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Abstract

Sometimes we have to work with L-fuzzy context sequences where one or more values are missing. These sequences
can represent, among other things, the evolution in time of an L-fuzzy context. The studies of tendencies that we
have done so far used tools that are not valid when the L-fuzzy context has unknown values. In this work we address
such situations and we propose new methods to tackle the problem. Besides, we use the study of tendencies to analyse
relations between the objects and the attributes of L-fuzzy contexts and to replace the absent values taking into account
the behaviour of the sequence.
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1 Introduction

L-fuzzy Concept Analysis [8, 10, 20, 27, 34] is a mathematical tool for analysing data and formally representing
conceptual knowledge. It extracts information from an L-fuzzy context by means of L-fuzzy concepts and can be seen
as an extension of Formal Concept Analysis [24, 40]. This theory has been applied in image processing [7, 3].

There exist several relations between the same sets of objects and attributes. Such relations lead to the notion of
L-fuzzy context sequence. In the particular case in which this sequence recovers the evolution in time of an L-fuzzy
context, we try to predict future trends from the analysis of past behaviours. Besides, we have sometimes missing
values in the sequence and, hence, the L-Fuzzy Concept Analysis for the treatment of incomplete information ([9, 8])
in the L-fuzzy context has been developed.

Furthermore, the study of the evolution of the relationship between objects and attributes by means of the search
of trends is of special interest. Several works analysing the course of time in a Formal context can be found in the
literature as, for instance, in [35, 41, 42].

In particular, in [41, 42] K.E. Wolff defines Temporal Concept Analysis where a Conceptual Time System is intro-
duced such that the state and phase spaces are defined as concept lattices which represent the meaning of the states
with respect to the chosen time description. Besides, hidden evolution trends are defined in [35, 39], using temporal
matching in the case of Formal Concept Analysis.

The existence of Triadic contexts [29] gives us the possibility of using ternary relations to represent time. However,
this approach is very demanding for our interest and for this reason it is only developed for formal contexts.

Trend analysis often refers to techniques for extracting an underlying pattern of behaviour in statistics. In this
paper, we show a new and different method for L-fuzzy contexts with absent values that allows the detection of some
regularities. This method establishes trends which can be used as a base for making decisions. In the paper, the
behaviour of the observed data is described by the model and statements about tendencies are made. This is one of
the main contributions of this work.
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Furthermore, these tendencies are used to analyse strong relations between the elements of the L-fuzzy contexts
(objects and attributes) and, finally, to replace the absent values. Thus, we propose an algorithm for the replacement
of absent values, which is necessary in order to study the L-fuzzy contexts by means of L-fuzzy concepts.

Additionally, we illustrate a possible application of both the theoretical developments and the proposed algorithm
to replace absent values in a sport article selling company’s data. The lattice L in this particular example is the set of
closed intervals within [0, 1], which have been proven to be appropriate to deal with uncertainty [37, 19, 18].

The paper is organized as follows: Section 2 provides a background about L-fuzzy Concept Analysis and L-fuzzy
context sequences. Section 3 sets up a general study of Temporal Tendencies in the L-fuzzy context sequences. In the
last part, we define Trend and Persistent Degrees and we study relations between objects and attributes by means of
Trend and Persistent Matrices. In Section 4 we analyse L-fuzzy context sequences with absent values and propose an
algorithm for replacing them. Then, we present an example of an application of the carried out trend analysis and
absent-value replacement algorithm in Section 5. Finally, conclusions and future work are detailed.

2 Preliminaries

2.1 L-fuzzy concept analysis

The Formal Concept Analysis of Wille [24, 40] extracts information from a binary table that represents a formal context
(X,Y,R) with X and Y finite sets of objects and attributes, respectively, and R ⊆ X × Y . The hidden information
consists of pairs (A,B), with A ⊆ X and B ⊆ Y , called formal concepts. A formal concept can be interpreted as a
group of objects A that shares the same set of attributes B.

In previous works [13, 14], we have defined L-fuzzy contexts (L,X, Y,R), where L is a complete lattice, X and
Y are sets of objects and attributes, respectively, and R ∈ LX×Y is an L-fuzzy relation between the objects and the
attributes. This is an extension of Wille’s Formal contexts when we want to study the relations between the objects
and the attributes with values in a complete lattice L, instead of binary values.

We have defined the derivation operators 1 and 2 to work with these L-fuzzy contexts, given by means of the
following expressions.

For all A ∈ LX and B ∈ LY , A1(y) = inf
x∈X
{I(A(x), R(x, y))} and B2(x) = inf

y∈Y
{I(B(y), R(x, y))}, with I a L-fuzzy

implication operator defined in the lattice (L,≤).
Although any L-fuzzy implication operator can be used to define the derivation operators, in this paper we work

with residuated implications. Other authors have also used a residuated implication operator in their definitions of
derivation operators [12, 32, 33].

The information stored in the context is visualized by means of L-fuzzy concepts, which are pairs (M,M1) ∈ LX×LY
with M ∈ fix(ϕ), where fix(ϕ) is the set of fixed points of the operator ϕ, being defined from the derivation operators
1 and 2 as ϕ(M) = (M1)2 = M12. These pairs, whose first and second components are said to be the L-fuzzy extension
and intension respectively, represent a group of objects that share a group of attributes in a fuzzy way.

Using the usual order between L-fuzzy sets, that is, for all M,N ∈ LX ,

M ≤ N ⇐⇒M(x) ≤ N(x) for all x ∈ X,

we define the set L = {(M,M1) |M ∈ fix(ϕ)} with the order relation � given by the following expression

for all (M,M1), (N,N1) ∈ L, (M,M1) � (N,N1) if M ≤ N.

Remark 1. As is well known, it is easy to prove that M ≤ N is equivalent to N1 ≤M1.

As ϕ is an order preserving operator, by the theorem of Tarski [38], the set fix(ϕ) is a complete lattice and then
(L,�) is also a complete lattice that is said to be the L-fuzzy concept lattice associated with the L-fuzzy context
(L,X, Y,R) [13, 14].

Besides, given A ∈ LX (or B ∈ LY ), we can obtain the associated L-fuzzy concept applying the derivation operators
twice. In the case of using a residuated implication, as we do in this work, the associated L-fuzzy concept is (A12, A1)
(or (B2, B21)).

We have also studied extensions of Formal Concept Analysis to the interval-valued case in [17], defining an interval-
valued L-fuzzy context as (J [L], X, Y,R), with R an interval-valued L-Fuzzy relation between X and Y . For more
insight into the topic, see [9, 22, 23].

Other important results about this theory can be found in [11, 15, 16, 25, 28, 31].
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2.2 L-fuzzy context sequences

A first study of L-fuzzy context sequences when L = [0, 1] is tackled in [6]. We begin by recalling the main definition.

Definition 2.1. An L-fuzzy context sequence is a sequence of tuples (L,X, Y,Ri), i ∈ {1, . . . , n}, n ∈ N, with L a
complete lattice, X and Y sets of objects and attributes respectively and Ri ∈ LX×Y , for all i ∈ {1, . . . , n}, a family of
L-fuzzy relations between X and Y.

In [2], a general study of these L-fuzzy context sequences using n−ary OWA operators of Lizasoain and Moreno
([30]) is developed. These operators are a generalization of the OWA operators of Yager.

Definition 2.2. [43] A mapping F : Ln −→ L, where L = [0, 1] is called an OWA operator of dimension n if associated
with F is a weighting n−tuple W = (w1, w2, . . . , wn) such that wi ∈[0,1] and

∑
1≤i≤n

wi = 1, where F (a1, a2, . . . , an) =

w1.b1 + w2.b2 + · · ·+ wn.bn, with bi the ith largest element in the collection a1, a2, . . . , an.

However, Yager’s OWA operators are not easy to be extended to any complete lattice L. The main difficulty is that
Yager’s construction is based on a previous arrangement of the real values to aggregate, which is not always possible in
a partially ordered set. In order to overcome this problem Lizasoain and Moreno [30] built an ordered vector for each
given vector in the lattice. This construction allows to define the n-ary OWA operator on any complete lattice which
has Yager’s OWA operator as a particular case.
Their contribution involves the construction, for each vector (a1, . . . , an) ∈ Ln, of a totally ordered vector (b1, . . . , bn)
as shown in the following proposition.

Proposition 2.3. Let (L,≤L) be a complete lattice. For any (a1, a2, . . . , an) ∈ Ln, consider the values

• b1 = a1 ∨ · · · ∨ an ∈ L

• b2 = [(a1 ∧ a2) ∨ · · · ∨ (a1 ∧ an)] ∨ [(a2 ∧ a3) ∨ · · · ∨ (a2 ∧ an)] ∨ · · · ∨ [an−1 ∧ an] ∈ L

...

• bk =
∨
{aj1 ∧ · · · ∧ ajk |{j1, . . . , jk} ⊆ {1, . . . , n}} ∈ L

...

• bn = a1 ∧ · · · ∧ an ∈ L

Then a1 ∧ · · · ∧ an = bn ≤L bn−1 ≤ · · · ≤L b1 = a1 ∨ · · · ∨ an.
Moreover, if the set {a1, . . . , an} is totally ordered, then the vector (b1, . . . , bn) agrees with (aσ(1), . . . , aσ(n)) for some

permutation σ of {1, . . . , n}.

On the other hand, it is very easy to see that if {a1, . . . , an} is a chain, then bk is the k−th order statistic.
This proposition allows us to generalize Yager’s n−ary OWA operators from [0, 1] to any complete lattice. To do

this, Lizasoain and Moreno give the following definition.

Definition 2.4. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm T and a t-conorm S. We will say that
(α1, α2, . . . , αn) ∈ Ln is a

(i) weighting vector in (L,≤L, T, S) if S(α1, . . . , αn) = 1L and

(ii) distributive weighting vector in (L,≤L, T, S) if it also satisfies that a = T (a, S(α1, . . . , αn)) = S(T (a, α1), . . . T (a, αn))
for any a ∈ L.

Definition 2.5. Let (α1, . . . , αn) ∈ Ln be a distributive weighting vector in (L,≤L, T, S). For each (a1, . . . , an) ∈ Ln,
call (b1, . . . , bn) the totally ordered vector constructed in Proposition 2.3. The function Fα : Ln −→ L given by

Fα(a1, . . . , an) = S(T (α1, b1), . . . , T (αn, bn)),

(a1, . . . , an) ∈ Ln, is called n−ary OWA operator.

Other important papers about OWA operators and measures are [36, 21, 26].
In order to summarize the information stored in the L-fuzzy context sequence, in [2] we defined aggregated relations

using the totally ordered vectors defined by Lizasoain and Moreno.
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Definition 2.6. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm T and a t-conorm S. Let (L,X, Y,Ri), i ∈
{1, . . . , n}, be an L-fuzzy context sequence, α = (α1, α2, . . . , αn) a distributive weighting vector and Fα the n−ary OWA
operator associated with α. We can define an L-fuzzy relation RFα that aggregates the information of the different
L-fuzzy contexts by means of this expression.

For all x ∈ X, y ∈ Y,

RFα(x, y) = Fα(R1(x, y), R2(x, y), . . . , Rn(x, y)) = S(T (α1, b1(x, y)), T (α2, b2(x, y)), . . . , T (αn, bn(x, y)),

with (b1(x, y), b2(x, y), . . . , bn(x, y)) the totally ordered vector constructed for (R1(x, y), R2(x, y), . . . , Rn(x, y)).

The general study of L-fuzzy context sequences developed in the previous section uses different n-ary OWA operators
to aggregate values. However, such a study may not allow one to make an analysis of their evolution in time.

To accomplish this analysis, in [4] we gave the following definition that tries to provide a value to estimate the
relation between each object and each attribute at an instant h.

Definition 2.7. In the complete lattice (L,≤L, T, S) endowed with the t-norm T and the t-conorm S, let us consider
the L-fuzzy context sequence (L,X, Y,Ri), i ∈ {1, . . . , n}. Fixed h ∈ N, h ≤ n, let α = (α1, α2, . . . , αk) be a distributive
weighting vector with k = n − h + 1 and Fα the k−ary OWA operator associated with α. We can define an L-fuzzy
relation RhFα that aggregates the information of the different L-fuzzy contexts by means of the following expression.

RhFα(x, y) = Fα(Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)) = S(T (α1, b
h
1 (x, y)), T (α2, b

h
2 (x, y)), . . . , T (αk, b

h
k(x, y)), for all x ∈ X, y ∈ Y,

where (bh1 (x, y), b
h
2 (x, y), . . . , b

h
k(x, y)) is the totally ordered vector for (Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)).

3 Temporal tendencies

In [4] we analysed temporal trends to identify the evolution in time of the L-fuzzy context sequence (L,X, Y,Ri), i ∈
{1, . . . , n}, when L is a complete lattice. Our interest was in the study of the evolution of the relationship between the
objects (or attributes) with respect to one or several attributes (or objects).

In the paper, we used residuated implication operators in the calculation of the L-fuzzy concepts associated with
certain objects or attributes.

In [6] we performed a preliminary study in [0,1] and, in [4], we extended and deepened the results to any complete
lattice L. In this case, we have to take into account that, except for a complete chain, the elements of the lattice L are
not necessarily comparable. In both papers, the presence of all the values of the L-fuzzy context was needed.

We begin by showing in the next subsection the main results of the discussed works to address the problem of the
absence of values.

3.1 Trend and persistent objects and attributes

The best way to study the evolution in time of an object or attribute is the study of their associated L-fuzzy concepts in
the different L-fuzzy contexts of the sequence. This is the idea for the definitions and results of this subsection proved
in [4].

Definition 3.1. Consider x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0}) be the L-fuzzy concepts associated
with the crisp singletons {x0} and {y0} in the L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n.

Then

(i) Trend(x0) = {y ∈ Y | Bi{x0}(y) ≤ Bi+1{x0}(y), for all i < n} is the attribute set whose membership degrees in
the different intensions of the L-fuzzy concepts (Ai{x0}, Bi{x0}) are non decreasing.

(ii) Trend(y0) = {x ∈ X | Ai{y0}(x) ≤ Ai+1{y0}(x), for all i < n} is the object set whose membership degrees in the
different extensions of the L-fuzzy concepts (Ai{y0}, Bi{y0}) are non decreasing.

We can say that they are the attributes that are more and more related to object x0 and the objects more and more
related to attribute y0.

This is a very demanding definition but it allows to establish trends with a high degree of fulfillment.
Moreover, the following result is proved.

Proposition 3.2. Consider x ∈ X, y ∈ Y. We can prove that y ∈ Trend(x)⇐⇒ x ∈ Trend(y).
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We can extend this definition to the case of more than one object or attribute.

Definition 3.3. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) We define Trend(Z) as Trend(Z) = {y ∈ Y | Bi{x}(y) ≤ Bi+1{x}(y), for all i < n, for all x ∈ Z}.

(ii) And Trend(T ) as Trend(T ) = {x ∈ X | Ai{y}(x) ≤ Ai+1{y}(x), for all i < n, for all y ∈ T}.

In this case, the following can also be proven.

Proposition 3.4. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) If Trend(Z) = T, then Z ⊆ Trend(T ).

(ii) If Trend(T ) = Z, then T ⊆ Trend(Z).

As a particular case, we have the sets Trend(X) and Trend(Y ) where the following result is provided.

Remark 2. Trend(X) = Y ⇐⇒ Trend(Y ) = X.

As the definition of Trend is very demanding, in [4] we defined Persistent objects and attributes in order to relax
the exigence level.

Definition 3.5. Given x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0}) be the L-fuzzy concepts associated with
the crisp singletons {x0} and {y0}, in the L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n.

(i) Persistent(x0) = {y ∈ Y | Bi{x0}(y) ≥ B1{x0}(y), for all i, 1 < i ≤ n} is the set of attributes whose membership
degrees in the L-fuzzy intensions of the L-fuzzy concepts (Ai{x0}, Bi{x0}) are bigger than or equal to the values of
the L-fuzzy concept (A1{x0}, B1{x0}).

(ii) Persistent(y0) = {x ∈ X | Ai{y0}(x) ≥ A1{y0}(x), for all i, 1 < i ≤ n} is the set of objects whose membership
degrees in the L-fuzzy extensions of the L-fuzzy concepts (Ai{y0}, Bi{y0}) are bigger than or equal to the values of
the L-fuzzy concept (A1{y0}, B1{y0}).

Fixed j ≤ n, an alternative definition of Persitent(xo) and Persistent(yo) can be given as follows.

Persistentj(x0) = {y ∈ Y | Bi{x0}(y) ≥ Bj{x0}(y), for all i, j < i ≤ n}.

P ersistentj(y0) = {x ∈ X | Ai{y0}(x) ≥ Aj{y0}(x), for all i, j < i ≤ n}.

With this definition, similar results to those of Proposition 3.2 and 3.4 hold.

Proposition 3.6. Consider x ∈ X, y ∈ Y. The result is verified, y ∈ Persistent(x)⇐⇒ x ∈ Persistent(y).

We can extend this definition to the case of more than one object or attribute.

Definition 3.7. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) We define Persistent(Z) as Persistent(Z) = {y ∈ Y | Bi{x}(y) ≥ B1{x}(y), for all i < n, for all x ∈ Z}.

(ii) And Persistent(T ) as Persistent(T ) = {x ∈ X | Ai{y}(x) ≥ A1{y}(x), for all i < n, for all y ∈ T}.

Proposition 3.8. For all Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) If Persistent(Z) = T, then Z ⊆ Persistent(T ).

(ii) If Persistent(T ) = Z, then T ⊆ Persistent(Z).

The Trend and Persistent definitions set up pairs of objects and attributes that can be used for a more complete
analysis of the evolution of the L-fuzzy sequence (L,X, Y,Ri), i ∈ {1, . . . , n}.

Following this idea and Definition 3.1, the L-fuzzy context sequence tendencies studied can be completed with the
construction of the binary Trend matrices.

Definition 3.9. The Trend matrix TM ⊆ X × Y is defined as

TM(x, y) =

{
1 if y ∈ Trend(x)(equiv. x ∈ Trend(y))

0 in other case.
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By Proposition 3.2, in order to obtain the Trend matrix, it is only necessary to compute Trend(x), for all x ∈ X
or, similarly, Trend(y), for all y ∈ Y.

We can consider now the formal context (X,Y, TM) and obtain its formal concepts to have a general view of the
trends between the objects X and the attributes Y.

Definition 3.10. Consider the formal context (X,Y, TM) with X set of objects, Y set of attributes and TM ⊆ X ×Y.
The formal concepts of (X,Y, TM) are said to be the Trend formal concepts.

It is also possible to do a different study using the definition of Persistent.

Definition 3.11. The matrix PM ⊆ X × Y such that

PM(x, y) =

{
1 if y ∈ Persistent(x)(x ∈ Persistent(y))

0 in other case.

is said to be the Persistent Matrix.

We can now consider (X,Y, PM) and calculate their formal concepts to obtain information about the tendencies
between the objects of X and the attributes of Y.

Definition 3.12. Consider the formal context (X,Y, PM). The formal concepts of (X,Y, PM) are said to be the
Persistent formal concepts.

Moreover, as Persistent definition is less demanding than the Trend one, one can easily prove the following result.

Proposition 3.13. If TM and PM are the Trend and Persistent matrices obtained from an L-fuzzy context sequence,
then TM ⊆ PM holds.

If we denote by L(X,Y, TM) and L(X,Y, PM) the concept lattices of the formal contexts (X,Y, TM) and (X,Y, PM),
respectively, then the following result is provided [24].

Proposition 3.14. If (A,B) ∈ L(X,Y, TM) then there exists (C,D) ∈ L(X,Y, PM) such that A ⊆ C and B ⊆ D.

3.2 Trend and Persistent degrees

Tendency studies with absent values are not able to use the definitions given in the previous section. We need new
tools for these situations. Thus, we propose the use of the Trend Degree and the Persistent Degree.

With the Trend Degree definition, we want to analyse the degree in which the values have increased in time.
Moreover, we will use Persistent Degree when we want to study how the values have risen in relation to a starting point.

In both cases, we perform the study using the L-fuzzy concepts of the different L-fuzzy contexts.

Definition 3.15. Consider x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0}) be the L-fuzzy concepts associated
with the crisp singletons {x0} and {y0} in the L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n.

(i) Trend Degree (Td) of object x0 for attribute y is the cardinality of the set of L-fuzzy concepts (Ai{x0}, Bi{x0})
whose intension membership degrees for attribute y are non decreasing.

Td(x0)y = Card({i < n | Bi{x0}(y) ≤ Bi+1{x0}(y)}).

(ii) Trend Degree (Td) of attribute y0 for object x is the cardinality of the set of L-fuzzy concepts (Ai{y0}, Bi{y0})
whose extension membership degrees for object x are non decreasing.

Td(y0)x = Card({i < n | Ai{y0}(x) ≤ Ai+1{y0}(x)}).

Remark 3. In the cases where is not possible to obtain the L-fuzzy concept (Ai+1{x0}, Bi+1{x0}), for any i < n, because
there are missing elements in the relation, we take the minimum j > i for which the L-fuzzy concept (Aj{x0}, Bj{x0})
exists.

Analogously, we can compare the different L-fuzzy contexts with an initial one (Ak{x0}, Bk{x0}), k ≤ n.
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Definition 3.16. Given x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0}) be the L-fuzzy concepts associated
with the crisp singletons {x0} and {y0}, in the L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n. Consider k ≤ n the
minimum value for which the L-fuzzy concept (Ak{x0}, Bk{x0}) exists.

(i) Persistent Degree (Pd) of object x0 for attribute y is the cardinality of the set of L-fuzzy concepts (Ai{x0}, Bi{x0})
whose intension membership degrees for attribute y are bigger than or equal to the values of the L-fuzzy concept
(Ak{x0}, Bk{x0}).

Pd(x0)y = Card({i | k < i ≤ n andBi{x0}(y) ≥ Bk{x0}(y)}).

(ii) Persistent Degree (Pd) of attribute y0 for object x is the cardinality of the set of L-fuzzy concepts (Ai{y0}, Bi{y0})
whose extension membership degrees for object x are bigger than or equal to the values of the L-fuzzy concept
(Ak{y0}, Bk{y0}).

Pd(y0)x = Card({i | k < i ≤ n andAi{y0}(x) ≥ Ak{y0}(x)}).

With this definition, the following proposition is immediate.

Proposition 3.17. (i) Consider x ∈ X, y ∈ Y. If Td(x)y exists then also does Td(y)x and Td(x)y = Td(y)x holds.

(ii) Analogously for Pd(x)y = Pd(y)x.

Using the previous definitions, at this point we show the definitions of Minimum and Average Trend Degree and
Persistent Degree of an object or an attribute.

Definition 3.18. Minimum Trend Degree (MinTd) and Average Trend Degree (AvTd) for x0 ∈ X are defined as

(i) MinTd(x0) = miny∈Y Td(x0)y.

(i) AvTd(x0) =
∑
y∈Y Td(x0)y/|Y |.

The same can be defined for y0 ∈ Y .

Definition 3.19. Minimum Persistent Degree (MinPd) and Average Persistent Degree (AvPd) for x0 ∈ X are defined
as

(i) MinPd(x0) = miny∈Y Pd(x0)y.

(ii) AvPd(x0) =
∑
y∈Y Pd(x0)y/|Y |.

The same can be defined for y0 ∈ Y .
MinTd, MinPd, AvTd and AvPd definitions allow to establish preorder relations in the sets of objects X and

attributes Y of the L-fuzzy context.

Definition 3.20. Given xi, xj ∈ X or yi, yj ∈ Y, we define the relations
≤MinTd,≤MinPd,≤AvTd,≤AvPd as follows.

(i) xi ≤MinTd xj if MinTd(xi) ≤MinTd(xj).

(i’) yi ≤MinTd yj if MinTd(yi) ≤MinTd(yj).

(ii) xi ≤AvTd xj if AvTd(xi) ≤ AvTd(xj).

(ii’) yi ≤AvTd yj if AvTd(yi) ≤ AvTd(yj).

(iii) xi ≤MinPd xj if MinPd(xi) ≤MinPd(xj).

(iii’) yi ≤MinPd yj if MinPd(yi) ≤MinPd(yj).

(iv) xi ≤AvPd xj if AvPd(xi) ≤ AvPd(xj).

(iv’) yi ≤AvPd yj if AvPd(yi) ≤ AvPd(yj).

Proposition 3.21. The four relations MinTd, MinPd, AvTd and AvPd are preorder relations.

Proof. They are defined by means of the order between integer numbers.

Remark 4. Note that they are not order relations because antisymmetry is not verified.
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We can define tendencies between objects and attributes with these relations. We say that xi is trendier than xj ,
according to MinTd, if MinTd(xi) ≥MinTd(xj). The same holds for the other relations.

The definitions of Trend and Persistent Degrees can be extended to sets with more than one element.

Definition 3.22. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) We define Minimum Trend Degree (MinTd) of Z as MinTd(Z) = minx∈ZMinTd(x).

(ii) And Minimum Trend Degree (MinTd) of T as MinTd(T ) = minx∈T MinTd(x).

Definition 3.23. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y.

(i) We define Average Trend Degree (AvTd) of Z as AvTd(Z) =
∑
x∈Z AvTd(x)/|Z|.

(ii) And Average Trend Degree (AvTd) of T as AvTd(T ) =
∑
x∈T AvTd(x)/|T |.

Using the four relations MinTd, MinPd, AvTd and AvPd defined previously, we can order the set of objects X
and the set of attributes Y .

These rankings are denoted by Minimum Trend Degree Ranking (MinTdR), Average Trend Degree Ranking
(AvTdR), Minimum Persistent Degree Ranking (MinPdR) and Average Persistent Degree Ranking (AvPdR).

They can be represented by directed graphs and can be applied both to absent and to existing values.

3.3 Tendency matrices

The defined rankings establish priorities among the objects and the attributes, but it is not possible to establish
tendencies in the relationship among the elements of both sets. In this sense, the study of tendency matrices will allow
to perform a more complete study of the L-fuzzy context sequence. Furthermore, one of the goals of this paper goals
is to use them in order to replace absent values.

These are the definitions.

Definition 3.24. The Trend Degree Matrix (TdM) is defined as TdM(x, y) = Td(x)y, for all x ∈ X, y ∈ Y.

Definition 3.25. The matrix defined as PdM(x, y) = Pd(x)y, for all x ∈ X, y ∈ Y is said to be the Persistent Degree
Matrix.

Recall that Td(x)y = Td(y)x and Pd(x)y = Pd(y)x, for all x ∈ X, y ∈ Y, by Proposition 3.17.
In order to have more homogeneous information, we can now normalize the matrices dividing by n− 1.

Definition 3.26. The matrices defined as

NTdM(x, y) = TdM(x, y)/(n− 1) and NPdM(x, y) = PdM(x, y)/(n− 1)

for all x ∈ X, y ∈ Y , are said to be the Normalized Trend Degree Matrix (NTdM) and the Normalized Persistent Degree
Matrix (NPdM).

Next result establishes a relationship between NTdM and NPdM matrices and the TM and PM ones defined in
Definition 3.9 and 3.11.

Proposition 3.27. Let x ∈ X and y ∈ Y . If NTdM(x, y) = 1 then NPdM(x, y) = 1. Moreover, when NTdM(x, y) = 1
the equalities NTdM(x, y) = TM(x, y) and NPdM(x, y) = PM(x, y) hold.

Proof. Given x ∈ X and y ∈ Y, if NTdM(x, y) = 1 then TdM(x, y) = n− 1. So, we have all the values for x and y in
the L-fuzzy concepts of the sequence and also PdM(x, y) = n− 1. Finally, NPdM(x, y) = 1.

The last part of the proof is immediate.

We can now consider the L-fuzzy context (L,X, Y,NTdM), with L = [0, 1] and obtain their L-fuzzy concepts to
have a general overview of the tendencies between the objects X and the attributes Y.

Definition 3.28. Consider the L-fuzzy context (L,X, Y,NTdM), X, Y objects and attributes and NTdM ∈ LX×Y .
The L-fuzzy concepts of (L,X, Y,NTdM) are said to be the Normalized Trend Degree L-fuzzy concepts. We denote this
set by LNTdM .

The same can be done for (L,X, Y,NPdM).
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Definition 3.29. Consider the L-fuzzy context (L,X, Y,NPdM), with L = [0, 1], X set of objects, Y set of attributes
and NPdM ∈ LX×Y . The L-fuzzy concepts of (L,X, Y,NPdM) are said to be the Normalized Persistent Degree L-fuzzy
concepts. We denote this set by LNPdM .

Remark 5. LNTdM and LNPdM are complete lattices since the L-fuzzy concept set of any L-fuzzy context is a complete
lattice ([13, 14]).

We will see that some of these L-fuzzy concepts show the strongest relationship among objects and attributes.
First, we give the following definition for a general L-fuzzy context (L,X, Y,R) with L = [0, 1], X object set and Y

attribute set.

Definition 3.30. Let (L,X, Y,R) be an L-fuzzy context with L = [0, 1]. Consider x0 ∈ X, y0 ∈ Y and 0 < α ≤ 1. We
say that the pair (x0, y0) is an α−level depending pair in (L,X, Y,R) if (A{x0}, B{x0}), the L-fuzzy concept associated
with the crisp singleton {x0}, is such that B{x0}(y0) ≥ α. Analogously, we can define an α−level depending pair
associated with an attribute y0 ∈ Y, obtaining the L-fuzzy concept (A{y0}, B{y0}) and choosing an object x0 such that
A{y0}(x0) ≥ α.

Remark 6. Notice that there is not necessarily an α−level depending pair for every x0 ∈ X neither for every y0 ∈ Y.
Moreover, an object x0 or an attribute y0 can be part of more than one α−level depending pair.

This definition can be applied to the Normalized Trend and Persistent Degree L-fuzzy contexts.
We can obtain all the α−level depending pairs associated with the objects or the attributes.

Proposition 3.31. Let (L,X, Y,R) be an L-fuzzy context and let 0 < α ≤ 1. The sets of α−level depending pairs
associated with the objects and the attributes are coincident.

Proof. Let x0 ∈ X and y0 ∈ Y . Let (A{x0}, B{x0}) and (A{y0}, B{y0}) be the L-fuzzy concepts associated with x0 and
y0. B{x0}(y0) ≥ α if and only if A{y0}(x0) ≥ α since A{y0}(x0) = B{x0}(y0) = R(x0, y0).

The most interesting case is when α = 1.

Definition 3.32. The pair (x0, y0) verifying B{x0}(y0) = A{y0}(x0) = 1 is said to be a strong depending pair. We
denote the strong depending pairs of the L-fuzzy context (L,X, Y,R) by SR.

When we work with Normalized Trend Degree L-fuzzy contexts, these strong depending pairs play an important
role. If (x0, y0) ∈ SNTdM , then the relation between object x0 and attribute y0 increases in time. In other case (when
(x0, y0) is not a strong depending pair), we do not know what happens. Maybe this relationship decreases, fluctuates
or we have not enough information to establish a clear diagnosis. In order to distinguish these possibilities, we could
take into account the number of absent values in the different contexts of the sequence. We define the Absent Matrix
(AM) to quantify this number.

AM(x, y) = Card({i ≤ n | Ri(x, y) does not exist})

for all x ∈ X, y ∈ Y.
This matrix will be of special interest in the last part of the paper.

4 Replacement of absent values in L-fuzzy context sequences

In the first part of the paper we have studied tendencies in L-fuzzy context sequences with absent values. We can use
some of the results for the replacement of missing values.

In the past, we analysed L-fuzzy contexts with absent values ([5, 9]). In that case, we worked with an only L-fuzzy
context and we had not other information to use. However, in the case of an L-fuzzy context sequence, if we have an
absent value Ri(x0, y0) of the L-fuzzy context (L,X, Y,Ri), we think that the corresponding values in the other L-fuzzy
contexts Rk(x0, y0), k 6= i, play an important role in the replacement of Ri(x0, y0).
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4.1 L-fuzzy context sequences with absent values

In previous papers, we took as departure point an interval-valued L-fuzzy context ([17]) in which there were unknown
values ([5, 9]) and we replaced the absent values using different kind of attribute implications. In [9], we defined a
coherent method to estimate the absent values of an interval-valued L-Fuzzy context based on the rest of the available
information in the interval-valued L-fuzzy context. This method allows to apply the L-fuzzy concept theory to obtain
information from the completed L-fuzzy context when L = [0, 1].

In order to do this, we used the association rules defined by [1] to set up the implications between attributes. Let
us consider B and C two attribute sets such that supp(B) =

∑
x∈X B2(x) > 0, being B(x) = 1 if x ∈ B and B(x) = 0

in other case, and 2 the derivation operator.
An association rule is an implication B ⇒ C, that is verified with a certain support and degree of confidence.
Then, we defined the support and confidence of an implication between attributes as follows [9].

Definition 4.1. Consider L = [0, 1]. Let (L,X, Y,R) be an L-Fuzzy context and B,C ⊆ Y two sets of attributes. The
support of the implication B ⇒ C is given by

supp(B ⇒ C) = supp(B ∪ C) =

∑
x∈X

(B ∪C)2(x)

|X|

and represents the percentage of objects that share the attributes of B and C.
The confidence of the implication is

conf(B ⇒ C) =
supp(B ∪ C)

supp(B)
=

∑
x∈X

(B ∪C)2(x)∑
x∈X

B2(x)

and represents the percentage of objects that verify the implication, that is, the percentage of objects that having the
attributes of B to a certain degree also have those of C to the same degree.

This definition can be extended to the interval-valued case [9].

Definition 4.2. Consider L = [0, 1]. Let (J [L], X, Y,R) be an interval-valued L-Fuzzy context. Given the attribute sets
B,C ⊆ Y , we define the support of the implication B ⇒ C, supp(B ⇒ C), as the interval

∑
x∈X

l(B∪C)2(x)

|X|
,

∑
x∈X

u(B∪C)2(x)

|X|


where the membership function of the derived set B2 is B2(x) = [lB2

(x), uB2
(x)] and the confidence of the implication,

conf(B ⇒ C), is given by the interval 
∑
x∈X

l(B∪C)2(x)∑
x∈X

uB2(x)
,

∑
x∈X

u(B∪C)2(x)∑
x∈X

lB2(x)
∧ 1

 .
We used implications between attributes to estimate the value of the absent data. The confidence of an implication

between attributes gives us the percentage of objects that, containing the attributes of the antecedent to a certain
degree, also have those of the consequent to the same degree. Different types of implications between attributes can be
used in the process, with negation of attributes and associated with labels.

We estimate each absent value analysing the behaviour of the attribute that we are considering with respect to the
other objects.

This method only uses the values of the L-fuzzy context to replace the absent ones. We will see in next section how
to deal with the problem using the studies of tendencies in the L-fuzzy context sequence.
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4.2 Replacement of absent values process using Tendency matrices

We want to take advantage of the previous tendency study to replace these absent values. To do this, we will look at
the values of the rest of L-fuzzy contexts of the sequence.

Let i ∈ {1, . . . , n}, x0 ∈ X and y0 ∈ Y be such that Ri(x0, y0) is an absent value of the L-fuzzy context (L,X, Y,Ri).
As we want to do a complete study of the L-fuzzy context (L,X, Y,Ri) by means of its L-fuzzy concepts, we need to
replace this missing value.

If (x0, y0) is an α-level depending pair in the L-fuzzy context (L,X, Y,NTdM) with α <1, close to 1, then the
values of the different relations are increasing and there are few absent values among them. We will replace the absent
value by an aggregation of the previous and the following values in the sequence.

Otherwise, if AM(x0, y0) is sufficiently small (there is not growth) then we will take an aggregation of all the
non-absent values Rk(x0, y0), k ∈ {1, . . . , n}. This replacement is the same for all the absent values in position (x0, y0).

Finally, if (x0, y0) is not an α-level depending pair and AM(x0, y0) is sufficiently large, we have not enough infor-
mation to replace the absent value using the sequence of L-fuzzy contexts. In this case, we can replace the absent value
using only the values of the L-fuzzy context (L,X, Y,Ri).

To carry out this goal, using the Normalized Trend Degree (NTdM) and the Absent Matrices (AM), we define an
algorithm (see Algorithm 1) that we call Replacement of Absent Values Process (RAVP).

Algorithm 1 Replacement of Absent Values Process (RAVP)

Input: An L-fuzzy context (L,X, Y,Ri), for a fixed i ∈ {1, . . . , n}, such that Ri(x0, y0) is an absent value for some
x0 ∈ X and y0 ∈ Y .

Output: A value for Ri(x0, y0).
1: if (x0, y0) is an α-level depending pair then
2: Ri(x0, y0) = Agr(Rl(x0, y0), Rk(x0, y0)), with l < i < k verifying that l is the greatest value less than i and k the

smallest value greater than i for which Rl(x0, y0) and Rk(x0, y0) exist.
3: else
4: if AM(x0, y0) < n/2 then
5: Aggregate the non absent values:

Ri(x0, y0) = Agr(R1(x0, y0), . . . Rn(x0, y0)).

6: else
7: Apply implications between attributes ([9]).
8: end if
9: end if

5 Illustrative example of an application

Consider the L-fuzzy context sequence (L,X, Y,Ri), i = 1, . . . , 5, that represents the sales of sports articles X =
{x1, x2, x3} in some establishments Y = {y1, y2, y3} during 5 months. Every interval-valued observation of the relations
Ri ∈ J ([0, 1])X×Y , represents the variation of the percentage of the daily product sales in each establishment along a
month. Note that if we consider (J ([0, 1]),≤) with the usual order ([a1, c1] ≤ [a2, c2] ⇐⇒ a1 ≤ a2 and c1 ≤ c2), this is
a complete but not totally ordered lattice.

R1 y1 y2 y3
x1 [0. 7, 0. 8] [1, 1] [0. 8, 1]
x2 [0, 0] [0. 1, 0. 4] [0. 1, 0. 3]
x3 [0, 0] [0. 1, 0. 3] [0, 0. 4]

R2 y1 y2 y3
x1 [1, 1] [0. 8, 1] [1, 1]
x2 [0. 8, 0. 9] [−,−] [0. 1, 0. 3]
x3 [0, 0] [0, 0. 2] [0. 2, 0. 4]

R3 y1 y2 y3
x1 [1, 1] [1, 1] [1, 1]
x2 [0. 6, 0. 8] [0. 5, 0. 5] [0. 7, 0. 8]
x3 [0, 0] [0. 1, 0. 2] [0. 2, 0. 4]

R4 y1 y2 y3
x1 [0. 5, 0. 5] [0. 4, 0. 6] [0. 6, 0. 8]
x2 [0. 1, 0. 3] [−,−] [0. 3, 0. 5]
x3 [−,−] [0. 8, 0. 9] [0. 8, 1]

R5 y1 y2 y3
x1 [0. 1, 0. 4] [0, 0. 2] [0, 0. 2]
x2 [0, 0] [0. 6, 0. 8] [0, 0. 2]
x3 [0. 8, 1] [1, 1] [0. 9, 1]
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We can obtain MinTd and AvTd from every object and attribute.
MinTd(x1) = 1, MinTd(x2) = 1, MinTd(x3) = 3
MinTd(y1) = 1, MinTd(y2) = 1, MinTd(y3) = 2
AvTd(x1) = 1.7, AvTd(x2) = 1.7, AvTd(x3) = 3.3
AvTd(y1) = 2, AvTd(y2) = 2, AvTd(y3) = 2.7
Then, although values are different, the Minimum Trend Degree and the Average Trend Degree rankings are coin-

cident in this case (see Figure 1).

x1 x2

x3 y3

y1 y2

Figure 1: Minimum and Average Trend Degree Rankings.

A similar process can be done to calculate MinPd and AvPd from every object and attribute.
MinPd(x1) = 1, MinPd(x2) = 2, MinPd(x3) = 2
MinPd(y1) = 2, MinPd(y2) = 1, MinPd(y3) = 2
AvPd(x1) = 1.7, AvPd(x2) = 3, AvPd(x3) = 3
AvPd(y1) = 3, AvPd(y2) = 1.7, AvPd(y3) = 3
Also in this case both rankings are coincident (See Figure 2).

x1

x2 x3 y3y1

y2

Figure 2: Minimum and Average Persistent Degree Rankings.

In this case, the resulting matrices TdM and PdM are the following ones.

TdM y1 y2 y3
x1 2 1 2
x2 1 2 2
x3 3 3 4

PdM y1 y2 y3
x1 2 1 2
x2 4 2 3
x3 3 2 4

and the normalized ones

NTdM y1 y2 y3
x1 0. 5 0. 25 0. 5
x2 0. 25 0. 5 0. 5
x3 0. 75 0. 75 1

NPdM y1 y2 y3
x1 0. 5 0. 25 0. 5
x2 1 0. 5 0. 75
x3 0. 75 0. 5 1

Remark 7. NTdM and NPdM are not necessarily comparable with the usual order (M ≤ N if and only if M(x, y) ≤
N(x, y),∀x ∈ X,∀y ∈ Y ). For instance, NTdM(x2, y1) < NPdM(x2, y1) but NTdM(x3, y2) > NPdM(x3, y2) in this
example.

Moreover, we can come back to Proposition 3.27.

Remark 8. If NPdM(x, y) = 1 then NTdM(x, y) = 1 is not necessarily verified. For example, NPdM(x2, y1)=1 but
NTdM(x2, y1) = 0.25 6= 1

We define now the L-fuzzy concepts associated with the crisp singletons that represent the objects and the attributes.
For every object x ∈ X, we can define the L-fuzzy set x ∈ LX such that x(x) = 1 and x(z) = 0, for any z ∈ X,

z 6= x.
Then the pair Cx = (A{x}, B{x}) = (x12,x1) is said to be the L-fuzzy concept derived from object x. An implication

operator is used in the definition of operators 1 and 2 for obtaining the pair (see Section 2.1).
The same can be defined for an attribute y ∈ Y.
For the L-fuzzy context (L,X, Y,NTdM), and using the Luckasiewicz implication operator, we obtain the following

L-fuzzy concepts.



Trend analysis in L-fuzzy contexts with absent values 81

x1 : ({x1/1, x2/0.75, x3/1}, {y1/0.5, y2/0.25, y3/0.5})
x2 : ({x1/0.75, x2/1, x3/1}, {y1/0.25, y2/0.5, y3/0.5})
x3 : ({x1/0.5, x2/0.5, x3/1}, {y1/0.75, y2/0.75, y3/1})

y1 : ({x1/0.5, x2/0.25, x3/0.75}, {y1/1, y2/0.75, y3/1})
y2 : ({x1/0.25, x2/0.5, x3/0.75}, {y1/0.75, y2/1, y3/1})
y3 : ({x1/0.5, x2/0.5, x3/1}, {y1/0.75, y2/0.75, y3/1})

And for the L-fuzzy context (L,X, Y,NPdM) we have

x1 : ({x1/1, x2/1, x3/1}, {y1/0.5, y2/0.25, y3/0.5})
x2 : ({x1/0.5, x2/1, x3/0.75}, {y1/1, y2/0.5, y3/0.75})
x3 : ({x1/0.5, x2/0.75, x3/1}, {y1/0.75, y2/0.5, y3/1})

y1 : ({x1/0.5, x2/1, x3/0.75}, {y1/1, y2/0.5, y3/0.75})
y2 : ({x1/0.25, x2/0.5, x3/0.5}, {y1/1, y2/1, y3/1})
y3 : ({x1/0.5, x2/0.75, x3/1}, {y1/0.75, y2/0.5, y3/1})

In this case, we have an only strong depending pair SNTdM = {(x3, y3)} for (L,X, Y,NTdM) but SNPdM =
{(x3, y3), (x2, y1)} for (L,X, Y,NPdM).

Thus, if we decrease the level of demand to α = 0.75 then we have [SNTdM = {(x3, y1), (x3, y2), (x3, y3)}, for the
L-fuzzy context (L,X, Y,NTdM). The result is SNPdM = {(x2, y1), (x2, y3), (x3, y1), (x3, y3)} for the L-fuzzy context
(L,X, Y,NPdM).

These sets represent the strongest relations among objects and attributes.
Finally, recall that we have three absent values, R2(x2, y2), R4(x2, y2) and R4(x3, y1).
Consider α = 0. 7. Following the RAV P, as NTdM(x3, y1) = 0. 75 > 0. 7 then (x3, y1) is an 0. 7-level depending pair

in the L-fuzzy context (L,X, Y,NTdM). Thereby we apply Step 1 to replace R4(x3, y1) and we aggregate R3(x3, y1) =
[0, 0] and R5(x3, y1) = [0. 8, 1].

Now, we can use different aggregation operators. For instance, if we take the average of the lower and upper bounds
we obtain the result [0. 4, 0. 5] and if we take the minimum of the lower bounds and the maximum of the upper ones
[0, 1].

For R2(x2, y2) and R4(x2, y2), we apply Step 4 since (x2, y2) is not an 0. 7-level depending pair and AM(x2, y2) =
2 < n/2 being n = 5 the number of contexts of the sequence.

Then, we have to aggregate R1(x2, y2) = [0. 1, 0. 4], R3(x2, y2) = [0. 5, 0. 5] and R5(x2, y2) = [0. 6, 0. 8] to replace the
values R2(x2, y2) and R4(x2, y2).

For instance, if we take the average of lower and upper bounds we obtain the result [0. 4, 0. 57] for replacing both
values and if we take the minimum of the lower bounds and the maximum of the upper ones, [0. 1, 0. 8].

Conclusions and future work

The method described in [9] and that proposed in this paper are complementary because in the first case the absent
values are replaced looking at the values of the context (studying dependencies between attributes), whereas in the
second one looking at the data (for the same object and attribute) of the sequence of contexts that represent the
evolution in time. We believe that this new algorithm is more suitable since we have all the information that provides
the sequence.

Besides, if we look at the computational complexity, the study of the implications between attributes (Section 4.1)
has higher cost than the study of tendencies proposed in this paper since the latter only requires the concepts associated
with the objects and attributes.

As a future work, we have to define what we understand as a sufficiently high level for α in every case. It is also
important to decide if the value n/2 is the most appropriate to define a sufficiently large or small value for when
AM(x0, y0). AM(x0, y0) = 1 is the best situation (the only absent value is the one that we want to replace).

Finally, it is also important to study the differences between the results of RAVP using different aggregation
operators.
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[16] A. Burusco, R. Fuentes-González, Contexts with multiple weighted values, International Journal of Uncertainty,
Fuzziness and Knowledge-based Systems, 9(3) (2001), 355-368.
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