurements is also convincingly 

laid out. In particular, the Authors highlight the novelty of their work with respect to 

previous works. I have found the results and analysis convincing and interesting, with 

sound and effective explanations for observations such as the larger positioning errors for 

chest positions.  I suggest accepting the paper, but I have a few suggestions for revision 

that I think would improve the paper  

 

We thank the reviewer for all of the comments and suggestions provided, which indeed 

help to provide adequate insight and improve the manuscript tremendously. We now 

detail the answers to all of the comments and reviewer suggestions.  

 

Additionally, due to a slight mistake that we discovered in the computation of the 

thresholds for LOS, QLOS, and NLOS for the ankle, arm, wrist, and thigh wearable 

locations [thanks to the reviewers 1 comment on the LOS, QLOS, NLOS thresholds], 

some values (mean and standard deviations) in Figure 9 and Table III have somewhat 

changed. However, this correction has not changed the final conclusions of this work, but 

rather reinforced them. Figure 9 can be found in the Section III called UWB Ranging 

Performance, on Page 6, Column 1, starting from Line 1. Table III can be found in Section 

IV called Ranging Error Models Performance, on Page 8, Column 1, starting from Line 

31. 

 

1) in Sec. II-B, the positioning error for NLOS is shown to be systematically positive. 

It is very likely due to the longer path taken between the tag and the anchor through 

a reflection over one of the walls, the floor or the ceiling. It would be useful to assess 

if this error is indeed consistent with a longer path through reflections, since in this 

case it would provide a simple way of predicting how much this error would change 

in a room with different dimensions or for a different relative orientation of the tag 

and anchors.  
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We want to thank the reviewer for this comment, which indeed highlight a very interesting 

topic in relation with physical layer impact. Indeed, part of the error is caused by longer 

path taken by the signal between the tag and the anchor. This error is what is termed as 

the multipath error, and it exists in all LOS and NLOS propagations scenarios [13-15].  

However, when using Decawave sensors [similar to the sensors used in this paper], the 

multipath error in LOS is almost zero with (±0.1m) standard deviation for a lab surface 

of 80 [similar to the Lab size in this paper]. This study has been made by Jimenez et al 

[20]. Additionally, another study by Jimenez et al [25] for an industrial environment of 

336 square metres shows that the standard deviation of the multipath error goes from 0.13 

to 0.23 m for ranges more than 20 m, which is what theory predicts. In both studies, 

Jimenez et al works with Decawave sensors which have the ability to reject echoes that 

are larger 20 cm.  Nevertheless, when it comes to errors due to NLOS, the work in He et 

al [15] and Gengt et al [14] suggest that NLOS errors are the errors obtained in the 

presence of a human body are a combination of: i) the multipath error, and ii) the 

undetectable direct path error created by body shadowing. Therefore, since Jimenez et al 

has proven that the multipath error is almost zero for a lab size of 80 square meters, and 

given that our lab size is 78 square meters, we can say that the error in observed in Sec. 

II-B is very likely as a result of NLOS by created by the body. In the new version of the 

paper, we have provided a summary of this explanation to the reader. This information 

can be found in the Section III called UWB Ranging Performance, on Page 4, Column 1, 

starting from Line 31.  

Furthermore, in case we are to consider a larger room size (larger than 80 square metres), 

the NLOS error is very likely to increase slightly. Using the findings in Jimenez et al [25], 

we can predict that the NLOS errors would increase by up to 0.23 m for distances beyond 

20 m. However, to verify this claim requires repeating the work in this paper in a larger 

environment which would be an interesting extension of our work.  

The information about the future extensions of this paper can be found in the Conclusions, 

on Page 8, Column 1I, starting from Line 18.  

 

2) the Author refer to “severe multipath conditions” several times, but do not 

support this hypothesis with any evidence. Most people familiar with such term 

would expect an environment supporting Rayleigh diffusion, which is hardly the 

case for a room with concrete/drywall walls. I would rather expect just a few paths 

for the experiments. I suggest justifying the use of this term or otherwise to revise it.  
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The author is right that we use the term severe multipath conditions and we do not provide 

any hypothesis to support this. Therefore, in the new version of the paper we have dropped 

the term severe, and instead adopted the term multipath conditions. The term multipath 

conditions is used because of different interfering objects such as the body, windows, 

walls, chairs in the environment that contribute towards generating multipath 

components.  

The term severe multipath condition has been dropped from the following lines: i) In the 

Abstract, on Page 1, Column 1, Line 31. ii) In the Introduction, on Page 1, Column 1I, 

Line 55. iii) In UWB Ranging Performance, on Page 6, Column 1, line 26. iv) In the 

Conclusions, on Page 8, Column 1, Line 59. 

 

3) fig. 10: all figures should have their vertical ranges modified in order to meet the 

actual span of values in the graphs. Several are so thin that it is practically 

impossible to see anything at all.  

We want to thank the reviewer for this comment regarding the size of Fig. 10. In the new 

version of the paper, we have adjusted the vertical ranges to meet the actual span of the 

values in the graph.  

This adjustment can be found in Section IV called Ranging Error Models, on Page 7, 

Column I and 1I, starting from Line 1.  

 

4) fig 11: I like the idea of using scatter plots to point out that a (statistical) 

relationship exists between RHA and mu, but given the low correlation, attempting 

to use a linear fit to correct the positioning error seems unlikely. The statistical 

dispersion is just too strong. I would rather suggest to: a) check if a geometrical 

explanation for the position error (as suggested at point 1) can better explain the 

errors, b) to keep the scatter plot just for the sake of highlighting the existence of a 

relationship between RHA and average position error  

We want to thank the reviewer for this comment regarding the statistical relationship 

which exists between RHA and µ. The reviewer is right that a low correlation coefficient 

exists in fig 11, as a correlation coefficient of -0.02 and -0.69 has been computed for fig 

11a and fig 11b, respectively. Though the correlation coefficient in fig 11a shows no 

linear relationship between RHA and µ, in fig 11b, the linear relationship is moderately 

strong, but not perfect, since we observe µ to vary somewhat, even among the same RHA 

values.  
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Therefore, in the new version of the paper, instead of using a linear fit to represent the 

relationship between µ and RHA, we use the mean and standard deviation to work out 

the parameters for the LOS + QLOS models.  

This information can be found in the Section VI called Ranging Error Models, on Page 

7, Column I, starting from Line 56. 

AE Comment: 

We would like to thank the reviewers for their comments and suggestions, which indeed 

have helped us to improve the revised manuscript version. We would like to highlight 

that we have corrected format issues in relation with figure contrast, size and ranges, 

following reviewer suggestions. Moreover, references have been adequately stated and 

formatted. Highlight has been provided in relation with material parameters, range errors 

and multipath consideration, following all reviewer suggestions.   

 

Best regards 

Timothy Otim 

Research Assistant (PhD Student) 

University of Deusto 

Avda. Universities 24. 48007, Bilbao (Spain) 
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